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HISTORY OF

THE THEORIES OF ATTRACTION
AND

THE FIGURE OF THE EARTH.

VOLUME II.



Si Poisson a été d’une fécondité extraordinaire, c’est qu’il était au courant de
ce qui avait été fait avant lui, au courant, par exemple, des immenses travaux
des Euler et des d’Alembert; c’est qu’il ne s’est jamais sottement obstiné à perdre
son temps et ses forces à la recherche de ce qui était déjà trouvé.

Que l’exemple de Poisson serve de leçon à ces esprits irréfléchis qui, sous le
prétexte de conserver leur originalité, dédaignent de prendre connaissance des
découvertes de leurs devanciers, et restent sur les premiers dégrés de l’échelle,
tandis que, avec moins d’orgueil, ils se seraient élevés au sommet.

Arago, Œuvres Complètes, Tome ii. page 656.



A H I S TO RY

OF THE

MATHEMATICAL THEORIES OF ATTRACTION
AND

THE FIGURE OF THE EARTH,

FROM THE TIME OF NEWTON TO THAT
OF LAPLACE.

BY

I. TODHUNTER, M.A., F.R.S.

IN TWO VOLUMES.

VOLUME II.

London:
MACMILLAN AND CO.

1873.

[All Rights reserved.]



Cambridge:
PRINTED BY C. J. CLAY, M.A.

AT THE UNIVERSITY PRESS.



CHAPTER XIX

LAPLACE’S FIRST THREE MEMOIRS.

741. The investigations of Laplace on Attractions and the Figure of
the Earth fall naturally into five divisions. The first division consists of
three memoirs, which treat the subjects without the use of what we now
call the Potential Function, or of that branch of analysis which we now
call Laplace’s Functions. The second division consists of a separate vol-
ume which uses the Potential Function. The third division consists of
various memoirs which use both the Potential Function and Laplace’s
Functions. The fourth division is formed by the republication of the
preceding researches in the first and second volumes of the Mécanique
Céleste. The fifth division consists of researches subsequent to the pub-
lication of the second volume of the Mécanique Céleste; they are repro-
duced in the fifth volume of the Mécanique Céleste.

We shall consider in the present Chapter Laplace’s first three mem-
oirs.

742. We begin with the seventh volume of the Mémoires de Math-
ématique … par divers Savans … 1773: the date of publication is 1776.
This volume contains two memoirs by Laplace, which among other sub-
jects treat largely of Probability: see pages 473…475 of my History … of
Probability. The part of the volume with which we are now concerned
is entitled Sur la figure de la Terre; it occupies pages 524…534. It is not
stated when these investigations were sent to the Academy; but from the
title of the volume in which they appear we see that Laplace was not a
member of the Academy when they were sent.

743. Laplace begins thus on page 524:
Lorsque Newton voulut déterminer la figure de la Terre, il considéra cette

Planète comme une masse fluide homogène, et il supposa que la figure qu’elle
a prise en vertu de son mouvement de rotation est celle d’un sphéroïde ellip-
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tique. Cette supposition étoit fort précaire; les Géomètres en ont ensuite démon-
tré la possibilité; mais si la figure nécessaire pour l’équilibre, au lieu d’être ellip-
tique, eût été d’un autre genre, on auroit été fort embarrassé pour la déterminer,
parce qu’il est beaucoup plus facile de s’assurer si une figure donnée convient
à l’équilibre, que de chercher immédiatement celles qui peuvent y convenir. Ce
dernier Problème est sans contredit un des points les plus intéressans du Sys-
tème du Monde; voici quelques recherches qui y sont relatives.

744. Thus the following is the problem to be discussed: a mass of
homogeneous fluid in the form of a figure of revolution nearly spher-
ical rotates with uniform angular velocity round its axis of figure and
remains in relative equilibrium; determine the form. I call this problem
Legendre’s, because he was the first to solve it with tolerable success.

745. Let there be a circle of radius unity; let 𝜓 be the angle which
the radius to any point makes with a fixed radius: so that the ordinate of

this point is sin𝜓. Produce this ordinate until it becomes sin𝜓 +
𝛼𝑦
sin𝜓

,

where 𝛼 is very small, and 𝑦 is some function of 𝜓. Put 𝑥 for cos𝜓. Then
Laplace arrives at a differential equation between 𝑦 and 𝑥 of an infinite
order, to determine the required generating curve; that is a differential

equation involving
𝑑2𝑦
𝑑𝑥2

,
𝑑3𝑦
𝑑𝑥3

, … and so on ad infinitum.

746. The preceding notation does not look very promising; in fact
Laplace does not explicitly start with it, but arrives at it as he proceeds.
Unless 𝑦 is very small when 𝜓 is very small the process is not satisfac-
tory. Moreover Laplace in order to form his differential equation expands
a function into a series without discussing whether the series is conver-
gent.

747. The main result at which he arrives deserves notice. He wishes
to know whether equilibrium would subsist for any other form besides
an exact sphere when there is no rotation. He cannot completely solve
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this problem; but he shews that 𝑦 cannot consist of a series of the form
𝑎𝑥𝜆 + 𝑏𝑥𝜇 + 𝑐𝑥𝜈 + …, where 𝜆, 𝜇, 𝜈, … are numbers in descending or-
der of magnitude. That is 𝑦 cannot consist of a finite number of terms
each involving a power of 𝑥; nor can 𝑦 be an infinite series of descending
powers of 𝑥: but he does not shew that 𝑦 cannot be an infinite series of
ascending powers of 𝑥.

When the fluid is supposed to rotate Laplace’s demonstration
amounts to shewing that among all series, finite or infinite, which can
be arranged in descending powers of 𝑥, the only admissible form of 𝑦 is
𝑎𝑥2 + 𝑏𝑥 + 𝑐; where 𝑎, 𝑏, and 𝑐 are constants.

748. Laplace’s demonstration is difficult, but satisfactory; that is to
say after the points to which we have drawn attention in Art. 746, no
very serious objection will occur to a reader.

After finishing his demonstration, Laplace says on his page 534:
… Je dois observer ici que M. d’Alembert a déjà fait une remarque semblable

pour le cas où les exposans de 𝑥 sont des nombres entiers et positifs (voyez le
tome V des Opuscules de ce grand Géomètre).

These words are quite consistent with the supposition, that Laplace
had found the error which we have pointed out in D’Alembert’s process;
because to make a remark is far less than to demonstrate. See Art. 576.

749. Laplace concludes with these words:
Il seroit utile d’étendre ces recherches au cas où les couches de la masse

fluide sont inégalement denses; c’est ce que je me propose de faire dans un
autre Mémoire.

The intention here expressed was not carried into effect until the pub-
lication of Laplace’s seventh memoir in the Paris Mémoires for 1789.

750. All that Laplace’s first memoir contains on our subject is re-
produced with better notation in his second memoir to which we shall
proceed in our next Article: it is therefore unnecessary to treat the first
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memoir with much detail. In the second memoir we shall find that the
radius vector of the generating curve is denoted by 1 + 𝛼𝑓(cos𝜓), where

𝛼 is very small; so that what was called sin𝜓+
𝛼𝑦
sin𝜓

in Art. 745 is equal

to the sin𝜓{1+𝛼𝑓(cos𝜓)} of the second memoir: that is
𝑦

sin𝜓
of the first

memoir is sin𝜓𝑓(cos𝜓) of the second memoir, or 𝑦 of the first memoir
is sin2 𝜓𝑓(cos𝜓) of the second memoir. In the second memoir 𝑦 is put
for 𝑓(cos𝜓).

751. In the Paris Mémoires for 1772, Seconde Partie, published in
1776, we have a memoir by Laplace entitled Recherches sur le Calcul In-
tégral et sur le Système du Monde; at a later part of the volume there
are some Additions to this memoir: among these Additions we have a
section entitled De l’Équilibre des Sphéroïdes homogènes, which occupies
pages 536…554 of the volume.

752. The problem proposed to be discussed is the same as that of the
preceding memoir: see Art. 744. Laplace was not able to solve the prob-
lem completely; but he reproduced his former demonstration, somewhat
improved, that for a large number of figures the relative equilibrium was
impossible.

753. But although he did not in this memoir arrive at the necessary
form for equilibrium, yet he obtained a very remarkable result: namely,
that the law of the variation of gravity, whatever be the form of equi-
librium, is the same as for an oblatum. We will give in substance the
method by which Laplace obtains this result.

We may remark that Laplace investigates the polar expression for an
element of mass, namely in the usual modern notation 𝑟2𝑑𝑟 sin 𝜃 𝑑𝜃 𝑑𝜙:
see his page 539. The investigation is in fact the same as we now have
in our elementary books: see Integral Calculus, third edition, Art. 207.

In his first memoir Laplace used this polar expression but did not
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investigate it; he merely says, “on trouvera facilement…”: see his page
525. See also Art. 710.

754. Let there be a curve differing very little from a circle, and sym-
metrical with respect to a diameter. Let half the length of this diameter
be unity, and let the length of a radius vector inclined at an angle 𝜓 to
the diameter be 1 + 𝛼𝑓(cos𝜓), where 𝑓 denotes any function, and 𝛼 is
a very small quantity the square of which we shall neglect. Suppose a
solid formed by the revolution of this curve round the diameter which
divides it symmetrically; take this diameter for the direction of the axis
of 𝑥: then the equation to the surface will be

√(𝑥2 + 𝑦2 + 𝑧2) = 1 + 𝛼𝑓 {
𝑥

√(𝑥2 + 𝑦2 + 𝑧2)
} . (1)

We propose to find the attraction of the solid at a point situated on
its surface; this point without loss of generality we may take in the plane
of (𝑥, 𝑦): let 𝜓 be the angle between the radius vector of this point and
the axis of revolution.

Put 𝑥 = 𝜉 cos𝜓 + 𝜂 sin𝜓, 𝑦 = 𝜉 sin𝜓 − 𝜂 cos𝜓; thus (1) becomes

√(𝜉2 + 𝜂2 + 𝑧2) = 1 + 𝛼𝑓 {
𝜉 cos𝜓 + 𝜂 sin𝜓
√(𝜉2 + 𝜂2 + 𝑧2)

} . (2)

We can now pass easily to polar coordinates which have their origin
at the attracted point: put

𝜉 = ℎ − 𝑟 sin 𝜃 cos𝜙, 𝜂 = 𝑟 sin 𝜃 sin𝜙, 𝑧 = 𝑟 cos 𝜃,

where
ℎ = 1 + 𝛼𝑓(cos𝜓).

[I use 𝜃 for Laplace’s 𝑝, and
𝜋
2
− 𝜙 for his 𝑞.]
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Thus (2) becomes

√(ℎ2 − 2ℎ𝑟 sin 𝜃 cos𝜙 + 𝑟2)

= 1 + 𝛼𝑓 {
ℎ cos𝜓 − 𝑟 sin 𝜃 cos𝜙 cos𝜓 + 𝑟 sin 𝜃 sin𝜙 sin𝜓

√(ℎ2 − 2ℎ𝑟 sin 𝜃 cos𝜙 + 𝑟2)
} . (3)

We proceed to find from (3) the value of 𝑟 to the order of approxi-
mation which we require.

If 𝛼 = 0, we should get 𝑟 = 2 sin 𝜃 cos𝜙; assume then

𝑟 = 2 sin 𝜃 cos𝜙 + 𝜌,

where 𝜌 will be very small.
Substitute in (3) and we obtain

𝛼𝑓(cos𝜓) − 2𝛼 sin2 𝜃 cos2 𝜙𝑓(cos𝜓) + 𝜌 sin 𝜃 cos𝜙 = 𝛼𝑓(𝑢),

where 𝑢 stands for cos𝜓 − 2 sin2 𝜃 cos𝜙 cos(𝜙 + 𝜓); so that

𝜌 =
𝛼(2 sin2 𝜃 cos2 𝜙 − 1)

sin 𝜃 cos𝜙
𝑓(cos𝜓) +

𝛼
sin 𝜃 cos𝜙

𝑓(𝑢).

We may also arrange the value of 𝜌 thus,

𝜌 = 2𝛼 sin 𝜃 cos𝜙𝑓(cos𝜓) + 𝛼
𝑓(𝑢) − 𝑓(cos𝜓)
sin 𝜃 cos𝜙

;

and this shews that 𝜌 remains small even when sin 𝜃 cos𝜙 is very small:
for then we have 𝑓(𝑢) very nearly equal to 𝑓(cos𝜓).

Now the attraction at the point resolved along the radius vector

=∬𝑟 sin2 𝜃 cos𝜙𝑑𝜃 𝑑𝜙 =∬(2 sin 𝜃 cos𝜙 + 𝜌) sin2 𝜃 cos𝜙𝑑𝜃 𝑑𝜙;
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the limits for 𝜃 are 0 and 𝜋; the limits for 𝜙 are −(
𝜋
2
+ 𝛽) and

𝜋
2
− 𝛽,

where 𝛽 is some function of 𝜓, which is of the order of 𝛼. It is easy to
see that for our approximation we may proceed as if 𝛽 were zero. Denote
this resolved attraction by 𝐴: thus

𝐴 = 2∬ sin3 𝜃 cos2 𝜙𝑑𝜃 𝑑𝜙+𝛼𝑓(cos𝜓)∬ sin 𝜃(2 sin2 𝜃 cos2 𝜙−1)𝑑𝜃 𝑑𝜙

+ 𝛼∬ sin 𝜃𝑓(𝑢)𝑑𝜃 𝑑𝜙.

The first and second integrations may be easily effected; with respect
to these it is exactly true that we may proceed as if 𝛽 were zero: and we
obtain

𝐴 =
4𝜋
3
−
2𝛼𝜋
3
𝑓(cos𝜓) + 𝛼∬ sin 𝜃𝑓(𝑢)𝑑𝜃 𝑑𝜙.

Let 𝐵 denote the attraction resolved in the meridian plane at right
angles to the radius vector; then

𝐵 =∬(2 sin 𝜃 cos𝜙 + 𝜌) sin2 𝜃 sin𝜙𝑑𝜃 𝑑𝜙

= 2∬ sin3 𝜃 cos𝜙 sin𝜙𝑑𝜃 𝑑𝜙 + 2𝛼𝑓(cos𝜓)∬ sin3 𝜃 sin𝜙 cos𝜙𝑑𝜃 𝑑𝜙

+ 𝛼∬
𝑓(𝑢) − 𝑓(cos𝜓)

cos𝜙
sin 𝜃 sin𝜙𝑑𝜃 𝑑𝜙.

It is easy to see that the first and second integrals vanish; so that

𝐵 = 𝛼∬
𝑓(𝑢) − 𝑓(cos𝜓)

cos𝜙
sin 𝜃 sin𝜙𝑑𝜃 𝑑𝜙:

this integral is finite, for 𝑓(𝑢) − 𝑓(cos𝜓) vanishes when cos𝜙 vanishes.
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The last integral may be transformed. By integration by parts we have

∫{𝑓(𝑢) − 𝑓(cos𝜓)} sin 𝜃 𝑑𝜃

= − cos 𝜃{𝑓(𝑢) − 𝑓(cos𝜓)} − 4∫ cos2 𝜃 sin 𝜃𝑓′(𝑢) cos𝜙 cos(𝜙 + 𝜓) 𝑑𝜃;

when this is taken between the limits 0 and 𝜋 the first term vanishes; so
that we have

𝐵 = −4𝛼∬ cos2 𝜃 sin 𝜃𝑓′(𝑢) sin𝜙 cos(𝜙 + 𝜓) 𝑑𝜃 𝑑𝜙

= −2𝛼∬ cos2 𝜃 sin 𝜃𝑓′(𝑢){sin(2𝜙 + 𝜓) − sin𝜓} 𝑑𝜃 𝑑𝜙.

Now
𝑢 = cos𝜓 − sin2 𝜃{cos(2𝜙 + 𝜓) + cos𝜓};

so that
∫ sin(2𝜙 + 𝜓)𝑓′(𝑢) 𝑑𝜙 =

𝑓(𝑢)
2 sin2 𝜃

,

and this vanishes when taken between the limits −
𝜋
2
and

𝜋
2
. Thus finally

𝐵 = 2𝛼 sin𝜓∬ cos2 𝜃 sin 𝜃𝑓′(𝑢) 𝑑𝜃 𝑑𝜙. (4)

755. We shall now shew that

𝑑𝐴
𝑑𝜓

=
2𝛼𝜋
3
𝑓′(cos𝜓) sin𝜓 −

𝐵
2
. (5)

We have

𝑑𝐴
𝑑𝜓

=
2𝛼𝜋
3
𝑓′(cos𝜓) sin𝜓 + 𝛼∬ sin 𝜃𝑓′(𝑢)

𝑑𝑢
𝑑𝜓

𝑑𝜃 𝑑𝜙,
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and
𝑢 = cos2 𝜃 cos𝜓 − sin2 𝜃 cos(2𝜙 + 𝜓),

so that
𝑑𝑢
𝑑𝜓

= − cos2 𝜃 sin𝜓 + sin2 𝜃 sin(2𝜙 + 𝜓).

Hence

𝑑𝐴
𝑑𝜓

=
2𝛼𝜋
3
𝑓′(cos𝜓) sin𝜓 − 𝛼 sin𝜓∬ cos2 𝜃 sin 𝜃𝑓′(𝑢) 𝑑𝜃 𝑑𝜙

=
2𝛼𝜋
3
𝑓′(cos𝜓) sin𝜓 −

𝐵
2
.

This is the first appearance in Laplace’s writings of a theorem which
he seems to have valued highly: see Art. 652. We shall meet the theo-
rem again several times: it appears in a different form in the Mécanique
Céleste, Livre iii. § 10.

756. Now let us suppose that the attracting body is a fluid, or at least
that there is a superficial stratum of fluid. Then for relative equilibrium
the resolved part of the force along the tangent to the meridian must
vanish. This part consists of the resolved parts of 𝐴 and 𝐵, together with
the centrifugal force.

The direction of 𝐴 is nearly at right angles to the tangent; the cosine
of the angle between the directions is −𝛼𝑓′(cos𝜓) sin𝜓. The direction
of 𝐵 makes only an indefinitely small angle with the tangent. Hence,
denoting the angular velocity by 𝜔, we have

𝐵 − 𝐴𝛼𝑓′(cos𝜓) sin𝜓 − 𝜔2 sin𝜓 cos𝜓 = 0;

that is, neglecting the square of 𝛼,

𝐵 =
4𝜋𝛼
3
𝑓′(cos𝜓) sin𝜓 + 𝜔2 sin𝜓 cos𝜓. (6)



laplace’s second memoir. 10

Let 𝑃 denote the gravity at the point considered; then approximately

𝑃 = 𝐴 − 𝜔2 sin2 𝜓,

therefore
𝑑𝑃
𝑑𝜓

=
𝑑𝐴
𝑑𝜓

− 2𝜔2 sin𝜓 cos𝜓

=
2𝛼𝜋
3
𝑓′(cos𝜓) sin𝜓 −

𝐵
2
− 2𝜔2 sin𝜓 cos𝜓 by (5)

= −
5
2
𝜔2 sin𝜓 cos𝜓 by (6).

Therefore 𝑃 = constant −
5
4
𝜔2 sin2 𝜓 = 𝑃0 −

5
4
𝜔2 sin2 𝜓, where 𝑃0 de-

notes the force of gravity at the pole. This is the result which, as we
stated in Art. 753, Laplace established.

757. We shall now form the differential equation of an infinite order
at which Laplace arrives.

Put 𝑓(cos𝜓) = 𝑦, and cos𝜓 = 𝑥, so that 𝑓′(cos𝜓) =
𝑑𝑦
𝑑𝑥

.

Then
𝑓′(𝑢) = 𝑓′{cos𝜓 − 2 sin2 𝜃 cos𝜙 cos(𝜙 + 𝜓)}

= 𝑓′(cos𝜓 − 𝑧) say;
hence expanding by Taylor’s Theorem this becomes

𝑑𝑦
𝑑𝑥

− 𝑧
𝑑2𝑦
𝑑𝑥2

+
𝑧2

2
𝑑3𝑦
𝑑𝑥3

−
𝑧3

3
𝑑4𝑦
𝑑𝑥4

+…

Then equating the values of 𝐵 given by (4) and (6), and dividing by
sin𝜓, we obtain

2𝛼∬ cos2 𝜃 sin 𝜃 {
𝑑𝑦
𝑑𝑥

− 𝑧
𝑑2𝑦
𝑑𝑥2

+
𝑧2

2
𝑑3𝑦
𝑑𝑥3

−…}𝑑𝜃𝑑𝜙 =
4𝜋𝛼
3

𝑑𝑦
𝑑𝑥

+ 𝜔2𝑥.
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The term
𝑑𝑦
𝑑𝑥

will disappear from this equation, because

∬ cos2 𝜃 sin 𝜃 𝑑𝜃 𝑑𝜙 between the proper limits =
2𝜋
3
. Thus we

have

∬ cos2 𝜃 sin 𝜃 {𝑧
𝑑2𝑦
𝑑𝑥2

−
𝑧2

2
𝑑3𝑦
𝑑𝑥3

+
𝑧3

3
𝑑4𝑦
𝑑𝑥4

−…}𝑑𝜃𝑑𝜙 = −
𝜔2𝑥
2𝛼

. (7)

758. The integrations with respect to 𝜃 and 𝜙 in (7) can be easily
effected. Consider first the integration with respect to 𝜙. We have

𝑧𝑛 = {2 sin2 𝜃 cos𝜙 cos(𝜙 + 𝜓)}𝑛 = sin2𝑛 𝜃{cos𝜓 + cos(2𝜙 + 𝜓)}𝑛.

Thus we require ∫
𝜋
2

−𝜋
2

{cos𝜓 + cos(2𝜙 + 𝜓)}𝑛 𝑑𝜙.

Now

{cos𝜓 + cos(2𝜙 + 𝜓)}𝑛 = cos𝑛 𝜓 + 𝑛 cos𝑛−1 𝜓 cos(2𝜙 + 𝜓)

+
𝑛(𝑛 − 1)

2
cos𝑛−2 𝜓 cos2(2𝜙 + 𝜓) +…

When we integrate between the limits the terms which involve odd
powers of cos(2𝜙 + 𝜓) disappear, and those which involve even powers
are easily obtained. For example, take

∫
𝜋
2

−𝜋
2

cos4(2𝜙 + 𝜓) 𝑑𝜙;

put 𝑡 for 2𝜙 + 𝜓, then we get

1
2
∫

𝜋+𝜓

−𝜋+𝜓
cos4 𝑡 𝑑𝑡,
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and this obviously =
1
2
∫

2𝜋

0
cos4 𝑡 𝑑𝑡

=
4
2
∫

𝜋
2

0
cos4 𝑡 𝑑𝑡 = 2 .

3 . 1
4 . 2

.
𝜋
2
=
3 . 1
4 . 2

𝜋.

In this way we easily see that ∫
𝜋
2

−𝜋
2

{cos𝜓 + cos(2𝜙 + 𝜓)}𝑛 𝑑𝜙

= 𝜋 {𝑥𝑛 +
𝑛(𝑛 − 1)

22
𝑥𝑛−2 +

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)
22 . 42

𝑥𝑛−4

+
𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)(𝑛 − 4)(𝑛 − 5)

22 . 42 . 62
𝑥𝑛−6 +…} .

[This is not Laplace’s method; but seems to me rather simpler.]
It is obvious that the integration with respect to 𝜃 can be easily ef-

fected.

759. We shall now shew that except in the particular case of 𝑦 =
𝑎𝑥2 + 𝑏𝑥 + 𝑐, the equation (7) cannot be satisfied by a value of 𝑦 of the
form 𝑎𝑥𝜆 + 𝑏𝑥𝜇 + 𝑐𝑥𝜈 + … where 𝜆, 𝜇, 𝜈,… are in descending order of
magnitude.

For substitute this assumed form of 𝑦 in (7); then the term which
involves the highest power of 𝑥 on the left-hand side will be found to be

𝜋𝑎𝜆𝑥𝜆−1∫𝑑𝜃 sin 𝜃 cos2 𝜃 {(𝜆 − 1) sin2 𝜃 −
(𝜆 − 1)(𝜆 − 2)

2
sin4 𝜃

+
(𝜆 − 1)(𝜆 − 2)(𝜆 − 3)

3
sin6 𝜃 −…} .

If 𝜆 = 2 the coefficient of 𝑥𝜆−1, that is of 𝑥, must be equated to −
𝜔2

2𝛼
.

But if 𝜆 is not = 2, the coefficient of 𝑥𝜆−1 must be equated to zero.
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Thus
𝜆∫

𝜋

0
sin 𝜃 cos2 𝜃{1 − (1 − sin2 𝜃)𝜆−1} 𝑑𝜃 = 0,

that is
𝜆∫

𝜋

0
sin 𝜃 cos2 𝜃{1 − cos2𝜆−2 𝜃} 𝑑𝜃 = 0,

that is

𝜆 {
2
3
+
(−1)2𝜆+1

2𝜆 + 1
−

1
2𝜆 + 1

} = 0.

If we suppose (−1)2𝜆+1 = −1, this reduces to 𝜆 (
2
3
−

2
2𝜆 + 1

) = 0; so

that 𝜆 = 0, or 𝜆 = 1.

If we suppose (−1)2𝜆+1 = 1, it reduces to
2𝜆
3

= 0; so that 𝜆 = 0.

Laplace strangely multiplies up by 2𝜆 + 1, so that he introduces the so-

lution 2𝜆 + 1 = 0, which gives 𝜆 = −
1
2
: this he rejects because it would

make 𝑦 impossible when 𝑥 is negative, and infinite when 𝑥 = 0. But the
apparent solution 2𝜆 + 1 = 0, really does not occur; but is introduced by
Laplace without reason.

Hence it follows that if we put 𝑦 = 𝑎𝑥2+𝑏𝑥+𝑐+𝜂, then 𝜂 cannot take
the form of a series, finite or infinite, arranged according to descending
powers of 𝑥.

760. It will be observed that the principle of Laplace’s demonstra-
tion resembles that which D’Alembert adopted in the fifth volume of his
Opuscules Mathématiques. But, as we have seen, D’Alembert went astray
in the details of his process: see Art. 576. Laplace repeats the remark
relative to D’Alembert which we quoted in Art. 748.

761. Laplace then extends his result, and shews that 𝑦 cannot be a
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fraction, the numerator and denominator of which are series arranged in
descending powers of 𝑥.

762. Laplace’s own statements of his theorems are liable to objection.
He does not say explicitly that his series are arranged in descending pow-
ers of 𝑥; but this limitation is obvious in his demonstration. He proves
that 𝑦 cannot be a series which has a highest power of 𝑥; but he does
not prove that 𝑦 cannot be an infinite series of ascending powers of 𝑥.
See Art. 747.

763. All that this memoir contains is comprised in the theorem which
Legendre first demonstrated that the generating curve must in fact be
an ellipse: for thus the form of the surface and the law of gravity are
definitely settled.

Laplace refers on his page 545 to l’excellent Ouvrage de M. Clairaut
sur la figure de la Terre.

764. In the Paris Mémoires for 1775, published in 1778, we have a
memoir by Laplace entitled Recherches sur plusieurs points du Système
du Monde. One section of this memoir is Sur la loi de la Pesanteur à la
surface des sphéroïdes homogènes en équilibre; this occupies pages 75…89
of the volume.

765. The investigations here given are an extension of those in the
volume for 1772. There Laplace had found the law of the variation of
gravity on the assumption that the spheroid is a figure of revolution; here
he considers the case in which the spheroid is not assumed to be a figure
of revolution.

This result is really involved in the former; for Laplace subsequently
shewed that the spheroid must be a figure of revolution, in fact an obla-
tum.

766. Let 𝑂 be the centre of a sphere which nearly coincides with the
spheroid, 𝑀 any point at the surface; we propose to obtain expressions
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for the attraction at 𝑀.
Let 𝑅 be any other point on the surface. Let 𝑂𝑅 = 1 + 𝛼𝜇′, where

𝛼 is a very small quantity, and 𝜇′ is a function of the elements which
determine the position of 𝑅; these elements may be conveniently the co-
latitude 𝜓′, and the longitude 𝜆′. Then 𝑂𝑀 = 1+𝛼𝜇, where 𝜇 is what 𝜇′
becomes, when 𝜓′ and 𝜆′ become 𝜓 and 𝜆 respectively.

Now make 𝑀 the origin of the usual polar coordinates 𝑟, 𝜃, and 𝜙;
where 𝑀𝑅 = 𝑟.

Let 𝐴 denote the resolved attraction along 𝑀𝑂; let 𝐵 denote the re-
solved attraction at right angles to 𝑀𝑂, and in the meridian plane of 𝑀,
towards the pole; and let 𝐶 denote the resolved attraction at right angles
to the directions of 𝐴 and 𝐵. Then

𝐴 =∬𝑟 sin2 𝜃 cos𝜙𝑑𝜃 𝑑𝜙,

𝐵 =∬𝑟 sin2 𝜃 sin𝜙𝑑𝜃 𝑑𝜙,

𝐶 =∬𝑟 sin 𝜃 cos 𝜃 𝑑𝜃 𝑑𝜙.

[I use 𝜃 for Laplace’s 𝑝, and
𝜋
2
− 𝜙 for his 𝑞.]

767. We have to find an expression for 𝑟. Laplace uses a diagram for
this purpose.

In the diagram 𝑂𝑃 is the diameter from which the colatitudes are
measured.

𝑅𝑍 is perpendicular to the plane 𝑀𝑂𝑃; 𝑅𝐿 and 𝑍𝐿 are perpendiculars
to 𝑂𝑀.

𝑀𝑅 = 𝑟, 𝑅𝑍 = 𝑟 cos 𝜃, 𝑀𝐿 = 𝑟 sin 𝜃 cos𝜙, 𝑍𝐿 = 𝑟 sin 𝜃 sin𝜙.
Now

𝑂𝑅2 = 𝑂𝐿2 + 𝑅𝐿2 = (𝑂𝑀 − 𝑟 sin 𝜃 cos𝜙)2 + 𝑅𝐿2;
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that is
𝑂𝑅2 = 𝑂𝑀2 − 2𝑂𝑀𝑟 sin 𝜃 cos𝜙 + 𝑟2;

therefore

(1 + 𝛼𝜇′)2 = (1 + 𝛼𝜇)2 − 2(1 + 𝛼𝜇)𝑟 sin 𝜃 cos𝜙 + 𝑟2.

Solve this quadratic in 𝑟, and neglect powers of 𝛼 above the first: thus

𝑟 = (1 + 𝛼𝜇) sin 𝜃 cos𝜙 ± {(1 + 𝛼𝜇) sin 𝜃 cos𝜙 +
𝛼(𝜇′ − 𝜇)
sin 𝜃 cos𝜙

} .

The upper sign must be taken; for the lower sign would lead to a
value of 𝑟 of the order 𝛼: therefore

𝑟 = 2(1 + 𝛼𝜇) sin 𝜃 cos𝜙 +
𝛼(𝜇′ − 𝜇)
sin 𝜃 cos𝜙

.

768. The limits of the integrations, without introducing any error of

the order we are retaining, may be taken to be 0 and 𝜋 for 𝜃, and −
𝜋
2
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and
𝜋
2
for 𝜙. Hence using the value of 𝑟 found in the preceding Article

we have
𝐴 =

4𝜋
3
−
2𝜋𝛼𝜇
3

+ 𝛼∬𝜇′ sin 𝜃 𝑑𝜃 𝑑𝜙,

𝐵 = 𝛼∬(𝜇′ − 𝜇)
sin 𝜃 sin𝜙
cos𝜙

𝑑𝜃 𝑑𝜙,

𝐶 = 𝛼∬(𝜇′ − 𝜇)
cos 𝜃
cos𝜙

𝑑𝜃 𝑑𝜙.

Here 𝐵 is estimated towards the pole; if we estimate 𝐵 from the pole,
as Laplace does, we must change the sign of the expression.

769. Laplace then incautiously says that

𝐵 = −𝛼∫
𝜇′ sin 𝜃 sin𝜙

cos𝜙
𝑑𝜃 𝑑𝜙, 𝐶 = 𝛼∫

𝜇′ cos 𝜃
cos𝜙

𝑑𝜃 𝑑𝜙;

but he never uses these erroneous forms, and probably the introduction
of them is only a misprint. These erroneous forms would make 𝐵 and 𝐶
infinite.

770. In order to effect the integrations in the values of 𝐴, 𝐵, and 𝐶,
supposing 𝜇′ a known function of 𝜓′ and 𝜆′, it would be necessary to
connect 𝜓′ and 𝜆′ with 𝜃 and 𝜙: to this we proceed.

It will be seen that 𝜇′ enters with the coefficient 𝛼; and thus we may
use approximations in our equations.

In the diagram of Art. 767, by projecting on 𝑂𝑃 the straight line 𝑂𝑅,
and also the broken line made up of 𝑂𝐿 and 𝐿𝑍, we have exactly

𝑂𝑅 cos𝜓′ = 𝑂𝐿 cos𝜓 + 𝐿𝑍 sin𝜓
= (𝑂𝑀 − 𝑟 sin 𝜃 cos𝜙) cos𝜓 + 𝑟 sin 𝜃 sin𝜙 sin𝜓;

that is
𝑂𝑅 cos𝜓′ = 𝑂𝑀 cos𝜓 − 𝑟 sin 𝜃 cos(𝜙 + 𝜓).
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Hence to the order which we have to retain

cos𝜓′ = cos𝜓 − 2 sin2 𝜃 cos𝜙 cos(𝜙 + 𝜓). (1)

Again,

sin(𝜆′ − 𝜆) =
𝑅𝑍

𝑂𝑅 sin𝜓′
=

𝑟 cos 𝜃
𝑂𝑅 sin𝜓′

.

Hence to the order which we have to retain

sin(𝜆′ − 𝜆) =
2 sin 𝜃 cos 𝜃 cos𝜙

sin𝜓′
. (2)

Equations (1) and (2) theoretically give us the required connection of
𝜓′ and 𝜆′ with 𝜃 and 𝜙.

771. Laplace proceeds to establish the following result:
𝑑𝐴
𝑑𝜓

= −
2𝜋𝛼
3

𝑑𝜇
𝑑𝜓

+
𝐵
2
.

This corresponds to equation (5) of Art. 755. There is a difference in
sign however, because Laplace here estimates 𝐵 from the pole, whereas
in his second memoir he estimated it towards the pole: we shall for con-
venience keep here to the method of the third memoir.

Laplace arrives at his result by four pages of integration and differ-
entiation: we shall not reproduce this investigation, as Laplace himself
afterwards gave a simpler process, and we shall have to return to the
subject.

This is the second appearance in Laplace’s writings of the theorem to
which we have referred in Art. 755: it is here extended to the case of a
body not of revolution.

772. In the same manner as the theorem in Art. 771 is established,
we may shew that

𝑑𝐴
sin𝜓𝑑𝜆

= −
2𝜋𝛼
3

𝑑𝜇
sin𝜓𝑑𝜆

+
𝐶
2
.



laplace’s third memoir. 19

773. If we now consider the condition of relative equilibrium of a
fluid mass, or of a mass covered with a superficial stratum of fluid, we
arrive as in Art. 756 at the following results:

𝐵 + 𝜔2 sin𝜓 cos𝜓 =
4𝜋𝛼
3

𝑑𝜇
𝑑𝜓

,

𝑃 = 𝑃0 −
5
4
𝜔2 sin2 𝜓,

where 𝐵 is now estimated from the pole.
And we have now besides

𝐶 =
4𝜋𝛼
3 sin𝜓

𝑑𝜇
𝑑𝜆

.

These general results must have been very interesting at the time they
were given: but they have since lost much of their value, because it is
known that under the supposed conditions the mass can only take the
form of an oblatum: this was established by Laplace in his fourth mem-
oir, and the demonstration is reproduced in the Mécanique Céleste: see
Livre iii. § 26.

774. Laplace extends his process; for he supposes that besides the at-
traction of the mass itself there may be external forces: and in particular
he considers the case of an external body which is in relative equilib-
rium with respect to the attracted body. In this case we have as usual to
find, not the absolute attraction at a point, but the excess of this attrac-
tion above that at the centre of gravity of the mass. Laplace’s method is
peculiar: see his pages 87 and 88. The result is correct, but a reader will
probably verify it, as he easily may, before he accepts it.

775. On pages 261…267 of the Paris Mémoires for 1776, we have an
Addition to the memoir we are now considering. This Addition gives us
a simple proof of the theorems of Arts. 771 and 772 in the more general
form which they take when the force of attraction is supposed to vary



laplace’s third memoir. 20

as the nth power of the distance. The investigation depends on the same
principles as that in the Mécanique Céleste, Livre iii. § 10; and the results
may be said to be summed up in equation (1) of that section, inasmuch
as they will follow from that equation by differentiation. But the Poten-
tial Function is not used in the pages now under notice. These pages are
in substance reproduced in the fourteenth section of Laplace’s Théorie …
de la Figure des Planetes of which we shall hereafter give an account.

776. I will notice some remarks on page 262 by which Laplace tries
to shew that if there is one figure of equilibrium for a rotating spheroid
there will be an infinite number.

Let 1 + 𝛼𝑦 be the radius vector to any point of the surface, where
𝛼 is indefinitely small (infiniment petit), and 𝑦 is any function of 𝜃 the
colatitude and 𝜛 the longitude. Let 𝛼𝐵 denote the tangential attraction;
then for equilibrium we must have 𝐵 = 0. Let 𝑦 be such a function of 𝜃
and 𝜛 as to satisfy this: then he says the condition will also be satisfied
when we put 𝜃 +𝑎 for 𝜃, and 𝜛+𝑏 for 𝜛; where 𝑎 and 𝑏 are constants.
Let 𝑦′ be what 𝑦 becomes by this change. Then he says that there will
be equilibrium if the radius vector be 1 + 𝛼𝑦′; and therefore also if the
radius vector be 1 + 𝛼𝑦 + 𝑛𝛼𝑦′ where 𝑛 is any constant.

I presume that Laplace does not suppose any rotation here, or any
action but that of the fluid mass itself. Thus in fact we have a case some-
thing like that of the coexistence of small motions in Dynamics.

If we suppose the mass to rotate then the argument will have to be
slightly modified. We cannot then change 𝜃 into 𝜃+𝑎, but we can change
𝜛 into 𝜛+ 𝑏; and thus as before we shall still have an infinite number
of solutions. Compare the Mécanique Céleste, Livre iii. § 26.

777. The first three memoirs by Laplace on our subjects are super-
seded by his investigations of the third division: see Art. 741. The first
three memoirs may be considered to attach themselves to the researches
of D’Alembert, and to continue those researches. In his writings of the
third division Laplace may be said to derive great assistance from Legen-
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dre. It will be necessary as we proceed to be particular with the chronol-
ogy of the memoirs by Laplace and Legendre; for we shall find indica-
tions that Legendre was not quite satisfied with Laplace’s silence as to
the matter of priority: see also Pontécoulant’s Système du Monde, Vol.
iii. page x.

778. The order then which we shall have to adopt after thus consid-
ering Laplace’s first three memoirs is the following:

Legendre’s first memoir; this is in the Mémoires … par divers Savans
… Vol. x.

Laplace’s treatise De la Figure des Planetes; this is contained in a work
published in 1784.

Legendre’s second memoir; this is in the Paris Mémoires for 1784.
Laplace’s fourth memoir; this is in the Paris Mémoires for 1782.
Laplace’s fifth memoir; this is in the Paris Mémoires for 1783.
Laplace’s sixth memoir; this is in the Paris Mémoires for 1787.
Legendre’s third memoir; this is in the Paris Mémoires for 1788.
Legendre’s fourth memoir; this is in the Paris Mémoires for 1789.
Laplace’s seventh memoir; this is in the Paris Mémoires for 1789.
When a volume of the Paris Mémoires is said to be for a specified

year, it by no means follows that all the memoirs which it contains were
written during or before the specified year. The order in which we have
placed these writings of Laplace and Legendre is the order of their pro-
duction, as will appear by our extracts from them as we proceed.



CHAPTER XX.

LEGENDRE’S FIRST MEMOIR.

779. A very important memoir by Legendre is contained in the tenth
volume of the Mémoires … présentés par divers Savans…. The date of
publication of the volume is 1785. The memoir, however, must have been
communicated to the Academy at an earlier period; for in the treatise De
la Figure des Planetes, which was published in 1784, Laplace refers to the
researches of Legendre which constitute the present memoir: see page 96
of Laplace’s treatise.

Legendre’s memoir is entitled Recherches sur l’attraction des
sphéroïdes homogènes; it occupies pages 411…434 of the volume.

780. Legendre begins thus:
M. Maclaurin est le premier qui ait déterminé l’attraction d’un Sphéroïde

elliptique pour les points situés dans son intérieur ou à sa surface. Les propo-
sitions qu’il a établies à ce sujet, et d’où résulte une solution si simple du prob-
lême de la figure de la Terre, servent de base à son excellente Pièce sur le Flux
et le Reflux de la Mer, et sont connues de tous les Géomètres. Le même Auteur
a considéré aussi l’attraction des Sphéroïdes elliptiques sur les points situés au
dehors; mais il s’est borné aux points situés sur l’axe ou sur l’équateur pour les
Sphéroïdes de révolution, et seulement aux points placés dans la direction d’un
des trois axes, lorsque le Sphéroïde a toutes ses coupes elliptiques. Ces deux
objets se trouvent compris dans un théorème remarquable, dont M. Maclaurin
donne l’énoncé, art. 653 de son Traité des Fluxions; théorême dont MM. d’Alem-
bert et de la Grange ont donné depuis la démonstration; le premier, dans les
Mémoires de Berlin, année 1774, et dans le tome vii. de ses Opuscules; le sec-
ond, dans les Mémoires de Berlin, année 1775.

Il ne paroît pas que les Géomètres aient poussé plus loin leurs recherches
sur cette matière intéressante; car, quoique M. de la Grange ait considéré le
problême dans toute sa généralité (Mém. de Berlin, année 1773), l’intégration
n’a réussi à ce grand Géomètre que dans les cas déjà résolus par M. Maclaurin.
C’est dans la vûe de concourir à la perfection de cette théorie, que j’ai entrepris
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les Recherches dont je vais rendre compte.

We see from this extract that, as we have stated in Art. 260, Legendre
underrates what Maclaurin really did demonstrate.

781. We will now give in substance Legendre’s treatment of Maclau-
rin’s theorem in attractions.

Let the equation to an ellipsoid be
𝑥2

𝑎2
+
𝑦2

𝑏2
+
𝑧2

𝑐2
= 1: required the

attraction at a point on the prolongation of the axis of 𝑥 at the distance
ℎ from the origin.

Let 𝑟 be the distance of any point of the ellipsoid from the attracted
particle, 𝜙 the angle between 𝑟 and its projection on the plane of (𝑥, 𝑧),
and 𝜓 the angle between this projection and the axis of 𝑥. The element
of mass is 𝑟2 cos𝜙𝑑𝜙𝑑𝜓𝑑𝑟; and thus the attraction resolved along the axis
on which the attracted particle is situated is

𝑟2 cos𝜙𝑑𝜙𝑑𝜓𝑑𝑟
𝑟2

× cos𝜙 cos𝜓,

that is
cos2 𝜙 cos𝜓𝑑𝜙𝑑𝜓𝑑𝑟.

We first integrate for 𝑟; the limits are 𝑟1 and 𝑟2, where 𝑟1 and 𝑟2 are the
limiting radii vectores drawn from the attracted particle to the ellipsoid
in the direction assigned by the angles 𝜙 and 𝜓. Thus 𝑟1 and 𝑟2 are the
roots of the quadratic equation

(ℎ − 𝑟 cos𝜙 cos𝜓)2

𝑎2
+
𝑟2 sin2 𝜙

𝑏2
+
𝑟2 cos2 𝜙 sin2 𝜓

𝑐2
= 1;

hence we find that

𝑟2 − 𝑟1 =
2𝑎𝑏𝑐√{𝑐2(𝑎2 − ℎ2) sin2 𝜙 + 𝑏2 cos2 𝜙(𝑎2 sin2 𝜓 + 𝑐2 cos2 𝜓 − ℎ2 sin2 𝜓)}

𝑏2𝑐2 cos2 𝜙 cos2 𝜓 + 𝑎2𝑐2 sin2 𝜙 + 𝑎2𝑏2 cos2 𝜙 sin2 𝜓
.
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Now (𝑟2 − 𝑟1) cos2 𝜙 cos𝜓 can be integrated with respect to 𝜓; for we
may put the expression to be integrated in the form

𝐾𝑑𝜓 cos𝜓√(𝐴2 − 𝐵2 sin2 𝜓)
1 + 𝐿 sin2 𝜓

where 𝐴, 𝐵, 𝐾, and 𝐿 do not involve 𝜓.
The integral with respect to 𝜓 is to be taken between such limits as

make 𝑟2 − 𝑟1 vanish, that is between the limits given by

sin𝜓 = ±
𝐴
𝐵
.

Assume sin𝜓 =
𝐴
𝐵
sin 𝜁; thus the integral becomes

𝐾𝐴2

𝐵
cos2 𝜁𝑑𝜁

1 +
𝐿𝐴2

𝐵2
sin2 𝜁

.

The limits for 𝜁 are −
𝜋
2
and

𝜋
2
. This gives for the value of the integral

𝜋𝐾𝐵
𝐿

{√(1 +
𝐿𝐴2

𝐵2
) − 1} .

Substitute for 𝐴, 𝐵, 𝐾, and 𝐿; and then the required attraction be-
comes

2𝜋𝑎𝑐ℎ
𝑎2 − 𝑐2

∫{√(
𝑐2 sin2 𝜙 + 𝑏2 cos2 𝜙
𝑎2 sin2 𝜙 + 𝑏2 cos2 𝜙

) −
√(ℎ2 − 𝑎2 + 𝑐2)

ℎ
} cos𝜙𝑑𝜙.

The limits of 𝜙 are such as make 𝑟2 − 𝑟1 vanish when 𝜓 = 0; hence
they are obtained by putting 𝐴 = 0: we shall find that this gives

sin𝜙 = ±
𝑏

√(ℎ2 − 𝑎2 + 𝑏2)
.
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Assume sin𝜙 =
𝑏 sin 𝜃

√(ℎ2 − 𝑎2 + 𝑏2)
; then the limits of 𝜃 will be −

𝜋
2
and

𝜋
2
. Put 𝑀 for

4𝑎𝑏𝑐
3

, that is the volume of the ellipsoid. Hence finally the

attraction is equal to

3𝑀ℎ
(𝑎2 − 𝑐2)√(ℎ2 − 𝑎2 + 𝑏2)

∫
𝜋
2

0
{√(

ℎ2 − 𝑎2 + 𝑏2 + (𝑐2 − 𝑏2) sin2 𝜃
ℎ2 − 𝑎2 + 𝑏2 + (𝑎2 − 𝑏2) sin2 𝜃

)

−
√(ℎ2 − 𝑎2 + 𝑐2)

ℎ
} cos 𝜃 𝑑𝜃.

Now for confocal ellipsoids 𝑎2 − 𝑏2, 𝑎2 − 𝑐2, and 𝑏2 − 𝑐2 are constant;
hence for such ellipsoids the attraction at the assigned point varies as the
mass of the ellipsoid.

782. Legendre expresses his belief that the theorem of Maclaurin re-
specting the attraction of confocal ellipsoids holds whatever be the po-
sition of the attracted particle; see his page 413. This we now know is
true, for it was demonstrated by Laplace. But Legendre was at this time
unable to give a complete demonstration; and so confined himself to the
case of ellipsoids of revolution.

In order to prepare the way for this demonstration he first establishes
a very remarkable theorem, namely: if the attraction of a solid of revolu-
tion is known for every external point which is on the prolongation of the
axis it is known for every external point.

783. Legendre’s demonstration of the important result just stated is
conducted by the aid of series. We here for the first time meet those
famous coefficients which it is usual to call Laplace’s coefficients; and we
see that to Legendre really belongs the honour of introducing them.

These functions might with propriety be called Legendre’s functions
when they involve only one variable, and Laplace’s functions when they
involve two: Legendre himself seems to acquiesce in this in a passage
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at the beginning of his fourth memoir. But in consideration of the great
use which Laplace has made of these coefficients, and of the important
extension which he has given to the theory of them, I shall continue
to use the common English title of Laplace’s coefficients for them, after
having formally recognised the rights of Legendre.

We may observe that Legendre’s researches with respect to Laplace’s
coefficients are reproduced with extended generality in his Exercices de
Calcul Intégral, Vol. ii. 1817, pages 247…273.

784. An important work on the branch of analysis of which Laplace’s
coefficients is the origin is Heine’s Handbuch der Kugelfunctionen, pub-
lished at Berlin in 1861: to this I shall occasionally refer. The preface to
Heine’s work gives the evidence for the priority of Legendre to Laplace
in the introduction of these coefficients; and also for the recognition of
this fact by Jacobi and Dirichlet.

785. The following is the definition of Laplace’s coefficients: Let (1−
2𝛼 cos𝜓 + 𝛼2)− 1

2 be expanded in ascending powers of 𝛼; and let 𝑃𝑛𝛼𝑛
denote the general term: then 𝑃𝑛 is a function of cos𝜓, and is called
Laplace’s coefficient of the 𝑛th order.

786. In the present memoir Legendre has occasion to use only the
coefficients of an even order, because he supposes that his attracting body
is symmetrical with respect to the equator. He writes down the values of
𝑃2, 𝑃4, 𝑃6, and 𝑃8; and from these the general form of the coefficient for
an even order may be easily perceived. We have, as shewn by Heine in
his page 6:

𝑃𝑛 =
1 . 3 . 5… (2𝑛 − 1)

𝑛
{𝑥𝑛 −

𝑛(𝑛 − 1)
2(2𝑛 − 1)

𝑥𝑛−2

+
𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)
2 . 4 . (2𝑛 − 1)(2𝑛 − 3)

𝑥𝑛−4 −…} ,

where 𝑥 = cos𝜓. Legendre’s values are particular cases of this general
expression.
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This general expression may be easily obtained by first expanding (1−
2𝛼𝑥 + 𝛼2)− 1

2 in the form

1 +
1
2
𝛼(2𝑥 − 𝛼) +

1 . 3
2 . 4

𝛼2(2𝑥 − 𝛼)2 +
1 . 3 . 5
2 . 4 . 6

𝛼3(2𝑥 − 𝛼)3 +… ,

and then selecting the term in 𝛼𝑛 from each of these.

787. Legendre arrives at an important property of Laplace’s coeffi-
cients. Suppose that for 𝛼 or cos𝜓 we write

cos 𝜃 cos 𝜃′ + sin 𝜃 sin 𝜃′ cos𝜔,

then 𝑃𝑛 becomes a function of 𝜃, 𝜃′, and 𝜔; integrate with respect to
𝜔 from 0 to 2𝜋; then the result is a function of 𝜃 and 𝜃′. This result
will be of the form 2𝜋𝑓(cos 𝜃)𝑓(cos 𝜃′); that is it will be the product of
a certain function of cos 𝜃 into the same function of cos 𝜃′; and 𝑓(cos 𝜃)
is in fact 𝑃𝑛, when 𝑥 is put for cos 𝜃. Legendre demonstrates this for the
case which he requires, that is for the case of a coefficient of an even
order; and he obtains the correct form for the function which we denote
by 𝑓. Legendre’s demonstration shews his energy and perseverance, but
to a modern student it will appear laborious and uninviting.

The property here considered follows immediately from the general
expressions which have been since given for Laplace’s coefficients when
treated as functions of 𝜃, 𝜃′, and 𝜔, in the manner above indicated. See
the Mécanique Céleste, Livre iii. § 15.

788. Another important theorem respecting the coefficients is briefly
indicated by Legendre on his page 426: it is demonstrated in Legendre’s
second memoir, being the last of the seven theorems which are there
investigated: see Art. 830.

789. In this memoir we meet for the first time the function 𝑉 which
we now call the Potential, and which denotes the sum of the elements
of a body divided by their distances from a fixed point. The introduction
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of this function Legendre expressly assigns to Laplace. The following are
the circumstances.

A point is situated outside a solid of revolution. Legendre has to de-
termine the attractions of the solid at the point, along the radius vector
which joins the point to the centre of the solid, and at right angles to
this direction. He has found a series for the former; and he says the
latter might be determined by similar investigations; then he adds:

… mais on y parvient bien plus facilement à l’aide d’un Théorême que M.
de la Place a bien voulu me communiquer: voici en quoi il consiste.

Then follows the theorem which is enunciated and immediately
demonstrated. The theorem is that the attraction along the radius vector

is −
𝑑𝑉
𝑑𝑟
, and the attraction at right angles to the radius vector is −

𝑑𝑉
𝑟𝑑𝜃

;

where 𝑟 is the radius vector, and 𝜃 the angle which it makes with the
axis of the solid: these attractions being estimated towards the centre,
and the pole respectively.

These statements relative to the function 𝑉 are now well known and
given in elementary books.

790. We may observe that the name Potential was first used by the
late George Green, in his Essay on the Application of Mathematical
Analysis to the Theories of Electricity and Magnetism, published in
1828: see his page 9, or page 22 of the volume in which Green’s
works were collected and reprinted in 1871. Gauss used the word
in his memoir entitled Allgemeine Lehrsätze in Beziehung auf die …
Anziehungs-und-Abstossungs-Kräfte, published in 1840. As Gauss does
not refer to any previous authority we are, I presume, to infer that he
had independently selected the name.

791. Let us briefly indicate the demonstration of Legendre’s remark-
able theorem enunciated in Art. 782. We shall use the potential through-
out, whereas Legendre himself only used it partially. But substantially
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the demonstration we shall give is Legendre’s.
Let 𝑟 and 𝜃, as in Art. 789, be the polar coordinates of the attracted

particle; let 𝑟′ and 𝜃′ be the corresponding two polar coordinates of
an element of the attracting body; let 𝜔 be the difference of longitude,
as we may call it, of the attracted point and the attracting element.
Then, taking the density as unity, the element of the attracting mass is
𝑟′2 sin 𝜃′ 𝑑𝜃′ 𝑑𝜔𝑑𝑟′. Thus

𝑉 =∭
𝑟′2 sin 𝜃′ 𝑑𝜃′ 𝑑𝜔𝑑𝑟′

√(𝑟′2 − 2𝑟𝑟′ cos𝜓 + 𝑟2)
,

where
cos𝜓 = cos 𝜃 cos 𝜃′ + sin 𝜃 sin 𝜃′ sin𝜔.

Expanding the denominator in ascending powers of
𝑟′

𝑟
we have

𝑉 =∭
𝑟′2

𝑟
{1 + 𝑃1

𝑟′

𝑟
+ 𝑃2

𝑟′2

𝑟2
+ 𝑃3

𝑟′3

𝑟3
+…} sin 𝜃′ 𝑑𝜃′ 𝑑𝜔𝑑𝑟′.

We integrate first with respect to 𝑟′; and, since the attracting body is
assumed to be symmetrical with respect to its equator, the limits will be
−𝑠 and 𝑠, where 𝑠 is the radius vector of the solid corresponding to a
colatitude 𝜃′. Thus

𝑉 = 2∬
𝑠3

𝑟
{
1
3
+
𝑃2
5
𝑠2

𝑟2
+
𝑃4
7
𝑠4

𝑟4
+…} sin 𝜃′ 𝑑𝜃′𝑑𝜔.

Now we integrate with respect to 𝜔 between the limits 0 and 2𝜋.
Then by the theorem of Art. 787, we obtain for 𝑉 a series of which the

first term is
Mass
𝑟

; and for the following terms the general form is

4𝜋𝑓2𝑛(cos 𝜃)
(2𝑛 + 3)𝑟2𝑛+1

∫𝑓2𝑛(cos 𝜃′)𝑠2𝑛+3 sin 𝜃′ 𝑑𝜃′.
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The limits for 𝜃′ are 0 and
𝜋
2
. The integration could not be effected

until the form of the attracting body is assigned so as to make 𝑠 a known
function of 𝜃′. We shall denote the integral by 𝐿2𝑛; it will be some nu-
merical quantity. Thus the general term of 𝑉 is

4𝜋𝑓2𝑛(cos 𝜃)𝐿2𝑛
(2𝑛 + 3)𝑟2𝑛+1

.

Here 𝑓2𝑛(cos 𝜃) is a certain known function of cos 𝜃 which is inde-
pendent of the form of the body; moreover this function does not vanish
when 𝜃 = 0. Now if the attraction is known at all points which are on
the prolongation of the axis, it follows that 𝑉 must also be known for all
such points. Hence all the quantities of which 𝐿2𝑛 is the type must be
known. Therefore 𝑉 is known for all external points; and therefore the
attraction is also known for all external points.

The demonstration is in substance reproduced by Laplace in the Mé-
canique Celeste, Livre iii. § 17.

792. It must be observed that the preceding demonstration is satis-
factory only so long as 𝑟 is greater than the greatest radius vector of the
body, so that we may be sure of having convergent series throughout.
The subject is discussed by Poisson in the Connaissance des Tems for
1829; he shews that the formulæ used by Legendre and Laplace are cor-
rect, to the third order of the standard small quantity inclusive. I have
extended Poisson’s investigation in a paper published in the Proceedings
of the Royal Society, Vol. xx.

793. We can now demonstrate Legendre’s extension of Maclaurin’s
theorem respecting the attraction of an ellipsoid of revolution.

Put 𝑏 = 𝑐 in the result of Art. 781; then it becomes

3𝑀
𝑎2 − 𝑏2

∫{
ℎ

√{ℎ2 − 𝑎2 + 𝑏2 − (𝑏2 − 𝑎2) sin2 𝜃}
− 1} cos 𝜃 𝑑𝜃;
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and {ℎ2 − 𝑎2 + 𝑏2 − (𝑏2 − 𝑎2) sin2 𝜃}− 1
2 can be expanded by the Binomial

Theorem in a convergent series of powers of

(𝑏2 − 𝑎2) sin2 𝜃
ℎ2 − 𝑎2 + 𝑏2

,

so that the attraction can be expressed in a convergent series which is a
function of 𝑎2 −𝑏2, and thus remains the same for confocal ellipsoids of
revolution.

Thus for points on the prolongation of the axis of revolution the at-
tractions of confocal ellipsoids at the same point are as the masses of the
ellipsoids. Then by the aid of Art. 791 it follows that this will hold for
any external point.

Legendre himself integrates before expansion; this does not affect the
essence of his method. The integral takes different forms according as 𝑎
is greater or less than 𝑏.

794. In conclusion we may affirm that no single memoir in the his-
tory of our subject can rival this in interest and importance. During
forty years the resources of analysis, even in the hands of D’Alembert,
Lagrange, and Laplace, had not carried the theory of the attraction of el-
lipsoids beyond the point which the geometry of Maclaurin had reached.
Legendre now extended the chief result of that geometry, by shewing
that it was true in the case of an ellipsoid of revolution for any external
point. The introduction of the coefficients now called Laplace’s, and their
application to the remarkable theorem of Art. 782, commence a new era
in mathematical physics. Moreover the existence and the value of the
potential function were now first manifested.

It is not too much to say that this memoir is the foundation for all
that Laplace added in the theories of Attraction and the Figure of the
Earth to the works of Maclaurin and Clairaut.



CHAPTER XXI.

LAPLACE’S TREATISE.

795. We are now about to notice a work by Laplace entitled Théorie
du Mouvement et de la Figure Elliptique des Planetes; this is a quarto vol-
ume which was published in 1784. The title-page and preface occupy
xxiv pages; then the first part, which is on the theory of the elliptic mo-
tion of the planets, occupies pages 1…66; the second part, which is on
the figure of the planets, extends from page 67 to page 150: an addition
to the first part is given on pages 150…152, and a list of errata on page
153.

796. The volume is scarce, and seems but little known. The late Pro-
fessor De Morgan in a note to his article Table in the English Cyclopædia
remarked:

When a person is distinguished by one particular work, his other, and par-
ticularly his previous, writings, even on the same subject, go out of notice. How
many persons, for instance, know that Laplace published (separately from the
Memoirs of the Academy) a small work on the elliptic motion and on the fig-
ures of the planets, in 1784? (See Lalande, Bibl. Astron. ann. 1784.) And how
many biographical accounts of Laplace mention it?

My copy of this work formerly belonged to Mechain, and subse-
quently to Arago. There are some irregularities in the paging: no pages
occur numbered 105, 106, 145, 146; on the other hand, pages numbered
129, 130 occur twice.

According to a bookseller’s catalogue, a German translation of the
work by J. J. A. Ide was published at Berlin in 1800; but I have not seen
it.

797. The circumstances which led to the publication of the work are
thus stated by Laplace in the preface, pages xviii and xix:

Une des propriétés les plus remarquables de la loi de pesanteur qui a lieu
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dans la Nature, est de terminer les orbites des corps célestes par des lignes
du second ordre, et leurs figures par des surfaces du second ordre, du moins
lorsqu’on fait abstraction des petites inégalités qui troublent leurs mouvemens
et leurs figures. Cette propriété m’a fait naître depuis long-tems l’idée d’exposer
dans un ouvrage particulier, les principaux résultats du mouvement et de la fig-
ure elliptiques des Planètes; mais entraîné par d’autres occupations, j’aurois en-
tiérement renoncé à ce travail, sans le désir qu’un Magistrat également distingué
par son rang, par sa naissance, et par ses lumieres, m’a témoigné plusieurs fois,
de voir les propriétés des mouvemens elliptiques et paraboliques, déduites de la
seule considération des équations différentielles du second ordre qui détermi-
nent à chaque instant, le mouvement des corps célestes autour du Soleil.

In a note at the foot of the page the name of the distinguished
magistrate is given: M. de Saron, President du Parlement, Honoraire de
l’Académie Royale des Sciences.

The passage is very interesting as recording thus early a design which
was afterwards carried out on a larger scale by the publication of the
Mécanique Céleste.

798. In a manuscript note in my copy it is stated that M. Bochart
printed the work at his own expense; I presume that this is another name
for M. de Saron.

Poisson has recorded the fact that an ellipsoid of revolution, used by
Coulomb in his experiments on electricity, was turned by M. de Saron.
Mémoires de l’Institut, Vol. xiii. 1835, page 501.

799. The work which we are now about to examine may be said to
form the transition between Laplace’s first three memoirs which do not
reappear in the Mécanique Céleste, and the subsequent memoirs which
do. In the present work Laplace introduces what we call the potential,
but not what we call Laplace’s functions; although these functions had
already been used by Legendre: see Art. 783.

800. The treatise De la Figure des Planetes is arranged in seventeen
sections; the first seven sections relate to attractions, the next six to the
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relative equilibrium of a mass of rotating fluid, and the rest principally
to the value of gravity at the surface of such a body.

801. The first section, on pages 67 and 68, is preliminary. The equa-
tion to an ellipsoid is given under the form

𝑥2 +𝑚𝑦2 + 𝑛𝑧2 = 𝑘2.

This notation appears repulsive to modern readers, trained to study sym-
metry; but it has been adopted by very eminent mathematicians. La-
grange in his memoir of 1773, and Poisson in his memoir of 1835, also
employ 𝑚, 𝑛, 𝑘 in the sense here adopted.

802. The second section, on pages 69…73, defines the potential func-
tion 𝑉, and expresses by means of it the attraction of a body on a par-
ticle resolved parallel to three coordinate axes. As we have already seen
in Art. 789, the function was introduced by Laplace into mathematical
science.

803. In the third section, on pages 73…78, polar coordinates are em-
ployed. It is shewn that 𝑉 may be expanded into an infinite series; and
in particular some of the properties of this series, in the case of an el-
lipsoid, are noticed.

804. The fourth section, on pages 78…86, is very important. Laplace
forms three equations involving 𝑉, and the differential coefficients of 𝑉
taken with respect to 𝑚, 𝑛, 𝑘, and the coordinates 𝑎, 𝑏, 𝑐 of the attracted
particle. Then from these Laplace obtains a demonstration of the theo-
rem which I call by his name, being the extension of Maclaurin’s: see
Art. 254. This is the first appearance of the demonstration in print; but
we learn from page 97 of the treatise we are considering that the demon-
stration was communicated to the Academy in May, 1783: see Art. 806.

The demonstration is given in an improved form in Laplace’s fourth
memoir; and in this improved form it is reproduced in the Mécanique
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Céleste, Livre iii. § 5 and § 6: we shall defer our remarks on it until we
treat of the Mécanique Céleste.

The operations of the fourth section of Laplace’s treatise are some-
what developed in a memoir by Plana in the Memorie … Societa Italiana,
Vol. xv. Modena, 1811.

805. The fifth section, on pages 86…90, treats of the attraction of an
ellipsoid on an internal particle. The attraction parallel to an axis of the
ellipsoid is reduced to a single definite integral; thus Laplace values and
appropriates the treasure which D’Alembert deliberately threw away: see
Art. 651. This section is embodied in the Mécanique Céleste, Livre iii. §
3.

We know that the integral can be expressed by means of elliptic func-
tions; Laplace had convinced himself that it could not be expressed by
the ordinary functions, but he did not publish his argument. After shew-
ing that the integral, although definite, involved all the difficulty of the
indefinite integral, he says on his page 90:

L’intégrale indéfinie des fonctions différentielles de la forme
𝑥2 𝑑𝑥

√(1 + 𝛼𝑥2)(1 + 𝛽𝑥2)
, est impossible, excepté dans les deux cas suivants,

sçavoir lorsque l’une ou l’autre des quantités 𝛼, et 𝛽, est nulle, ou lorsqu’elles
sont égales; je me suis assuré que dans tous les autres cas, l’intégrale ne peut
pas être exprimée par une fonction finie de quantités algébriques, d’arcs de
cercle et de logarithmes; ainsi l’expression intégrale que nous venons de trouver
…, est la plus simple que l’on puisse donner à cette valeur, et il seroit inutile
de chercher à la réduire en termes finis.

In his fifth section Laplace demonstrates what he calls a remarkable
result, namely: that a particle placed within an elliptic shell of any thick-
ness, and of which the outer and inner surfaces are perfectly similar, will
be in equilibrium. This is apparently the first formal statement of the re-
sult; but, as we have seen in Art. 662, Frisi may be considered to have
obtained it.
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806. The sixth section, on pages 90…97, continues the subject of the
attraction of an ellipsoid on an internal particle; and it effects the inte-
grations in the particular case of an oblatum. This is embodied in the
Mécanique Céleste, Livre iii. § 7.

The section concludes with a sketch of the history of the problem
of the attraction of an ellipsoid. The mistake is made with respect to
Maclaurin which I have pointed out in Art. 260. Laplace next speaks
of the very ingenious method by which Legendre had shewn that the
theorem given by Maclaurin for the case of a point on the prolongation
of the axis was true for any position of the point with respect to ellipsoids
of revolution: see Art. 793. Then Laplace concludes thus:

… mais la méthode de M. le Gendre, fondée sur la considération des suites,
n’est pas applicable aux ellipsoïdes qui ne sont point de révolution; il étoit
cependant très-vraisemblable que relativement à ces sphéroïdes, le théorême
de M. Maclaurin s’étendoit encore à un point situé d’une maniere quelconque
au-dehors; mais l’impossibilité d’intégrer les attractions différentielles, du
moins sous la forme que leur donnent les méthodes connues, rendoit assez
difficile la démonstration de ce théorême: après quelques tentatives inutiles, j’y
suis enfin parvenu par la méthode précédente dont j’ai fait part à l’Académie
au mois de Mai 1783. En cherchant à transformer les attractions différentielles,
on parviendroit, selon toute apparence, à les rendre intégrables, par un choix
convenable des coordonnées; mais la méthode que j’ai suivie, m’ayant conduit
assez simplement au résultat que je cherchois, je n’ai point tenté d’autres
moyens, et j’ai pensé que le nouvel usage qu’elle présente, du calcul aux
différences partielles, pourroit être utile dans d’autres circonstances, et par
cette raison intéresser les Géomètres.

I do not understand what is meant by the confident expectation that
the expression for the attraction could be integrated by a suitable trans-
formation: this seems to contradict the statement made by Laplace in his
fifth section: see Art. 805.

807. We now pass to the relative equilibrium of a rotating fluid mass.
The seventh section, on pages 97…103, contains the general equations
of fluid equilibrium. This section is embodied in the Mécanique Céleste,
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Livre i. § 17 and § 34.
The section is followed by a Remarque which criticises some of New-

ton’s investigations. I do not understand this criticism; Laplace seems to
assert that there is some fatal error of principle which attaches to New-
ton’s investigations on the Figure of the Earth, the Tides, and Precession
and Nutation: but in the fifth volume of the Mécanique Céleste it is stated
on the other hand that Newton laid the true foundations of the theories
of all these subjects.

Laplace’s words in the present Treatise are:
Newton, dans sa théorie de la figure de la terre, suppose cette planete ho-

mogène et fluide à sa surface; il détermine dans cette hypothèse, l’applatisse-
ment qu’elle doit avoir pour être en équilibre en vertu de son mouvement de
rotation, et de l’attraction de toutes ses parties.

Dans sa théorie du flux et du reflux de la mer, il cherche la figure que cette
masse doit prendre pour être en équilibre en vertu de son mouvement de rota-
tion, des attractions de toutes ses parties, et de celles du Soleil et de la Lune.

Ce grand Géomètre ne s’est pas apperçu que si les choses se passoient ainsi
dans la nature, il ne pourroit y avoir, en vertu des attractions du Soleil et de
la Lune, aucune tendance au mouvement dans l’axe de rotation de la terre, et
qu’ainsi il n’y auroit ni précession des équinoxes, ni nutation dans l’axe terrestre.

808. The eighth section, on pages 103…113, treats of the relative
equilibrium of a homogeneous mass of rotating fluid, acted on by dis-
tant bodies as well as by its own attraction. The problem is that which
we have noticed in Art. 629. In the Mécanique Céleste, Livre iii. § 23,
the action of the distant bodies is treated in a simpler mode than in the
present section. At the end of Art. 629, I have drawn attention to two
circumstances which it seems to me that D’Alembert ought to have no-
ticed; Laplace says nothing about the first, but he alludes to the second,
though in scarcely an adequate manner. The present section contains an
important remark, to which I have already referred in Art. 153.

809. The ninth section, on pages 113…116, applies the preceding sec-
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tion to the case of the Moon supposed fluid and homogeneous. Laplace
arrives at the conclusion that the elongation of the Moon’s diameter di-
rected towards the Earth is four times as great as the elongation of the
diameter which is at right angles to this and in the plane of the Moon’s
orbit. We will briefly indicate the process by which this is obtained. We
have shewn in Art. 623, what Laplace assumes at the outset, namely that
the axis of rotation will coincide with one of the principal axes of the
Moon, and the radius vector to the Earth with another.

Take then cos 𝜆 = 0, cos𝜇 = 0, 𝑛 = 0, 𝑚 = 0; thus the axis of 𝑧 is
that of rotation, and the axis of 𝑥 passes through the Earth, the centre
of the Moon being the origin.

Then the last two equations of Art. 617 reduce to

𝑎2 (𝐴 −
2𝑀
𝑅3

− 𝜔2) = 𝑏2 (𝐵 +
𝑀
𝑅3

− 𝜔2) = 𝑐2 (𝐶 +
𝑀
𝑅3
) .

In Art. 616, we have spoken of a part of the action of 𝑀 which is not
what we call a disturbing force; in the present problem this part is duly
regarded, and is in fact balanced by what in common language is called
the centrifugal force arising from the revolution of the Moon round the
Earth. Moreover this revolution gives rise to the following relation con-
necting the quantities involved:

𝑀
𝑅2

= 𝑅𝜔2.

Thus the above equations become

𝑎2 (𝐴 −
3𝑀
𝑅3

) = 𝑏2𝐵 = 𝑐2 (𝐶 +
𝑀
𝑅3
) .

We now require the values of 𝐴, 𝐵, and 𝐶.

Put 𝑒2 for
𝑎2 − 𝑏2

𝑎2
and 𝑒′2 for

𝑎2 − 𝑐2

𝑎2
; then 𝑒2 and 𝑒′2 being supposed
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small we have approximately by Art. 620,

𝐴 =
𝑉
𝑎3

{1 +
3
10
(𝑒2 + 𝑒′2)} .

In like manner we can express 𝐵 and 𝐶; supposing that 𝑒2 and 𝑒′2
will not be sensibly changed if we take 𝑏2 or 𝑐2 for denominator instead
of 𝑎2, we have

𝐵 =
𝑉
𝑏3

{1 +
3
10
(𝑒′2 − 2𝑒2)} ,

𝐶 =
𝑉
𝑐3
{1 +

3
10
(𝑒2 − 2𝑒′2)} .

Hence we shall obtain finally

𝑒2 =
15
2
𝜛, 𝑒′2 = 10𝜛,

where 𝜛 stands for
𝑀
𝑉
.
𝑎3

𝑅3
, it being assumed that 𝜛 remains sensibly

unchanged if we multiply it by
𝑐2

𝑎2
.

Thus 𝑒′2 − 𝑒2 =
5
2
𝜛, so that 𝑒′2 = 4(𝑒′2 − 𝑒2); and this amounts to

Laplace’s statement that one elongation is four times the other.

Laplace supposes that
𝑀
𝑉
=

1
70
, and that

𝑎
𝑅
= sin 15′ 45″; and thus he

finds that 𝑎 =
29712
29711

𝑐, and 𝑏 =
118845
118844

𝑐.

810. The tenth section, on pages 116…122, is devoted to the case of
a homogeneous fluid mass rotating with uniform angular velocity, and
acted on by its own attraction. Laplace says: “Il est visible qu’alors, le
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sphéroïde sera un ellipsoïde de révolution….” This is however more than
he demonstrates, for he confines himself to demonstrating that the obla-
tum is a possible form of relative equilibrium: see Art. 168. Laplace ob-
tains the equation which connects the angular velocity with the ellipticity
of the generating ellipse: see Art. 262. Laplace’s investigations are em-
bodied in the Mécanique Céleste, Livre iii., Chapitre iii. On his page 121
Laplace says that we may presume the Earth to be homogeneous from
the centre up to a few leagues from the surface; at a subsequent period
he leaned to the opinion that the density increases as we approach the
centre; see the Mécanique Céleste, Livre iii., page 101, and Livre xi., page
12.

811. The eleventh section, on pages 122…125, resumes the equation
of the preceding section which connects the angular velocity with the
ellipticity. Laplace demonstrates certain results which he states thus:

Il suit delà que pour un mouvement de rotation donné, il y a toujours deux
figures elliptiques applaties vers les pôles, qui satisfont à l’équilibre. Cette re-
marque intéressante sur la possibilité de plusieurs figures d’équilibre relatives à
un même mouvement de rotation, est dûe à M. d’Alembert; mais il n’en avoit
pas déterminé le nombre que j’ai trouvé se réduire à deux, par l’analyse précé-
dente dont je fis part à cet illustre Géometre dans le mois de Juillet de 1778.

The researches of D’Alembert on this subject are contained in the
sixth and eighth volumes of his Opuscules Mathématiques: see Arts. 581,
585, and 657.

With respect to the first sentence of the preceding extract we may
observe that the words il y a toujours require to be limited, for Laplace
shews in his next section that if the angular velocity be too great, an
oblatum is not a possible form of relative equilibrium.

Laplace demonstrates that corresponding to a given angular velocity
there cannot be more than two oblata; but he does not explicitly shew
that there will always be two oblata, provided the angular velocity be less
than a certain limit. It would be very easy to supply this; but perhaps
Laplace thought that it was unnecessary to repeat what had really been
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given by D’Alembert.
Laplace’s demonstration is sound, but is less simple than that which

he afterwards gave in the Mécanique Céleste, although depending on the
same principles.

Laplace gives approximate investigations for determining the oblata
in the extreme cases of a very small ellipticity and a very great ellipticity.

The section is reproduced in an improved form in the Mécanique
Céleste, Livre iii., Chapitre iii.

812. The twelfth section, on pages 125…128, discusses the limiting
value of the angular velocity for which an oblatum is possible, and gives
numerical results for the case of the Earth. Also it is shewn that an
oblongum is not a possible form of relative equilibrium. The section is
substantially reproduced in the Mécanique Céleste, Livre iii., Chapitre iii.

813. The thirteenth section, on pages 128…131, applies the principle
of conservation of areas, as we now call it, to the subject; the section is
substantially reproduced in the Mécanique Céleste, Livre iii., § 21.

The section is followed by a Remarque which deserves to be noticed.
Laplace alludes to what had been shewn by Clairaut with respect to the
Figure of the Earth considered as heterogeneous. Taking the excentricity
of the strata as a small quantity of the first order, and neglecting small
quantities of the second order, it was shewn that equilibrium might sub-
sist with elliptical strata. Then Laplace proceeds thus:

Nous renvoyons sur cet objet à son excellent Ouvrage sur la figure de la
Terre, et nous nous contenterons d’observer ici, que l’équilibre rigoureux est im-
possible dans l’hypothèse de l’ellipticité des couches; car il résulte des formules
précédentes, que dans ce cas, l’attraction des couches intérieures du sphéroïde
sur un point placé à la surface, a pour expression, une fonction transcendante
des coordonnées de ce point; ainsi l’équation donnée par la condition de l’équili-
bre à la surface, seroit transcendante, et par conséquent ne pourroit coincider
avec la supposition de l’ellipticité des couches;…
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I am unable to understand the argument by which it is inferred that
the equilibrium is strictly impossible in the case of elliptical strata: it
seems to me that in the same way it might be asserted that the relative
equilibrium of an ellipsoid of rotating fluid would be impossible, and
this is contrary to Jacobi’s theorem.

814. The fourteenth section, on pages 132…137, presents to us a mat-
ter to which Laplace seems to have attached great importance, and which
has given rise to some controversy. It may be considered as consisting of
a theorem which has already appeared three times in Laplace’s writings:
see Arts. 755, 771, and 775.

The section is in substance taken from the Addition to the third mem-
oir, which we noticed in Art. 755; and it is embodied in the Mécanique
Céleste, Livre iii. § 10. The main result is an equation which is numbered
(1) and is thus expressed in the Mécanique Céleste:

𝑑𝑉
𝑑𝑟

= 𝐴′ −
𝑛 + 1
2𝑎

𝐴 +
𝑛 + 1
2𝑎

𝑉. (1)

This is obtained on the supposition that attraction varies as the 𝑛th
power of the distance, and that 𝑉 is the sum of the product of every
element of mass into the (𝑛 + 1)th power of the distance of the element
from the attracted particle. The notation is different, but the mode of
investigation in the present treatise is like that in the Mécanique Céleste.

If 𝑑𝑠 represents an infinitesimal length measured in any direction,

then −
1

𝑛 + 1
𝑑𝑉
𝑑𝑠

is the value of the attraction estimated in the direction

of the element 𝑑𝑠; Laplace makes this remark on his page 134, and it is
now familiar to us from our elementary books.

In page 264 of the Addition to the third memoir, and in page 136
of the present treatise Laplace makes a remark with respect to the case
in which 𝑛 = −1, that does not seem quite safe. He says that in this
case the vertical attraction is constant over the surface of the spheroid.
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But we cannot strictly apply our formulæ to this case; for instance, the

expression for the attraction −
1

𝑛 + 1
𝑑𝑉
𝑑𝑠

cannot be used when 𝑛 + 1 van-

ishes.
Let 𝑑𝑠 now represent an element of arc on the surface of the at-

tracting body; then −
1

𝑛 + 1
𝑑𝑉
𝑑𝑠

represents the attraction resolved along

𝑑𝑠. And −
1

𝑛 + 1
𝑑𝑉
𝑑𝑟

represents the attraction resolved along the radius 𝑟

towards the origin, or resolved along the normal very approximately if
the body is very nearly spherical; denote this by 𝜙. Thus from (1) we
have

𝜙 = 𝐴′ −
𝐴
2𝑎

+
𝑉
2𝑎
,

and as 𝐴 and 𝐴′ are constants on the surface we have
𝑑𝜙
𝑑𝑠

=
1
2𝑎

𝑑𝑉
𝑑𝑠
. (2)

Hence from (2) we see that the attraction resolved along 𝑑𝑠 is

−
2𝑎
𝑛 + 1

𝑑𝜙
𝑑𝑠
. Thus we have a result which Laplace expresses in the

following words:
A la surface de tout sphéroïde homogène infiniment peu différent d’une

sphère dont le rayon est pris pour l’unité, l’attraction horizontale dirigée suiv-
ant un petit côté du sphéroïde, et multipliée par ce côté, est égale au produit

de −
2

𝑛 + 1
, par la différence des attractions verticales aux deux extrêmités de ce

côté.

This result substantially includes as particular cases the formulæ of
Arts. 771 and 772.

815. The fifteenth section, on pages 137…140, offers some remarks
on the general problem of determining all possible forms of equilibrium
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of a fluid mass which correspond to given forces: this is obviously much
more difficult than the mere verification that a certain assigned form is
admissible. Laplace says that the general solution is impossible, at least
in the present state of analysis; and we may add that after the lapse of
nearly a century the statement seems still applicable.

It will be convenient to give a general equation which Laplace forms.
Suppose that 𝐴, 𝐵, 𝐶 are the attractions of the body itself parallel to

the coordinate axes, on a particle whose coordinates are 𝑥, 𝑦, 𝑧. Let 𝑃,
𝑄, 𝑅 be the corresponding other forces which act. Then for equilibrium
the following must be the differential equation to the free surface of the
fluid:

(𝐴 + 𝑃) 𝑑𝑥 + (𝐵 + 𝑄) 𝑑𝑦 + (𝐶 + 𝑅) 𝑑𝑧 = 0.

But

𝐴 = −
1

𝑛 + 1
𝑑𝑉
𝑑𝑥

, 𝐵 = −
1

𝑛 + 1
𝑑𝑉
𝑑𝑦

, 𝐶 = −
1

𝑛 + 1
𝑑𝑉
𝑑𝑧

.

Hence the equation becomes

0 = −
1

𝑛 + 1
𝑑𝑉 + 𝑃𝑑𝑥 + 𝑄𝑑𝑦 + 𝑅𝑑𝑧;

therefore

𝑉 = (𝑛 + 1)∫(𝑃𝑑𝑥 + 𝑄𝑑𝑦 + 𝑅𝑑𝑧) + a constant.

816. The sixteenth section, on pages 140…144, investigates the law
of gravity at the surface of a nearly spherical mass of fluid in relative
equilibrium.

Denote the gravity by 𝑝; then with the notation of the preceding Ar-
ticle

𝑝2 = (𝐴 + 𝑃)2 + (𝐵 + 𝑄)2 + (𝐶 + 𝑅)2.
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If 𝑃, 𝑄, and 𝑅 are small compared with 𝐴, 𝐵, and 𝐶 we have approx-
imately

𝑝 = √(𝐴2 + 𝐵2 + 𝐶2) +
𝐴𝑃 + 𝐵𝑄 + 𝐶𝑅
√(𝐴2 + 𝐵2 + 𝐶2)

.

Here √(𝐴2 + 𝐵2 + 𝐶2) expresses the attraction exerted by the nearly
spherical body itself; it will be approximately along the normal or the
radius vector: we will denote it by 𝜙.

Then in the second term of 𝑝 it will be sufficient to put for 𝐴, 𝐵, and
𝐶 approximate values which must hold inasmuch as the mass is nearly
spherical. Taking 𝑎 for the radius of the sphere which nearly coincides
with the mass we have approximately

𝐴 = −
𝑥𝜙
𝑎
, 𝐵 = −

𝑦𝜙
𝑎
, 𝐶 = −

𝑧𝜙
𝑎
.

Therefore
𝑝 = 𝜙 −

1
𝑎
(𝑃𝑥 + 𝑄𝑦 + 𝑅𝑧).

By the aid of the value of 𝜙 which is given in equation (1) of Art.
814, and the value of 𝑉 found in Art. 815, we obtain

𝑝 =
𝑛 + 1
2𝑎

∫(𝑃𝑑𝑥 + 𝑄𝑑𝑦 + 𝑅𝑑𝑧) −
1
𝑎
(𝑃𝑥 + 𝑄𝑦 + 𝑅𝑧) + 𝐻,

where 𝐻 is some constant, which will be known by a single observation
of the value of gravity at the surface of the mass.

This result was obviously much valued by Laplace at the time; he
says:

Nous voilà donc parvenus à déterminer directement la loi de la pesanteur,
ce qui est d’autant plus remarquable, que la figure du sphéroïde dont cette loi
paroît dépendre, nous est entiérement inconnue.

This is a generalisation of what he had before obtained for the ordi-
nary law of attraction, that is for the case in which 𝑛 = −2.
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Laplace proceeds to consider the case in which 𝑃, 𝑄, and 𝑅 involve
the action of other bodies as well as the so-called centrifugal force. If
we confine ourselves to the latter, and take 𝜔 for the angular velocity,
we have

𝑃 = 0, 𝑄 = 𝜔2𝑦, 𝑅 = 𝜔2𝑧.

Hence
𝑝 = 𝐻 +

𝑛 − 3
4𝑎

𝜔2(𝑦2 + 𝑧2).

If 𝑛 = 3 we see that 𝑝 is constant. If 𝑛 = −2 we have the case of
nature.

The main results of the section are reproduced in another form in
the Mécanique Céleste, Livre iii. § 36.

817. The seventeenth section, on pages 144…150, investigates what
the law of attraction must be in order that a spherical shell may attract
an external particle in the same manner as if the shell were condensed
at its centre. The investigation, here given for the first time, was sub-
stantially reproduced in the Mécanique Céleste, Livre ii. § 12. In the re-
production Laplace added an investigation of the law which makes the
resultant attraction of the shell on an internal particle zero. Both have
since passed into the elementary books.

818. On the whole we may say that the present treatise forms a valu-
able contribution to our subjects. In the theory of the attraction of el-
lipsoids we have for the first time the single definite integral by which
the resolved attraction at any internal point is expressed; and also the
important theorem of Laplace with respect to the attraction at an exter-
nal point. The theory of the Figure of the Earth, considered as homoge-
neous, appears in the form which it has since retained; Laplace demon-
strated the point left unsettled by D’Alembert as to the number of possi-
ble oblata corresponding to a given angular velocity, and shewed that an
oblongum was not an admissible figure. To these results we must add
the general expression for the force of gravity at the surface of a fluid
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spheroid, and the investigation as to the attraction of a spherical shell
on an external particle. The treatise may be said still to survive in the
pages of the Mécanique Céleste, where so much of it is reproduced; and
it well deserves this abiding honour.



CHAPTER XXII.

LEGENDRE’S SECOND MEMOIR.

819. In the Paris Mémoires for 1784, published in 1787, there is a
memoir by Legendre entitled Recherches sur la Figure des Planètes: it
occupies pages 370…389 of the volume. The memoir was read to the
Academy, on the 7th July, 1784.

820. The object of the memoir is to shew that under certain con-
ditions the oblatum is the only form of relative equilibrium for a mass
of rotating fluid: the conditions will appear in an extract given in the
next Article. We will first reproduce a note bearing on the history of the
subject which occurs at the beginning of the memoir. After referring to
D’Alembert’s Opuscules Mathématiques, Vols. v. and vii., and Laplace’s
memoir of 1772, Legendre says:

La proposition qui fait l’objet de ce Mémoire, étant démontrée d’une
manière beaucoup plus savante et plus générale dans un Mémoire que M. de la
Place a déjà publié dans le Volume de 1782, je dois faire observer que la date
de mon Mémoire est antérieure, et que la proposition qui paroît ici, telle qu’elle
a été lûe en juin et juillet 1784, a donné lieu à M. de la Place, d’approfondir
cette matière, et d’en présenter aux Géomètres, une théorie complète.

821. Legendre states the conditions of his demonstration thus:
Je suppose, comme on paroît l’avoir fait jusqu’à présent, que la figure cher-

chée est celle d’un solide de révolution peu différent d’une sphère, et partagé en
deux parties égales et semblables par son équateur. L’attraction de ce sphéroïde
s’évalue facilement à l’aide des formules que j’ai données pour cet objet, (Mé-
moires des Savans étrangers, tome x.); et j’en tire l’équation du méridien exprimée
par une suite infinie, équation d’une forme très-différente de celle qu’a trouvée
M. de la Place, pour le cas où le sphéroïde ne diffère qu’infiniment peu de la
sphère. Je fais voir ensuite que la série renfermée dans cette équation, est tou-
jours convergente; que l’ellipse y est comprise suivant le théorème de Maclaurin,
et qu’aucune autre courbe n’y peut satisfaire.
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The equation obtained by Laplace to which Legendre here refers is I
presume that we have given in Equation (7) of Art. 757.

822. Legendre begins with demonstrating seven theorems respecting
the coefficients which he had introduced in his first memoir, and which
we now call Laplace’s coefficients.

Legendre says:
Pour démontrer ces diverses propositions, j’ai recours aux propriétés d’une

espèce particulière de fonctions rationnelles, qui ne se sont point encore présen-
tées aux Analystes, et qui paroissent mériter leur attention;…

823. Legendre, as in his first memoir, uses only coefficients of an
even order. We will state the seven theorems he demonstrates, and give
references for the demonstrations. See Art. 784. We assume that 𝑃𝑛 has
the meaning assigned in Art. 786, so that 𝑃𝑛 is a known function of 𝑥.

824. When 𝑥 = 1 then 𝑃2𝑛 = 1. This is obvious from the definition of
𝑃2𝑛; for when 𝑥 = 1 then 𝑃2𝑛 is the coefficient of 𝛼2𝑛 in the expansion of
1

1 − 𝛼
.

825. If 𝑚 be any positive integer less than 𝑛, then

∫
1

0
𝑥2𝑚𝑃2𝑛 𝑑𝑥 = 0.

Heine, page 37.

826. If 𝑚 be any positive integer

∫
1

0
𝑥𝑚𝑃2𝑛 𝑑𝑥 =

𝑚(𝑚 − 2)(𝑚 − 4)… (𝑚 − 2𝑛 + 2)
(𝑚 + 1)(𝑚 + 3)… (𝑚 + 2𝑛 + 1)

.

Heine, page 38.
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827. If 𝑚 and 𝑛 are different positive integers

∫
1

0
𝑃2𝑚𝑃2𝑛 𝑑𝑥 = 0.

And

∫
1

0
(𝑃2𝑛)2 𝑑𝑥 =

1
4𝑛 + 1

.

Heine, page 34.

828. The function 𝑃2𝑛 can be decomposed into 𝑛 factors of the form
𝑥2 − 𝛼2, 𝑥2 − 𝛽2, 𝑥2 − 𝛾2, … where 𝛼, 𝛽, 𝛾, … are real unequal proper
fractions.

Heine, page 23.

829. While 𝑥 lies between 0 and 1 the function 𝑃2𝑛 is always less than
unity.

Heine, page 8. The demonstration consists in developing 𝑃2𝑛 in a se-
ries of cosines of the multiples of 𝜃, where cos 𝜃 = 𝑥; it is found that
every term is positive, and so the greatest value is when 𝜃 = 0: then, as
we have seen in Art. 824, the greatest value is unity. Legendre gives the
demonstration. I do not understand what Heine means on his page 8
by ascribing priority to Laplace in giving this form to 𝑃2𝑛. Heine says:
“Aus dieser Reihe, welche Laplace entwickelt, schliesst Legendre dass
𝑃𝑛 seinen grössten Werth für 𝜃 = 0 erhält.” Heine refers in notes to
Laplace’s memoir of 1782, and to Legendre’s of 1784; but the latter mem-
oir was really the earlier in composition, as Heine shews in his Preface.
Heine’s 𝑃𝑛 is what we call 𝑃𝑛; but it must be remembered that at present
with Legendre only coefficients of an even order explicitly occur.

The passage of Laplace’s memoir to which Heine refers is reproduced
on page 41 of the Mécanique Céleste, Vol. ii. Laplace does really no more
than Legendre had done. Laplace formally writes down a general term,
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while Legendre writes down sufficient particular terms to render the gen-
eral term obvious.

830. If 𝑘 be any constant

∫
1

0

𝑃2𝑛𝑑𝑥
(1 + 𝑘𝑥2)2𝑛+ 3

2
=

(−𝑘)𝑛

(2𝑛 + 1)(1 + 𝑘)2𝑛+ 1
2
.

Heine, page 43.

831. Having thus finished his preliminary analysis, Legendre pro-
ceeds to form the equation which determines the nature of the meridian
curve, in order that relative equilibrium may subsist.

Let 𝑉 be the potential of the mass for a point on its surface whose
radius vector is 𝑟, and colatitude 𝜃. Then by Art. 789, and Huygens’s
plumb-line principle, we have for the condition of relative equilibrium

𝑉 +
𝜔2𝑟2 sin2 𝜃

2
= constant, (1)

where 𝜔 is the angular velocity.
Legendre arrives at an equation precisely equivalent to this; and then

he says on his page 379:
… Cette équation est la même qu’a donnée M. de la Place, dans le volume

de l’Académie de 1772, et dans sa Théorie du mouvement et de la figure des
planètes, page 137.

This is substantially true; but to prevent mistake, we must observe
that in the volume for 1772, Laplace does not introduce the function 𝑉:
the result he gives there coincides with our equation (6) of Art. 756, and
is in fact what we should obtain by differentiating (1) with respect to 𝜃.

Now put for 𝑉 its value from Art. 791. Thus if 𝑀 denote the mass,
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and 𝑢2𝑛 stand for
4𝜋𝐿2𝑛𝑓2𝑛(cos 𝜃)
(2𝑛 + 3)𝑟2𝑛+1

, we have

𝜔2𝑟2 sin2 𝜃
2

+ {
𝑀
𝑟
+ 𝑢2 + 𝑢4 + 𝑢6 +…} = constant. (2)

832. Next Legendre shews that equation (2) is satisfied when the
meridian curve is an ellipse, at least if the angular velocity does not ex-
ceed a certain value; this occupies pages 382…387 of the original memoir.
We will not reproduce this, for, as Legendre himself remarks, there can
be no doubt of the truth of the proposition after Maclaurin’s researches:
and we shall be able to give the essence of Legendre’s process without
this subsidiary part.

833. We know then by Art. 262 that there is relative equilibrium for
an oblatum if

𝑋 − 𝑌√(1 − 𝑒2) = 𝑗𝑋 = 𝑎𝜔2;

and with the values of 𝑋 and 𝑌 given there this reduces to

𝜔2 =
2𝜋√(1 − 𝑒2)

𝑒3
{(3 − 2𝑒2) sin−1 𝑒 − 3𝑒√(1 − 𝑒2)}.

Hence substituting in (2) we know that if we take

𝑎2

𝑟2
= 1 +

𝑒2

1 − 𝑒2
cos2 𝜃,

the following equation will be satisfied:

𝜋√(1 − 𝑒2)
𝑒3

{(3 − 2𝑒2) sin−1 𝑒 − 3𝑒√(1 − 𝑒2)}𝑟2 sin2 𝜃

+
𝑀
𝑟
+ 𝑢2 + 𝑢4 + 𝑢6 +… = constant. (3)
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Put sin𝜓 for 𝑒; then

√(1 − 𝑒2)
(3 − 2𝑒2) sin−1 𝑒 − 3𝑒√(1 − 𝑒2)

𝑒3
=
(3 − 2 sin2 𝜓)𝜓 − 3 sin𝜓 cos𝜓

sin2 𝜓 tan𝜓

=
(3 + tan2 𝜓)𝜓 − 3 tan𝜓

tan3 𝜓
.

Now we have a known formula

𝜓 = tan𝜓 −
1
3
tan3 𝜓 +

1
5
tan5 𝜓 −… ;

and thus the preceding expression becomes

4 {
1
3 . 5

tan2 𝜓 −
2
5 . 7

tan4 𝜓 +
3
7 . 9

tan6 𝜓 −…} .

Put 𝑘 for tan2 𝜓, and 𝑥 for cos 𝜃. Then equation (3) becomes

4𝜋𝑟2(1 − 𝑥2) {
𝑘
3 . 5

−
2𝑘2

5 . 7
+
3𝑘3

7 . 9
− …}

+
𝑀
𝑟
+ 𝑢2 + 𝑢4 + 𝑢6 +… = constant, (4)

where

𝑢2𝑛 =
4𝜋𝑃2𝑛

(2𝑛 + 3)𝑟2𝑛+1
∫

1

0
𝑃2𝑛𝑟2𝑛+3𝑑𝑥.

This we know is satisfied by
𝑎2

𝑟2
= 1 + 𝑘𝑥2.

It must be observed that 𝑎 is a function of 𝑀 and 𝑘, being determined
by the equation

𝑀 +
4𝜋𝑎3

3√(1 + 𝑘)
, (5)

but for the sake of brevity we will retain 𝑎 and not substitute for it in
terms of 𝑀 and 𝑘.
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834. Thus equation (4) has been obtained subject only to two limita-
tions: the series which we have used must be convergent: and the angu-
lar velocity of rotation must lie within these known limits for which an
oblatum is a possible form of relative equilibrium.

Legendre obtains an equation which is substantially the same as (4).
He has however divided the equation by 𝑀, and he has taken 𝑎 = 1;
these two steps however do not appear to me advantageous. Legendre
himself gives so little explanation of his process that after this stage I
am compelled to add much to his brief outline in order to render the
whole matter intelligible.

835. Legendre himself does not distinctly state what he really demon-
strates with more or less success; so that we must supply this omission.
Suppose there to be a given mass of fluid; let this rotate with any angular
velocity comprised between certain specified limits, then there is a corre-
sponding oblatum, or rather two oblata; so that we have a series of oblata
corresponding to a series of angular velocities. Now Legendre shews that
there is no other series of figures possible except oblata. He does not
shew that for isolated values of the angular velocity no solution exists
except an oblatum. But it may seem very natural that if any solution
besides an oblatum is possible, such solution will be possible throughout
some range of angular velocity, and not merely for certain values of the
angular velocity finite in number.

Moreover as to angular velocities beyond the specified limits, Legen-
dre’s process gives no information; so that at the utmost all that it proves
is, if an oblatum is possible no other figure is possible; and as to the cases
in which an oblatum is not possible it says nothing.

836. Equation (4) was obtained by considering one figure; but it will
hold for all figures, provided we give to the word constant a proper inter-
pretation. This word constant must be understood to mean constant with
respect to 𝑥; so that it may involve 𝑘. The essence of Legendre’s process
now is to consider that (4) must hold for all values of 𝑘 within a certain
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range; so that if the left-hand side be supposed developed in powers of
𝑘, the coefficient of each power of 𝑘 must be equal to a constant.

Moreover not only must (4) hold for all values of 𝑘 within a certain
range; but so also must the following

𝑀 =
4𝜋
3
∫

1

0
𝑟3𝑑𝑥. (6)

837. We know then that (4) and (5) are satisfied by

𝑎2

𝑟2
= 1 + 𝑘𝑥2.

Suppose if possible that they are also satisfied by

𝑎2

𝑟2
= 1 + 𝑘𝑥2 + 𝑘𝑝1 + 𝑘2𝑝2 + 𝑘3𝑝3 +…

where 𝑝1, 𝑝2, 𝑝3, … are any functions of 𝑥. Substitute in (4), and pick
out the term which involves 𝑘; we need not attend to such terms as de-

pend only on the 𝑘𝑥2 which occurs in
𝑎2

𝑟2
, because we know that all such

terms must have a constant value.
In 𝑢2𝑛 we have a term

−2𝜋𝑃2𝑛𝑎2𝑘∫𝑃2𝑛𝑝1𝑑𝑥;

and in
𝑀
𝑟
we have a term

𝑀
2𝑎
𝑘𝑝1.

And from (5) we have

𝑎 = (
3𝑀
4𝜋

)
1
3
(1 + 𝑘) 16 = 𝑐 (1 + 𝑘) 16 say.
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Hence finally equating the coefficient of 𝑘 to a constant, we have

𝑀𝑝1
𝑐

− 4𝜋𝑐2 {𝑃2∫
1

0
𝑃2𝑝1𝑑𝑥 + 𝑃4∫

1

0
𝑃4𝑝1𝑑𝑥

+…+ 𝑃2𝑛∫
1

0
𝑃2𝑛𝑝1𝑑𝑥 +…} = a constant;

therefore

𝑝1
3
− {𝑃2∫

1

0
𝑃2𝑝1𝑑𝑥 + 𝑃4∫

1

0
𝑃4𝑝1𝑑𝑥 +…+ 𝑃2𝑛∫

1

0
𝑃2𝑛𝑝1𝑑𝑥 +…} = 𝛾, (7)

where 𝛾 is some constant.
We may express this result thus:

𝑝1
3
= 𝛾 + 𝛾2𝑃2 + 𝛾4𝑃4 +…+ 𝛾2𝑛𝑃2𝑛 +… , (8)

where 𝛾2𝑛 stands for ∫
1

0
𝑃2𝑛𝑝1𝑑𝑥.

Now multiplying (8) by 𝑃2𝑛, and integrating between the limits 0 and
1, we obtain by Art. 827,

1
3
∫

1

0
𝑃2𝑛𝑝1𝑑𝑥 =

𝛾2𝑛
4𝑛 + 1

,

therefore 𝛾2𝑛
3

=
𝛾2𝑛

4𝑛 + 1
,

therefore 𝛾2𝑛 = 0.
Hence we see that 𝑝1 reduces to a constant which we denote by 3𝛾.

838. Now we shall shew that 𝛾 = 0.
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For from (6) we have

𝑀 =
4𝜋𝑎3

3
∫

1

0
{1 + 𝑘𝑥2 + 𝑘𝑝1 + 𝑘2𝑝2 +…}− 3

2𝑑𝑥,

that is by (5)

(1 + 𝑘)− 1
2 = ∫

1

0
{1 + 𝑘𝑥2 + 𝑘𝑝1 + 𝑘2𝑝2 +…}− 3

2𝑑𝑥.

In this put for 𝑝1 a constant 3𝛾; then equate the coefficients of 𝑘 in
the expansions of the two sides, and we have

−
1
2
= −

3
2
∫

1

0
(𝑥2 + 3𝛾)𝑑𝑥,

that is
0 = −

9
2
𝛾,

so that 𝛾 is zero.

839. Having thus shewn that 𝑝1 is zero, we may in precisely the same
way shew that 𝑝2 is zero; then that 𝑝3 is zero; and so on.

Thus it is impossible that (4) can be satisfied by such a value of 𝑟 as
is determined by

𝑎2

𝑟2
= 1 + 𝑘𝑥2 + 𝑘𝑝1 + 𝑘2𝑝2 + 𝑘3𝑝3 +…

840. Such is Legendre’s demonstration. I may remark that I do not

see why he did not introduce in the assumed value of
𝑎2

𝑟2
, a term inde-

pendent of 𝑘, say 𝑝0; for his process would apply to 𝑝0 and lead to the
conclusion that 𝑝0 must be zero.
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841. In Art. 837 the method of shewing that 𝛾2𝑛 is zero, deserves
notice. This is the first appearance of a particular case of the general
proposition now well known, that a given function can be expanded in
only one series of Laplace’s functions.

842. In estimating the force of the demonstration the main point to
be considered is the convergence of the series employed.

The expansion of 𝜓 in terms of tan𝜓 is convergent only so long as

tan𝜓 does not exceed unity; so that 𝑒2 must be less than
1
2
. This range

is much narrower than the range for which an oblatum is known to be
a possible form of equilibrium; for in the extreme case in which an obla-
tum is possible the ratio of the axes is almost that of 2·72 to unity. See
page 126 of Laplace’s Figure des Planetes, and page 386 of this memoir
by Legendre.

Legendre himself does not notice this instance of the subject of con-
vergence.

Then there is the question whether the series which is used for 𝑉 in
Art. 831 is convergent; it is on this series that our fundamental equation
(4) depends. Legendre does advert to this point and considers that he
establishes the convergence of the series for 𝑉. We will now consider his
arguments.

843. Since 𝑃2𝑛 changes sign 𝑛 times between 𝑥 = 0 and 𝑥 = 1, he

suggests that the positive and negative parts of ∫
1

0
𝑃2𝑛𝑓(𝑥)𝑑𝑥 neutralise

each other, especially when 𝑛 is very large. This is unsatisfactory. For

though we may thus be led to believe that ∫
1

0
𝑃2𝑛𝑓(𝑥)𝑑𝑥 will be in gen-

eral very small when 𝑛 is very large, yet this does not shew that the series
of which this is the 𝑛th term is convergent.
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Legendre takes as a special case that in which 𝑓(𝑥) = 𝑥𝑚. The value

of ∫
1

0
𝑃2𝑛𝑥𝑚𝑑𝑥 is known from Art. 826. In this case we shall have, as

Legendre remarks, for the value of ∫
1

0
𝑃2𝑛𝑥𝑚𝑑𝑥, when 𝑛 is very great,

approximately
𝐴

𝑛𝑚+ 3
2
, where 𝐴 is a constant. This result can be obtained

by the theorem called Stirling’s Theorem. The series which has for its
𝑛th term the expression just given is certainly convergent. Thus in this
special case Legendre establishes his statement.

Legendre says nothing as to the convergence of the expansions which
are employed in the processes of Arts. 837 and 838.

Poisson in the Connaissance des Tems for 1829, page 366, alludes to
Legendre’s remark on the convergence of his series. Poisson holds justly
that it is not sufficient to prove that the series which we finally obtain
are convergent; it is necessary for the soundness of our demonstration
that the series should be convergent throughout; hence the expression
used by Legendre for 𝑉 cannot be considered to be obtained with rigour:
see Art. 792.

844. It remains to estimate the value of this investigation. Legendre
himself seems to have fluctuated in his opinion.

In the extract we have given in Art. 821 Legendre apparently
distinguishes between the hypothesis that a body is little different
from a sphere (peu différent), and the hypothesis that a body differs
infinitesimally from a sphere (infiniment peu). He considered that his
own demonstration applied to the case of a body not restricted, like the
body to which Laplace confined himself, to be indefinitely close to a
sphere in form.

In the extract we have given in Art. 820 Legendre seems to allow
that Laplace’s demonstration in the volume for 1782 was more clever
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and more general than his own. I presume the greater generality means
that Laplace did not restrict himself to the case of a solid of revolution.
Laplace still retained the hypothesis of a body deviating extremely little
from a sphere. In his memoir in the volume for 1789 Legendre seems to
maintain the superiority of his own demonstration. The passage will be
quoted hereafter. Legendre in fact claims as the merit of his own solu-
tion that he did not assume the body to be almost spherical.

This is the great merit of Legendre’s process. He does not restrict
himself to the case of a body very nearly spherical; and although the
demonstration cannot be regarded as perfect, yet there is a good attempt
at the problem in its most general form, so far as a surface of revolution
is concerned.

845. Laplace says in the Mécanique Céleste, Vol. v. page 10:
M. Legendre a fait voir ensuite que si la figure est de révolution, elle doit,

pour l’équilibre être elliptique; et j’ai reconnu que cela est exact, sans supposer
une figure de révolution.

This passage seems to me unsatisfactory; it leaves out of sight the im-
portant fact that Laplace expressly limited himself to the case of a nearly
spherical body, and that Legendre did not.

846. Ivory in the Philosophical Transaction for 1834, page 526, refers
to Legendre’s memoir. Ivory says: “To the mathematical processes em-
ployed by that eminent geometer, no objection can be made.” Ivory how-
ever proceeds to object to the memoir for other reasons which depend
on his own abnormal notions as to the conditions of fluid equilibrium.
I hold on the contrary that Legendre is sound as to hydrostatical princi-
ples, but weak in the mathematical investigations, because his series are
not necessarily convergent.

847. Jacobi in a paper in which he enunciated the theorem that a
rotating ellipsoid of fluid might be in relative equilibrium spoke in the
highest terms of Legendre’s investigation; see Poggendorff’s Annalen, Vol.
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xxxiii. 1834, pages 229…233. After observing that corresponding to a
given angular velocity there might be two oblata as figures of relative
equilibrium, one having a small ellipticity and the other a large ellipticity,
Jacobi proceeds thus:

Die erste dieser Lösungen, die das wenig abgeplattete Umdrehungsellipsoid
giebt, hat durch Legendre’s bewundernswürdige Arbeiten über die Figur
der Erde eine grössere Bedeutung erlangt. Dieser Mann, dessen Ruhm mit
den Fortschritten der Mathematik zunimmt, hatte durch Einführung jener
merkwürdigen Ausdrücke, durch welche wir heut in den Anwendungen die
Functionen zweier Variabeln darstellen, die allgemeinsten Untersuchungen
über diesen Gegenstand möglich gemacht. Er zeigte, dass unter allen Figuren,
die nicht zu sehr von der sphärischen Gestalt abweichen, so dass es möglich
ist, die Anziehung, welche auf einen Punkt der Oberfläche ausgeübt wird,
nach den Potenzen dieser Abweichung zu entwickeln, das wenig abgeplattete
Umdrehungsellipsoid, wie es Clairaut und Maclaurin bestimmt hatten, die
einzig mögliche Figur des Gleichgewichts sey, und zwar nicht in irgend einer
Annäherung, sondern in absoluter, geometrischer Strenge. Wenn man bedenkt,
dass man hier aus Relationen zwischen dreifachen Integralen, deren Gränzen
unbekannt sind und welche Constanten enthalten, zwischen denen eine
unbekannte Relation statt findet, die Gleichung zwischen den drei Variabeln zu
suchen hat, welche die Gränzen giebt und zugleich die unbekannte Relation
zwischen den Constanten bestimmt, so staunt man über die Kühnheit und das
Glück dieses Unternehmens. Es ist zu bedauern, dass der Autor der Mécanique
céleste es nicht für zweckmässig fand, das merkwürdige Theorem in sein
weitschichtiges Werk aufzunehmen.

Perhaps Jacobi was rendered partial towards Legendre by their com-
mon interest in the theory of elliptic functions, and by the kindness with
which the veteran mathematician had received and appreciated the ef-
forts of the rising genius: see the Annales Scientifiques de l’Ecole Normale
Supérieure, Vol. vi. 1869. I have been swayed by Jacobi’s opinion in en-
deavouring to render the essence of Legendre’s investigation accessible
to students.



CHAPTER XXIII.

LAPLACE’S FOURTH, FIFTH, AND SIXTH MEMOIRS.

848. Laplace’s fourth memoir on our subject is contained in the
Paris Mémoires for 1782, published in 1785; it is entitled Théorie des at-
tractions des sphéroïdes et de la Figure des Planètes. The memoir occupies
pages 113…196 of the volume.

849. The memoir is divided into five sections; the last of these relates
to the oscillations of a fluid of small depth surrounding a sphere; this
belongs to the theory of the tides which we do not discuss in the present
work. Thus we are concerned only with the other four sections.

Speaking generally, we may say that this memoir is reproduced in the
Mécanique Céleste; most of it is verbally reprinted. We shall therefore
confine ourselves to a brief account of it, reserving more detail for the
analysis we shall give of the Mécanique Céleste.

850. The first section treats of the attraction of ellipsoids. With re-
spect to this section Laplace says in his page 113:

… je donne une théorie complète des attractions des sphéroïdes terminés
par des surfaces du second ordre; cette théorie a déjà paru dans l’Ouvrage que
j’ai publié sur le mouvement et sur la figure elliptique des Planètes; mais elle
est ici présentée d’une manière plus directe et plus simple.

Laplace here has in view principally the demonstration of the theo-
rem which I have called by his name; this demonstration was first pub-
lished in the fourth section of his Treatise, but is given in the present
memoir in a simpler form: see Art. 804.

Laplace rests his demonstration now on one partial differential equa-
tion instead of three, which he used in the Treatise.

The present section forms Chapter I. of the third Book of the Mé-
canique Céleste. I observe only two changes.
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In the memoir Laplace merely states that his element of volume is
a rectangular parallelepiped, of which the three dimensions are 𝑑𝑟, 𝑟𝑑𝑝,
and 𝑟 sin𝑝𝑑𝑞: in the Mécanique Céleste he unnecessarily goes through
the process of transforming the rectangular expression 𝑑𝑥𝑑𝑦 𝑑𝑧 into the
above polar form.

The partial differential equation which occurs in the Mécanique
Céleste, Livre iii. § 5, towards the beginning of the section, is rather
simpler than the corresponding form in the memoir; but the two
are practically equivalent: the form at the end of this section of the
Mécanique Céleste is identical with that which corresponds to it in the
memoir.

851. The second section of the memoir treats on the development in
a series of the attractions of any spheroids: this section is reproduced in
the second Chapter of the third Book of the Mécanique Céleste.

In this section we have for the first time the partial differential equa-
tion with respect to the coordinates of the attracted particle which the
potential 𝑉 must satisfy: it is expressed by means of polar coordinates in
the form

𝑑
𝑑𝜇

{(1 − 𝜇2)
𝑑𝑉
𝑑𝜇

} +
1

1 − 𝜇2
𝑑2𝑉
𝑑𝜛2 + 𝑟

𝑑2𝑉𝑟
𝑑𝑟2

= 0.

In the memoir we are merely told that it is easy to convince oneself
by differentiation that this equation holds. In the Mécanique Céleste we
are also told that this equation is a transformation of the equation in
rectangular coordinates

𝑑2𝑉
𝑑𝑥2

+
𝑑2𝑉
𝑑𝑦2

+
𝑑2𝑉
𝑑𝑧2

= 0.

And in the Mécanique Céleste, Livre ii. § 11, there is a sketch of the
process of transformation.

It is curious that the equation should first occur in the polar form,
which is much less obvious and simple than the rectangular form.
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On pages 138…143 of the memoir we have some investigations as
to what we call Laplace’s coefficients. A general expression is given for
these coefficients in terms of two variables; but it involves an error: for
Laplace assumes, on his page 141, that his 𝑖+𝑛 is always an even number.
The mistake was corrected by Legendre in his memoir of 1789, page 432.
Laplace gives a correct form in the Mécanique Céleste, Livre iii. § 15.

852. The third section of the memoir treats on the attraction of spher-
oids, which differ but little from spheres: this section is also reproduced
in the second Chapter of the third Book of the Mécanique Céleste.

This section begins with a demonstration of the equation to which
we have already drawn attention: see Art. 814. Here Laplace restricts
himself to the ordinary law of attraction, and puts his equation exactly in
the form of equation (2) of the Mécanique Céleste, Livre iii. § 10, namely

−𝑎
𝑑𝑉
𝑑𝑟

=
2𝜋𝑎2

3
+
1
2
𝑉 :

the demonstration however here given is different, and we will reproduce
it.

Let 𝜌 denote the density; let 𝑟, 𝜃, 𝜙 be the usual polar coordinates of
a fixed point; and let 𝑟′, 𝜃′, 𝜙′ be variable coordinates. Then the value of
𝑉 at the point (𝑟, 𝜃, 𝜙) is given by

𝑉 =∭
𝜌𝑟′2 sin 𝜃′𝑑𝑟′𝑑𝜃′𝑑𝜙′

(𝑟2 − 2𝑟𝑟′𝜇 + 𝑟′2) 12
,

where 𝜇 stands for cos 𝜃 cos 𝜃′ + sin 𝜃 sin 𝜃′ cos(𝜙 − 𝜙′).
Suppose that at the surface of the spheroid we have 𝑟′ = 𝑎(1 + 𝛼𝑦′),

where 𝛼 is very small, and 𝑦′ is a function of 𝜃′ and 𝜙′; and let 𝑦 be the
value of 𝑦′ when for 𝜃′ and 𝜙′ we put 𝜃 and 𝜙 respectively. Then we
may suppose the spheroid to consist of a sphere of the radius 𝑎(1 + 𝛼𝑦),
and of an additional shell of which the variable thickness is 𝑎𝛼(𝑦′ − 𝑦).
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The potential of the sphere is easily found to be

4𝜋𝑎3(1 + 𝛼𝑦)3𝜌
3𝑟

.

The potential for the additional shell may be represented by an ex-
pression similar to the above for 𝑉; we may put 𝑎𝛼(𝑦′ − 𝑦) instead of
𝑑𝑟′.

Let 𝑉1 denote this part of the potential, so that

𝑉1 = 𝑎𝛼∬
𝜌𝑟′2 sin 𝜃′(𝑦′ − 𝑦)𝑑𝜃′𝑑𝜙′

(𝑟2 − 2𝑟𝑟′𝜇 + 𝑟′2) 12
.

Hence, by differentiating with respect to r, we have

−
𝑑𝑉1
𝑑𝑟

= 𝑎𝛼∬
𝜌𝑟′2(𝑟 − 𝑟′𝜇) sin 𝜃′(𝑦′ − 𝑦)𝑑𝜃′𝑑𝜙′

(𝑟2 − 2𝑟𝑟′𝜇 + 𝑟′2) 32
.

Now suppose the fixed point to be on the surface so that 𝑟 = 𝑎(1+𝛼𝑦);
then neglecting 𝛼2 we get

−
𝑑𝑉1
𝑑𝑟

=
𝑎𝛼
2 3
2
∬

𝜌 sin 𝜃′(𝑦′ − 𝑦)𝑑𝜃′𝑑𝜙′

(1 − 𝜇) 12
.

And to the same order of approximation we have

𝑉1 =
𝑎2𝛼
2 1
2
∬

𝜌 sin 𝜃′(𝑦′ − 𝑦)𝑑𝜃′𝑑𝜙′

(1 − 𝜇) 12
.

Thus
−𝑎

𝑑𝑉1
𝑑𝑟

=
1
2
𝑉1.

Then, denoting the whole potential by V, we have

𝑉 =
4𝜋𝑎3(1 + 𝛼𝑦)3

3𝑟
+ 𝑉1

−
𝑑𝑉
𝑑𝑟

=
4𝜋𝑎3(1 + 𝛼𝑦)3

3𝑟2
−
𝑑𝑉1
𝑑𝑟

.
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Thus to our order of approximation

𝑉 =
4𝜋𝑎2

3
(1 + 2𝛼𝑦) + 𝑉1,

−
𝑑𝑉
𝑑𝑟

=
4𝜋𝑎
3
(1 + 𝛼𝑦) −

𝑑𝑉1
𝑑𝑟

;

therefore
−𝑎

𝑑𝑉
𝑑𝑟

=
2𝜋𝑎2

3
+
1
2
𝑉.

This method of investigating the equation coincides substantially
with that recommended by D’Alembert: see Art. 652.

853. We may notice another process in the memoir which is not re-
peated in the Mécanique Céleste.

Suppose 𝑦 to be a rational function of 𝜇, √(1 − 𝜇2) cos𝜛, and
√(1 − 𝜇2) sin𝜛; and it is required to transform 𝑦 into a series of
Laplace’s Functions.

Suppose that 𝑦 is of the 𝑖th degree; and assume

𝑦 = 𝑌0 + 𝑌1 + 𝑌2 + 𝑌3 +…+ 𝑌𝑖 , (1)

where 𝑌𝑟 is a Laplace’s function of the order 𝑟, so that

𝑑
𝑑𝜇

{(1 − 𝜇2)
𝑑𝑌𝑟
𝑑𝜇

} +
1

1 − 𝜇2
𝑑2𝑌𝑟
𝑑𝜛2 + 𝑟(𝑟 + 1)𝑌𝑟 = 0.

Put 𝑦1 for
𝑑
𝑑𝜇

{(1 − 𝜇2)
𝑑𝑦
𝑑𝜇

} +
1

1 − 𝜇2
𝑑2𝑦
𝑑𝜛2 ; then we see that

−𝑦1 = 1 . 2𝑌1 + 2 . 3𝑌2 + 3 . 4𝑌3 +…+ 𝑖(𝑖 + 1)𝑌𝑖. (2)

In like manner let 𝑦2 be derived from 𝑦1 as 𝑦1 was from 𝑦; and then
𝑦3 in like manner from 𝑦2; and so on. Thus we obtain equations of which
the general type is

(−1)𝑟𝑦𝑟 = (1 . 2)𝑟𝑌1 + (2 . 3)𝑟𝑌2 +…+ {𝑖(𝑖 + 1)}𝑟𝑌𝑖.
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The equations (1), and (2), and the other 𝑖 − 1 equations of the type
just expressed, serve to determine 𝑌0, 𝑌1, 𝑌2, … 𝑌𝑖.

Another process is given instead of this in the Mécanique Céleste,
Livre iii. § 16.

854. The fourth section of the memoir treats on the Figure of the
Planets; this section is reproduced in the fourth Chapter of the third
Book of the Mécanique Céleste.

Suppose that 𝑋, 𝑌, 𝑍 denote the accelerating forces parallel to the axes
at the point (𝑥, 𝑦, 𝑧) of a fluid in equilibrium. Let 𝑝 denote the pressure,
and 𝜌 the density. Then

𝑑𝑝
𝜌

= 𝑋𝑑𝑥 + 𝑌𝑑𝑦 + 𝑍𝑑𝑧.

Now Laplace proposes to consider that part of the right-hand member
which arises from the action of a distant body.

Let 𝑆 denote the mass of this distant body, 𝑠 its distance from

(𝑥, 𝑦, 𝑧); then at first sight −
𝑆𝑑𝑠
𝑠2

might appear to be the term required.

But Laplace makes the hypothesis that the centre of gravity of the fluid
mass is at rest; and thus he wants not the action of the distant body,
but what may be called the disturbing action. Hence we have to apply
in the reversed direction the action of the distant body on the centre
of gravity. Laplace does this in three ways in three different places.
In the Théorie … de la Figure des Planètes he makes an approximate
investigation which is correct though a little tedious: see page 108 of
the work. This method is the same as D’Alembert used: see Art. 616. In
the present memoir Laplace proceeds without approximation; but his
method is wrong: see page 158 of the memoir. In the Mécanique Céleste
he uses a brief and correct method without approximation; see Livre iii.
§ 23.

Let 𝜎 denote the distance of 𝑆 from the centre of gravity of the fluid;
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and let 𝛼, 𝛽, 𝛾 be the angles which 𝜎 makes with the axes. Then we

have to subtract
𝑆 cos𝛼
𝜎2

,
𝑆 cos 𝛽
𝜎2

, and
𝑆 cos 𝛾
𝜎2

from the forces at (𝑥, 𝑦, 𝑧)

parallel to the axes of 𝑥, 𝑦, 𝑧 respectively. Thus instead of −
𝑆𝑑𝑠
𝑠2

we now

have
−
𝑆𝑑𝑠
𝑠2

−
𝑆
𝜎2
(cos𝛼𝑑𝑥 + cos 𝛽𝑑𝑦 + cos 𝛾𝑑𝑧).

Hence the part of ∫(𝑋𝑑𝑥+𝑌𝑑𝑦+𝑍𝑑𝑧) which arises from the action

of this distant body is

𝑆
𝑠
−

𝑆
𝜎2
(𝑥 cos𝛼 + 𝑦 cos 𝛽 + 𝑧 cos 𝛾) + constant.

The error in the memoir is this: instead of subtracting
𝑆 cos𝛼
𝜎2

Laplace subtracts
𝑆(𝜎 cos𝛼 − 𝑥)

𝜎3
; and similarly for the other axes.

855. The memoir treats on the figure of a planet supposed homoge-
neous on pages 154…179. The theory here given is reproduced almost
word for word in the Mécanique Céleste, Livre iii. §§ 22…28. And with
the exception of the correction noticed in the preceding Article the Mé-
canique Céleste adds nothing to the memoir.

On pages 179…186 of the memoir Laplace treats of the case in which
the planet is not supposed homogeneous: but the memoir really gives
very little on this head. In fact the memoir contains observations only
on the value of gravity and of the length of a degree at different parts of
the Earth’s surface: these observations occur in the Mécanique Céleste,
Livre iii. § 33; but the application there made to Bouguer’s hypothesis
does not occur in the memoir.
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856. On the whole we see that the theory of attraction and the theory
of the homogeneous figure of the Earth are given in this memoir sub-
stantially as they were afterwards reproduced in the Mécanique Céleste.

857. The important property with respect to two Laplace’s functions
of different orders that

∫
1

−1
∫

2𝜋

0
𝑍𝑛𝑍𝑚𝑑𝜇𝑑𝜙 = 0

is first given in this memoir. The case in which 𝑚 = 𝑛 is not explicitly
considered; this was investigated by Legendre in his memoir of 1789: see
Heine’s Handbuch der Kugelfunctionen, page 265. But it ought to be no-
ticed that the remarkable equation (1) of the Mécanique Céleste, Vol. ii.
page 44, which involves all that applies to the case in which 𝑚 = 𝑛, is
implicitly contained in the memoir of 1782; see page 152 of the memoir:
but the equation is not explicitly brought into notice.

858. The memoir is a very valuable contribution to our subject. We
may especially observe that here for the first time it is demonstrated,
without assuming a figure of revolution, that the oblatum is the only
form of relative equilibrium for a nearly spherical mass of rotating ho-
mogeneous fluid. To this matter we shall return hereafter.

859. Laplace’s fifth memoir on our subject is contained in the Paris
Mémoires for 1783, published in 1786; it is entitled Mémoire sur la Figure
de la Terre. The memoir occupies pages 17…46 of the volume.

860. Laplace first considers some measures of lengths of degrees; see
pages 18…23 of the memoir. He uses four, namely those in Peru, at the
Cape of Good Hope, in France, and in Lapland: he quotes the lengths
from Frisi’s Cosmographia. In order to deduce from these measures the
elements of the Earth’s dimensions Laplace uses the method which is
explained in the Mécanique Céleste, Livre iii. § 39. Laplace obtains for
the ratio of the axes of the oblatum that of 250 to 249; but he considers
that the measured lengths do not agree very well with the elliptic figure.
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Laplace finds that the observations of the lengths of the seconds pen-
dulum agree reasonably well with theory; he uses a table which is given
in Frisi’s Cosmographia, Vol. ii. page 139, and by the aid of Clairaut’s
theorem he deduces as the ratio of the axes of the oblatum that of 321
to 320.

These discussions as to the lengths of degrees and of the seconds pen-
dulum appear in a much more elaborate form in the Mécanique Céleste,
Livre iii. §§ 39, 41, and 42. The method of treating discordant observa-
tions which is explained in § 39 does not appear to have found much
favour.

861. Assume that the radius vector of the Earth is an expression of
the form

1 + 𝛼(𝑌0 + 𝑌1 + 𝑌2 +…),
where 𝛼 is small, and 𝑌𝑟 is a Laplace’s function of the 𝑟th order. Laplace
shews that if the centre of gravity is the origin 𝑌1 is zero; see pages
25…27 of the memoir. The process is reproduced substantially in the Mé-
canique Céleste, Livre iii. § 31. We must observe that the density of the
Earth is not assumed to be constant; the proposition had been already
given in the fourth memoir assuming the density to be constant.

Laplace also investigates what consequences follow as to the form of
𝑌2 if we assume that the axis of rotation is a principal axis of the mass;
see pages 28…30 of the memoir. The process is reproduced substantially
in the Mécanique Céleste, Livre iii. § 32.

862. Laplace in his pages 30…34 makes some remarks on the value of
gravity and of the length of a degree of the meridian at different places
on the Earth’s surface; the remarks coincide in effect with those in the
fourth memoir: see Art. 855. A numerical example is given in illustra-
tion; this we will reproduce: the formulæ which we shall use will be
found in the Mécanique Céleste, Livre iii. § 33.

The point to be illustrated is, that there may be deviations from
the figure of an oblatum which will be sensible in the measures of
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the lengths of degrees of the meridian, though hardly sensible in the
observations of the lengths of pendulums.

Suppose that the radius of the Earth is

1 + 𝛼𝑌2 + 𝛼𝑌6,

where 𝛼 is very small, 𝑌6 is a Laplace’s function of the sixth order, and

𝛼𝑌2 = ℎ(𝜇2 −
1
3
).

Then the formula for the length of a seconds pendulum is

𝐿 {1 + 𝛼𝑌2 + 𝑗 (𝜇2 −
1
3
) + 5𝛼𝑌6} ;

that is
𝐿 {1 + (𝑗 + ℎ) (𝜇2 −

1
3
) + 5𝛼𝑌6} ,

where 𝑗 =
1
289

.

And from observation it follows that the value of ℎ is such that

𝑗 + ℎ = −
7
4
ℎ nearly.

Let 𝜆 denote the ratio of 𝛼𝑌6 to 𝛼𝑌2. Then the corresponding ratio
which occurs in the length of a seconds pendulum, namely the ratio of

5𝛼𝑌6 to (𝑗 + ℎ) (𝜇2 −
1
3
), is −

20
7
𝜆.

Again, the expression for the length of a degree of the meridian is

𝑐 {1 − 5𝛼𝑌2 − 41𝛼𝑌6 + 𝛼𝜇
𝑑
𝑑𝜇

(𝑌2 + 𝑌6) −
𝛼

1 − 𝜇2
𝑑2

𝑑𝜛2 (𝑌2 + 𝑌6)} .

With the above value of 𝑌2 this becomes

𝑐 {1 +
2ℎ
3
− 3ℎ (𝜇2 −

1
3
) − 41𝛼𝑌6 + 𝛼𝜇

𝑑𝑌6
𝑑𝜇

−
𝛼

1 − 𝜇2
𝑑2𝑌6
𝑑𝜛2 } .
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The ratio of −41𝛼𝑌6 to −3ℎ (𝜇2 −
1
3
) is equal to

41𝜆
3
. This is numer-

ically nearly five times −
20
7
𝜆.

Hence we may say that the disturbing effect of the term 𝛼𝑌6 is about
five times as great on the length of a degree as it is on the length of the
seconds pendulum.

863. The memoir after a few remarks on parallax proceeds on page
35 to the subject of precession and nutation, with which we are not con-
cerned.

We may observe however that in his pages 38 and 39, Laplace inves-
tigates the form of a homogeneous solid which has every axis through
the centre of gravity a principal axis. He comes to the conclusion that
the fifth power of the radius vector measured from the centre of gravity,
must be equal to a series of Laplace’s functions in which the function
of the second order does not appear. Laplace however ought to have ex-
cluded also the term of the first order. The oversight was corrected by
Legendre in his fourth memoir, page 442.

On the whole the present memoir cannot be considered of very great
importance. The new matter which it furnishes consists of the results
noticed in Art. 861, and the method of treating discordant observations
to which we alluded in Art. 860.

864. Laplace’s sixth memoir on our subject is contained in the Paris
Mémoires for 1787, published in 1789; it is entitled Mémoire sur la
Théorie de l’Anneau de Saturne. The memoir occupies pages 249…267 of
the volume; it consists of eight sections. The corresponding part of the
Mécanique Céleste is the sixth Chapter of the third Book.

865. The memoir begins by stating some facts relative to the ring.
Huygens is named as the person who first explained the appearances;
and Cassini as the person who observed that the ring is divided into two
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nearly equal parts by a dark band. Then Short with a powerful telescope
perceived several concentric bands. Laplace proceeds thus:

Ces observations ne permettent pas de douter que l’anneau de Saturne ne
soit formé de plusieurs anneaux situés à peu-près dans le même plan; elles don-
nent lieu de croire que de plus forts télescopes y feront apercevoir un plus grand
nombre d’anneaux.

La théorie de la pesanteur universelle qui s’accorde si bien avec les
phénomènes que présentent les mouvemens et les figures des corps célestes,
doit également satisfaire à ceux que nous offre l’anneau de Saturne; mais
jusqu’ici personne n’a entrepris de déterminer sa figure d’après cette théorie;
car l’explication que M. de Maupertuis a donnée de la formation des anneaux,
dans son discours sur la figure des astres, n’étant pas fondée sur la loi de la
gravitation mutuelle de toutes les parties de la matière, mais sur la supposition
d’une tendance des molécules des anneaux vers plusieurs centres d’attraction;
elle ne doit être regardée que comme une hypothèse ingénieuse, propre tout
au plus à faire entrevoir la possibilité des anneaux dans le cas de la nature.
En appliquant à cet objet, les recherches que j’ai données dans nos Mémoires
de 1782, sur les attractions des sphéroïdes et sur la figure des planètes; je
suis parvenu aux résultats suivans que je ne présente que comme un essai
d’une théorie de l’anneau de Saturne, qui pourra être perfectionnée, lorsque de
nouvelles observations faites avec de grands télescopes, auront fait connoître le
nombre et les dimensions des anneaux dont il paroît formé.

Laplace then states the hypothesis he makes, namely that a film of
fluid spread over the surface of the ring remains in equilibrium in virtue
of the forces which act on it; and he gives a reason for the hypothesis,
as in the Mécanique Céleste.

866. Laplace’s second section is devoted to the function 𝑉, which we
call the potential.

At a point (𝑥, 𝑦, 𝑧) external to the attracting mass, 𝑉 satisfies the equa-
tion

𝑑2𝑉
𝑑𝑥2

+
𝑑2𝑉
𝑑𝑦2

+
𝑑2𝑉
𝑑𝑧2

= 0. (1)
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This is the first appearance of the equation in rectangular coordi-
nates: see Art. 851. Laplace says:

Cette équation rapportée à d’autres coordonnées, est la base de la théorie
que j’ai présentée dans nos Mémoires de 1782, sur les attractions des sphéroïdes
et sur la figure des planètes.

For the case of a solid of revolution the equation (1) may be trans-
formed into

1
𝑟
𝑑𝑉
𝑑𝑟

+
𝑑2𝑉
𝑑𝑟2

+
𝑑2𝑉
𝑑𝑧2

= 0, (2)

where 𝑟2 = 𝑥2 + 𝑦2.
For the case of a sphere it may be transformed into

2
𝑟
𝑑𝑉
𝑑𝑟

+
𝑑2𝑉
𝑑𝑟2

= 0,

where 𝑟2 = 𝑥2 + 𝑦2 + 𝑧2.
Laplace applies the last equation to determine the value of 𝑉 for the

case of a sphere. He uses it both for an external and internal particle;
but his process is unsound with respect to the internal particle, as we
now know that equation (1) is not true in that case: we shall return to
this point. The correct process was given by Poisson in the Connaissance
des Tems for 1829, page 362, and is now in elementary books. See Statics,
Art. 240.

867. Laplace’s third section contains an interesting process.
Let 𝑝1 be the attraction of the ring at a point of the inner circumfer-

ence, 𝑟1 the distance of this point from the centre of Saturn, 𝑆 the mass
of Saturn, 𝜔 the centrifugal force at a unit of distance, arising from the
rotation of the ring. Then

𝑝1 must be greater than
𝑆
𝑟12

− 𝜔𝑟1.
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In like manner if 𝑝2 and 𝑟2 refer to a point on the outer circumference
of the ring,

𝑝2 must be greater than 𝜔𝑟2 −
𝑆
𝑟22
.

Hence 𝑝1 +
𝑟1
𝑟2
𝑝2 must be greater than

𝑆(𝑟23 − 𝑟13)
𝑟12𝑟23

.

Let 𝑞 be the attraction at the surface of Saturn, 𝑅 the radius of Saturn.

Then 𝑞 =
𝑆
𝑅2
.

Hence 𝑝1 +
𝑟1
𝑟2
𝑝2 must be greater than 𝑞

𝑅2(𝑟23 − 𝑟13)
𝑟12𝑟23

.

Now Laplace says that the mass of the ring is much less than that
of Saturn, and a sphere must exert a greater attraction on a particle at
its surface than a very flat body of the same mass. On both these ac-
counts 𝑞 must be much greater than 𝑝1 or 𝑝2. Hence it follows that
𝑅2(𝑟23 − 𝑟13)

𝑟12𝑟23
must be a very small coefficient; and hence 𝑟1 and 𝑟2 must

differ but slightly. But this would not be the case with Saturn if it formed

a continuous ring; for observation shews that 𝑟1 =
5
3
𝑅 and 𝑟2 =

7
3
𝑅, and

thus
𝑅2(𝑟23 − 𝑟13)

𝑟12𝑟23
= ·228805. This is far too great to be admitted. Hence

even if observation had not made known the division of Saturn’s ring
into several concentric rings theory would have been sufficient to con-
vince us of it.

This investigation is not reproduced in the Mécanique Céleste. Plana
doubted the validity of the inference; he published a paper on the subject
in De Zach’s Correspondance Astronomique, Vol. i. 1818, pages 346…350,
in which he states his results: and he gives his process in detail in the
Turin Memorie, Vol. xxiv. 1820. We will return presently to Plana’s crit-
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icisms.

868. Laplace’s fourth section consists of an approximate process to
shew that the ring may be of the form obtained by revolving an ellipse
about a straight line in its plane, outside it, and parallel to the minor
axis; the minor axis being supposed very small compared with the major
axis.

Take the centre of Saturn as the origin. Then the equation of relative
equilibrium of the supposed fluid film will be

constant =
1
2
𝜔𝑟2 + 𝑉 +

𝑆
√(𝑟2 + 𝑧2)

, (3)

where 𝑟 and 𝑧 are taken as in (2) of Art. 866.
Then since 𝑉 is symmetrical with respect to the plane from which 𝑧

is measured we shall have, if we expand 𝑉 in powers of 𝑧, approximately

𝑉 = 𝐴 + 𝐵𝑧2;

where 𝐴 and 𝐵 are functions of 𝑟. That is there will be no term in 𝑉
involving the first power of 𝑧, or indeed odd powers of 𝑧; and terms in
𝑧4 and higher powers are rejected.

With this value of 𝑉 we have from (2), by considering the terms in-
dependent of 𝑧,

𝐵 = −
1
2𝑟

𝑑
𝑑𝑟

(
𝑑𝐴
𝑑𝑟

𝑟) .

And
1

√(𝑟2 + 𝑧2)
=
1
𝑟
−

𝑧2

2𝑟3
nearly,

so that (3) becomes

constant = 𝐴 +
1
2
𝜔𝑟2 +

𝑆
𝑟
−
𝑧2

2𝑟
{
𝑆
𝑟2
+

𝑑
𝑑𝑟

(
𝑑𝐴
𝑑𝑟

𝑟)} . (4)
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Next Laplace supposes 𝑟 = 𝑙 − 𝑢 where 𝑙 is constant and 𝑢 is small;
so that 𝑙 is a mean value of 𝑟.

Let 𝑄 be what 𝐴 becomes when 𝑙 is put for 𝑟.
Then

𝐴 = 𝑄 − 𝑢
𝑑𝑄
𝑑𝑙

+
𝑢2

2
𝑑2𝑄
𝑑𝑙2

nearly,

𝑆
𝑟
=
𝑆
𝑙
+
𝑆𝑢
𝑙2

+
𝑆𝑢2

𝑙3
nearly,

so that (4) becomes

constant = 𝑄 +
1
2
𝜔𝑙2 +

𝑆
𝑙
− 𝑢 (𝜔𝑙 −

𝑆
𝑙2
+
𝑑𝑄
𝑑𝑙
)

+
1
2
𝑢2 (𝜔 +

2𝑆
𝑙3
+
𝑑2𝑄
𝑑𝑙2

) −
𝑧2

2𝑙
{
𝑆
𝑙2
+
𝑑
𝑑𝑙
(
𝑑𝑄
𝑑𝑙
𝑙)} . (5)

Let 𝑙 be found from

𝜔𝑙 −
𝑆
𝑙2
+
𝑑𝑄
𝑑𝑙

= 0,

and put 𝑐 for
1
2
𝜔 +

𝑆
𝑙3
+
1
2
𝑑2𝑄
𝑑𝑙2

:

thus (5) becomes
𝑐𝑢2 + (𝜔 − 𝑐)𝑧2 = constant.

This gives an ellipse as the generating figure. The approximations are
rather rude; and the process is not reproduced in the Mécanique Céleste:
see Livre iii. § 44.

869. In his fifth section Laplace finds approximately the attraction
which the ring would exert at any point of its surface. He treats the ring
in fact as if it were an ellipsoid having a principal section coincident with
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the section of the ring, and the axis at right angles to this section infinite.
Then he can find the attraction by formulæ given in his fourth memoir.
The result is the same as we have in the Mécanique Céleste, Livre iii.
at the end of § 44. Then Laplace finds the equation to the generating
ellipse of the ring in the same form as in the Mécanique Céleste, Vol. ii.
page 161.

870. In his sixth section Laplace discusses the result obtained in the
fifth section; and here we have the matter which substantially is repro-
duced in the Mécanique Céleste, Vol. ii. page 162.

The memoir also contains a numerical illustration which is not re-
produced in the Mécanique Céleste; it may be of interest to give it here.

Laplace supposes that the breadth of the interior part of the ring is
𝑅
4
; this he says may be admitted without violence to the observations.

Moreover he takes the inner radius of this ring to be
5
3
𝑅 as in Art. 867.

Thus the distance from the centre of Saturn to the middle of the ring,

will be
5
3
𝑅 +

1
8
𝑅, that is

43
24
𝑅. Denote this by 𝑎.

The semiaxis major of the generating ellipse is thus
1
8
𝑅; suppose the

semiaxis minor to be
1
10

of this, that is
1
80
𝑅.

Now Laplace shews in the Memoir, and in the Mécanique Céleste, that

𝑆
4𝜋𝑎3

=
𝜆(𝜆 − 1)

(𝜆 + 1)(3𝜆2 + 1)
, (6)

where 𝜆 is the ratio of the major to the minor axis of the generating
ellipse; the density of the ring being taken as unity.
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Let 𝜌 be the mean density of Saturn; then (6) may be written

𝜌𝑅3

3𝑎3
=

𝜆(𝜆 − 1)
(𝜆 + 1)(3𝜆2 + 1)

. (7)

Put 10 for 𝜆, and
43
24

for
𝑎
𝑅
, then (7) gives

𝜌 =
3 × 90
11 × 301

(
43
24
)
3
,

and therefore
1
𝜌
=
11 × 301
3 × 90

(
24
43
)
3
.

This is then the ratio of the density of the ring to the mean density
of Saturn; the value will be found to be 2·13.

Then the volume of ring will be 2𝜋𝑎×𝜋×
𝑅
8
×
𝑅
80
; that is

43𝜋2𝑅3

12 × 8 × 80
.

Hence the ratio of the volume of the ring to the volume of Saturn is
43𝜋
10240

. The ratio of the mass of the ring to the mass of Saturn is there-

fore
1
𝜌
×

43𝜋
10240

; which is about
1
36
.

These results present according to Laplace nothing that is impossible.
I have introduced the example mainly on account of an application

which I want to make of it to Art. 867. In the investigation which led
to equation (6), Laplace treated the ring as an infinite cylinder in esti-
mating the attraction at a point of its surface. In this way, for the at-
traction at the end of the major axis of the generating ellipse, he obtains
4𝜋
𝜆 + 1

× semiaxis; thus in our example this becomes
4𝜋
11

×
𝑅
8
.
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This then is the 𝑝1 or 𝑝2 of Art. 867; for to this order of approxima-

tion they are equal. And 𝑞 =
𝑆
𝑅2

=
4𝜋𝜌𝑅
3

. Hence we have

𝑝1
𝑞
=

3
88

×
1
𝜌
.

This is about
1
14
, with the value of

1
𝜌
found above.

This in fact so far agrees with what Laplace had stated, that it makes
𝑝1
𝑞

small; but it can hardly be said to make 𝑞 much greater than 𝑝1.

However in taking the thickness of the ring to be
1
80

of the diameter of

Saturn, the thickness is probably exaggerated.

871. We will return to the remarks made by Plana, to which we ad-
verted in Art. 867. Plana treats the ring as the difference of two circular
cylinders of slender height; so that instead of a flat ellipse he supposes
a narrow rectangle to generate the ring by revolution. He supposes the

thickness of the ring to be
1
18

of the diameter of Saturn.

Then according to his numerical calculations, using the notation of
Art. 867,

𝑝1 = ·39722,
𝑝2 = ·397846.

He takes his unit of distance such that 𝑟1 = 1; then 𝑟2 =
7
5
, and 𝑅 =

3
5
.

Hence according to Laplace, if the density of the rings be supposed
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the same as the density of Saturn, we ought to have

𝑝1 +
5
7
𝑝2 greater than

4𝜋
3
(
3
5
)
3
{1 − (

5
7
)
3
} .

The values of 𝑝1 and 𝑝2 make 𝑝1 +
5
7
𝑝2 = ·681395.

But
4𝜋
3
(
3
5
)
3
{1 − (

5
7
)
3
} = ·57505; which is indeed less than 𝑝1+

5
7
𝑝2;

but not much less.
It is possible that Plana’s numerical values of 𝑝1 and 𝑝2 are not quite

accurate; I think they are not: but still the result may be of the nature
he indicates.

Plana adds that the thickness which he has ascribed to the ring is in
truth greater than can be admitted. If it is diminished then 𝑝1 and 𝑝2
are diminished, and Laplace’s inequality ceases to hold; and in order to
restore it we must suppose the density of the ring greater than that of
the Planet. Plana concludes thus on page 420 of the Turin Memorie, Vol.
xxiv.:

Mais il ne me parait pas que l’on puisse tirer de-là la division de l’anneau
en plusieurs anneaux concentriques, d’après un raisonnement semblable à celui
que M. Laplace a exposé à la page 256 de son Mémoire sur la figure de l’anneau
de Saturne, imprimé dans les volumes de l’Académie des Sciences de Paris (an-
née 1787).

We observe that according to Plana’s figures we find that
𝑝1
𝑞
=

·397
2·5132

supposing the ring and Saturn of the same density: this is between
1
6
and

1
7
.

But I do not see the force of Plana’s remark, that to restore the in-
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equality we must increase the density of the ring. It might be said that
to restore the inequality we should diminish the difference between 𝑟1

and 𝑟2. By Art. 867, we require that 𝑝1+𝜔𝑟1−
𝑆
𝑟12

should be positive, and

also 𝑝2 +
𝑆
𝑟22

− 𝜔𝑟2, where 𝑟2 is greater than 𝑟1. Then it is obvious that if

𝑝1 and 𝑝2 are small, 𝑟1 and 𝑟2 cannot differ much.

It appears in the course of Laplace’s investigations that 𝜔𝑎 =
𝑆
𝑎2
,

where 𝑎 =
1
2
(𝑟1 + 𝑟2).

872. Laplace’s seventh section contains the demonstration that if the
ring were circular and perfectly alike in all its parts, its equilibrium
would be unstable. The demonstration is reproduced in the Mécanique
Céleste, Livre iii. § 46. It involves the following properties of Laplace’s
coefficients when expressed as functions of cos 𝜃:
if 𝑛 be odd

∫
𝜋

0
𝑃𝑛𝑑𝜃 = 0;

if 𝑛 be even

∫
𝜋

0
𝑃𝑛𝑑𝜃 = 𝜋 {

1 . 3… (𝑛 − 1)
(2 . 4…𝑛)

}
2
.

The mechanical problem discussed is equivalent to that of the resul-
tant attraction of a circular ring on an internal particle. The method
which Newton uses in discussing the attraction of a spherical shell on
an internal particle may be easily used; thus it will appear that the only
position of equilibrium is at the centre of the ring, and then the equilib-
rium is unstable.

873. Laplace’s eighth section consists of two paragraphs. The first re-
lates to the mutual action of the rings; it is reproduced in the Mécanique
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Céleste forming the last paragraph of the Chapter. The second paragraph
in the memoir makes some statements as to the oscillations of the rings;
these are not reproduced in the part of the Mécanique Céleste with which
we are concerned: the motion of the rings round their centres of gravity
is discussed however in Livre v. Chapitre iii.



CHAPTER XXIV.

LEGENDRE’S THIRD MEMOIR.

874. In the Paris Mémoires for 1788, published in 1791, there is a
memoir by Legendre, entitled Mémoire sur les Intégrales Doubles: it oc-
cupies pages 454…486 of the volume. The memoir was presented on the
12th of December, 1789.

875. Legendre thus states the object of his memoir in his first para-
graph:

Je me propose d’indiquer dans ce Mémoire, un moyen de transformation
auquel on n’a pas fait attention jusqu’à présent, et qui paroît très-propre à fa-
ciliter l’évaluation des intégrales doubles ou multiples, lesquelles servent à déter-
miner les solidités des corps, leurs surfaces courbes, la position de leurs cen-
tres de gravité, &c. L’objet que j’ai particulièrement en vue, est d’intégrer par
ce moyen les formules qui donnent l’attraction d’un sphéroïde elliptique quel-
conque sur un point extérieur; d’où résultera la démonstration directe de ce
théorème déjà connu: Si deux sphéroïdes elliptiques ont leurs trois sections prin-
cipales décrites des mêmes foyers, les attractions qu’ils exercent sur un même point
extérieur, auront la même direction, et seront entr’elles comme leurs masses.

876. Legendre then proceeds in his next paragraph to speak of this
problem in attractions:

Cette proposition que j’avois démontrée rigoureusement pour les sphéroïdes
de révolution (Sav. étrang. Tom. x), et qui devenoit infiniment probable pour
ceux dont toutes les coupes sont elliptiques, a l’avantage de ramener le cas des
points extérieurs à celui des points situés sur la surface du sphéroïde, et de ré-
duire ainsi à une forme très-simple la valeur absolue de l’attraction. Mais si la
vérité de ce théorème peut être constatée assez facilement par l’induction et par
une approximation poussée très-loin, il n’est pas aussi facile de s’en procurer
une démonstration rigoureuse, et je ne crains pas de dire que cette question est
une des plus épineuses de l’analyse. La seule solution qui en existe, est celle
que M. de la Place a donnée dans les Mém. de l’Académie, année 1783; mais la
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méthode de ce savant géomètre quelque ingénieuse qu’elle soit, laisse à désirer
un procédé plus direct, et ne répand d’ailleurs aucune lumière sur l’intégration
indéfinie.

We may observe that instead of 1783 we ought to read 1782. It is
curious to see how the difficulties of one age are removed by the labours
of another; the question which Legendre regarded as one of the most
difficult in analysis has since been solved in a very simple manner by
what we call Ivory’s theorem.

877. As to the transformation of double or multiple integrals Legen-
dre recognises the priority of Lagrange. Legendre says:

Ce principe auquel j’étois parvenu par des considérations géométriques,
et que j’ai examiné ensuite avec plus de soin, ne s’est point trouvé différent
d’un moyen de transformation indiqué par M. de la Grange dans les Mémoires
de Berlin, an 1773, pag. 125. La propriété eu appartient donc à cet illustre
géomètre; il ne me reste que la nouvelle forme sous laquelle j’ai présenté ce
principe et l’usage que j’en ai indiqué, usage auquel il paroît que M. de la
Grange n’a pas pensé, ou dont au moins il n’a fourni aucun exemple.

878. Legendre’s memoir consists of four sections. The first section
treats of the transformation of double or multiple integrals. Legendre
gives the same unsatisfactory method as Lagrange had given previously:
see Article 710.

It must however be observed that this section on the transformation
of double or multiple integrals is scarcely used in the subsequent sections.
Legendre does indeed employ the polar form of the element of mass; but
he does not say that this is to be obtained by transformation from the
rectangular form, and we know that it can be obtained independently.
See Arts. 710 and 753.

When Legendre transforms his integrals in the course of the memoir
he practically only transforms single integrals by the change of one in-
dependent variable; or at least his results may be easily obtained in this
way. It is hard to see much force in the concluding words of the extract
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we have made in Art. 877. Legendre’s page 470 gives the only case of
an apparent double transformation. In fact the title of this memoir by
Legendre is bad: it should have been On the attraction of ellipsoids; for
that is really the subject discussed. In the well-known Repertorium Com-
mentationum by J. D. Reuss there is no reference to this memoir in the
sections where the titles of memoirs on attraction are recorded.

879. Legendre’s second section gives the general formulæ for the
attraction of an ellipsoid at an external point; these formulæ take
the shape of double integrals. Legendre uses the method of polar
coordinates which had been adopted by Lagrange in 1773, and which is
now in all elementary books: see Statics, Art. 226.

880. Legendre’s third section is devoted to the particular case in
which the attracted particle is in a principal plane of the ellipsoid. In
this case one integration can be effected by the ordinary process, that
is without adopting any novel method of cutting up the ellipsoid into
elements. Legendre says on his page 463:

… Ce cas est d’autant plus intéressant à développer, qu’il avoit échappé à
tous ceux qui se sont occupés de cette matière, et que la théorie de l’attraction
des sphéroïdes de révolution s’y trouve comprise dans toute sa généralité.

Legendre’s treatment of this particular case is sound but very labori-
ous; he leaves much work to be effected by the reader, the results being
given, but many of the intermediate operations being omitted. For in-
stance, he states on his page 465, a result which we may state in our
own notation thus:

∫
𝜋
2

−𝜋
2

(𝑀 + 𝑁 sin𝜙)𝑑𝜙
𝑎 + 𝑏 sin𝜙 + 𝑐 sin2 𝜙

= 𝜋
(𝜆 + 𝑎 + 𝑐)𝑀 − 𝑏𝑁
𝜆√{(𝜆 + 𝑎)2 − 𝑐2}

,

where
𝜆 = √{(𝑎 + 𝑐)2 − 𝑏2}.
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It is supposed here that 𝑎, 𝑏, and 𝑐 are such that

𝑎 + 𝑏 sin𝜙 + 𝑐 sin2 𝜙

cannot vanish. The student will find that this result is correct, but the
verification will be tedious.

Plana has supplied the details of Legendre’s operations in a memoir
published in Crelle’s Journal für … Mathematik, Vol. xxvi. pages
132…146.

881. Legendre’s fourth section is devoted to the general problem of
the attraction of an ellipsoid at an external point. By a change of vari-
ables Legendre effects one integration out of the two which are involved.
The process is very laborious; much is left for the student to perform for
himself, the results being rather indicated than worked out.

Plana has supplied the details of Legendre’s operations in a memoir
published in Crelle’s Journal für … Mathematik, Vol. xx. pages 240…270.

It would be impossible to render Legendre’s method intelligible
within the limits of the space we can devote to the present memoir. We
may however state the nature of the decomposition which he effects of
the attracting ellipsoid. A series of conical surfaces is described after a
certain law, each cone having its vertex at the attracted point; the outer
cone touches the ellipsoid. Then the one integration which Legendre
effects, amounts to determining the attraction exerted parallel to an
axis by the portion of the ellipsoid which is comprised between two
indefinitely close conical surfaces out of the series. The series of cones
is obtained by varying a parameter 𝜔 which is zero for the tangent cone,
and has its maximum value when the cone degenerates into a straight
line.

Now the remarkable fact is that Legendre succeeds in obtaining an
expression free from the integral sign which represents the resolved at-
traction of one of these portions of a conical shell: and when we look at
the very laborious process by which the result is obtained, we may safely
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pronounce it one of the most extraordinary mathematical feats ever per-
formed.

882. A point of some interest in the Integral Calculus presents it-
self in the course of Legendre’s first integration: see his page 477. As
usual we state the matter in our own notation. A certain definite inte-
gral, which we can see is necessarily finite, becomes by transformation

∫
∞

−∞

(1 + 𝑥2)𝑑𝑥
(𝑎 + 2𝑏𝑥 + 𝑐𝑥2)(𝑎1 + 2𝑏1𝑥 + 𝑐1𝑥2)

,

where the constants are such that the denominator of the expression un-
der the integral sign never vanishes. To effect the integration the fraction
is resolved into partial fractions, say that

1 + 𝑥2

(𝑎 + 2𝑏𝑥 + 𝑐𝑥2)(𝑎1 + 2𝑏1𝑥 + 𝑐1𝑥2)
=

𝑙 + 𝑚𝑥
𝑎 + 2𝑏𝑥 + 𝑐𝑥2

+
𝑙1 +𝑚1𝑥

𝑎1 + 2𝑏1𝑥 + 𝑐1𝑥2
.

And

∫
(𝑙 + 𝑚𝑥)𝑑𝑥
𝑎 + 2𝑏𝑥 + 𝑐𝑥2

=∫
𝑙 −

𝑚𝑏
𝑐
+ 𝑚(𝑥 +

𝑏
𝑐
)

𝑐 (𝑥 +
𝑏
𝑐
)
2
+ 𝑎 −

𝑏2

𝑐

𝑑𝑥.

Legendre then implicitly states that between the limits −∞ and ∞
the integral gives

(𝑙𝑐 − 𝑚𝑏)𝜋
𝑐√𝑎𝑐 − 𝑏2

,

so that he considers

∫
∞

−∞

𝑚(𝑥 +
𝑏
𝑐
) 𝑑𝑥

𝑐 (𝑥 +
𝑏
𝑐
)
2
+ 𝑎 −

𝑏2

𝑐

= 0.
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This last integral may be asserted to be zero in this sense; it consists
of a positive and a negative part each of which is infinite, which may be
taken to balance each other: but this is hardly satisfactory.

The best method is to proceed thus:

∫
𝑚(𝑥 +

𝑏
𝑐
) 𝑑𝑥

𝑐 (𝑥 +
𝑏
𝑐
)
2
+ 𝑎 −

𝑏2

𝑐

+∫
𝑚1 (𝑥 +

𝑏1
𝑐1
) 𝑑𝑥

𝑐1 (𝑥 +
𝑏1
𝑐1
)
2
+ 𝑎1 −

𝑏1
2

𝑐1

=
𝑚
2𝑐
log {𝑐 (𝑥 +

𝑏
𝑐
)
2
+ 𝑎 −

𝑏2

𝑐
} +

𝑚1
2𝑐1

log {𝑐 (𝑥 +
𝑏1
𝑐1
)
2
+ 𝑎1 −

𝑏1
2

𝑐1
} .

Suppose we take this between the limits 0 and 𝜉, we obtain

𝑚
𝑐
log 𝜉 +

𝑚
2𝑐
log

𝑐 (1 +
𝑏
𝑐𝜉
)
2
+ (𝑎 −

𝑏2

𝑐
)
1
𝜉2

𝑎

+
𝑚1
𝑐1

log 𝜉 +
𝑚1
2𝑐1

log
𝑐1 (1 +

𝑏1
𝑐1𝜉

)
2
+ (𝑎1 −

𝑏1 2

𝑐1
)
1
𝜉2

𝑎1
.

Now by the theory of the decomposition of rational fractions we see

that
𝑚
𝑐
+
𝑚1
𝑐1

= 0; thus the term in log 𝜉 disappears from the above re-

sult; and when 𝜉 is made indefinitely great we obtain simply between
the limits 0 and ∞ 𝑚

2𝑐
log

𝑐
𝑎
+
𝑚1
2𝑐1

log
𝑐1
𝑎1
.

In like manner between the limits −∞ and 0 we obtain the same
numerical result with the opposite sign. Thus the entire integral is zero.

883. In the course of his investigations Legendre arrives at the fol-
lowing result which he justly calls a remarkable theorem:
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Si on imagine plusieurs sphéroïdes semblables, dont la densité soit la même
et les axes situés dans la même direction, et que ces sphéroïdes agissent sur
un même point extérieur, l’attraction du plus petit sphéroïde sera équivalente à
celle d’une portion de chacun des autres, retranchée par la surface conique dans
l’étendue de laquelle 𝜔 est égal au maximum de cette quantité dans le plus petit
sphéroïde.

Legendre says that this proposition can be easily verified in the case
of concentric spheres. On examination it will be found that in this case
the proposition coincides with the result given in Art. 251.

It may be convenient to state explicitly by means of symbols the gen-
eral result which constitutes this remarkable theorem.

Let 𝑎, 𝑏, 𝑐 be the semiaxes of an ellipsoid; let 𝑓, 𝑔, ℎ be the coordinates

of an external point. Let 𝑚 =
𝑎2

𝑏2
and 𝑛 =

𝑎2

𝑐2
.

Put
𝑢 for𝑥2 +𝑚𝑦2 + 𝑛𝑧2 − 𝑎2,
𝑣 for𝑓𝑥 + 𝑚𝑔𝑦 + 𝑛ℎ𝑧 − 𝑎2,
𝑠2 for (𝑥 − 𝑓)2 + (𝑦 − 𝑔)2 + (𝑧 − ℎ)2,
𝜁 for𝑓2 +𝑚𝑔2 + 𝑛ℎ2 − 𝑎2.

Then the attraction exerted at the external point by the body bounded
by the ellipsoid

𝑢 = 0,
and the cone

𝑣2 − 𝜁𝑢 = 𝜔2𝑠2

is independent of 𝑎; that is this attraction is a function of 𝑓, 𝑔, ℎ, 𝑚, 𝑛,
and 𝜔.

If we transfer the origin to the external point, the equations to the
ellipsoid and the cone become respectively

𝑥2 +𝑚𝑦2 + 𝑛𝑧2 + 2(𝑓𝑥 + 𝑔𝑚𝑦 + ℎ𝑛𝑧) + 𝜁 = 0, (1)
(𝑓𝑥 + 𝑔𝑚𝑦 + ℎ𝑛𝑧)2 − 𝜁(𝑥2 +𝑚𝑦2 + 𝑛𝑧2) = 𝜔2(𝑥2 + 𝑦2 + 𝑧2). (2)
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884. Legendre we see arrived at his theorem incidentally as he was
developing a new demonstration of Laplace’s theorem; and the improve-
ment subsequently effected by Ivory in the treatment of Laplace’s theo-
rem has probably much diminished the interest which would otherwise
have continued to belong to Legendre’s. Nevertheless it is to be wished
that a simple investigation could be supplied of the remarkable result;
and perhaps this may be attained in consequence of thus drawing atten-
tion to it. The nature of the theorem will become more obvious if we
consider the particular case in which the external point is situated on
the prolongation of an axis of the ellipsoid, which can be worked out
without much difficulty.

Suppose then that with the notation of the preceding Article 𝑔 = 0
and ℎ = 0; and let us seek the attraction of the element comprised be-
tween the ellipsoid and two cones corresponding respectively to the pa-
rameters 𝜔 and 𝜔 + 𝑑𝜔.

With the usual polar notation the attraction will be equal to

∭𝑑𝑟𝑑𝜃𝑑𝜙 sin 𝜃 cos 𝜃.

The limits for 𝑟 will be 𝑟1 and 𝑟2, which denote the two distances from
the external point to the ellipsoid corresponding to an assigned direction
determined by 𝜃 and 𝜙.

The limits for 𝜃 will be 𝜃1 and 𝜃2, which differ infinitesimally, cor-
responding to the change of 𝜔 into 𝜔 + 𝑑𝜔, while other quantities are
constant. The limits for 𝜙 will be 0 and 2𝜋.

Thus our expression first becomes

∬(𝑟2 − 𝑟1) sin 𝜃 cos 𝜃 𝑑𝜃 𝑑𝜙;

and then it may be written

−𝑑𝜔∫(𝑟2 − 𝑟1) sin 𝜃 cos 𝜃
𝑑𝜃
𝑑𝜔

𝑑𝜙;
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the negative sign is used because
𝑑𝜃
𝑑𝜔

is negative.

It would only remain to transform the expression under the integral
sign into a function of 𝜔 and 𝜙, and to integrate with respect to 𝜙 from
0 to 2𝜋.

Let 𝑡 stand for cos2 𝜃 + 𝑚 sin2 𝜃 cos2 𝜙 + 𝑛 sin2 𝜃 sin2 𝜙.
Then from equation (1) of Art. 883 we find that

𝑟2 − 𝑟1 =
2√(𝑓2 cos2 𝜃 − 𝜁𝑡)

𝑡
;

and equation (2) of Art. 883 becomes

𝑓2 cos2 𝜃 − 𝜁𝑡 = 𝜔2; (3)

thus
𝑟2 − 𝑟1 =

2𝜔
𝑡
.

Again the value of
𝑑𝜃
𝑑𝜔

is to be found from (3); this gives

{𝜁 − 𝑓2 − 𝜁(𝑚 cos2 𝜙 + 𝑛 sin2 𝜙)} sin 𝜃 cos 𝜃
𝑑𝜃
𝑑𝜔

= 𝜔.

Hence the expression for the attraction becomes

−2𝜔2 𝑑𝜔∫
𝑑𝜙

𝑡{𝜁 − 𝑓2 − 𝜁(𝑚 cos2 𝜙 + 𝑛 sin2 𝜙)}
.

The values of sin2 𝜃 and cos2 𝜃 must be found from (3), and substi-
tuted in 𝑡; then our expression becomes

2𝜔2𝑑𝜔∫
2𝜋

0

𝑑𝜙
𝜔2 + (𝑓2 − 𝜔2)(𝑚 cos2 𝜙 + 𝑛 sin2 𝜙)

,
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that is
4𝜋𝜔2𝑑𝜔

√{(𝜔2 +𝑚𝑓2 −𝑚𝜔2)(𝜔2 + 𝑛𝑓2 − 𝑛𝜔2)}
.

Thus the expression for the attraction of the element is definitely
found, and it is independent of 𝑎.

885. The following is the conclusion at which Legendre arrives re-
specting the attraction of an ellipsoid at an external point. Let 𝑎, 𝑏, 𝑐 be
the semiaxes of an ellipsoid; let 𝑓, 𝑔, ℎ be the coordinates parallel to these
semiaxes respectively of an external point; and let 𝑀 be the mass of the
ellipsoid. Then the attraction parallel to the semiaxis 𝑎 is

3𝑀𝑓
𝑘

∫
1

0

𝑥2 𝑑𝑥
√{𝑘2 + (𝑏2 − 𝑎2)𝑥2}√{𝑘2 + (𝑐2 − 𝑎2)𝑥2}

,

where 𝑘 denotes the greatest root of the equation

1 =
𝑓2

𝑘2
+

𝑔2

𝑘2 + 𝑏2 − 𝑎2
+

ℎ2

𝑘2 + 𝑐2 − 𝑎2
.

Thus the attraction depends only on the mass and on 𝑏2 − 𝑎2 and
𝑐2 − 𝑎2; therefore we have Laplace’s theorem, namely that if there be
two confocal ellipsoids the attractions which they exert at the same point
external to both are in the same direction and proportional to the masses.

The expression for the attraction was first given by Laplace in his
Théorie … de la Figure des Planètes, being deduced by him from his the-
orem: here Legendre has obtained the expression independently, and de-
duces the theorem.

886. Since the attracted point is external to the ellipsoid we have the

condition that
𝑓2

𝑎2
+
𝑔2

𝑏2
+
ℎ2

𝑐2
− 1 is positive. Legendre’s demonstration

is worked out on the supposition that something more than this holds,
namely that 𝑓2−𝑎2 is positive. Legendre himself draws attention to this;
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he justifies himself by asserting that there can be but one formula which
represents the attraction, and that if the formula is obtained for the as-
sumed case in which 𝑓 is greater than 𝑎 this formula must be the general
formula. See his page 472.

This is undoubtedly a drawback from the value of Legendre’s demon-
stration; but so far as I can perceive it is the only drawback.

It must however be admitted that the demonstration is extremely
complicated; so that in fact it seems like a stupendous feat of math-
ematical athletics. By means of Ivory’s theorem, as it is called, the
difficult integrations which Legendre encountered are avoided; so that
probably little more than an historical interest would now belong to
the investigations of Legendre. Moreover, as we shall see, Poisson has
obtained the formula of Art. 885 by an easier route.

We will briefly notice the opinions of Legendre’s method expressed
by subsequent writers.

887. Ivory’s theorem, as it is called, was first published in the Philo-
sophical Transactions for 1809. Ivory remarks on his page 347:

Le Gendre has given a direct demonstration of the theorem of La Place, by
integrating the fluxional expressions of the attractive forces; a work of no small
difficulty, and which is not accomplished without complicated calculations.

Legendre himself published a memoir on the attraction of homoge-
neous ellipsoids in the Mémoires de l’Institut for 1810. Here he speaks
thus respecting the last section of his memoir of 1788:

J’ai ensuite considéré le problême dans toute sa généralité, et j’ai fait voir
qu’on pouvait vaincre les difficultés de l’intégration, de manière à parvenir en-
fin au théorême desiré. J’avoue néanmoins que cette partie de mon Mémoire n’a
que le mérite d’être directe, et de montrer, dès l’abord, la possibilité de la solu-
tion, mais que d’ailleurs l’analyse en est d’une extrême complication. Il était
donc à desirer qu’on découvrît une route plus facile pour parvenir au même
résultat.

A memoir by Poisson on the attraction of a homogeneous ellipsoid
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is published in the Mémoires … de l’Institut, Vol. xiii. 1835: the memoir
was read to the Academy on the 7th of October, 1833. Poisson says on
his page 499:

Dans le Mémoire que je présente aujourd’hui à l’Académie, je me propose
d’envisager la question sous un nouveau point de vue, et de considérer directe-
ment et indépendamment l’une de l’autre, les intégrations relatives aux points
intérieurs et aux points extérieurs, de sorte que le double problème de calcul
intégral que présente l’attraction d’un ellipsoïde homogène, puisse être résolu
d’une manière complète. C’est à quoi Legendre est parvenu dans le cas par-
ticulier où le point attiré appartient au plan de l’une des sections principales
de l’ellipsoïde; mais quand ce point est extérieur et situé d’une manière quel-
conque, les calculs deviennent inextricables dans la méthode qu’il a suivie (Mé-
moires de l’Académie, année 1788, page 480); et Legendre s’est borné à en dé-
duire une démonstration nouvelle du théorème de Maclaurin, sur la réduction
du cas du point extérieur à celui du point intérieur; démonstration plus directe,
mais encore plus compliquée que celle que Laplace avait donnée auparavant,
qu’il a reproduite dans le IIIe livre de la Mécanique céleste, et que Burckhardt a
commentée dans sa traduction allemande de cet ouvrage.

Pontécoulant in the Supplement to the fifth Book of his Théorie ana-
lytique du Système du Monde, reproduces the substance of the memoir of
Poisson, which has just been noticed. Having arrived at formulæ which
correspond to that of Art. 885, Pontécoulant adds in a note:

Ces formules correspondent à celles qu’avait obtenues Legendre dans ses
savantes recherches sur les attractions des sphéroïdes elliptiques (Mémoires de
l’Académie des Sciences, 1788); mais ce n’est qu’à travers une série de calculs in-
extricables, et en altérant même les expressions primitives des attractions par
des considérations qu’il justifie, il est vrai, mais qui laissent toujours quelques
doutes dans les esprits, qu’il y est parvenu.

Chasles in the Mémoires … par divers Savants, Vol. ix. page 637, says
of Legendre’s investigation, “… nécessitaient d’autres calculs qui parurent
inextricables.” Chasles gives the following reference on his page 635:

Voir l’excellent mémoire de M. le baron Maurice, sur les travaux et les écrits
de Legendre (Bibliothèque universelle de Genève; janvier 1833).
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Poinsot appears to have entertained a very favourable view of
Legendre’s investigation. See the Paris Comptes Rendus, Vol. vi. page
869. Poinsot insists that Legendre’s solution was the first direct solution,
though he admits that it was long and complicated.

888. I will now make some remarks suggested by the preceding ex-
tracts.

What Poisson calls Maclaurin’s theorem, I call Laplace’s theorem; the
propriety of my appellation is sufficiently obvious from what has been
already said: see Art. 254.

I may observe that Poisson repeats his opinion of Legendre’s inves-
tigation in nearly the same words in the Paris Comptes Rendus, Vol. vi.
page 838: he says, “… mais l’analyse … était vraiment inextricable.” To
my satisfaction Poisson there has théorème de Laplace instead of théorème
de Maclaurin.

It will be seen that Poisson, Pontécoulant and Chasles all use the
word inextricables with respect to Legendre’s investigations. Poisson says,
in the first extract, that Legendre’s investigations become inextricable; this
probably means simply that Legendre could not extract from his definite
integral the result which he wanted by any direct process, and so was
obliged to adopt an indirect process. With Pontécoulant and Chasles the
word seems used merely as equivalent to complicated. At all events I do
not consider that any objection holds against the soundness of Legen-
dre’s process; though this word might perhaps appear to imply such a
suggestion.

I do not feel quite certain as to what Pontécoulant means by saying
that Legendre alters the primitive expressions; I suppose it refers to the
indirect considerations which are introduced by Legendre on his page
480: but I should be at a loss to point out the precise step which appears
doubtful to Pontécoulant.

889. We may observe that Poisson’s own investigations of the attrac-
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tion of an ellipsoid, to which we refer in Art. 887, are conducted by de-
composing the ellipsoid into similar infinitesimal shells. Legendre ex-
pressed rather incautiously the opinion that his own method of decom-
position appeared the only one that was applicable; he says on page 486
of his memoir:

… il ne paroît pas, qu’il y ait d’autre moyen que de décomposer, comme
nous avons fait, le sphéroïde en couches ou enveloppes coniques dans lesquelles
𝜔 est constant:…

Poisson has drawn attention to the incautious remark: see the Paris
Comptes Rendus, Vol. vii. page 2.

Poisson, as we see in Art. 887, refers specially to page 480 of Legen-
dre’s memoir; and he repeats the reference in the Paris Comptes Rendus,
Vol. vi. page 838, and Vol. vii. page 2.

The passage is to this effect: Legendre has arrived at an expression
which denotes the attraction of one of his conical elements, and which
must be integrated in order to obtain the attraction of the whole ellip-
soid. Then he states that the matter looks hopeless, but nevertheless, by
a particular consideration, he attains his end. Poisson seems to me to lay
too much stress on the passage. Legendre’s words are:

Quoique la difficulté se trouve ainsi considérablement diminuée, elle n’est
cependant pas réduite au point où elle doit être pour faire sortir du résultat le
théorème que nous avons en vue. Sans doute qu’une substitution ultérieure ré-
duiroit les choses à leur dernier état de simplicité; mais cette substitution ne se
présente pas naturellement, et faute de l’apercevoir, il n’y auroit presque aucune
conclusion à tirer de tant de calculs. Heureusement une considération partic-
ulière sur la forme de l’expression (𝑔′), nous dispense d’attaquer de front cette
difficulté algébrique, et va nous conduire au résultat d’une manière très-simple.

When Poisson says that Legendre confines himself to giving a new
demonstration of Laplace’s theorem, it would be natural to reply that
this was his sole object, and also a very important object.

890. An account of Legendre’s investigation of the attraction of an
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ellipsoid at an external point, by Professor Cayley, will be found in the
fourth volume of the Cambridge and Dublin Mathematical Journal, 1849.
Legendre’s investigation is said to be “one of the earliest and (notwith-
standing its complexity) most elegant solutions of the problem.”



CHAPTER XXV.

LEGENDRE’S FOURTH MEMOIR.

891. In the Paris Mémoires for 1789, published in 1793, there are
two very important memoirs on our subject, one by Laplace, and one
by Legendre. The memoir by Legendre occupies pages 372…454; it is
entitled Suite des Recherches sur la Figure des Planètes. The following
note is given at the foot of page 372:

On trouve dans un Mémoire de M. de la Place, imprimé à la tête de ce
volume, des recherches analogues aux miennes. Sur quoi j’observe que mon
Mémoire a été remis le 28 août 1790, et que la date de celui de M. de la Place
est postérieure.

892. Legendre begins thus:
J’ai déja considéré le cas de l’homogénéité dans les Mémoires de l’Académie,

année 1784, et j’ai fait voir à priori, que la figure elliptique est la seule qui
convienne à l’équilibre. On savoit bien auparavant que cette figure satisfaisoit
rigoureusement; mais il n’étoit point démontré que ce fût la seule, et même
plusieurs Géomètres penchoient en faveur de la proposition contraire. Je crois
avoir fondé ma démonstration sur une analyse rigoureuse, et dont il n’existoit
aucune trace dans les auteurs qui m’ont précédé. Il est vrai qu’on trouve dans
le volume de l’Académie de 1782, un très-beau Mémoire de M. de la Place, où
la proposition dont je parle est démontrée, ainsi que plusieurs autres du même
genre, en négligeant le quarré et les autres puissances de la force centrifuge.
Mais quoique je ne sois pas cité dans cet ouvrage, j’ai déjà observé dans une
note, à la tête de mon Mémoire de 1784, que mon travail est le premier en date,
et qu’il a donné lieu à M. de la Place de suivre ses idées sur le même objet, et
de généraliser mes résultats.

It must be remembered that in the researches to which Legendre here
refers, he assumed the figure to be one of revolution; Laplace’s demon-
stration is free from this restriction, although it assumes that the figure
differs but little from a sphere.
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893. On his page 374 Legendre says:
Pour parvenir aux nouvelles formules de l’attraction, il a fallu démontrer

avant tout plusieurs théorêmes très-intéressans, sur une espèce de fonctions que
M. de la Place a considérées le premier dans son Mémoire imprimé en 1785, et
qui sont une généralisation de celles dont j’avois détaillé les propriétés dans mon
Mémoire de 1784. On verra qu’en adoptant le fondement des démonstrations de
M. de la Place, j’ai traitê cette matière avec plus d’étendue, et je suis parvenu à
des résultats entièrement nouveaux.

The generalisation effected by Laplace consisted in treating the func-
tions as functions of two independent variables; Legendre had formerly
treated them as functions of one variable.

894. Up to page 426 of his memoir Legendre confines himself to fig-
ures of revolution. He first investigates general formulæ of attraction;
and then discusses three different hypotheses as to the nature of the
body.

Legendre’s notation is not inviting; I shall not preserve it completely,
but must retain as much as possible for the sake of comparison with him.

895. Legendre employs 𝑉 to denote the sum of every element of the
attracting body, divided by its distance from the attracted point; that is,
𝑉 is what we now call the Potential.

896. Legendre says that there is a difficulty as to this subject which
ought to be mentioned: see his page 376. If a particle be within the
hollow part of a shell, whose surfaces are homothetical ellipsoids, it ex-
periences no attraction. Therefore, the potential must be zero. But the
potential cannot be zero, since it is the sum of a number of positive el-
ements. This contradiction forms his difficulty.

There is, however, no difficulty, but only an extraordinary error in-
volved in the words which I have put in Italics. All that is necessary is
that the potential should be constant: it is not necessary that this con-
stant should be zero.
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897. The function 𝑃𝑛, which in Legendre’s first memoir had presented
itself only for even values of 𝑛, now presents itself for both even and odd
values. We have given the general form of 𝑃𝑛 in Art. 786. It may be con-
venient to notice the form which Legendre uses, and which is equivalent
to that we have given. His expressions for the first seven functions are
these, supposing the variable to be 𝑥:

𝑃1 = 𝑥,

𝑃2 =
3
2
𝑥2 −

1
2
,

𝑃3 =
5
2
𝑥3 −

3
2
𝑥,

𝑃4 =
5 . 7
2 . 4

𝑥4 −
3 . 5
2 . 4

2𝑥2 +
1 . 3
2 . 4

,

𝑃5 =
7 . 9
2 . 4

𝑥5 −
5 . 7
2 . 4

2𝑥3 +
3 . 5
2 . 4

𝑥,

𝑃6 =
7 . 9 . 11
2 . 4 . 6

𝑥6 −
5 . 7 . 9
2 . 4 . 6

3𝑥4 +
3 . 5 . 7
2 . 4 . 6

3𝑥2 −
1 . 3 . 5
2 . 4 . 6

,

𝑃7 =
9 . 11 . 13
2 . 4 . 6

𝑥7 −
7 . 9 . 11
2 . 4 . 6

3𝑥5 +
5 . 7 . 9
2 . 4 . 6

3𝑥3 −
3 . 5 . 7
2 . 4 . 6

𝑥.

898. On his page 378 Legendre gives the theorem which we noticed
in Art. 787. It may be easily verified for the first two or three functions.
He says that a general proposition which includes this will be found in
the memoir; there is a blank as to the Article in the memoir to which
he here refers: he means his Article 41.

899. On his page 379 Legendre gives the theorem which we have
noticed in Art. 791.

900. Legendre requires the value of the potential for any point within
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the mass or on its surface. Let 𝑟, 𝜃, 𝜙 be the polar coordinates of the
point; let 𝑟′, 𝜃′, 𝜙′ be the polar coordinates of any element of the mass;
let 𝜇′ = cos 𝜃′; let 𝜌 be the density. Then the potential, which we will
denote by 𝑉,

=∭
𝜌′2𝑑𝑟′𝑑𝜇′𝑑𝜙′

√(𝑟′2 − 2𝑟𝑟′𝑡 + 𝑟2)
,

where 𝑡 stands for cos 𝜃 cos 𝜃′ + sin 𝜃 sin 𝜃′ cos(𝜙 − 𝜙′).

The expression
1

√(𝑟′2 − 2𝑟𝑟′𝑡 + 𝑟2)
is expanded in a series; and to en-

sure a convergent series we must expand in ascending powers of that

one of the two quantities
𝑟′

𝑟
and

𝑟
𝑟′
which is less than unity. In this ex-

pansion we shall denote by 𝑌𝑛 the coefficient, which we call Laplace’s
coefficient of the 𝑛th order.

901. Legendre’s formulæ for 𝑉 may be said to be substantially equiv-
alent to Laplace’s, as given in the fourth memoir, and reproduced in the
Mécanique Céleste; there are two cases, namely, when the point consid-
ered is on the surface of the body, and when the point considered is
within the body.

The method of obtaining these formulæ, however, is not quite satis-
factory, as I have already remarked in Art. 792.

902. On his pages 382…394 Legendre discusses the first of his three
hypotheses: see Art. 894. He proposes to determine the figure of a planet
of which the interior is solid and composed of strata similar to the sur-
face; the superficial stratum is supposed to be fluid. This problem was
discussed by Laplace in his fourth memoir. Laplace does not assume that
the strata are all similar. Laplace takes for the radius vector of any point
of a stratum 𝑎(1 + 𝛼𝑦′), where 𝑎 is the parameter of the stratum, and
𝛼 is very small. If we assume that 𝑦′ is independent of 𝑎 we in effect
suppose that all the strata are similar. Laplace does not make this as-
sumption, which however would have but little effect on the solution of
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the problem.

903. Since there are no external forces supposed to act we have as
the condition of relative equilibrium of the stratum of fluid

𝑉 +
𝜔2𝑟2

2
sin2 𝜃 = constant,

where 𝜔 is the angular velocity.
Adopt for 𝑉 the expression given in Art. 900; and let 𝑀 denote the

mass of the fluid: thus
𝑀
𝑟
+
𝑈1
𝑟2

+
𝑈2
𝑟3

+…+
𝜔2𝑟2 sin2 𝜃

2
= constant, (1)

where 𝑈𝑛 is put for ∭𝜌𝑟′𝑛+2 𝑌 ′
𝑛 𝑑𝑟′ 𝑑𝜇′ 𝑑𝜙′.

Now as the strata are supposed to be figures of revolution round the
common axis, 𝑟′ is independent of 𝜙; thus in 𝑈𝑛 the integration with
respect to 𝜙′ may be effected by Art. 898. Therefore

𝑈𝑛 = 2𝜋𝑃𝑛∬𝜌𝑟′𝑛+2 𝑃′𝑛 𝑑𝑟′ 𝑑𝜇′, (2)

where 𝑃𝑛 has the meaning of Art. 897 with 𝜇, that is cos 𝜃, substituted
for 𝑥; and 𝑃′𝑛 is obtained from 𝑃𝑛 by changing 𝜇 to 𝜇′.

Assume 𝑟 = 𝑏𝑢 where 𝑏 is the polar semiaxis of the body, and 𝑢 is a
function of 𝜃. And similarly let 𝑟′ = 𝛽𝑢′, where 𝑢′ is the same function
of 𝜃′ that 𝑢 is of 𝜃, and 𝛽 is a parameter which belongs to the stratum
considered: hence 𝛽 varies from 0 to 𝑏 as we pass from the centre to the
surface.

904. Let 𝑎𝑛 stand for
∫

𝑏

0
𝜌𝛽𝑛+2 𝑑𝛽

∫
𝑏

0
𝜌𝛽2 𝑑𝛽

,
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and let 𝜁𝑛 stand for
𝑎𝑛∫

1

−1
𝑢′𝑛+3𝑃′𝑛 𝑑𝜇′

∫
1

−1
𝑢′3 𝑑𝜇′

;

then we see that

𝑀 = 2𝜋∫
𝑏

0
𝜌𝛽2𝑑𝛽 .∫

1

−1
𝑢′3 𝑑𝜇′

and that
𝑈𝑛
𝑀

= 𝜁𝑛𝑃𝑛.

Hence dividing (1) by 𝑀 we obtain

1
𝑟
+
𝜁1𝑃1
𝑟2

+
𝜁2𝑃2
𝑟3

+…+
𝜔2

2𝑀
𝑟2 sin2 𝜃 = const. (3)

Suppose that 𝑢 = 1 + 𝑣, where 𝑣 is so small that its square may be

neglected. Hence
1
𝑟
=
1
𝑏
(1 − 𝑣); and (3) gives

𝑣 =
𝑏𝜁1𝑃1
𝑟2

+
𝑏𝜁2𝑃2
𝑟3

+
𝑏𝜁3𝑃3
𝑟4

+…+
𝑏𝜔2

2𝑀
𝑟2 sin2 𝜃 − constant. (4)

905. Now Legendre shews on his page 384 that if 𝑚 and 𝑛 are differ-
ent positive integers we have

∫
1

−1
𝑃′𝑚 𝑃′𝑛 𝑑𝜇′ = 0, (5)

and as a particular case of this

∫
1

−1
𝑃′𝑛 𝑑𝜇′ = 0. (6)
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Also he shews that

∫
1

−1
(𝑃′𝑛)2 𝑑𝜇′ =

2
2𝑛 + 1

. (7)

Legendre had formerly established these results for the case in which
𝑚 and 𝑛 are even integers: see Art. 827.

906. From the value of 𝜁𝑛 given in Art. 904, and the value of 𝑣 fur-
nished by (4) we may infer that 𝜁𝑛 is of the first order. Hence to the
order we wish to retain we may change 𝑟 into 𝑏 in the denominators
of (4). And we also suppose the centrifugal force to be small when com-
pared with the attraction at the equator or at the pole; hence 𝑏𝜔2 is small

compared with
𝑀
𝑏2
. Therefore we have approximately

𝑏𝜔2𝑟2 sin2 𝜃
2𝑀

=
𝑏3𝜔2

2𝑀
(1 − cos2 𝜃) =

𝑏3𝜔2

2𝑀
(
2
3
+
1
3
− cos2 𝜃)

=
𝑏3𝜔2

3𝑀
−
𝑏3𝜔2

𝑀
.
𝑃2
3
.

The term
𝑏3𝜔2

3𝑀
can be connected with the constant of equation (4).

We will put 𝜅 for
𝑏3𝜔2

𝑀
; thus (4) becomes

𝑣 = constant +
𝜁1𝑃1
𝑏

+ (
𝜁2
𝑏2

−
𝜅
3
) 𝑃2 +

𝜁3𝑃3
𝑏3

+… (8)

907. We may observe that 𝑎𝑛 and 𝜁𝑛 have the same meaning with us
as with Legendre. He uses 𝑛 for what we call 𝜅. He uses 𝑏 as we do; but
as he proceeds he supposes 𝑏 equal to unity.
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908. Thus by the equation (8) Legendre shews that 𝑣 must be equal to
a series of what we call Legendre’s or Laplace’s coefficients. That is, since
𝑏(1+𝑣) is the radius vector, we infer that, neglecting the squares of small
quantities, the radius vector of any body which will satisfy our problem
must be expressible in such a series. Laplace, in his treatment of the
subject in his fourth memoir and in the Mécanique Céleste, undertakes
to demonstrate that any function whatever can be so expressed.

We do not assert that these demonstrations by Legendre and Laplace
are quite satisfactory.

909. Since 𝑢 = 1 + 𝑣 we have in like manner 𝑢′ = 1 + 𝑣′, where the
value of 𝑣′ is to be obtained from (8) by changing 𝑃𝑛 into 𝑃′𝑛.

Hence we find that to our order of approximation

𝜁𝑛 =
(𝑛 + 3)𝑎𝑛

2
∫

1

−1
𝑃′𝑛 𝑣′ 𝑑𝜇′.

Substitute for 𝑣′; then for any value of 𝑛 except 2 we have by (5) and
(7)

𝜁𝑛 =
(𝑛 + 3)𝑎𝑛

2
∫

1

−1

𝜁𝑛(𝑃′𝑛)2

𝑏𝑛
𝑑𝜇′ =

𝑛 + 3
2𝑛 + 1

𝑎𝑛
𝑏𝑛
𝜁𝑛. (9)

For 𝑛 = 2 we have
𝜁2 = 𝑎2 (

𝜁2
𝑏2

−
𝜅
3
) . (10)

From (9) we shall be able to shew that 𝜁𝑛 is always zero when 𝑛 is
greater than 2.

For

𝑎𝑛
𝑏𝑛

=
∫

𝑏

0
𝜌𝛽𝑛+2𝑑𝛽

𝑏𝑛∫
𝑏

0
𝜌𝛽2𝑑𝛽

=
∫

𝑏

0
𝜌𝛽 + 𝑎𝑛+2𝑑𝛽

∫
𝑏

0
𝜌𝑏𝑛𝛽2𝑑𝛽

,
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and as 𝛽 is less than 𝑏, except at the limit, the numerator is less than

the denominator; so that
𝑎𝑛
𝑏𝑛

is less than unity. And
𝑛 + 3
2𝑛 + 1

is less than

unity if 𝑛 is greater than 2. Hence from (9) we must have 𝜁𝑛 = 0 if 𝑛 is
greater than 2.

Hence equation (8) reduces to

𝑣 = constant +
𝜁1𝑃1
𝑏

+ (
𝜁2
𝑏2

−
𝜅
3
) 𝑃2. (11)

The term in 𝑣 which involves 𝑃1 might be removed by having the
origin of the radii vectores suitably fixed; in fact by shifting this origin
through a space 𝜁1 along the axis.

Then in 𝑣 there remains only the term which involves 𝑃2 besides the
constant; and by (10) we have

𝜁2 = −
𝜅𝑎2𝑏2

3(𝑏2 − 𝑎2)
.

Therefore

𝑣 = constant −
𝜅𝑏2𝑃2

3(𝑏2 − 𝑎2)
= constant +

𝜅𝑏2

3(𝑏2 − 𝑎2)
(1 − 𝑃2)

= constant +
𝜅𝑏2

2(𝑏2 − 𝑎2)
sin2 𝜃.

The constant in the last expression vanishes because by supposition
𝑣 = 0 when 𝜃 = 0; therefore

𝑣 =
𝜅𝑏2

2(𝑏2 − 𝑎2)
sin2 𝜃. (12)

910. We may observe that if the density diminishes from the centre

to the surface we shall have
𝑎𝑛
𝑏𝑛

less than
3

𝑛 + 3
.
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For, by integration by parts

∫
𝑏

0
𝜌𝛽𝑛+2𝑑𝛽 =

𝜌1𝑏𝑛+3

𝑛 + 3
−

1
𝑛 + 3

∫
𝜌1

𝜌0

𝛽𝑛+3𝑑𝜌,

where 𝜌1 denotes the density at the surface, and 𝜌0 at the centre.
Hence

𝑎𝑛
𝑏𝑛

=
3

𝑛 + 3

𝜌1𝑏𝑛+3 −∫
𝜌1

𝜌0

𝛽𝑛+3𝑑𝜌

𝜌1𝑏𝑛+3 −∫
𝜌1

𝜌0

𝑏𝑛𝛽3𝑑𝜌
;

the multiplier of
3

𝑛 + 3
is less than unity, for −∫

𝜌1

𝜌0

𝛽𝑛+3𝑑𝜌 and

−∫
𝜌1

𝜌0

𝑏𝑛𝛽3𝑑𝜌 are both positive, but the latter is the greater.

911. When the body is homogeneous

𝑎2
𝑏2

=
∫

𝑏

0
𝛽4𝑑𝛽

∫
𝑏

0
𝑏2𝛽2𝑑𝛽

=
3
5
,

so that when the body is homogeneous we have from (12)

𝑣 =
5𝜅
4
sin2 𝜃.

912. Thus far we have really no more than Laplace had already given
in substance in his fourth memoir; but Legendre proceeds to a second
approximation. This is a great addition to previous investigations, and it
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is for the sake of this process that I have adopted much of Legendre’s
own notation.

913. Put, as Legendre does, 𝑒 for −
𝑏2𝜅

3(𝑏2 − 𝑎2)
, so that 𝑣 = 𝑒 (𝑃2 − 1).

Suppose that 𝑢 = 1 + 𝑣 + 𝑤, where 𝑣 denotes the term of the first order
already determined, and 𝑤 a term of the second order which is now to be
determined. Then instead of (4) we shall now have to the second order

𝑤 + 𝑣 − 𝑣2 =
𝑏𝜁1𝑃1
𝑟2

+
𝑏𝜁2𝑃2
𝑟3

+…+
𝜅𝑟2 sin2 𝜃

2𝑏2
+ constant. (13)

We know that to the first order 𝜁𝑛 is zero if 𝑛 is greater than 2; hence
in (13) we may put 𝑏 for 𝑟 in the corresponding terms; the same remark
also holds with respect to 𝜁1.

For the term
𝑏𝜁2𝑃2
𝑟3

we may put
𝜁2
𝑏2
(1 − 3𝑣)𝑃2.

And

𝜅𝑟2 sin2 𝜃
2𝑏2

= −
𝜅𝑟2

3𝑏2
(𝑃2 − 1) = −

𝜅
3
{1 + 2𝑒(𝑃2 − 1)}(𝑃2 − 1)

= −
𝜅
3
(𝑃2 − 1) −

2𝑒𝜅
3
(𝑃2 − 1)2.

Then (13) becomes

𝑤 = constant +
𝜁1𝑃1
𝑏

+
𝜁3𝑃3
𝑏3

+
𝜁4𝑃4
𝑏4

+ … +
𝜁2
𝑏2
𝑃2{1 − 3𝑒(𝑃2 − 1)}

− (𝑒 +
𝜅
3
) (𝑃2 − 1) + (𝑒2 −

2𝑒𝜅
3
) (𝑃2 − 1)2. (14)

Now the general expression for 𝜁𝑛 in Art. 904 shews that to our order
of approximation we have for any value of 𝑛 greater than 2,

𝜁𝑛 =
𝑎𝑛
2
∫

1

−1
{(𝑛 + 3)𝑤′ +

(𝑛 + 3)(𝑛 + 2)
2

𝑒2(𝑃2′ − 1)2} 𝑃𝑛′ 𝑑𝜇′. (15)
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The integration is facilitated by the aid of the following formula
which readily follows from the expressions in Art 897,

(𝑃2 − 1)2 =
18𝑃4 − 60𝑃2 + 42

35
.

Moreover this gives

𝑃22 =
18𝑃4
35

+
10𝑃2
35

+
7
35
.

Hence from (15), as from the corresponding equation (9), we may
shew that 𝜁𝑛 = 0, except when 𝑛 = 1 or 2 or 4. The case of 𝑛 = 1 we
need not consider: see Art. 909.

The equation for finding 𝜁2 is

𝜁2 =
𝑎2∫

1

−1
𝑃2′(1 + 𝑣′ + 𝑤′)5𝑑𝜇′

∫
1

−1
(1 + 𝑣′ + 𝑤′)3𝑑𝜇′

=
𝑎2∫

1

−1
{5𝑒(𝑃2′ − 1) + 5𝑤′ + 10𝑒2(𝑃2′ − 1)2}𝑃2′𝑑𝜇′

∫
1

−1
{1 + 3𝑒(𝑃2′ − 1)}𝑑𝜇′

.

914. As we have thus shewn that we need only consider the value
of 𝜁𝑛 for the cases of 𝑛 = 2 and 𝑛 = 4, we may write (14) for shortness
thus:

𝑤 = 𝑓 + 𝑔𝑃2 + ℎ𝑃4,
where 𝑓, 𝑔, and ℎ are certain constants.

Hence we shall find that the numerator of 𝜁2 reduces to

𝑎2∫
1

−1
(5𝑒 + 5𝑔 −

600
35

𝑒2) (𝑃2′)2𝑑𝜇′,
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that is to
2𝑎2 (𝑒 + 𝑔 −

120𝑒2

35
) .

The denominator of 𝜁2 reduces to 2(1 − 3𝑒).
Hence

𝜁2 = 𝑎2 (𝑒 + 𝑔 −
3
7
𝑒2) .

Also we find that
𝜁4 = 𝑎4 (

7
9
ℎ +

6
5
𝑒2) .

Substitute these values in the expressions for 𝑔 and ℎ, which are

𝑔 =
𝜁2
𝑏2

− 𝑒 −
𝜅
3
−
12
7
(𝑒2 −

2𝑒𝜅
3
) +

15
7
𝑒
𝜁2
𝑏2
,

ℎ =
18
35

(𝑒2 −
2𝑒𝜅
3
) −

54
35
𝑒
𝜁2
𝑏2

+
𝜁4
𝑏4
,

then there will remain only 𝑔 and ℎ to determine.
We shall find that to our order

𝑔 = −
36
7
𝑒2,

ℎ =
54
35
𝑒2
9𝑏4 − 15𝑎2𝑏2 + 7𝑎4

9𝑏4 − 7𝑎4
.

The value of 𝑓 may be determined from the relation 𝑓 + 𝑔 + ℎ = 0
which holds by reason of the supposition that 𝑣+𝑤 vanishes with 𝜃: see
Art. 909.

For abbreviation put 𝑘 for
9𝑏4 − 15𝑎2𝑏2 + 7𝑎4

9𝑏4 − 7𝑎4
.

Thus

𝑤 = 𝑓 + 𝑔𝑃2 + ℎ𝑃4 = 𝑔(𝑃2 − 1) + ℎ(𝑃4 − 1) = −
36
7
𝑒2(𝑃2 − 1) +

54
35
𝑒2𝑘(𝑃4 − 1);
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therefore to the second order we have

𝑟 = 𝑏 {1 + (𝑒 −
36𝑒2

7
) (𝑃2 − 1) +

54
35
𝑒2𝑘(𝑃4 − 1)} .

Put for 𝑃2 and 𝑃4 their values, and −
𝑏2𝜅

3(𝑏2 − 𝑎2)
for 𝑒; thus we find

that

𝑟 = 𝑏 {1 +
𝜅𝑏2

2(𝑏2 − 𝑎2)
sin2 𝜃 +

3𝜅2𝑏4

28(𝑏2 − 𝑎2)2
sin2 𝜃(8 − 𝑘 − 7𝑘 cos2 𝜃)} .

(16)
Let 𝑏(1 + 𝜖) denote the radius vector at the equator; thus

𝜖 =
𝜅𝑏2

2(𝑏2 − 𝑎2)
+
3𝜅2𝑏4(8 − 𝑘)
28(𝑏2 − 𝑎2)2

. (17)

If we introduce the expression for 𝜖 in the above value of 𝑟 we shall
find that to our order

𝑟 = 𝑏{1 + 𝜖 sin2 𝜃 − 3𝑘𝜖2 sin2 𝜃 cos2 𝜃}.

If the body is homogeneous, we have

𝑎2 =
3
5
𝑏2, 𝑎4 =

3
7
𝑏4 ; hence 𝑘 =

1
2
;

and then
𝑟 = 𝑏 {1 + 𝜖 sin2 𝜃 −

3𝜖2

2
sin2 𝜃 cos2 𝜃} .

We know that when the body is homogeneous, an oblatum is a rigor-
ous solution; and it will be found that the value of 𝑟 just obtained agrees
to the second order with that which we should derive from

𝑟2 cos2 𝜃
𝑏2

+
𝑟2 sin2 𝜃
𝑏2(1 + 𝜖)2

= 1.
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915. The connexion between 𝑒 and 𝜖 should be noticed.
We have

𝜖 = −
3𝑒
2
+
27
28
(8 − 𝑘)𝑒2;

therefore

𝑒 = −
2𝜖
3
+

9
14
(8 − 𝑘)𝑒2

= −
2𝜖
3
+
2
7
(8 − 𝑘)𝜖2,

to our order of approximation.

916. We may also notice that

𝑎4 =
9𝑏4(𝑘 − 1) + 15𝑎2𝑏2

7(𝑘 + 1)
;

𝜁4 = 𝑎4 (
7
9
ℎ +

6
5
𝑒2) =

6
5
𝑎4𝑒2(𝑘 + 1)

=
6
35
{9𝑏4(𝑘 − 1) + 15𝑎2𝑏2}𝑒2 =

8𝑏2

3 . 5 . 7
{9𝑏2(𝑘 − 1) + 15𝑎2}𝜖2.

This expression for 𝜁4 will be found useful in verifying the result
which will be given in Art. 921.

917. Legendre expresses the value of the ellipticity in terms of the
ratio of centrifugal force to gravity.

Let 𝑋 be the attraction resolved parallel to the polar axis, and 𝑌 the
attraction resolved parallel to the equatorial axis, at a point whose coor-
dinates are 𝑥 and 𝑦. Then we know that

𝑋 = −
𝑑𝑉
𝑑𝑥

, 𝑌 = −
𝑑𝑉
𝑑𝑦

,

so that
𝑑𝑉 = −𝑋𝑑𝑥 − 𝑌𝑑𝑦.
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But
𝑥 = 𝑟 cos 𝜃, and 𝑦 = 𝑟 sin 𝜃;

therefore

𝑑𝑉 = −(𝑋 cos 𝜃 + 𝑌 sin 𝜃)𝑑𝑟 + (𝑋 sin 𝜃 − 𝑌 cos 𝜃)𝑟 𝑑𝜃.

Now we see, by Arts. 903 and 904, that

𝑉 =
𝑀
𝑟
{1 +

𝜁1𝑃1
𝑟

+
𝜁2𝑃2
𝑟2

+…} .

Thus,
𝑋 cos 𝜃 + 𝑌 sin 𝜃 =

𝑀
𝑟2
{1 +

2𝜁1𝑃1
𝑟

+
3𝜁2𝑃2
𝑟2

+…} ,

𝑋 sin 𝜃 − 𝑌 cos 𝜃 = −
𝑀 sin 𝜃
𝑟2

{
𝜁1
𝑟
𝑑𝑃1
𝑑𝜇

+
𝜁2
𝑟2
𝑑𝑃2
𝑑𝜇

+…} .

Put 𝜃 = 90°, and for 𝑟 put 𝑎 the radius of the equator. Then the first
equation gives for the attraction at the equator along the radius

𝑀
𝑎2

{1 +
2𝜁1
𝑎
𝑃1 +

3𝜁2𝑃2
𝑎2

+…} .

But when 𝜃 = 90°, we have by Art. 897,

𝑃1 = 0, 𝑃2 = −
1
2
, 𝑃3 = 0, 𝑃4 =

1 . 3
2 . 4

, …

so that this attraction becomes

𝑀
𝑎2

{1 −
3
2
𝜁2
𝑎2

+
3 . 5
2 . 4

𝜁4
𝑎4

−…} . (18)

This attraction is the whole attraction at the equator, provided the re-
solved attraction parallel to the polar axis vanishes there. On examining
the value of 𝑋 we see that it vanishes when 𝜃 = 90°, provided the co-
efficients of an odd order 𝜁1, 𝜁3, 𝜁5, … vanish then. This will certainly
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be the case if the plane of the equator divides the body symmetrically.
We will suppose this to be the case; and then (18) represents the whole
attraction at the equator.

Let 𝐴 represent this attraction, and Φ the centrifugal force at the
equator; and suppose that at the equator the centrifugal force is 𝑖 times
gravity.

Then Φ = 𝑖(𝐴 − Φ); therefore Φ =
𝑖𝐴
1 + 𝑖

.

But Φ = 𝑎𝜔2 =
𝑀𝑎𝜅
𝑏3

; therefore

𝑀𝑎𝜅
𝑏3

=
𝑖

1 + 𝑖
𝑀
𝑎2

{1 −
3
2
𝜁2
𝑎2

+
3 . 5
2 . 4

𝜁4
𝑎4

−…} ;

therefore
𝜅 =

𝑖
1 + 𝑖

𝑏3

𝑎3
{1 −

3
2
𝜁2
𝑎2

+
3 . 5
2 . 4

𝜁4
𝑎4

−…} .

Restricting ourselves to terms of the second order we have

𝜅 = (𝑖 − 𝑖2)(1 − 3𝜖) (1 −
3
2
𝑎2𝑒
𝑏2

)

= (𝑖 − 𝑖2)(1 − 3𝜖) {1 +
𝜅𝑎2

2(𝑏2 − 𝑎2)
}

= (𝑖 − 𝑖2) {1 −
3𝜅𝑏2

2(𝑏2 − 𝑎2)
+

𝜅𝑎2
2(𝑏2 − 𝑎2)

} .

Hence, to the second order,

𝜅 = 𝑖 +
3𝑎2 − 5𝑏2

2(𝑏2 − 𝑎2)
𝑖2.

If we substitute this value in the expression for the ellipticity, we ob-
tain

𝜖 =
𝑖𝑏2

2(𝑏2 − 𝑎2)
+

𝑖2𝑏2

28(𝑏2 − 𝑎2)2
(21𝑎2 − 11𝑏2 − 3𝑘𝑏2).
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In the case of a homogeneous body 𝑎2 =
3
5
𝑏2, and 𝑘 =

1
2
; then

𝜖 =
5
4
𝑖 +

5
224

𝑖2.

918. Legendre now finds an expression for the force of gravity at any
point; this requires some preliminary analysis: the processes are carried
on so far as to make the results true to the second order.

Let 𝐿 denote the latitude at any point. Then

tan𝐿 = −
𝑑(𝑟 sin 𝜃)
𝑑(𝑟 cos 𝜃)

;

this gives to the second order

tan𝐿 = cot 𝜃{1 + 2𝜖 + 𝜖2 + (3 − 6𝑘)𝜖2 cos 2𝜃};

whence we get

𝜃 =
𝜋
2
− 𝐿 + 𝜖 sin 2𝐿 −

𝜖2

2
sin 2𝐿 +

6𝑘 − 5
4

𝜖2 sin 4𝐿.

Substitute this value in that of 𝑟, and we obtain

𝑟 = 𝑏{1 + 𝜖 cos2 𝐿 + (4 − 3𝑘)𝜖2 sin2 𝐿 cos2 𝐿}.

Let 𝑠 be the arc of the meridian measured from the equator to the
latitude 𝐿. Then

𝑑𝑠2 = 𝑑𝑟2 + 𝑟2 𝑑𝜃2.

Hence after substitution we find that

𝑑𝑠
𝑑𝐿

= 𝑏{1 + 𝜖(3 sin2 𝐿 − 1) + (2 − 3𝑘)𝜖2(2 − 15 sin2 𝐿 cos2 𝐿)}.
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Now
𝑑𝑠
𝑑𝐿

is equal to the radius of curvature of the meridian. There-

fore if 𝐷 be the length of the degree of the meridian which has its middle
point at the equator, the length of the degree of the meridian which has
its middle point at the latitude 𝐿, is

𝐷{1 + 3𝜖 sin2 𝐿 + 3𝜖2 sin2 𝐿 − 15𝜖2(2 − 3𝑘) sin2 𝐿 cos2 𝐿}.

919. Eliminate 𝑌 from the equations of Art. 917; thus we get

𝑋 =
𝑀
𝑟2
cos 𝜃 {1 +

2𝜁1
𝑟
𝑃1 +

3𝜁2
𝑟2
𝑃2 +…} ,

−
𝑀
𝑟2
sin2 𝜃 {

𝜁1
𝑟
𝑑𝑃1
𝑑𝜇

+
𝜁2
𝑟2
𝑑𝑃2
𝑑𝜇

+…} .

The two series may be incorporated by the aid of the following gen-
eral theorem:

𝑃𝑛(𝑛 + 1) cos 𝜃 − sin2 𝜃
𝑑𝑃𝑛
𝑑𝜇

= (𝑛 + 1)𝑃𝑛+1, (19)

so that we get

𝑋 =
𝑀
𝑟2
{𝑃1 +

2𝜁1
𝑟
𝑃2 +

3𝜁2
𝑟2
𝑃3 +

4𝜁3
𝑟3
𝑃4 +…} .

If we assume as before, in Art. 917, that 𝜁1, 𝜁3, 𝜁5, … vanish, this
reduces to

𝑋 =
𝑀
𝑟2
{𝑃1 +

3𝜁2
𝑟2
𝑃3 +

5𝜁4
𝑟4
𝑃5 +…} .

920. Legendre says nothing about this general theorem; though I pre-
sume he must have known it: but it would be sufficient for his purpose
here to verify the truth of the theorem for the simple cases of 𝑛 = 0, 2, 4.
I do not perceive the theorem in the work of Heine already cited.
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The theorem may be established in various ways. We may use the
general expression for 𝑃𝑛 given in Art. 786, and verify the theorem by
examining the coefficients of the various powers of 𝑥. Or we may use
the general expression for 𝑃𝑛 first given by Rodrigues; namely,

𝑃𝑛 =
1

2𝑛 𝑛
𝑑𝑛𝑇𝑛

𝑑𝑥𝑛
,

where 𝑇 stands for 𝑥2 − 1: see Heine’s Handbuch der Kugelfunctionen,
page 10. Here 𝑥 takes the place of our former 𝜇.

For thus the expression on the left-hand side of (19) becomes

(𝑛 + 1)
2𝑛 𝑛

𝑥
𝑑𝑛𝑇𝑛

𝑑𝑥𝑛
+

𝑇
2𝑛 𝑛

𝑑𝑛+1𝑇𝑛

𝑑𝑥𝑛+1
;

and the expression on the right-hand becomes
1

2𝑛+1 𝑛
𝑑𝑛+1𝑇𝑛+1

𝑑𝑥𝑛+1
, which

is equal to

1
2𝑛+1 𝑛

{𝑇
𝑑𝑛+1𝑇𝑛

𝑑𝑥𝑛+1
+ 2(𝑛 + 1)𝑥

𝑑𝑛𝑇𝑛

𝑑𝑥𝑛
+ 𝑛(𝑛 + 1)

𝑑𝑛−1𝑇𝑛

𝑑𝑥𝑛−1
} ,

and therefore to establish the theorem we have only to shew that

𝑇
𝑑𝑛+1𝑇𝑛

𝑑𝑥𝑛+1
= 𝑛(𝑛 + 1)

𝑑𝑛−1𝑇𝑛

𝑑𝑥𝑛−1
. (20)

Now this may be established by comparing the coefficients of the var-
ious powers of 𝑥. Or more simply thus. It is obvious that

𝑑𝑛+1𝑇𝑛+1

𝑑𝑥𝑛+1
= 2(𝑛 + 1)

𝑑𝑛(𝑥𝑇𝑛)
𝑑𝑥𝑛

;

hence, developing each member, we get

𝑇
𝑑𝑛+1𝑇𝑛

𝑑𝑥𝑛+1
+ 2(𝑛 + 1)𝑥

𝑑𝑛𝑇𝑛

𝑑𝑥𝑛
+ 𝑛(𝑛 + 1)

𝑑𝑛−1𝑇𝑛

𝑑𝑥𝑛−1

= 2(𝑛 + 1) {𝑥
𝑑𝑛𝑇𝑛

𝑑𝑥𝑛
+ 𝑛

𝑑𝑛−1𝑇𝑛

𝑑𝑥𝑛−1
} :
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thus (20) is established.

921. Let Π denote the gravity at the latitude 𝐿. Then

Π sin𝐿 = 𝑋.

For when there is relative equilibrium Π is the whole force at the
point considered, and its direction is that of the normal. Hence Π sin𝐿
must be equal to the force resolved parallel to the polar axis.

Thus,

Π =
𝑋

sin𝐿
=

𝑀
𝑟2 sin𝐿

{𝑃1 +
3𝜁2
𝑟2
𝑃3 +

5𝜁4
𝑟4
𝑃5 +…} .

Legendre evaluates this expression to the second order. I have verified
his result which may be thus expressed:

Π =
𝑀
𝑏2
{1 + (

3𝑎2
𝑏2

− 4) 𝜖 + (4 −
5𝑎2
𝑏2

) 𝜖 sin2 𝐿

+ (𝛾 sin4 𝐿 + 𝛾1 sin
2 𝐿 + 𝛾2)𝜖2},

where
𝛾 = 9𝑘 −

5𝑎2
𝑏2

,

𝛾1 = −10 − 6𝑘 +
116
7
𝑎2
𝑏2

−
15
7
𝑎2
𝑏2
𝑘,

𝛾2 =
46
7
+
3𝑘
7
−
45
7
𝑎2
𝑏2

+
9
7
𝑎2
𝑏2
𝑘.

922. Let Π𝑒 denote the gravity at the equator so that

Π𝑒 =
𝑀
𝑏2

{1 + (
3𝑎2
𝑏2

− 4) 𝜖 + 𝛾2𝜖2} .
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Hence we find that

Π = Π𝑒 {1 + (4 −
5𝑎2
𝑏2

) 𝜖 sin2 𝐿 + (9𝑘 −
5𝑎2
𝑏2

) 𝜖2 sin4 𝐿 + 𝛾3𝜖2 sin
2 𝐿} ,

where 𝛾3 stands for

𝛾1 − (
3𝑎2
𝑏2

− 4) (4 −
5𝑎2
𝑏2

) ,

that is for
6 − 6𝑘 −

108
7
𝑎2
𝑏2

+
15𝑎22

𝑏4
−
15
7
𝑎2
𝑏2
𝑘.

Therefore the gravity at the pole is

Π𝑒 {1 + (4 −
5𝑎2
𝑏2

) 𝜖 + (9𝑘 −
5𝑎2
𝑏2

+ 𝛾3) 𝜖2} .

In the case of a homogeneous fluid oblatum we know that the gravity
at the pole is exactly (1 + 𝜖) times the gravity at the equator. This is

accordant with our result: for if we put 𝑎2 =
3
5
𝑏2 and 𝑘 =

1
2
we have

4 −
5𝑎2
𝑏2

= 1, and 9𝑘 −
5𝑎2
𝑏2

+ 𝛾3 = 0.

923. In the case of a variable density we no longer have Clairaut’s
fraction exactly equal to 𝜖: see Art. 171. This fraction is now equal to

(4 −
5𝑎2
𝑏2

) 𝜖 + (9𝑘 −
5𝑎2
𝑏2

+ 𝛾3) 𝜖2;

denoting this by 𝜛 we have

𝜛+ 𝜖 = 5 (1 −
𝑎2
𝑏2
) 𝜖 + (9𝑘 −

5𝑎2
𝑏2

+ 𝛾3) 𝜖2.
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Put for 𝜖 on the right-hand side its value in terms of 𝑖 from Art. 917;
thus we obtain

𝜛+ 𝜖 =
5𝑖
2
+
𝑖2

28
.
17𝑎2 − 13𝑏2 + 6𝑘𝑏2

(𝑏2 − 𝑎2)2
𝑏2. (21)

If we restrict ourselves to the first term on the right-hand side we
have Clairaut’s theorem.

If the body is homogeneous (21) becomes

𝜛+ 𝜖 =
5𝑖
2
+
5𝑖2

112
.

Denoting the expression on the right-hand side of this equation by 𝐴
we shall find that (21) becomes

𝜛+ 𝜖 = 𝐴 +
𝑖2

112
(5𝑎2 − 3𝑏2)(15𝑏2 − 𝑎2) + 12(2𝑘 − 1)𝑏4

(𝑏2 − 𝑎2)2
.

924. Thus the solution has been carried to the second order inclusive.
Legendre says that it would not be difficult to push the approximations
further; and he states what will be the general form of the expression for
the radius vector: see his page 394.

Legendre remarks that the formulæ shew that the augmentation of
the length of a degree of the meridian, and the augmentation of grav-
ity both vary approximately as the square of the sine of the latitude in
passing from the equator to the pole. Thus it is impossible to admit the
truth of a law suggested by Bouguer, namely that the augmentation of
the length of a degree varies as the fourth power of the sine of the lati-
tude: see Art. 363.

925. On his pages 395…420, Legendre discusses the second of his
three hypotheses: see Art. 894. He proposes to determine the figure of a
planet considered in a fluid state. This problem had not been discussed
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before, except by Clairaut on the assumption that the strata were ellip-
soidal.

Here we require the value of the potential for an internal point. Ac-
cordingly 𝑉 is now taken to be equal to the sum of two series; the general
terms of these are

2𝜋
𝑟𝑛+1

𝑃𝑛∬𝜌𝑟′𝑛+2𝑃𝑛′𝑑𝑟′𝑑𝜇′,

and
2𝜋𝑟𝑛𝑃𝑛∬𝜌

𝑃𝑛′

𝑟′𝑛−1
𝑑𝑟′𝑑𝜇′.

This expression will be accurately true if we suppose the former inte-
gral to extend over those parts of the body for which 𝑟′ is less than 𝑟, and
the latter over those parts of the body for which 𝑟′ is greater than 𝑟. But
Legendre is not sufficiently careful. He makes the former integral extend
over those strata of the body which are beneath the stratum on which
the point (𝑟, 𝜃) is situated; and the latter integral over those strata which
are beyond this stratum. This value of the potential had been given by
Laplace in his fourth memoir, page 179. Poisson first shewed that the
formula of Legendre and Laplace was really true, though it had not pre-
viously been strictly established: see Art. 792.

926. The strata are now not to be assumed similar; so that when we
put 𝑟′ = 𝛽𝑢′ the value of 𝑢′ must not be assumed to be independent of
𝛽. We shall denote by ϐ the value of 𝛽 corresponding to the stratum on
which the point (𝑟, 𝜃) is situated so that 𝑟 = ϐ𝑢. And as before the value
of 𝛽 at the surface will be denoted by 𝑏.

Let

𝜆𝑛 = ∫
ϐᵆ′

0
𝜌𝑟′𝑛+2𝑑𝑟′,

and

𝜈𝑛 = ∫
𝑏ᵆ′

ϐᵆ′

𝜌
𝑟′𝑛−1

𝑑𝑟′.
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Let

2𝛼 = ∫
1

−1
𝜆0𝑑𝜇′;

let

𝜁𝑛 =
1
2𝛼

∫
1

−1
𝜆𝑛𝑃′𝑛 𝑑𝜇′;

and let

𝜉𝑛 =
1
2
∫

1

−1
𝜈𝑛𝑃′𝑛 𝑑𝜇′.

The equation for relative equilibrium is

𝑉 +
𝑟2𝜔2

2
sin2 𝜃 = constant.

Hence dividing by 4𝜋𝛼, we obtain

1
𝑟
+
𝜁1𝑃1
𝑟2

+
𝜁2𝑃2
𝑟3

+…+
1
𝛼
{𝜉1𝑃1𝑟 + 𝜉2𝑃2𝑟2 +…}

+
𝜅𝛼1
3𝑎𝑏3

𝑟2(1 − 𝑃2) = constant. (22)

Here 𝛼1 is the value of 𝛼 at the surface; so that if 𝑀 denote the whole

mass we have 𝑀 = 4𝜋𝛼1. The term
𝜉0𝑃0
𝛼

is not expressed because it does

not involve 𝑟 or 𝜃 explicitly, and so may be supposed comprised in the
constant.

927. Suppose that 𝑢 = 1+𝑣, where 𝑣 is so small that its square may be
neglected; then we have from (22), to the first order of small quantities,

𝑣 = constant + (
𝜁1
ϐ
+
𝜉1ϐ2

𝛼
) 𝑃1 + (

𝜁2
ϐ2

+
𝜉2ϐ3

𝛼
−
𝜅𝛼1ϐ3

3𝑎𝑏3
) 𝑃2

+(
𝜁3
ϐ3

+
𝜉3ϐ4

𝛼
) 𝑃3 +…
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Thus we may put

𝑣 = 𝐴0 + 𝐴1𝑃1 + 𝐴2𝑃2 + 𝐴3𝑃3 +… ;

and we shall have
𝐴0 + 𝐴1 + 𝐴2 +… = 0,

because 𝑟 = ϐ when 𝜃 = 0.

928. Now

𝜆𝑛 = ∫
ϐᵆ′

0
𝜌𝑟′𝑛+2𝑑𝑟′ =

1
𝑛 + 3

∫
ϐᵆ′

0
𝜌
𝑑
𝑑𝑟′

𝑟′𝑛+3𝑑𝑟′

=
1

𝑛 + 3
∫

ϐ

0
𝜌
𝑑
𝑑𝛽

(𝑟′𝑛+3)𝑑𝛽

=
1

𝑛 + 3
∫

ϐ

0
𝜌
𝑑
𝑑𝛽

{1 + (𝑛 + 3)𝑣′}𝛽𝑛+3𝑑𝛽

= ∫
ϐ

0
𝜌𝛽𝑛+2𝑑𝛽 +∫

ϐ

0
𝜌
𝑑(𝛽𝑛+3𝑣′)

𝑑𝛽
𝑑𝛽.

When we substitute for 𝑣′ the second of the two expressions on the
right-hand side gives rise to a series of which the general term is

𝑃′𝑛∫
ϐ

0
𝜌
𝑑
𝑑𝛽

(𝛽𝑛+3𝐴𝑛)𝑑𝛽.

Substitute the value of 𝜆𝑛 in the expression for 𝜁𝑛 given in Art. 926;
then, by the aid of Art. 905, we obtain

𝜁𝑛 =
1

𝛼(2𝑛 + 1)
∫

ϐ

0
𝜌
𝑑
𝑑𝛽

(𝛽𝑛+3𝐴𝑛)𝑑𝛽.

In like manner we find that

2𝛼 = ∫
1

−1
{∫

ϐ

0
𝜌𝛽2𝑑𝛽 +∫

ϐ

0
𝜌
𝑑
𝑑𝛽

(𝛽3𝐴0)𝑑𝛽} 𝑑𝜇′,
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so that

𝛼 = ∫
ϐ

0
𝜌𝛽2𝑑𝛽 +∫

ϐ

0
𝜌
𝑑
𝑑𝛽

(𝛽3𝐴0)𝑑𝛽.

We will denote the first of the two expressions on the right-hand side
by 𝜎; so that when we neglect the small quantity of the first order we
may put 𝛼 = 𝜎.

In the same manner we find that

𝜉𝑛 =
1

2𝑛 + 1
∫

𝑏

ϐ
𝜌
𝑑
𝑑𝛽

(
𝐴𝑛
𝛽𝑛−2

) 𝑑𝛽,

which we may express thus

𝜉𝑛 =
1

2𝑛 + 1
{𝑁𝑛 −∫

ϐ

0
𝜌
𝑑
𝑑𝛽

(
𝐴𝑛
𝛽𝑛−2

) 𝑑𝛽} ,

where 𝑁𝑛 is a constant, namely

∫
𝑏

0
𝜌
𝑑
𝑑𝛽

(
𝐴𝑛
𝛽𝑛−2

) 𝑑𝛽.

929. Now for any value of 𝑛 except 2 we have

𝐴𝑛 =
𝜁𝑛
ϐ𝑛

+
ϐ𝑛+1𝜉𝑛
𝛼

.

Substitute for 𝜁𝑛 and 𝜉𝑛; thus we obtain

(2𝑛 + 1)𝜎ϐ𝑛𝐴𝑛 = ∫
ϐ

0
𝜌
𝑑
𝑑𝛽

(𝛽𝑛+3𝐴𝑛)𝑑𝛽

+ ϐ2𝑛+1 {𝑁𝑛 −∫
ϐ

0
𝜌
𝑑
𝑑𝛽

(
𝐴𝑛
𝛽𝑛−2

) 𝑑𝛽} . (23)
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In the case of 𝑛 = 2 we have

5𝜎ϐ2𝐴2 = ∫
ϐ

0
𝜌
𝑑
𝑑𝛽

(𝛽5𝐴2)𝑑𝛽 + ϐ5 {𝑁2 −∫
ϐ

0
𝜌
𝑑𝐴2
𝑑𝛽

𝑑𝛽 −
5𝜅𝛼1
3𝑏3

} . (24)

But this is of substantially the same form as the general equation, for

𝑁2 −
5𝜅𝛼1
3𝑏3

is a constant.

930. This is the first appearance of these important equations for all
values of 𝑛. Clairaut had substantially arrived at the equation for the
case of 𝑛 = 2; and D’Alembert in addition at the equation for the cases
of 𝑛 = 1, and 𝑛 = 3. See Art. 444.

931. In the particular case of 𝑛 = 1, we can shew that 𝐴1 must be
zero. For then we have

3𝜎ϐ𝐴1 = ∫
ϐ

0
𝜌
𝑑
𝑑𝛽

(𝛽4𝐴1) + ϐ3 {𝑁1 −∫
ϐ

0
𝜌
𝑑
𝑑𝛽

(𝛽𝐴1)𝑑𝛽} .

Here by 𝐴1 when free from the integral sign we mean the value cor-
responding to the value ϐ of the parameter; and the same remark applies
to 𝜌 when it occurs free from the integral sign. Differentiate with respect

to ϐ , observing that
𝑑𝜎
𝑑ϐ

= 𝜌ϐ2; thus we get

𝑑
𝑑ϐ
(ϐ𝐴1)∫

ϐ

0
𝜌𝛽2𝑑𝛽 = ϐ2 {𝑁1 −∫

ϐ

0
𝜌
𝑑
𝑑𝛽

(𝛽𝐴1)𝑑𝛽} .

Integrate the last expression with respect to ϐ ; thus

{𝑁1 −∫
ϐ

0
𝜌
𝑑
𝑑𝛽

(𝛽𝐴1)𝑑𝛽}∫
ϐ

0
𝜌𝛽2𝑑𝛽 = constant.
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But the left-hand member vanishes when ϐ = 𝑏; hence the constant
must be zero; therefore

𝑁1 = ∫
ϐ

0
𝜌
𝑑
𝑑𝛽

(𝛽𝐴1)𝑑𝛽.

Differentiate with respect to ϐ ; hence
𝑑
𝑑ϐ
(ϐ𝐴1) = 0; therefore 𝐴1 =

𝐶
ϐ
,

where 𝐶 is a constant. But 𝐶 must be zero, or 𝐴1 would be infinite at
the centre. Hence 𝐴1 is always zero.

932. Take the general equation (23) and differentiate with respect to
ϐ ; thus

𝜎
𝑑(ϐ𝑛𝐴𝑛)

𝑑ϐ
= ϐ2𝑛 {𝑁𝑛 −∫

ϐ

0
𝜌
𝑑
𝑑𝛽

(
𝐴𝑛
𝛽𝑛−2

) 𝑑𝛽} ;

therefore

𝜎 {ϐ−𝑛
𝑑𝐴𝑛
𝑑ϐ

+ 𝑛ϐ−𝑛−1𝐴𝑛} = 𝑁𝑛 −∫
ϐ

0
𝜌
𝑑
𝑑𝛽

(
𝐴𝑛
𝛽𝑛−2

) 𝑑𝛽. (25)

Differentiate again; thus

𝜎 {
𝑑2𝐴𝑛
𝑑ϐ2

− 𝑛(𝑛 + 1)
𝐴𝑛
ϐ2
} + 2𝜌ϐ2 (

𝑑𝐴𝑛
𝑑ϐ

+
𝐴𝑛
ϐ
) = 0. (26)

This equation is a little simplified by putting
𝑄𝑛
𝜎

for 𝐴𝑛; for thus we

get
𝑑2𝑄𝑛
𝑑ϐ2

− 𝑛(𝑛 + 1)
𝑄𝑛
ϐ2

−
ϐ2

𝜎
𝑑𝜌
𝑑ϐ
𝑄𝑛 = 0. (27)

933. Legendre now proposes to demonstrate that 𝐴𝑛 must vanish for
every value of 𝑛 greater than 2. The demonstration rests on the following
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principles: 𝐴𝑛 must satisfy the equation (26); also 𝐴𝑛 must always be a
small quantity; and, moreover, it is assumed that the density diminishes
from the centre to the surface: see his pages 399…403.

Legendre’s demonstration bears a general resemblance to that which
Laplace afterwards used: see the Mécanique Céleste, Livre iii. § 30. But
the two demonstrations are not identical. I have discussed the matter
in a memoir published in the Cambridge Philosophical Transactions, Vol.
xii.

934. Let us now take the first step of the demonstration. The distinc-
tion between 𝛽 and ϐ need not be retained hereafter, when we shall be
free from integral signs.

The solution of the differential equation (26) will give 𝐴𝑛 in the form

𝐴𝑛 = 𝐶1𝑓1(𝛽) + 𝐶2𝑓2(𝛽),

where 𝐶1 and 𝐶2 are arbitrary constants, and 𝑓1(𝛽) and 𝑓2(𝛽) are definite
functions of 𝛽. Now Legendre and Laplace shew in effect that one of the
two functions 𝑓1(𝛽) and 𝑓2(𝛽) will be infinite when 𝛽 = 0; suppose that
this is 𝑓2(𝛽). Then since 𝐴𝑛 is always to be a small quantity, we must
have 𝐶2 = 0.

We will now give the method by which Legendre shews that 𝑓2(𝛽)
will be infinite when 𝛽 = 0. Since the density decreases from the centre
to the surface, whatever be the law of density, we may assume that when
𝛽 is very small, 𝜌 = 𝑔𝛽−𝑚, where 𝑚 is positive or zero, and 𝑔 is a con-
stant. If 𝑚 is not zero the density will be infinite at the centre; but still
the hypothesis is admissible, provided the mass included within a finite

volume is finite. But this mass = 4𝜋∫𝜌𝛽2 𝑑𝛽 =
4𝜋𝑔
3 − 𝑚

𝛽3−𝑚. Hence,

provided 𝑚 is not greater than 3, there is nothing inadmissible in our
law of density. With this law of density we shall have

𝛽2

𝜎
𝑑𝜌
𝑑𝛽

= −
𝑚(3 − 𝑚)

𝛽2
.
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Hence (27) becomes

𝑑2𝑄𝑛
𝑑𝛽2

= {𝑛(𝑛 + 1) − 𝑚(3 − 𝑚)}
𝑄𝑛
𝛽2
.

The solution of this differential equation is

𝑄𝑛 = 𝐶1𝛽𝑐 + 𝐶2𝛽1−𝑐,

where
𝑐 =

1
2
+√{(𝑛 +

1
2
)
2
−𝑚(3 − 𝑚)} .

Now it is obvious that if 𝐶2 is not zero, 𝑄𝑛 will be infinite when
𝛽 = 0; for 𝑐 is greater than unity, since 𝑛 is not less than 2, and 𝑚 not

greater than 3; and à fortiori 𝐴𝑛 will be infinite, because 𝐴𝑛 =
𝑄𝑛
𝜎
. Hence

𝐶2 must be zero.

935. We may observe that an investigation resembling the preceding
was given by Clairaut: see the pages 277…281 of his Figure de la Terre.
A peculiarity in Legendre’s investigation is the admission of a possible
infinite density at the centre. What Legendre says on this point appears
to me satisfactory. Laplace, however, holds that the density must be finite
at the centre.

Laplace treats this first step of the demonstration in a different man-
ner, as we shall see hereafter.

936. There will then be only one arbitrary constant in the value of

𝐴𝑛; for we have 𝐴𝑛 =
𝐶1𝜓1(𝛽)

𝜎
. To determine this constant we use equa-

tion (23). Suppose that 𝛽 = 𝑏; then the second part of the right-hand
member vanishes: hence we must have

(2𝑛 + 1)𝜎𝑏𝑛𝐴𝑛 = ∫
𝑏

0
𝜌
𝑑
𝑑𝛽

(𝛽𝑛+3𝐴𝑛) 𝑑𝛽,
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where 𝜎 and 𝐴𝑛 on the left-hand side denote the values of these quanti-
ties when 𝛽 is equal to 𝑏.

One very obvious way to satisfy this condition is to suppose 𝐶1 = 0.

937. But it remains to shew that 𝐶1 = 0 is the only way to satisfy
the relation just given. To this Legendre proceeds; he first shews that 𝐴𝑛
must increase from the centre to the surface, and from this he deduces
the required result. This is true when 𝑛 = 2 as well as for other values;
the demonstration applying as well to (24) as to (23). Laplace’s process
rests on the same principles as Legendre’s, but is rather simpler.

938. Thus we have only left the coefficient 𝐴2. This cannot be ex-
plicitly determined until some law of density is assumed. But without
assuming any particular law we arrive at the result that the strata are el-
lipsoidal, and that the excentricity increases continually from the centre
to the surface.

Legendre finds also the law of gravity, and shews that Clairaut’s the-
orem holds: see his pages 404, 405.

939. Legendre gives three examples of laws of density in which the
equation for finding 𝐴𝑛 can be solved: see his pages 406…412.

940. The first example is that of a homogeneous mass. We may take

𝜌 = 1. Thus 𝜎 =
𝛽3

3
. Hence equation (27) becomes

𝑑2𝑄𝑛
𝑑𝛽2

= 𝑛(𝑛 + 1)
𝑄𝑛
𝛽2
;

whence
𝑄𝑛 = 𝐶1𝛽𝑛+1 + 𝐶2𝛽−𝑛.

Then in order that 𝑄𝑛 and 𝐴𝑛 may not be infinite at the centre, we
must have 𝐶2 = 0. Hence

𝐴𝑛 = 3𝐶1𝛽𝑛−2.
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Then to determine 𝐶1 we employ the equation obtained by differen-

tiating (23): see Art. 932. Thus
𝑑
𝑑𝛽

(3𝐶1𝛽2𝑛−2) must vanish when 𝛽 = 𝑏;

therefore 𝐶1(2𝑛 − 2) = 0.
Hence 𝐶1 = 0; except when 𝑛 = 1, and then it would not follow

necessarily from this result that 𝐶1 = 0. In the case of 𝑛 = 1, however,
we must have 𝐶1 = 0, in order that 𝐴1 may not be infinite at the centre.

When 𝑛 = 2 we have 𝐴2 = 3𝐶1; and we may find the value of 𝐶1 by
differentiating (24) and putting 𝑏 for 𝛽 in the result. Thus,

1
𝑏4

𝑑
𝑑𝑏
(3𝐶1𝑏2) = −

5𝜅
3𝑏3

, so that 3𝐶1 = −
5𝜅
6
.

941. For the next example Legendre supposes that

𝜌 = 𝑔𝛽−𝑚 + ℎ𝛽𝑚−3.

This, as we have seen in Art. 934, is admissible if 𝑚 is not greater than

3. Legendre says that 𝑚 is greater than
3
2
. It is obvious that we may

without loss of generality suppose that 𝑚 is either less than
3
2
or greater

than
3
2
; and towards the end of the discussion Legendre really supposes

𝑚 to be less than
3
2
. But we shall make neither supposition as we can

proceed as well without.
The constants 𝑔 and ℎ are not necessarily both positive; but 𝜌 must

always be positive. Thus if we suppose ℎ negative we must have 𝑚
greater than 𝑚 − 3, so that 𝜌 may be positive at the centre; and also
ℎ𝑏𝑚−3 must be numerically less than 𝑔𝑏−𝑚, so that 𝜌 may be positive at
the surface.
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With this value of 𝜌 we have

𝜎 =
𝑔

3 − 𝑚
𝛽3−𝑚 +

ℎ
𝑚
𝛽𝑚,

and
𝛽2

𝜎
𝑑𝜌
𝑑𝛽

= −
𝑚(3 − 𝑚)

𝛽2
.

Hence, as in Art. 934, we have

𝑄𝑛 = 𝐶1𝛽𝑐,

𝐴𝑛 =
𝐶1𝛽𝑐

𝜎
.

To determine the constant 𝐶1, we employ the equation obtained by dif-
ferentiating (23): see Art. 932. This leads to

𝐶1 {(𝑛 + 𝑐) (
𝑔

3 − 𝑚
𝑏3−𝑚 +

ℎ
𝑚
𝑏𝑚) − (𝑔𝑏3−𝑚 + ℎ𝑏𝑚)} = 0.

This is of course satisfied by 𝐶1 = 0. It may indeed also be satisfied
by supposing

(𝑛 + 𝑐) (
𝑔

3 − 𝑚
𝑏3−𝑚 +

ℎ
𝑚
𝑏𝑚) − (𝑔𝑏3−𝑚 + ℎ𝑏𝑚) = 0. (28)

But it will be found that if (28) is supposed to hold the condition that
the density diminishes from the centre to the surface is not satisfied. For

𝑑𝜌
𝑑𝛽

= −{𝑚𝑔𝛽−𝑚−1 + (3 − 𝑚)ℎ𝛽𝑚−4};

and if we use (28) we shall find that
𝑑𝜌
𝑑𝛽

vanishes and changes sign when

𝑛 + 𝑐 − 𝑚
𝑛 + 𝑐 − 3 + 𝑚

= (
𝛽
𝑏
)
2𝑚−3

,
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and unless 𝑚 =
3
2
some value of 𝛽 less than 𝑏 will satisfy this equation.

We may observe that by comparing the values of 𝜎 and
𝑑𝜌
𝑑𝛽

it follows

that if
𝑑𝜌
𝑑𝛽

could vanish and change sign, we should have 𝜎 vanishing

also; but this is quite inadmissible.
We may also shew in the following way that equation (28) cannot

subsist. From this equation it would follow that 𝜎 =
𝜌𝛽3

𝑛 + 𝑐
, when 𝛽 = 𝑏;

but 𝜎 =
𝜌𝛽3

3
−
1
3
∫𝛽3

𝑑𝜌
𝑑𝛽

𝑑𝛽, which is greater than
𝜌𝛽3

3
if
𝑑𝜌
𝑑𝛽

is negative.

And
𝜌𝛽3

3
is greater than

𝜌𝛽3

𝑛 + 𝑐
; for 𝑐 is greater than unity, and 𝑛 is not

less than 2.
In the case of 𝑛 = 2 we find the value of the constant 𝐶1 by differ-

entiating (24), and putting 𝑏 for 𝛽 in the result. Thus

{
1
𝛽4

𝑑
𝑑𝛽

(
𝐶1𝛽𝑐+2

𝜎
)}

1
= −

5𝜅
3𝑏3

;

where the subscript 1 indicates that 𝑏 is to be put for 𝛽 after the differ-
entiation. Thus

𝐶1
⎧

⎨
⎩

(𝑐 + 2)𝜎 − 𝛽
𝑑𝜎
𝑑𝛽

𝜎2
⎫

⎬
⎭1

𝑏𝑐−3 = −
5𝜅
3𝑏3

;

therefore

𝐶1 = −

5𝜅
3
{

𝑔
3 − 𝑚

𝑏3−𝑚 +
ℎ
𝑚
𝑏𝑚}

2
𝑏−𝑐

(𝑐 + 2) (
𝑔

3 − 𝑚
𝑏3−𝑚 +

ℎ
𝑚
𝑏𝑚) − (𝑔𝑏3−𝑚 + ℎ𝑏𝑚)

.
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The ellipticity of any stratum is −
3
2
𝐴2, as in Arts. 909 and 914, that

is −
3𝐶1
2𝜎

𝛽𝑐; this may be expressed thus

𝜖 = −

3𝐶1
2
𝛽𝑐−𝑚

ℎ
𝑚
+

𝑔
3 − 𝑚

𝛽3−2𝑚
. (29)

Let 𝜖1 denote the ellipticity at the surface; then

𝜖1 =

5𝜅
2
{

𝑔
3 − 𝑚

𝑏3−𝑚 +
ℎ
𝑚
𝑏𝑚}

(𝑐 + 2) (
𝑔

3 − 𝑚
𝑏3−𝑚 +

ℎ
𝑚
𝑏𝑚) − (𝑔𝑏3−𝑚 + ℎ𝑏𝑚)

=

5𝜅
2

2 + 𝑐 − (3 − 𝑚)𝑚
𝑔𝑏3−𝑚 + ℎ𝑏𝑚

𝑚𝑔𝑏3−𝑚 + (3 − 𝑚)ℎ𝑏𝑚

.

Hence we see that 𝜖1 is less than
5𝜅
4
. For now

𝑐 =
1
2
+√{

25
4
− 𝑚(3 − 𝑚)} ;

and hence it will be found that 𝑐 is greater than 𝑚 and also greater than

3 −𝑚. Hence 𝑐 − (3 −𝑚)𝑚
𝑔𝑏3−𝑚 + ℎ𝑏𝑚

𝑚𝑔𝑏3−𝑚 + (3 − 𝑚)ℎ𝑏𝑚
is positive; for its sign

is the same as the sign of

𝑚{𝑐 − (3 − 𝑚)}𝑔𝑏3−𝑚 + (3 − 𝑚)(𝑐 − 𝑚)ℎ𝑏𝑚;
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and this is positive, even if ℎ is negative.
From (29) we see that the ellipticity increases continually from the

centre to the surface. For since 𝐶1 is negative, it will be found that the

sign of
𝑑𝜖
𝑑𝛽

is the same as the sign of

(𝑐 − 𝑚)
ℎ
𝑚
+
𝑔(𝑐 + 𝑚 − 3)

3 − 𝑚
𝛽3−2𝑚;

and this is positive for its sign is the same as the sign of

𝑚{𝑐 − (3 − 𝑚)}𝑔𝛽3−𝑚 + (3 − 𝑚)(𝑐 − 𝑚)ℎ𝛽𝑚.

942. For the next example Legendre supposes that

𝜌 =
sin

𝑚𝛽
𝑏

𝛽
𝑏

.

I will here, though with some reluctance, follow him in putting 𝑏 = 1,

as the formulæ thus become simpler. Hence we take 𝜌 =
sin𝑚𝛽
𝛽

. If 𝑚

have any constant value less than 𝜋, we thus obtain a density which is
always positive and which diminishes continually from the centre to the
surface. The density at the centre is denoted by 𝑚; and the density at
the surface by sin𝑚.

With this value of 𝜌 we have

𝜎 =
sin𝑚𝛽 −𝑚𝛽 cos𝑚𝛽

𝑚2 ,

and
𝛽2

𝜎
𝑑𝜌
𝑑𝛽

= −𝑚2.
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Hence equation (27) becomes

𝑑2𝑄𝑛
𝑑𝛽2

− 𝑛(𝑛 + 1)
𝑄𝑛
𝛽2

+𝑚2𝑄𝑛 = 0.

Legendre states without demonstration the integral of this equation;
namely 𝑄𝑛

= (𝐶1 sin𝑚𝛽 + 𝐶2 cos𝑚𝛽){1 −
𝑛(𝑛2 − 1)(𝑛 + 2)

2 . 4𝑚2𝛽2

+
𝑛(𝑛2 − 1)(𝑛2 − 4)(𝑛2 − 9)(𝑛 + 4)

2 . 4 . 6 . 8𝑚4𝛽4
−…}

+ (𝐶1 cos𝑚𝛽 − 𝐶2 sin𝑚𝛽){
𝑛(𝑛 + 1)
2𝑚𝛽

−
𝑛(𝑛2 − 1)(𝑛2 − 4)(𝑛 + 3)

2 . 4 . 6𝑚3𝛽3
+…}.

Since 𝑛 is supposed an integer the series are finite.
The integral may also be exhibited as the sum of two infinite series;

namely 𝑄𝑛

= 𝐶2𝛽𝑛+1 {1 −
𝑚2𝛽2

2(2𝑛 + 3)
+

𝑚4𝛽4

2 . 4 (2𝑛 + 3)(2𝑛 + 5)
− …}

+ 𝐶4𝛽−𝑛 {1 +
𝑚2𝛽2

2(2𝑛 − 1)
+

𝑚4𝛽4

2 . 4 . (2𝑛 − 1)(2𝑛 − 3)
+ …} .

It is easy to verify these statements.
Laplace has given some of the details of the process of integrating

the equation in the Mécanique Celeste, Livre xi. § 9.
The solution, it is now known, can be put into the following compact

symbolical form

𝑄𝑛 =
𝐶
𝛽𝑛

𝑑𝑛

𝑑𝑎𝑛
sin(𝛽√𝑎 + 𝐵)

√𝑎
,

where after the differentiations we put 𝑚2 for 𝑎. See the Cambridge
Mathematical Journal, Vol. ii. page 195.
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We shall confine ourselves to the case of 𝑛 = 2.
Thus

𝑄2 = 𝐶1 {(1 −
3

𝑚2𝛽2
) sin𝑚𝛽 +

3
𝑚𝛽

cos𝑚𝛽}

+ 𝐶2 {(1 −
3

𝑚2𝛽2
) cos𝑚𝛽 −

3
𝑚𝛽

sin𝑚𝛽} .

Here 𝐶2 must be zero in order that 𝑄2 may not be infinite at the
centre. Thus

𝑄2 = 𝐶1 {(1 −
3

𝑚2𝛽2
) sin𝑚𝛽 +

3
𝑚𝛽

cos𝑚𝛽} .

The constant 𝐶1 must be determined by differentiating equation (24)
and putting 𝛽 = 1 after the differentiation.

Hence we find that

𝐶1 =

5
3
𝜅 (

sin𝑚
𝑚

− cos𝑚)
2

𝑚2 − 2 sin2𝑚+𝑚 sin𝑚 cos𝑚
.

The ellipticity of any stratum is −
3
2
𝐴2; hence denoting the ellipticity

by 𝜖 we have

𝜖 = −

3
2
𝐶1 {(1 −

3
𝑚2𝛽2

) sin𝑚𝛽 +
3
𝑚𝛽

cos𝑚𝛽}

sin𝑚𝛽 −𝑚𝛽 cos𝑚𝛽
𝑚2

.

Let 𝜖1 denote the ellipticity at the surface and 𝜖0 the ellipticity at the
centre. Then

𝜖1 =
5𝜅(sin𝑚−𝑚 cos𝑚){(3 − 𝑚2) sin𝑚− 3𝑚 cos𝑚}

2𝑚2(𝑚2 − 2 sin2𝑚+𝑚 sin𝑚 cos𝑚)
,

𝜖0 =
𝜅(sin𝑚−𝑚 cos𝑚)2

2(𝑚2 − 2 sin2𝑚+𝑚 sin𝑚 cos𝑚)
.
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Legendre states the numerical results which will be found corre-
sponding to various values of 𝑚. We collect them in the following table;

taking 𝜅 =
1
288

.

𝑚 𝜖0 𝜖1
𝜋
2

1
269

1
250

2𝜋
3

1
312

1
269

7𝜋
8

1
424

1
319

𝜋
1
576

1
379

In the second case Legendre says that the density at the centre is to

that at the surface in the ratio of to
2𝜋
3

to
1
2
; but it should of course be

in the ratio of
2𝜋
3

to
√3
2
.

In the third case which he gives he considers the ellipticity very
nearly equal to the actual ellipticity of the earth’s surface; he says that
the mean density is three times that at the surface: this may be easily
verified.

943. In his pages 412…420 Legendre proceeds to a second approxima-
tion for the case of his second hypothesis, that is of a planet in a state
of fluidity. He obtains the formulæ for this purpose; for an application
of the formulæ he supposes the fluid homogeneous.

944. In his pages 420…426 Legendre discusses the third of his three
hypotheses: see Art. 894. He proposes to determine the figure of a planet
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of which the interior is solid and composed of ellipsoidal strata in which
the ellipticities follow any law.

Let 𝜖 be the ellipticity of any stratum, 𝜖1 the ellipticity of the surface.
The only equation which must be satisfied is (24) applied to the surface.

And as 𝜖 = −
3
2
𝐴2, we thus get

𝜖1 −
1
2
𝜅 =

∫
𝑏

0
𝜌
𝑑
𝑑𝛽

(𝜖𝛽5)𝑑𝛽

5𝑏2∫
𝑏

0
𝜌𝛽2𝑑𝛽

.

The expression for the value of gravity at the surface may be found,
and it may be shewn that Clairaut’s theorem holds.

945. Legendre makes some remarks as to the numerical values of the
quantities.

Let 𝜛 denote Clairaut’s fraction; then if the earth were homogeneous

and fluid, we should have 𝜛 =
1
230

. Pendulum observations shew,

however, that 𝜛 is greater than
1
230

; on this point Legendre refers to

Laplace’s fifth memoir. Since then 𝜛 is greater than
1
230

it follows by

Clairaut’s theorem that 𝜖1 must be less than
1
230

.

The result found by experience that 𝜛 is greater than
1
230

, is in agree-

ment, Legendre says, with the theory for the case of entire fluidity. I am
not certain as to what he has here in view. Perhaps he alludes to the
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values obtained in Art. 942. Or perhaps he means that assuming 𝜌 to
diminish from the centre to the surface, we can shew by the formula

of Art. 944, which will hold here, that 𝜖1 is less than
5
4
𝜅, so that 𝜛 is

greater than
5
4
𝜅. The theorem that 𝜖1 is less than

5
4
𝜅 is easily deduced

from the formula; indeed Clairaut gives this: see page 227 of his Figure
de la Terre. The result holds if 𝜖 increases from the centre to the sur-
face, or even if only 𝛽2𝜖 does: see Art. 329. Hence the result holds if 𝜖 is
constant. But this particular case Legendre himself treats. We have then

𝜖1 −
1
2
𝜅 =

𝜖1∫𝜌𝛽4𝑑𝛽

𝑏2∫𝜌𝛽2𝑑𝛽
.

Now he says that we know the coefficient of 𝜖1 on the right-hand side

to be less than
3
5
. This is true, assuming that the density decreases from

the centre to the surface: see Art. 910. Therefore 𝜖1 −
1
2
𝜅 is less than

3
5
𝜖1;

and hence 𝜖1 is less than
5
4
𝜅.

946. Legendre considers that the pendulum observations make 𝜛 =
1
180

very nearly; and thus 𝜖1 =
1
318

very nearly. He says it is easy

to imagine hypotheses respecting the density and the ellipticity of the
strata which will produce this value of 𝜖1. For example, suppose that
the densities along a radius increase in arithmetical progression from
the surface to the centre. Let 1 be the density at the surface where
the radius is 1; let 𝑚 be the density at the middle of the radius; then
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𝜌 = 2𝑚 − 1 − 2𝛽(𝑚 − 1). Let all the strata be similar, so that the elliptic-
ity is constant. Then

∫
1

0
𝜌𝛽4𝑑𝛽

∫
1

0
𝜌𝛽2𝑑𝛽

=
2
5
𝑚 + 2
𝑚 + 1

;

whence
𝜖1 =

5
4
𝜅
2𝑚 + 2
3𝑚 + 1

.

If we suppose 𝜅 =
1
288

, and make 𝑚 = 8, we find that 𝜖1 =
1
320

.

In this case the mean density on a radius is about eight times that at

the surface. But the mean density of the Earth is
𝑚+ 1
2

times that at

the surface, that is 412 times; which appears quite admissible. But other
hypotheses might give the same value of 𝜖1 with a much less value of
the mean density; this appears in Art. 942.

947. Legendre adverts to the subject of precession and nutation. The

expression
∫𝜌

𝑑
𝑑𝛽

(𝛽5𝜖)𝑑𝛽

∫𝜌
𝑑𝛽5

𝑑𝛽
𝑑𝛽

occurs as a coefficient in the values of these

quantities found by theory. Hence, comparing the values found by obser-
vation we may determine this coefficient, and thus obtain information as
to the Figure of the Earth. We have already seen that this idea was used
by D’Alembert: see Art. 385.

Legendre considers that the comparison confirms the value of 𝜖1

which he had adopted, namely about
1
318

.



legendre’s fourth memoir. 142

948. Legendre says on his page 425 that the solutions hitherto given
have been restricted to the case of figures of revolution, but we might
desire an investigation of a more general character, so that the figure of
revolution, if it must of necessity hold, should be a result of investigation
and not an hypothesis.

But he does not think it possible to obtain suitable formulæ for the
attraction of bodies of any figure. But still a form may be given to the
radius vector which shall be applicable to a large number of figures.

This in fact leads Legendre to consider the properties of what we call
Laplace’s coefficients, and accordingly pages 426…442 are devoted to the
demonstration of various theorems of analysis. See also Art. 783.

949. With respect to these theorems Legendre says on his page 426:
Plusieurs de ces théorêmes sont dûs à M. de la Place, qui en a donné la

démonstration dans son Mémoire de 1782, fondée sur une équation aux dif-
férences partielles à laquelle les fonctions doivent satisfaire. J’adopterai ici le
fondement de ces démonstrations, mais on verra que j’ai considéré cet objet
sous un point de vue différent, et que je suis parvenu à des résultats entière-
ment nouveaux.

950. The first thing Legendre does is to find an expression for what
we now call Laplace’s coefficient of the 𝑛th order: see his pages 426…432.

Let (1 − 2𝑧𝑡 + 𝑧2)− 1
2 be expanded in ascending powers of 𝑧, where

𝑡 = cos 𝜃 cos 𝜃′ + sin 𝜃 sin 𝜃′ cos(𝜙 − 𝜙′); then the coefficient of 𝑧𝑛 will be
called 𝑌𝑛. We shall put 𝜇 for cos 𝜃, 𝜇′ for cos 𝜃′, and 𝜓 for 𝜙 − 𝜙′.
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Legendre shews that

𝑌𝑛 = 𝑃𝑛(𝜇)𝑃𝑛(𝜇′)

+
2

𝑛(𝑛 + 1)
𝑑𝑃𝑛(𝜇)
𝑑𝜇

𝑑𝑃𝑛(𝜇′)
𝑑𝜇′

sin 𝜃 sin 𝜃′ cos𝜓

+
2

(𝑛 − 1)𝑛(𝑛 + 1)(𝑛 + 2)
𝑑2𝑃𝑛(𝜇)
𝑑𝜇2

𝑑2𝑃𝑛(𝜇′)
𝑑𝜇′2

sin2 𝜃 sin2 𝜃′ cos 2𝜓

+
2

(𝑛 − 2)(𝑛 − 1)𝑛… (𝑛 + 3)
𝑑3𝑃𝑛(𝜇)
𝑑𝜇3

𝑑3𝑃𝑛(𝜇′)
𝑑𝜇′3

sin3 𝜃 sin3 𝜃′ cos 3𝜓

+……

Here 𝑃𝑛(𝜇) has the value assigned in Art. 786.
Legendre’s investigation is better than that given by Laplace in his

fourth memoir; and an important error of Laplace’s is corrected. Laplace
had omitted the terms involving cos 𝑟𝜓 in the case in which 𝑛+𝑟 is odd:
see Art. 851. The investigation in the Mécanique Céleste, Livre III. is cor-
rect and much resembles Legendre’s.

951. Let 𝑍𝑛 and 𝑍𝑚 be two Laplace’s functions, of the 𝑛th and 𝑚th

order respectively. Then 𝑛 and 𝑚 being different

∫
1

−1
∫

2𝜋

0
𝑍𝑛𝑍𝑚𝑑𝜇𝑑𝜙 = 0.

This had been established by Laplace in his fourth memoir: Legendre
demonstrates this in his pages 433…435.

Laplace’s demonstration depends on the fact that 𝑍𝑛 and 𝑍𝑚 satisfy
the partial differential equation of Art. 851. Legendre assumes for 𝑍𝑛
and 𝑍𝑚 expressions of the same form as 𝑌𝑛 and 𝑌𝑚, but with arbitrary
constants as the coefficients of the various terms.

Legendre also indicates the form which the value of the double inte-
gral will take when 𝑚 = 𝑛. In this case the following result is interesting
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and important,

∫
1

−1
∫

2𝜋

0
𝑍𝑛𝑌𝑛𝑑𝜇𝑑𝜙 =

4𝜋
2𝑛 + 1

𝑍′𝑛,

where 𝑍′𝑛 indicates what 𝑍𝑛 becomes when 𝜃 and 𝜙 are changed to 𝜃′
and 𝜙′ respectively. Also 𝑌𝑛 is Laplace’s 𝑛th coefficient. This important
result was first formally given by Legendre. Laplace however had re-
ally obtained it. For it forms equation (1) on page 44 of the Mécanique
Céleste, Vol. ii.: and this equation is implicitly involved on the page 152
of Laplace’s fourth memoir, but he does not there bring it into special
notice.

As a particular example suppose that 𝑍𝑛 = 𝑌𝑛; then 𝑍′𝑛 = 1; so that

∫
1

−1
∫

2𝜋

0
(𝑌𝑛)2𝑑𝜇𝑑𝜙 =

4𝜋
2𝑛 + 1

.

952. A part of Legendre’s investigation may be usefully presented
here.

Let 𝑃𝑚 and 𝑃𝑛 be Legendre’s coefficients of the 𝑚th and 𝑛th order re-
spectively, the variable being denoted by 𝑥; then will

∫
1

−1

𝑑𝑟𝑃𝑚
𝑑𝑥𝑟

𝑑𝑟𝑃𝑛
𝑑𝑥𝑟

(1 − 𝑥2)𝑟𝑑𝑥

= (𝑛 + 𝑟)(𝑛 − 𝑟 + 1)∫
1

−1

𝑑𝑟−1𝑃𝑚
𝑑𝑥𝑟−1

𝑑𝑟−1𝑃𝑛
𝑑𝑥𝑟−1

(1 − 𝑥2)𝑟−1𝑑𝑥. (30)

For by integration by parts we have

∫
1

−1

𝑑𝑟𝑃𝑚
𝑑𝑥𝑟

𝑑𝑟𝑃𝑛
𝑑𝑥𝑟

(1 − 𝑥2)2𝑑𝑥 = −∫
1

−1

𝑑𝑟−1𝑃𝑚
𝑑𝑥𝑟−1

𝑑
𝑑𝑥

{
𝑑𝑟𝑃𝑛
𝑑𝑥𝑟

(1 − 𝑥2)𝑟} 𝑑𝑥. (31)

But by the fundamental differential equation of Art. 851,
𝑑
𝑑𝑥

{(1 − 𝑥2)
𝑑𝑃𝑛
𝑑𝑥

} = −𝑛(𝑛 + 1)𝑃𝑛.
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Thus
(1 − 𝑥2)

𝑑2𝑃𝑛
𝑑𝑥2

− 2𝑥
𝑑𝑃𝑛
𝑑𝑥

= −𝑛(𝑛 + 1)𝑃𝑛.

Differentiate both sides 𝑟 − 1 times: thus

(1 − 𝑥2)
𝑑𝑟+1𝑃𝑛
𝑑𝑥𝑟+1

− 2𝑥𝑟
𝑑𝑟𝑃𝑛
𝑑𝑥𝑟

− (𝑟2 − 𝑟)
𝑑𝑟−1𝑃𝑛
𝑑𝑥𝑟−1

= −𝑛(𝑛 + 1)
𝑑𝑟−1𝑃𝑛
𝑑𝑥𝑟−1

;

therefore

(1 − 𝑥2)
𝑑𝑟+1𝑃𝑛
𝑑𝑥𝑟+1

− 2𝑥𝑟
𝑑𝑟𝑃𝑛
𝑑𝑥𝑟

= (𝑟2 − 𝑟 − 𝑛2 − 𝑛)
𝑑𝑟−1𝑃𝑛
𝑑𝑥𝑟−1

,

which we may put thus

𝑑
𝑑𝑥

{(1 − 𝑥2)𝑟
𝑑𝑟𝑃𝑛
𝑑𝑥𝑟

} = (𝑟2 − 𝑟 − 𝑛2 − 𝑛)(1 − 𝑥2)𝑟−1
𝑑𝑟−1𝑃𝑛
𝑑𝑥𝑟−1

.

Hence substituting in (31) we obtain the required result.
In the same manner as (30) was established we may obtain a similar

result with (𝑚+𝑟)(𝑚−𝑟+1) instead of (𝑛+𝑟)(𝑛−𝑟+1) as the coefficient.
Hence if 𝑚 and 𝑛 are different, we must have

∫
1

−1

𝑑𝑟𝑃𝑚
𝑑𝑥𝑟

𝑑𝑟𝑃𝑛
𝑑𝑥𝑟

(1 − 𝑥2)𝑟𝑑𝑥 = 0.

If 𝑚 = 𝑛 we have from (30)

∫
1

−1
(
𝑑𝑟𝑃𝑛
𝑑𝑥𝑟

)
2
(1 − 𝑥2)𝑟𝑑𝑥 = (𝑛 + 𝑟)(𝑛 − 𝑟 + 1)∫

1

−1
(
𝑑𝑟−1𝑃𝑛
𝑑𝑥𝑟−1

)
2

(1 − 𝑥2)𝑟−1𝑑𝑥.

By successive applications of the formula we can obtain the value of
the integral. For instance, if 𝑟 = 1 we have

∫
1

−1
(
𝑑𝑃𝑛
𝑑𝑥

)
2
(1 − 𝑥2)𝑑𝑥 = 𝑛(𝑛 + 1)∫

1

−1
(𝑃𝑛)2𝑑𝑥

=
2

2𝑛 + 1
𝑛(𝑛 + 1)



legendre’s fourth memoir. 146

by Art. 905.

953. For an example of the formulæ Legendre proposes this problem:
to determine the solids, homogeneous or heterogeneous, for which every
axis passing through the centre of gravity is a principal axis. Laplace had
considered this problem for the case of a homogeneous solid in his fifth
memoir: see Art. 863.

If we take 𝑥, 𝑦, 𝑧 for the rectangular coordinates of the element of
mass 𝑑𝑀, we must have

∫𝑥𝑦𝑑𝑀 = 0, ∫𝑦𝑧𝑑𝑀 = 0, ∫𝑧𝑥𝑑𝑀 = 0,

the origin being at the centre of gravity, and the integrations extending
over the whole body.

Let 𝑟 be the radius vector from the origin, and suppose that the in-

tegral ∫𝜌𝑟4𝑑𝑟 is taken from the centre to the surface along any radius,

and that the result assumes the form of a series of Laplace’s functions

𝑈0 + 𝑈1 + 𝑈2 +…

Then, as in the Mécanique Celeste, Livre iii. § 32, the above three
conditions determine to some extent the nature of 𝑈2. The general form
of 𝑈2 being

𝐻(𝜇2 −
1
3
) + 𝐻1𝜇√(1 − 𝜇2) sin𝜙 + 𝐻2𝜇√(1 − 𝜇2) cos𝜙

+𝐻3(1 − 𝜇2) sin 2𝜙 + 𝐻4(1 − 𝜇2) cos 2𝜙,

the conditions shew that we must have

𝐻1 = 0, 𝐻2 = 0, 𝐻3 = 0.

Legendre’s treatment is in substance the same as that which was
adopted by Laplace.
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The next step in the problem is to observe that we must also have

∫𝑥2𝑑𝑀 = ∫𝑦2𝑑𝑀 = ∫𝑧2𝑑𝑀.

Legendre treats this by estimating the value of

∫(𝛼𝑥2 + 𝛽𝑦2 + 𝛾𝑧2)𝑑𝑀,

where 𝛼, 𝛽, 𝛾 are constants.
We have

𝛼𝑥2 + 𝛽𝑦2 + 𝛾𝑧2 = 𝛼𝑟2 cos2 𝜃 + 𝑟2 sin2 𝜃(𝛽 cos2 𝜙 + 𝛾 sin2 𝜙)

= {
𝛼 + 𝛽 + 𝛾

3
+
2𝛼 − 𝛽 − 𝛾

3
(
3
2
cos2 𝜃 −

1
2
) +

𝛽 − 𝛾
2

sin2 𝜃 cos 2𝜙} 𝑟2.

If we use the same supposition as before relative to∫𝜌𝑟4𝑑𝑟, we shall

find that our integral reduces to

4𝜋
3
(𝛼 + 𝛽 + 𝛾)𝑈0 +

8𝜋
45
(2𝛼 − 𝛽 − 𝛾)𝐻 +

8𝜋
15
(𝛽 − 𝛾)𝐻4.

For the problem we have in hand this expression must retain the
same value when out of the three constants 𝛼, 𝛽, 𝛾 any two are made
zero, and the third unity.

Therefore we must have 𝐻 = 0 and 𝐻4 = 0. Thus we shew, in fact,
that 𝑈2 must vanish completely.

Again, since by supposition the centre of gravity is the origin, we
must have

∫𝑥𝑑𝑀 = 0, ∫𝑦𝑑𝑀 = 0, ∫𝑧𝑑𝑀 = 0.
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Treat these in the same manner as the other conditions. Hence we

shall find that if ∫𝜌𝑟3𝑑𝑟 be supposed developed in the form of a series

of Laplace’s functions,
𝑍0 + 𝑍1 + 𝑍2 +…

then 𝑍1 must vanish.
This fact Laplace forgot to notice when he discussed the problem

in his fifth memoir: that is, supposing the solid to be homogeneous,
he ought to have excluded also the function of the first order from the
fourth power of the radius vector. In the Mécanique Céleste he does not
solve the problem; but only so much of it as leads to 𝐻1 = 0, 𝐻2 = 0,
𝐻3 = 0.

Legendre says that it is easy to satisfy simultaneously the conditions
which have been obtained. As a general example for a homogeneous
solid he supposes that we exclude from 𝑟5 all terms in which cos 𝜃 and
cos𝜙 are raised to odd powers; and so take

𝑟5 = 𝐴0 + 𝐵1𝑃4 + 𝐵2
𝑑2𝑃4
𝑑𝜇2

sin2 𝜃 cos 2𝜙 + 𝐵3
𝑑4𝑃4
𝑑𝜇4

sin4 𝜃 cos 4𝜙

+ 𝐶1𝑃6 + 𝐶2
𝑑2𝑃6
𝑑𝜇2

sin2 𝜃 cos 2𝜙 + 𝐶3
𝑑4𝑃6
𝑑𝜇4

sin4 𝜃 cos 4𝜙

+ 𝐶4
𝑑6𝑃6
𝑑𝜇6

sin6 𝜃 cos 6𝜙 +……

See Art. 950.
By reason of the exclusion of the odd powers the centre of gravity is

at the origin.
As a very simple example we may take

𝑟5 = 𝐴0 + 𝐵1𝑃4,

which is equivalent to

𝑟5 = 𝑎5 + 𝑏5(7 cos4 𝜃 − 6 cos2 𝜃).
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Thus if a solid be generated by the revolution of this curve round the
initial line, the moment of inertia will have the same value for any axis
which passes through the origin.

954. Legendre devotes his pages 443…445 to formulæ of attraction
applicable to an infinite number of figures which are not solids of rev-
olution. He supposes the solid to be composed of strata, and that any
assigned power of the radius vector of a stratum can be expressed in
terms of a series of Laplace’s functions. Then he gives an expression for
the potential at any point. Laplace had already obtained results substan-
tially equivalent in his fourth memoir.

955. On his pages 445…447, Legendre considers the figure of a planet
supposed entirely fluid. He now assumes that the radius vector of any
stratum is of the form of a series of Laplace’s coefficients,

𝛽{1 + 𝑍0 + 𝑍1 + 𝑍2 +…}.

Thus he obtains equations of the same form as those in Art. 929; but
instead of 𝐴𝑛 we have now 𝑍𝑛.

Hence he concludes that 𝑍𝑛 must vanish for values of 𝑛 greater than
2.

Therefore the form of the planet must be that of an oblatum; this of
course is only shewn under the assumption just stated as to the radius
vector. Laplace had obtained this result for the case of a homogeneous
mass in his fourth memoir; now Legendre extends it to a mass of variable
density.

Legendre’s investigations are substantially the same as those subse-
quently given by Laplace in the Mécanique Céleste, Livre iii. § 29 and §
30.

956. On his pages 447…454, Legendre considers the case of a solid
planet covered by a very thin stratum of fluid.
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The equations to which we have referred in Articles 929 and 955 now
hold, not generally, but at the surface; thus we cannot now shew, as in
Art. 955, that 𝑍𝑛 must be zero when 𝑛 is greater than 2. This part of
Legendre’s memoir had been substantially given by Laplace in his fourth
memoir; and is reproduced in the Mécanique Céleste, Livre iii. § 31, § 32,
and § 33.

957. It will be seen from our account of Legendre’s memoir, that it
occupies an important position in the history of our subject. The most
striking addition which is here made to previous researches consists in
the treatment of a planet supposed entirely fluid; the general equation
for the form of a stratum is given for the first time and discussed: see
Art. 929. The investigation carried on to the second order of small quan-
tities, which we have reproduced in Arts. 913…923, is also deserving of
notice. Moreover, here for the first time we have a correct and conve-
nient expression for Laplace’s 𝑛th coefficient: see Art. 950.

As we have stated in our analysis, Laplace adopted in his Mécanique
Céleste the substance of much of Legendre’s memoir, which has thus be-
come permanently incorporated in our subject.



CHAPTER XXVI.

LAPLACE’S SEVENTH MEMOIR.

958. Laplace’s seventh memoir on our subject is contained in the
Paris Mémoires for 1789, published in 1793, being the same volume as
contained Legendre’s fourth memoir. In the first 176 pages of the mem-
oirs in this volume the word Royale occurs as part of the heading of the
left-hand pages; but this word is omitted in the remainder of the volume.
The explanation is furnished by the announcement on the back of the ti-
tle page: “Les vingt-deux premières feuilles des mémoires de ce volume,
étoient imprimées avant l’époque du 10 août 1792.”

Laplace’s memoir is entitled Sur quelques points du Systême du
monde; it occupies pages 1…87 of the volume: we are concerned only
with pages 18…55.

959. The pages 18…43 constitute one section which is entitled Sur les
degrés mesurés des méridiens, et sur les longueurs observées du pendule.

960. The pages 18…21 of the memoir consist of general remarks
which are reproduced in the beginning of § 38 of Livre iii. of the Mé-
canique Céleste; the rest of this long section of the Mécanique Céleste does
not occur in the memoir.

The pages 21…27 of the memoir contain an account of a mode of
treating the measured lengths of degrees, so as to determine from them,
if possible, the elements of an elliptic figure. Laplace says on his page
21:

Cependant avant que de renoncer entièrement à la figure elliptique, il faut
déterminer celle dans laquelle le plus grand écart des degrés mesurés est plus
petit que dans toute autre figure elliptique, et voir si cet écart est dans les lim-
ites des erreurs des observations. J’ai donné dans nos Mémoires de 1783, une
méthode pour résoudre ce problême, et je l’ai appliquée aux quatre mesures des
degrés du nord, de France, du cap de Bonne-Espérance et du Pérou; mais cette
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méthode devient très-pénible, lorsque l’on considère à la fois un grand nombre
de degrés. La méthode suivante est beaucoup plus simple.

These pages of the memoir constitute that part of § 39 of Livre iii. of
the Mécanique Céleste, which follows the first three pages. It will be ob-
served that Laplace proposes to obtain from observations the same kind
of result as in his fifth memoir, namely, that in which the greatest de-
viation of the observations is the least possible: but he now expounds
another mode of obtaining the result.

In the Mécanique Céleste, Livre iii. § 39, both methods are given;
namely, in the first three pages the method of the fifth memoir, and in
the remaining pages the method of the seventh memoir.

961. On pages 29…32 of the memoir the method is applied to nine
measured lengths of degrees. In the corresponding part of the Mécanique
Céleste, namely § 41, only seven measured lengths of degrees are used. In
the memoir two French degrees are used. One is in the latitude 45° 43′,
“… que M. l’abbé de la Caille, dans nos Mémoires de 1758, a fixé à 57034
toises.” The other is in the latitude 49° 23′, “… et qu’après plusieurs véri-
fications, on a fixé enfin à 57074·5 toises.” In the Mécanique Céleste only
one French degree is used, namely, the mean length of the degree of
France as determined by Delambre and Méchain.

One of the degrees of the memoir is not used in the Mécanique
Céleste, namely, one which he thus describes:

Le degré de Hollande, par 52° 41′ de latitude, mesuré primitivement par
Snellius, et ensuite rectifié par MM. de Cassini, qui l’ont fixé à 57145 toises.
La grandeur de ce degré vient d’être confirmée par les nouvelles mesures que
l’on a faites en Angleterre, et avec lesquelles elle est à fort peu près d’accord.

The conclusion from the numerical calculations is thus stated:
Ainsi, de quelque manière que l’on combine les neuf degrés précédens,

quelque rapport que l’on choisisse pour celui des deux axes de la terre, il est
impossible d’éviter dans l’ellipse, une erreur de 108𝜏; et comme cette erreur
étant la limite de celles qui peuvent être admises, elle est par cela même
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infiniment peu probable; il faudroit, pour admettre une figure elliptique,
supposer des erreurs plus grandes encore que 108𝜏, dans quelques uns de ces
degrés.

La valeur que nous venons de trouver pour 𝑦, donne une ellipse dont les
axes sont dans le rapport de 249 à 250. Dans cette ellipse, les trois plus grandes
erreurs tomberoient sur les degrés de Pensilvanie, du cap de Bonne-Espérance,
et du Nord. En considérant avec attention les mesures de ces trois degrés, il me
semble impossible qu’il se soit glissé dans chacun d’eux une erreur de 108𝜏, sur-
tout après les réductions que j’ai déja faites au degré du nord. Il me paroît donc
prouvé par les mesures précédentes, que la variation des degrés des méridiens
terrestres s’écarte sensiblement de la loi du carré du sinus de la latitude, qui
résulte d’une figure elliptique.

This conclusion may be compared with the corresponding passage in
the Mécanique Céleste. There instead of the 108 toises we have 48·6 dou-
ble toises, that is 97·2 toises; the degree in the Mécanique Céleste is taken
in the centesimal scale. The signification of 𝑦 is the same in the two
places; in fact, if 𝑦 be divided by the mean length of a degree of the
meridian, the result is three times the ellipticity. In the memoir 𝑦 is
found to be 684·73 toises; in the Mécanique Céleste it is 616·404 toises.

The ellipticity in the Mécanique Céleste is found to be
1
277

.

In the Mécanique Céleste the inference as to the inadmissibility of the
elliptic law of variation of the length of the degrees is stated less confi-
dently than in the memoir.

962. In pages 32…35 of the memoir Laplace expounds another prin-
ciple which may guide us in treating the observations; this part of the
memoir forms § 40 of Livre iii. of the Mécanique Céleste. Laplace here
proposes to find an ellipse such that (1) the sum of the errors should be
zero, and (2) the sum of the errors taken with the positive sign should
be a minimum. He calls such an ellipse the most probable ellipse in the
Mécanique Céleste: see page 140 of Vol. ii. The following sentence re-
specting the author of the principle is given in the memoir, but not in
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the Mécanique Céleste.
M. Boscovich a donné pour cet objet, une méthode ingénieuse qui

est exposée à la fin de l’édition françoise de son Voyage astronomique et
géographique; mais comme il l’a inutilement compliquée de la considération
des figures, je vais le présenter ici sous la forme analytique la plus simple.

Boscovich had previously expounded his principle in his supplemen-
tary annotations to Stay’s poem Philosophiæ Recentioris. See Arts. 511
and 514.

963. On page 36 of the memoir Boscovich’s method is applied nu-
merically to the nine measured lengths already adopted. In like manner
in § 41 of the Mécanique Céleste, Boscovich’s method is applied numeri-
cally to the seven measured lengths adopted in that work. In the memoir
Laplace thus finds, for the length in toises of a degree of the meridian
at the latitude 𝜃, the expression

56753 + 613·1 sin2 𝜃.

He states his conclusion thus:
Le rapport des axes de la terre est alors celui de 278 à 279; mais l’expres-

sion précédente donne une erreur en plus, de 137𝜏·7 dans le degré du Nord, et
une erreur en moins, de 109𝜏·9 dans celui de Pensilvanie, ce qui ne peut pas
être admis. On voit ainsi qu’il n’est pas possible de concilier avec une figure
elliptique, les degrés du méridien.

This may be compared with the corresponding passage in the Mé-
canique Céleste: see Vol. ii. page 141. The length in toises of a centesimal
degree of the meridian at the centesimal latitude 𝜃 is found to be

51077·7 + 493·86 sin2 𝜃.

964. The memoir now passes to the subject of the length of the sec-
onds pendulum: on pages 37 and 38 we have thirteen such measures,
with references to the authorities. The following table gives in the first
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column the place, in the second the latitude, in the third the length of
the pendulum in lines, and in the fourth the name of the observer on
whom the result depends.

Equator . . . . . . . . . . . 0° 0ʹ 439·21 Bouguer.
Portobello . . . . . . . . . 9° 34ʹ 439·30 Bouguer.
Little Goave . . . . . . . 18° 27ʹ 439·47 Bouguer.
Cape of Good Hope 33° 18ʹ 440·14 La Caille.
Rome. . . . . . . . . . . . . . 41° 54ʹ 440·38 Jacquer and Sueur.
Vienna . . . . . . . . . . . . 48° 12ʹ 30ʺ 440·56 Liesganig.
Paris . . . . . . . . . . . . . . 48° 50ʹ 440·67 Bouguer.
London . . . . . . . . . . . . 51° 31ʹ 440·75 Graham.
Arensbourg . . . . . . . . 58° 15ʹ 441·07 Griscow.
Pernavia . . . . . . . . . . . 58° 26ʹ 441·10 Griscow.
Petersburg . . . . . . . . . 59° 56ʹ 441·21 Griscow.
Pello . . . . . . . . . . . . . . 66° 48ʹ 441·27 Maupertuis.
Ponoi . . . . . . . . . . . . . . 67° 4ʹ 30ʺ 441·41 Mallet.
Laplace says that the lengths have been reduced to a vacuum, to the

level of the sea, and to the temperature of about 14° of Réaumur. With
respect to the length at London, Laplace says that it has been determined
by assuming with Maupertuis that the Paris seconds pendulum, if trans-
ported to London, makes 7·7 more oscillations in a day. I have put Gra-
ham’s name to this length because he obtained the result which Mauper-
tuis adopted; see Maupertuis’s La Figure de la Terre … page 172.

For the observations of Griscow Laplace refers to the Nouveaux Mé-
moires de Pétersbourg, Vol. vii.; and for the observation of Mallet to the
Nouveaux Mémoires de Pétersbourg, Vol. xiv. part ii.

965. In the corresponding part of the Mécanique Céleste fifteen
lengths of the seconds pendulum are used; the observations at Rome
and Pernavia are omitted; but observations at Pondicherry, Jamaica,
Toulouse and Gotha are introduced.

Moreover the length at Petersburg is now stated to rest on observa-
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tions made by Mallet, and is put at a smaller value. The length at Paris
is taken for the unit, and that of Petersburg is put at 1·00074.

It will be seen in the memoir that although the difference between
the latitudes of London and Paris is more than four times as great as
the difference between the latitudes of Paris and Vienna, yet the dif-
ference between the lengths of the pendulum is less in the former case
than in the latter. In the Mécanique Céleste this anomaly is reduced by
putting the length of the pendulum at Vienna greater than in the mem-
oir, namely at ·99987, that of Paris being unity. But no reason is assigned
for the change.

There is however a curious mistake in the Mécanique Céleste. Accord-
ing to Laplace’s words the last two lengths which he uses stand thus, the
latitudes being in the centesimal scale:

Place. Latitude. Length of Pendulum.
Ponoi 74°22 1·00137
Pello 74°53 1·00148
There can be no doubt that Ponoi and Pello must interchange places.

The centesimal latitude 74°22 corresponds to the ordinary 66°48ʹ, which
is the latitude of Pello according to Maupertuis; and the 1·00137 corre-
sponds to the 1·0014 of Maupertuis; see pages 162 and 179 of La Figure
de la Terre.…

The mistake is of course reproduced in the national edition of
Laplace’s works; it escaped the notice of the accurate Bowditch: the
table occurs on page 470 of the second volume of his translation of the
Mécanique Céleste.

966. The lengths of the seconds pendulum adopted in the memoir
are subjected to the two methods of treatment which were applied to the
lengths of degrees: see pages 38…43 of the memoir. The corresponding
investigation in the Mécanique Céleste will be found in § 42 of Livre iii.

The length of the seconds pendulum in the latitude 𝜃, expressed in
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lines, is found in the memoir to be by the first method

439·3090 + 2·4286 sin2 𝜃,

and by the second method

439·2110 + 2·5827 sin2 𝜃.

From the latter expression, by using Clairaut’s theorem, Laplace

finds
1
359

for the ellipticity. Although this value is much smaller than

that which results from the measures of degrees, yet Laplace thinks that
it is not too small. Besides, the evidence from pendulum observations,
Laplace appeals to the phenomena of precession and nutation; and also
to the value of the ellipticity of Jupiter as an analogy in favour even of
a still smaller ellipticity.

967. The words which Laplace uses with respect to Clairaut’s theorem
should be noticed; he says on page 42 of the memoir:

Ce résultat a généralement lieu, quelle que soit la figure de la terre, pourvu
que les variations des longueurs du pendule suivent, à fort peu près, la loi du
carré du sinus de la latitude; ce qui, comme on vient de le voir, est le cas de la
nature (Voyez nos Mémoires pour l’année 1783).

The language seems too strong; for I presume Laplace really intends
to assume that the strata are nearly spherical. His reference to the mem-
oirs of 1783 is not very precise. I think he means to direct attention to
the use he makes in that memoir of formulæ which he had obtained in
his memoir of 1782, and which are reproduced in the Mécanique Céleste,
Livre iii. § 33.

968. The pages 44…55 of the memoir constitute a section which is
entitled Sur la Figure de la Terre; it begins thus:

J’ai fait voir dans nos Mémoires pour l’année 1782, que si l’on suppose la
Terre fluide et homogène, sa figure ne peut être que celle d’un ellipsoïde de
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révolution. Je me propose ici d’étendre ce résultat, au cas où la Terre ayant été
primitivement fluide, elle seroit formée de couches de densités variables. M.
Clairaut a déjà fait voir que la figure elliptique remplit dans ce cas, les condi-
tions de l’équilibre; mais il s’agit de prouver qu’elle est la seule qui satisfasse
à ces conditions. Pour cela, je vais rappeller quelques propositions que j’ai dé-
montrées dans les Mémoires cités.

These pages of the memoir treat then of the figure of the Earth con-
sidered as a heterogeneous fluid; they occur in the Mécanique Céleste,
Livre iii. §§ 29, 30, and 31. Laplace however makes no substantial ad-
dition to the results which Legendre had obtained on the subject in his
fourth memoir.



CHAPTER XXVII.

MISCELLANEOUS INVESTIGATIONS BETWEEN THE YEARS 1781
AND 1800.

969. The present Chapter will contain an account of various miscel-
laneous investigations between the years 1781 and 1800.

970. We have first to notice a memoir by Euler, entitled Enodatio
difficultatis super Figura Terræ a vi centrifuga oriunda.

This memoir occurs in the Nova Acta … St Petersburg, Vol. ii.; the
volume is for the year 1784, and was published in 1787. The memoir
occupies pages 121…130 of the volume.

The memoir was presented on the 2nd of Nov. 1775.
If the Earth is considered as fluid and nearly spherical, and the fluid

is acted on by a force tending towards the centre, then whatever be the
law of force, if the centrifugal force be small compared with the attrac-

tive force, the ellipticity is about
1
578

; see Art. 57. But Euler says the

measures of degrees give the ellipticity about
1
200

. This is the difficulty

to be resolved.
Instead of adopting the theory of universal gravitation and attempt-

ing to determine the figure of the Earth from that, Euler supposes a force
tending to the centre which is some function of the distance, and also a
transversal force. This transversal force he arbitrarily assumes to be pro-

portional to
sin 𝜃 cos 𝜃

𝑟
, where 𝑟 and 𝜃 are the usual polar coordinates. By

taking the magnitude of this transversal force such that its greatest value

at the surface is
1
300

of the attraction there, Euler manages to arrive at
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the ellipticity which he wants, namely
1
200

.

Such a memoir at the beginning of the eighteenth century would not
have caused any surprise; but it is certainly remarkable that it should
have appeared towards the end of the century. The memoir is quite des-
titute of value, and it is difficult to see on what ground it could have
been published nearly fifty years after Maclaurin had established the rel-
ative equilibrium of rotating fluid in the form of an oblatum; and also
after Laplace had produced his work on the Figure of the Planets.

971. We have next a memoir by W. L. Krafft, entitled Essay relatif aux
recherches de M. De La Grange sur l’attraction des sphéroïdes elliptiques.

This memoir occurs in the Nova Acta … St Petersburg, Vol. ii.; the
volume is for the year 1784, and was published in 1787. The memoir
occupies pages 148…160 of the volume. The memoir was read on the
8th of March, 1787. The author is, I presume, the same as that of the
essay noticed in Art. 687.

Krafft’s object is to obtain by the aid of rectangular coordinates what
Lagrange obtained in his memoir of 1773 by the aid of polar coordinates;
namely the attraction of an oblatum at any point of the axis or of the axis
produced, and at any point of the equator.

Krafft’s memoir then adds nothing to preceding results, but consti-
tutes an example in the Integral Calculus which might be used for the
exercise of students.

If the major axis of the oblatum is to the minor axis as 101 is to
100, Krafft says that the attraction at the Pole is to the attraction at the
Equator as 1 is to ·99773. Krafft refers to Euler’s memoir of 1738, where
the ratio is stated to be as 1 is to ·99803. See Arts. 229 and 693.

At this time the Academy of St Petersburg was under the direction of
a lady; and the historical part of the volume in which these two mem-
oirs are contained makes frequent reference to Madame la Princesse de
Daschkaw.
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972. The celebrity of Bernardin de Saint-Pierre may justify a short
notice, though all which he contributed to our subject was the revival of
an antiquated blunder. In his Etudes de la Nature he maintained that the
fact of the increase of the length of a degree of the meridian, in passing
from the equator to the pole, established the oblong form of the Earth.
The work was published in 1784; more details on this point seem how-
ever to have been given in a subsequent edition; but I have had access
only to the collected works of Saint-Pierre, published in 12 volumes at
Paris in 1818, in which the matter occurs in Vol. iii. pages vii…xii, and
in Vol. v. pages 413…417. The nature of the error is the same as we have
pointed out in the case of Keill: see Art. 76. Such an eminent example
might be cited as some excuse, but we must remember that owing to the
steady advancement of knowledge, even a novelist at one epoch may be
fairly expected to understand elementary principles which puzzled a pro-
fessor of an earlier century. The author of Paul and Virginia, however,
seems to have had no qualifications for the pursuit of exact science; be-
sides his error as to the Figure of the Earth, he advocated an absurd
hypothesis of his own to account for the phenomena of the Tides.

973. Cousin. A work entitled Introduction à l’étude de l’Astronomie
Physique, was published in 1787 at Paris by Cousin. The author styles
himself Lecteur et Professeur royal, de l’Académie royale des Sciences. The
work is in quarto; the title, dedication, and preliminary discourse occupy
xvi pages; then the text follows on 323 pages: there are two plates.

974. The part of the work with which we are concerned is the fourth
Chapter on pages 135…176, which is entitled De l’action mutuelle des
corps, lorsqu’elle résulte des attractions de toutes les parties qui les com-
posent.

975. Cousin finds the attraction of an ellipsoid of revolution, oblate
or oblong, on an internal particle; he follows the method of Lagrange
given in the Berlin Memoirs for 1773: see Art. 707.

With respect to an external point, Cousin refers to the first and sec-
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ond memoirs by Legendre; and contents himself with working out the
case in which the attracted particle is on the prolongation of the axis of
revolution. He gives the result for an oblatum and for an oblongum.

976. Cousin passes on to the equations of fluid equilibrium. He be-
gins very unfortunately, on his page 141, by confounding equality of pres-
sure with equable transmission of pressure. He asserts that a fluid will
not remain at rest unless all points of its surface are acted on by equal
normal forces. This of course is untrue.

However, he obtains the correct equations of fluid equilibrium; and
says he will make some applications of them. He refers to Clairaut’s Fig-
ure de la Terre, to Euler’s memoir of 1755, and to D’Alembert’s Opuscules
Mathématiques, Vols. v. and vi.

Accordingly he applies the equations of fluid equilibrium to the
relative equilibrium of rotating fluid; and arrives at the accurate
equation connecting the angular velocity with the excentricity. He shews
that there cannot be more than two values of the excentricity of an
oblatum for a given angular velocity. He proceeds in a manner which
would be naturally suggested by pages 47…67 of the sixth volume of
D’Alembert’s Opuscules Mathématiques. As Cousin gives no reference,
I presume that we may attribute to himself this demonstration, that
only two values are possible. Laplace gave the first demonstration in
his Figure des Planetes; see Arts. 657 and 811. Cousin’s demonstration
is perhaps a little simpler than Laplace’s of 1784; but inferior to that
adopted in the Mécanique Céleste. Cousin’s is founded on D’Alembert’s,
but avoids the errors in it: see the Opuscules Mathématiques, Vol. viii.
pages 292 and 293.

There are, however, a few words inserted in his process by Cousin
which should be noticed. He says on his page 148: “On parviendroit
au même résultat en supposant le demi-axe plus grand que le rayon de
l’équateur;…” It would seem that Cousin was not aware that an oblongum
could not be a possible form of relative equilibrium; yet Laplace had
drawn attention to this fact in the Figure des Planetes. See Art. 812.
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977. Cousin establishes the theorem due to Maclaurin which La-
grange has discussed in the Berlin Mémoires for 1775: see Art. 720.

Cousin does not, like other French mathematicians, assert that
Maclaurin only enunciated the theorem: Cousin says more cautiously
on his page 148:

Maclaurin a cherché (Traité des fluxions, no. 653) s’il n’y auroit pas quelque
analogie semblable entre des sphéroïdes homogenes qui ne seroient pas des
solides de révolution….

Cousin’s demonstration is somewhat simpler than Lagrange’s; I sup-
pose it is Cousin’s own, for no reference is given.

978. Certain approximate formulæ which Cousin gives may be repro-
duced; his notation is rather different from that which is common, and
thus his results may be usefully recorded.

Let 𝑐 be the smaller semiaxis, and 𝑐 (1 + 𝛼) the larger semiaxis of an
ellipsoid of revolution. Then for an oblatum:
the attraction at the pole

=
4𝜋𝜌𝑐
3

{1 +
4𝛼
5
−
2𝛼2

7
+
8𝛼3

105
−…} ;

the attraction at the equator

=
4𝜋𝜌𝑐
3

{1 +
3𝛼
5
−
9𝛼2

35
+
11𝛼3

105
−…} .

And for an oblongum:
the attraction at the pole

=
4𝜋𝜌𝑐
3

{1 +
𝛼
3
−
2𝛼2

7
+
22𝛼3

105
−…} ;

the attraction at the equator

=
4𝜋𝜌𝑐
3

{1 +
2𝛼
5
−
9𝛼2

35
+
16𝛼3

105
−…} .
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Then if an oblatum of rotating fluid is in relative equilibrium and 𝛽
denote the ratio of centrifugal force at the equator to the gravity there,
not the attraction there, we must have

𝛽 =
4𝛼
5
−
2𝛼2

5·35
+

8𝛼3

25·35
−…

whence
𝛼 =

5𝛽
4
+
5𝛽2

224
−
135𝛽3

6272
−…

Here 𝛽 =
𝑗

1 − 𝑗
where 𝑗 denotes the ratio of centrifugal force at the

equator to attraction there.

979. Cousin investigates approximate expressions for the attraction
of an ellipsoid, not of revolution, at a point on its surface. He applies
them to determine the form of relative equilibrium of the moon, sup-
posed homogeneous and fluid. The investigation is of the same charac-
ter as Laplace had given in his Figure des Planetes; but Cousin does not
refer to any preceding author for it: see Art. 809.

980. Cousin proposes on his page 156 to pass to the case in which
the fluid is not homogeneous but composed of ellipsoidal shells. He says
on his page 158 that he has tried to develop and generalise what Clairaut
had said in the second and third chapters of the second part of his Figure
de la Terre. The attempt at generalisation consists in discussing the rel-
ative equilibrium of a revolving ellipsoid which is nearly spherical. See
Cousin’s pages 156…163. The process is long and tedious. Cousin arrives
at an equation connecting the angular velocity with the ellipticities; and
at a result which is analogous to Clairaut’s theorem. But the investiga-
tion is a failure. Cousin makes out that the attraction on a particle at
the surface of an ellipsoid is exerted in the meridian plane, which is not
true to the order of approximation he requires. The fact is that he takes
the particle on the surface to be in a principal plane, and then he forgets
this restriction.
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We now know from the discussions on Jacobi’s theorem that the rel-
ative equilibrium of a rotating ellipsoid of fluid is indeed possible, but in
that case the ellipsoid is not nearly spherical.

If Cousin’s investigation had been accurate, he might have drawn
from his equation (𝐾) on page 163, the inference that the nearly
spherical ellipsoid could not be in relative equilibrium. For in this
equation sin 𝛽 is variable, and so we must have 𝐻 − 𝐼 = 0, and this
renders the ellipsoid a figure of revolution. It is curious that he makes
no remarks on this fact, which presents itself so naturally in his
investigation. But he gives no adequate account throughout of what he
wishes to prove or of what he has proved.

981. Cousin then considers the special case of an oblatum; his result
is correct, and exactly corresponds with that which is given by Clairaut
on his page 217, and which we have reproduced in Art. 323. Cousin
then proceeds to urge the same objection to another formula of Clairaut’s
which D’Alembert brought forward in the sixth volume of the Opuscules
Mathématiques, and elsewhere: see Arts. 328 and 377. The objection
seems to me to be of no importance.

Cousin arrives at what I call Clairaut’s derived equation: see Art. 343.

982. Cousin’s pages 167…176 are taken from Laplace’s third memoir,
to which, and to the second memoir, Cousin refers. The main result is
that which we have noticed in Art. 765, and which is embodied in the
second equation of Art. 773.

The error or misprint which occurred for a moment in Laplace seems
to be seriously adopted by Cousin: see Art. 769.

Cousin, in fact, allows himself to use the integrals ∫
𝑑𝑦
cos 𝑦

and

∫ tan 𝑦𝑑𝑦, between the limits 0 and 𝜋; but the expression to be

integrated becomes infinite, and so we cannot trust the process.
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However, Cousin’s final results are correct, as they can be obtained
without this suspicious step: Laplace himself obtained them correctly.

983. On the whole, although I consider that the design of such
a work as Cousin’s is excellent, I cannot praise his performance. He
presents Clairaut’s main results, substituting more analytical work for
Clairaut’s, which has a geometrical character; and he gives the substance
of Laplace’s third memoir. He adds nothing of his own; nor does he
effect any improvement which renders the investigations more simple
or more interesting. As we have seen he is not uniformly accurate; and
his work is rendered repulsive by the want of distinct statements as to
what he is about to investigate. There is a meagre summary on pages
314 and 315 of the contents of the chapter; but it is far too brief.

Cousin does not introduce the Potential function, nor Laplace’s func-
tions, though both of these had already been brought under the notice
of mathematicians. And he never refers to the work of Laplace on the
Figure of the Planets, of which we have given an account in Chapter xxi.

984. In the Philosophical Transactions for 1785, published in that
year, we have a memoir entitled An Account of the Measurement of a
Base on Hounslow-Heath. By Major-General William Roy.

The measurement of this base may be considered to be the founda-
tion of the important Trigonometrical Survey of Great Britain. Other
memoirs relating to the progress of the survey are given in the Philo-
sophical Transactions for 1790, 1795, 1797, 1800 and 1803.

The memoirs are substantially reproduced in the Account of the Oper-
ations carried on for accomplishing a Trigonometrical Survey of England
and Wales…. This work consists of three quarto volumes published in
1799, 1801 and 1811 respectively: in the prefaces to the first and third
volumes will be found notices of the differences between the original
memoirs and the republication. We shall not need to give any notice
of the original memoirs.
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The account of the measurement of the base seems to have been
translated into French: see Voiron’s Histoire de l’Astronomie, page 228:
he calls the locality Houslonwheat.

985. In the Paris Mémoires for 1785, published in 1788, there is a
memoir by La Lande, entitled Mémoire sur la quantité de l’aplatissement
de la Terre. The memoir occupies pages 1…8 of the volume.

La Lande refers to observations of the length of the seconds pendu-
lum at Spitzbergen, made by Lyons in 1773. From this, and Bouguer’s
determination of the length of the pendulum at the equator, La Lande

obtains
1
185

as the value of Clairaut’s fraction. Then Clairaut’s theorem

gives
1
302

for the ellipticity, so that
1
300

may be conveniently adopted.

These values differ very little from those at present received.
We see on page 7 that La Lande now possessed the toise which for-

merly belonged to Mairan, and considered it to be
1
11

of a line shorter

than the toise of Peru.

986. In the Philosophical Transactions for 1787, published in that
year, there is a memoir entitled An Account of the Mode proposed to be
followed in determining the relative Situation of the Royal Observatories of
Greenwich and Paris. By Major-General William Roy. The memoir occu-
pies pages 188…228 of the volume; with an Appendix on pages 465…470.

The memoir begins by referring in these words to the operation
which we noticed in Art. 984:

Two years have nearly elapsed since an account of the measurement of a
base on Hounslow-Heath was laid before the Royal Society, being the first part
of an operation ordered by his Majesty to be executed for the immediate purpose
of ascertaining the relative situations of the Royal Observatories of Greenwich
and Paris; but whose chief and ultimate object has always been considered of
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a still more important nature, namely, the laying the foundation of a general
survey of the British Islands.

The memoir points out the stations which would be suitable for de-
termining the relative situation of the two Observatories. There is an ac-
count of the execution of the proposed design in the Philosophical Trans-
actions for 1790, which is reproduced in the work cited in Art. 984.

On pages 224 and 225 of the memoir it is suggested that trigonomet-
rical surveys might be undertaken with advantage, in the East Indies,
near the mouth of the Amazon, and in Russia. The first and the last of
these operations have since been conducted on a very extensive scale; let
us hope that Brazil will soon undertake the other.

The memoir contains some elaborate numerical calculations which
are more closely connected with our subject than the details of the pro-
posed survey. A table is given in which seven numerical results taken
from the great French arc of the meridian are compared with the val-
ues which would be obtained from certain assumed forms of the Earth.
Ten such assumed forms are considered, namely, a sphere, seven ellip-
soids of revolution, and two other spheroids. The differences between the
observed and the calculated values are much the least for the spheroid
which represents Bouguer’s hypothesis, that the increment of the radius
of curvature varies as the fourth power of the sine of the latitude. Gen-
eral Roy gives a decided preference to this hypothesis; he is, I think, the
only follower of Bouguer in this respect. We read in a note on page 211
of the memoir:

… when the comparison is fairly drawn between this and every other sys-
tem that has hitherto been submitted to the consideration of the public, M.
Bouguer’s will be found to be justly entitled to the preference, which I have
here endeavoured to give it. His works shew, that he was a man of very supe-
rior abilities, eminent as a mathematician, and perhaps the best practical one
that ever existed.

I was glad to find the high opinion which I had previously formed
of Bouguer confirmed by the testimony of General Roy, which I had not
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seen when my Article 363 was written.

987. There are some points which require notice in General Roy’s
memoir.

The first ellipsoid which he considers is one in which the ratio of
the axes is nearly that of 179 to 178. This ratio has been assumed on the
authority of pendulum experiments; it is not quite clear to me how the
ratio was deduced. General Roy says:

With regard to the first ellipsoid, supposing the earth to be homogeneous, it
is well known, that the ratio of its semidiameters may be found, by comparing
with each other the lengths of the pendulums that vibrate seconds in different
latitudes.

What I think General Roy did was simply to make use of the theorem
given in Art. 33; but this is very strange, because we know that if the
Earth be considered as a homogeneous fluid, we have also the theorem

given in Art. 28, namely, that 𝜖 =
5𝑗
4
; and it is a very arbitrary process

to adopt one of these two results of theory and reject the other.
The last ellipsoid considered is one in which the ratio of the axes is

that of 540 to 539: we are not told what suggested the assumption of this
ratio.

General Roy also gives a table of the lengths of degrees of the merid-
ian, and of degrees of great circles perpendicular to the meridian, and of
degrees of great circles oblique to the meridian, calculated for Bouguer’s
spheroid which seemed to agree so well with the observations. But a
formula given by Bouguer presented obvious difficulty, and General
Roy made some arbitrary changes in consequence. Maskelyne however
pointed out that there was a misprint in Bouguer’s formula; this had led
to the difficulty and caused some error in General Roy’s calculations:
the Appendix to the memoir relates to this matter. I may state that the
misprint in Bouguer’s formula would seem to be sufficiently obvious:
I had corrected it in my copy of the book before I saw General Roy’s
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memoir.
Some other errors in the present memoir are corrected in the Philo-

sophical Transactions for 1790; see page 201 and a page of Errata.

988. A few words may be given to two works by one author, which
profess to treat on our subject, but are quite worthless.

The first is entitled, An entire new work, and method of proceeding
to discover the variation of the Earth’s diameters, … by Thomas Williams,
Inventor … London … 1786.

The second is entitled, Method to discover the difference of the Earth’s
diameters; … by Thomas Williams. London … 1788.

The first is in quarto and consists of a Title and text on 16 pages,
and 4 pages of Tables. The second is in octavo, and consists of viii + 75
pages, besides Errata and Tables on 14 pages, and two Plates.

The pamphlet in quarto gives an outline of the author’s notions,
which are exhibited at greater length in the octavo volume. He was
obviously an illiterate and unscientific person, and his publications
consist of arbitrary hypotheses and assertions; they are, moreover, so
obscure as to be almost unintelligible. In modern language we may say
that he assumes the formula 𝑎 + 𝑏𝑛2 to represent the length of a degree
of the meridian; where 𝑛 is the number of degrees in the latitude, and
𝑎 and 𝑏 are constants. He determines the constants by the lengths of
the degrees in Peru and Lapland, and he maintains that the formula
will then agree reasonably well with the other measured degrees.

Moreover he asserts that the ratio of the lengths of the two extreme
degrees of the meridian is also the ratio of the diameters. Thus he con-
cludes that the equatorial diameter is to the polar as 46 is to 45; and
consequently that the polar diameter is 174 miles shorter than the equa-
torial.

The author touches on the subject of a universal standard for weights
and measures. He suggests that the English foot should be defined, such
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that 365472 feet will be the length of the degree of the meridian in the
latitude of London. For a unit of weight he suggests the weight of a
cubic foot of sea-water.

Bound up with the copy of the octavo volume which I have exam-
ined, there is a printed document by the author, entitled, Proposals for
defraying, by subscription, the expences attending the making experiments
for ascertaining whether the Earth be a solid body, as at present supposed,
or only a shell. The nature of the experiments is not stated; the author
thinks that from some calculations and experiments which he has al-
ready made, “the Thickness of Matter composing the Shell is not above
50 Miles.”

The copy of the quarto pamphlet which I have examined contains
the following note in manuscript, which is probably due to the author
himself:

If any part of this work should seem ambigious and not fully comprehended
in so short a space the Author is ready to illusterate any such part.

And it is also the Authors earnest request that if any person aquainted with
the subject Judge it to contain any Error to point out the Error and send it me
as my object in view above althings is the Truth of the thing Asserted and which
all the World ought to be acquainted with, as the Error arising in a misconcep-
tion of this Matter is a Source for many others.

989. In the Paris Mémoires for 1787, published in 1789, will be found
some articles bearing indirectly on our subject, which we will briefly no-
tice.

On pages 216…222 there is a memoir by La Lande, Sur la mesure de
la Terre, que Fernel publia en 1528.

This memoir is important in connexion with the history of the mea-
surement of the length of a degree; but this is a matter which we do not
profess to treat upon with any detail. Fernel observed the sun’s merid-
ian altitude at Paris; and then proceeded northwards for one degree. The
length was determined from the number of revolutions of the wheel of a
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carriage by which he returned to Paris. The length of a degree thus de-
duced is usually given as 56746 toises. La Lande however considers that
allowance should be made for a change in the length of the toise, thus
bringing Fernel’s result to 57070 toises, which differs by only a toise from
the received value at the date of La Lande’s memoir. But there seems to
be a serious error as to what was really the length of a foot according
to Fernel, which completely changes La Lande’s conclusion: see Penny
Cyclopædia, article Weights and Measures.

990. On pages 352…383 there is a memoir by Legendre entitled, Mé-
moire sur les Opérations trigonométriques, dont les résultats dépendent de
la figure de la Terre.

This memoir investigates formulæ which are necessary for the reduc-
tion and the calculation of triangles on the surface of a spheroid. The
formulæ are applied to the triangles formed between Dunkirk and Green-
wich.

The memoir contains, I presume for the first time, the theorem which
we now call Legendre’s theorem; it is not demonstrated, but only enunci-
ated in these words:

Théorème concernant les triangles sphériques, dont les côtés sont très-petits
par rapport au rayon de la sphère.

Si la somme des trois angles d’un triangle sphérique infiniment petit, est

supposée 180d+𝜔, et que de chaque angle on retranche
1
3
𝜔, afin que la somme

des angles restans soit précisément de 180d, les sinus de ces angles seront
entr’eux comme les côtés opposés; de sorte que le triangle, avec les angles
ainsi diminués, pourra être considéré et résolu comme s’il étoit parfaitement
rectiligne.

991. On pages 506…529 there is a memoir by Monge entitled, Mé-
moire sur quelques effets d’attraction ou de répulsion apparente entre les
molécules de matière.
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This is an account of experiments relating to phenomena of the na-
ture of what is called capillary attraction.

992. In the Paris Mémoires for 1788, published in 1791, will be found
some articles bearing indirectly on our subject: we will give the titles:

I. A report made to the Academy on the choice of a unit of measures,
by Borda, Lagrange, Laplace, Monge, and Condorcet. The report is dated
19 March, 1791: it occupies pages 7…16 of the historical portion of the
volume.

II. An account of the labours of the Academy on the project of uni-
formity in measures and weights: it occupies pages 17…20 of the histor-
ical portion of the volume.

III. A memoir by Cassini on the connexion of the Observatories of
Paris and Greenwich, with a sketch of the antecedent geographical oper-
ations in France: it occupies pages 706…717 of the volume.

IV. A memoir by Brisson on the uniformity of measures of length,
volume, and weight; and on a new method of constructing toises which
were to serve as standards: it occupies pages 722…727 of the volume.

V. A memoir by Legendre on the series of triangles which serve to
determine the difference of longitude between the observatories of Paris
and Greenwich. This memoir occupies pages 747…754 of the volume: it
is a continuation of a memoir in the Mémoires for 1787.

993. A very important theorem with respect to attractions occurs in a
memoir on Electricity, by Coulomb, in the Paris Mémoires for 1788, pub-
lished in 1791: see page 677 of the volume. The theorem may be thus
enunciated: Let there be a closed film of matter which attracts according
to the ordinary law; let the form of the film be any whatever, provided
that the resultant attraction at an internal point is zero: then the resul-
tant attraction at an external point which is indefinitely near any part of
the surface is 4𝜋𝜌, where 𝜌 is such that 𝜌𝜔 is the quantity of matter in
an element 𝜔 of the film close to the attracted point.
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The proposition is not formally enunciated in this manner by
Coulomb; but it is substantially involved in his demonstration. The
principle of his demonstration is the same as had been used by Lagrange
in 1759: see Art. 561.

Suppose two points 𝑃 and 𝑃′ indefinitely close to the film, on a com-
mon normal to the surface; let 𝑃 be inside and 𝑃′ outside. Through 𝑃
draw a plane at right angles to the normal; this will divide the film into
two parts, an infinitesimal part, say 𝑆, and the remainder of the film, say
𝑆′.

Now consider 𝑆 as an infinitesimal plane circular area; its action at
𝑃′ will be 2𝜋𝜌, along the normal: this follows from elementary investi-
gations on attraction. The action of 𝑆 at 𝑃 will be ultimately equal in
amount to the action of 𝑆 at 𝑃′, though in an opposite direction; thus
this action is also 2𝜋𝜌. Then since a particle at 𝑃 would be in equilib-
rium, the action of 𝑆′ at 𝑃 must also be equal to 2𝜋𝜌, and be in the
opposite direction to the action of 𝑆 at 𝑃, that is in the same direction
as the action of 𝑆 at 𝑃′. Finally, the action of 𝑆′ at 𝑃′ will be ultimately
equal to the action of 𝑆′ at 𝑃, that is to 2𝜋𝜌. Thus the joint action of 𝑆
and 𝑆′ at 𝑃′ is 4𝜋𝜌.

In the particular case in which the film is bounded by concentric
spherical surfaces, the proposition is an immediate result of theorems
given by Newton. If I understand the matter rightly, the order of
Coulomb’s investigations in electricity with respect to the proposition
was the following: the result given by Newton’s theory for the spherical
film was verified experimentally; then experiment shewed that the
result was true for films of other forms: and finally the theoretical
demonstration of the general proposition presented itself.

Coulomb fell into a slight error in the application of his theorem: see
the Cambridge and Dublin Mathematical Journal, Vol. i. page 93.

994. The first edition of a famous work by Lagrange, appeared in
1788 in one volume, entitled, Méchanique Analitique. There is nothing
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in this edition which bears explicitly on our subject. But on his page 474
Lagrange gives, in fact, an integral in the form of a series of the partial
differential equation

𝑑2𝑉
𝑑𝑎2

+
𝑑2𝑉
𝑑𝑏2

+
𝑑2𝑉
𝑑𝑐2

= 0;

and from this integral, as we shall see hereafter, Biot drew important
inferences with respect to the attraction of a body.

995. We next consider a memoir entitled, On the Resolution of Attrac-
tive Powers. By Edward Waring, M.D., F.R.S., and Lucasian Professor of
Mathematics at Cambridge.

This memoir is contained in the Philosophical Transactions for 1789,
published in that year. It occupies pages 185…198: it was read May 28,
1789.

This memoir investigates differential expressions for the attraction of
a straight line, a plane area, and a solid, the law of attraction being ex-
pressed by any function of the distance. It then passes to other subjects,
as for example the differential expression for the surface of any solid.
I cannot understand on what ground this memoir was published, for it
does not appear to contain the slightest novelty.

996. In the Ephemerides Astronomicæ for 1791, published at Vienna
in 1790, there is a memoir entitled Dissertatio de Figura Telluris e Solis
Eclipsibus deducta, a Francisco de Paula Triesnecker; the memoir occu-
pies pages 387…412 of the volume.

This memoir belongs to practical astronomy rather than to the subject
of which we are tracing the history; so that a very brief indication of its
nature is all that need be given here.

If the circumstances of an eclipse of the sun are carefully observed
we may obtain the value of the errors in the moon’s longitude and lat-
itude which are recorded in the tables; but this supposes that we know
the figure of the earth, which is required in order to allow for parallax.
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If we assume that the ratio of the error in latitude to the error in longi-
tude is sufficiently known, we can apply our observations of an eclipse
to yield information as to the ellipticity of the earth.

Sixteen eclipses of the sun are finally used in the memoir; these oc-
curred at various dates between 1706 and 1788: the ellipticity deduced is
1
329

. But the process is very unsatisfactory; for it is plain that the obser-

vations are not of sufficient accuracy to warrant any strong reliance; and
they are treated in a very arbitrary manner to make them yield a result.
The chief practical obstacles consist in the difficulty of determining the
instants of initial and final contact of the sun and moon, and the un-
certainty as to the values of the apparent diameters of these bodies. The
remarks made on these points may be of some interest to astronomical
observers; but regarded as a contribution to our subject the memoir may
be safely pronounced of no value.

997. A memoir is contained in the Philosophical Transactions for
1791, published in that year, entitled Considerations on the Convenience
of measuring an Arch of the Meridian, and of the Parallel of Longitude,
having the Observatory of Geneva for their common Intersection. By Mark
Augustus Pictet, Professor of Philosophy in the Academy of Geneva.

The memoir occupies pages 106…127 of the volume, and is accom-
panied by a map.

Pictet considered that an arc of meridian of about 1° 24ʹ, and an arc
of longitude of about 2°, intersecting at Geneva could be very advan-
tageously measured; and he wished the Royal Society to undertake the
operation. He indicates on the map suitable places for the various sta-
tions.

998. A memoir by Waring On Infinite Series is contained in the Philo-
sophical Transactions for 1791, published in that year. On pages 161…164
of the memoir Waring touches on the subject of Attraction. He shews
how to calculate the attraction of a solid of revolution at any point of
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the axis, when the attraction varies as any power of the distance; he
considers especially the case in which the solid is a sphere, and gives
the approximate result when the solid deviates but little from a sphere.

The investigations contain nothing new or important.

999. In the Philosophical Transactions for 1791, published in that
year, we have a memoir entitled The Longitudes of Dunkirk and Paris
from Greenwich, deduced from the Triangular Measurement in 1787, 1788,
supposing the Earth to be an Ellipsoid. By Mr Isaac Dalby. The memoir
occupies pages 236…245 of the volume.

The memoir consists chiefly of numerical results. Lengths are as-
sumed for the major and minor axes of the generating ellipse, which are
nearly in Newton’s proportion of 230 to 229; and it is shewn that the
various measured arcs, neglecting Beccaria’s, agree remarkably well with
the values they would have on the assumed oblatum.

On page 240, a theorem is used which is the same with respect to the
major axis of an ellipse as that enunciated in Art. 479 is to the minor
axis.

1000. A volume was published in 1791 entitled Exposé des opérations
faites en France en 1787, pour la jonction des observatoires de Paris et de
Greenwich, par M. M. Cassini, Méchain et Le Gendre. See La Lande’s Bib-
liographie Astronomique, page 618.

I have not been able to consult this volume; it is the French con-
tribution corresponding to that made by the English under the superin-
tendence of General Roy to the determination of the relative situations
of the two great observatories: see Art. 986. I presume this French work
embodies the memoirs on the subject which we have noticed in Art. 992.

The Cassini here named was the son of Cassini de Thury; and is often
distinguished from the other members of his illustrious family as Cassini
IV.
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1001. We pass to a memoir entitled Nuovo e sicuro mezzo per ri-
conoscere la figura della terra. Del Sig. Antonio Cagnoli. This memoir
is contained in the Memorie di Matematica … della Società Italiana, Vol.
6, Verona 1792. It occupies pages 227…235 of the volume.

Observations are to be made of the duration of occultations of fixed
stars by the moon; and this duration is to be compared with that cal-
culated on the supposition that the Earth is spherical. The difference
in the duration will, according to Cagnoli, amount to 86 seconds under
favourable circumstances, or even to 130 seconds. He considers that in
this way the Figure of the Earth may be ascertained.

He says on his page 234, he has elsewhere shewn that the discordant
results obtained in measuring degrees on the Earth’s surface may be ex-
plained by irregularity in the density of the upper strata. I do not know
to what publication he here alludes.

The most interesting circumstance connected with Cagnoli’s mem-
oir is the attention which it received from a very eminent English as-
tronomer. A pamphlet was printed for private circulation entitled, Mem-
oir on a new and certain method of ascertaining the Figure of the Earth
by means of occultations of the fixed Stars. By A. Cagnoli. With notes and
an appendix by Francis Baily, London, 1819.

This is a very interesting production; in consists of 44 octavo pages,
besides the Title and Advertisement.

Baily urges private observers to attend to the suggestions for ascer-
taining the Figure of the Earth. He also strongly recommends the for-
mation of an Astronomical Society; and this was soon afterwards carried
into effect.

Baily alludes to the dissertation on the Figure of the Earth by Tries-
necker, which we have noticed in Art. 996. But Baily had not been able
to procure a sight of the dissertation.

Baily says in a note on page 8:
I find it difficult here to give a faithful translation of the author’s words: the
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original runs thus, Senza che ci possiamo attenere alle osservazioni più sicure:
ed una sola fase, &c. &c.

He translates this,
“Can we, indeed, expect to obtain more certain observations? since a

single observation….”
The fault is that Baily throws into an interrogative form what Cagnoli

gives as a statement. Cagnoli has just been considering an extremely
unfavourable case, and shews that even there his method maintains its
credit; and then he proceeds: Besides we may obtain more certain obser-
vations; since a single observation….

1002. In the Philosophical Transactions for 1792, published in that
year, we have an Account of the Measurement of a Base Line upon the Sea
Beach, near Porto Novo, on the Coast of Coromandel, by Michael Topping;
this account occupies pages 99…114 of the volume.

The base was to serve for a series of triangles carried from Madras
down the coast of Coromandel. The base did not form one straight line,
but consisted of six portions, involving slight changes of direction at five
points. The total length deduced for the distance between the extreme
stations was 11636 yards. It is plain from the account that the operations
were of a rather rude kind; and the result is not of any importance in
the history of our subject. The great Indian arc which has since been
measured does not pass through the locality of this early base, but some
degrees to the west of it.

1003. The third edition of La Lande’s Astronomie was published in
1792, in three volumes quarto. The pages 1…47 of the third volume form
the 15th Book, entitled De la Grandeur et de la Figure de la Terre.

The pages are not very correctly printed, and contribute nothing new
to the subject. But they collect useful information and references, espe-
cially concerning the historically famous toises of the North and of Peru,
and that which had belonged to Mairan. There is also a table of the ob-
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served lengths of the seconds pendulum with references.

1004. We have now to consider a memoir by Lagrange, entitled, Sur
les Sphéroïdes elliptiques.

This memoir is contained in the volume for 1792 and 1793 of the
Berlin Mémoires, published in 1798: the memoir occupies pages 258…270
of the volume.

1005. Let there be an ellipsoid whose equation is

𝑥2

𝑎2
+
𝑦2

𝑏2
+
𝑧2

𝑐2
= 1; (1)

Lagrange first finds the value of

∭𝑥2𝑚𝑦2𝑛𝑧2𝑙𝑑𝑥𝑑𝑦 𝑑𝑧,

where 𝑚, 𝑛, 𝑙 are positive integers, and the integration is extended over
all the elements of the ellipsoid.

Lagrange shews that the value of this definite integral is

1 . 3 . 5… (2𝑚 − 1)1 . 3 . 5… (2𝑛 − 1)1 . 3 . 5… (2𝑙 − 1)
5… (2𝑚 + 2𝑛 + 2𝑙 + 3)

𝑎2𝑚𝑏2𝑛𝑐2𝑙𝑀,

where
𝑀 =

4𝜋
3
𝑎𝑏𝑐.

This might now be treated as an obvious example of Dirichlet’s the-
orem in definite integrals: see Integral Calculus, Chapter xii.

Lagrange’s own method is very ingenious; it may be understood from

considering a particular case. Suppose that we require ∭𝑥4𝑑𝑥𝑑𝑦 𝑑𝑧:

denote it by 𝑈. Transform to polar coordinates by the usual substitutions,

𝑧 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃 sin𝜙, 𝑥 = 𝑟 sin 𝜃 cos𝜙.
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Thus we obtain ∭𝑟6 sin5 𝜃 cos4 𝜙𝑑𝜃 𝑑𝜙𝑑𝑟. The integration with re-

spect to 𝑟 can be immediately effected; and this gives

𝑈 =
1
7
∬𝑟17 sin

5 𝜃 cos4 𝜙𝑑𝜃 𝑑𝜙,

where 𝑟1 is given by the following equation which is deduced from (1)

𝑟12 (
sin2 𝜃 cos2 𝜙

𝑎2
+
sin2 𝜃 sin2 𝜙

𝑏2
+
cos2 𝜃
𝑐2

) = 1.

The limits of the integrations are 0 and 𝜋 for 𝜃, and 0 and 2𝜋 for 𝜙.
Let

𝑎2 =
1
𝛼
, 𝑏2 =

1
𝛽
, 𝑐2 =

1
𝛾
, and 𝑟12 =

1
𝑅
;

then

𝑈 =
1
7
∬

sin5 𝜃 cos4 𝜙𝑑𝜃 𝑑𝜙
𝑅 7

2
, (2)

where
𝑅 = 𝛼 sin2 𝜃 cos2 𝜙 + 𝛽 sin2 𝜃 sin2 𝜙 + 𝛾 cos2 𝜃.

In like manner if 𝑀 denote the volume of the ellipsoid, we shall find
that

𝑀 =
1
3
∬

sin 𝜃 𝑑𝜃 𝑑𝜙
𝑅 3

2
. (3)

From (2) and (3) we find that

𝑈 =
2
5
.
2
7
.
𝑑2𝑀
𝑑𝛼2

. (4)

Then as we can easily shew that

𝑀 =
4𝜋

3√(𝛼𝛽𝛾)
,
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we have from (4)
𝑈 =

1 . 3
5 . 7

𝑀
𝛼2

=
3
5 . 7

𝑀𝑎4.

1006. It will be observed that (4) is the most important equation in
the preceding Article. In the same manner as (4) was established we can
shew that

∭𝑥2𝑚𝑦2𝑛𝑧2𝑙 𝑑𝑥𝑑𝑦 𝑑𝑧

= (−1)𝑙+𝑚+𝑛 2
5
.
2
7
.
2
9
…

2
2𝑚 + 2𝑛 + 2𝑙 + 3

𝑑𝑚+𝑛+𝑙𝑀
𝑑𝛼𝑚𝑑𝛽𝑛𝑑𝛾𝑙

.

1007. Lagrange now proceeds to consider the attraction of the ellip-
soid on an external particle. He introduces what we call the potential
function, and denotes it by 𝑉. If 𝑓, 𝑔, ℎ denote the coordinates of the

attracted particle, the attractions in the corresponding directions are
𝑑𝑉
𝑑𝑓

,

𝑑𝑉
𝑑𝑔

,
𝑑𝑉
𝑑ℎ

. Lagrange does not claim these expressions for himself; and we

know that they are really due to Laplace: see Art. 789.

1008. Lagrange says on his page 263:
La recherche de l’attraction du sphéroïde dépend donc simplement de la

détermination de la quantité 𝑉 en fonction de 𝑎, 𝑏, 𝑐, 𝑓, 𝑔, ℎ. Dans le mé-
moire déjà cité sur l’attraction des sphéroïdes, j’ai résolu la question pour le cas
où le point attiré est dans l’intérieur ou à la surface; et dans une addition à ce
mémoire, imprimée dans le volume de l’Année 1775, je l’ai résolue aussi pour le
cas où le point attiré est sur le prolongement d’un des trois axes. Les autres cas
ont été résolus d’abord par Le Gendre pour les seuls sphéroïdes de révolution,
ensuite par La Place et Le Gendre pour des sphéroïdes quelconques. On ne peut
regarder leurs solutions que comme des chef-d’œuvres d’analyse, mais on peut
désirer encore une solution plus directe et plus simple; et les progrès continuels
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de l’analyse donnent lieu de l’espérer. En attendant, voici l’usage qu’on pourroit
faire des formules précédentes dans cette recherche.

By the memoir already cited, Lagrange means the memoir of 1773;
the attraction is there investigated without any use of the function 𝑉. The
anticipation which Lagrange expresses respecting the progress of analysis
has been completely fulfilled; for by Ivory’s method a most direct and
simple solution of the problem is furnished.

1009. The function 𝑉 is given by

𝑉 =∭
𝑑𝑥𝑑𝑦𝑑𝑧

√{(𝑓 − 𝑥)2 + (𝑔 − 𝑦)2 + (ℎ − 𝑧)2}
.

Let ℎ = 𝜌 cos 𝜆, 𝑔 = 𝜌 sin 𝜆 sin𝜇, 𝑓 = 𝜌 sin 𝜆 cos𝜇; and suppose the
radical in 𝑉 expanded in the form

1
𝜌
+
𝑃1
𝜌2

+
𝑃2
𝜌3

+
𝑃3
𝜌4

+… :

then 𝑃𝑛 will be a homogeneous function of 𝑥, 𝑦, 𝑧 of the degree 𝑛.
It is obvious by the symmetry of the ellipsoid that since the integra-

tions extend over the whole ellipsoid, all the terms which involve odd
values of 𝑛 will disappear in the expression for 𝑉; so that we shall have

𝑉 =
𝑀
𝜌
+

1
𝜌3

∭𝑃2 𝑑𝑥𝑑𝑦 𝑑𝑧 +
1
𝜌5

∭𝑃4 𝑑𝑥𝑑𝑦 𝑑𝑧 +…

1010. Lagrange then considers in detail the terms in 𝑉 which arise
from 𝑃2, 𝑃4, and 𝑃6.

For instance, we must have

𝑃2 = 𝐴𝑥2 + 𝐵𝑦2 + 𝐶𝑧2 + 𝐸𝑦𝑧 + 𝐹𝑧𝑥 + 𝐺𝑥𝑦,

where 𝐴, 𝐵, 𝐶, 𝐸, 𝐹, 𝐺, are certain quantities which are constants with
respect to 𝑥, 𝑦, 𝑧. Hence by the general formula of Art. 1006, we have

∭𝑃2 𝑑𝑥𝑑𝑦 𝑑𝑧 =
𝑀
5
(𝐴𝑎2 + 𝐵𝑏2 + 𝐶𝑐2);
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for the terms which depend on 𝐸, 𝐹, 𝐺 obviously vanish.
But the expression which is under the integral sign in 𝑉 satisfies iden-

tically the well known partial differential equation. Hence we see that

𝑑2𝑃𝑛
𝑑𝑥2

+
𝑑2𝑃𝑛
𝑑𝑦2

+
𝑑2𝑃𝑛
𝑑𝑧2

= 0;

when 𝑛 is greater than 2 this will split up into various equations, because
it is identically true. When 𝑛 = 2 it reduces to

𝐴 + 𝐵 + 𝐶 = 0.

Thus we may put

∭𝑃2 𝑑𝑥𝑑𝑦 𝑑𝑧 =
𝑀
5
{𝐵(𝑏2 − 𝑎2) + 𝐶(𝑐2 − 𝑎2)}.

1011. Lagrange treats the terms which arise from 𝑃4 and 𝑃6 in a simi-
lar manner. In both cases he obtains a result of this character: one factor
is 𝑀, and the other factor is a function of 𝑏2−𝑎2 and 𝑐2−𝑎2. This, as he
himself observes, confirms, as far as it goes, the important theorem due
to Laplace, which we express by saying that the potentials of confocal
ellipsoids at an external point are as their masses.

1012. A memoir by Rumovsky, entitled, Meditatio de Figura Telluris
exactius cognoscenda, is contained in Vol. xiii. of the Nova Acta Acad. …
Petropolitanæ; the volume is for 1795 and 1796; the date of publication
is 1802. The memoir occupies pages 407…417; and there is an account
of it in pages 74 and 75 of the historical part of the volume.

1013. Rumovsky says that slightly different results as to the ellipticity
of the earth have been deduced from the same data by different writers:
he attributes this to the use of approximate formulæ, instead of exact
formulæ. Accordingly he undertakes to compare all the degrees of the
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meridian hitherto measured, both with that of Peru and with that of La-
pland, and to determine the value of the ellipticity from every pair. But
nevertheless he is really content with an approximation, for he, in fact,
assumes that the curvature is constant throughout each separate degree.

Rumovsky obtains by his calculation various values for the ellipticity,

lying between
1
102

and
1
666

. He attributes the discrepancies to the un-

avoidable errors in determining zenith distances; and as an example of
the difficulty of accuracy in such matters, he says that the latitude of the
observatory at Paris is still uncertain to the amount of two seconds.

Rumovsky states that if certain corrections are made in the lengths
of the measured degrees, they will agree very closely, rejecting the Hun-

garian arc, in giving
1
230

as about the value of the ellipticity. The correc-

tions he assigns for the respective degrees in toises are the following: −40
Peru, −105 Cape of Good Hope, +99 Pennsylvania, +75 Italy, +60 North
of France, +48 middle of France, +20 South of France, 0 Piedmont, +42
middle of Austria, −90 Lapland.

These numbers accord fairly with those proposed by Frisi for bringing
the measures into harmony with the same value of the ellipticity: see
page 95 of the work named in Art. 668. The following are some of Frisi’s
proposed corrections, also in toises: −50 Peru, −111 Cape of Good Hope,
+110 Pennsylvania, −82 Lapland.

But although the corrections proposed by Rumovsky are not
extravagant in amount, he agrees with the opinion which he cites from
Boscovich:

quaestionem de magnitudine et figura Telluris ex mensura graduum non
solum absolutam adhuc non esse, sed vix esse inchoatam.

Finally Rumovsky recommends the measurement of arcs of parallel
extending over six or more degrees, the difference of longitudes being
determined by the aid of exact chronometers. He maintains, against the
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opinion of Bouguer, that this is a good practical method for determining
the ellipticity of the Earth; but it is almost superfluous to say that the
method has never been found really advantageous.

The memoir cannot be considered to be of any importance in the
history of our subject.

1014. In the first number of the Bulletin des Sciences, par la Société
Philomatique de Paris, which was published in April 1797, there is a note
on pages 5 and 6, entitled Formules pour déduire le rapport des axes de
la terre, de la longueur de deux arcs du méridien, par le C. R. Prony.

The object of Prony is to supply a formula more exact than the or-
dinary approximations; he gives a result without demonstration, but this
may be easily supplied.

With the usual notation the length of an arc of the meridian between
the latitudes 𝜙1 and 𝜙2 is

𝑎(1 − 𝑒2)∫
𝜙2

𝜙1

(1 − 𝑒2 sin2 𝜙)− 3
2 𝑑𝜙.

Let 𝑘 denote this length; put 𝛽 for 𝜙2 − 𝜙1, and 𝛾 for 𝜙2 + 𝜙1. Then
neglecting powers of 𝑒2 above 𝑒4 we find that

𝑘
𝑎
= 𝛽 −

𝑒2

4
(𝛽 + 3 sin 𝛽 cos 𝛾) −

3𝑒4

16
(
𝛽
4
+ sin 𝛽 cos 𝛾 −

5
8
sin 2𝛽 cos 2𝛾) .

Let letters with an accent apply to another arc of the meridian; then
by division

𝑘
𝑘′

=

𝛽 −
𝑒2

4
(𝛽 + 3 sin 𝛽 cos 𝛾) −

3𝑒4

16
(
𝛽
4
+ sin 𝛽 cos 𝛾 −

5
8
sin 2𝛽 cos 2𝛾)

𝛽′ −
𝑒2

4
(𝛽′ + 3 sin 𝛽′ cos 𝛾′) −

3𝑒4

16
(
𝛽′

4
+ sin 𝛽′ cos 𝛾′ −

5
8
sin 2𝛽′ cos 2𝛾′)

.
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If we neglect 𝑒4 we obtain for a first approximation

𝑒2 =
4(𝑘𝛽′ − 𝑘′𝛽)

3(𝑘 sin 𝛽′ cos 𝛾′ − 𝑘′ sin 𝛽 cos 𝛾)
.

This agrees substantially with Prony’s formula.
Prony gives the result which is obtained by retaining 𝑒4; it may

be easily verified. The subject is fully treated in Puissant’s Traité de
Géodésie; see the third edition of that work, Vol. i. pages 317…320.

1015. In the Philosophical Transactions for 1798, published in 1798,
there is a memoir by Cavendish, entitled Experiments to determine the
Density of the Earth. The memoir occupies pages 469…526 of the vol-
ume: it was read on June 21, 1798.

1016. This famous memoir, although contributing nothing to the the-
ory with which we are engaged, occupies an important place in the list
of experiments and observations connected with the nature of the Earth.
The attraction exerted by large balls of lead on adjacent small bodies
was observed; and from the result the mean density of the Earth was
deduced.

The memoir begins thus:
Many years ago, the late Rev. John Michell, of this Society, contrived a

method of determining the density of the earth, by rendering sensible the
attraction of small quantities of matter; but, as he was engaged in other
pursuits, he did not complete the apparatus till a short time before his
death, and did not live to make any experiments with it. After his death, the
apparatus came to the Rev. Francis John Hyde Wollaston, Jacksonian Professor
at Cambridge, who, not having conveniences for making experiments with it,
in the manner he could wish, was so good as to give it to me.

1017. The only part of the memoir with which we are directly con-
cerned is the investigation on pages 523 and 524 of the attraction of a
rectangular lamina on a particle which is situated perpendicularly over a
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corner of the lamina. Cavendish obtains in finite terms the component
attraction parallel to an edge of the lamina. But he says that he knows
no way of finding the component perpendicular to the lamina except by
an infinite series. He gives accordingly two expressions involving infinite
series. I have verified the correctness of his result. But this component
can be easily expressed in finite terms: see Statics, page 317.

Some formulæ are given on page 476 relating to the influence of a
resistance which varies as the square of the velocity on the motion of
a pendulum: at least they amount to this. I have verified them: but it
seems to me that in the last line but one we must read later instead of
earlier.

1018. Cavendish deduces from his experiments that the mean den-
sity of the Earth is about 5·48 times that of water. He admits that this
differs rather more than he should have expected from the Schehallien
experiment, which gave 4·5.

We have sketched the later history of this subject in Art. 733.

1019. A memoir by Trembley, entitled Observations sur l’attraction et
l’équilibre des Sphéroïdes is contained in the volume for 1799 and 1800 of
the Berlin Mémoires which was published in 1803. The memoir occupies
pages 68…109 of the volume.

1020. In my History of the Theory of Probability I gave an account of
several memoirs by Trembley on that subject; the present memoir is of
the same character as those. Trembley merely presents in another man-
ner results which are already well known; and his methods in general
have no merit to compensate for the want of novelty in the conclusions.

1021. Suppose a mass of rotating fluid in the form of a figure of
revolution to be in relative equilibrium. Let 𝑟 and 𝜃 be the usual polar
coordinates of a point at the surface; and let 𝜔 be the angular velocity.
Let 𝑉 denote the potential of the mass for the assumed point; then we
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know that for relative equilibrium we must have

𝑉 +
𝜔2𝑟2

2
sin2 𝜃 = constant. (1)

Trembley investigates this equation; see his page 73.

1022. Suppose 𝑉1 to denote the value of 𝑉 at the pole; then since
𝜃 = 0 at the pole, we have by (1)

𝑉 +
𝜔2𝑟2

2
sin2 𝜃 = 𝑉1. (2)

Suppose 𝑉2 to denote the value of 𝑉 at the equator, and 𝑎 the equa-
torial radius of the earth; then from (2) we have

𝑉2 +
𝜔2𝑎2

2
= 𝑉1,

so that
𝜔2

2
=

1
𝑎2
(𝑉1 − 𝑉2).

Substitute the value of 𝜔2 in (2), and we obtain

𝑉 = (1 −
𝑟2 sin2 𝜃
𝑎2

)𝑉1 +
𝑟2 sin2 𝜃
𝑎2

𝑉2. (3)

Thus if we know the values of 𝑉1 and 𝑉2 we can infer the value of
𝑉; and this may be advantageous, because the integrations required to
determine the special values 𝑉1 and 𝑉2 may be less complex than the in-
tegration required to determine 𝑉 directly.

This result however is not to be supposed true for every figure, but
only for such a figure as is consistent with relative equilibrium. Trembley
does not make the assertion explicitly, but we may fairly suspect him of
supposing that (3) is an algebraical identity for every figure of revolution.
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1023. Trembley determines the value of 𝑉1 for an oblatum on his
pages 74…81; his method however is most laborious and repulsive. He
keeps the origin of polar coordinates at the centre; if he had imitated
the method given by Lagrange in 1773, and put the origin at the pole,
the result would have been obtained with simplicity in a page.

The result may be easily verified. Let 𝑓, 𝑔, ℎ be the coordinates of
any point within an ellipsoid or on its surface; then it is known that
the resolved attractions parallel to the corresponding axes are respectively
𝐹𝑓, 𝐺𝑔, 𝐻ℎ where 𝐹, 𝐺, 𝐻 are certain constants. Therefore if 𝑉 be the
potential we must have

𝑉 = constant −
1
2
(𝐹𝑓2 + 𝐺𝑔2 + 𝐻ℎ2).

The constant can be determined by actually calculating the value of
𝑉 for the centre of the ellipsoid.

In the case of an oblatum we shall thus obtain

𝑉 =
2𝜋𝑎2√(1 − 𝑒2)

𝑒
sin−1 𝑒 −

1
2
(𝐹𝑓2 + 𝐺𝑔2 + 𝐻ℎ2),

where 𝑎 is the semiaxis major, and 𝑒 the excentricity of the generating
ellipse.

The values of 𝐹, 𝐺, 𝐻 are given in elementary books; for the oblatum
two of them are equal.

Suppose that 𝐻 refers to the polar diameter; then 𝐹 and 𝐺 are equal:
also

𝐻 =
4𝜋
𝑒2

{1 −
√(1 − 𝑒2)

𝑒
sin−1 𝑒} .

We shall thus find that the value of 𝑉 at the pole is

2𝜋𝑏2

sin2 𝜙
{

𝜙
sin𝜙 cos𝜙

− 1} , where 𝜙 = sin−1 𝑒.
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Trembley’s result is equivalent to this, but in obtaining it he employs
a series which is not always convergent.

1024. An algebraical identity occurs in the course of Trembley’s in-
vestigation, which may deserve to be reproduced. He shews that

∑𝑛𝑟(𝐴 + 2𝑟)(𝐴 + 2𝑟 + 2)… (𝐴 + 2𝑟 + 2𝑚) = 0,

where 𝑛𝑟 denotes the 𝑟th term in the expansion of (1−1)𝑛, and ∑ denotes
a summation with respect to 𝑟 from 𝑟 = 0 to 𝑟 = 𝑛 inclusive; and 𝑚 is
zero or any positive integer less than 𝑛 − 1.

Suppose 𝑚 = 0; then we have to shew that

𝐴 −
𝑛
1
(𝐴 + 2) +

𝑛(𝑛 − 1)
2

(𝐴 + 4) − … + (−1)𝑛(𝐴 + 2𝑛) = 0;

and it is obvious that this is true, for the expression is equivalent to
𝐴(1 − 1)𝑛 − 2𝑛(1 − 1)𝑛−1.

Then the general proposition can be established by induction. As-
sume that the expression vanishes when 𝑚 has a certain value. Change
𝑚 into 𝑚+1; and let 𝑈 denote the value of the expression thus obtained:
so that

𝑈 = ∑𝑛𝑟(𝐴 + 2𝑟)(𝐴 + 2𝑟 + 2)… (𝐴 + 2𝑟 + 2𝑚 + 2); (1)

while by hypothesis

0 = ∑𝑛𝑟(𝐴 + 2𝑟)(𝐴 + 2𝑟 + 2)… (𝐴 + 2𝑟 + 2𝑚),

and therefore by changing 𝐴 into 𝐴 + 2 we have

0 = ∑𝑛𝑟(𝐴 + 2𝑟 + 2)(𝐴 + 2𝑟 + 4)… (𝐴 + 2𝑟 + 2 + 2𝑚). (2)

Multiply (2) by 𝐴, and subtract from (1); then we shall find that

𝑈 = −2𝑛∑(𝑛 − 1)𝑟(𝐴 + 2𝑟 + 4)(𝐴 + 2𝑟 + 6)… (𝐴 + 2𝑟 + 4 + 2𝑚),
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and this is zero, by virtue of our assumption, provided 𝑚 is less than
𝑛− 1− 1, that is, provided 𝑚 is less than 𝑛− 2; and this by hypothesis is
the case; for we suppose 𝑚+ 1 less than 𝑛 − 1.

1025. Trembley next obtains on his pages 81…83 the value of 𝑉2 for
an oblatum; see Art. 1022. With the notation used in Art. 1023, it will
be found that this is

𝜋𝑎2 cos𝜙
sin3 𝜙

{𝜙(2 sin2 𝜙 − 1) + sin𝜙 cos𝜙}.

Trembley’s result is equivalent to this; but, as before, in obtaining it
he employs a series which is not always convergent.

1026. Let 𝑈 stand for
1

√(𝑟2 − 2𝑟𝑟′𝜇 + 𝑟′2)
; then we know that

𝑑
𝑑𝜇

{(1 − 𝜇2)
𝑑𝑈
𝑑𝜇

} + 𝑟
𝑑2(𝑟𝑈)
𝑑𝑟2

= 0. (1)

Let 𝑈 be expanded in a series in the form

1
𝑟′
{1 + 𝑃1

𝑟
𝑟′
+ 𝑃2

𝑟2

𝑟′2
+ 𝑃3

𝑟3

𝑟′3
+…} ;

then assuming that in (1) the coefficient of each power of 𝑟 vanishes
separately, we have

𝑑
𝑑𝜇

{(1 − 𝜇2)
𝑑𝑃𝑛
𝑑𝜇

} + 𝑛(𝑛 + 1)𝑃𝑛 = 0. (2)

This is the way in which (2) is universally obtained. Trembley gives
an investigation of (2), in which he does not make the assumption just
stated, but starts with the known form of 𝑃𝑛: see Art. 786. I have not
verified Trembley’s investigation, which occupies his pages 84…89.
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1027. Trembley wishes to shew that 𝑃𝑛 = 1 when 𝜇 = 1, and he
adopts the following extraordinary method:

In (2) suppose 𝜇 = 1; then

2𝜇
𝑑𝑃𝑛
𝑑𝜇

= 𝑛(𝑛 + 1)𝑃𝑛;

therefore
2
𝑃𝑛
𝑑𝑃𝑛
𝑑𝜇

=
𝑛(𝑛 + 1)

𝜇
;

therefore
(𝑃𝑛)2 = 𝐻𝜇𝑛(𝑛+1)

where 𝐻 is a constant. Thus when 𝜇 = 1 we have 𝑃𝑛 = √𝐻; and as
𝐻 does not contain 𝑛, we see that 𝑃𝑛 has the same value when 𝜇 = 1,
whatever be the value of 𝑛. But 𝑃1 = 1 obviously when 𝜇 = 1; therefore,
𝑃𝑛 = 1 when 𝜇 = 1.

It would be difficult to find worse reasoning. We see that 𝜇 is made
equal to unity, and yet supposed to be a variable at the same time. And
even if the resulting value of (𝑃𝑛)2 had been fairly obtained, the constant
𝐻 would be merely constant with respect to 𝜇; to assume that 𝐻 is con-
stant with respect to 𝑛 is to beg the whole question.

1028. On his pages 90…92 Trembley investigates some of the proper-
ties of Legendre’s coefficients, which Legendre himself gave in his second
memoir: see Arts. 825…827. Trembley uses equation (2) of Art. 1026.
From this equation by integrating we obtain

(1 − 𝜇2)
𝑑𝑃𝑛
𝑑𝜇

+ 𝑛(𝑛 + 1)∫
𝜇

0
𝑃𝑛 𝑑𝜇 = constant;

then putting 𝜇 = 0 to determine the constant we have

(1 − 𝜇2)
𝑑𝑃𝑛
𝑑𝜇

+ 𝑛(𝑛 + 1)∫
𝜇

0
𝑃𝑛 𝑑𝜇 = (

𝑑𝑃𝑛
𝑑𝜇

)
0
,
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where the suffix 0 indicates the value when 𝜇 = 0.
Hence putting 𝜇 = 1 we have

𝑛(𝑛 + 1)∫
1

0
𝑃𝑛 𝑑𝜇 = (

𝑑𝑃𝑛
𝑑𝜇

)
0
.

If 𝑛 is even
𝑑𝑃𝑛
𝑑𝜇

has 𝜇 for a factor, and then (
𝑑𝑃𝑛
𝑑𝜇

)
0
= 0.

If 𝑛 is odd (
𝑑𝑃𝑛
𝑑𝜇

)
0
= (−1)

𝑛−1
2

3 . 5…𝑛
2 . 4… (𝑛 − 1)

.

Multiply equation (2) of Art. 1026 by 𝜇𝑚, and integrate; thus

∫
𝜇

0
𝜇𝑚

𝑑
𝑑𝜇

{(1 − 𝜇2)
𝑑𝑃𝑛
𝑑𝜇

} 𝑑𝜇 + 𝑛(𝑛 + 1)∫
𝜇

0
𝑃𝑛𝜇𝑚𝑑𝜇 = 0.

Integrate the first term by parts, and take unity for the upper limit
of integration. Thus when 𝑛 and 𝑚 are both even we can arrive at the
result given in Art. 825.

When 𝑛 is even and 𝑚 is odd we can arrive at the result given in Art.
826. Trembley obtains this result, but he has a superfluous ± before the
right-hand member: nevertheless he says his formula is what Legendre
found, which is untrue.

1029. Return to equation (3) of Art. 1022, and suppose that the body
is very nearly spherical: put 𝑟 = 𝑎(1 + 𝛼𝜂) where 𝛼 is a small quantity,
the square of which may be neglected, and 𝜂 is some function of 𝜃. Thus
we obtain approximately

𝑉 = 𝑉1 cos2 𝜃 + 𝑉2 sin
2 𝜃 + 2𝛼𝜂 sin2 𝜃(𝑉2 − 𝑉1),

and as we are sure that the difference between 𝑉1 and 𝑉2 must be of the
order 𝛼, we have by neglecting 𝛼2

𝑉 = 𝑉1 cos2 𝜃 + 𝑉2 sin
2 𝜃 = 𝑉2 + (𝑉1 − 𝑉2) cos2 𝜃.
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See Trembley’s pages 93 and 96. He says that as the value of 𝑉 in-
volves only cos2 𝜃 the meridian curve must be an ellipse; but this is mere
assertion and not demonstration. He adds:

… On déduit de là le théorème qu’a démontré M. le Gendre, que si l’on
suppose qu’une planète en équilibre ait la figure d’un solide de révolution peu
différent d’une sphère, et soit partagée en deux parties égales par son équateur,
le méridien de cette planète est nécessairement elliptique.

But this understates what Legendre undertook to establish; for Leg-
endre did not limit his figure of revolution to be nearly spherical; see
Art. 844: at least he does not confine himself to the first power of the
ellipticity.

Trembley suggests that probably the theorem of Legendre will also
hold if the figure is nearly spherical, though not necessarily of revolu-
tion; he seems ignorant of the fact that Laplace had already established
this in his fourth memoir: see Art. 858.

1030. On his page 95 Trembley verifies Laplace’s well known equa-
tion for the case of an oblatum of small excentricity: see Art. 852. Taking
𝑎 for the semiaxis major of the oblatum Trembley shews that

1
2
𝑉 + 𝑎

𝑑𝑉
𝑑𝑟

+
2
3
𝜋𝑎2 = 0.

1031. For an oblatum of small excentricity at any point of the surface
Trembley finds that approximately

𝑉 =
𝑀
𝑟
{1 +

1
10
𝑒2𝑎2

𝑟2
−

3
10

cos2 𝜃
𝑒2𝑎2

𝑟2
} ,

where 𝑀 is the mass and 𝑒 the excentricity.
This result is obtained on the assumption which is mentioned in Art.

1022, namely that the oblatum is a form of relative equilibrium for a
rotating fluid; so that it is not demonstrated by Trembley. We may accept
the result as true because we know that the assumed proposition is true.
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Further, Trembley tacitly assumes that this formula is true for any
external point, when at most all that has been shewn by him is that it
may be accepted as true for points on the surface.

Of course this assumption may be justified, but Trembley himself
says nothing about it. We know that for an external point 𝑉 will be of
the form

𝑀
𝑟
+
𝑁2
𝑟2

+
𝑁3
𝑟3

+…

where 𝑀 denotes the mass; and as the expression may be admitted to
hold up to the surface, the values of the constants 𝑁2, 𝑁3, … may be
determined by the aid of the value of 𝑉 at the surface.

The approximate value of 𝑉 which Trembley uses may be easily ver-
ified; see Art. 1010.

1032. From the approximate value of 𝑉 given in the preceding Arti-
cle, Trembley obtains immediately expressions for the attraction resolved
in the direction of the radius vector and at right angles to it. These he
applies on his pages 99…105 to demonstrate various theorems given by
Clairaut; namely, those on Clairaut’s pages 203, 236, 245, 226, and 217:
see Articles 321, 335, 336, 327, and 323.

1033. Pages 105…109 of Trembley’s memoir do not relate to our sub-
ject, but to a theorem demonstrated by Laplace respecting the attraction
of light by a luminous body, in De Zach’s Ephemerides for July, 1799.
Trembley objects to Laplace’s demonstration; I have not examined the
point.

1034. In the Memorie di Matematica … della Società Italiana, Vol.
viii., Modena, 1799, we have a memoir entitled Sopra alcune partico-
larità concernenti la Gravità terrestre, by Gregorio Fontana. The memoir
occupies pages 124…134 of the volume.

Fontana expresses himself dissatisfied with the demonstrations given
of the proposition that the weight of a body resolved along the radius
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varies inversely as the radius, supposing the Earth to be a homogeneous
fluid in relative equilibrium; see Art. 33. Fontana refers specially to a
demonstration given by Boscovich in his De Litteraria Expeditione, page
443. It does not however seem to me that Boscovich is unsound, though
he is brief. I presume that the considerations which Fontana explicitly
furnishes were implicitly understood by Boscovich.

Fontana demonstrates the proposition correctly. He also shews that
the weight of a given body at any point varies as the normal: see Art.
153. He adds some easy propositions respecting the angle of the vertical,
that is, the angle between the normal and the radius at any point of the
Earth’s surface.

The memoir seems to me to have been out of date at its appearance.
It might have had interest and value forty years before, but scarcely at
the time of publication.

1035. In the Mémoires de l’Institut … Vol. ii. published in 1799, there
is a Report entitled Rapport sur la mesure de la méridienne de France et
les résultats qui en ont été déduits pour déterminer les bases du nouveau
systême métrique. This report occupies pages 23…80 of the historical por-
tion of the volume; it was drawn up by Van-Swinden.

This report gives an abstract of the operations for determining the
unit of length and the unit of weight in the French metrical system. It
contains nothing of importance for our subject, as all the details con-
nected with the measure of the meridian are fully exhibited in the work
entitled Base du Système Métrique.

1036. We shall now notice the work which gives an account of the
Trigonometrical Survey of England and Wales; this consists of three
quarto volumes, published respectively in 1799, 1801, and 1811. The
work reproduces in substance various papers which were originally
published in the Philosophical Transactions, with large additions in the
third volume: see Art. 984.
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The volumes are devoted almost entirely to practical details, and
records of observations, and so they do not fall within our prescribed
range. Very few pages treat on theory, and these are not of an attractive
character.

1037. On page 138 of the first volume we have the formula which is
now usually called General Roy’s Rule for computing the spherical excess
in a spherical triangle; the Rule however has been claimed for Mr Dalby:
see Spherical Trigonometry, Chapter x.

On page 154 a section of some importance is commenced, entitled
Of the horizontal Angles on a Spheroid; this is probably due to Mr Dalby:
compare the corresponding section in the Philosophical Transactions for
1790, pages 192…200.

The main design of the section seems to be to establish the follow-
ing theorem: let there be two points on a surface of revolution, and de-
termine at each point the azimuth of the other point; then the sum of
the azimuths will be equal to the sum for two points on a sphere which
have respectively the same latitudes as the points on the surface of rev-
olution, and also the same difference of longitude. But the investigation
is obscure and unsatisfactory, as are also other parts of the section. The
theorem about the sum of the azimuths is however approximately true
if the surface of revolution is nearly spherical: see the Account … of the
Principal Triangulation, in the Ordnance Survey of Great Britain, 1858,
page 236; also the article on the Figure of the Earth in the Encyclopædia
Metropolitana, page 214.

1038. To justify the unfavourable opinion which I have expressed, I
will make a remark which may be of service to a reader of the original
investigation. It will be seen that page 155 professes to establish some
result exactly, that is without approximation; but it is difficult to see pre-
cisely which angles are denoted by the letters employed. I believe it will
be found that when 𝑂 is the middle letter, the angle denoted should be
the angle between some pair of planes which intersect in the straight
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line 𝑂𝑆. Then in the sixteenth line of the page the angle 𝐵𝑂𝐾 means
the angle between the planes 𝐵𝑂𝑆 and 𝐾𝑂𝑆; but in the twentieth line of
the page the angle 𝐵𝑂𝐾 is used for the angle between the planes 𝐵𝑂𝑅
and 𝐾𝑂𝑆: these two meanings of the angle 𝐵𝑂𝐾 are confounded, and
the investigation rendered unsound.

On page 171 the following statement is made:
It has also been conjectured, that the degree in Peru is considerably too long,

in consequence of the lateral attraction of the high lands where the measure-
ment was performed. (Philos. Trans. 1768.)

I can find no authority in the Philosophical Transactions of 1768 for
this statement; and I do not think that there is any value whatever in it.

1039. It may be observed that the measure of an arc of the meridian
of nearly three degrees presented the same result as the early French
operations, namely that the length of a degree appeared to diminish as
the latitude increased: see page 109 of the second part of Vol. ii. of the
work.

For an anomaly as to the latitude of one of the stations see the article
on the Figure of the Earth in the Encyclopædia Metropolitana, page 236.



CHAPTER XXVIII.

LAPLACE, MÉCANIQUE CÉLESTE, First and Second Volumes.

1040. The first two volumes of the Mécanique Céleste were published
in 1799. We shall be principally occupied with the second volume; but a
few pages in the first volume are also devoted to our subject. I shall cite
the pages of the original edition.

1041. The second Chapter of the Second Book of the Mécanique
Céleste is entitled Des équations différentielles du mouvement d’un systême
de corps soumis à leur attraction mutuelle. In §§ 11, 12, and 13 of the
Chapter Laplace digresses to the subject of attraction. The investigations
occupy pages 135…145 of the first volume.

1042. Let 𝑉 denote what we call the potential of an attracting body
on a particle at the point (𝑥, 𝑦, 𝑧). Laplace gives the well known equation

𝑑2𝑉
𝑑𝑥2

+
𝑑2𝑉
𝑑𝑦2

+
𝑑2𝑉
𝑑𝑧2

= 0; (1)

and then shews how it is to be transformed into polar coordinates by the
usual formulæ

𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃 cos𝜙, 𝑧 = 𝑟 sin 𝜃 sin𝜙,

and putting 𝜇 for cos 𝜃: thus (1) becomes

𝑑
𝑑𝜇

{(1 − 𝜇2)
𝑑𝑉
𝑑𝜇

} +
1

1 − 𝜇2
𝑑2𝑉
𝑑𝜙2

+ 𝑟
𝑑2𝑟𝑉
𝑑𝑟2

= 0. (2)

We have already recorded the first appearance of these formulæ, and
stated that the polar form was that originally given; see Arts. 851 and
866.
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1043. If the attracting body be a spherical shell, it is obvious that 𝑉
will not involve 𝜃 or 𝜙, so that it will be a function of 𝑟 only. Thus the
partial differential equation for 𝑉 reduces to

𝑑2𝑟𝑉
𝑑𝑟2

= 0.

Therefore 𝑉 = 𝐴 +
𝐵
𝑟
, where 𝐴 and 𝐵 are arbitrary constants. And

the attraction, being −
𝑑𝑉
𝑑𝑟

towards the origin, is equal to
𝐵
𝑟2
.

Now suppose the attracted particle to be at the centre of the spherical
shell; then it is obvious that the resultant attraction must be zero: thus

𝐵 = 0, when 𝑟 = 0, and therefore 𝐵 must always be zero. Hence
𝑑𝑉
𝑑𝑟

= 0

for all points within the shell.
Next suppose the attracted particle to be outside the shell; then it is

obvious that when the particle is at an indefinitely great distance the
attraction must be the same as if all the attracting mass were collected
at its centre. Thus denoting by 𝑀 the mass of the shell, we must have
𝐵
𝑟2

=
𝑀
𝑟2

when 𝑟 is indefinitely great. Hence 𝐵 = 𝑀 when 𝑟 is indefinitely

great, and therefore 𝐵 = 𝑀 always. Therefore the attraction of a spherical
shell on any external particle is the same as if the shell were collected at
its centre.

1044. The investigation of the preceding Article is unsatisfactory, be-
cause no reason presents itself for the change in the form of 𝑉 in passing
from the hollow part of the shell to the space outside the shell. The fact
is that Laplace’s fundamental partial differential equation for 𝑉 is not
true when the attracted particle is a constituent particle of the attracting
body. It was shewn by Poisson that instead of zero on the right-hand side
of (1) we must then have −4𝜋𝜌, where 𝜌 is the density of the attracting
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body at the point considered. The circumstance that two different deter-
minations of the value of the constant 𝐵 are required, might have sug-
gested that the fundamental equation for 𝑉 could not hold continuously
from the centre of the shell to an infinite distance. For then we should
have no means of knowing at what point one form of 𝑉 should be given
up, and the other form taken.

1045. Laplace now proceeds to determine the laws of attraction
which make the resultant attraction of a spherical shell on an external
particle the same as if the shell were collected at its centre. The problem
was first discussed by Laplace in his Figure des Planetes …: see Art. 817;
the discussion has now passed into the elementary books. In his Figure
des Planetes Laplace employed the expansion of functions in a series by
Taylor’s theorem; in the Mécanique Céleste he does not employ these
expansions: the earlier method has been adopted in our elementary
books.

1046. It has been observed that Laplace’s solution of the problem
involves rather more than it explicitly enunciates; see Schlömilch’s
Zeitschrift für Mathematik und Physik, Vol. v. page 438. We may put the
problem thus: find what must be the law of attraction of the particles
in order that the resultant attraction of a spherical shell on an external
particle may be the same as if this shell were collected at its centre,
and attracted according to some law depending on the distance. In this
enunciation we do not assume that the law of the resultant action is to
be the same as the law of the mutual action. We will solve the problem
as thus enunciated in the manner of the Mécanique Céleste, that is
without expansions.

Let 𝑟 be the radius, 𝛿𝑟 the thickness of a shell, 𝜌 the density. The
attraction of this shell on an external particle at the distance 𝑐 from the
centre may be expressed in the form

2𝜋𝜌𝑟𝛿𝑟
𝑑
𝑑𝑐
𝜓(𝑐 + 𝑟) − 𝜓(𝑐 − 𝑟)

𝑐
.
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This is shewn in the Mécanique Céleste; see also Statics, Chapter xiii.
Let us suppose that the shell is collected at its centre, and that it at-

tracts according to the product of its mass into a certain function of the
distance, which we will denote by 𝜒(𝑐). Then, equating the two expres-
sions of the attraction, we get

2𝜋𝜌𝑟𝛿𝑟
𝑑
𝑑𝑐
𝜓(𝑐 + 𝑟) − 𝜓(𝑐 − 𝑟)

𝑐
= 4𝜋𝜌𝑟2𝛿𝑟𝜒(𝑐). (3)

Integrate with respect to 𝑐; thus

𝜓(𝑐 + 𝑟) − 𝜓(𝑐 − 𝑟) = 2𝑐𝑟∫𝜒(𝑐)𝑑𝑐 + 𝑈𝑐, (4)

where 𝑈 is a constant with respect to 𝑐, so that it may possibly involve
𝑟.

If we represent 𝜓(𝑐 + 𝑟) − 𝜓(𝑐 − 𝑟) by 𝑅 we obtain by differentiating
(4)

𝑑2𝑅
𝑑𝑐2

= 4𝑟𝜒(𝑐) + 2𝑐𝑟𝜒′(𝑐),

𝑑2𝑅
𝑑𝑟2

= 𝑐
𝑑2𝑈
𝑑𝑟2

.

But by the nature of the function 𝑅 we have

𝑑2𝑅
𝑑𝑐2

=
𝑑2𝑅
𝑑𝑟2

;

therefore
4𝑟𝜒(𝑐) + 2𝑐𝑟𝜒′(𝑐) = 𝑐

𝑑2𝑈
𝑑𝑟2

;

therefore
2𝜒(𝑐)
𝑐

+ 𝜒′(𝑐) =
1
2𝑟
𝑑2𝑈
𝑑𝑟2

.



first volume of the mécanique céleste. 204

Since the first member of this equation is independent of 𝑟, and the
second member is independent of 𝑐, each member must be equal to some
constant, which we will denote by 3𝐴. Hence by integration,

𝜒(𝑐) = 𝐴𝑐 +
𝐵
𝑐2
,

where 𝐵 is a new constant.
This gives the law of the resultant attraction. We have now to find

the law of the mutual attraction. We have from (3)

𝜓′(𝑐 + 𝑟) − 𝜓′(𝑐 − 𝑟)
𝑐

−
𝜓(𝑐 + 𝑟) − 𝜓(𝑐 − 𝑟)

𝑐2
= 2 (𝐴𝑐 +

𝐵
𝑐2
) 𝑟;

therefore

𝑐{𝜓′(𝑐 + 𝑟) − 𝜓′(𝑐 − 𝑟)} − {𝜓(𝑐 + 𝑟) − 𝜓(𝑐 − 𝑟)} = 2(𝐴𝑐3 + 𝐵)𝑟. (5)

Differentiate with respect to 𝑐; thus

𝑐{𝜓″(𝑐 + 𝑟) − 𝜓″(𝑐 − 𝑟)} = 6𝐴𝑐2𝑟;

therefore
𝜓″(𝑐 + 𝑟) − 𝜓″(𝑐 − 𝑟) = 6𝐴𝑐𝑟. (6)

Differentiate twice; thus

𝜓‴(𝑐 + 𝑟) − 𝜓‴(𝑐 − 𝑟) = 6𝐴𝑟, (7)

𝜓⁗(𝑐 + 𝑟) − 𝜓⁗(𝑐 − 𝑟) = 0.

This shews that 𝜓⁗(𝑐) must be constant whatever 𝑐 may be. Denote
this by 𝐸; then

𝜓‴(𝑐) = 𝐸𝑐 + 𝐸1,

where 𝐸1 is another constant. Hence by the aid of (7) we get 𝐸 = 3𝐴;
and then

𝜓″(𝑐) =
3𝐴𝑐2

2
+ 𝐸1𝑐 + 𝐸2,
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where 𝐸2 is another constant.
By comparing this with (6) we see that 𝐸1 = 0.
Thus

𝜓′(𝑐) =
𝐴𝑐3

2
+ 𝐸2𝑐 + 𝐸3,

and
𝜓(𝑐) =

𝐴𝑐4

8
+
𝐸2𝑐2

2
+ 𝐸3𝑐 + 𝐸4,

where 𝐸3 and 𝐸4 are constants.
Comparing these with (5) we find that

𝐸3 = −𝐵.

Thus
𝜓′(𝑐) =

𝐴𝑐3

2
+ 𝐸1𝑐 − 𝐵;

that is
𝑐∫𝜙(𝑐)𝑑𝑐 =

𝐴𝑐3

2
+ 𝐸1𝑐 − 𝐵,

where 𝜙(𝑐) is the function of the distance which determines the law of
mutual action.

Hence
∫𝜙(𝑐) 𝑑𝑐 =

𝐴𝑐2

2
+ 𝐸1 −

𝐵
𝑐
,

and therefore
𝜙(𝑐) = 𝐴𝑐 +

𝐵
𝑐2
.

Thus the law of mutual action coincides with the law of resultant
action.

The same result will follow much more rapidly if we employ expan-
sions. For take (3); expand 𝜓(𝑐+𝑟) and 𝜓(𝑐−𝑟) by Taylor’s theorem, and
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equate the coefficients of 𝑟2; thus

𝑑
𝑑𝑐
𝜓′(𝑐)
𝑐

= 𝜒(𝑐),

that is
𝜙(𝑐) = 𝜒(𝑐).

And with this value of 𝜓′(𝑐) all the other powers of 𝑟 will disappear
from (3).

1047. Laplace now proceeds to determine the law of attraction which
makes a spherical shell attract an internal particle equally in all direc-
tions. This problem occurs here for the first time; and it has since passed
into the elementary books. Laplace does not use the expansion of func-
tions. With the notation of the preceding Article we have now

𝑑
𝑑𝑐
𝜓(𝑟 + 𝑐) − 𝜓(𝑟 − 𝑐)

𝑐
= 0;

therefore
𝜓(𝑟 + 𝑐) − 𝜓(𝑟 − 𝑐) = 𝑈𝑐,

where 𝑈 is a constant with respect to 𝑐. Differentiate twice with respect
to 𝑐; thus

𝜓″(𝑟 + 𝑐) − 𝜓″(𝑟 − 𝑐) = 0.

Since this relation holds for all values of 𝑟 and 𝑐, we must have 𝜓″(𝑐)
constant, whatever 𝑐 may be; and therefore 𝜓‴(𝑐) must be zero. But

𝜓′(𝑐) = 𝑐∫𝜙(𝑐) 𝑑𝑐; thus

2𝜙(𝑐) + 𝑐𝜙′(𝑐) = 0;

this gives 𝜙(𝑐) =
𝐵
𝑐2
, so that the only law of attraction which satisfies the

proposed condition is the law of nature. See Art. 705.
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1048. Laplace returns to the general equation (2); he says that the
integration is not possible except in certain cases, as for instance that of
a sphere. The integration is also possible, he says, when the solid is a
cylinder of infinite length on a closed curve as base. In this case if we
take the axis of 𝑧 parallel to the generators of the cylinder we see that 𝑉
cannot contain 𝑧. Hence (1) reduces to

𝑑2𝑉
𝑑𝑥2

+
𝑑2𝑉
𝑦2

= 0; (8)

therefore 𝑉 = 𝑓1(𝑥 + 𝑦√−1) + 𝑓2(𝑥 − 𝑦√−1), where 𝑓1 and 𝑓2 denote
arbitrary functions.

Laplace himself arrives at this result in a less simple way, by using
(2) instead of (1).

The condition that the curve is to be closed secures that the differ-
ential coefficients of 𝑉 shall be finite; but 𝑉 itself becomes infinite for a
cylinder of infinite length: Laplace does not notice this.

1049. If we put 𝑥 = 𝜌 cos𝜙 and 𝑦 = 𝜌 sin𝜙, we shall find that (8)
transforms to

𝜌2
𝑑2𝑉
𝑑𝜌2

+
𝑑2𝑉
𝑑𝜙2

+ 𝜌
𝑑𝑉
𝑑𝜌

= 0. (9)

If the cylinder is a circular cylinder 𝑉 will be independent of 𝜙, and
(9) becomes

𝜌2
𝑑2𝑉
𝑑𝜌2

+ 𝜌
𝑑𝑉
𝑑𝜌

= 0.

Hence
−
𝑑𝑉
𝑑𝜌

=
𝐻
𝜌
,

where 𝐻 is an arbitrary constant.
To determine the constant 𝐻 Laplace supposes that the attracted par-

ticle is so remote that the cylinder may be considered to be an infinite
rod. Let 𝐴 denote the base of the cylinder; then the attraction of the
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cylinder on a particle at the distance 𝜌 from the axis, when 𝜌 is very

great, is thus found to be
2𝐴
𝜌
. Thus 𝐻 = 2𝐴, when 𝜌 is very great, and

therefore 𝐻 = 2𝐴 always.

1050. Suppose the attracted particle is within a circular cylindrical
shell of constant thickness and infinite length; then also we have

−
𝑑𝑉
𝑑𝜌

=
𝐻
𝜌
. And as the attraction is zero when the attracted particle is

on the axis of the cylinder we must have 𝐻 zero then; and thus 𝐻 is
zero for all internal points. See however Art. 1044.

1051. The pages from the first volume of the Mécanique Céleste which
we have been considering, contain valuable matter, which may all be as-
cribed to Laplace himself.

We have seen in Art. 1048 that Laplace considers that the general
integration of (2) is not possible. It must however be remarked, that if
we suppose 𝑉 expanded in powers of 𝑟, we obtain from (2) the following
equation for determining the coefficient of 𝑟𝑛, which we will denote by
𝑢𝑛,

𝑑
𝑑𝜇

{(1 − 𝜇2)
𝑑𝑢𝑛
𝑑𝜇

} +
1

1 − 𝜇2
𝑑2𝑢𝑛
𝑑𝜙2

+ 𝑛(𝑛 + 1)𝑢𝑛 = 0.

General symbolic forms have been given in recent times for the in-
tegral of this equation: see Boole’s Differential Equations, third edition,
pages 433…436.

1052. We now pass to the second volume of the Mécanique Céleste.
The Third Book of the Mécanique Céleste is entitled De la figure des

corps célestes: this work is composed of seven Chapters and occupies
pages 1…170 of the volume.

1053. The first Chapter of the Third Book is entitled Des attractions
des sphéroïdes homogènes terminés par des surfaces du second ordre.
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The word spheroid is used by Laplace, as in his Second Book, without
any definition. It does not mean necessarily a nearly spherical body, for
Laplace usually adds this restriction when it is required. In fact spheroid
with Laplace seems to include every thing which is not exactly a sphere,
or at least every thing of which the surface can be determined by one
equation between the usual polar variables. So also Lagrange and Pois-
son use the term spheroid with the like generality.

The Chapter contains a full account of the attraction of a homoge-
neous ellipsoid on a particle whether external or internal. The Chapter
is substantially reproduced from Laplace’s fourth memoir. See Chapter
xxiii.

1054. Let 𝑟, 𝜃, 𝜙 be the polar coordinates of an element of the attract-
ing mass, the origin being the attracted particle. Let 𝐴, 𝐵, 𝐶 denote the
resolved attractions parallel to the axes towards the origin. Then, the law
of attraction being that of the inverse square of the distance, we have

𝐴 =∭ sin 𝜃 cos 𝜃 𝑑𝑟 𝑑𝜃 𝑑𝜙,

𝐵 =∭ sin2 𝜃 cos𝜙𝑑𝑟 𝑑𝜃 𝑑𝜙,

𝐶 =∭ sin2 𝜃 sin𝜙𝑑𝑟 𝑑𝜃 𝑑𝜙;

the limits of the integrations are to be taken so as to include every el-
ement of the attracting mass. These formulæ are now familiar to us
from elementary books. Laplace obtains them by transformation from
the formulæ referred to rectangular axes; and he also indicates the direct
method of obtaining them.

1055. Let 𝑎, 𝑏, 𝑐 be the semiaxes of an ellipsoid. Let 𝑓, 𝑔, ℎ be the co-
ordinates of an attracted particle, parallel respectively to these semiaxes,
the centre being the origin. Then if the attracted particle be inside the el-
lipsoid, or on its surface, the resolved attractions parallel to the semiaxes
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are determined by the formulæ

𝐴 =
3𝑓𝑀
𝑎3

𝐿, 𝐵 =
3𝑔𝑀
𝑎3

𝑑𝜆𝐿
𝑑𝜆

, 𝐶 =
3ℎ𝑀
𝑎3

𝑑𝜆′𝐿
𝑑𝜆′

,

where 𝑀 denotes the mass of the ellipsoid, and 𝐿 is put for

∫
1

0

𝑥2 𝑑𝑥
√{(1 + 𝜆2𝑥2)(1 + 𝜆′2𝑥2)}

;

also
𝜆2 =

𝑏2 − 𝑎2

𝑎2
, 𝜆′2 =

𝑐2 − 𝑎2

𝑎2
.

Laplace puts the attractions in the above form, though he does not
use quite the same letters as we do. He uses 𝑎, 𝑏, 𝑐 for the coordinates

of the attracted particle: and 𝑘,
𝑘
√𝑚

,
𝑘
√𝑛

for the semiaxes of the ellipsoid.

1056. The definite integral 𝐿 involves all the difficulties of indefinite
integration. For denote it by 𝜙(𝜆2, 𝜆′2). Then if we require the integral
between the limits 0 and 𝜉 instead of between the limits 0 and 1, we see
that by changing 𝑥 into 𝑢𝜉 the required result is 𝜉3𝜙(𝜆2𝜉2, 𝜆′2𝜉2).

1057. Laplace asserts that the integral 𝐿 cannot be expressed by
means of algebraic, logarithmic, or circular functions. This apparently
means that he had demonstrated this result to his own satisfaction; but
he never published the demonstration: see Art. 805.

However, the researches of Abel and Liouville in more recent times
may be considered to have established the point. See the Journal de
l’Ecole Polytechnique, Cahier 23, pages 37, 39, 57; also Bertrand’s Calcul
Intégral, pages 89…110.

1058. Laplace gives the well-known expressions for the attraction in
the special case in which the ellipsoid becomes an oblatum. We may
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then put 𝑏 = 𝑐, so that 𝜆2 = 𝜆′2, and if 𝑒 be the excentricity of the gen-

erating ellipse we have 𝜆2 =
𝑒2

1 − 𝑒2
. The results will be found in the

elementary books: see Statics, Chapter xiii.

1059. Laplace proceeds to consider the case of the attraction of an
ellipsoid on an external particle; see his pages 13…19. It amounts to
developing what we now call the potential in a series which will be very
convergent when the ellipticities of the principal sections are small, but
is not always convergent. The process however is tedious, and requires
a reader to perform much work for himself, or to have recourse to
Bowditch’s notes in the translation of the Mécanique Céleste.

1060. Laplace draws from his expansion the remarkable result that
the attractions of different ellipsoids which have the same centre, the
same position for their axes, and the same foci for their principal sec-
tions are as their masses. Laplace himself uses the phrase the same ex-
centricities; the word excentricity denotes with him the distance between
the centre and a focus, not as in modern books the ratio of this distance
to the semiaxis major.

The result just stated we have called Laplace’s theorem; it is the
complete theorem of which Maclaurin gave a special case: see Art. 254.
Laplace himself first obtained the theorem in his Figure des Planetes:
see Art. 806.

I do not reproduce Laplace’s method, because it would occupy a
great space, and it is now superseded by Ivory’s method. As I have
already indicated, Bowditch’s notes may be consulted with advantage.
Also Burckhardt in his German translation of the first two volumes of
the Mécanique Céleste has commented on Laplace’s method. A paper
on Laplace’s method by Professor Cayley will be found in the Quarterly
Journal of Mathematics, Vol. i. pages 285…300.

1061. I will place here some remarks which will not be quite intelli-
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gible independently of the Mécanique Céleste, but may be of interest to
the student of that work, or of Professor Cayley’s paper.

Laplace gives in Livre iii. § 5 a certain partial differential equation
which subsists between 𝑉 and the resolved attractions. Professor Cay-
ley uses a more symmetrical notation than Laplace used; and shews that
the partial differential equation resolves itself into two. In his Figure
des Planetes, where Laplace first gave this process, he started with three
partial differential equations; and as this book is very scarce, it may be
useful to notice here the earlier form. Laplace takes for the equation to
the ellipsoid 𝑥2 + 𝑚𝑦2 + 𝑛𝑧2 = 𝑘2. I follow Professor Cayley in using
𝑙𝑥2 + 𝑚𝑦2 + 𝑛𝑧2 = 𝑘. The coordinates of an attracted external particle
are 𝑎, 𝑏, 𝑐; also 𝐴, 𝐵, 𝐶 are the resolved attractions parallel to the axes
towards the origin; and 𝑉 is the potential, so that

𝐴 = −
𝑑𝑉
𝑑𝑎

, 𝐵 = −
𝑑𝑉
𝑑𝑏

, 𝐶 = −
𝑑𝑉
𝑑𝑐
.

Then each of the three partial differential equations of Laplace’s ear-
lier work may be resolved into two. The two which spring from his first
are

𝑘
𝑑𝐴
𝑑𝑘

− 𝑙
𝑑𝐴
𝑑𝑙

− 𝑚
𝑑𝐴
𝑑𝑚

− 𝑛
𝑑𝐴
𝑑𝑛

+ 𝑎
𝑑𝐴
𝑑𝑎

+ 𝑏
𝑑𝐴
𝑑𝑏

+ 𝑐
𝑑𝐴
𝑑𝑐

− 𝐴 = 0,

− (𝑎2 + 𝑏2 + 𝑐2)
𝑑𝐴
𝑑𝑘

+ 𝑎
𝑑𝑉
𝑑𝑘

+
1
2𝑙
𝑑𝑉
𝑑𝑎

+
𝑑𝐴
𝑑𝑙

+
𝑑𝐴
𝑑𝑚

+
𝑑𝐴
𝑑𝑛

− (
𝑎
𝑙
𝑑𝐴
𝑑𝑎

+
𝑏
𝑚
𝑑𝐴
𝑑𝑏

+
𝑐
𝑛
𝑑𝐴
𝑑𝑐

) = 0.

These equations are true not only for the whole definite integrals
which constitute 𝐴 and 𝑉, but also for every element taken separately;
should there be found any difficulty in verifying them it will be removed
by consulting Bowditch’s notes, or Professor Cayley’s paper. The other
two of Laplace’s equations give rise to similar pairs of equations, which
involve 𝐵 and 𝐶 in the same manner as the first pair involves 𝐴.
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Now put 𝐹 for 𝑎𝐴+𝑏𝐵 + 𝑐𝐶 as Laplace does. Multiply the first equa-
tion of the first pair by 𝑎, the first equation of the second pair by 𝑏, and
the first equation of the third pair by 𝑐. Then by addition we shall obtain

𝑘
𝑑𝐹
𝑑𝑘

− 𝑙
𝑑𝐹
𝑑𝑙

− 𝑚
𝑑𝐹
𝑑𝑚

− 𝑛
𝑑𝐹
𝑑𝑛

+ 𝑎
𝑑𝐹
𝑑𝑎

+ 𝑏
𝑑𝐹
𝑑𝑏

+ 𝑐
𝑑𝐹
𝑑𝑐

− 𝐹 = 0.

This constitutes one of the two parts into which Professor Cayley’s
first equation may be resolved. The other part of his first equation will
consist of

−𝑘
𝑑𝑉
𝑑𝑘

+ 𝑉 −
1
2
(𝑎
𝑑𝑉
𝑑𝑎

+ 𝑏
𝑑𝑉
𝑑𝑏

+ 𝑐
𝑑𝑉
𝑑𝑐
) = 0.

This equation like the other holds for every element taken separately
of the definite integrals.

Again, treat the second equation of each pair in the same manner as
we have treated the first; thus by addition we get

− (𝑎2 + 𝑏2 + 𝑐2) (
𝑑𝐹
𝑑𝑘

−
𝑑𝑉
𝑑𝑘

) −
𝑎
𝑙
(
𝑑𝐹
𝑑𝑎

−
1
2
𝑑𝑉
𝑑𝑎

− 𝐴)

−
𝑏
𝑚
(
𝑑𝐹
𝑑𝑏

−
1
2
𝑑𝑉
𝑑𝑏

− 𝐵) −
𝑐
𝑛
(
𝑑𝐹
𝑑𝑐

−
1
2
𝑑𝑉
𝑑𝑐

− 𝐶) +
𝑑𝐹
𝑑𝑙

+
𝑑𝐹
𝑑𝑚

+
𝑑𝐹
𝑑𝑛

= 0.

This is Professor Cayley’s second equation. It may be abbreviated by
putting for 𝐴, 𝐵, 𝐶 their values as differential coefficients of 𝑉.

1062. Laplace arrives at the following equation on his page 20,

𝑎2 +
𝑘′2

𝑘′2 + 𝜃
𝑏2 +

𝑘′2

𝑘′2 +𝜛
𝑐2 = 𝑘′2.

If 𝜃 and 𝜛 are positive, and all the quantities are given except 𝑘′,
Laplace shews that there is only one real positive value of 𝑘′2. A simpler
method than his will be to put the equation in the form

𝑎2

𝑘′2
+

𝑏2

𝑘′2 + 𝜃
+

𝑐2

𝑘′2 +𝜛
= 1.
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It is obvious that the left-hand member decreases continually as 𝑘′2
increases, and so cannot have the same assigned value for more than one
value of 𝑘′2.

1063. The first Chapter of the Third Book of the Mécanique Céleste
may be said to contain two very important contributions by Laplace him-
self to our subject. One of these is the expression by means of a single
definite integral of the attraction of an ellipsoid on an internal or super-
ficial point; this, as we have said, actually presented itself to D’Alembert,
but was rejected by him: see Art. 805. The other contribution is the the-
orem which we have called Laplace’s, respecting the attraction of an el-
lipsoid on an external particle. As we have already stated, the Chapter
substantially dates from the memoir in the volume of the Paris Academy
for 1782.

1064. The second Chapter of the Third Book is entitled Du développe-
ment en série, des attractions des sphéroïdes quelconques.

This Chapter introduces the functions which we call Laplace’s func-
tions; nearly the whole of the Chapter is substantially reproduced from
the memoir of 1782: see Chapter xxiii.

1065. Let 𝑟, 𝜃, 𝜙 be the polar coordinates of the attracted point; 𝑟′,
𝜃′, 𝜙′ the polar coordinates of an element of the attracting body, 𝜌 the
density of the attracting body; put 𝜇′ for cos 𝜃′. Then the potential

𝑉 =∭
𝜌𝑟′2 𝑑𝜇′ 𝑑𝜙′ 𝑑𝑟′

√(𝑟2 − 2𝑟𝑟′𝑡 + 𝑟′2)
,

where 𝑡 stands for cos 𝜃 cos 𝜃′ + sin 𝜃 sin 𝜃′ cos(𝜙 − 𝜙′). The limits of the
integrations are to be so taken as to include the whole attracting body.

We have already given, in Art. 1042, the partial differential equation
which 𝑉 satisfies. Now suppose the attracted particle outside the at-
tracting body, and so far off that 𝑟 is greater than any value of 𝑟′. Let
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(𝑟2 − 2𝑟𝑟′𝑡 + 𝑟′2)− 1
2 be expanded in a series

𝑃0
𝑟
+ 𝑃1

𝑟′

𝑟2
+ 𝑃2

𝑟′2

𝑟3
+…

Substitute in (2) of Art. 1042 and equate the coefficient of each power
of 𝑟 to zero. Thus we obtain equations of which the type is

𝑑
𝑑𝜇

{(1 − 𝜇2)
𝑑𝑃𝑖
𝑑𝜇

} +
1

1 − 𝜇2
𝑑2𝑃𝑖
𝑑𝜙2

+ 𝑖(𝑖 + 1)𝑃𝑖 = 0. (10)

The quantity 𝑃𝑖 is called Laplace’s coefficient of the 𝑖th order. Thus
Laplace’s coefficient of the 𝑖th order satisfies the differential equation
(10). Any other function of 𝜃 and 𝜙 which satisfies the equation may
be called a Laplace’s function of the 𝑖th order. It is of course conceivable
that we may have a Laplace’s function of the 𝑖th order which is more
simple or more complex than the coefficient of the 𝑖th order.

1066. With respect to the names by which these celebrated functions
have been called, a few remarks are necessary. The name Laplace’s co-
efficients appears to have been first used by the late Dr Whewell: see
Monthly Notices of the Royal Astronomical Society, Vol. xxvii. page 211.

The distinction between the coefficients and functions is given for the
first time to my knowledge in Pratt’s Figure of the Earth 1860, page 21.

When 𝑃𝑖 is contemplated as a function of the single variable 𝑡 it
should be more justly called Legendre’s coefficient; see Art. 783. It is
only when contemplated as a function of the two variables 𝜃 and 𝜙
that Laplace’s name is appropriate. The Germans call the functions
Kugelfunctionen. The name fonctions sphériques is used by Resal. Finally
the name spherical harmonics is used by Sir W. Thomson and Professor
Tait.

1067. The first property of Laplace’s functions which presents itself to
our notice is this: any function of 𝜇 and 𝜙 can be expanded in a series of
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Laplace’s functions. Laplace arrives at an indirect demonstration of this
theorem in the course of his investigations on attraction: we will explain
his method.

Laplace establishes his favourite equation; see Art. 852:

−𝑎
𝑑𝑉
𝑑𝑟

=
2𝜋𝑎2

3
+
1
2
𝑉; (11)

here the density is denoted by unity. Laplace, without saying so, now
begins to restrict himself to the case of homogeneous bodies. And by
Art. 1065 we have

𝑉 =
𝑈0
𝑟
+
𝑈1
𝑟2

+
𝑈2
𝑟3

+… , (12)

where
𝑈𝑛 =∭𝜌𝑟′𝑛+2𝑃𝑛𝑑𝜇′𝑑𝜙′𝑑𝑟′;

thus 𝑈𝑛 is a Laplace’s function of the 𝑛th order, for every element of it
satisfies (10), and therefore the whole satisfies (10).

From (12) we have

−
𝑑𝑉
𝑑𝑟

=
𝑈0
𝑟2

+
2𝑈1
𝑟3

+
3𝑈2
𝑟4

+…

Let 𝑎(1+𝛼𝑦) denote the radius vector of the spheroid at the point to
which 𝑉 refers, 𝛼 being a very small fraction, the square of which may
be neglected, and 𝑦 any function of 𝜇 and 𝜙. If we neglect quantities

of the order 𝛼 we shall have 𝑉 =
4𝜋𝑎3

3𝑟
. Hence it will follow that 𝑈0

must be equal to
4𝜋𝑎3

3
increased by a quantity of the order 𝛼, which we

will denote by 𝑈 ′
0; and also that 𝑈1, 𝑈2, … are all small quantities of

the order 𝛼. Substitute 𝑎 (1 + 𝛼𝑦) for 𝑟 in (11) and (12), and neglect the



second volume of the mécanique céleste. 217

square and higher powers of 𝛼. Thus for a point at the surface we have

1
2
𝑉 =

2𝜋𝑎2

3
(1 − 𝛼𝑦) +

𝑈 ′
0

2𝑎
+

𝑈1
2𝑎2

+
𝑈2
2𝑎3

+…

−𝑎
𝑑𝑉
𝑑𝑟

=
4𝜋𝑎2

3
(1 − 2𝛼𝑦) +

𝑈 ′
0
𝑎

+
2𝑈1
𝑎2

+
3𝑈2
𝑎3

+…

Substitute these values in (11); then we have

4𝛼𝜋𝑎2𝑦 =
𝑈 ′

0
𝑎

+
3𝑈1
𝑎2

+
5𝑈2
𝑎3

+
7𝑈3
𝑎4

+…

Thus we have obtained for 𝑦, which is any arbitrary function of 𝜇
and 𝜙, an equivalent series of Laplace’s functions.

1068. Laplace gives in his pages 31 and 32 the important proposition
that if 𝑌𝑛 and 𝑍𝑚 are two Laplace’s functions of different orders, the
variables being 𝜃 and 𝜙,

∫
1

−1
∫

2𝜋

0
𝑌𝑛𝑍𝑚𝑑𝜇𝑑𝜙 = 0.

See Arts. 857 and 951.

1069. In order to complete the matter upon which we are engaged
we must pass on to Laplace’s page 43; we may remark that the Chapter
does not seem well arranged by Laplace.

We have in Art. 1067

𝑈𝑛 =∭𝜌𝑟′𝑛+2𝑃𝑛𝑑𝜇′𝑑𝜙′𝑑𝑟′.

Suppose the spheroid homogeneous, and take 𝜌 = 1; and let the
spheroid differ but little from a sphere. Let 𝑎(1+𝛼𝑦′) be the radius vector
of the surface corresponding to the coordinates 𝜃′ and 𝜙′. Then

𝑈𝑛 =
𝑎𝑛+3

𝑛 + 3
∬(1 + 𝛼𝑦′)𝑛+3𝑃𝑛𝑑𝜇′𝑑𝜙′. (13)
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Now we have shewn in Art. 1067 that 𝑦 can be expanded in a series
of Laplace’s functions; let then

𝑦 = 𝑌0 + 𝑌1 + 𝑌2 +… , (14)

and in like manner we shall have

𝑦′ = 𝑌 ′
0 + 𝑌 ′

1 + 𝑌 ′
2 +…

where 𝑌 ′
𝑛 is the same function of 𝜇′ and 𝜙′ that 𝑌𝑛 is of 𝜇 and 𝜙.

Substitute the value of 𝑦′ in (13); neglect the square of 𝛼, and make
use of Art. 1068. Thus we obtain

𝑈𝑛 = 𝑎𝑛+3𝛼∬𝑌 ′
𝑛𝑃𝑛𝑑𝜇′𝑑𝜙′.

But by Art. 1067 we have

𝑌𝑛 =
2𝑛 + 1
4𝜋𝛼𝑎𝑛+3

𝑈𝑛;

therefore
4𝜋𝑌𝑛
2𝑛 + 1

=∬𝑌 ′
𝑛𝑃𝑛𝑑𝜇′𝑑𝜙′.

Hence (14) may be written thus

𝑦 =
1
4𝜋

∑∬(2𝑛 + 1)𝑌 ′
𝑛𝑃𝑛𝑑𝜇′𝑑𝜙′,

where ∑ refers to 𝑛, and implies a summation from 𝑛 = 0 to 𝑛 = ∞.
By Art. 1068 we may if we please put the result thus

𝑦 =
1
4𝜋

∑∬(2𝑛 + 1)𝑦′𝑃𝑛𝑑𝜇′𝑑𝜙′.

1070. Such then constitutes Laplace’s process for expanding any func-
tion in a series of Laplace’s functions. In Art. 1067 it was shewn that a
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function could be so expanded, and then in Art. 1069 the last two for-
mulæ give the required expansion explicitly. The demonstration is rather
indirect in appearance, and is founded on Laplace’s favourite equation,
which has been the subject of some controversy. An examination of the
value and extent of the demonstration would be more appropriate in a
treatise on Laplace’s functions than in our history. Other investigations
have since been given by Poisson, Dirichlet and Bonnet; also in England
we have an investigation by O’Brien and two by Pratt, one founded on
O’Brien’s; see Pratt’s Figure of the Earth. These investigations are quite
different from Laplace’s. Resal, in his Traité Elémentaire de Mécanique
Céleste, has given a process resembling Laplace’s, but more elaborate in
two respects: Resal supplies a fuller investigation of Laplace’s favourite
equation, and also he notices and allows for the circumstance that when
a particle is placed near the surface, 𝑟 may be really less than some of
the values of 𝑟′.

1071. Laplace shews that a function can only be expanded in one
way in a series of Laplace’s functions; see his page 32.

1072. Laplace shews that if 𝑎 be the radius of a sphere of equal vol-
ume with the spheroid the term 𝑌0 will disappear from the value of 𝑦.
Also if the origin be taken at the centre of gravity the term 𝑌1 disappears.
See his pages 33 and 34.

1073. Hitherto we have treated of the value of 𝑉 for a particle outside
the body, or on the surface. Now we have to find the value of 𝑉 for an
internal particle. This Laplace gives on his pages 35…37 for a homoge-
neous body.

We have indicated the nature of the formulæ in Art. 925; and we
have also remarked that Laplace’s investigation is not quite satisfactory:
see also Art. 792.

1074. Having thus discussed the attraction of homogeneous spheroids
differing but little from spheres, Laplace proceeds to the case in which
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the density varies, being some function of the parameter 𝑎, by which
each stratum is particularised: see his pages 37…39. The method is ob-
vious, being, in fact, that which Clairaut had employed: see Art. 323.

1075. Laplace having thus completed his theory of the attraction of
spheroids which are nearly spherical, says on his page 39: “Considérons
présentement, les sphéroïdes quelconques.” This practically means
that he intends to develope the value of 𝑃𝑛, which is the Laplace’s
coefficient of the 𝑛th order, and to shew how a rational function of 𝜇,
√(1 − 𝜇2) cos𝜙, and √(1 − 𝜇2) sin𝜙 may be most easily transformed into
a series of Laplace’s functions: see his pages 39…43.

1076. The last section of this Chapter of the Mécanique Céleste, which
occupies pages 43…49, contains matter which was not in the memoir of
1782.

On his page 44 Laplace gives the remarkable formula

4𝜋𝑌𝑛
2𝑛 + 1

= ∫
1

−1
∫

2𝜋

0
𝑌 ′

𝑛 𝑃𝑛 𝑑𝜇′ 𝑑𝜙′,

where 𝑃𝑛 is the 𝑛th coefficient, and 𝑌𝑛 is any function of 𝜇 and 𝜙 of the
𝑛th order, and 𝑌 ′

𝑛 is the same function of 𝜇′ and 𝜙′: see Art. 857.
On his page 47 Laplace shews that in the case of a solid of revolution

if we know the value of 𝑉 for all the external points which are on the
axis of revolution, we know it for all external points. This important
theorem was first given by Legendre: see Art. 791.

Laplace extends this theorem and arrives at the following result: if
the solid be not of revolution, but be divided into two equal and similar
parts by the plane of the equator, then if we know the value of 𝑉 for all
external points which are on the axis, and also for all which are in the
plane of the equator, we know the value of 𝑉 for all external points. See
his page 48. We shall see that this result has been generalised by Biot.

It is correctly remarked by Bowditch on page 176 of his translation of
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the second volume of the Mécanique Céleste, that we may omit Laplace’s
first condition, namely that 𝑉 is known for all points on the axis; it is suf-
ficient that 𝑉 should be known for all points in the plane of the equator.
Biot’s generalisation agrees with this remark.

This Laplace says will hold for the ellipsoid. His own words should
be examined. He seems to imply that for an ellipsoid 𝑉 can be deter-
mined with respect to any external point on the axis or in the plane of
the equator. One integration can be effected, and so 𝑉 expressed as a sin-
gle definite integral. But the second integration could not be effected in
finite terms; though it might be in the form of an infinite series. Laplace
must mean this, but it seems to me that he has not expressed himself
very carefully.

Laplace in this manner obtains another demonstration of the theorem
which I call by his name: see Art. 1060.

1077. The second Chapter of the Third Book of the Mécanique Céleste
may be attributed for the most part to Laplace himself; like the first
Chapter it substantially dates from the memoir in the volume for 1782.
The Chapter is distinguished by two important features; we have the
potential function 𝑉 extensively used, and we have also the theory of
Laplace’s functions. The function 𝑉 was first introduced by Laplace him-
self, as we have seen in Art. 789. The Laplace’s coefficients owe their
origin to Legendre, but Laplace’s extension of their range justifies the
use of his name in connexion with them: see Art. 783.

The Chapter cannot be considered well arranged. The pure analysis
and the physical application of it are not kept sufficiently distinct, but
this is very characteristic of Laplace, with whom analytical processes
seem of little interest apart from the problems in natural philosophy
which called them forth.

1078. The third Chapter of the Third Book is entitled De la figure
d’une masse fluide homogène en équilibre, et douée d’un mouvement de
rotation.
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The title does not correspond very closely with the subject of the
Chapter. Laplace does not profess to investigate what the figure must be
in the circumstances proposed; he contents himself with shewing that an
oblatum is an admissible figure.

1079. Laplace shews that there cannot be more than two oblata cor-
responding to a given angular velocity; that there will be only one obla-
tum if the angular velocity has a certain assigned value; and none at all
if the angular velocity exceed this limit: see his pages 56 and 57. An
oblongum is not a possible form of relative equilibrium: see his page 59.
Finally he shews that corresponding to a given initial moment of rotation
there will be one, and only one, oblatum; the phrase moment of rotation
is not Laplace’s, it is used by Resal: see his page 198. Laplace’s investiga-
tions had all appeared substantially in the Figure des Planetes: see Arts.
810…813.

1080. In this Chapter Laplace inherited much from his predecessors.
The fact that an oblatum is a possible figure of relative equilibrium was
first rigorously established by Maclaurin: see Art. 249. That more than
one oblatum might correspond to a given angular velocity was implic-
itly shewn by Thomas Simpson, and explicitly by D’Alembert: see Art.
580. Laplace himself first shewed that there could not be more than two
such oblata: see Art. 585. D’Alembert gave another demonstration which
however is not satisfactory: see Art. 657. Cousin also gave a demon-
stration: see Art. 976. Finally, in the Mécanique Céleste, Laplace gave a
demonstration different from his first, and rather simpler. Laplace him-
self also first formally shewed that an oblongum is not a possible form of
relative equilibrium, though this result came quite within D’Alembert’s
reach: see Art. 601.

1081. Laplace gives expressions for determining approximately the
excentricities of the two oblata which correspond to the same angular
velocity, supposed small. With respect to the oblatum which is nearly
spherical, an equivalent to Laplace’s expression had already been given
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by Maclaurin and Thomas Simpson: see Arts. 262 and 283. With re-
spect to the oblatum which deviates much from a sphere, D’Alembert
had given the first term of the expression: see Art. 584.

1082. Laplace, as we have said, shews that an oblongum is not a
possible figure of relative equilibrium. Plana gives a convenient form to
the demonstration: see the Astronomische Nachrichten, Vol. xxxvi. page
164.

The fact that an oblongum cannot be a possible form of relative equi-
librium may be readily seen by the aid of a diagram.

Let 𝑃 be any point on an ellipse, 𝑃𝐺 the normal and 𝑃𝑇 the tangent
at 𝑃; let 𝐶𝐴 be the semiaxis major. Suppose an oblongum generated by

the revolution of this ellipse around its major-axis.
The attraction of the oblongum at 𝑃 will be in a direction which is on

the same side of 𝑃𝐺 as 𝑃𝐶 is; this is obvious, for the oblongum may be
cut up by planes parallel to the tangent-plane at 𝑃 into slices, which all
have their centres on the diameter through 𝑃. The so-called centrifugal
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force at 𝑃 will be in a direction at right angles to 𝐴𝐶 outwards. Hence
the attraction, and the so-called centrifugal force, will give rise to a com-
ponent along 𝑃𝑇; and so the fluid cannot be in relative equilibrium.

1083. We may observe that on Laplace’s page 58 we have the frac-

tion
27𝜆 + 30𝜆3 + 7𝜆5

(1 + 𝜆2)(3 + 𝜆2)(9 + 𝜆2)
, which might be reduced to the simpler form

𝜆(9 + 7𝜆2)
(1 + 𝜆2)(9 + 𝜆2)

. Poisson also uses the unreduced form: see his Traité de

Mécanique, Vol. ii. page 542.

1084. If the angular velocity exceeds a certain limit the oblatum is
not a possible figure of relative equilibrium. Laplace makes an important
remark with respect to this on his page 59: he says that it might have
been supposed that this limiting case is that in which the fluid would
begin to fly off by reason of the too rapid rotatory motion, but it is easily
found that this is not the fact.

Poisson alludes to the matter in the Connaissance des Tems for 1829;
he says on page 375, after remarking that within a certain limit the el-
lipsoid of revolution is a solution:

Si l’ellipsoïde était la seule figure qui eût cette propriété, il en résulterait
cette conséquence singulière que l’équilibre serait impossible pour une rapidité
de la rotation qui n’est pas cependant celle ou le fluide commencerait à se dis-
siper.

1085. Laplace’s theorem that there is only one oblatum corresponding
to a given moment of rotation will be found with a different demonstra-
tion in Resal’s work: see his page 198. An interesting point of analysis
is involved.

The problem is reduced to this equation

𝑞 = (1 + 𝜆2) 23
(3 + 𝜆2) tan−1 𝜆 − 3𝜆

𝜆3
,
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where 𝑞 is a given positive quantity, and 𝜆 has to be found. Then it is
demonstrated that there is one, and only one, value of 𝜆 between 0 and
infinity which satisfies this equation.

It is easily shewn that there is one value of 𝜆 which satisfies the equa-
tion; for the right-hand member vanishes when 𝜆 vanishes, and is infinite
when 𝜆 is infinite.

Put tan 𝜃 for 𝜆; then the right-hand member becomes

𝜃(1 + 2 cos2 𝜃) − 3 sin 𝜃 cos 𝜃
(cos 𝜃) 13 sin3 𝜃

;

we will denote this by 𝑢. It will be found that

𝑑𝑢
𝑑𝜃

=
9 sin 𝜃 cos 𝜃(1 + 2 cos2 𝜃) + 𝜃(1 − 20 cos2 𝜃 − 8 cos4 𝜃)

3(cos 𝜃) 43 sin4 𝜃
.

Now Resal in effect puts this expression in the following form:

𝑑𝑢
𝑑𝜃

=
1

3(cos 𝜃) 43
{𝜃 +

9(2 + cos2 𝜃)
sin4 𝜃

cos2 𝜃 [
1 + 2 cos2 𝜃
2 + cos2 𝜃

tan 𝜃 − 𝜃]} .

This is certainly positive provided
1 + 2 cos2 𝜃
2 + cos2 𝜃

tan 𝜃−𝜃 is positive; and

the differential coefficient of the last expression is found to be positive,
so that as the expression vanishes with 𝜃 it must always be positive as 𝜃

changes from 0 to
𝜋
2
.

Thus 𝑢 increases with 𝜃, and so can only once have an assigned value

as 𝜃 changes from 0 to
𝜋
2
.

The point of interest which is involved is the following: if 𝑎 and 𝑏 are

positive quantities, determine under what conditions tan 𝜃
1 + 𝑎 tan2 𝜃
1 + 𝑏 tan2 𝜃

−𝜃
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is always positive while 𝜃 changes from 0 to
𝜋
2
.

It will be found that the differential coefficient of the last expression
is

(3𝑎 − 3𝑏 + 1) tan2 𝜃 + (𝑎𝑏 + 3𝑎 − 𝑏 − 𝑏2) tan4 𝜃 + 𝑎𝑏 tan6 𝜃
(1 + 𝑏 tan2 𝜃)2

.

Thus the required result is secured if 3𝑎−3𝑏+1 and 𝑎𝑏+3𝑎−𝑏−𝑏2

are both zero or positive. Thus 𝑎 must not be less than 𝑏 −
1
3
, and 𝑏

for perfect security not less than
3
5
. Therefore if 𝑎 is not less than

4
15

then tan 𝜃
1 + 𝑎 tan2 𝜃

1 + (𝑎 +
1
3
) tan2 𝜃

is greater than 𝜃, or tan 𝜃 is greater than

𝜃 +
1
3

𝜃 tan2 𝜃
1 + 𝑎 tan2 𝜃

.

1086. I may remark that Bowditch’s notes on this Chapter bring be-
fore the reader the peculiar notions which Ivory held as to fluid equi-
librium. Like every other person Bowditch objects to these notions; but
some of his language in his account of the matter seems to want pre-
cision, estimated from our modern notions. Thus on his page 206 he
speaks of the “forces which act upon the point 𝐼 ”: if by a point he means
a small element of the fluid we should require to know the form of that
element. Again on page 208 he speaks of “the effort of the fluid … to
rise in the branch….” Perhaps he had fallen a little under the influence
of Ivory.

A note by Bowditch on his page 222 should be observed. A reader
of Laplace might fail to recollect that he uses the revolutionary mode of
reckoning hours, minutes, and seconds.

1087. Laplace seems to have attached considerable importance to the
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proposition that there is only one oblatum corresponding to a given mo-
ment of rotation. See the Mécanique Céleste, Vol. v. page 10, “mais le
véritable problème à résoudre,…” Laplace had been to some extent an-
ticipated by Thomas Simpson: see Art. 286.

1088. The fourth Chapter of the Third Book is entitled De la figure
d’un sphéroïde très-peu différent d’une sphère et recouvert d’une couche de
fluide en équilibre.

The title of the Chapter seems inadequate; for Laplace discusses not
only the case in which a solid is covered by a film of fluid, but also the
case in which the body is supposed entirely fluid.

The Chapter is mainly composed of matter which Laplace had previ-
ously published in memoirs. The §§ 22…28 are from the fourth memoir;
the §§ 29 and 30 are from the seventh memoir; the §§ 31 and 32 are from
the fifth memoir; § 33 is from the fourth memoir, with the exception of
the examination of Bouguer’s hypothesis on pages 97…99 which is new;
§§ 34 and 35 are new; § 36 is substantially in the Figure des Planetes; §
37 is new.

1089. Laplace in his §§ 22…25 treats the case of a homogeneous body
which is nearly spherical and fluid, or covered with a film of fluid; when
this body rotates with uniform angular velocity, Laplace shews that for
relative equilibrium the external surface of the fluid must be that of an
oblatum. He does not assume that the body is a figure of revolution. The
demonstration depends on the use of Laplace’s functions. The demon-
stration is substantially reproduced by Resal: see his pages 209…211.

Laplace gives in his § 26 another demonstration, very curious, and
not employing Laplace’s functions; it does not seem to have been repro-
duced in an elementary book. Some remarks on it will be found in Li-
ouville’s Journal de Mathématiques for June and August 1837, and April
1839. Laplace’s method in fact has been shewn to be unsatisfactory; and
we shall consider the matter in a later Chapter.
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It will be remembered that Legendre first discussed a case of this
problem in his second memoir: see Chapter xxii.

1090. Laplace in his §§ 27 and 28 considers the case of a homoge-
neous fluid which surrounds a spherical nucleus of a density different
from that of the fluid. A small part of the investigation is reproduced in
Resal’s pages 212 and 213.

1091. Laplace in his §§ 29…31 discusses the figure of the Earth con-
sidered as a heterogeneous fluid. We have already stated in Art. 968 that
Laplace made no substantial addition to the results obtained in Legen-
dre’s fourth memoir.

1092. The most important point in these §§ 29…31 is the demonstra-
tion that in the expression of the radius vector of any stratum of the body
in terms of Laplace’s functions, the functions of a higher order than the
second must vanish.

I have discussed the various investigations on this important point
which have been given by Legendre, Laplace, O’Brien, and Pratt, in a
memoir to which I have referred in Art. 933.

1093. Laplace in his § 32 examines the conditions which follow from
supposing that the axis of rotation is a principal axis. See Art. 953.

1094. Laplace’s § 33 is important. He obtains expressions for the force
of gravity, the length of the seconds pendulum, and the length of a de-
gree of the meridian at an assigned latitude. He says on his page 97:
“Ces trois expressions ont l’avantage d’être indépendantes de la consti-
tution intérieure de la terre, c’est-à-dire, de la figure et de la densité de
ses couches;…” He means that he has only assumed the strata of equal
density to be very nearly spherical.

In this section he shews it is impossible to admit Bouguer’s hypothe-
sis that the variation in the length of a degree of the meridian is propor-
tional to the fourth power of the sine of the latitude. For this hypothesis
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see page 298 of Bouguer’s Figure de la Terre. See also Art. 924.

1095. In his § 34 Laplace considers the particular case in which the
body is formed of elliptical strata. This case is that which holds if the
body is assumed to be entirely fluid, as appears from the §§ 29…31.
Laplace moreover shews that this must be the case if we assume all the
strata to be similar and covered with a film of fluid: this case was dis-
cussed by Legendre; see Art. 902.

This section reproduces important results given by Clairaut. Thus on
Laplace’s page 101 we have what we find on Clairaut’s page 227: see Art.
329. On Laplace’s page 102 we have what we find on Clairaut’s page 217:
see Art. 323. Also on Laplace’s page 102 we have Clairaut’s theorem, as
on Clairaut’s page 250: see Art. 336.

1096. Laplace in his § 35 shews how to calculate the attraction ex-
erted on an external particle by a spheroid, the surface of which is a film
of fluid in relative equilibrium. Laplace assumes still that the strata of
equal density are nearly spherical.

1097. Laplace in his § 36 finds an expression for the force of gravity,
on the supposition that the law of attraction is that of the 𝑛th power of
the distance, and that the body is nearly spherical and homogeneous,
and rotates with uniform angular velocity: see Art. 816.

1098. Laplace in his § 37 shews how to extend the approximation
to the square and higher powers of the small quantity 𝛼. This matter
is more fully discussed by Poisson in a memoir in the Connaissance des
Tems for 1829.

A misprint at the beginning of this section runs throughout it. The
first equation should be

constant = 𝑉 −
𝑔
2
𝑟2 (𝜇2 −

1
3
) +

1
3
𝑔𝑟2.
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Laplace omits the term
1
3
𝑔𝑟2. It should be remarked that on his sup-

positions the variable part of
1
3
𝑔𝑟2 may be considered as of the second

order; but then he is here retaining terms of the second order. The mis-
take is pointed out by Bowditch.

1099. The fourth Chapter contains, as we see, much that is impor-
tant. The §§ 22…28 are Laplace’s own, and very valuable. With respect
to the figure of the Earth, considered as a heterogeneous fluid, we have
seen in Art. 891 that Legendre claims the priority.

1100. The fifth Chapter of the Third Book is entitled Comparaison de
la théorie précédente, avec les observations.

This Chapter is principally from Laplace’s seventh memoir; but the
following pages are new: 113…125, 141…146, 151…153.

The Chapter consists of two parts; first we have geometrical investi-
gations mainly relating to geodesic lines on a spheroid which differs but
little from a sphere; and next we have numerical calculations to deter-
mine the figure of the Earth from the measured lengths of degrees at
various points of the Earth’s surface, and from the observed lengths of
the seconds pendulum. Both these subjects have been much developed
since Laplace’s time. The geometrical investigations would now be stud-
ied to most advantage in some work on Geodesy; see for instance the
sixth Book of Puissant’s Traité de Géodésie, third edition, in two quarto
volumes, 1842. The practical measurement of degrees on the Earth’s sur-
face has been carried on with so much energy in recent times, that the
data for numerical computation are now far more extensive than those
accessible to Laplace. See for instance the modern works on the English,
the Russian, and the Indian surveys.

I may observe that Resal on his pages 244…262 gives geometrical
investigations of about the same extent as Laplace’s, but by a different
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method: these would be interesting if they were not so inaccurately
printed as to be scarcely intelligible.

1101. Laplace’s pages 109…111 consist of generalities about geodesic
lines; they might with advantage be put into a more modern shape.

Pages 112…114 contain formulæ suited to the case of a nearly spher-
ical body.

Pages 115…117 treat of the special case in which the geodesic line
starts by being parallel to the corresponding plane of the celestial merid-
ian.

Pages 118…122 treat of the special case in which the geodesic line
starts by being at right angles to the corresponding plane of the celestial
meridian.

Pages 123…126 treat of the radius of curvature of a geodesic line.

1102. We may observe that there is a misprint on Laplace’s page 119.

He twice puts 𝛼 before
𝑑𝑑𝑢 ′′

𝑑𝜙𝑑𝜓
when it ought not to be there. The mis-

print was pointed out by Bowditch on his page 394. The misprint is pre-
served in the national edition of Laplace’s works: see the page 139.

Another misprint occurs on Laplace’s page 125, and on the corre-
sponding page, namely 146, of the national edition.

Laplace takes for the radius vector of a certain ellipsoid

1 − 𝛼 sin2 𝜓{1 + ℎ cos 2(𝜙 + 𝛽)},

when it should be

1 − 𝛼 sin2 𝜓{1 + ℎ cos 2(𝜙 + 𝛽)} + 𝛼ℎ cos 2(𝜙 + 𝛽);

and in consequence he gives erroneous expressions for the lengths of a
degree. For example, he gives for the degree measured perpendicular to
the meridian

1° + 1° . 𝛼{1 + ℎ cos 2(𝜙 + 𝛽)} sin2 𝜓 + 4°𝛼ℎ tan2 𝜓 cos 2(𝜙 + 𝛽),
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when it should be

1° + 1° . 𝛼{1 + ℎ cos 2(𝜙 + 𝛽)} sin2 𝜓 − 3°𝛼ℎ cos 2(𝜙 + 𝛽).

The corrections were pointed out by Bowditch on his pages 412…416.
The corrections are adopted by Puissant: see Vol. ii. pages 393…395

of the work cited in Art. 1100.

1103. We now proceed to the second of the two parts which compose
Laplace’s fifth Chapter; namely, the numerical calculations as to the fig-
ure of the Earth. The various measured lengths of degrees do not agree
in giving precisely the same value to the numerical elements of the figure
of the Earth; so it is a subject of enquiry to determine the best method
of treating the data which are furnished by observation.

Laplace proposes two different methods for treating discordant ob-
servations, neither method being that which is known as the method of
least squares. The first method is given in his § 39 and the second in his
§ 40.

1104. Let us first consider the method of § 39. Suppose 𝑎1, 𝑎2, 𝑎3, …
measured lengths of a degree in different latitudes, and 𝑝1, 𝑝2, 𝑝3, the
corresponding squares of the sines of the latitude. If the Earth were ac-
curately an oblatum, and there were no errors of observation, we should
have a series of equations of which the type would be, neglecting the
square of the ellipticity,

𝑎𝑟 − 𝑧 − 𝑦𝑝𝑟 = 0. (15)

But as there will be errors of observation we shall have instead of
zero on the right-hand side, an unknown error, which we will denote by
𝑒𝑟. So that the general type of the equations will be

𝑎𝑟 − 𝑧 − 𝑦𝑝𝑟 = 𝑒𝑟. (16)



second volume of the mécanique céleste. 233

Laplace proposes that we should determine 𝑦 and 𝑧 by the condition
that the numerically greatest of the quantities 𝑒1, 𝑒2, … should have the
least numerical value. See Arts. 960 and 961.

Laplace sketches a general process of solution which would apply if
there were more than two quantities to be found like 𝑦 and 𝑧; and then
he discusses with greater detail the solution for the actual case.

The problem may be stated verbally thus: to determine the elliptic
figure of the Earth so that the greatest deviation from observation may
have the least possible value.

From examining equations (15) and (16) we see that the problem
which Laplace solves may be put in the following geometrical form: a
system of straight lines in a plane is given, required to find the point
which has the least possible value for the relative distance from the
straight line which is most remote from it. By the relative distance is
here meant the distance measured in a direction which is fixed for each
straight line, though in general not the same for any two straight lines.

1105. Laplace’s § 40 is devoted to another method of treating the
observations. He now proposes to determine the generating ellipse of the
Earth’s figure by the two conditions that the sum of all the errors is zero,
and that the sum of all the errors taken positively is a minimum. Laplace
calls this the most probable ellipse. The method is due to Boscovich: see
Art. 962.

1106. Bowditch thinks that the method of Boscovich “is not now so
much used as it ought to be”: see page 434 of the second volume of
his translation of the Mécanique Céleste. Bowditch objects to the method
of least squares as commonly applied to the problem, and proposes a
modification of it.

I presume that neither of the two methods which Laplace discusses
would now be practically used in such calculations, but the method of
least squares.



second volume of the mécanique céleste. 234

1107. Laplace’s § 41 gives numerical application. He takes seven mea-
sures of degrees, and calculates a result by both the methods he has ex-
plained: see Art. 961.

Laplace comes to the conclusion that the errors which are thus found
in the observations are too large to allow us to adopt the supposition that
the figure of the Earth is an oblatum.

Laplace corroborates his opinion that the Earth is not an oblatum, by
considering especially the results of operations which had been recently
carried on by Delambre and Méchain, for measuring an arc of the merid-
ian between Dunkirk and Barcelona. He applies the method of his § 39;

and arrives at an ellipticity of
1
150

, which cannot be reconciled with the

phenomena of gravity and of precession and nutation.
Laplace finds the length of a quarter of the terrestrial meridian. He

uses the ellipticity
1
334

which he obtains by combining the French mea-

sure of an arc of the meridian with the measure of the arc in Peru. He

also settles the length of a metre, defined to be
1

10000000
of a quarter of

the meridian, in terms of the toise of Peru.

1108. Laplace in his § 42 discusses the observed lengths of pendu-
lums; he takes fifteen cases: see Art. 965.

1109. Laplace’s § 43 is devoted to Jupiter. Assuming that the planet
is a homogeneous fluid he determines the ellipticity; he finds that the
equatorial diameter would then be to the polar diameter as 1·10967 is to
1.

By a weak analogy from the form of Jupiter Laplace infers that the

Earth’s ellipticity is less than
1
300

.
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1110. There are numerical mistakes on Laplace’s pages 139, 142, 148,
and 150; the corresponding pages of the national edition are 163, 166,
173, and 175 respectively, where the mistakes are reproduced: the cor-
rections are given by Bowditch on his pages 447, 459, 471 and 477 re-
spectively.

1111. Laplace on his page 140 considers that an error so great as 48·6
double toises cannot have occurred in the arcs measured in Pennsylvania,
at the Cape of Good Hope, and in Lapland; and again on his page 141
he considers that an error of 86·26 double toises in the Lapland degree
is much too great to be admitted.

If we accept Svanberg’s measurement of the arc in Lapland, the error
in the original determination of the length of a centesimal degree, which
Laplace here uses, is about 200 toises, which exceeds that which Laplace
pronounced too great to be admitted: see Art. 197.

As to the arc in Pennsylvania, Bowditch, himself an American, pro-
poses to reject it: see his page 444.

1112. I do not quite follow some remarks made by Laplace on his
page 143. He uses four measured arcs of meridian from the recent
French operations; and from these by the application of his § 39 he

deduces an ellipticity of about
1
150

. Then he shews that this also agrees

well with an arc measured perpendicular to the meridian in England.
So that on the whole the result may be said to depend on four French
arcs of meridian, and one English arc perpendicular to the meridian.

Now Laplace says:
Mais il est très-remarquable, que les mesures faites nouvellement en France

et en Angleterre, avec une grande précision, dans le sens des méridiens, et dans
le sens perpendiculaire aux meridiens, se réunissent à indiquer un ellipsoïde

osculateur dont l’ellipticité est
1
150

,…
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On this I remark that Laplace’s words would seem to suggest that to
get this result he had used both French and English arcs of the meridian,
and both French and English arcs perpendicular to the meridian; instead
of what he really did use. And again he now seems to consider this as
the most probable result of the observations, whereas he has himself in
his § 40 given that name to a different result and obtained on different
principles. This may be illustrated by his calculations with respect to the
seven selected degrees of § 41. By the method of § 39 Laplace obtains an

ellipticity
1
277

, which should have been
1
250

as Bowditch shews: by the

method of § 40 Laplace obtains an ellipticity
1
312

, which is very different

from the former.

1113. On his page 147 Laplace notices fifteen pendulum observations.
Of these he seems to make two divisions, one containing nine and the
other eight: it seems to me that his second division contains only six.

1114. On his page 151 Laplace incautiously makes the length of the
seconds pendulum vary as the square of the latitude. It should be that
the increment of the length varies as the square of the sine of the lati-
tude.

1115. The geometrical investigations which constitute § 38 of this
Chapter seem to be Laplace’s own; at least I have not discovered them
in any preceding writer. The method of § 39 seems also his own. The
method of § 40 is due to Boscovich, as we have seen in Art. 962. The § 38
is the only part which can be considered now to constitute an essential
part of the subject; it consists of the geometrical investigations which we
noticed in Art. 1100. The numerical calculations which form the latter
part of the Chapter by their nature could only have a temporary value;
and they are now superseded by more elaborate work founded on a more
extensive supply of measurements and observations.
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1116. The sixth Chapter of the Third Book is entitled De la figure de
l’anneau de Saturne.

The § 44 of this Chapter differs from the corresponding part of
Laplace’s sixth memoir; but the §§ 45 and 46, which constitute the main
part of the Chapter, are substantially the same here as in the memoir.

We may observe that a sketch of the history of the subject, so far
as we have gone up to the end of the fifth Chapter, is given by Laplace
himself in the pages 1…11 of the fifth volume of the Mécanique Céleste:
on pages 288…291 he gives a sketch of the labours of Astronomers and
Geometers as to the ring of Saturn; we may notice especially the top of
page 290. It is stated on page 288 that Herschel saw only two rings. This
is contrary to what Laplace had anticipated in his sixth memoir.

1117. Laplace says towards the beginning of his § 44 that he will
consider a thin stratum of fluid spread over the surface of the rings to be
in equilibrium; and he says at the beginning of § 45 that he will consider
the ring to be a homogeneous fluid mass. However the two hypotheses
come to the same thing; for if we regard the ring as fluid, then, the forces
being such as occur in nature, if the condition for the equilibrium of the
surface is satisfied, the mass will be in equilibrium throughout.

1118. Laplace does not say distinctly what is the order of approxima-
tion which he adopts. The fact is that he replaces a ring by an infinite
right cylinder; and he gives no investigation by which we can judge of
the amount of error which this involves. The suggestion he makes that
we should put

𝑉 = 𝑉 ′ +
1
𝑎
𝑉″ +

1
𝑎2
𝑉‴ +… ,

where 𝑎 is the distance between the centre of Saturn and the centre of
the generating curve of the ring, and thus get 𝑉 in a series, seems of no
practical value.

1119. Laplace then really determines the attraction of an infinite
cylinder on an external particle. Take the axis of 𝑧 parallel to the
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generating lines of the cylinder. Then the potential 𝑉 must satisfy the
equation

𝑑2𝑉
𝑑𝑥2

+
𝑑2𝑉
𝑑𝑦2

= 0;

therefore
𝑉 = 𝑓(𝑥 + 𝑦√−1) + 𝐹(𝑥 − 𝑦√−1),

where 𝑓 and 𝐹 denote functions at present arbitrary.
Suppose that from symmetry we know that a change in the sign of 𝑦

will not change 𝑉; then

𝑉 = 𝑓(𝑥 − 𝑦√−1) + 𝐹(𝑥 + 𝑦√−1).

Therefore by addition

𝑉 =
1
2
{𝑓(𝑥 + 𝑦√−1) + 𝐹(𝑥 + 𝑦√−1)}

+
1
2
{𝑓(𝑥 − 𝑦√−1) + 𝐹(𝑥 − 𝑦√−1)}

= 𝜙(𝑥 + 𝑦√−1) + 𝜙(𝑥 − 𝑦√−1) say.

Hence if we find the value of 𝑉 for the case in which 𝑦 = 0, we can

infer the general value of 𝑉. Or if we find the value of
𝑑𝑉
𝑑𝑥

when 𝑦 = 0,

we shall in fact determine 𝜙′(𝑡) when 𝑡 = 𝑥; then we can deduce the
value of 𝜙′(𝑡) when 𝑡 = 𝑥 ± 𝑦√−1.

See the last paragraph of Art. 1048.

1120. We may thus confine ourselves to estimating the attraction of
an elliptic cylinder on an external particle, which is in one of the prin-
cipal planes that contain the axis of the cylinder. Suppose the cylinder
decomposed into rods, parallel to the generating lines, of infinitesimal
section. The attraction of an infinite straight line we know is represented

by
2
𝑝
, where 𝑝 is the perpendicular from the point on the line.
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Let the diagram represent a section of the cylinder by a plane at right
angles to the axis, and passing through the attracted particle 𝑃, which is

on one of the axes of the elliptic section produced. Let 𝑂 be the centre
of the ellipse, 𝑂𝑃 = 𝑢. The attraction of the rod corresponding to 𝑄 may

be denoted by
2𝑑𝑥𝑑𝑦
𝑃𝑄

; this is along 𝑃𝑄. Resolve this, and we obtain for

the attraction along the axis of 𝑥

2𝑑𝑥 𝑑𝑦 (𝑢 − 𝑥)
𝑦2 + (𝑢 − 𝑥)2

.

Hence the resultant attraction of the cylinder is along the axis of 𝑥,
and its value is

2∬
(𝑢 − 𝑥) 𝑑𝑥 𝑑𝑦
𝑦2 + (𝑢 − 𝑥)2

;

the integration is to extend over the whole area of the ellipse, the equa-
tion of which may be denoted by 𝑥2 + 𝜆2𝑦2 = 𝑘2.

Laplace integrates with respect to 𝑦, and then states what the inte-
gration with respect to 𝑥 will give.
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1121. We may conveniently use polar coordinates in evaluating the
definite integral of the preceding Article. Let

𝑢 − 𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃.

Then the definite integral becomes

2∬
𝑟 cos 𝜃 . 𝑟 𝑑𝑟 𝑑𝜃

𝑟2
, that is 2∬ cos 𝜃 𝑑𝑟 𝑑𝜃;

and the limits are to be found from the equation

(𝑢 − 𝑟 cos 𝜃)2 + 𝜆2𝑟2 sin2 𝜃 = 𝑘2,

that is
𝑟2(cos2 𝜃 + 𝜆2 sin2 𝜃) − 2𝑢𝑟 cos 𝜃 + 𝑢2 − 𝑘2 = 0. (17)

Integrate first with respect to 𝑟, and use the limits which will be fur-
nished by the last equation, thus we obtain

4∫
cos 𝜃√{𝑢2 cos2 𝜃 − (𝑢2 − 𝑘2)(𝜆2 sin2 𝜃 + cos2 𝜃)}𝑑𝜃

𝜆2 sin2 𝜃 + cos2 𝜃
.

Denote this by 4𝑣. Then

𝑑𝑣
𝑑𝑘

= ∫
𝑘 cos 𝜃 𝑑𝜃

√{𝑢2 cos2 𝜃 − (𝑢2 − 𝑘2)(𝜆2 sin2 𝜃 + cos2 𝜃)}

= ∫
𝑘 cos 𝜃 𝑑𝜃

√(𝑘2 − 𝑐2 sin2 𝜃)
,

where 𝑐2 = 𝜆2𝑢2 + (1 − 𝜆2)𝑘2.
The limits of 𝜃 are the values of 𝜃 for which the two values of 𝑟

furnished by (17) become equal; it will be found that these are such as
make 𝑘2 − 𝑐2 sin2 𝜃 = 0.
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Therefore
𝑑𝑣
𝑑𝑘

=
𝜋𝑘
𝑐
=

𝜋𝑘
√{𝜆2𝑢2 + (1 − 𝜆2)𝑘2}

.

Hence we can obtain 𝑣; and as 𝑣 obviously vanishes with 𝑘 we have

𝑣 =
𝜋

1 − 𝜆2
[√ {𝜆2𝑢2 + (1 − 𝜆2)𝑘2} − 𝜆𝑢] .

And the required attraction is 4𝑣.

1122. We have in fact in Arts. 1119…1121 a complete account of the
attraction of an infinite cylinder on an external particle. As to the action
of a cylindrical shell it may be shewn by the aid of Art. 215 of the Statics
that if the surfaces are similar and similarly situated elliptical cylinders,
with a common axis, the attraction on an internal particle is zero.

1123. Laplace however really requires the attraction of an infinite
cylinder only for a point at its surface; and this may be found more
briefly. Resolve the cylinder as before into rods, parallel to the gener-
ating lines, of infinitesimal section. Take the point on the surface as the
origin of polar coordinates. Then for the resolved attractions in two di-
rections at right angles to each other in a plane at right angles to the
axis of the cylinder we have the expressions

𝑋 = 2∬𝑑𝑟𝑑𝜃 cos 𝜃, 𝑌 = 2∬𝑑𝑟𝑑𝜃 sin 𝜃.

Suppose the cylinder an elliptic cylinder. Let ℎ, 𝑘 be the coordinates,
referred to the centre as the origin, of the point on the surface at which
the attraction is required; let 2𝑎 and 2𝑏 be the corresponding axes of the
ellipse. Then the integration with respect to 𝑟 is to be taken from 𝑟 = 0
to

𝑟 = −

2ℎ cos 𝜃
𝑎2

+
2𝑘 sin 𝜃
𝑏2

cos2 𝜃
𝑎2

+
sin2 𝜃
𝑏2

.
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The limits with respect to 𝜃 are 𝜃1 and 𝜃1 + 𝜋, where 𝜃1 is such that

ℎ cos 𝜃1
𝑎2

+
𝑘 sin 𝜃1
𝑏2

= 0.

Hence we get

𝑋 = −∫
4ℎ𝑏2 cos2 𝜃 𝑑𝜃

𝑎2 sin2 𝜃 + 𝑏2 cos2 𝜃
,

𝑌 = −∫
4𝑘𝑎2 sin2 𝜃 𝑑𝜃

𝑎2 sin2 𝜃 + 𝑏2 cos2 𝜃
.

Therefore
𝑋
ℎ
+
𝑌
𝑘
= −4∫

𝜃1+𝜋

𝜃1

𝑑𝜃 = −4𝜋.

And

𝑋𝑎2

ℎ
+
𝑌𝑏2

𝑘
= −4𝑎2𝑏2∫

𝜃1+𝜋

𝜃1

𝑑𝜃
𝑎2 sin2 𝜃 + 𝑏2 cos2 𝜃

= −4𝑎𝑏𝜋.

Hence, finally,

𝑋 = −
4𝜋𝑏ℎ
𝑎 + 𝑏

, 𝑌 = −
4𝜋𝑎𝑘
𝑎 + 𝑏

.

Therefore

𝑋2 + 𝑌 2 = (
4𝜋
𝑎 + 𝑏

)
2
(𝑏2ℎ2 + 𝑎2𝑘2) = (

4𝜋𝑎𝑏
𝑎 + 𝑏

)
2
;

thus the resultant is constant for all points of the surface of the cylinder.
I cannot find that this simple remark has been made before, though

many persons give the formulae for 𝑋 and 𝑌; as for instance Laplace in
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1787, and Plana in 1819: see also Resal, page 155, and Price’s Infinitesi-
mal Calculus, Vol. iii. page 289.

The direction of the resultant attraction at any point of the surface
can be readily assigned; the tangent of the angle which this direction

makes with the axis of 𝑥 is equal to
𝑌
𝑋
, that is to

𝑎𝑘
𝑏ℎ
. Hence the direction

is parallel to the corresponding radius of the auxiliary circle.

1124. The substance of Laplace’s Chapter on Saturn’s ring is repro-
duced by Resal in his pages 239…243.

1125. The Chapter devoted by Laplace to Saturn’s ring is original and
interesting; but it does not discuss the subject very fully. The reader who
desires to obtain information on this matter will consult the essay by Pro-
fessor Maxwell, entitled On the Stability of the Motion of Saturn’s Rings,
Cambridge, 1859: for an account of this essay see the Monthly Notices of
the Royal Astronomical Society, Vol. xix. page 297.

1126. The seventh Chapter of the Third Book is entitled De la figure
des atmosphères des corps célestes.

This occupies little more than three pages of the Mécanique Céleste.
Laplace really adds nothing to what was previously known, and which
may be found in the sixth volume of D’Alembert’s Opuscules Mathéma-
tiques: see Art. 639.

It does not seem to me that the Chapter is very clearly written.
Laplace for instance says that at the exterior surface Π = 0; this would
be true if the atmosphere were an incompressible fluid, but for an
atmosphere we cannot have Π = 0, for as long as there is density there
will be pressure. In what follows Laplace gives the equation

𝑐 =
2
𝑟
+ 𝛼𝑟2 sin2 𝜃

as the equation to the surface of the atmosphere; but this is really the
equation to any surface of equal pressure.
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Laplace afterwards says that the greatest value which the radius vec-
tor can have is that where the centrifugal force is equal to the attraction;
and this is true, and gives a limit to the extent of the surface.

The subject is treated by Resal in his pages 263…289; he follows the
method and principles of E. Roche to whom he refers. The substance of
Laplace’s Chapter is reproduced in Pratt’s Mechanical Philosophy, second
edition, pages 552…554.

1127. Here we finish our account of the contributions to our subject
which are contained in the first two volumes of the Mécanique Céleste.
They consist of the investigations, collected and improved, which Laplace
made during the last quarter of the eighteenth century. Their illustrious
author combined the highest mathematical ability with unwearied en-
ergy; and he availed himself of the labours of his predecessors, and of
his eminent contemporary Legendre. He may be said to have received
the theories of Attraction and of the Figure of the Earth immediately
from the hands of D’Alembert; and he transmitted them to his successors
stamped with the permanent impression of his own genius. Although
more than seventy years have elapsed since the publication of the ear-
lier volumes of the Mécanique Céleste, they still embody in their pages
the standard treatise on those parts of Physical Astronomy of which our
history treats.



CHAPTER XXIX.

LAPLACE’S THEOREM.

1128. We shall now proceed to give an account of investigations
which have appeared since the publication of the second volume of the
Mécanique Céleste. We shall consider in separate Chapters the various
important points which have been thus discussed. The present Chapter
is devoted to Laplace’s theorem respecting the attractions of confocal
ellipsoids.

1129. We have already noticed Laplace’s own demonstration, which
first appeared in his treatise of 1784, was improved in his fourth mem-
oir, and finally introduced in the Mécanique Céleste: see Arts. 804 and
850. Legendre in his third memoir arrived at the result by a laborious
investigation which does not employ infinite series: see Chapter xxiv.

1130. We have first to consider a memoir by Biot, entitled Recherches
sur le calcul aux différences partielles, et sur les attractions des sphéroïdes;
this is contained in the sixth volume of the Mémoires de l’Institut … Paris
1806: the memoir occupies pages 201…218 of the volume.

1131. Biot refers to the researches on the subject of the attraction
of spheroids by Laplace, Lagrange, and Legendre, before he develops his
own method. Let 𝑉 be the potential of a given body on a particle whose
coordinates are 𝑎, 𝑏, 𝑐. Biot starts with the equation

𝑑2𝑉
𝑑𝑎2

+
𝑑2𝑉
𝑑𝑏2

+
𝑑2𝑉
𝑑𝑐2

= 0. (1)

He seems to describe his own method by saying that instead of trying
to integrate this partial differential equation he interprets the differential
form directly. I should describe it by saying that instead of trying to in-
tegrate this differential equation in finite terms he uses an integral in the
form of an infinite series.
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1132. We may transform (1) by substituting three new variables 𝑎′,
𝑏′, 𝑐′ which are connected with 𝑎, 𝑏, 𝑐 by the arbitrary equations

𝑎′ = 𝐹(𝑎, 𝑏, 𝑐), 𝑏′ = 𝐹1(𝑎, 𝑏, 𝑐), 𝑐′ = 𝐹2(𝑎, 𝑏, 𝑐). (2)

Let 𝑉 ′ denote the form which 𝑉 assumes when for 𝑎, 𝑏, 𝑐 we substi-
tute their values in terms of 𝑎′, 𝑏′, 𝑐′ given by (2). Then

𝑑𝑉
𝑑𝑎

=
𝑑𝑉 ′

𝑑𝑎′
𝑑𝑎′

𝑑𝑎
+
𝑑𝑉 ′

𝑑𝑏′
𝑑𝑏′

𝑑𝑎
+
𝑑𝑉 ′

𝑑𝑐′
𝑑𝑐′

𝑑𝑎
, (3)

and similar expressions hold for
𝑑𝑉
𝑑𝑏

and
𝑑𝑉
𝑑𝑐
.

Similarly we can express
𝑑2𝑉
𝑑𝑎2

,
𝑑2𝑉
𝑑𝑏2

, and
𝑑2𝑉
𝑑𝑐2

.

Then substitute in (1) and we have a partial differential equation of
the second order which we will denote by

𝐿 = 0. (4)

The equation (4) like (1) will be linear.
Suppose the value of 𝑉 ′ which satisfies (4) to be expanded in powers

of 𝑎′; say

𝑉 ′ = 𝜙 + 𝑎′𝜙1 +
𝑎′2

2
𝜙2 +

𝑎′3

3
𝜙3 +

𝑎′4

4
𝜙4 +… , (5)

where 𝜙, 𝜙1, 𝜙2, … denote functions of 𝑏′ and 𝑐′ which do not contain
𝑎′.

From (5) we must obtain
𝑑𝑉 ′

𝑑𝑎′
,
𝑑𝑉 ′

𝑑𝑏′
,
𝑑𝑉 ′

𝑑𝑐′
, and the differential coef-

ficients of 𝑉 ′ of the second order, and substitute these in (4). Equate
to zero the coefficients of the various powers of 𝑎′. Thus we shall have
equations which will determine 𝜙2, 𝜙3, 𝜙4, … in terms of 𝜙 and 𝜙1, but
these will remain quite arbitrary.
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This is the main part of Biot’s investigation. It is obvious that it is
not quite satisfactory. For possibly exceptions might arise when special
forms are assigned to the functions denoted by the 𝐹, 𝐹1, 𝐹2 of equation
(2). Moreover there is nothing to ensure the convergence of (5).

1133. From equation (5) we have

𝑑𝑉 ′

𝑑𝑎′
= 𝜙1 + 𝑎′𝜙2 +

𝑎′2

2
𝜙3 +

𝑎′3

3
𝜙4 +…

𝑑𝑉 ′

𝑑𝑏′
=

𝑑𝜙
𝑑𝑏′

+ 𝑎′
𝑑𝜙1
𝑑𝑏′

+
𝑎′2

2
𝑑𝜙2
𝑑𝑏′

+
𝑎′3

3
𝑑𝜙3
𝑑𝑏′

+…

𝑑𝑉 ′

𝑑𝑐′
=
𝑑𝜙
𝑑𝑐′

+ 𝑎′
𝑑𝜙1
𝑑𝑐′

+
𝑎′2

2
𝑑𝜙2
𝑑𝑐′

+
𝑎′3

3
𝑑𝜙3
𝑑𝑐′

+…

But in the values of 𝜙2, 𝜙3, 𝜙4, … we shall find that the function 𝜙
itself does not occur but only the differential coefficients of 𝜙; this arises
from the fact that 𝑉 ′ itself does not occur in (4) but only the differential
coefficients of 𝑉 ′.

Hence the three series just given will be completely determined,

when the first terms are known, that is when the values of
𝑑𝑉 ′

𝑑𝑎′
,
𝑑𝑉 ′

𝑑𝑏′
,

and
𝑑𝑉 ′

𝑑𝑐′
are known corresponding to 𝑎′ = 0.

But these values are connected with the values of
𝑑𝑉
𝑑𝑎

,
𝑑𝑉
𝑑𝑏

, and
𝑑𝑉
𝑑𝑐

by (3) and two similar equations; so we shall have the values of
𝑑𝑉 ′

𝑑𝑎′
,

𝑑𝑉 ′

𝑑𝑏′
, and

𝑑𝑉 ′

𝑑𝑐′
when 𝑎′ = 0, provided we know the values of

𝑑𝑉
𝑑𝑎

,
𝑑𝑉
𝑑𝑏

,

and
𝑑𝑉
𝑑𝑐

when 𝑎′ = 0.



laplace’s theorem. 248

And as the particular values of
𝑑𝑉 ′

𝑑𝑎′
,
𝑑𝑉 ′

𝑑𝑏′
, and

𝑑𝑉 ′

𝑑𝑐′
when 𝑎′ = 0,

suffice to determine the general values of these differential coefficients,

it follows also that the general values of
𝑑𝑉
𝑑𝑎

,
𝑑𝑉
𝑑𝑏

, and
𝑑𝑉
𝑑𝑐

are determined

as soon as we know the particular values which correspond to 𝑎′ = 0.
But the equation 𝑎′ = 0 will represent any surface whatever by giving

the proper form to 𝐹(𝑎, 𝑏, 𝑐). Hence we obtain the following very general
theorem:

In order to know the attractions of a spheroid at any exterior points it
will be sufficient to know the attractions of this spheroid at all the points
of any exterior surface taken at pleasure.

I have inserted the word exterior in Biot’s enunciation because we
now know that (1) is not true for internal points.

1134. As an example we may take for 𝑎′ = 0 the equation to the
surface of the attracting spheroid itself.

Biot considers that this includes as a particular case Laplace’s the-
orem respecting ellipsoids. But this becomes more obvious after some
developments to which Biot now proceeds. See Art. 1136.

1135. If we wish the arbitrary surface to be a plane we may take
𝑎 = 0 for its equation. Then it will not be necessary to transform (1) by
the introduction of the new variables 𝑎′, 𝑏′, 𝑐′. The general value of 𝑉
derived from (1) will be

𝑉 = 𝜙 + 𝑎𝜙1 −
𝑎2

2
(
𝑑2𝜙
𝑑𝑏2

+
𝑑2𝜙
𝑑𝑐2

) −
𝑎3

3
(
𝑑2𝜙1
𝑑𝑏2

+
𝑑2𝜙1
𝑑𝑐2

)

+
𝑎4

4
(
𝑑4𝜙
𝑑𝑏4

+ 2
𝑑4𝜙

𝑑𝑏2𝑑𝑐2
+
𝑑4𝜙
𝑑𝑐4

) +… ; (6)

this may be verified by substituting in (1); or it may be obtained as in
Boole’s Differential Equations, third edition, pages 401 and 402.
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Biot says that this was first given by Lagrange in the Mécanique An-
alytique, p. 474; this means the first edition of Lagrange’s work: see Art.
994.

From the above value of 𝑉 we can immediately deduce
𝑑𝑉
𝑑𝑎

,
𝑑𝑉
𝑑𝑏

, and

𝑑𝑉
𝑑𝑐
.

Biot’s result includes that of Laplace relative to symmetrical spher-
oids: see Art. 1076.

1136. The preceding developments apply to all kinds of spheroids; for

each particular spheroid the values of 𝜙1 and
𝑑𝜙
𝑑𝑏

and
𝑑𝜙
𝑑𝑐

will in general

be different.
Suppose we take an ellipsoid; the attraction for any point in the plane

of the equator can be obtained, as was shewn in Legendre’s third mem-
oir. We have in this case

𝜙 = 𝑀𝑈, 𝜙1 = 0,

where 𝑀 is the mass of the ellipsoid, and 𝑈 is a function which involves
the coordinates of the external point and the excentricities of the ellip-
soid; see Art. 1060. The result 𝜙1 = 0 follows from the fact that the
ellipsoid is symmetrical with respect to its equator, and so for any point
in that plane the attraction parallel to the axis of 𝑎 must vanish.

Thus for an ellipsoid we obtain from (6)

𝑉 = 𝑀𝑈 −
𝑀𝑎2

2
(
𝑑2𝑈
𝑑𝑏2

+
𝑑2𝑈
𝑑𝑐2

) +
𝑀𝑎4

4
(
𝑑4𝑈
𝑑𝑏4

+ 2
𝑑4𝑈
𝑑𝑏2𝑑𝑐2

+
𝑑4𝑈
𝑑𝑐4

) +…

Hence if there be a second ellipsoid with the same excentricities, the
value of 𝑈 will be the same for both; thus if 𝑀′ be the mass and 𝑉 ′ the



laplace’s theorem. 250

potential for the second ellipsoid, we have

𝑉 ′

𝑀′ =
𝑉
𝑀
.

This constitutes the proof of Laplace’s theorem.

1137. Results analogous to those which have been given, but more
simple, hold for the case of spheroids of revolution.

For a spheroid of revolution we may put

𝑏2 + 𝑐2 = 𝑟2,

and 𝑉 will be a function of 𝑟 and 𝑎.
Thus (1) is transformed into

1
𝑟
𝑑𝑉
𝑑𝑟

+
𝑑2𝑉
𝑑𝑟2

+
𝑑2𝑉
𝑑𝑎2

= 0.

Hence by the same method as before we arrive at this result: the at-
traction of a spheroid of revolution will be known for any external point
whatever, if it is known for every point of any arbitrary external curve
whatever, described in the plane of the meridian. If we suppose this ar-
bitrary curve to be the prolongation of the axis we have the result first
given by Legendre: see Art. 791.

Biot himself says: “… et de là résultent, comme cas particulier, les
beaux théorèmes démontrés pour la première fois par M. Legendre.” I
do not know what other theorem Biot has in view besides that to which
I have referred.

1138. I must cite another sentence from Biot’s memoir; he says on
page 208, after introducing the function 𝑉,

M. Lagrange a démontré que les coefficiens différentiels

𝑑𝑉
𝑑𝑎

,
𝑑𝑉
𝑑𝑏

,
𝑑𝑉
𝑑𝑐

,
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pris négativement, expriment les attractions exercées par le sphéroïde sur ce
même point, parallèlement aux trois axes rectangulaires. M. Laplace a fait voir
ensuite que la fonction 𝑉 est assujetie à l’équation différentielle partielle

𝑑2𝑉
𝑑𝑎2

+
𝑑2𝑉
𝑑𝑏2

+
𝑑2𝑉
𝑑𝑐2

= 0.

I do not know on what authority the above expressions for
component attractions are assigned to Lagrange; to me they appear due
to Laplace: see Art. 789, and also pages 70 and 133 of Laplace’s Figure
des Planetes.

1139. Biot’s memoir may be said to belong more properly to the sub-
ject of partial differential equations than to that of attractions; and its
interest for us is rather of a speculative than of a practical character,
for it does not really determine the attraction of any spheroid. So far
as Laplace’s theorem is concerned, we see that the investigation is not
quite independent, for it borrows one of the main results of Legendre’s
abstruse third memoir.

1140. We arrive now at the remarkable simplification effected by
Ivory. A memoir by him entitled On the Attractions of homogeneous
Ellipsoids, was read before the Royal Society on 15th June, 1809; and
is printed in the Philosophical Transactions for 1809; it occupies pages
345…372.

1141. This memoir is famous for containing the enunciation
and demonstration of the theorem which is usually called Ivory’s
theorem; but which would be more justly called Ivory’s demonstration
of Laplace’s theorem. The memoir is the first communicated by
Ivory to the Royal Society; and is I think the best of all his memoirs
which relate to our subject. The memoir forms a good treatise on the
attractions of homogeneous ellipsoids, and may be read at the present
day with interest and profit. There are two improvements which our
modern books present to us; Ivory makes frequent use of the process
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of transformation of the variables in a definite double integral, and
this process is now found to be unnecessary; he treats the attraction
on an internal particle by the method of series, not always convergent,
and we now employ the simple method like that given by Lagrange
in 1773, and which is adopted in the Mécanique Céleste. It is difficult
to see what induced Ivory to use the method of series, when Laplace
had solved this part of the problem so much better. The essence of
the treatment proposed by Ivory for the attraction of an ellipsoid on
an external particle remains in our elementary books; and thus it is
unnecessary to enter into particulars respecting it.

1142. Ivory gives a brief sketch of the history of the subject in his in-
troductory pages. He refers to the particular cases discussed by Maclau-
rin and Legendre, and then passes on to the more general problem which
Laplace attacked. He says:

The method of investigation, which La Place has employed for surmount-
ing the difficulties of this last case, although it is entitled to every praise for
its ingenuity, and the mathematical skill which it displays, is certainly neither
so simple nor so direct, as to leave no room for perfecting the theory of the
attractions of ellipsoids in both these respects. It consists in shewing that the
expressions for the attractions of an ellipsoid, on any external point, may be
resolved into two factors; of which, one is the mass of the ellipsoid, and the
other involves only the excentricities of the solid and the co-ordinates of the
attracted point: whence it follows, that two ellipsoids, which have the same ex-
centricities, and their principal sections in the same planes, will attract the same
external point with forces proportional to the masses of the solids. This theo-
rem includes the extreme case, when the surface of one of the solids passes
through the attracted point: and by this means the attraction of an ellipsoid,
upon a point placed without it, is made to depend upon the attraction which
another ellipsoid, having the same excentricities as the former, exerts upon a
point placed in the surface. Le Gendre has given a direct demonstration of the
theorem of La Place, by integrating the fluxional expressions of the attractive
forces; a work of no small difficulty, and which is not accomplished without
complicated calculations.
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It will be seen that Ivory speaks of “the theorem of La Place” as I do.

1143. Ivory’s own enunciation of his result is contained in the fol-
lowing words:

If two ellipsoids of the same homogeneous matter have the same excentric-
ities, and their principal sections in the same planes; the attractions which one
of the ellipsoids exerts upon a point in the surface of the other, perpendicu-
larly to the planes of the principal sections, will be to the attractions which the
second ellipsoid exerts upon the corresponding point in the surface of the first,
perpendicularly to the same planes, in the direct proportion of the surfaces, or
areas, of the principal sections to which the attractions are perpendicular.

The theorem is really the combination of two results both due to
Laplace. One result may be thus expressed: the potentials of confocal
ellipsoids at a given point external to both are as their masses. The other
result is the expression for the attraction of an ellipsoid on a particle at
its surface. See Art. 1063.

1144. A peculiarity in Ivory’s memoir is his frequent use of the pro-
cess of transformation of the variables in a definite double integral. Al-
though, as we have seen in Arts. 710 and 877, Lagrange and Legendre
had treated of this process, yet I do not think any good account of it had
been given at the time of Ivory’s memoir. However the cases in which
he uses the method would not present any great difficulty.

1145. On the whole we may say that Ivory’s memoir goes over the
same extent of ground as the first Chapter in the Third Book of the Mé-
canique Céleste; obtaining results equivalent to Laplace’s but in a more
simple manner.

We may observe that Ivory refers to Laplace’s memoir of 1783 by mis-
take, instead of 1782; see Ivory’s page 347: the mistake is the same as
Legendre makes in his memoir of 1788. Perhaps Ivory copied it from
Legendre: see Art. 876.

1146. The merits of Ivory’s process were clearly recognised in France.
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Thus Legendre says on page 158 of the Mémoires de l’Institut for 1810:
Les difficultés d’analyse que présentait ce problême traité par tant de

moyens différens, disparaissent ainsi tout d’un coup, par le procédé de
M. Yvory, et une théorie qui appartenait à l’analyse la plus abstruse, peut
maintenant être exposée dans toute sa généralité, d’une manière presque
entièrement élémentaire.

This seems the passage which Dr Thomas Young has in view though I
do not understand his reference involved in the words: “… say Legendre
and Delambre (M. Inst. 1812).” See Young’s Works, Vol. ii. page 581.

1147. A memoir by Plana entitled Sulla teoria dell’ attrazione degli
sferoidi elittici is contained in the Memorie di Matematica … della Società
Italiana, Vol. xv. Modena, 1811. The memoir occupies pages 370…390 of
the first part of the volume. It was communicated on the 24th November,
1810.

I have already stated that Laplace’s proof of his theorem was pub-
lished by him in the fourth section of his treatise De la Figure … des
Planetes; and afterwards given in an improved form in the first Chap-
ter of the Third Book of the Mécanique Céleste; see Arts. 804 and 1060.
Plana’s memoir is simply a reproduction of the section from the treatise
De la Figure … des Planetes, a little expanded by giving the steps of the
work in some cases where Laplace only records the result. Plana proba-
bly regarded Laplace’s earlier form of the argument as the more natural,
though the later form is briefer.

Plana’s memoir adds nothing to the knowledge of the subject; though
it might save some trouble to young mathematicians in their study of
Laplace’s method.

I may draw attention to the following words which occur on Plana’s
page 376:

… bellissimo teorema del Sig. Legendre mediante il quale, l’attrazione di un
elissoide sopra un punto esteriore alla sua superficie dipende in ogni caso da
quella dei punti situati sulla superficie.
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I cannot admit the propriety of calling this theorem by Legendre’s
name; Legendre really established only a part of this: see Art. 782. The
extension of the theorem to the generality thus ascribed to it by Plana is
really due to Laplace, being in fact involved in the theorem which I call
by his name.

1148. A note by Biot entitled Sur l’attraction des Sphéroïdes is given
in the Nouveau Bulletin … la Société Philomatique for March 1812, pages
44…48. This note may be considered as an appendix to the memoir of
1806.

In the memoir Biot had shewn that the attraction of an ellipsoid at
any external point might be deduced by simple differentiations from a
particular expression, which is theoretically known when the attraction
is known for all points situated in the plane of one of the principal sec-
tions.

Now he says that the demonstration would cease to be applicable in
the case in which the projection of the external point on the assigned
plane falls within the principal section of the ellipsoid. For the expres-
sions which give the values of the attractions are different according as
the point is within or without the ellipsoid, and so the results cannot be
comprehended in the same formulæ.

Biot proposes to surmount the difficulty by a transformation of the
coordinates.

Let 𝑥, 𝑦, 𝑧 be the old coordinates of the external point, where 𝑥 and 𝑦
refer to the assigned principal plane. Let 𝑥′, 𝑦′, 𝑧′ be the new coordinates
of the point, connected with the old coordinates by the equations

𝑥′ = 𝑥 + 𝑧 tan𝛼 cos 𝛽, 𝑦′ = 𝑦 + 𝑧 tan𝛼 sin 𝛽, 𝑧′ = 𝑧 sec𝛼.
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Then the equation (1) of Art. 1131 transforms into

(1 + tan2 𝛼 cos2 𝛽)
𝑑2𝑉
𝑑𝑥′2

+ (1 + tan2 𝛼 sin2 𝛽)
𝑑2𝑉
𝑑𝑦′2

+ sec2 𝛼
𝑑2𝑉
𝑑𝑧′2

+ 2 tan2 𝛼 sin 𝛽 cos 𝛽
𝑑2𝑉
𝑑𝑥′𝑑𝑦′

+ 2 tan𝛼 sec𝛼 (cos 𝛽
𝑑2𝑉
𝑑𝑥′𝑑𝑧′

+ sin 𝛽
𝑑2𝑉
𝑑𝑦′𝑑𝑧′

) = 0.

This is still a linear equation. Hence as in Art. 1132 we find that

𝑉 = 𝐴0 + 𝐴1𝑧′ + 𝐴2
𝑧′2

2
+ 𝐴3

𝑧′2

3
+… ,

where 𝐴0, 𝐴1, 𝐴2, … are functions of 𝑥′ and 𝑦′ Then the inference is of
the same kind as in Art. 1133.

We may take 𝛼 and 𝛽 so that (𝑥′, 𝑦′) falls without the ellipsoid, for the
case of any assigned external point. Thus the difficulty is surmounted.

Although Biot’s method in his memoir and in this note is interesting,
yet the use of infinite series of which the convergence is not secured,
cannot be accepted as rigorous.

1149. We have next to consider a memoir by Legendre entitled Mé-
moire sur l’attraction des ellipsoïdes homogènes. This is published in the
Mémoires de l’Institut for 1810, second part: the date of publication is
1811. The memoir occupies pages 155…183 of the volume. The memoir
was read on the 5th October, 1812.

1150. Legendre begins by an historical sketch of the subject. He says
that the problem of the attraction of an ellipsoid on an internal parti-
cle had been completely solved with much elegance by Maclaurin in his
prize essay on the Tides. Maclaurin however, as we have seen, explicitly
considered only the case of an ellipsoid of revolution, though his meth-
ods admitted of obvious extension to the case of the general ellipsoid.
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With regard to the attraction of an ellipsoid on an external particle
Legendre adverts to the theorem of Maclaurin: to the extension which
he himself gave of it in the memoir which I have called his first; to the
further extension given by Laplace; and to his own investigations in the
memoir which I have called his third. He says of the second part of this
memoir:

J’avoue néanmoins que cette partie de mon Mémoire n’a que le mérite
d’être directe, et de montrer, dès l’abord, la possibilité de la solution, mais que
d’ailleurs l’analyse en est d’une extrême complication. Il était donc à desirer
qu’on découvrît une route plus facile pour parvenir au même résultat.

Legendre then refers to Biot for his happy idea of applying to the
equation of the attraction the integral which Lagrange had given for an-
other object. Legendre says that Biot’s result joined to the first part of his
own memoir, the third, completed in a satisfactory manner the theory of
the attraction of homogeneous ellipsoids; and so there was little hope of
acquiring any new degree of perfection.

But Ivory, whom Legendre calls Yvory, had thrown a fresh light on
the subject by an ingenious transformation. Accordingly Legendre pro-
poses to avail himself of Ivory’s discovery in order to present the whole
theory of the attraction of ellipsoids in its simplest form. This he effects
by combining Ivory’s demonstration with the mode of solution for an
internal particle given by Lagrange, this mode being simpler than that
adopted by Ivory, which depends on development in a series.

1151. Legendre’s memoir forms a very good account of the attraction
of homogeneous ellipsoids; it is clear, simple, and comprehensive, and
might be reprinted at the present time as an elementary treatise on the
subject.

Although there is nothing really new in the methods employed, yet
there are some subordinate results of interest which appear for the first
time, and these we will indicate.

1152. What we call Ivory’s theorem is given by Legendre substantially



laplace’s theorem. 258

in Ivory’s manner, though slightly improved. We need not delay on this,
but pass to the case in which the attracted particle is within the ellipsoid
or on its surface.

Let 𝑎, 𝑏, 𝑐 be the semiaxes of the ellipsoid; let 𝑓, 𝑔, ℎ be the corre-
sponding coordinates of an attracted particle; let 𝐴, 𝐵, 𝐶 be the corre-
sponding resolved parts of the attraction. Then Legendre shews that

𝐴 = 2𝑓∬
sin 𝜃 cos2 𝜃 𝑑𝜃 𝑑𝜙

cos2 𝜃 +
𝑎2

𝑏2
sin2 𝜃 cos2 𝜙 +

𝑎2

𝑐2
sin2 𝜃 sin2 𝜙

,

𝐵 =
2𝑎2𝑔
𝑏2

∬
sin3 𝜃 cos2 𝜙𝑑𝜃 𝑑𝜙

cos2 𝜃 +
𝑎2

𝑏2
sin2 𝜃 cos2 𝜙 +

𝑎2

𝑐2
sin2 𝜃 sin2 𝜙

,

𝐶 =
2𝑎2ℎ
𝑐2

∬
sin3 𝜃 sin2 𝜙𝑑𝜃 𝑑𝜙

cos2 𝜃 +
𝑎2

𝑏2
sin2 𝜃 cos2 𝜙 +

𝑎2

𝑐2
sin2 𝜃 sin2 𝜙

.

The limits for both 𝜃 and 𝜙 are 0 and 𝜋.
Consider the expression for 𝐴; the integration with respect to 𝜙 can

be effected: thus

𝐴 = 2𝑓𝜋∫
sin 𝜃 cos2 𝜃 𝑑𝜃

√(cos2 𝜃 +
𝑎2

𝑏2
sin2 𝜃)√(cos2 𝜃 +

𝑎2

𝑐2
sin2 𝜃)

.

Put 𝑀 for the volume of the ellipsoid, that is for
4𝜋𝑎𝑏𝑐
3

. Also put 𝑥
for cos 𝜃. Thus we get

𝐴 =
3𝑀𝑓
𝑎

∫
1

0

𝑥2𝑑𝑥
√{𝑎2 + (𝑏2 − 𝑎2)𝑥2}√{𝑎2 + (𝑐2 − 𝑎2)𝑥2}

.

1153. Now instead of making use of the formulæ given above for 𝐵
and 𝐶, we may if we please deduce values of 𝐵 and 𝐶 from the value of
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𝐴, by appropriate changes of the letters. Thus we have

𝐵 =
3𝑀𝑔
𝑏

∫
1

0

𝑥2𝑑𝑥
√{𝑏2 + (𝑐2 − 𝑏2)𝑥2}√{𝑏2 + (𝑎2 − 𝑏2)𝑥2}

,

𝐶 =
3𝑀ℎ
𝑐

∫
1

0

𝑥2𝑑𝑥
√{𝑐2 + (𝑎2 − 𝑐2)𝑥2}√{𝑐2 + (𝑏2 − 𝑐2)𝑥2}

.

All this of course was well known.
Legendre however observes that if we do make use of the formulæ

given in Art. 1152 we shall obtain

𝐵 =
3𝑀𝑔

𝑎(𝑐2 − 𝑏2)
[
𝑐
𝑏
−∫

1

0

√{𝑎2 + (𝑐2 − 𝑎2)𝑥2} 𝑑𝑥
√{𝑎2 + (𝑏2 − 𝑎2)𝑥2}

] ,

𝐶 =
3𝑀ℎ

𝑎(𝑐2 − 𝑏2)
[−

𝑏
𝑐
+∫

1

0

√{𝑎2 + (𝑏2 − 𝑎2)𝑥2} 𝑑𝑥
√{𝑎2 + (𝑐2 − 𝑎2)𝑥2}

] .

Legendre adds that it is easy to convince ourselves that the different
formulæ agree in value. I will supply the process.

1154. We have in fact by integration by parts

∫
√{𝑎2 + (𝑐2 − 𝑎2)𝑥2}
√{𝑎2 + (𝑏2 − 𝑎2)𝑥2}

𝑑𝑥 =
𝑥√{𝑎2 + (𝑐2 − 𝑎2)𝑥2}
√{𝑎2 + (𝑏2 − 𝑎2)𝑥2}

−∫
𝑥2(𝑐2 − 𝑎2) 𝑑𝑥

√{𝑎2 + (𝑐2 − 𝑎2)𝑥2}√{𝑎2 + (𝑏2 − 𝑎2)𝑥2}

+∫
𝑥2(𝑏2 − 𝑎2)√{𝑎2 + (𝑐2 − 𝑎2)𝑥2}

{𝑎2 + (𝑏2 − 𝑎2)𝑥2} 32
𝑑𝑥

=
𝑥√{𝑎2 + (𝑐2 − 𝑎2)𝑥2}
√{𝑎2 + (𝑏2 − 𝑎2)𝑥2}

+∫
𝑎2(𝑏2 − 𝑐2)𝑥2 𝑑𝑥

{𝑎2 + (𝑐2 − 𝑎2)𝑥2} 12 {𝑎2 + (𝑏2 − 𝑎2)𝑥2} 32
.

Take the integrals between the limits 0 and 1; thus we get from Art.
1153

𝐵 = 3𝑀𝑔𝑎∫
1

0

𝑥2 𝑑𝑥
{𝑎2 + (𝑐2 − 𝑎2)𝑥2} 12 {𝑎2 + (𝑏2 − 𝑎2)𝑥2} 32

,



laplace’s theorem. 260

this is another form for 𝐵.

Now put
𝑥

√{𝑎2 + (𝑏2 − 𝑎2)𝑥2}
=
𝑦
𝑏
; thus

𝐵 =
3𝑀𝑔𝑎
𝑏

∫
1

0

𝑥2

{𝑎2 + (𝑐2 − 𝑎2)𝑥2} 12
𝑑𝑦
𝑎2
;

also 𝑥2 =
𝑎2𝑦2

𝑏2 − (𝑏2 − 𝑎2)𝑦2
, and 𝑎2 + (𝑐2 − 𝑎2)𝑥2 =

𝑎2𝑏2 + 𝑎2(𝑐2 − 𝑏2)𝑦2

𝑏2 − (𝑏2 − 𝑎2)𝑦2
;

so that

𝐵 =
3𝑀𝑔
𝑏

∫
1

0

𝑦2 𝑑𝑦
√{𝑏2 + (𝑐2 − 𝑏2)𝑦2}√{𝑏2 + (𝑎2 − 𝑏2)𝑦2}

,

which was to be shewn.

1155. If the ellipsoid differs but little from a sphere we may obtain
an approximation by a series. Take the expression for 𝐴 in Art. 1152 as
an example.

Let 𝜇 =
𝑎2 − 𝑏2

𝑎2
, and 𝜈 =

𝑎2 − 𝑐2

𝑎2
. Then

𝐴 =
3𝑀𝑓
𝑎3

∫
1

0

𝑥2 𝑑𝑥
√(1 − 𝜇𝑥2)√(1 − 𝜈𝑥2)

.

We should expand before integration. Let

(1 − 𝜇𝑥2)− 1
2 (1 − 𝜈𝑥2)− 1

2 = 1 + 𝑃1𝑥2 + 𝑃2𝑥4 + 𝑃3𝑥6 +…
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Then it is easy to shew that

𝑃1 =
1
2
(𝜇 + 𝜈),

𝑃2 =
1 . 3
2 . 4

(𝜇2 + 𝜈2) +
1
2
.
1
2
𝜇𝜈,

𝑃3 =
1 . 3 . 5
2 . 4 . 6

(𝜇3 + 𝜈3) +
1 . 3
2 . 4

.
1
2
𝜇𝜈(𝜇 + 𝜈),

𝑃4 =
1 . 3 . 5 . 7
2 . 4 . 6 . 8

(𝜇4 + 𝜈4) +
1 . 3 . 5
2 . 4 . 6

.
1
2
𝜇𝜈(𝜇2 + 𝜈2) +

1 . 3
2 . 4

.
1 . 3
2 . 4

𝜇2𝜈2.

………

The law is obvious.
Thus

𝐴 =
3𝑀𝑓
𝑎3

{
1
3
+
1
5
𝑃1 +

1
7
𝑃2 +

1
9
𝑃3 +…} .

1156. If however we wish to avoid series, or if the series are not
convergent, it is convenient to have recourse to elliptic functions.

Let
𝑚2 = 𝑏2 − 𝑎2, 𝑛2 = 𝑐2 − 𝑎2, 𝑘2 = 1 −

𝑚2

𝑛2
.

In the expression for 𝐴 given at the end of Art. 1152, put 𝑥 =
𝑎
𝑛
tan𝜙;

then we get

𝐴 =
3𝑀𝑓
𝑛3

∫
𝜙1

0

tan2 𝜙𝑑𝜙
√(1 − 𝑘2 sin2 𝜙)

,

where 𝜙1 is such that sin𝜙1 =
𝑛
𝑐
, cos𝜙1 =

𝑎
𝑐
, tan𝜙1 =

𝑛
𝑎
.

Again, in the expression for 𝐵 given at the beginning of Art. 1153 put
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𝑥 =
𝑏 sin𝜙

𝑛√(1 − 𝑘2 sin2 𝜙)
; then we get

𝐵 =
3𝑀𝑔
𝑛3

∫
𝜙1

0

sin2 𝜙𝑑𝜙
(1 − 𝑘2 sin2 𝜙) 32

.

Lastly, in the expression for 𝐶 given at the beginning of Art. 1153 put

𝑥 =
𝑐 sin𝜙
𝑛

; then we get

𝐶 =
3𝑀ℎ
𝑛3

∫
𝜙1

0

sin2 𝜙𝑑𝜙
√(1 − 𝑘2 sin2 𝜙)

.

Legendre states the results which are obtained by expressing the in-
tegrals now left in 𝐴, 𝐵, 𝐶 by elliptic integrals: he refers for the formulæ
required to his Exercices de Calcul Intégral, 1re partie, No. 138. Poisson
works out the transformations in his memoir of 1835, to which I have
referred in Art. 887.

Thus, to take the simplest of the three expressions for example, we
have

𝐶 =
3𝑀ℎ
𝑘2𝑛3

{∫
𝜙1

0

𝑑𝜙
√(1 − 𝑘2 sin2 𝜙)

−∫
𝜙1

0
√(1 − 𝑘2 sin2 𝜙)𝑑𝜙} .

1157. Legendre gives an algebraical relation between 𝐴, 𝐵, and 𝐶,
which he deduces in three ways from his formulæ: we will take the sim-
plest way. From the formulæ of Art. 1152 we see that

𝐴
𝑓
+
𝐵
𝑔
+
𝐶
ℎ
= 2∫

𝜋

0
∫

𝜋

0
sin 𝜃 𝑑𝜃 𝑑𝜙 = 2𝜋∫

𝜋

0
sin 𝜃 𝑑𝜃 = 4𝜋.

Legendre speaks of this result as an “équation qui ne paraît pas
avoir été remarquée jusqu’à présent, et qui doit être regardée comme un
théorème nouveau.”
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1158. Legendre gives another result somewhat like that of the pre-
ceding Article; namely

𝐴𝑎2

𝑓
+
𝐵𝑏2

𝑔
+
𝐶𝑐2

ℎ
=
3𝑀
𝑛

∫
𝜙1

0

𝑑𝜙
√(1 − 𝑘2 sin2 𝜙)

:

this he obtains from the values which he has found for 𝐴, 𝐵, and 𝐶 in
terms of elliptic integrals.

It is easy to verify this result; for the formulæ of Art. 1152 give

𝐴𝑎2

𝑓
+
𝐵𝑏2

𝑔
+
𝐶𝑐2

ℎ
= 2𝑎2∫

𝜋

0
∫

𝜋

0

sin 𝜃 𝑑𝜃 𝑑𝜙

cos2 𝜃 +
𝑎2

𝑏2
sin2 𝜃 cos2 𝜙 +

𝑎2

𝑐2
sin2 𝜃 sin2 𝜙

= 2𝜋𝑎2∫
𝜋

0

sin 𝜃 𝑑𝜃

√(cos2 𝜃 +
𝑎2

𝑏2
sin2 𝜃)√(cos2 𝜃 +

𝑎2

𝑐2
sin2 𝜃)

= 3𝑀𝑎∫
1

0

𝑑𝑥
√{𝑎2 + (𝑏2 − 𝑎2)𝑥2}√{𝑎2 + (𝑐2 − 𝑎2)𝑥2}

.

Then, as in Art. 1156, put 𝑥 =
𝑎
𝑛
tan𝜙, and the integral becomes

3𝑀
𝑛

∫
𝜙1

0

𝑑𝜙
√(1 − 𝑘2 sin2 𝜙)

.

1159. Legendre’s memoir is reproduced in his Exercices de Calcul In-
tégral, Vol. ii. 1817, pages 512…531, and also in his Traité des Fonctions
Elliptiques, Vol. i. 1825, pages 539…556. The historical sketch is omitted,
and some slight changes occur in the notation, but the memoir remains
substantially as it was originally. All that is added in these later editions
of the memoir consists of two remarks, of which we will give the sub-
stance.
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(1) The expressions for 𝐴, 𝐵, and 𝐶 in Art. 1156 have an inconve-
nience when the ellipsoid differs but little from a sphere; 𝑛3 is then very
small, and as this occurs in the denominators, the numerators must be
calculated with great accuracy. This also holds with respect to the form
of these expressions when two of the axes of the ellipsoid are equal.

(2) The definite integrals in the expressions for 𝐴, 𝐵, and 𝐶 depend
on only two quantities, namely 𝑘 and 𝜙1, although in general there are
six elements involved in the problem, namely the three semiaxes and the
three coordinates of the attracted particle.

1160. An account of Ivory’s memoir by Poisson is given in the
Nouveau Bulletin … la Société Philomatique for November, 1812, pages
176…180, and for January, 1813, page 216.

This is a clear and satisfactory exposition of the essence of the mem-
oir of Yvory, as Poisson here spells the name. The following incidental
points may be noticed.

Poisson says that Maclaurin demonstrated his proposition for points
situated on the prolongations of the axes in the case of solids of revolu-
tion. Poisson, like other eminent French mathematicians, here underes-
timates what Maclaurin really effected. See Art. 260.

Poisson observes that Ivory treated the attraction on an internal par-
ticle by the method of series; but that it would be better to adopt the
method of direct integration after the manner of Lagrange. A few days
previously Legendre’s memoir had been presented to the French Institut,
in which Poisson’s suggestion was anticipated.

Poisson extends the range of Ivory’s theorem, by shewing that it is
true whatever may be the function of the distance which expresses the
law of attraction; this is now familiar to us, for it has passed into the
elementary books.

Poisson observes that Gauss had recently sent to the Institut an ex-
tract from a memoir on the subject; and that he had made use of the
same transformation as Ivory for expressing the coordinates of a point at
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the surface of an ellipsoid in terms of two independent coordinates; see
Art. 1141. Poisson says: “Cette transformation est le point principal de
l’analyse de M. Yvory, et c’est aussi celui de l’analyse de M. Gauss, qui
ne paraît pas avoir eu connaissance du Mémoire du géomètre anglais.”

The transformation to which Poisson refers is, that the equation
𝑥2

𝑎2
+
𝑦2

𝑏2
+
𝑧2

𝑐2
= 1 is satisfied by putting

𝑥 = 𝑎 cos 𝜃, 𝑦 = 𝑏 sin 𝜃 sin𝜙, 𝑧 = 𝑐 sin 𝜃 cos𝜙.

It may be doubted, however, if we can call this transformation the
principal point in the analysis either of Ivory or of Gauss. The modern
exhibitions of Ivory’s theorem do not employ this transformation.

1161. Poisson, as we have just seen, was the first to point out that
Ivory’s theorem holds when the law of attraction is expressed by any
function of the distance, as well as when the attraction varies inversely
as the square of the distance. The theorem is now demonstrated with
Poisson’s extension in elementary works. Moreover, as I have shewn in
my Statics, in treating on Ivory’s theorem, the demonstration establishes
rather more than the enunciation states.

The extension which Poisson gave to Ivory’s theorem does not apply
to what we call Laplace’s theorem; that is to say, it is not true for any
law of attraction that the potentials of confocal ellipsoids at the same
external point are as their masses.

Let 𝑎1, 𝑏1, and 𝑐1 be the semiaxes of an ellipsoid; let 𝑎2, 𝑏2, and 𝑐2
be the semiaxes of a second ellipsoid confocal with the former. Let 𝑃
denote a point external to both. Let a third ellipsoid confocal to the for-
mer two have the point 𝑃 on its surface. Let 𝑃1 denote the point on the
first ellipsoid which corresponds to 𝑃, and let 𝑃2 denote the point on the
second ellipsoid which corresponds to 𝑃.

Let 𝐸1, 𝐸2, and 𝐸 denote the ellipsoids.
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Then for any law of attraction we have, estimating the attractions par-
allel to the third axes,

Attraction of 𝐸1 at 𝑃
Attraction of 𝐸 at 𝑃1

=
𝑎1𝑏1
𝑎𝑏

,

Attraction of 𝐸2 at 𝑃
Attraction of 𝐸 at 𝑃2

=
𝑎2𝑏2
𝑎𝑏

.

Therefore
Attraction of 𝐸1 at 𝑃
Attraction of 𝐸2 at 𝑃

× 𝜆 =
𝑎1𝑏1
𝑎2𝑏2

,

where 𝜆 denotes the ratio of the attraction of 𝐸 at 𝑃2 to its attraction at

𝑃1. According to the ordinary law of attraction we find that 𝜆 =
𝑐2
𝑐1
; this

depends on the fact that the attraction of an ellipsoid on a particle at
the surface, estimated perpendicular to a principal plane, varies as the
distance from that plane: this fact however does not hold for all laws of
attraction. It does hold as we know for the law of the inverse square;
and it also holds for the law of the direct distance.

1162. We now arrive at a memoir by Gauss entitled Theoria attractio-
nis corporum sphaeroidicorum ellipticorum homogeneorum methodo nova
tractata.

This memoir was communicated to the Royal Society of Göttingen
on the 18th of March, 1813, and published in the Comm. Societat. Reg.
… Gott. Vol. ii. 1813. The memoir occupies pages 1…22 of Vol. v. of the
collected works of Gauss; and I have studied it in this reprint. A notice
of the memoir by Gauss himself occupies pages 279…286 of the volume,
being reprinted from the Göttingische gelehrte Anzeigen of April, 1813.

This notice is also reprinted in De Zach’s Monatliche Correspondenz,
Vol. xxvii.; and there is a German translation of Gauss’s memoir in Vol.
xxviii. of the same series.
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1163. An account of Gauss’s method for the attraction of ellipsoids by
Professor Cayley will be found in the Quarterly Journal of Mathematics,
Vol. i. pages 162…166.

1164. Gauss’s writings are distinguished for the combination of math-
ematical ability with power of expression: in his hands Latin and Ger-
man rival French itself for clearness and precision.

1165. Gauss gives a short sketch of the history of the problem of the
attraction of ellipsoids. He begins with ipse summus Newton, and then
passes to sagax Maclaurin; he does not make the mistake of D’Alembert
and others: see Art. 260. He refers to Lagrange’s memoirs of 1773 and
1703, to the first and the third of Legendre’s memoirs, to the writings of
Laplace, and to the memoirs by Biot and by Plana, which we have al-
ready noticed in this Chapter. He does not here refer to Ivory, nor to the
memoir by Legendre of 1812: but, as we shall see, he became acquainted
with Ivory’s memoir after his own was finished.

1166. Laplace’s proof of his theorem was in the opinion of Gauss an
elegant specimen of analytical skill; but left with geometers a desire for
a more simple and direct method. The efforts made by Biot and Plana
to simplify the discussion must also be considered very intricate applica-
tions of analysis.

1167. Then with respect to his own solution Gauss says:
Gratam itaque analystis atque astronomis fore speramus solutionem novam

problematis celebratissimi per viam plane diversam procedentem, et ni fallimur
ea simplicitate gaudentem, ut nihil amplius desiderandum linquat.

Certainly he succeeds completely in his design: his solution is both
simple and elegant.

1168. Gauss, before he proceeds to the actual problem, gives various
theorems which may be useful on other occasions and which he there-
fore develops more fully than was absolutely necessary for the purposes
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of immediate application. We will reproduce some of these theorems,
without retaining his order.

1169. This is his fifth theorem: let 𝑑𝑠 be an element of the surface
of a body, 𝑟 the distance of the element from a fixed point, 𝜙 the an-
gle between 𝑟 and the normal to the surface measured outwards: then

the volume of the body is equal to −
1
3
∫𝑟 cos𝜙𝑑𝑠, the integration being

extended over the whole surface of the body.
It is obvious that this theorem holds for such a body as the ellipsoid,

where there are no singularities, like folds, in the surface; for we can cut
the body up into infinitesimal cones having their vertices at the fixed

point: and −
1
3
𝑟 cos𝜙𝑑𝑠 expresses the volume of an element. Gauss how-

ever gives a very careful investigation of this and other theorems which
he enunciates, so as to shew that they hold even when the surface has
folds.

1170. This is Gauss’s fourth theorem: with the notation of the pre-

ceding Article the integral ∫
cos𝜙
𝑟2

𝑑𝑠, extended over the entire surface,

is equal to 0, −2𝜋, or −4𝜋, according as the fixed point is outside the
body, on the surface, or within.

The demonstration is the same as that which is now well known of a
similar proposition in the theory of Potentials: see Statics, Arts. 243 and
244. It depends on the fact that if we describe a sphere of radius unity

round the fixed point as centre, the element
cos𝜙
𝑟2

𝑑𝑠 is numerically equal

to the corresponding element for the surface of this sphere.

1171. Now we will give Gauss’s third theorem; this consists of a gen-
eral expression for the resolved attraction in a given direction of a given
body at a given point.
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Suppose the law of attraction to be denoted by 𝑓(𝑟), where 𝑟 denotes
the distance. Let 𝑎, 𝑏, 𝑐 be the coordinates of the given point; then the
attraction of the element 𝑑𝑥𝑑𝑦 𝑑𝑧 at the point (𝑥, 𝑦, 𝑧) resolved parallel

to the axis of 𝑥 will be
𝑥 − 𝑎
𝑟

𝑓(𝑟)𝑑𝑥 𝑑𝑦 𝑑𝑧. Integrate with respect to 𝑥;

thus we obtain 𝑑𝑦 𝑑𝑧 {𝐹(𝑟2)−𝐹(𝑟1)}, where 𝐹(𝑟) is the integral of 𝑓(𝑟), and
𝑟1 and 𝑟2 are the limiting values of 𝑟. Thus we have, in fact, an expression
for the resolved attraction parallel to the axis of 𝑥, produced by a strip
of the body parallel to the same direction. Hence the attraction in this
direction of the whole body will be found by integrating this expression
with respect to 𝑦 and 𝑧.

Let 𝑁 denote the angle made with the axis of 𝑥 by the normal to the
surface drawn outwards at the point 𝑥, 𝑦, 𝑧. Then instead of integrating
𝑑𝑦 𝑑𝑧 {𝐹(𝑟2)−𝐹(𝑟1)} we may integrate 𝑑𝑠 𝐹(𝑟) cos𝑁 over the whole surface
of the body. In fact if 𝑁1 and 𝑁2 denote the values of 𝑁 corresponding
to the points to which 𝑟1 and 𝑟2 respectively belong, we get

𝑑𝑠 cos𝑁1 = −𝑑𝑥𝑑𝑦
and

𝑑𝑠 cos𝑁2 = 𝑑𝑥𝑑𝑦.

As we have said in Art. 1169, it is easy to see at once that the theorem
is true for such a body as an ellipsoid; but Gauss shews also that it is true
for other bodies, for example, for a body in which a straight line parallel
to the axis of 𝑥 meets the surface four times instead of twice.

The theorem then is that the resolved attraction parallel to the axis

of 𝑥 is equivalent to ∫𝑑𝑠𝐹(𝑟) cos𝑁, where the integration is to extend

over the whole surface of the body.
Similar expressions may be found for the resolved attractions parallel

to the other axes.
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1172. We will now give Gauss’s sixth theorem, for the particular case
in which the law of attraction is that of nature. The object of the theo-
rem is to find a new expression for the resolved attraction.

Let the attracted particle be the vertex of an indefinitely thin cone
which cuts the body. Let 𝑑𝜎 be the element of the surface of a sphere of
radius unity, having its centre at the particle, which this cone intercepts.
We may take for an element of the body 𝑟2 𝑑𝑟 𝑑𝜎, so that the resolved at-
traction of the element parallel to the axis of 𝑥 will be 𝑑𝑟 𝑑𝜎 cos𝜒, where
𝜒 is the angle between the direction of 𝑟 and the axis of 𝑥. Suppose for
facility of conception that the attracted particle is outside the body. In-
tegrate with respect to 𝑟; thus we get (𝑟2 − 𝑟1) 𝑑𝜎 cos𝜒, where 𝑟1 and 𝑟2
are the limiting values of 𝑟. The resolved attraction of the whole body
will be found by integrating this expression with respect to 𝜎 over limits
corresponding to the part of the surface of the sphere which we have to
consider.

This integral we may transform to ∫
𝑟𝑑𝑠
𝑟2

cos𝑄 cos𝜒, that is to

∫
𝑑𝑠
𝑟
cos𝑄 cos𝜒, where 𝑄 is the angle between the direction of 𝑟 and

that of the normal to 𝑑𝑠 measured outwards: the integration is to extend
over the whole surface of the body.

If the attracted particle is inside the body we shall arrive at the same
result. As before, Gauss shews that the theorem is true for bodies of
every form.

Similar expressions may be found for the resolved attractions parallel
to the other axes.

1173. We can now apply these general formulæ to the case of the
attraction of an ellipsoid.

Let the equation to the ellipsoid be

𝑥2

𝐴2
+
𝑦2

𝐵2
+
𝑧2

𝐶2 = 1.
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Let the coordinates of the attracted point be 𝑎, 𝑏, 𝑐. Gauss now in-
troduces two new variables, 𝑝 and 𝑞, which are given by the following
relations:

𝑥 = 𝐴 cos𝑝, 𝑦 = 𝐵 sin𝑝 cos 𝑞, 𝑧 = 𝐶 sin𝑝 sin 𝑞.

We need not follow Gauss in his transformation of 𝑑𝑠 into an expres-
sion in terms of the new variables, because by a process now familiar to
students of the Integral Calculus it is easy to shew that

𝑑𝑠 = 𝐴𝐵𝐶𝜓 sin𝑝𝑑𝑝𝑑𝑞,

where 𝜓 stands for (
𝑥2

𝐴4
+
𝑦2

𝐵4
+
𝑧2

𝐶4 )
1
2

.

Let 𝑋 denote the attraction parallel to the axis of 𝑥 towards the origin.
Then, by Art. 1171,

𝑋 =∬
𝐵𝐶𝑥
𝑟𝐴

sin𝑝𝑑𝑝𝑑𝑞 = 𝐵𝐶∬
sin𝑝 cos𝑝𝑑𝑝𝑑𝑞

𝑟
.

Put 𝑋 = 𝐴𝐵𝐶𝜉; thus

𝜉 =
1
𝐴
∬

sin𝑝 cos𝑝𝑑𝑝𝑑𝑞
𝑟

. (1)

Again, by Art. 1172, we have

𝜉 = −∬
𝑎− 𝑥
𝑟3

{
(𝑎 − 𝑥)𝑥

𝐴2
+
(𝑏 − 𝑦)𝑦
𝐵2

+
(𝑐 − 𝑧)𝑧
𝐶2 } sin𝑝𝑑𝑝𝑑𝑞. (2)

And from Art. 1170 we have, supposing the attracted particle external
to the body,

0 =∬
1
𝑟3
{
(𝑎 − 𝑥)𝑥

𝐴2
+
(𝑏 − 𝑦)𝑦
𝐵2

+
(𝑐 − 𝑧)𝑧
𝐶2 } sin𝑝𝑑𝑝𝑑𝑞. (3)
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Now suppose we pass from the ellipsoid considered to another, hav-
ing its principal axes coincident in direction with those of the former,
but infinitesimally different in magnitude. Let 𝛿𝐴, 𝛿𝐵, 𝛿𝐶 denote the
changes then made in 𝐴, 𝐵, 𝐶 respectively. Moreover let these changes
be consistent with the conditions

𝐴2 − 𝐵2 = constant, 𝐴2 − 𝐶2 = constant;

so that the ellipsoids will have their principal sections homofocal. From
(1)

𝐴𝜉 =∬
𝑑𝑝𝑑𝑞 sin𝑝 cos𝑝

𝑟
;

therefore
𝜉𝛿𝐴 + 𝐴𝛿𝜉 = −∬

1
𝑟2
𝛿𝑟 sin𝑝 cos𝑝𝑑𝑝𝑑𝑞.

Now
𝑟2 = (𝑎 − 𝑥)2 + (𝑏 − 𝑦)2 + (𝑐 − 𝑧)2;

so that
𝑟𝛿𝑟 = (𝑥 − 𝑎)𝛿𝑥 + (𝑦 − 𝑏)𝛿𝑦 + (𝑧 − 𝑐)𝛿𝑧

= (𝑥 − 𝑎) cos𝑝𝛿𝐴 + (𝑦 − 𝑏) sin𝑝 cos 𝑞 𝛿𝐵 + (𝑧 − 𝑐) sin𝑝 sin 𝑞 𝛿𝐶

= (𝑥 − 𝑎)
𝑥
𝐴
𝛿𝐴 + (𝑦 − 𝑏)

𝑦
𝐵
𝛿𝐵 + (𝑧 − 𝑐)

𝑧
𝐶
𝛿𝐶

= 𝐴𝛿𝐴 {
𝑥(𝑥 − 𝑎)

𝐴2
+
𝑦(𝑦 − 𝑏)
𝐵2

+
𝑧(𝑧 − 𝑐)
𝐶2 } ,

since 𝐴𝛿𝐴 = 𝐵𝛿𝐵 = 𝐶𝛿𝐶.

Thus 𝜉𝛿𝐴 + 𝐴𝛿𝜉

= −𝐴𝛿𝐴∫
1
𝑟3
{
𝑥(𝑥 − 𝑎)

𝐴2
+
𝑦(𝑦 − 𝑏)
𝐵2

+
𝑧(𝑧 − 𝑐)
𝐶2 } sin𝑝 cos𝑝𝑑𝑝𝑑𝑞.

But from (2)

𝜉𝛿𝐴 = 𝛿𝐴∬
𝑎− 𝑥
𝑟3

{
𝑥(𝑥 − 𝑎)

𝐴2
+
𝑦(𝑦 − 𝑏)
𝐵2

+
𝑧(𝑧 − 𝑐)
𝐶2 } sin𝑝𝑑𝑝𝑑𝑞.
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Subtract this equation from that which immediately precedes it; thus

𝐴𝛿𝜉 = −𝛿𝐴∬
𝑎
𝑟3
{
𝑥(𝑥 − 𝑎)

𝐴2
+
𝑦(𝑦 − 𝑏)
𝐵2

+
𝑧(𝑧 − 𝑐)
𝐶2 } sin𝑝𝑑𝑝𝑑𝑞.

Hence by (3) we have
𝛿𝜉 = 0.

Therefore 𝜉 is constant. Thus the attraction of confocal ellipsoids at
a given external point parallel to the axis of 𝑥 varies as the mass. This
is Laplace’s theorem.

1174. Gauss also uses the result which his fourth theorem gives for
the case of an internal particle, and thus obtains formulæ for the calcu-
lation of the attraction of an ellipsoid on an internal particle.

1175. Gauss finishes with the following paragraph in which he refers
to Ivory’s researches:

Additamentum.

Postquam haecce jam perscripta essent, innotuit, indicante ill. Laplace,
commentatio egregia cl. Ivory in Philosophical Transactions ad A. 1809; ubi
idem argumentum per methodum ab iis, quibus usi erant ill. Laplace et Leg-
endre, prorsus diversam tractatur. Summa elegantia ille geometra attractionem
puncti externi ad attractionem puncti interni reducere docuit, i.e. problematis
partem, quae semper pro difficiliori habita est, ad faciliorem. Methodus
autem, per quam hanc alteram partem tractavit, longe magis complicata est,
partimque perinde ut methodus, qua ill. Laplace pro punctis externis usus erat,
considerationi serierum infinitarum non semper convergentium innititur, quam
utique evitare licuisset. Ceterum haec solutio clar. Ivory, quae obiter spectata
quandam similitudinis speciem cum nostra prae se ferre videri posset, proprius
examinata principiis omnino diversis inniti invenietur, nec fere quidquam
utrique solutioni commune est, nisi usus indeterminatarum a nobis per 𝑝, 𝑞
denotatarum.

It will be seen that the criticism of Gauss on Ivory’s memoir resem-
bles that expressed by Legendre: see Art. 1150.
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1176. We have next to consider a memoir entitled Mémoire sur l’at-
traction des sphéroïdes, par M. Rodrigues, Docteur èssciences.

This memoir is published in the Correspondance sur l’Ecole Royale
Polytechnique, … Vol. iii. 1816. The memoir occupies pages 361…385 of
the volume. The memoir is stated to have been the subject of a thesis for
the degree of Doctor, which was maintained on the 28th of June, 1815.

1177. The memoir is divided into two parts. The first part which
occupies pages 361…374 gives the general formulæ for the attraction of
any body, and applies the formulæ to the sphere and the ellipsoid.

There are no new results in this part; but there are two matters which
are treated in rather a novel manner. One of these is the partial differ-
ential equation for 𝑉 with respect to an internal particle; and this will be
conveniently discussed in the next Chapter. The other matter is a demon-
stration of Laplace’s theorem, and the investigation of the attraction of
an ellipsoid on an external particle.

1178. The method of Rodrigues would seem to have been suggested
by that of Gauss; but no reference is given to Gauss. An analysis of the
method of Rodrigues is given by Professor Cayley in the Quarterly Jour-
nal of Mathematics, Vol. ii. pages 333…337, where it is observed that “the
method is very similar to that given two years before by Gauss.” So also
Poisson in the Comptes Rendus, … Vol. vii. page 3, remarks:

Au reste, la démonstration que M. Rodrigues a rapportée dans sa thèse, est
celle que M. Gauss a donnée en 1813, et qui est fondée sur la transformation
des variables employées par M. Ivory, et sur une propriété générale des surfaces
fermées.

1179. The memoir is not difficult when it is carefully studied; but
some attention is necessary in order to follow the processes.

Consider the ratio of the potential of a homogeneous body to the
mass of the body; this ratio might be called the relative potential: we
will denote it by 𝑊.
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Let ℎ, 𝑘, 𝑙 be the coordinates of a point. Let 𝑎, 𝑏, 𝑐 be the semi-
axes of an ellipsoid. Let the symbol 𝛿 be used to denote an infinitesimal
variation in 𝑎, 𝑏, 𝑐, or any function of them, such that

𝑎𝛿𝑎 = 𝑏𝛿𝑏 = 𝑐𝛿𝑐 = 𝜏 say.

By this variation in fact we pass from the ellipsoid whose semiaxes
are 𝑎, 𝑏, 𝑐 to an adjacent confocal ellipsoid.

Let 𝑊 refer to the first ellipsoid, and 𝑊 + 𝛿𝑊 to the second; then
Rodrigues investigates the value of 𝛿𝑊.

He shews that for an external particle

𝛿𝑊 = 0;

and that for an internal particle

𝛿𝑊 =
3𝜏
2𝑎𝑏𝑐

(
ℎ2

𝑎2
+
𝑘2

𝑏2
+
𝑙2

𝑐2
− 1) .

We will now explain how he arrives at these results.

1180. Let the density be denoted by unity; let 𝑉 denote the potential
at (ℎ, 𝑘, 𝑙); then

𝑉 =∭
𝑑𝑥𝑑𝑦𝑑𝑧

𝑅
,

where
𝑅 = {(𝑥 − ℎ)2 + (𝑦 − 𝑘)2 + (𝑧 − 𝑙)2} 12 .

The integration is to extend throughout the ellipsoid.
Assume

𝑥 = 𝑎𝑟 cos 𝜃, 𝑦 = 𝑏𝑟 sin 𝜃 cos𝜙, 𝑧 = 𝑐𝑟 sin 𝜃 sin𝜙;

then

𝑉 = ∫
2𝜋

0
∫

𝜋

0
∫

1

0

𝑎𝑏𝑐 𝑟2 sin 𝜃 𝑑𝜙𝑑𝜃 𝑑𝑟
𝑅

.
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And 𝑊 =
𝑉

4
3
𝜋𝑎𝑏𝑐

, so that

4𝜋
3
𝑊 = ∫

2𝜋

0
∫

𝜋

0
∫

1

0

𝑟2 sin 𝜃 𝑑𝜙𝑑𝜃 𝑑𝑟
𝑅

.

Therefore

4𝜋
3
𝛿𝑊 = ∫

2𝜋

0
∫

𝜋

0
∫

1

0
𝛿 (

1
𝑅
) 𝑟2 sin 𝜃 𝑑𝜙𝑑𝜃 𝑑𝑟.

Now
𝛿𝑥 = 𝑟 cos 𝜃𝛿𝑎 =

𝑥
𝑎
𝛿𝑎 =

𝑥𝑎𝛿𝑎
𝑎2

=
𝑥𝜏
𝑎2
;

similarly
𝛿𝑦 =

𝑦𝜏
𝑏2
, and 𝛿𝑧 =

𝑧𝜏
𝑐2
.

Thus
𝛿
1
𝑅
= −

𝜏
𝑅3

{(𝑥 − ℎ)
𝑥
𝑎2

+ (𝑦 − 𝑘)
𝑦
𝑏2

+ (𝑧 − 𝑙)
𝑧
𝑐2
} ,

so that
4𝜋
3
𝛿𝑊 =

−𝜏∫
2𝜋

0
∫

𝜋

0
∫

1

0

1
𝑅3

{(𝑥 − ℎ)
𝑥
𝑎2

+ (𝑦 − 𝑘)
𝑦
𝑏2

+ (𝑧 − 𝑙)
𝑧
𝑐2
} 𝑟2 sin 𝜃 𝑑𝜙𝑑𝜃 𝑑𝑟.

1181. We have thus a certain triple integral, say

∫
2𝜋

0
∫

𝜋

0
∫

1

0
𝑁𝑟2 sin 𝜃 𝑑𝜙𝑑𝜃 𝑑𝑟;

the integral extends throughout the ellipsoid. Rodrigues transforms it
into a single integral. Consider the shell which is bounded by the el-
lipsoidal surface whose semiaxes are 𝑟𝑎, 𝑟𝑏, 𝑟𝑐, and that whose semiaxes
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are (𝑟 + 𝑑𝑟)𝑎, (𝑟 + 𝑑𝑟)𝑏, (𝑟 + 𝑑𝑟)𝑐. Let 𝑑𝑆 denote an element of one of
the surfaces of the shell, and 𝜖 the corresponding thickness of the shell;
then the element of volume 𝑎𝑏𝑐 𝑟2 sin 𝜃 𝑑𝜙𝑑𝜃 𝑑𝑟 may be replaced by 𝜖𝑑𝑆.

Let (𝑥, 𝑦, 𝑧) denote the point on the inner surface of the shell; 𝜆, 𝜇, 𝜈
the direction cosines of the normal there. Thus

𝑥2

𝑎2
+
𝑦2

𝑏2
+
𝑧2

𝑐2
= 𝑟2,

(𝑥 + 𝜆𝜖)2

𝑎2
+
(𝑦 + 𝜇𝜖)2

𝑏2
+
(𝑧 + 𝜈𝜖)2

𝑐2
= (𝑟 + 𝑑𝑟)2;

therefore
(
𝜆𝑥
𝑎2

+
𝜇𝑦
𝑏2

+
𝜈𝑧
𝑐2
) 𝜖 = 𝑟𝑑𝑟.

And putting for 𝜆, 𝜇, 𝜈 their values we get

𝜖 =
𝑟𝑑𝑟

(
𝑥2

𝑎4
+
𝑦2

𝑏4
+
𝑧2

𝑐4
)
1
2
= 𝑝𝑟 𝑑𝑟 say.

Thus we have

1
𝑅3

{(𝑥 − ℎ)
𝑥
𝑎2

+ (𝑦 − 𝑘)
𝑦
𝑏2

+ (𝑧 − 𝑙)
𝑧
𝑐2
} 𝑟2 sin 𝜃 𝑑𝜙𝑑𝜃 𝑑𝑟

=
1
𝑅3

{(𝑥 − ℎ)
𝜆
𝑝
+ (𝑦 − 𝑘)

𝜇
𝑝
+ (𝑧 − 𝑙)

𝜈
𝑝
}
𝜖𝑑𝑆
𝑎𝑏𝑐

=
𝑟𝑑𝑟
𝑅2

{
𝑥 − ℎ
𝑅

𝜆 +
𝑦 − 𝑘
𝑅

𝜇 +
𝑧 − 𝑙
𝑅

𝜈}
𝑑𝑆
𝑎𝑏𝑐

= −
𝑟𝑑𝑟
𝑅2

cos𝜓
𝑑𝑆
𝑎𝑏𝑐

,

where 𝜓 is the angle between the straight line which joins (ℎ, 𝑘, 𝑙) to
(𝑥, 𝑦, 𝑧) and the normal to the ellipsoid at (𝑥, 𝑦, 𝑧) drawn outwards.
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Hence
4𝜋
3
𝛿𝑊 =

𝜏
𝑎𝑏𝑐

∫(∫
cos𝜓𝑑𝑆
𝑅2

) 𝑟 𝑑𝑟.

The integral relative to 𝑆 extends over the whole surface of the ellip-
soid with semiaxes 𝑟𝑎, 𝑟𝑏, and 𝑟𝑐.

Now as we have seen in Art. 1170

∫
cos𝜓
𝑅2

𝑑𝑆 = 0 or − 4𝜋,

according as the fixed point (ℎ, 𝑘, 𝑙) is outside or inside the surface.
Hence if (ℎ, 𝑘, 𝑙) be outside the surface

𝛿𝑊 = 0.

If (ℎ, 𝑘, 𝑙) be inside the surface

𝛿𝑊 = −
3𝜏
𝑎𝑏𝑐

∫𝑟𝑑𝑟.

1182. In the preceding Article we transformed the triple integral by
cutting up the ellipsoid into shells; these shells are bounded by homo-
thetical ellipsoids: this is in fact the mode of decomposition adopted by
Rodrigues himself.

The investigation is given in another form in the memoir by Professor
Cayley which I have cited in Art. 1178.

But Rodrigues does not determine any thing respecting the attraction
of one of these shells just spoken of. This was first considered by Poisson
in his memoir of 1835, which is cited in Art. 887.

1183. Let us return to the results obtained in Art. 1181.
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For an external point we have 𝛿𝑊 = 0; so that
𝑉
𝑀

does not depend

on the absolute lengths of the semiaxes, but on the excentricities of the
ellipsoid. This is in fact Laplace’s theorem.

For an internal particle

𝛿𝑊 = −
3𝜏
𝑎𝑏𝑐

∫𝑟𝑑𝑟;

the integration is to be taken so as to correspond to all the shells outside
the particle, say from 𝑟 = 𝑟′ to 𝑟 = 1; and 𝑟′ is determined by the equation

ℎ2

𝑎2
+
𝑘2

𝑏2
+
𝑙2

𝑐2
= 𝑟′2;

so that
𝛿𝑊 =

3𝜏
2𝑎𝑏𝑐

(
ℎ2

𝑎2
+
𝑘2

𝑏2
+
𝑙2

𝑐2
− 1) .

1184. The remainder of the process given by Rodrigues consists in
obtaining expressions for the attraction from the above formula for 𝛿𝑊.
We shall not reproduce it, but briefly deduce a symmetrical expression
for 𝑉.

Let
𝑎2 = 𝛼2 + 𝑡, 𝑏2 = 𝛽2 + 𝑡, 𝑐2 = 𝛾2 + 𝑡;

then 𝜏 becomes equivalent to 1
2𝑑𝑡; thus in the ordinary language of the

Differential Calculus,

𝑑𝑊
𝑑𝑡

=
3

4√{(𝛼2 + 𝑡)(𝛽2 + 𝑡)(𝛾2 + 𝑡)}
(

ℎ2

𝛼2 + 𝑡
+

𝑘2

𝛽2 + 𝑡
+

𝑙2

𝛾2 + 𝑡
− 1) ,

where
𝑊 =

𝑉
𝑀

=
3𝑉

4𝜋√{(𝛼2 + 𝑡)(𝛽2 + 𝑡)(𝛾2 + 𝑡)}
.
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Integrate from 𝑡 = 0 to 𝑡 = ∞, observing that 𝑊 vanishes when 𝑡 is
infinite; thus

−
3𝑉

4𝜋𝛼𝛽𝛾
=
3
4
∫

∞

0

𝑑𝑡
√{(𝛼2 + 𝑡)(𝛽2 + 𝑡)(𝛾2 + 𝑡)}

(
ℎ2

𝛼2 + 𝑡
+

𝑘2

𝛽2 + 𝑡
+

𝑙2

𝛾2 + 𝑡
− 1) .

Here 𝑉 is the potential of the ellipsoid whose semiaxes are 𝛼, 𝛽, 𝛾 at
the internal point (ℎ, 𝑘, 𝑙); and we have

𝑉 = −𝜋𝛼𝛽𝛾∫
∞

0

𝑑𝑡
√{(𝛼2 + 𝑡)(𝛽2 + 𝑡)(𝛾2 + 𝑡)}

(
ℎ2

𝛼2 + 𝑡
+

𝑘2

𝛽2 + 𝑡
+

𝑙2

𝛾2 + 𝑡
− 1) .

Then for an external point, by Laplace’s theorem, the value of 𝑊 is
the same as it would be for an ellipsoid having the semiaxes 𝛼1, 𝛽1, 𝛾1,
where

𝛼12 − 𝛼2 = 𝛽1
2 − 𝛽2 = 𝛾12 − 𝛾2 = 𝑡1 say,

and
ℎ2

𝛼2 + 𝑡1
+

𝑘2

𝛽2 + 𝑡1
+

𝑙2

𝛾2 + 𝑡1
= 1.

Thus for the external point

𝑉
𝛼𝛽𝛾

= −𝜋∫
∞

0

𝐿𝑑𝑡
√{(𝛼2 + 𝑡1 + 𝑡)(𝛽2 + 𝑡1 + 𝑡)(𝛾2 + 𝑡1 + 𝑡)}

,

where
𝐿 =

ℎ2

𝛼2 + 𝑡1 + 𝑡
+

𝑘2

𝛽2 + 𝑡1 + 𝑡
+

𝑙2

𝛾2 + 𝑡1 + 𝑡
− 1;

that is, putting 𝑡1 + 𝑡 = 𝑡′, 𝑉 =

−𝜋𝛼𝛽𝛾∫
∞

𝑡1

𝑑𝑡′

√{(𝛼2 + 𝑡′)(𝛽2 + 𝑡′)(𝛾2 + 𝑡′)}
(

ℎ2

𝛼2 + 𝑡′
+

𝑘2

𝛽2 + 𝑡′
+

𝑙2

𝛾2 + 𝑡′
− 1) .
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1185. We pass to the second part of the memoir, which occupies
pages 374…385. This treats on the attraction of spheroids, which dif-
fer very slightly from a sphere, and on the general development of the
potential function.

1186. The most remarkable matter in this part consists in the treat-
ment of Laplace’s coefficients. Rodrigues says that his mode of analysis
had been employed to a great extent by Ivory in the Philosophical Trans-
actions for 1812, and by Legendre in his Exercices de Calcul Intégral; but
he had not been acquainted with these works when he composed his
thesis.

Nevertheless Rodrigues went in some respects beyond Ivory and Leg-
endre; Heine does not seem to have been acquainted with the memoir
which we are now examining: see Art. 784.

1187. Laplace’s 𝑚th coefficient may be expressed in the form

𝑀+
2 sin 𝜃 sin 𝜃′ cos(𝜛 −𝜛′)

𝑚(𝑚 + 1)
𝑑2𝑀
𝑑𝜇𝑑𝜇′

+
2 sin2 𝜃 sin2 𝜃′ cos 2(𝜛 −𝜛′)
(𝑚 − 1)𝑚(𝑚 + 1)(𝑚 + 2)

𝑑4𝑀
𝑑𝜇2 𝑑𝜇′2

+…

+
2 sin𝑚 𝜃 sin𝑚 𝜃′ cos𝑚(𝜛 −𝜛′)

2𝑚
𝑑2𝑚𝑀

𝑑𝜇𝑚 𝑑𝜇′𝑚
.

Legendre had obtained this result: see Art. 950. Afterwards Ivory
gave it, see page 60 of his memoir of 1812. Where Rodrigues has the
advantage is that he finds for 𝑀 a certain compact form which had not
been previously obtained, namely

𝑀 =
1

22𝑚 𝑚 𝑚
𝑑2𝑚

𝑑𝜇𝑚𝑑𝜇′𝑚
(1 − 𝜇2)𝑚(1 − 𝜇′2)𝑚.

This includes a very simple formula for Legendre’s 𝑚th coefficient,
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namely

𝑃𝑚 =
1

2𝑚 𝑚
𝑑𝑚(𝜇2 − 1)𝑚

𝑑𝜇𝑚
.

This is given by Rodrigues. It presents itself as 𝐽
𝑑𝑚(1 − 𝜇2)𝑚

𝑑𝜇𝑚
, where

𝐽 is a constant which he does not explicitly determine; but this constant
comes at once from his value given above for 𝑀.

The result was given by Ivory in the Philosophical Transactions for
1822; and so is ascribed to him by Heine, on his page 9.

1188. A result, which is ascribed by Heine to himself and Bertram,
on his page 89, seems to me to have been also anticipated by Rodrigues:
see pages 376…378 of the memoir.

1189. Another result is given by Rodrigues which has been claimed
for a later writer. This result expressed in the most symmetrical form is

(𝑥2 − 1)
𝑛
2

𝑚+ 𝑛
𝑑𝑚+𝑛(𝑥2 − 1)𝑚

𝑑𝑥𝑚+𝑛 =
(𝑥2 − 1)−

𝑛
2

𝑚− 𝑛
𝑑𝑚−𝑛(𝑥2 − 1)𝑚

𝑑𝑥𝑚−𝑛 ,

𝑚 and 𝑛 being positive integers, and 𝑛 not greater than 𝑚.
Heine on his page 117 says: “Diese schöne, von Jacobi zuerst

gegebene Formel …”; and in a note he refers to Crelle’s Journal für
Mathematik, Vol. ii. page 225: the date of this volume of Crelle’s Journal
is 1827.

The mode in which the result presents itself to Rodrigues may be
noticed.

Suppose 𝑇𝑚 to denote Laplace’s mth coefficient, then we know that
𝑑
𝑑𝜇

{(1 − 𝜇2)
𝑑𝑇𝑚
𝑑𝜇

} +
1

1 − 𝜇2
𝑑2𝑇𝑚
𝑑𝜛2 +𝑚(𝑚 + 1)𝑇𝑚 = 0.

Suppose 𝑇𝑚 expressed in the form

𝑦0 + 𝑦1(𝐴1 sin𝜛+ 𝐵1 cos𝜛) + 𝑦2(𝐴2 sin 2𝜛 + 𝐵2 cos 2𝜛) +… ;
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then the general coefficient 𝑦𝑛 is determined by

𝑑
𝑑𝜇

{(1 − 𝜇2)
𝑑𝑦𝑛
𝑑𝜇

} + {𝑚(𝑚 + 1) −
𝑛2

1 − 𝜇2
} 𝑦𝑛 = 0.

If we assume 𝑦𝑛 = (1 − 𝜇2)
𝑛
2 𝑥𝑛 we obtain

(𝑚 − 𝑛)(𝑚 + 𝑛 + 1)𝑥𝑛 − 2(𝑛 + 1)𝜇
𝑑𝑥𝑛
𝑑𝜇

+ (1 − 𝜇2)
𝑑2𝑥𝑛
𝑑𝜇2

= 0.

If we assume 𝑦𝑛 = (1 − 𝜇2)−
𝑛
2 𝑥−𝑛 we obtain

(𝑚 + 𝑛)(𝑚 − 𝑛 + 1)𝑥−𝑛 + 2(𝑛 − 1)𝜇
𝑑𝑥−𝑛
𝑑𝜇

+ (1 − 𝜇2)
𝑑2𝑥−𝑛
𝑑𝜇2

= 0.

Rodrigues integrates these two equations; and thus obtains

𝑥𝑛 =
1

(1 − 𝜇2)𝑛
𝑑𝑚−𝑛

𝑑𝜇𝑚−𝑛 {𝐶 + 𝐷∫
𝑑𝜇

(1 − 𝜇2)𝑚+1 } (1 − 𝜇2)𝑚,

𝑥−𝑛 = (1 − 𝜇2)𝑛
𝑑𝑚+𝑛

𝑑𝜇𝑚+𝑛 {𝐹 + 𝐾∫
𝑑𝜇

(1 − 𝜇2)𝑚+1 } (1 − 𝜇2)𝑚.

Then as we have 𝑥−𝑛 = (1−𝜇2)𝑛𝑥𝑛, by virtue of our original assump-
tions, we obtain

𝑥𝑛 =
𝑑𝑚+𝑛

𝑑𝜇𝑚+𝑛 {𝐹 + 𝐾∫
𝑑𝜇

(1 − 𝜇2)𝑚+1 } (1 − 𝜇2)𝑚.

Here 𝐶, 𝐷, 𝐹 and 𝐾 are arbitrary constants.
Thus we have two different general forms of 𝑥𝑛; and we have also

the two following particular forms

𝐶
(1 − 𝜇2)𝑛

𝑑𝑚−𝑛

𝑑𝜇𝑚−𝑛 (1 − 𝜇2)𝑚, and 𝐹
𝑑𝑚+𝑛(1 − 𝜇2)𝑚

𝑑𝜇𝑚+𝑛 .
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These are both rational and integral functions of 𝜇; hence as the
equation which 𝑥𝑛 satisfies is a linear equation, we are certain that by
properly determining the ratio of the constant 𝐶 to the constant 𝐹 these
particular expressions will be identical. By determining the ratio, Ro-
drigues arrives at the result stated above.

1190. Let 𝑅𝑠 =
𝑑𝑠(1 − 𝜇2)𝑠

𝑑𝜇𝑠
; and suppose that

𝑍𝑚 = 𝐵0𝑅𝑚 + (1 − 𝜇2) 12
𝑑𝑅𝑚
𝑑𝜇

(𝐴1 sin𝜛+ 𝐵1 cos𝜛)

+…(1 − 𝜇2)
𝑟
2
𝑑𝑟𝑅𝑚
𝑑𝜇𝑟

(𝐴𝑟 sin 𝑟𝜛 + 𝐵𝑟 cos 𝑟𝜛) +…

𝑊𝑛 = 𝑏0𝑅𝑛 + (1 − 𝜇2) 12
𝑑𝑅𝑛
𝑑𝜇

(𝑎1 sin𝜛+ 𝑏1 cos𝜛)

+…+ (1 − 𝜇2)
𝑟
2
𝑑𝑟𝑅𝑛
𝑑𝜇𝑟

(𝑎𝑟 sin 𝑟𝜛 + 𝑏𝑟 cos 𝑟𝜛) +…

so that 𝑍𝑚 and 𝑊𝑛 express Laplace’s functions of the order 𝑚 and 𝑛 re-

spectively. Then Rodrigues shews that ∫
1

−1
∫

2𝜋

0
𝑍𝑚𝑊𝑛𝑑𝜇𝑑𝜛 = 0, when

𝑚 and 𝑛 are unequal; and he gives the form of the result when 𝑚 and
𝑛 are equal. Legendre had already done this; see Art. 951; but Rodrigues
expresses the result when 𝑚 and 𝑛 are equal more compactly as he was
in possession of the formula of Art. 1187, namely

∫
1

−1
∫

2𝜋

0
𝑍𝑛𝑊𝑛𝑑𝜇𝑑𝜛 =

22𝑛+1 𝑛 𝑛 𝜋
2𝑛 + 1

∑(𝐴𝑟𝑎𝑟 + 𝐵𝑟𝑏𝑟)
𝑛 + 𝑟
𝑛 − 𝑟

,

where ∑ relates to 𝑟, and applies a summation from 𝑟 = 0 to 𝑟 = 𝑛
inclusive; observing that 𝐴0𝑎0 + 𝐵0𝑏0 must be replaced by 2𝐵0𝑏0. The
method of Rodrigues is good.

1191. Rodrigues gives the formulæ for the attraction of spheroids
which differ very little from spheres; there is nothing important in this
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part of his memoir: he briefly investigates Laplace’s equation which we
shall discuss in the next Chapter, and expresses no doubts respecting it.

1192. Rodrigues insists on the necessity of having the series conver-
gent; see his pages 375 and 385. Nevertheless he seems unaware of the
difficulty which Poisson subsequently discussed, and to which I allude
in Art. 843.

1193. From what we have said on this memoir by Rodrigues, it is ob-
vious that the following general remarks may be made. So far as relates
to the attraction of an ellipsoid the memoir contains a simple solution of
the problem, but adds nothing to what had been previously established.
But so far as relates to Laplace’s functions the memoir is very important,
and deserves a prominent place in the history of this branch of analysis.

1194. Thus in the present Chapter we have noticed four complete
discussions of the problem of the attraction of an ellipsoid; namely
those by Ivory, Legendre, Gauss and Rodrigues: omitting that part
of Ivory’s which relates to the internal particle, all are eminent for
simplicity, rigour, and completeness. We have also noticed two other
memoirs; that by Biot, which may be regarded as a commentary on
the writings of Legendre and Laplace; and that by Plana, which is a
commentary on the investigation in Laplace’s earlier treatise. A memoir
by Poisson on this subject will come before us in a subsequent Chapter.
Practically speaking, the method of Ivory has superseded all the others;
although those of Gauss and Rodrigues are very striking. It is remarked
by Chasles, Mémoires … par divers Savants …, Vol. ix. page 636:

Mais l’élégant théorème de M. Ivory, qui, joint à l’analyse de Lagrange pour
le cas des points intérieurs, complétait une solution facile et briève de la ques-
tion, fixa tellement l’attention des géomètres, que le beau mémoire de M. Gauss,
et la solution remarquable aussi de M. Rodrigues, où se trouvait, implicitement,
la considération d’une couche infiniment mince comprise entre deux ellipsoïdes
semblables, restèrent, pour ainsi dire, inaperçus.



CHAPTER XXX.

LAPLACE’S EQUATION.

1195. It has been shewn that Laplace gave repeatedly a certain equa-
tion relative to the potential of a nearly spherical homogeneous body at
a point on its surface: see Art. 1067.

The equation was finally introduced in the Mécanique Céleste, Livre
iii. § 10; and in two forms. There is the general form in which the at-
traction is supposed to vary as the 𝑛th power of the distance, and the
particular form in which 𝑛 is taken to be −2.

1196. The particular form of the equation is

1
2
𝑉 + 𝑎

𝑑𝑉
𝑑𝑟

+
2𝜋𝑎2

3
= 0. (1)

Here 𝑉 is the potential at any point of the surface, 𝑟 is the distance
of that point from a fixed origin which is very near the centre of gravity
of the spheroid, 𝑎 is the radius of a sphere which differs very little from

the spheroid in volume, and
𝑑𝑉
𝑑𝑟

is the differential coefficient of 𝑉 with

respect to 𝑟, supposing the direction of 𝑟 unchanged; so that 𝑉 +
𝑑𝑉
𝑑𝑟
𝑑𝑟

would ultimately be the value of the potential at a second point, nor-
mally over the point to which 𝑉 refers, and distant 𝑑𝑟 from it.

1197. A memoir by Lagrange on this subject is contained in the Jour-
nal de l’Ecole Polytechnique, Cahier xv. Volume viii. The memoir is en-
titled Eclaircissement d’une difficulté singulière qui se rencontre dans le
Calcul de l’Attraction des Sphéroïdes très-peu différens de la Sphère. The
memoir occupies pages 57…67 of the volume, which was published in
December, 1809.
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1198. Lagrange remarks that D’Alembert was the first who calculated
the attraction of spheroids which differ but little from spheres; and that
Laplace treated the matter in a new and more general manner. Speaking
of Laplace’s theory Lagrange says:

Sa théorie est fondée sur un beau théorème très-remarquable par sa simplic-
ité autant que par sa généralité; mais ce théorème donne lieu à une difficulté
singulière, qui paraît n’avoir encore été remarquée par personne, et qui mérite
d’être examinée.

Lagrange then investigates equation (1), and establishes its truth; but
shews that by an error, which might naturally occur, a different result
would present itself.

We will give briefly the substance of Lagrange’s process.

1199. Resolve the spheroid into two parts, a sphere of radius 𝑎 nearly
coinciding with the spheroid, and an additional part contained between
the surface of the sphere and the surface of the spheroid. Let the radius-
vector of the spheroid be 𝑎(1 + 𝑦′); where 𝑦′ is so small that its square
may be neglected; let 𝑦 be the value of 𝑦′ at the point considered. Let 𝑉1
denote the part of 𝑉 which arises from the sphere, and 𝑣 the part which
arises from the additional matter; so that 𝑉 = 𝑉1 + 𝑣.

Take the centre of the sphere for the origin of 𝑟. Then the value of

𝑉1 is
4𝜋𝑎3

3𝑟
; and that of

𝑑𝑉
𝑑𝑟

is −
4𝜋𝑎3

3𝑟2
. Hence

1
2
𝑉1 + 𝑎

𝑑𝑉1
𝑑𝑟

=
2𝜋𝑎3

3𝑟
−
4𝜋𝑎4

3𝑟2
.

This is exact. Put for 𝑟 on the right-hand side its value 𝑎(1 + 𝑦), and
neglect 𝑦2; thus we get

1
2
𝑉1 + 𝑎

𝑑𝑉1
𝑑𝑟

= −
2𝜋𝑎2

3
+ 2𝜋𝑎2𝑦.
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Hence to establish (1) it will be necessary to shew that

1
2
𝑣 + 𝑎

𝑑𝑣
𝑑𝑟

= −2𝜋𝑎2𝑦. (2)

1200. The value of 𝑣 is obtained by approximation. It is assumed
that the additional matter may be supposed condensed on the surface of
the sphere of radius 𝑎; this assumption we have had to make on former
occasions: see Arts. 424 and 852. Thus

𝑣 = ∫
𝑎𝑦′𝑑𝜎

√(𝑟2 − 2𝑎𝑟𝜇 + 𝑎2)
,

where 𝑑𝜎 represents an element of the spherical surface, and 𝜇 is the
cosine of the angle between the direction of 𝑟 and the radius drawn to
this element.

As 𝑣 is obviously of the order of 𝑦, it is assumed that ultimately in
1
2
𝑣 + 𝑎

𝑑𝑣
𝑑𝑟

we may put 𝑟 = 𝑎, and still have our result true to the order

of 𝑦.
Now we easily see that

1
2
𝑣 + 𝑎

𝑑𝑣
𝑑𝑟

= −
𝑟2 − 𝑎2

2
∫

𝑎𝑦′𝑑𝜎
(𝑟2 − 2𝑎𝑟𝜇 + 𝑎2) 32

; (3)

then if we put 𝑟 = 𝑎 we might at first suppose that the right-hand mem-
ber would be zero; and thus we should have a result different from (2).
This constitutes substantially the difficulty which Lagrange undertakes to
explain.

The fact is that if we make 𝑟 = 𝑎 the expression under the integral
sign becomes infinite in the course of integration, namely when 𝜇 = 1.
Thus although the first factor on the right-hand side vanishes when 𝑟 =
𝑎, the second factor may become infinite; and we must determine the
exact value of the expression.
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Refer the surface of the sphere to the usual polar coordinates, taking
the radius through the point under consideration as the straight line from
which 𝜃 is measured. Then we may put 𝑎2 sin 𝜃 𝑑𝜃 𝑑𝜙 for 𝑑𝜎, and cos 𝜃
for 𝜇; therefore the integral becomes

−
𝑟2 − 𝑎2

2
𝑎3∬

𝑦′ sin 𝜃 𝑑𝜃 𝑑𝜙
(𝑟2 − 2𝑎𝑟 cos 𝜃 + 𝑎2) 32

.

Put 𝑦′ − 𝑦 + 𝑦 for 𝑦′; thus we obtain

−
𝑦(𝑟2 − 𝑎2)𝑎3

2
∬

sin 𝜃 𝑑𝜃 𝑑𝜙
(𝑟2 − 2𝑎𝑟 cos 𝜃 + 𝑎2) 32

−
(𝑟2 − 𝑎2)𝑎3

2
∬

(𝑦′ − 𝑦) sin 𝜃 𝑑𝜃 𝑑𝜙
(𝑟2 − 2𝑎𝑟 cos 𝜃 + 𝑎2) 32

.

Assuming then for the present that the second integral does not be-
come infinite when 𝑟 = 𝑎, the second term will vanish when 𝑟 = 𝑎 in
consequence of the factor 𝑟2 − 𝑎2.

The integral

∬
sin 𝜃 𝑑𝜃 𝑑𝜙

(𝑟2 − 2𝑎𝑟 cos 𝜃 + 𝑎2) 32
= 2𝜋∫

sin 𝜃 𝑑𝜃
(𝑟2 − 2𝑎𝑟 cos 𝜃 + 𝑎2) 32

.

This single integral can be immediately found; the limits for 𝜃 are 0
and 𝜋, and thus we shall obtain finally

2𝜋
𝑎𝑟

(
1

𝑟 − 𝑎
−

1
𝑟 + 𝑎

) , that is
4𝜋

𝑟(𝑟2 − 𝑎2)
.

Hence the right-hand member of (3) becomes

−
𝑦(𝑟2 − 𝑎2)𝑎3

2
×

4𝜋
𝑟(𝑟2 − 𝑎2)

, that is − 2𝜋𝑎2𝑦 ultimately.

Thus (2) is demonstrated.
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1201. We must now examine if the assumption we have made is sat-
isfactory. We have assumed that

∬
(𝑦′ − 𝑦) sin 𝜃𝑑𝜃𝑑𝜙

(𝑟2 − 2𝑎𝑟 cos 𝜃 + 𝑎2) 32

remains finite when 𝑟 = 𝑎.
Lagrange’s own treatment consists in integration by parts. Consider

the integration with respect to 𝜃, and put 𝜇 for cos 𝜃. Then

−∫
(𝑦′ − 𝑦)𝑑𝜇

(𝑟2 − 2𝑎𝑟𝜇 + 𝑎2) 32
= −

𝑦′ − 𝑦
𝑎𝑟(𝑟2 − 2𝑎𝑟𝜇 + 𝑎2) 12

+
1
𝑎𝑟

∫
1

(𝑟2 − 2𝑎𝑟𝜇 + 𝑎2) 12
𝑑𝑦′

𝑑𝜇
𝑑𝜇.

The limits for 𝜇 are 1 and −1. When 𝜇 = 1 we have 𝑦′ − 𝑦 = 0.
Suppose that 𝑌 is the value of 𝑦′ when 𝜇 = −1. Thus we obtain

−
𝑌 − 𝑦
𝑟 + 𝑎

+
1
𝑎𝑟

∫
−1

1

1
(𝑟2 − 2𝑎𝑟𝜇 + 𝑎2) 12

𝑑𝑦′

𝑑𝜇
𝑑𝜇.

Therefore if the latter integral is finite when 𝑟 = 𝑎, so also is the orig-
inal integral. Lagrange in fact assumes that the latter integral is finite.

This cannot be safely admitted however if
𝑑𝑦′

𝑑𝜇
should become infinite

within the range of the integration.
But in the original integral it is only when 𝜇 is very nearly unity that

the function to be integrated can possibly become very large. So the pro-
cess of integration by parts need only be employed with respect to that
part of the integral for which 𝜇 is nearly equal to unity. Hence practi-
cally the limitation to which Lagrange’s process must be subjected is this:
𝑑𝑦′

𝑑𝜇
must be zero or finite when 𝜇 = 1.
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1202. Another method might be used. The expression

∬
(𝑟2 − 𝑎2)(𝑦′ − 𝑦) 𝑑𝜇 𝑑𝜙
(𝑟2 − 2𝑎𝑟𝜇 + 𝑎2) 32

vanishes when 𝑟 = 𝑎, provided that the quantity under the integral sign
is zero or finite when 𝜇 = 1. When 𝜇 = 1 this quantity takes the inde-

terminate form
0
0
; by evaluating it in the usual way we obtain

−
(𝑟2 − 𝑎2)

𝑑𝑦′

𝑑𝜇
3𝑎𝑟(𝑟2 − 2𝑎𝑟𝜇 + 𝑎2) 12

.

This is finite when 𝜇 = 1 and 𝑟 = 𝑎, provided
𝑑𝑦′

𝑑𝜇
is not infinite.

Thus on the whole we may admit the truth of (1) provided
𝑑𝑦′

𝑑𝜇
is not

infinite when 𝜇 = 1.

1203. We have next to notice a memoir by Ivory entitled On the
Grounds of the Method which Laplace has given in the second Chapter
of the third Book of his Mécanique Céleste for computing the Attractions
of Spheroids of every Description. This memoir is published in the Philo-
sophical Transactions for 1812; it occupies pages 1…45 of the volume.
The memoir is composed of two parts. The first part consists of pages
1…33; this was written before Ivory had seen Lagrange’s memoir in the
Journal de l’Ecole Polytechnique, and was read to the Royal Society on
July 4th, 1811. The second part consists of pages 34…45; this was writ-
ten after Ivory had seen Lagrange’s memoir, and was read to the Royal
Society on November 7th, 1811.

1204. Let us consider the first part of Ivory’s memoir. This is in-
tended to shew that Laplace’s demonstration of equation (1) is defective
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and erroneous. With respect to this equation Ivory says on his pages 7
and 8:

… The theorem, it may be remarked, is merely laid down by the author, and
the truth of it confirmed by a demonstration; it does not naturally arise in the
course of the analysis; and the reader of the Mécanique Céleste is at a loss to
conjecture by what train of thought it may have been originally suggested. It
may be doubted whether the theorem was introduced for the sake of demon-
strating a method of investigation previously known to be just from other prin-
ciples; or whether it preceded in the order of invention, and led to the method
of investigation.

The history of Laplace’s writings, which we have traced, settles the
point thus raised by Ivory; the theorem was given by Laplace at a very
early period, and did precede the application which he afterwards made
of it to the expansion of a function in what we call Laplace’s functions.

1205. Ivory remarks on his page 9:
It is also to be observed that the MécaniqueCéleste has now been many years

before the public: and although the problem of attractions is the foundation
of many important researches, and is more particularly recommended to the
notice of mathematicians by the novelty and uncommon turn of the analysis;
on which account it may be supposed to have been scrutinized with more than
an ordinary degree of curiosity; yet nobody has hitherto called in question the
accuracy of the investigation.

Ivory might have increased the force of his remark by adverting to
the long time which elapsed between the first publication of the theorem
and the reproduction of it in the Mécanique Céleste.

Ivory concludes the paragraph which contains the preceding sentence
by saying that

The writings of no author on any subject deserve to have more respect and
deference paid to them, than the writings of Laplace on the subject of physical
astronomy; with this no one can be more deeply impressed than the author of
this discourse; and it was not till after much meditation that, yielding to the
force of the proofs which are now to be detailed, he has ventured to advance
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anything in opposition to the highest authority, in regard to mathematical and
physical subjects, that is to be found in the present times.

1206. I shall not reproduce Ivory’s process. It seems to me longer
and more elaborate than was really necessary. I think his objections to
Laplace’s equation may be fairly epitomized by saying, as in Art. 1202,
that we have no ground for asserting the truth of the equation at any

point unless we assume that
𝑑𝑦′

𝑑𝜇
is finite for that point; and he would

allow the truth of the equation if 𝑦′ is such that
𝑑𝑦′

𝑑𝜇
is always finite.

1207. Let us consider where the difficulty really lies in Laplace’s pro-
cess. We take the suppositions of Art. 1199, except that we now let the
sphere touch the spheroid at the point considered; so that the 𝑦 of that
Article in fact is zero.

Let there be a particle of mass 𝜆 situated on the surface of the sphere,
and at an angular distance 𝛾 from the direction to which 𝑟 belongs. Let

𝑓 = √{2𝑎2(1 − cos 𝛾)},
and

𝑓′ = √{(𝑎 + 𝑑𝑟)2 − 2𝑎(𝑎 + 𝑑𝑟) cos 𝛾 + 𝑎2}.

Then
𝜆
𝑓
represents the part of 𝑉 which arises from this particle, and

𝜆
𝑓′

represents the part of 𝑉 +
𝑑𝑉
𝑑𝑟
𝑑𝑟 +… which so arises.

If 𝑓 be finite we have when 𝑑𝑟 is small enough

𝑓′ = 𝑓(1 +
𝑑𝑟
2𝑎
) , (4)
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so that
𝜆
𝑓′

=
𝜆
𝑓
−
𝜆
𝑓
𝑑𝑟
2𝑎
.

Hence so far as this particle is concerned we get
𝑑𝑉
𝑑𝑟

= −
𝜆
𝑓′

1
2𝑎
; so that

2𝑎
𝑑𝑉
𝑑𝑟

= −𝑉, that is 2𝑎
𝑑𝑉
𝑑𝑟

+ 𝑉 = 0.

Therefore we may say that considering only those particles which are
at a finite distance from the point considered, Laplace’s equation holds.
But at the same time when 𝑓 itself is infinitesimal, the assertion in (4)
cannot be accepted as satisfactory.

1208. Ivory proceeds thus. We have

𝑓′2 − (𝑑𝑟)2 = (1 +
𝑑𝑟
𝑎
) 𝑓2;

therefore
1
𝑓
=

1
𝑓′
(1 +

𝑑𝑟
𝑎
)
1
2
{1 −

(𝑑𝑟)2

𝑓′2
}
− 1
2

;

and to obtain
1
𝑓′
−
1
𝑓
Ivory expands the factor {1 −

(𝑑𝑟)2

𝑓′2
}
− 1
2

in ascending

powers of
𝑑𝑟
𝑓′
. But this expansion is very unsatisfactory when 𝑓′ becomes

infinitesimal as it does ultimately.

1209. Ivory himself has no doubt of the soundness of his investiga-
tion. He says that “It completely overturns the demonstration of Laplace
…”.

1210. Laplace, as we have seen in Art. 1067, employed the equa-
tion we are considering to shew that any function of the usual angular
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polar coordinates could be expressed in a series of Laplace’s functions.
Of course any limitation which may be found to apply to the theorem
we are considering, applies also to the deduction from it. Accordingly,
Ivory does not allow that any function can be expanded in a series of
Laplace’s functions; but allows that any rational integral function of 𝜇,
√(1 − 𝜇2) cos𝜙, and √(1 − 𝜇2) sin𝜙 can be so expanded, where 𝜇 stands
for cos 𝜃.

1211. With respect to Laplace’s demonstration of his theorem it must
be observed that he expressly supposes the sphere to touch the spheroid.
Ivory does not advert to this supposition. It is obvious that if this sup-
position be made the condition required in Lagrange’s investigation will
be satisfied; and so that investigation will furnish an adequate proof of
Laplace’s theorem: see Art. 1200. And by proper precautions we may
also fortify the weak part of Laplace’s own investigation.

Laplace’s supposition amounts to the condition, in modern language,
that there are to be no singular points on the surface of the spheroid: so
that applied to the Earth it would exclude such irregularities as chasms
or craters, and ridges or peaks, and mountains or valleys with vertical
faces.

No doubt this condition limits to a corresponding degree the range of
the theorem about the expansibility of a function in a series of Laplace’s
functions; or rather limits Laplace’s own demonstration of it.

1212. We have shewn in Arts. 1200 and 1201 that if
𝑑𝑦′

𝑑𝜇
is finite

when 𝜇 = 1 the limit when 𝑟 = 𝑎 of

(𝑟 − 𝑎)∫
𝜋

0
∫

2𝜋

0

𝑎2𝑦′ sin 𝜃 𝑑𝜃 𝑑𝜙
(𝑟2 − 2𝑎𝑟 cos 𝜃 + 𝑎2) 32

is 2𝜋𝑦.

Under the same condition it may be shewn that the limit when 𝑟 = 𝑎
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of

(𝑟 − 𝑎)𝑖−1∫
𝜋

0
∫

2𝜋

0

𝑎2𝑦′ sin 𝜃 𝑑𝜃 𝑑𝜙

(𝑟2 − 2𝑎𝑟 cos 𝜃 + 𝑎2)
𝑖+1
2

is
2𝜋𝑦
𝑖 − 1

.

Ivory establishes this result: see his page 22.

1213. We may notice the way in which Ivory shews that a rational
integral function of the usual variables can be expanded in a series of
Laplace’s functions.

Let 𝑑𝜎 denote an element of the surface of a sphere of radius unity;
then with the notation which has been explained in Art. 785 we have

∫
𝑦′𝑑𝜎

√(𝑟2 − 2𝑎𝑟𝜇 + 𝑎2)
= ∫

𝑦′

𝑟
{1 +

𝑎
𝑟
𝑃1 +

𝑎2

𝑟2
𝑃2 +

𝑎3

𝑟3
𝑃3 +…}𝑑𝜎.

Differentiate with respect to 𝑟; thus

∫
(𝑎𝜇 − 𝑟)𝑦′𝑑𝜎

(𝑟2 − 2𝑎𝑟𝜇 + 𝑎2) 32
= −∫

𝑦′

𝑟2
{1 +

2𝑎
𝑟
𝑃1 +

3𝑎2

𝑟2
𝑃2 +…}𝑑𝜎.

Multiply the second result by 2𝑟 and add to the former; thus

𝑟 + 𝑎
𝑎

∫
(𝑟 − 𝑎)𝑦′𝑎2𝑑𝜎

(𝑟2 − 2𝑎𝑟𝜇 + 𝑎2) 32
= ∫

𝑎𝑦′

𝑟
{1 +

3𝑎
𝑟
𝑃1 +

5𝑎2

𝑟2
𝑃2 +…}𝑑𝜎.

Now suppose 𝑟 = 𝑎; then the limit of the left-hand is 4𝜋𝑦 by Art.
1212. Therefore

4𝜋𝑦 = ∫𝑦′{1 + 3𝑃1 + 5𝑃2 + 7𝑃3 +…}𝑑𝜎.

This is equivalent to Laplace’s result: see Art. 1069.
The method here given is substantially that which Poisson adopted

in various places of his writings for establishing the possibility of the
expansion.
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1214. Ivory makes some remarks on what we have called in Art. 1195
the general form in which Laplace’s equation presents itself, when the
attraction is supposed to vary as the 𝑛th power of the distance. Then

𝑑𝑉
𝑑𝑟

−
𝑛 + 1
2𝑎

𝑉 =
𝑑𝑉1
𝑑𝑟

−
𝑛 + 1
2𝑎

𝑉1,

where 𝑉 belongs to the whole spheroid, and 𝑉1 to the sphere of radius
𝑎: see Art. 814. It is easy to anticipate what will be the nature of Ivory’s
conclusion. He admits that if 𝑛 be positive the equation is true, and
also if 𝑛 be negative and numerically less than 2. In fact if we proceed
after Lagrange’s method, as given in this Chapter, we shall see that our
integrals remain finite as long as 𝑛 is algebraically greater than −2.

It may be taken I think as universally admitted that the equation can-
not be considered established if 𝑛 is negative and numerically greater
than 2.

1215. Some incidental matters which occur in the memoir may be
noticed.

If 𝜃 and 𝜙 are the usual polar coordinates of a point on the surface
of a sphere of radius unity, we know that the expression for the element
of surface will be sin 𝜃 𝑑𝜃 𝑑𝜙. If we take another pole and transform our
expression, and so introduce corresponding angles 𝜃1 and 𝜙1 the expres-
sion for the element of surface will be sin 𝜃1 𝑑𝜃1 𝑑𝜙1. This is a simple
but important transformation: Ivory uses it on his page 18: by the aid
of it in Art. 424 some simplification was effected of an investigation by
D’Alembert.

On his page 32 Ivory says, with reference of course to Laplace:
… On this account the analysis in No. 25, Liv. 3e, cannot be admitted as

satisfactory: and indeed from the words at the beginning of No. 26, we may
infer that the author himself was not perfectly satisfied with the strictness and
universality of his investigation.

Laplace’s words however at the beginning of his § 26 seem to me to
shew that the investigation which he was about to bring forward was
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intended to remove the doubts of other people rather than his own, as
to the soundness of his antecedent method: the words will be quoted in
Art. 1256.

On his page 33 Ivory says:
… Although the analysis which Laplace has traced out for the attractions

of spheroids must be allowed to be very ingenious and masterly, yet still there
are some considerations which cannot but lead us to think, that it falls short of
that degree of perfection which it is laudable to aim at. And in particular the
coefficients of the several terms of the expansion are, in his procedure, formed
one after another, beginning with the last term: so that the first terms of the
series cannot be found without previously computing all the rest. This is no
doubt an imperfection of some moment:…

Ivory I presume refers to the process which occurs towards the end
of Laplace’s Livre iii. § 16. The objection does not seem to me of much
weight: it might be said that we could give the name of first terms to
those which he calls the last, for if we have to find a set of terms it is
not of much importance at which end we begin.

1216. The pages 34…45 of Ivory’s memoir form an appendix to what
had preceded; in these pages Ivory gives an account of the memoir by
Lagrange which we have already noticed in Arts. 1197…1202.

Ivory begins thus:
Some time before the end of May last, a paper of mine was presented to the

Royal Society, in which I entered on an examination of a fundamental propo-
sition in the second chapter of the third book of the Mécanique Céleste. About
three months after that paper was in the possession of the Society, towards the
middle of August, a large collection of foreign books, imported from the Conti-
nent, was received in London; among which were several Cahiers of the Journal
de l’Ecole Polytechnique. In the 15th Cahier, which had been published at Paris
in December 1809, although it did not find its way into this country prior to the
above date, there is a short memoir by Lagrange on the same subject treated of
in my paper: and in this Appendix I shall lay before the Society a short ac-
count of Lagrange’s memoir, pointing out what are the views of that celebrated
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mathematician in regard to the conclusions obtained in my paper.

1217. Ivory illustrates on his pages 38 and 39 an important point to
which we are now accustomed to pay due attention; we should describe
it by saying that if a function to be integrated becomes infinite within
the range of integration it will be necessary to determine by careful ex-
amination what the real value of the integral is.

1218. Lagrange himself in his memoir expressed no doubt as to the
accuracy of Laplace’s equation; Ivory however seeks to draw a confirma-
tion of his own opinion from Lagrange’s memoir. But it does not appear
to me that in this Appendix Ivory adds any matter of consequence to
what he had already given.

1219. A second memoir by Ivory occurs in the same volume of the
Philosophical Transactions entitled, On the Attractions of an extensive
Class of Spheroids. We shall give a notice of this memoir hereafter;
at present it is sufficient to say that Ivory just alludes to the equation
which we are considering, and reasserts that there is an error in
Laplace’s process: see page 73 of the memoir.

1220. Laplace himself returned to the equation in a memoir on the
Figure of the Earth which was published in the Mémoires … de l’Insti-
tut for 1817, and was reproduced in the fifth volume of the Mécanique
Céleste: see pages 24…27 of the volume. The following is the substance
of the addition which Laplace here makes to his original demonstration.

Take the expression which forms the right-hand member of (3) in Art.
1200; and suppose the sphere and the spheroid to touch so that 𝑦′ van-
ishes at the common point. Since 𝑟 is to be made equal to 𝑎 ultimately,
we are sure that the expression will vanish if we except for a moment
that part of the integral which arises from elements close to the point
considered; this part requires special examination. But since we suppose
the sphere and the spheroid to touch we have 𝑦′ varying as 𝑟2−2𝑎𝑟𝜇+𝑎2
ultimately in the neighbourhood of the common point; and this ensures
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that the corresponding part of the integral vanishes.

1221. Laplace puts his investigation in a form resembling that which
we have adopted in Art. 852. The potential is separated into two parts
which we have denoted by 𝑉 and 𝑉1; and the equation is obtained which
we express thus:

−𝑎
𝑑𝑉1
𝑑𝑟

=
1
2
𝑉1.

This agrees with Laplace’s equation (a) on his page 24; he uses 𝑉″

for our 𝑉1, and he supposes 𝑎 to be unity.

1222. Laplace says on his page 27:
Telle est la démonstration que j’ai donnée de cette équation, dans l’endroit

cité de la Mécanique céleste. Quelques géomètres ne l’ayant pas bien saisie,
l’ont jugée inexacte. Lagrange, dans le tome viii. du Journal de l’Ecole Poly-
technique, a démontré cette équation, par une analyse à peu près semblable à
celle qui me l’avait fait découvrir (Mémoires de l’Académie des Sciences, année
1775, page 83). C’est pour simplifier cette matière, que j’ai préféré de donner
dans la Mécanique céleste, la démonstration précédente.

I do not know who are meant by the words quelques géomètres; the
words seem to imply that more than one person had attacked the demon-
stration, but I have found no other besides Ivory, up to the date of pub-
lication of Laplace’s fifth volume.

Laplace does not offer to defend the general form of his equation: see
Art. 1214.

1223. We find something bearing on the point under discussion in a
memoir by Poisson on the distribution of heat in solid bodies, which was
published in the Journal de l’Ecole Polytechnique, Vol. xii.: see page 159
of the volume. Although Poisson puts his remarks in a more elaborate
form, yet the following simple statement constitutes their sum.

Take the expression which forms the right-hand member of (3) in
Art. 1200. When we make 𝑟 − 𝑎 infinitesimal the only part of the inte-
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gral which can be sensible is that which arises from elements close to
the point considered. Thus we may regard 𝑦′ as constant; so that the
expression becomes

−
𝑟2 − 𝑎2

2
𝑎𝑦∫

𝑑𝜎
(𝑟2 − 2𝑎𝑟𝜇 + 𝑎2) 32

.

Then continuing as in that Article we arrive at the result −2𝜋𝑎2𝑦.
Although no condition is stated by Poisson, it is obvious that it will

not be safe to say that 𝑦′ may be considered constant unless we are sure

that
𝑑𝑦′

𝑑𝜇
is not infinite when 𝜇 = 1.

1224. Ivory returned to the equation in a memoir entitled, On the ex-
pansion in a series of the attraction of a Spheroid, published in the Philo-
sophical Transactions for 1822: we shall here notice only so much of the
memoir as relates to the equation under discussion.

Ivory says on pages 106 and 107 of this memoir:
We come next to consider the differential equation that takes place at the

surface of a spheroid. Of this equation, three demonstrations have been pub-
lished; one, in the second chapter of the third book of the Mécanique Céleste;
another by the same author, not precisely the same with the former, but similar
to it, in a memoir read to the Academy of Sciences in 1818; and a third by M.
Poisson, in an interesting and profound memoir on the distribution of heat in
solid bodies. The two last demonstrations are fundamentally the same; but as
M. Poisson has stated the reasoning more fully, and fixed the sense of the proof
more precisely, I wish to refer to his memoir.

I do not understand what Ivory means by speaking of the last two
demonstrations as fundamentally the same: it appears to me that there
is an appreciable difference between them. The memoir by Laplace to
which Ivory here refers is that noticed in Art. 1220.

1225. In this memoir Ivory seems to object not so much to the theo-
rem itself as to the inference which was drawn from it, namely that any
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function could be expanded in a series of Laplace’s functions.

1226. Laplace himself in a conversation with Sir Humphry Davy bore
testimony to the talents and labours of Ivory: see the Abstracts of the
Papers printed in the Philosophical Transactions … Vol. iv. page 409. The
end which Ivory aimed at in his criticisms on Laplace’s equation may
be considered now substantially attained; for the equation seems to have
been relinquished by most mathematical writers. The theory of Laplace’s
functions, and the theory of attractions, are now usually exhibited quite
independently of the equation.

1227. A paper on this matter by G. B. Airy, now Astronomer Royal,
is contained in the Cambridge Philosophical Transactions, Vol. ii. 1827.
The paper occupies pages 379…390 of the volume; it was read May 8th,
1826.

Mr Airy commences thus:
In two papers printed in the Philosophical Transactions for 1812, and in

a third in the Transactions for 1822, Mr Ivory has objected to some parts of
Laplace’s investigation of the attraction of spheroids differing little from a
sphere. That there are difficulties in that theory cannot be denied, but that
Mr Ivory has pointed out correctly the errors from which the obscurities arise
appears to me quite doubtful. After considering the subject attentively, I have
come to the conclusion, that in the part to which Mr Ivory has most strongly
objected, Laplace’s investigation may, by a slight alteration, be made free from
error; but that an assertion of Laplace which Mr Ivory has admitted without
scruple, is absolutely unsupported by any demonstrative evidence whatever….

1228. The manner in which Mr Airy establishes Laplace’s equation is
very interesting, and deserves to be studied. Instead of reproducing it I
will give a process which is founded on the same principles.

Let there be a sphere nearly equal in volume to the spheroid and
having a common point and nearly coinciding with the spheroid; but the
two need not necessarily touch at the common point.
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Laplace’s equation holds for the sphere. It is also admitted to hold for
that part of the excess of the spheroid over the sphere which is not close
to the common point; so that we need only consider the part close to the
common point. Let 𝑣 be the value of the potential for the portion of this
excess which is near the common point; and which we may suppose to
be bounded by a sphere of radius 𝑓 described round the common point
as centre. Then for this small portion of the excess we shall shew that 𝑣

and
𝑑𝑣
𝑑𝑟

may both be considered zero ultimately.

First let us examine the value of 𝑣. Resolve the small portion we have
to consider into infinitesimal cones or pyramids which have their vertex
at the common point. Suppose that 𝜔 represents the surface which one
of these cones or pyramids would cut from a sphere of radius unity; then
1
2
𝑓2𝜔 will be the part of 𝑣 arising from this cone or pyramid. Hence the

value of 𝑣 will be ultimately zero. For 𝑓 is ultimately indefinitely small.
If we suppose with Laplace that the sphere and the spheroid touch, the
sum of all the values of 𝜔 will be infinitesimal. And if we suppose with
Mr Airy that the sphere and the spheroid do not touch, still the sum
of all the values of 𝜔 will be very small. Moreover in this case there is
a species of compensation; for as the sphere will be partly within and
partly without the spheroid the elementary cones will contribute partly
positive and partly negative values to 𝑣. Thus we may safely admit 𝑣 to
be ultimately zero to the order which Laplace’s equation involves.

Next let us examine the value of
𝑑𝑣
𝑑𝑟
. The part of

𝑑𝑣
𝑑𝑟

which arises

from one of the infinitesimal cones or pyramids expresses the attraction
of that cone or pyramid on a particle at the vertex estimated in the direc-
tion which is almost at right angles to the axis of the cone or pyramid.
It is therefore obvious that this must be infinitesimal. Hence too the ag-
gregate arising from all the cones or pyramids will be ultimately zero to
the order we have to regard.
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1229. Mr Airy then touches on a matter of less importance. He says:
The accuracy of the investigation in Liv. iii. No. 10. being supposed to be

established, I proceed to No. 11. In this article as it stands, there is certainly an
obscurity (attended however with no erroneous results) which a small change
in the notation will entirely remove. In the preceding article Laplace has taken
𝑟 = 𝑎 at the attracted point, he now supposes 𝑟 = 𝑎(1 + 𝛼𝑦): and whether this
be an inaccuracy, or the origin of co-ordinates be supposed to be changed, it
is equally incomprehensible to the reader, and equally likely to lead him into
error.

It does not seem to me that there is any serious difficulty here; in his
§ 10 Laplace makes 𝑟 nearly equal to 𝑎, but he does not require that 𝑟
should be exactly equal to 𝑎.

1230. A more important point is then introduced. Laplace undertook
to shew that a function 𝑦 cannot be expanded into two different series
of Laplace’s functions. For suppose if possible there are two different
expansions, say

𝑦 = 𝑌0 + 𝑌1 + 𝑌2 + 𝑌3 +…
and

𝑦 = 𝑋0 + 𝑋1 + 𝑋2 + 𝑋3 +…

Hence by subtraction

0 = 𝑌0 − 𝑋0 + 𝑌1 − 𝑋1 + 𝑌2 − 𝑋2 +…

Let 𝑍𝑖 be a Laplace’s function of the 𝑖th order; multiply the last equa-
tion by 𝑍𝑖 and integrate between the usual limits; then by a well known
property of the functions we have

∫
1

−1
∫

2𝜋

0
(𝑌𝑖 − 𝑋𝑖)𝑍𝑖 𝑑𝜇𝑑𝜙 = 0. (5)

Laplace says that if we take for 𝑍𝑖 the most general function of its
kind this equation cannot be true except 𝑌𝑖 − 𝑋𝑖 = 0.
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Mr Airy considers that there is not the slightest evidence for this as-
sertion; and so that the theorem which Laplace wished to establish “rests
at present entirely on Laplace’s unsupported assertion.”

Mr Airy does not attempt to complete the demonstration of the result
𝑌𝑖 − 𝑋𝑖 = 0, but gives another investigation of the proposition that a
rational function of 𝜇, √(1−𝜇2) cos𝜙, and √(1−𝜇2) sin𝜙 can be expanded
in only one series of Laplace’s functions.

I do not however consider that Laplace’s assertion is destitute of ev-
idence: here, as in many cases, Laplace leaves his readers to do much
for themselves, but I think there is little doubt as to how we should here
proceed.

For an example suppose 𝑖 = 2. Then he would say that 𝑌2 − 𝑋2 must
be of the form

𝐶0𝑓0(𝜇) + 𝐶1𝑓1(𝜇) cos𝜙 + 𝐶2𝑓2(𝜇) cos 2𝜙
+ 𝐸1𝑓1(𝜇) sin𝜙 + 𝐸2𝑓2(𝜇) sin 2𝜙,

where 𝐶0, 𝐶1, 𝐶2, 𝐸1, 𝐸2 are constants, and 𝑓0(𝜇), 𝑓1(𝜇), 𝑓2(𝜇) are certain
functions of 𝜇.

Now take for 𝑍2 an expression of the form

𝐻2𝑓2(𝜇) sin 2𝜙,

where 𝐻2 is a constant.
Substitute in (5); then we see that it reduces to

𝐸2𝐻2∬{𝑓2(𝜇) sin 2𝜙}2𝑑𝜇𝑑𝜙;

and this is impossible unless 𝐸2 = 0.
In like manner we can shew that the other constants which occur in

𝑌2 − 𝑋2 must all be zero by reason of (5).
We may observe that the inference that 𝑌𝑖 − 𝑋𝑖 is drawn from (5) in

modern books in a simpler manner by the aid of an important equation
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which Laplace himself gave; namely the equation (1) of the Mécanique
Céleste, Vol. ii. page 44: see Arts. 857 and 1069. Poisson uses this manner
in his Théorie … de la Chaleur, page 225.

With respect to this paper by Professor Airy, the reader may consult
an article also by him in the Philosophical Magazine for June 1827.

1231. The equation is investigated by Pontécoulant in his Théorie
Analytique du Systême du Monde, Vol. ii. 1829, pages 374…380. Ponté-
coulant’s process is substantially the same as Lagrange’s, which we have
noticed in Arts. 1197…1202.

1232. The matter discussed in the present Chapter is also considered
by Bowditch in his notes to the translation of the Mécanique Céleste; see
pages 88 and 92 of his second volume. But he adds nothing to what had
been previously given.

1233. A very interesting paper on the subject by the late James
McCullagh is published in the Transactions of the Royal Irish Academy,
Vol. xvii. 1837, pages 237…239; the paper was read on May 28, 1832.
The object of the paper is to demonstrate a certain exact theorem of
which Laplace’s equation may be considered an approximate form. We
will give a sketch of the process.

If 𝜙 be the solid angle of an infinitesimal cone or pyramid of length 𝑟

it is easily seen that the potential at the vertex is
1
2
𝜙𝑟2, and the attraction

there is 𝜙𝑟; the density being taken as unity.
Now consider a solid of any shape, regular or irregular, terminated

at one end by a plane; in this plane take any point 𝑃, and from 𝑃 draw
a straight line at right angles to the plane meeting the solid again at 𝑄.
Let there be a sphere of any magnitude whose diameter 𝑃′𝑄′ is paral-
lel to 𝑃𝑄. Let 𝑃″ be another fixed point; and from the points 𝑃, 𝑃′, 𝑃″
draw three parallel straight lines 𝑃𝑝, 𝑃′𝑝′, 𝑃″𝑝″, the first two terminated
respectively by the solid and the sphere, and the third equal to the dif-
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ference of the other two, without regarding which of them is the greater.
Suppose all the points 𝑝″ taken according to this law to trace out a third
solid.

Let 𝑃𝑝, 𝑃′𝑝′, 𝑃″𝑝″, be edges of three infinitesimal pyramids, with
their other edges proceeding from 𝑃, 𝑃′, 𝑃″ all parallel; they will have
the same solid angle, which we will denote by 𝜙. Let 𝑟, 𝑟′, 𝑟″ denote the
respective lengths, and 𝑉, 𝑉 ′, 𝑉″ the potentials at the vertices. From 𝑝
draw 𝑝𝑅 perpendicular to 𝑃𝑄; the attraction of the pyramid correspond-
ing to 𝑃𝑝 in the direction of 𝑃𝑄 will be 𝜙×𝑃𝑅; call this 𝐴. Let 𝑎 be the
radius of the sphere.

Since 𝑟″ is the difference of 𝑟 and 𝑟′ we have

𝑟2 + 𝑟′2 − 𝑟″2 = 2𝑟𝑟′ = 2𝑃𝑅 × 𝑃′𝑄′;

therefore
1
2
𝜙𝑟2 +

1
2
𝜙𝑟′2 −

1
2
𝜙𝑟″2 = 2𝑎𝜙 × 𝑃𝑅,

that is
𝑉 + 𝑉 ′ − 𝑉″ = 2𝑎𝐴.

This result then holds for every other three pyramids similarly related
to each other throughout the whole extent of the three solids. Thus if we
now denote by 𝑉, 𝑉 ′, 𝑉″ the whole potentials for the three solids, and
by 𝐴 the whole attraction of the first solid parallel to 𝑃𝑄 on a particle at
𝑃, we shall have

𝑉 + 𝑉 ′ − 𝑉″ = 2𝑎𝐴.

This is McCullagh’s exact equation. To express it in Laplace’s notation

he observes that the attraction 𝐴 is synonymous with −
𝑑𝑉
𝑑𝑟
, and that 𝑉 ′

for the sphere is equal to
4
3
𝜋𝑎2. Substituting these values we obtain

𝑉 + 2𝑎
𝑑𝑉
𝑑𝑟

= −
4
3
𝜋𝑎2 + 𝑉″.
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McCullagh then shews that if the original solid differs but slightly
from a sphere, and we choose 𝑎 suitably, then 𝑉″ will be a small quantity
of the second order.

1234. A few remarks may be made on this ingenious paper.
The plane which terminates the first solid may if we please be a tan-

gent plane, and then 𝑃𝑄 becomes the normal at 𝑃.
The normal attraction at 𝑃, in Laplace’s use of his equation, is not

necessarily exactly −
𝑑𝑉
𝑑𝑟
; but it will not differ from this expression by

more than a quantity of the second order at most. See the Mécanique
Céleste, Vol. v. page 26.

McCullagh refers to a certain case, as he says, “because both Lagrange
and Ivory have used this case to show that the reasonings of Laplace
are incorrect.” But I do not think Lagrange professed to shew that the
reasonings of Laplace are incorrect. Lagrange shewed that an error might
very naturally be made; but he did not assert or imply that Laplace had
made any error.

1235. The matter is considered by Plana; see the Astronomische
Nachrichten, Vol. xxxviii., page 226: but the article by Plana may
be most conveniently studied in connexion with Laplace’s Livre xi.
Chapitre ii. §§ 2…5, to which it relates.

Resal investigates Laplace’s equation; see his pages 164…166: the
method may be considered to resemble that of Art. 1228.



CHAPTER XXXI.

PARTIAL DIFFERENTIAL EQUATION FOR 𝑉

1236. Let 𝑉 denote the potential of a given mass at a point whose
coordinates are 𝑥, 𝑦, 𝑧. Then, as we have seen in Art. 866, Laplace ob-
tained for 𝑉 the partial differential equation

𝑑2𝑉
𝑑𝑥2

+
𝑑2𝑉
𝑑𝑦2

+
𝑑2𝑉
𝑑𝑧2

= 0;

for abbreviation we shall denote this by

∇𝑉 = 0.

About thirty years elapsed before it was discovered that the equation
is not universally true; it is not true if the point (𝑥, 𝑦, 𝑧) is a point of the
body: it is only true if the point (𝑥, 𝑦, 𝑧) is outside the body or within
some cavity of the body.

1237. The correction was furnished by Poisson in a note published in
the Nouveau Bulletin … Société Philomatique, Dec. 1813. The note occu-
pies pages 388…392 of Volume iii. of the Nouveau Bulletin; it is entitled
Remarques sur une équation qui se présente dans la théorie des attractions
des sphéroïdes.

Poisson’s method is now familiar to us, for it has passed into the el-
ementary books. He divides the body into two parts, a sphere which
includes the point (𝑥, 𝑦, 𝑧), and the rest of the body. Let 𝑉 be separated
into two corresponding parts, 𝑉1 and 𝑉2, of which 𝑉1 belongs to the sphere
and 𝑉2 to the rest of the body; then we have

∇𝑉1 = −4𝜋𝜌,
∇𝑉2 = 0,

where 𝜌 is the density at the point (𝑥, 𝑦, 𝑧).
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1238. Poisson says, and justly, that Laplace’s form is true when the
point (𝑥, 𝑦, 𝑧) is without the body, or within a cavity formed by the body.
He adds “ces deux cas sont, à la vérité, les seuls pour lesquels on ait
fait usage de l’équation…”. I do not consider this quite correct so far
as it implies that no error had been made hitherto; for I have shewn
that some of Laplace’s processes are rendered unsatisfactory by the tacit
assumption that ∇𝑉 is always zero: see Arts. 1044 and 1050.

1239. Poisson gives two applications of his formulæ. One is to deter-
mine the attraction at an external or internal point exerted by a sphere
in which the density is a function of the distance from the centre. The
other is to establish a result first obtained by Legendre; see Art. 1157.

1240. The matter is considered by Rodrigues in a memoir which has
been noticed in Chapter XXIX.: see Art. 1177. I will give his process.

Let 𝑉 denote the potential of a given body at the point (𝑎, 𝑏, 𝑐). Let
𝐴, 𝐵, 𝐶 denote the corresponding resolved attractions; so that

𝐴 = −
𝑑𝑉
𝑑𝑎

, 𝐵 = −
𝑑𝑉
𝑑𝑏

, 𝐶 = −
𝑑𝑉
𝑑𝑐
.

Take (𝑎, 𝑏, 𝑐) as the origin of the usual polar coordinates; let 𝜌 denote the
density: then

𝐴 = −∭𝜌 cos 𝜃 sin 𝜃 𝑑𝜃 𝑑𝜙𝑑𝑟,

𝐵 = −∭𝜌 sin2 𝜃 cos𝜙𝑑𝜃 𝑑𝜙𝑑𝑟,

𝐶 = −∭𝜌 sin2 𝜃 sin𝜙𝑑𝜃 𝑑𝜙𝑑𝑟.

We will suppose (𝑎, 𝑏, 𝑐) within the body. Then the limits of integra-
tion for 𝑟 are 0 and 𝑟1 where 𝑟1 denotes some function of 𝜃 and 𝜙, which
is known from the equation to the surface; the limits for 𝜃 are 0 and 𝜋;
and the limits for 𝜙 are 0 and 2𝜋.
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Put 𝑥′ = 𝑟 cos 𝜃, 𝑦′ = 𝑟 sin 𝜃 cos𝜙, 𝑧′ = 𝑟 sin 𝜃 sin𝜙; then 𝜌 will be a
function of the variables 𝑎 + 𝑥′, 𝑏 + 𝑦′ and 𝑐 + 𝑧′; thus

𝑑𝜌
𝑑𝑎

=
𝑑𝜌
𝑑𝑥′

,
𝑑𝜌
𝑑𝑏

=
𝑑𝜌
𝑑𝑦′

,
𝑑𝜌
𝑑𝑐

=
𝑑𝜌
𝑑𝑧′

.

Now
𝑑𝐴
𝑑𝑎

will consist of two terms; one arising from the fact that 𝜌

involves 𝑎, and the other from the fact that the limit 𝑟1 also involves 𝑎.
Hence
𝑑𝐴
𝑑𝑎

= −∭
𝑑𝜌
𝑑𝑎

cos 𝜃 sin 𝜃 𝑑𝜃 𝑑𝜙𝑑𝑟 −∬𝜌1
𝑑𝑟1
𝑑𝑎

cos 𝜃 sin 𝜃 𝑑𝜃 𝑑𝜙,

where 𝜌1 denotes the density at the point of the surface which corre-
sponds to 𝑟1.

Thus we get

𝑑2𝑉
𝑑𝑎2

+
𝑑2𝑉
𝑑𝑏2

+
𝑑2𝑉
𝑑𝑐2

=∭
sin 𝜃 𝑑𝜃 𝑑𝜙𝑑𝑟

𝑟
(𝑥′

𝑑𝜌
𝑑𝑥′

+ 𝑦′
𝑑𝜌
𝑑𝑦′

+ 𝑧′
𝑑𝜌
𝑑𝑧′

)

+∬
𝜌1 sin 𝜃 𝑑𝜃 𝑑𝜙

𝑟1
(𝑥1′

𝑑𝑟1
𝑑𝑎

+ 𝑦1′
𝑑𝑟1
𝑑𝑏

+ 𝑧1′
𝑑𝑟1
𝑑𝑐

) ,

where as before the suffix 1 is used to denote a value at the point of the
surface.

Now
𝑥′
𝑑𝜌
𝑑𝑥′

+ 𝑦′
𝑑𝜌
𝑑𝑦′

+ 𝑧′
𝑑𝜌
𝑑𝑧′

= 𝑟
𝑑𝜌
𝑑𝑟
.

Let the equation from which 𝑟1 is to be found be denoted by

𝐹(𝑎 + 𝑟1 cos 𝜃, 𝑏 + 𝑟1 sin 𝜃 cos𝜙, 𝑐 + 𝑟1 sin 𝜃 sin𝜙) = 0;

thus
𝑑𝐹
𝑑𝑎

+ (
𝑑𝐹
𝑑𝑎

cos 𝜃 +
𝑑𝐹
𝑑𝑏

sin 𝜃 cos𝜙 +
𝑑𝐹
𝑑𝑐

sin 𝜃 sin𝜙)
𝑑𝑟1
𝑑𝑎

= 0,
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and we have two similar equations; the three give

𝑥1′
𝑑𝑟1
𝑑𝑎

+ 𝑦1′
𝑑𝑟1
𝑑𝑏

+ 𝑧1′
𝑑𝑟1
𝑑𝑐

= −𝑟1.

Hence

𝑑2𝑉
𝑑𝑎2

+
𝑑2𝑉
𝑑𝑏2

+
𝑑2𝑉
𝑑𝑐2

=∭ sin 𝜃 𝑑𝜃 𝑑𝜙𝑑𝑟 .
𝑑𝜌
𝑑𝑟

−∬ sin 𝜃 𝑑𝜃 𝑑𝜙𝜌1.

But ∫
𝑑𝜌
𝑑𝑟
𝑑𝑟 = 𝜌1 − 𝜌0, where 𝜌0 is the density at the origin of polar

coordinates, that is the point (𝑎, 𝑏, 𝑐). Thus

𝑑2𝑉
𝑑𝑎2

+
𝑑2𝑉
𝑑𝑏2

+
𝑑2𝑉
𝑑𝑐2

= −𝜌0∬ sin 𝜃 𝑑𝜃 𝑑𝜙 = −4𝜋𝜌0.

1241. Poisson took up the matter again in his Mémoire sur la Théorie
du Magnétisme en Mouvement; this memoir is contained in the Mémoires
de l’Académie, Vol. vi. which is for 1823, and was published in 1827. The
memoir was read on the 10th of July, 1826. We are now concerned with
pages 455…463 of the volume containing the memoir; and we will indi-
cate the method which Poisson adopts.

1242. We suppose the body homogeneous, and take unity for its den-
sity. Let 𝑑𝑥′ 𝑑𝑦′ 𝑑𝑧′ denote an element of volume of the body; and put 𝑟
for √{(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2}, so that

𝑉 =∭
𝑑𝑥′ 𝑑𝑦′ 𝑑𝑧′

𝑟
.

Therefore
𝑑𝑉
𝑑𝑥

= −∭
𝑥− 𝑥′

𝑟3
𝑑𝑥′ 𝑑𝑦′ 𝑑𝑧′,
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and
𝑑2𝑉
𝑑𝑥2

= −∭
𝑑
𝑑𝑥

(
𝑥 − 𝑥′

𝑟3
) 𝑑𝑥′ 𝑑𝑦′ 𝑑𝑧′

=∭
𝑑
𝑑𝑥′

(
𝑥 − 𝑥′

𝑟3
) 𝑑𝑥′ 𝑑𝑦′ 𝑑𝑧′.

Then by applying the same kind of transformation that Gauss had
used, but without referring to him, Poisson puts this result in the form

𝑑2𝑉
𝑑𝑥2

=∬
𝑥− 𝑥′

𝑟3
cos 𝑙 𝑑𝜔,

where 𝑑𝜔 is an element of the surface of the body, and 𝑙 is the angle
between the positive direction of the axis of 𝑥 and the normal to the
surface at the element 𝑑𝜔 drawn outwards. The integration is to extend
over the whole surface of the body. Compare Art. 1171.

Similar transformations hold for
𝑑2𝑉
𝑑𝑦2

and
𝑑2𝑉
𝑑𝑧2

; thus finally

∇𝑉 =∬(
𝑥 − 𝑥′

𝑟
cos 𝑙 +

𝑦 − 𝑦′

𝑟
cos𝑚+

𝑧 − 𝑧′

𝑟
cos𝑛)

𝑑𝜔
𝑟2
. (1)

Poisson, like Gauss, is careful to consider the cases in which a straight
line parallel to an axis of coordinates meets the surface more than twice,
so that (1) may be established with adequate generality.

Let 𝑖 denote the angle between the straight line drawn from (𝑥, 𝑦, 𝑧) to
𝑑𝜔 and produced, and the normal to the surface at 𝑑𝜔 drawn outwards;
then

cos 𝑖 =
𝑥′ − 𝑥
𝑟

cos 𝑙 +
𝑦′ − 𝑦
𝑟

cos𝑚+
𝑧′ − 𝑧
𝑟

cos𝑛.

Let 𝑑𝜃 be the element of a spherical surface of radius unity, which is
cut out by the cone having its vertex at (𝑥, 𝑦, 𝑧) and circumscribed round
𝑑𝜔. Then

cos 𝑖 𝑑𝜔 = ± 𝑟2𝑑𝜃,
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where the upper or lower sign is to be taken according as 𝑖 is acute or
obtuse. Thus we have from (1)

∇𝑉 =∬(∓)𝑑𝜃. (2)

Now consider separately the various positions of the point (𝑥, 𝑦, 𝑧).
I. Let the point (𝑥, 𝑦, 𝑧) be outside the body. Then if a cone be drawn

from this point as vertex to circumscribe the body, the surface of the
body will be divided into two parts: in one part 𝑖 is acute, and in the
other obtuse. The double integral which forms the right-hand member of
(2) has for these parts values which are numerically equal but of opposite
signs. In this case then

∇𝑉 = 0.

II. Let the point (𝑥, 𝑦, 𝑧) be on the surface of the body.
Then the upper sign will have to be taken in (2), and the double in-

tegral will extend over half the surface of the sphere.
In this case then

∇𝑉 = −2𝜋.

III. Let the point (𝑥, 𝑦, 𝑧) be inside the body.
Then the upper sign will have to be taken in (2), and the double in-

tegral will extend over the whole surface of the sphere.
In this case then

∇𝑉 = −4𝜋.

1243. Hitherto we have taken the body to be homogeneous with the
density unity. Now let 𝜌′ which is any function of 𝑥′, 𝑦′, and 𝑧′ denote
the density at the point (𝑥′, 𝑦′, 𝑧′). Then

∇𝑉 =∭𝜌′∇(
1
𝑟
) 𝑑𝑥′𝑑𝑦′𝑑𝑧′.



partial differential equation for 𝑉 315

When (𝑥, 𝑦, 𝑧) is not a point of the body ∇(
1
𝑟
) vanishes throughout

the triple integral.
When (𝑥, 𝑦, 𝑧) is a point of the body we divide the body into two

parts, namely one which does not contain the point and for which ∇(
1
𝑟
)

always vanishes; and the other which contains the point; we may take
this part so small that 𝜌′ may be considered constant throughout it, and
may therefore be put equal to 𝜌, where 𝜌 denotes the density at the point
(𝑥, 𝑦, 𝑧).

Thus
∇𝑉 = 𝜌∭∇(

1
𝑟
) 𝑑𝑥′𝑑𝑦′𝑑𝑧′,

where the triple integral extends over that part of the body which con-
tains (𝑥, 𝑦, 𝑧). Hence by what has been shewn in the preceding Arti-
cle we obtain ∇𝑉 = −2𝜋𝜌 for a point on the surface of the body, and
∇𝑉 = −4𝜋𝜌 for a point within the body.

Hence finally

∇𝑉 = 0, or − 2𝜋𝜌, or − 4𝜋𝜌,

according as the point (𝑥, 𝑦, 𝑧) is without the body, or on its surface, or
within the body.

1244. Poisson says on his page 463 respecting the three cases just
considered:

Les géomètres ont remarqué le premier cas depuis long-temps; j’ai été con-
duit à la troisième valeur, il y a plusieurs années, par une analyse moins directe
que la précédente; j’y joins maintenant la seconde; ce qui ne laissera plus rien
à désirer touchant cette équation, dont on connaît l’importance dans un grand
nombre de questions, et qui nous sera bientôt utile.

1245. The process of Art. 1242 is doubtless perfectly satisfactory for
the case of an external point; it does not carry conviction to my mind
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for the other two cases which Poisson considers. As to the internal par-
ticle Poisson’s original treatment seems to me conclusive; the result is
now universally accepted as one of the standard theorems in the subject
of attraction. As to the particle at the surface however the case seems
different; I do not think that Poisson’s result has been ever generally ac-
cepted or used. I shall hereafter return to this point: see Art. 1253.

1246. Poisson gives another investigation of the formula ∇𝑉 = −4𝜋𝜌
in his memoir in the Connaissance des Tems for 1829. We shall return to
this in Chapter XXXV.

If we take the usual polar coordinates the equation for an internal
particle becomes

𝑟
𝑑2(𝑟𝑉)
𝑑𝑟2

+
1

sin 𝜃
𝑑
𝑑𝜃

(sin 𝜃
𝑑𝑉
𝑑𝜃

) +
1

sin2 𝜃
𝑑2𝑉
𝑑𝜙2

= −4𝜋𝑟2𝜌.

In this memoir Poisson does not give his result for a particle on the
surface.

1247. We have next to notice a paper by Ostrogradsky entitled
Note sur une intégrale qui se rencontre dans le calcul de l’attraction
des Sphéroïdes. This is published in the Mémoires de l’Académie … St
Pétersbourg, sixth series, Vol. i. 1831. The note was read on the 2nd
July, 1828.

Ostrogradsky after some preliminary remarks cites Poisson’s equa-
tions for an internal particle, and also that for a particle at the surface;
he numbers the former (3) and the latter (4). Then he says:

C’est M. Poisson qui a trouvé les équations (3) et (4), de mon côté j’ai trouvé
l’équation (3) sans connaître la remarque de M. Poisson que j’ai vue depuis dans
le Bulletin des sciences; quant à l’équation (4) j’ignore, encore maintenant com-
ment l’illustre géomètre que je viens de citer y est parvenu.

1248. Ostrogradsky states that his object is to indicate how we ought
to replace the equation given by Poisson for a point at the surface when
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that equation does not hold. We may express the object by saying that
Ostrogradsky investigates what the equation ought to be for singular
points of the surface.

Thus for example at the corner of a rectangular parallelepiped Ostro-

gradsky considers that instead of Poisson’s −2𝜋𝜌 we ought to have −
𝜋
2
𝜌.

1249. I do not regard the paper by Ostrogradsky as of any interest
or value in the theory of attractions; though it may deserve a little at-
tention from a writer on the Integral Calculus. The point involved is the
treatment of a definite integral when the function to be integrated has
an infinite value; Ostrogradsky’s process resembles the well-known one
of Cauchy. But I cannot say that I have any confidence in the method
which Ostrogradsky pursues; and as to his results the remark made at
the end of Art. 1245 applies.

1250. One important statement Ostrogradsky makes without demon-
stration; but says merely “Nous avons fait voir ailleurs.…” I have not been
able to find the place to which he thus vaguely alludes.

1251. In Ferussac’s Bulletin … Sciences Mathématiques … Vol. xiv.
1830, there is a notice of the researches of Poisson and Ostrogradsky on
the point which we are considering. The notice is on pages 81…88 of the
volume, signed S., which I presume stands for Sturm.

This notice repeats the historical statement to which I have objected
in Art. 1138. With respect to the point to which I have alluded in Art.
1250, the notice says: “Ostrogradsky has proved …” If S. knew where
Ostrogradsky had given the proof he should have supplied the reference;
if he did not know he should have said not, “Ostrogradsky has proved
…”, but, “Ostrogradsky states that he has proved …”

The notice asserts that Laplace’s form of the equation is true in some
sense even for an internal point: but I do not understand in what sense.
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It says that Ostrogradsky’s investigation is far less simple than Pois-
son’s; and with this I entirely agree.

And finally it throws doubt on the truth of Poisson’s equation for the
case of a point at the surface; for instance, supposing the body to be
a sphere, it shews that we may very naturally obtain −4𝜋𝜌 instead of
Poisson’s −2𝜋𝜌.

1252. Bowditch notices the correction for the case of an internal par-
ticle in the second volume of his translation of the Mécanique Céleste,
published in 1832. Bowditch says on his page 67:

It is somewhat remarkable, that this defect in the formula, as it was first
published by LaPlace, should have remained unnoticed, nearly half a century;
particularly as he had expressly called the attention of mathematicians to the
necessity of having the limits of the integrals independent of the co-ordinates
of the attracted point; … and had also conformed to this restriction, in the cal-
culations of the first volume.

It is a great fault in Bowditch’s work that he gives scarcely any ref-
erences. Thus in the present case, although he attributes the correction
to Poisson, he does not say where Poisson first published the correction.
But as Bowditch speaks of an interval of nearly half a century, it would
appear that he was not acquainted with Poisson’s paper of Dec. 1813.
But yet Bowditch himself, on his page 64, uses a method like that of
Poisson’s paper; namely, he divides the body into two parts, one part be-
ing a sphere which contains the point considered.

I do not agree with what is implied by Bowditch, that the first volume
of the Mécanique Céleste is perfectly free from error as to the equation
for 𝑉; see Arts. 1044 and 1050.

1253. It remains only to shew that Poisson’s equation for a point
at the surface is unsatisfactory. This is in fact considered by Gauss in
his celebrated memoir entitled Allgemeine Lehrsätze … Anziehungs- und
Abstossungs-Kräfte, Leipsic, 1840; the memoir is reprinted in Vol. v. of
the edition of the collected works of Gauss: see pages 204…206 of the
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volume.
Consider a sphere of radius 𝑎, and density 𝜌; take the centre as origin

of co-ordinates. Let 𝑥, 𝑦, 𝑧 be the coordinates of any point. Then we
know that for an internal point

𝑉 = 2𝜋𝜌𝑎2 −
2
3
𝜋𝜌(𝑥2 + 𝑦2 + 𝑧2),

and for an external point

𝑉 =
4𝜋𝜌𝑎3

3(𝑥2 + 𝑦2 + 𝑧2) 12
.

Hence we find that for an internal point

𝑑2𝑉
𝑑𝑥2

= −
4𝜋𝜌
3
,

and for an external point

𝑑2𝑉
𝑑𝑥2

=
4𝜋𝜌𝑎3(3𝑥2 − 𝑟2)

3𝑟5
,

where 𝑟 stands for (𝑥2 + 𝑦2 + 𝑧2) 12 .

The two values of
𝑑2𝑉
𝑑𝑥2

do not agree at the surface: so that we must

say that
𝑑2𝑉
𝑑𝑥2

is not determinate at the surface, but has two distinct val-

ues.
In like manner ∇𝑉 has not a determinate value at the surface. In fact

∇𝑉 is an aggregate of three terms, each of which has two values; so that
there are in all eight combinations, of which one gives the value of ∇𝑉
agreeing with that found for an internal particle, and the other gives the
value of ∇𝑉 agreeing with that found for an external particle; the other
six remain without meaning.

Gauss says he cannot admit the reasoning by which some mathemati-
cians have deduced the value −2𝜋𝜌 for a point at the surface.



CHAPTER XXXII.

LAPLACE’S SECOND METHOD OF TREATING LEGENDRE’S
PROBLEM.

1254. D’Alembert attempted to demonstrate that among figures of
revolution an oblatum is the only form of relative equilibrium for ho-
mogeneous fluid rotating with uniform angular velocity; but his process
is a failure, as we have seen in Art. 576. Laplace contributed a little to
the investigation in his two earliest memoirs, but Legendre was the first
who discussed the problem with tolerable success; and I have therefore
called it by his name: see Arts. 744 and 763. Laplace subsequently gave
two demonstrations, without assuming that the fluid is a figure of equi-
librium, but only that it is nearly spherical; one of these demonstrations
depends on the expansion of the radius vector in a series of Laplace’s
functions, while the other does not employ any expansion. The demon-
strations date from 1782, and are reproduced in the fourth Chapter of
the Third Book of the Mécanique Céleste.

1255. The second demonstration remained for more than fifty years
unchallenged. At last it was shewn to be unsatisfactory by Liouville in a
note published in his Journal de Mathématiques, Vol. ii. 1837. The note
is entitled Sur un passage de la Mécanique céleste, relatif à la Théorie de
la Figure des Planètes. The note occupies pages 206…219 of the volume.
We shall devote the present Chapter to the matter.

1256. After completing his first demonstration Laplace proceeds thus
in his § 26:

L’analyse précédente nous a conduits à la figure d’une masse fluide
homogène en équilibre, sans employer d’autres hypothèses que celle d’une
figure très-peu différente de la sphère: elle fait voir que la figure elliptique qui,
par le Chapitre précédent, satisfait à cet équilibre, est la seule alors qui lui
convienne. Mais comme la réduction du rayon du sphéroïde, dans une série de
la forme 𝑎(1+𝛼𝑌0+𝛼𝑌1+…), peut faire naître quelques difficultés, nous allons
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démontrer directement et indépendamment de cette réduction, que la figure
elliptique est la seule figure d’équilibre d’une masse fluide homogène, douée
d’un mouvement de rotation; ce qui, en confirmant les résultats de l’analyse
précédente, servira en même temps, à dissiper les doutes que l’on pourroit
élever contre la généralité de cette analyse.

1257. We have now to explain Laplace’s process, and also the ob-
jection to which it is exposed. Let 𝑎 be the radius of a sphere nearly
coinciding with the spheroid. Let the radius vector of the spheroid be
denoted by 𝑎(1+𝛼𝑌 ′), where 𝛼 is very small, and 𝑌 ′ is a function of the
usual angular coordinates 𝜇′ and 𝜛′. Let 𝑌 be the corresponding value
of 𝑌 ′ when we put 𝜇 and 𝜛 for 𝜇′ and 𝜛′ respectively.

Let 𝑉 denote the potential at the point (𝜇,𝜛) on the surface of the
spheroid. Then we know that to the order of the first power of 𝛼

𝑉 =
4𝜋𝑎3

3𝑟
+ 𝛼𝑎2∫

1

−1
∫

2𝜋

0

𝑌 ′𝑑𝜇′𝑑𝜛′

√(2 − 2𝜆)
, (1)

where 𝑟 stands for 𝑎(1 + 𝛼𝑌), and 𝜆 for the cosine of the angle between
the radius vector to (𝜇,𝜛) and the radius vector to (𝜇′,𝜛′): see Art. 852.

Now Laplace in fact transforms the second term in the above value of
𝑉, by changing the variables; and thus arrives substantially at the result

∫
1

−1
∫

2𝜋

0

𝑌 ′𝑑𝜇′𝑑𝜛′

√(2 − 2𝜆)
= ∫

𝜋

0
∫

2𝜋

0
𝑌 ′ sin𝑝𝑑𝑝𝑑𝑞′. (2)

This result constitutes a large part of Laplace’s process; we shall now
examine it, though not quite in Laplace’s way. He is very brief, and in-
troduces his usual phrases, il est facile de voir and on trouvera facilement.
The connection between the old variables and the new variables will be
made manifest in the progress of our investigation.

1258. In the double integral which we propose to transform we shall
suppose that 𝜇′ and 𝜛′ are the polar coordinates of a point on the sur-
face of a sphere of radius unity.
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Let 𝑂 be the centre of the sphere, 𝑂𝑃 the fixed radius from which 𝜃
and 𝜃′ are measured, where as usual 𝜇 = cos 𝜃, and 𝜇′ = cos 𝜃′.

Let 𝐴 be the point (𝜇,𝜛), so that 𝑃𝑂𝐴 = 𝜃.
Take 𝐴 as the origin of a new set of coordinates; let 𝐴𝑂 be the axis

of 𝑥, 𝐴𝑌 the tangent to 𝐴𝑃 the axis of 𝑦, and 𝐴𝑍 which is perpendicular
to the plane of the paper the axis of 𝑧. Then the equation to the surface
of the sphere will be

2𝑥 = 𝑥2 + 𝑦2 + 𝑧2. (3)

Transform to polar coordinates by the usual relations

𝑧 = 𝜌 cos𝑝, 𝑥 = 𝜌 sin𝑝 cos 𝑞, 𝑦 = 𝜌 sin𝑝 sin 𝑞.

Then from (3) we obtain for the radius vector 𝜌 the value

𝜌 = 2 sin𝑝 cos 𝑞.
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Now we know by the Integral Calculus that the polar expression for
an element of a surface is

√{𝜌2 sin2 𝑝 + sin2 𝑝 (
𝑑𝜌
𝑑𝑝

)
2
+ (

𝑑𝜌
𝑑𝑞
)
2
} 𝜌 𝑑𝑝𝑑𝑞.

In the present case this becomes 2𝜌 sin𝑝𝑑𝑝𝑑𝑞.
And we know that √(2 − 2𝜆) expresses the same thing as 𝜌, that is

the distance between (𝜇,𝜛) and (𝜇′,𝜛′), that is the distance between the
new origin and (𝜌, 𝑝, 𝑞).

Hence, finally, ∬
𝑌 ′𝑑𝜇′𝑑𝜛′

√(2 − 2𝜆)
transforms to ∬

𝑌 ′2𝜌 sin𝑝𝑑𝑝𝑑𝑞
𝜌

, that

is to 2∬𝑌 ′ sin𝑝𝑑𝑝𝑑𝑞.

And from the diagram we see that the limits of the integrations are

−
1
2
𝜋 and

1
2
𝜋 for 𝑞, and 0 and 𝜋 for 𝑝.

1259. We have now to connect the old variables with the new.
Let 𝐵 denote the point (𝜇′,𝜛′) on the surface of the sphere, that is

the point (𝜌, 𝑝, 𝑞). Let 𝑀 be the projection of 𝐵 on the plane of (𝑦, 𝑧),
and 𝑁 the projection of 𝑀 on the axis of 𝑦. The straight lines 𝐴𝐵 and
𝑂𝐵 may be supposed to be drawn.

We shall project 𝐴𝐵 on 𝑂𝑃 in two ways, and equate the results.
First consider 𝐴𝐵 as made up of the components 𝐴𝑂 and 𝑂𝐵. Thus

we get as the projection
cos 𝜃′ − cos 𝜃.

Next consider 𝐴𝐵 as made up of the components 𝐴𝑁, 𝑁𝑀, and 𝑀𝐵.
Thus we get as the projection

𝑦 sin 𝜃 − 𝑥 cos 𝜃.
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Therefore
cos 𝜃′ − cos 𝜃 = 𝑦 sin 𝜃 − 𝑥 cos 𝜃,

so that
cos 𝜃′ = (1 − 𝑥) cos 𝜃 + 𝑦 sin 𝜃.

Put for 𝑥 and 𝑦 their values in terms of 𝑝 and 𝑞; hence we get

𝜇′ = 𝜇 cos2 𝑝 − sin2 𝑝 cos(2𝑞 + 𝜃). (4)

Again 𝜛′ −𝜛 is the angle between the planes 𝑃𝑂𝐴 and 𝑃𝑂𝐵. Hence
the perpendicular from 𝐵 on the plane 𝑃𝑂𝐴 is sin 𝜃′ sin(𝜛′ − 𝜛); and
this perpendicular is equal to 𝑀𝑁, so that

sin 𝜃′ sin(𝜛′ −𝜛) = 𝑧,

that is
sin 𝜃′ sin(𝜛′ −𝜛) = 2 sin𝑝 cos𝑝 cos 𝑞. (5)

The equations (4) and (5) are theoretically sufficient to connect the
old variables with the new; but another equation will also be useful in
some cases, namely,

sin 𝜃′ cos(𝜛′ −𝜛) = sin 𝜃 − 𝑦 cos 𝜃 − 𝑥 sin 𝜃.

This may be obtained thus: suppose 𝐵 projected on the plane 𝑃𝑂𝐴,
let 𝐿 denote the projection; so that 𝐿 is in fact the point (𝑥, 𝑦, 0). Then
the equation just written may be obtained by two ways of projecting 𝑂𝐿
on a straight line at right angles to 𝑂𝑃; in one way 𝑂𝐿 is projected im-
mediately, and in the other way it is made up of the components 𝑂𝐴,
𝐴𝑁, and 𝑁𝐿.

The equation becomes by putting for 𝑥 and 𝑦 their values

sin 𝜃′ cos(𝜛′ −𝜛) = sin 𝜃 − 2 sin2 𝑝 cos 𝑞 sin(𝑞 + 𝜃). (6)
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The equation (6) is not independent of (4) and (5); it will be found
that if we square and add (5) and (6) so as to eliminate 𝜛′−𝜛 we obtain
a result which is equivalent to (4).

1260. Laplace himself does not give equation (5) nor equation (6);
because he does not require them. He begins by assuming that the fig-
ure of the solid required is to be one of revolution; and afterwards gives
a supplementary investigation for the case in which the figure is not as-
sumed to be one of revolution. Thus in this part of his process 𝑌 ′ is
a function of 𝜇′ only; but it is convenient for us here to take the most
general supposition, namely, that 𝑌 ′ is a function of 𝜛′ as well as 𝜇′.

1261. In (4) put 2𝑞 + 𝜃 = 𝑞′; thus

𝜇′ = 𝜇 cos2 𝑝 − sin2 𝑝 cos 𝑞′. (7)

Hence from the result of Art. 1258, we have

∫
1

−1
∫

2𝜋

0

𝑌 ′𝑑𝜇′𝑑𝜛′

√(2 − 2𝜆)
= ∫

𝜋

0
∫

𝜋+𝜃

−𝜋+𝜃
𝑌 ′ sin𝑝𝑑𝑝𝑑𝑞′. (8)

Thus it will be seen that (8) does not quite agree with (2) because the
limits of 𝑞′ are not the same in the two formulæ.

If with Laplace we assume that 𝑌 ′ is a function of 𝜇′ only, then by
substituting for 𝜇′ by (7) we make 𝑌 ′ a function of 𝑝 and of 𝑞′ such that
𝑞′ enters through cos 𝑞′. In this case by the first principles of the Integral
Calculus the limits for 𝑞′ may be any that just comprise the range 2𝜋,
and so we may take them to be 0 and 2𝜋. Hence if 𝑌 ′ is a function of
𝜇′ only the formula (2) is established.

But when 𝑌 ′ is a function of 𝜛′ as well as of 𝜇′ it does not seem to
me that this passage from (8) to (2) can be always effected. In this case
we must express 𝜛′ in terms of the new variables by (5) and (6). Hence
we get by division

𝜛′ −𝜛 = tan−1 {
2 sin𝑝 cos𝑝 cos 𝑞

sin 𝜃 − 2 sin2 𝑝 cos 𝑞 sin(𝑞 + 𝜃)
} .
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Thus when we put 𝑞 =
𝑞′

2
−
𝜃
2
, we shall introduce sin

𝑞′

2
and cos

𝑞′

2
;

and we cannot assert that the limits of the integration with respect to 𝑞′
can be changed from −𝜋 + 𝜃 and 𝜋 + 𝜃 to 0 and 2𝜋.

Although the truth of (2) is asserted by Liouville and admitted by
Poisson, even in the case in which 𝑌 ′ is a function of 𝜛′ as well as 𝜇′,
yet for the reason just given the result seems to me inadmissible. See
pages 212 and 312 of the volume cited in Art. 1255.

1262. Admitting then the truth of (2) on Laplace’s supposition, let us
see how he applies it.

Let 𝜅 denote the centrifugal force at the distance unity from the axis.
Then for relative equilibrium we must have

𝑉 +
𝑎2

2
𝜅(1 − 𝜇2) = constant.

But from (1) and (2) we have

𝑉 =
4𝜋𝑎2

3
(1 − 𝛼𝑌) + 𝑎2𝛼∫

𝜋

0
∫

2𝜋

0
𝑌 ′ sin𝑝𝑑𝑝𝑑𝑞′. (9)

Hence, dividing by 𝑎2, we get

4𝜋
3
𝛼𝑌 − 𝛼∫

𝜋

0
∫

2𝜋

0
𝑌 ′ sin𝑝𝑑𝑝𝑑𝑞′ −

𝜅
2
(1 − 𝜇2) = 𝐶, (10)

where 𝐶 is a constant.
Differentiate (10) three times with respect to 𝜇, and observe that by

(7) we have
𝑑𝜇′

𝑑𝜇
= cos2 𝑝. Thus

4𝜋
3
𝑑3𝑌
𝑑𝜇3

−∫
𝜋

0
∫

2𝜋

0

𝑑3𝑌 ′

𝑑𝜇′3
sin𝑝 cos6 𝑝𝑑𝑝𝑑𝑞′ = 0,
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that is

∫
𝜋

0
∫

2𝜋

0
(
7
3
𝑑3𝑌
𝑑𝜇3

−
𝑑3𝑌 ′

𝑑𝜇′3
) sin𝑝 cos6 𝑝𝑑𝑝𝑑𝑞′ = 0.

Laplace then says:
Cette équation doit avoir lieu, quel que soit 𝜇; or il est clair que parmi toutes

les valeurs comprises depuis 𝜇 = −1, jusqu’à 𝜇 = 1, il en existe une que nous
désignerons par ℎ, et qui est telle, qu’abstraction faite du signe, aucune des

valeurs de
𝑑3𝑌
𝑑𝜇3

ne surpassera pas celle qui est relative à ℎ; en désignant donc

par 𝐻, cette dernière valeur, on aura

∫
𝜋

0
∫

2𝜋

0
(
7
3
𝐻 −

𝑑3𝑌 ′

𝑑𝜇′3
) sin𝑝 cos6 𝑝𝑑𝑝𝑑𝑞′ = 0.

La quantité
7
3
𝐻−

𝑑3𝑌 ′

𝑑𝜇′3
est évidemment du même signe que 𝐻, et le facteur

sin𝑝 cos6 𝑝 est constamment positif dans toute l’étendue de l’intégrale; les élé-
mens de cette intégrale sont donc tous du même signe que 𝐻; d’où il suit que
l’intégrale entière ne peut être nulle, à moins que 𝐻 ne le soit lui-même, ce qui

exige que l’on ait généralement, 0 =
𝑑3𝑌
𝑑𝜇3

, d’où l’on tire en intégrant,

𝑌 = 𝑙 + 𝑚𝜇 + 𝑛𝜇2;

𝑙, 𝑚, 𝑛, étant des constantes arbitraires.

1263. This reasoning, says Liouville, is specious and might at the first
glance deceive us; but on reflecting we see that it ceases to be applicable

if the maximum of the function
𝑑3𝑌
𝑑𝜇3

could be infinite; and this would

be the case if for example 𝑌 = (1 − 𝜇2) 32 or (1 − 𝜇2) 73 .
In order to manifest the unsoundness of the principle on which this

reasoning rests, Liouville takes a very simple example. Suppose it re-
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quired to find a function 𝜙(𝑥) which satisfies the equation

∫
1

0
𝜙(𝛼𝑥) 𝑑𝛼 =

3
10
𝜙(𝑥), (11)

𝑥 being an independent variable.
Differentiate three times with respect to 𝑥; thus

∫
1

0
𝛼3𝜙‴(𝛼𝑥) 𝑑𝛼 =

3
10
𝜙‴(𝑥),

or, which is the same thing,

∫
1

0
𝛼3 {

12
10
𝜙‴(𝑥) − 𝜙‴(𝛼𝑥)} 𝑑𝛼 = 0.

Now if we apply to this equation and the function 𝜙(𝑥) the reason-
ing of Laplace, without changing a word, we shall arrive as before at the
result 𝜙‴(𝑥) = 0. But this is absurd, for the value of 𝜙(𝑥) which satis-
fies (11) is obviously of the form 𝜙(𝑥) = 𝐴𝑥 7

3 , where 𝐴 is an arbitrary
constant.

Similarly by putting the equation

∫
1

0
𝜙(𝛼𝑥) 𝑑𝛼 = 2𝜙(𝑥) (12)

in the form

∫
1

0
{2𝜙(𝑥) − 𝜙(𝛼𝑥)} 𝑑𝛼 = 0,

we might conclude by Laplace’s reasoning that 𝜙(𝑥) = 0. But it is obvious
that (12) is satisfied by the more general value

𝜙(𝑥) =
𝐴
√𝑥

.
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Thus in order that Laplace’s demonstration should be sufficient it

would be necessary to shew that
𝑑3𝑌
𝑑𝜇3

is always finite. But this would

amount to imposing additional restriction on the value of 𝑌, when the
only restriction that ought to be used is that 𝑌 is to be always finite.
Therefore some method must be employed very different from Laplace’s.

1264. Accordingly Liouville gives another demonstration; it is rather
long, but interesting and satisfactory.

He restricts himself to the case in which the figure is assumed to
be one of revolution; for the remainder of the problem he refers to the
supplementary investigation which, as I have stated in Art. 1260, Laplace
himself gave.

As I have stated in Art. 1261, Liouville asserts the universal truth of
(2); yet he confines himself, as Laplace did, to the case in which 𝑌 ′ is a
function of 𝜇′ only; and thus his process is not affected by my objection
to the universal truth of (2).

The process used by Liouville does not admit of any convenient ab-
breviation; and I must therefore leave the student to consult the original
paper.

1265. I now pass to a paper by Poisson, which is entitled Note relative
à un passage de la Mécanique céleste; it is given in Liouville’s Journal de
Mathématiques, Vol. ii. 1837, pages 312…316. I shall translate this paper,
for the investigation which it contains is so brief and simple, that it ought
to form part of any standard treatise on the subject.

In the translation, I shall continue the numbering of the equations
which has been already used in the Chapter.

1266. In the twenty-sixth section of the Third Book [of the Mécanique
Céleste] the author proposes to demonstrate, without recourse to the re-
duction into a series, that a homogeneous fluid turning uniformly round
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a fixed axis has only a single figure of equilibrium which differs very lit-
tle from a sphere. The objection which M. Liouville has urged against the
generality of this demonstration is real; see the number of this Journal
for the month of June last: but the demonstration which he has substi-
tuted for that of the Mécanique Céleste is very complicated, and we may
arrive more simply at the result by the following considerations which
differ less from those which Laplace used.

I retain without stating it here, all the notation of the memoir of M.
Liouville, and the equation (10) cited at the beginning of the second ar-
ticle, that is

𝐶 =
4𝜋𝛼
3
𝑌 − 𝛼∫

𝜋

0
∫

2𝜋

0
𝑌 ′ sin𝑝𝑑𝑝𝑑𝑞′ −

1
2
𝜅(1 − 𝜇2). (10)

The radius vector 𝑟 of any point of the surface is represented by

𝑟 = 𝑎(1 + 𝛼𝑌).

The unknown quantity 𝑌 may be any function of the two variables
denoted by 𝜇 and 𝜛, provided it is always finite. We do not assume that
the surface is one of revolution, or that 𝑌 is independent of the angle 𝜛;
nor do we assume that the fluid has its centre of gravity on the axis of
rotation: we assume only that the figure differs very little from a sphere
which would have its centre on this axis. The constant 𝑎 may differ from
the radius of the sphere equivalent in volume to the fluid, provided that
the difference is of the order of smallness of 𝛼, the same as that of 𝜅,
and the square of which we neglect.

The rigorous condition of equilibrium consists in this, that the sum
of the elements of the fluid divided by their respective distances from

any point of the surface, together with the quantity
1
2
𝑎2𝜅(1 − 𝜇2), which

arises from the centrifugal force at the point, should be constant. The
part of this constant relative to the sphere of radius 𝑎 and independent
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of the centrifugal force, is equal to
4𝜋𝑎2

3
; the part relative to this force

and to the non-sphericity of the fluid is −𝑎2𝐶, where 𝐶 is the constant
of the preceding equation. If we denote by 𝛾 its complete value we have

𝛾 =
4𝜋𝑎2

3
− 𝑎2𝐶.

Now for each possible figure of equilibrium this constant 𝛾 is evi-
dently a determinate quantity, which cannot depend on the radius that
we take for 𝑎, that is to say, on the difference between this radius and
that of the sphere which is equivalent to the given volume of the fluid.
The constant 𝐶 then is indeterminate like this difference; so that for any
value we may take for 𝑎, the preceding equation will determine the cor-
responding value of 𝐶; and conversely, if we take for 𝐶 a value which is
of the order of smallness of 𝛼, this equation will determine the radius 𝑎.

Suppose then
𝑌 = 𝑙𝜇 + 𝑚𝜇2 + 𝑋,

𝑙 and 𝑚 being undetermined constants, and 𝑋 a new unknown function
of 𝜇 and 𝜛, the values of which are always finite. Let 𝑐 denote the great-
est of these values, and put

𝑐 − 𝑋 = 𝑍;

then the unknown quantity 𝑍 can never be negative, and the expression
for 𝑌 will become

𝑌 = 𝑐 + 𝑙𝜇 + 𝑚𝜇2 − 𝑍.

Substitute this in the equation (10). Let 𝜇′ denote what 𝜇 becomes
in 𝑌 ′, then

𝜇′ = 𝜇 cos2 𝑝 − sin2 𝑝 cos 𝑞′.
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Hence we shall have

∫
𝜋

0
∫

2𝜋

0
𝜇′ sin𝑝𝑑𝑝𝑑𝑞′ =

4𝜋𝜇
3
,

∫
𝜋

0
∫

2𝜋

0
𝜇′2 sin𝑝𝑑𝑝𝑑𝑞′ =

4𝜋
5
(𝜇2 +

4
3
);

and also we have

∫
𝜋

0
∫

2𝜋

0
sin𝑝𝑑𝑝𝑑𝑞′ = 4𝜋.

The result of the substitution then will be

𝐶 = (
8𝜋𝛼
15

𝑚 +
1
2
𝜅) 𝜇2 −

16𝜋𝛼
15

𝑚 −
8𝜋𝛼
3
𝑐 −

1
2
𝜅

−
4𝜋𝛼
3
𝑍 + 𝛼∫

𝜋

0
∫

2𝜋

0
𝑍′ sin𝑝𝑑𝑝𝑑𝑞′,

where 𝑍′ denotes what 𝑍 becomes in 𝑌 ′.
Now since the constants 𝑚 and 𝐶 can be taken arbitrarily, we may

suppose that
8𝜋𝛼
15

𝑚 +
1
2
𝜅 = 0,

𝐶 = −
16𝜋𝛼
15

𝑚 −
8𝜋𝛼
3
𝑐 −

1
2
𝜅, (13)

which reduces the preceding equation to

∫
𝜋

0
∫

2𝜋

0
𝑍′ sin𝑝𝑑𝑝𝑑𝑞′ −

4𝜋
3
𝑍 = 0,

which may be written in this form,

∫
𝜋

0
∫

2𝜋

0
(𝑍′ −

1
3
𝑍) sin𝑝𝑑𝑝𝑑𝑞′ = 0.
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Now let ℎ and 𝑘 denote the values of 𝜇 and 𝜛, which correspond to
the least of all the possible values of 𝑍; and denote by 𝐿 the least value;
for 𝜇 = ℎ, and 𝜛 = 𝑘, the last equation will become

∫
𝜋

0
∫

2𝜋

0
(𝑍′ −

1
3
𝐿) sin𝑝𝑑𝑝𝑑𝑞′ = 0. (14)

But it is evident that 𝑍′ or 𝑍 being by hypothesis a positive quantity

or zero, the difference 𝑍′ −
1
3
𝐿 is also positive or zero. Then as all the

elements of the double integral have the same sign the double integral

cannot be zero unless the factor 𝑍′−
1
3
𝐿 is zero; and this condition cannot

be satisfied unless 𝑍′ or 𝑍 is constantly zero.
From the preceding equations we obtain

𝑚 = −
15𝜅
16𝜋𝛼

,

𝑐 =
3𝜅
16𝜋𝛼

−
3

8𝜋𝛼
𝐶.

Substitute the values of 𝑚 and 𝑐 in the expression for 𝑌, suppressing
the term 𝑍; and put this expression in the value of 𝑟: thus

𝑟 = 𝑎 {1 +
3(𝜅 − 2𝐶)

16𝜋
+ 𝛼𝑙𝜇 −

15𝜅
16𝜋

𝜇2} .

This result involves the indeterminate constant 𝛼𝑙, which depends on
the origin of the coordinates on the axis of rotation. We may make it
disappear by a convenient displacement of this origin on this straight
line; or if we please we may suppose it zero, and write

𝑟 = 𝑎 {1 +
3(𝜅 − 2𝐶)

16𝜋
−
15𝜅
16𝜋

𝜇2} .
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We can also without difficulty make the constants 𝑎 and 𝐶 disappear
from the value of 𝑟. In fact let

𝑎 {1 +
3(𝜅 − 2𝐶)

16𝜋
} = 𝑏 (1 +

5𝜅
16𝜋

) ; (15)

then neglecting the squares and the product of 𝜅 and 𝐶, and putting for
brevity,

15𝜅
16𝜋

= 𝑛,

we shall have finally

𝑟 = 𝑏 {1 + 𝑛 (
1
3
− 𝜇2)} .

It is easy to see from this expression for 𝑟 that 𝑏 is the radius of the
sphere equivalent in volume to the fluid, and so is given. Thus there is
nothing unknown or indeterminate in this expression, and we conclude
that the fluid has only one possible figure of relative equilibrium which
differs but little from a sphere: which was to be proved.

This demonstration is more simple than that which is based on the
reduction of 𝑟 to a series of a certain form, and which supposes the prop-
erties of the terms of this development to be known, as well as the gen-
erality of this form of series which had been contested, but which I have
placed beyond question in my memoir on the Attraction of Spheroids in
the Additions à la Connaissance des Tems, 1829.

If we put
𝑎 = 𝑏, 𝑎𝑌 = 𝑛 (

1
3
− 𝜇2) ,

in the expression 𝑎(1+𝛼𝑌) for 𝑟, which makes it coincide with the final
expression for the radius vector; and denote by 𝐵 the value of the con-
stant 𝐶, which corresponds to these values of 𝑎 and of 𝛼𝑌; and have re-
gard to what 𝑛 represents, we shall find without difficulty that the equa-
tion (10) reduces to

𝐵 = −
1
3
𝜅.
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We shall have at the same time

𝛾 =
4𝜋𝑏2

3
+
1
3
𝜅𝑏2.

As we have said above, this quantity 𝛾 ought to be the same whatever
radius, differing little from 𝑏, we take for 𝑎; thus we must have

4𝜋𝑏2

3
+
1
3
𝜅𝑏2 =

4𝜋𝑎2

3
− 𝑎2𝐶.

This result coincides in fact with equation (15), neglecting always the
squares and the product of 𝜅 and 𝐶.

1267. Such is Poisson’s treatment of the problem: I shall make two
remarks on it.

In the first place it will be seen that Poisson assumes the truth of
equation (2), which I do not allow. But on examination it will be found
that equation (8), which has been strictly demonstrated, will be sufficient
for his purpose; so that no objection can be taken on this ground to the
demonstration.

Secondly, the quantity which Poisson designates by 𝐿 is simply zero;
for he assumes 𝑐 to be the greatest value of 𝑋, and so when 𝑋 is equal
to 𝑐, the value of 𝑍 is least, namely zero.

1268. I venture to propose the following demonstration, which
though less decisive than Poisson’s may be found worthy of study.

Let us restrict ourselves to the case of figures of revolution. Then
take the equation which has been already established,

4𝜋𝛼
3
𝑌 − 𝛼∫

𝜋

0
∫

2𝜋

0
𝑌 ′ sin𝑝𝑑𝑝𝑑𝑞′ −

𝜅
2
(1 − 𝜇2) = constant.

Assume
𝑌 = −

15𝜅
16𝛼𝜋

𝜇2 + 𝑍;
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thus we obtain

4𝜋𝛼
3
𝑍 − 𝛼∫

𝜋

0
∫

2𝜋

0
𝑍′ sin𝑝𝑑𝑝𝑑𝑞′ = constant. (16)

Differentiate with respect to 𝜇; thus

4𝜋
3
𝑑𝑍
𝑑𝜇

−∫
𝜋

0
∫

2𝜋

0

𝑑𝑍′

𝑑𝜇′
cos2 𝑝 sin𝑝𝑑𝑝𝑑𝑞′ = 0,

which may be written

∫
𝜋

0
∫

2𝜋

0
(
𝑑𝑍
𝑑𝜇

−
𝑑𝑍′

𝑑𝜇′
) cos2 𝑝 sin𝑝𝑑𝑝𝑑𝑞′ = 0.

But this is impossible unless
𝑑𝑍
𝑑𝜇

is a constant. For if
𝑑𝑍
𝑑𝜇

be not con-

stant take 𝜃 so that
𝑑𝑍
𝑑𝜇

has its greatest value, then
𝑑𝑍
𝑑𝜇

−
𝑑𝑍′

𝑑𝜇′
is never

negative; and the definite double integral must have some positive value,

and not be zero. Hence
𝑑𝑍
𝑑𝜇

must be a constant; so that 𝑍 = 𝑙𝜇+ℎ, where

𝑙 and ℎ are constant.
This shews that for surfaces of revolution the figure must be that of

an oblatum, which becomes a sphere if 𝜅 = 0.
Then by Laplace’s supplementary investigation the solution of the

problem may be extended to the case in which the figure is not assumed
to be one of revolution.

It may be objected to the above process that it is not quite satisfac-

tory, for
𝑑𝑍
𝑑𝜇

might be infinite. It would I think be a sufficient answer to

say that if
𝑑𝑍
𝑑𝜇

can be infinite then
𝑑𝑟
𝑑𝜇

will be infinite; and there would
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be a singular line on the surface of the nature of a ridge or chasm, or
a mountain or valley with vertical sides; but it might be shewn by gen-
eral reasoning that in such cases there would not be relative equilibrium.
Moreover the approximate value of 𝑉 which we have used throughout

cannot be held to be safely established unless we admit that
𝑑𝑟
𝑑𝜇

is never

infinite.

1269. But it may I think be shewn that a value of 𝜙(𝜇) which itself

always remains finite, but allows
𝑑𝜙(𝜇)
𝑑𝜇

to be infinite, cannot satisfy the

equation

4𝜋
3
𝜙(𝜇) = ∫

2𝜋

0
∫

𝜋

0
𝜙(𝜇 cos2 𝑝 − sin2 𝑝 cos 𝑞) sin𝑝𝑑𝑞 𝑑𝑝 + 𝐶, (17)

where 𝐶 is a finite constant. This equation is equivalent to (16).
Let 𝜇1 and 𝜇2 be particular values of 𝜇; put 𝑢 for

𝜙(𝜇2) − 𝜙(𝜇1)
𝜇2 − 𝜇1

,

and 𝑣 for
𝜙(𝜇2 cos2 𝑝 − sin2 𝑝 cos 𝑞) − 𝜙(𝜇1 cos2 𝑝 − sin2 𝑝 cos 𝑞)

𝜇2 − 𝜇1
,

then we deduce from (17)

4𝜋
3
𝑢 = ∫

2𝜋

0
∫

𝜋

0
𝑣 sin𝑝𝑑𝑞 𝑑𝑝, (18)

and this is true however small 𝜇2 − 𝜇1 may be.

Now I say that if
𝑑𝜙(𝜇)
𝑑𝜇

could be infinite, we could make the left-

hand member of (18) incomparably greater than the right-hand member;
which is absurd.
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For suppose 𝜇1 to denote the value of 𝜇 for which
𝑑𝜙(𝜇)
𝑑𝜇

becomes in-

finite; then we can make 𝑢 as large as we please, by taking 𝜇2−𝜇1 small
enough. But 𝑣 will be very large indeed only over a very small part of the
range of integration; in fact an infinitesimal part. However let 𝜎 denote
a small but finite part of the whole spherical surface, over which the in-
tegration with respect to 𝑣 may be supposed to extend, namely, that part
within which the very large values of 𝑣 occur. Then 𝑣 will be numer-
ically less than 𝑢, except 𝑝 should happen to be zero. Thus the corre-
sponding part of the right-hand member of (18) may be denoted by 𝜆𝑢𝜎
where 𝜆 denotes some proper fraction. The rest of (18) may be denoted
by (4𝜋 − 𝜎)𝑤, where 𝑤 denotes some value of 𝑣 intermediate between
the greatest and least of a set of values which are all finite.

Thus instead of (18) we have

4𝜋
3
𝑢 = 𝜆𝑢𝜎 + (4𝜋 − 𝜎)𝑤. (19)

We can of course take 𝜎 far less than
4𝜋
3
; and then as 𝑢 increases

indefinitely, the left-hand member of (19) is obviously far greater than
the right-hand.

The same reasoning holds if we suppose that
𝑑𝜙(𝜇)
𝑑𝜇

can become in-

finite, twice, or thrice, or any finite number of times.
The argument may be much strengthened by observing that 𝑣 when

very large is not always of the same sign; it may be said roughly to be
as often positive as negative. This attenuates extremely the values of 𝜆 in
(19).

1270. We may now conveniently introduce Laplace’s supplementary
investigation to which we have alluded in Art. 1260. We have already
arrived at the following result: if a fluid mass in the form of a figure of
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revolution, nearly spherical, rotating with uniform angular velocity is in
relative equilibrium, the form must be that of an oblatum; and if there
is no rotation the oblatum reduces to a sphere. The result is then to
be extended to the case where the figure is not assumed to be one of
revolution.

1271. Return to equation (10) corrected as in (8). Suppose that be-
sides the value 𝑎(1+𝛼𝑌 ′) which belongs to an oblatum, the equation may
be satisfied by another value of the radius vector which we will denote
by 𝑎(1 + 𝛼𝑌 ′ + 𝛼𝑣′), where 𝑣′ is some function of 𝜃′ and 𝜛′. Thus

4𝜋𝛼𝑌
3

− 𝛼∫
𝜋

0
∫

𝜋+𝜃

−𝜋+𝜃
𝑌 ′ sin𝑝𝑑𝑝𝑑𝑞′ − 𝑁 = constant,

where 𝑁 is the expression arising, as in Art. 1262, from the centrifugal
force, or other small given external forces.

Also

4𝜋𝛼
3
(𝑌 + 𝑣) − 𝛼∫

𝜋

0
∫

𝜋+𝜃

−𝜋+𝜃
(𝑌 ′ + 𝑣′) sin𝑝𝑑𝑝𝑑𝑞′ − 𝑁 = constant.

Hence, by subtraction,

4𝜋𝛼𝑣
3

−∫
𝜋

0
∫

𝜋+𝜃

−𝜋+𝜃
𝑣′ sin𝑝𝑑𝑝𝑑𝑞′ = constant. (20)

Laplace himself does not state what the limits of the integration for
𝑞′ are; I give them in accordance with my remarks in Art. 1261.

The equation (20) is obviously that of a homogeneous spheroid in
equilibrium, of which the radius vector is 𝑎(1 + 𝛼𝑣), and in which there
is no force acting besides the attractions of the molecules. Now as the
equation is satisfied whatever be the value of 𝜛 by the radius vector
𝑎(1 + 𝛼𝑣), we may in this radius vector change 𝜛 successively into
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𝜛+ 𝑑𝜛, 𝜛 + 2𝑑𝜛, …. Denote by 𝑣1, 𝑣2, … what 𝑣 becomes by reason
of these successive changes. Then the equation will also be satisfied by
the radius vector

𝑎{1 + 𝛼𝑣1𝑑𝜛 + 𝛼𝑣2𝑑𝜛 + 𝛼𝑣3𝑑𝜛 +…}.

Hence we may take for the radius vector 𝑎(1+𝛼∫
2𝜋

0
𝑣𝑑𝜛), which will

be the radius vector of a surface of revolution. Now as we have shewn in
Art. 1268, this must be the surface of a sphere. Let us see what 𝑣 must
consequently be.

Let 𝑎 be the shortest distance of the centre of gravity of the spheroid
of which the radius vector is 𝑎(1+𝛼𝑣) from the surface; and let us place
the pole, that is the origin of the angle 𝜃, at the extremity of the short-
est distance. Then 𝑣 will be zero at the pole, and positive at every other

place; and the same will be true for∫
2𝜋

0
𝑣𝑑𝜛. Now as the centre of grav-

ity of the spheroid which has the radius vector 𝑎(1 + 𝛼𝑣) is at the centre
of the sphere of radius 𝑎, so also is the centre of gravity of the spheroid

of which the radius vector is 𝑎(1+𝛼∫
2𝜋

0
𝑣𝑑𝜛). The radii vectores drawn

from the centre to the surface of the last spheroid are therefore unequal
if 𝑣 is not zero; and so the surface cannot be that of a sphere, unless 𝑣
is zero. Hence we are certain that a homogeneous fluid which is acted
on by very small external forces, and is nearly spherical, can be in equi-
librium in only one way.

I may observe that there is an awkward note on Bowditch’s page 275,

numbered 1183. To make his process sound, instead of 𝑎(1+𝛼∫
2𝜋

0
𝑣𝑑𝜛)

for the radius he should use 𝑎 (1 +
𝛼
2𝜋

∫
2𝜋

0
𝑣𝑑𝜛).
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1272. Another paper on the subject is given in the fourth volume of
the Journal de Mathématiques 1839. This is entitled Extrait d’une Lettre
de M. Wantzel à M. Liouville; it occupies pages 185…188 of the volume.

The paper commences thus:
Je me suis occupé de nouveau de la question d’Analyse qui a pour but de

déterminer la figure d’équilibre d’une masse fluide soumise aux attractions de
ses particules et animée d’une vitesse constante de rotation, lorsqu’on suppose
cette figure peu différente de la sphère. Je crois avoir levé l’objection que vous
avez faite à la seconde méthode de Laplace dans le tome ii. du Journal deMath-
ématiques (juin 1837), ou plutôt avoir rendu cette méthode rigoureuse par une
légère modification.

Wantzel’s paper is not very clear, and it does not seem to me satisfac-
tory. He introduces into some of the expressions a variable factor which
is ultimately equal to unity; but the step seems to me not justified. The
paper is not of sufficient interest to warrant me in devoting more space
to it.

1273. It may be useful to give the process by which equation (8) can
be obtained from the ordinary formulæ for the transformation of double
integrals.

Take the two equations

𝜇′ − 𝜇 cos2 𝑝 + sin2 𝑝 cos(2𝑞 + 𝜃) = 0,
√(1 − 𝜇′2) sin(𝜛′ −𝜛) − 2 sin𝑝 cos𝑝 cos 𝑞 = 0;

denote the former by 𝐹1 = 0, and the latter by 𝐹2 = 0.
Then we know that the transformations consist in replacing 𝑑𝜇′ 𝑑𝜛′

by
𝑑𝐹1
𝑑𝑝

𝑑𝐹2
𝑑𝑞

−
𝑑𝐹1
𝑑𝑞

𝑑𝐹2
𝑑𝑝

𝑑𝐹1
𝑑𝜇′

𝑑𝐹2
𝑑𝜛′ −

𝑑𝐹1
𝑑𝜛′

𝑑𝐹2
𝑑𝜇′

𝑑𝑝𝑑𝑞.
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Now
𝑑𝐹1
𝑑𝑝

= sin 2𝑝{cos(2𝑞 + 𝜃) + 𝜇},

𝑑𝐹2
𝑑𝑞

= sin 2𝑝 sin 𝑞,

𝑑𝐹1
𝑑𝑞

= −2 sin2 𝑝 sin(2𝑞 + 𝜃),

𝑑𝐹2
𝑑𝑝

= −2 cos 2𝑝 cos 𝑞;

therefore
𝑑𝐹1
𝑑𝑝

𝑑𝐹2
𝑑𝑞

−
𝑑𝐹1
𝑑𝑞

𝑑𝐹2
𝑑𝑝

= sin2 2𝑝 sin 𝑞{cos(2𝑞 + 𝜃) + 𝜇} − 4 sin2 𝑝 cos 2𝑝 cos 𝑞 sin(2𝑞 + 𝜃).

In this, the term involving cos 𝜃

= 4 sin2 𝑝{(1 + cos 2𝑞) sin 𝑞 cos2 𝑝 − cos 2𝑝 cos 𝑞 sin 2𝑞} cos 𝜃
= 8 sin2 𝑝 cos2 𝑞 sin 𝑞(cos2 𝑝 − cos 2𝑝) cos 𝜃
= 8 sin4 𝑝 cos2 𝑞 sin 𝑞 cos 𝜃
= 2𝜌2 sin2 𝑝 sin 𝑞 cos 𝜃.

The term involving sin 𝜃

= −4 sin2 𝑝{cos2 𝑝 sin 𝑞 sin 2𝑞 + cos 2𝑝 cos 𝑞 cos 2𝑞} sin 𝜃
= −4 sin2 𝑝{cos2 𝑝 cos 𝑞 − sin2 𝑝 cos 𝑞 cos 2𝑞} sin 𝜃
= −4 sin2 𝑝 cos 𝑞 sin 𝜃 + 8 sin4 𝑝 cos3 𝑞 sin 𝜃
= −2𝜌 sin𝑝 sin 𝜃 + 2𝜌2 sin2 𝑝 cos 𝑞 sin 𝜃.

Thus
𝑑𝐹1
𝑑𝑝

𝑑𝐹2
𝑑𝑞

−
𝑑𝐹1
𝑑𝑞

𝑑𝐹2
𝑑𝑝

= −2𝜌 sin𝑝{sin 𝜃 − 𝜌 sin𝑝 sin(𝑞 + 𝜃)}

= −2𝜌 sin𝑝 sin 𝜃′ cos(𝜛′ −𝜛) by equation (6).
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And
𝑑𝐹1
𝑑𝜇′

𝑑𝐹2
𝑑𝜛′ −

𝑑𝐹1
𝑑𝜛′

𝑑𝐹2
𝑑𝜇′

= √(1 − 𝜇′2) cos(𝜛′ −𝜛).

Hence 𝑑𝜇′ 𝑑𝜛′ transforms to

−2𝜌 sin𝑝 sin 𝜃′ cos(𝜛′ −𝜛)
√(1 − 𝜇′2) cos(𝜛′ −𝜛)

𝑑𝑝𝑑𝑞,

that is to
−2𝜌 sin𝑝𝑑𝑝𝑑𝑞.

And as √(2 − 2𝜆) = 𝜌 it follows that

𝑑𝜇′𝑑𝜛′

√(2 − 2𝜆)
transforms to

−2𝜌 sin𝑝𝑑𝑝𝑑𝑞
𝜌

,

that is to
−2 sin𝑝𝑑𝑝𝑑𝑞.



CHAPTER XXXIII.

LAPLACE’S MEMOIRS.

1274. Laplace published various memoirs during the first quarter of
the present century. We shall here give a brief notice of them, reserving
a fuller account for the next Chapter, which will be devoted to the fifth
volume of the Mécanique Céleste, where most of the investigations are
reproduced.

1275. A paper entitled Sur l’anneau de Saturne occurs on pages
450…453 of the Connaissance des Tems for 1811, which was published
in 1809. The paper occurs also on pages 426…428 of the Nouveau
Bulletin … par la Société Philomatique, Vol. i. 1807.

Laplace adverts to the results which he had obtained in the third
Book of the Mécanique Céleste as to Saturn’s ring. He says that the fact
of the rotation of the ring in about ten hours and a half had been sug-
gested by himself from theory and confirmed by Herschel’s observations.
But some observations by Schroeter seemed to throw doubt on the fact
of the rotation. Laplace makes some remarks with a view of explaining
the discrepancy; that is, he accounts for Schroeter’s phenomena without
giving up the rotation.

Laplace gives some account of the labours of astronomers and
mathematicians on Saturn’s ring in the Mécanique Céleste, Vol. v. pages
288…291. He says nothing about Schroeter in these pages.

1276. A paper entitled Sur la Rotation de la Terre occurs on pages
53…60 of the Annales de Chimie … Vol. viii., published in 1818. It is
said to have been read to the Academy of Sciences on the 18th of May,
1818.

This paper constituted the preamble to a memoir with the same title
printed in the Connaissance des Tems for 1821; it is entirely reproduced
there.
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1277. A paper entitled Sur la Figure de la Terre, et la Loi de la pe-
santeur à sa surface, occurs on pages 313…318 of the same volume of
the Annales de Chimie…. It is said to have been read to the Academy of
Sciences on the 3rd of August, 1818.

The paper is also printed on pages 122…125 of the Bulletin …
par la Société Philomatique for 1818. This seems to have been the
preamble to the memoir which we shall notice in Art. 1286, and which
was reproduced in the second Chapter of the Eleventh Book of the
Mécanique Céleste. The preamble is not however reproduced with the
memoir, though much of it is in the pages 11…16 of the first Chapter
of the Eleventh Book of the Mécanique Céleste. Still there are some
remarks in this paper which do not reappear in the Mécanique Céleste.
For instance, take the following sentence:

Dans le nombre infini des figures que comprend l’expression analytique
des surfaces de la mer et du sphéroïde terrestre, on peut en choisir une qui
représente l’élévation et les contours des continens et des îles: ainsi, je trouve
qu’un petit terme du troisième ordre, ajouté à la partie elliptique du rayon
terrestre, suffit pour rendre conformément à ce que l’observation semble
indiquer, la mer plus profonde et plus étendue vers le pôle austral que vers le
pôle boréal, et même pour laisser ce dernier pôle à découvert.

There is nothing about this matter in the memoir.

1278. A memoir entitled Sur la rotation de la Terre occurs on pages
242…259 of the Connaissance des Tems for 1821, which was published in
1819. About half this memoir concerns us; the rest relates to the move-
ment of the plane of the Earth’s equator and to the movement of the
plane of the Moon’s orbit.

1279. The following interesting paragraph forms part of the preamble:
Le système du sphéroïde terrestre et des fluides qui le recouvrent, est troublé

par les actions du Soleil et de la Lune, qui changent continuellement la posi-
tion de son équateur. L’explication de ce changement observé sous les noms de
précession et de nutation est, à mon sens, le résultat le plus frappant et le moins
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attendu de la découverte de la pesanteur universelle. Les anciens avaient bien
connu que la cause du flux et du reflux de la mer réside dans ces deux astres.
Képler avait conclu de ce phénomène et des lois des mouvemens célestes, l’at-
traction mutuelle de toutes les parties de la matière. Mais personne, avant New-
ton, n’avait soupçonné la cause de la précession des équinoxes, cause d’autant
plus cachée, qu’elle dépend de l’aplatissement de la Terre, inconnu jusqu’alors.
La manière dont ce grand géomètre a déduit la précession, de l’ellipticité du
sphéroïde terrestre et de la théorie du mouvement rétrograde des nœuds de
l’orbe lunaire, deux choses qu’il avait tirées de sa découverte; cette manière,
dis-je, quoiqu’inexacte à plusieurs égards, est un des plus beaux traits de son
génie.

1280. The part of the memoir with which we are concerned con-
tains results which are reproduced in the fifth Volume of the Mécanique
Céleste: see the pages 16, 17 and 57…67.

The mathematical investigation however is much simpler in the
memoir than in the Mécanique Céleste; but I think not less satisfactory.

1281. Laplace establishes the following theorem: Suppose the density
of every stratum of the Earth to be diminished by the density of the sea;
take one of the principal axes of this imaginary spheroid passing through
its centre of gravity; let the Earth be supposed to rotate uniformly round
this axis; then supposing the sea to be in relative equilibrium, this axis
will be a principal axis of the whole mass of the Earth and sea, and
the centre of gravity of the imaginary spheroid will also be the centre of
gravity of the whole mass. The sea is assumed to cover the whole surface
of the Earth.

We will now give the mathematical investigation.

1282. Take the principal axis of the imaginary spheroid for the axis
of rotation. Let 𝑉 denote the potential of the Earth, and 𝑉 ′ that of the
sea at a point on the surface of the sea, which has for polar coordinates
the usual 𝑟 and 𝜇. Let 𝜔 be the angular velocity of rotation.
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Then for relative equilibrium we must have

𝑉 + 𝑉 ′ +
𝜔2𝑟2

2
(1 − 𝜇2) = constant. (1)

Let the radius vector of any stratum of the Earth be 𝑎(1 + 𝛼𝑦), and
suppose that the density 𝜌 is a function of 𝑎. Let 𝑦 be expanded in a
series of Laplace’s functions denoted by

𝑌1 + 𝑌2 + 𝑌3 +…

Let 𝑀 denote the mass of the Earth. Then

𝑉 =
𝑀
𝑟
+
4𝛼𝜋
𝑟

∫
a

0
𝜌
𝑑
𝑑𝑎

{
𝑎4𝑌1
3𝑟

+
𝑎5𝑌2
5𝑟2

+
𝑎6𝑌3
7𝑟3

+…}𝑑𝑎,

where the upper limit of the integral denotes the value of 𝑎 at the surface
of the solid part.

Suppose 𝜎 the density of the sea, and let the radius vector of the
surface of the sea be denoted by 𝑏(1+𝛼𝑧); and suppose 𝑧 expanded in a
series of Laplace’s coefficients 𝑍1+𝑍2+𝑍3+… Let 𝑦 denote the value of 𝑦
at the surface of the solid part. Then 𝑉 ′ may be found by considering the
sea to be the difference between two homogeneous spheroids of density
𝜎, one having for radius vector 𝑏(1+𝛼𝑧), and the other having for radius
vector a(1 + 𝛼𝑦).

Thus if 𝑀′ denote the mass of the sea

𝑉 ′ =
𝑀′

𝑟
+
4𝛼𝜋𝜎
𝑟

{
𝑏4𝑍1 − a4𝑌1

3𝑟
+
𝑏5𝑍2 − a5𝑌2

5𝑟2
+…} .
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Hence (1) may be expressed thus:

𝑀 +𝑀′

𝑟
+
4𝛼𝜋
𝑟

∫
a

0
(𝜌 − 𝜎)

𝑑
𝑑𝑎

{
𝑎4𝑌1
3𝑟

+
𝑎5𝑌2
5𝑟2

+
𝑎6𝑌3
7𝑟3

+…}𝑑𝑎

+
4𝛼𝜋𝜎
𝑟

{
𝑏4𝑍1
3𝑟

+
𝑏5𝑍2
5𝑟2

+
𝑏6𝑍3
7𝑟3

+…}

−
𝜔2𝑟2

2
(𝜇2 − 1) = constant.

Then approximate, rejecting 𝛼2; thus

−
𝑀 +𝑀′

𝑏
𝛼{𝑍1 + 𝑍2 + 𝑍3 +…}

+
4𝛼𝜋
𝑏

∫
a

0
(𝜌 − 𝜎)

𝑑
𝑑𝑎

{
𝑎4𝑌1
3𝑏

+
𝑎5𝑌2
5𝑏2

+
𝑎6𝑌3
7𝑏3

+…}𝑑𝑎

+ 4𝛼𝜋𝑏2𝜎 {
𝑍1
3
+
𝑍2
5
+
𝑍3
7
+…}

−
𝜔2𝑏2

2
(𝜇2 −

1
3
) = constant. (2)

Then in the usual way we equate to zero the aggregate of Laplace’s
functions of each order. Now by supposition the origin is at the centre
of gravity of the imaginary spheroid; hence by Livre iii. § 31, we have

∫
a

0
(𝜌 − 𝜎)

𝑑
𝑑𝑎

(𝑎4𝑌1) 𝑑𝑎 = 0,

and therefore from (2) we have 𝑍1 = 0.
Thus the origin is also the centre of gravity of the entire mass; for

the condition that it should be so is

∫
a

0
(𝜌 − 𝜎)

𝑑
𝑑𝑎

(𝑎4𝑌1) 𝑑𝑎 + 𝑏4𝜎𝑍1 = 0,
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and this condition is satisfied.
Next we have from (2)

𝛼 {
4𝜋𝑏2𝜎
5

−
𝑀 +𝑀′

𝑏
} 𝑍2 +

4𝛼𝜋
5𝑏3

∫
a

0
(𝜌 − 𝜎)

𝑑
𝑑𝑎

(𝑎5𝑌2) 𝑑𝑎

−
𝜔2𝑏2

2
(𝜇2 −

1
3
) = constant. (3)

And we have other equations by which in general 𝑍𝑛 is made to de-
pend on 𝑌𝑛; and so the figure of the sea necessary for relative equilib-
rium follows from the figure of the solid part when this is given.

Now we have supposed that the axis of rotation is a principal axis at
the origin for the imaginary spheroid; hence it follows by Livre iii. § 32,

that ∫
a

0
(𝜌 − 𝜎)

𝑑
𝑑𝑎

(𝑎5𝑌2) 𝑑𝑎 must be of the form

𝐻(𝜇2 −
1
3
) + 𝐻′(1 − 𝜇2) cos 2𝜙,

where 𝐻 and 𝐻′ are constants, and 𝜙 is the third polar coordinate of the
point to which 𝑟 and 𝜇 belong.

Hence by (3) it follows that

∫
a

0
(𝜌 − 𝜎)

𝑑
𝑑𝑎

(𝑎5𝑌2) 𝑑𝑎 + 𝑏5𝜎𝑍2

is of the same form; and this ensures that the axis of rotation is a prin-
cipal axis at the origin for the whole mass.

1283. A memoir entitled Sur la loi de la pesanteur, en supposant le
sphéroïde terrestre homogène et de même densité que la mer, occurs on
pages 284…290 of the Connaissance des Tems for 1821, which was pub-
lished in 1819. This memoir is entirely embodied in that which I no-
tice in Article 1286, and which was reproduced in the Mécanique Céleste,
Livre xi. Chapitre ii.
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The memoir may be considered to be summed up in the formula
which Laplace gives on page 40 of his fifth volume and calls the expres-
sion remarquable.

In the memoir itself Laplace demonstrated the formula on the sup-
position that the Earth has the same density as the sea. But in an Addi-
tion to the memoir on page 353 of the volume, Laplace states that it is
true whatever may be the ratio of the density of the sea to that of the
Earth, supposed homogeneous. Also he here states the six results which
he draws from theory and observation, as he does at the commencement
of the memoir noticed in Art. 1286. I quote these six results in my ac-
count of the Mécanique Céleste, Vol. v. Chapter ii.: see Art. 1301.

1284. A paper entitled Sur la Figure de la Terre occurs on pages
97…100 of the Bulletin … la Société Philomatique for 1819. This is the
preamble to the memoir which we notice in the next Article, and is re-
produced in that memoir.

1285. A memoir entitled Sur la Figure de la Terre occurs in pages
284…293 of the Connaissance des Tems for 1822, which was published
in 1820. The memoir is said to have been read before the Bureau des
Longitudes on the 26th of May, 1819.

The memoir is the same as that which appeared in the Mémoires de
l’Académie … for 1818, under the title of an Addition to a memoir in the
preceding volume of the Academy.

1286. A memoir by Laplace entitled Mémoire sur la Figure de la
Terre is contained in the Mémoires de l’Académie … for 1817, published
in 1819. The memoir occupies pages 137…184 of the volume. The
memoir was read on August 4th, 1818.

An Addition to the memoir occupies pages 489…502 of the Mémoires
de l’Académie … for 1818, published in 1820.

The memoir and the addition are substantially reproduced as the sec-
ond Chapter of the Eleventh Book of the Mécanique Céleste; and will be
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discussed by us hereafter.

1287. A paper entitled Sur la Diminution de la durée du jour par le
refroidissement de la Terre occurs on pages 410…417 of the Annales de
Chimie, Vol. xiii., which was published in 1820.

This consists of the preamble of a memoir under the same title
printed in the Connaissance des Tems for 1823, together with a sketch of
the analysis employed. The preamble is reproduced almost identically
in the memoir.

The paper concludes thus:
Je développerai dans la connaissance des temps de 1823, cette analyse, son

extension aux sphéroïdes peu différens d’une sphère, et son application à la
diminution de la durée du jour par le refroidissement de la terre.

But this intention was not completely carried out, for there is nothing
in the memoir as to the extension of the analysis to spheroids differing
but little from spheres.

1288. There is an addition to the preceding paper entitled Addition
au Mémoire sur la Diminution de la durée du jour par le refroidissement
de la Terre, inséré dans le Cahier des Annales du mois d’avril 1820. This
addition occurs in pages 315 and 316 of the Annales de Chimie … Vol.
xiv., which was published in 1820.

This addition gives a formula which it says will be demonstrated in
the “Connaissance des Temps de 1823, qui paraîtra incessamment.” The
demonstration is contained in the pages 324…327 of the volume.

1289. A memoir entitled Sur la Diminution de la durée du jour, par le
refroidissement de la Terre, occurs on pages 245…257 of the Connaissance
des Tems for 1823, which was published in 1820. There is an Addition to
the memoir on pages 324…327 of the volume.

The mathematical part of the memoir is reproduced with some
additions in the fourth Chapter of the Eleventh Book of the Mécanique
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Céleste; we shall speak of it hereafter. The preamble of the memoir
is reproduced substantially in pages 18…21 of the first Chapter of the
Eleventh Book.

1290. In the preamble, as given in the Connaissance des Tems,
Laplace after stating that the heat increases as we penetrate into the
Earth, adds the following sentence:

… C’est ce que M. Daubuisson a fait voir, dans son excellent traité de Géog-
nosie. MM. les rédacteurs des Annales de Chimie et de Physique, ont confirmé
ce résultat, en ajoutant beaucoup d’observations, à celles que M. Daubuisson
avait rapportées.

This sentence does not occur in the paper which I have noticed in
Art. 1287, nor in the Mécanique Céleste.

In the paper which is noticed in Art. 1287, Laplace says that he had
determined a certain constant by means of the annual variations of tem-
peratures at different depths; and he refers then to observations made
at the Observatory of Paris at the depth of 28 metres. In the mem-
oir Laplace instead of these observations refers to experiments made by
Saussure; and so also in the Mécanique Céleste, Vol. v. page 20.

On the page just cited there is a sentence which does not occur in
the present memoir nor in the paper noticed in Art. 1287. Laplace is
referring to the law of the diminution of heat from the centre to the
surface of the Earth, and he says:

La loi dont il s’agit, que j’ai publiée en 1819 dans le recueil de la Connais-
sance des Tems, et que M. Poisson a confirmée depuis par une savante anal-
yse,…

1291. A paper entitled Sur la Densité moyenne de la Terre occurs on
pages 410…416 of the Annales de Chimie … Vol. xiv., which was pub-
lished in 1820; it occurs also on pages 328…331 of the Connaissance des
Tems for 1823, which was published in 1820.

There are no mathematical investigations. Laplace refers to the two
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operations undertaken for determining the mean density of the Earth;
namely, that connected with the mountain Schehallien in Scotland, in
which Maskelyne, Hutton, and Playfair were concerned; and the exper-
iment suggested by Michell and executed by Cavendish. He considers
that we may on the whole regard the density of the Earth to be about
5·48 times that of water.

1292. The paper is interesting; but I do not see why it appeared so
long after the observations and experiments to which it refers. The fol-
lowing extracts from it may be read with pleasure.

The paper begins thus:
Un des points les plus curieux de la Géologie, est le rapport de la moyenne

densité du sphéroïde terrestre à celle d’une substance connue. Newton, dans ses
Principes mathématiques de la Philosophie naturelle, a donné le premier aperçu
que l’on ait publié sur cela. Cet admirable Ouvrage contient les germes de toutes
les grandes découvertes qui ont été faites depuis sur le système du monde: l’his-
toire de leur développement par les successeurs de ce grand géomètre, serait à la
fois le plus utile commentaire de son Ouvrage, et le meilleur guide pour arriver
à de nouvelles découvertes. Voici le passage de cet Ouvrage, sur l’objet dont il
s’agit, tel qu’il se trouve dans la première édition et dans les suivantes:

Laplace then gives a translation of part of the tenth Proposition of
Newton’s Third Book: see Art. 17.

In referring to the operations at Schehallien Laplace describes Hutton
as

… géomètre illustre, auquel les Sciences mathématiques sont redevables
d’ailleurs d’un grand nombre de recherches importantes.

With respect to Cavendish’s experiment Laplace says:
… En examinant avec une scrupuleuse attention, l’appareil de M. Cavendish

et toutes ses expériences faites avec la précision et la sagacité qui caractérisent
cet excellent physicien, je ne vois aucune objection à faire à son résultat qui
donne 5·48 pour la densité moyenne de la Terre ….

The paper concludes thus:
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Ces expériences et ces observations mettent en évidence l’attraction réci-
proque des plus petites molécules de la matière, en raison des masses divisées
par le carré des distances. Newton l’avait conclue du principe de l’égalité de
l’action à la réaction, et de ses expériences sur la pesanteur des corps, qu’il
trouva, par les oscillations du pendule, proportionelle à leur masse. Malgré cette
preuve, Huyghens, fait plus qu’aucun autre contemporain de Newton pour bien
l’apprécier, rejeta cette attraction de la matière, de molécule à molécule, et l’ad-
mit seulement entre les corps célestes; mais sous ce dernier rapport, il rendit
aux découvertes de Newton la justice qui leur était due. Au reste, la gravita-
tion universelle n’avait pas pour les contemporains de Newton, et pour Newton
lui-même, toute la certitude que les progrès des Sciences mathématiques, qui
lui sont dus principalement, et les observations subséquentes lui ont donnée;
et l’on peut justement appliquer à cette découverte, la plus grande qu’ait faite
l’esprit humain, ces paroles de Cicéron: opinionum commenta delet dies, naturae
judicia confirmat.



CHAPTER XXXIV.

FIFTH VOLUME OF THE MÉCANIQUE CÉLESTE.

1293. The fifth volume of the Mécanique Céleste was published in
1825. The volume consists of historical sketches of the progress of phys-
ical astronomy, and of various investigations which Laplace had made
since the date of his former volumes, and had published in the Paris
Mémoires and in the Connaissance des Tems.

1294. We are concerned with the Eleventh Book, which is entitled De
la Figure et de la Rotation de la Terre; this extends from the beginning of
the volume to page 85: it is divided into four Chapters.

1295. The first Chapter of the Eleventh Book is entitled Notice his-
torique des travaux des géomètres sur cet objet: this occupies pages 2…21
of the volume. About half of the Notice is devoted to the period extend-
ing to the date of the second volume of the Mécanique Céleste; the other
half gives an analysis of the results which Laplace himself had since ob-
tained in various investigations which are reproduced in the following
three Chapters of the Eleventh Book.

1296. In his pages 11…16 Laplace states the results obtained by him
in the investigations which are reproduced in the second Chapter of the
Eleventh Book. We may say in general terms that Laplace considers the
hypotheses involved in his mathematical theory of the Figure of the
Earth to be well confirmed by experiment and observation.

Some remarks on pages 14 and 15 may be noticed as specially inter-
esting. Laplace will not admit that there has ever been any considerable
displacement of the poles of the Earth. He refers to the elephant which
had been found with his flesh well preserved in a mass of ice; and says

La découverte de cet animal a donc confirmé ce que la théorie mathéma-
tique de la Terre nous apprend.…
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This was a greatly honoured beast, to whom it was given to corrobo-
rate some of the profoundest investigations of the first of modern physi-
cal astronomers.

1297. I do not know whether our Geologists and Natural Histori-
ans will allow themselves to be annexed to the Mathematical Sciences
as Laplace suggests; he says on his page 11:

… En se rapprochant ainsi de la nature, on entrevoit les causes de plusieurs
phénomènes importans que l’Histoire naturelle et la Géologie nous offrent; ce
qui peut répandre un grand jour sur ces deux sciences, en les rattachant à la
théorie du Système du monde.

1298. On his pages 16…18 Laplace states the results obtained by him
in the investigations which are reproduced in the third Chapter of the
Eleventh Book. These investigations relate to the axis of rotation of the
Earth. The importance of the subject is well indicated by the words with
which Laplace begins the account:

Toute l’Astronomie repose sur l’invariabilité de l’axe de rotation de la Terre
à la surface du sphéroïde terrestre, et sur l’uniformité de cette rotation.

1299. On his pages 18…21 Laplace states the results obtained by him
in the investigations which are reproduced in the fourth Chapter of the
Eleventh Book. These investigations relate to the heat of the Earth.

1300. We now proceed to the next three Chapters which involve the
mathematical investigations. As no commentary has been published on
this volume of the Mécanique Céleste, like that of Bowditch on the first
four volumes, we shall find it expedient to give occasionally more detail
than would otherwise have been necessary.

1301. The second Chapter of the Eleventh Book of the Mécanique
Céleste is entitled De la figure de la Terre: it occupies pages 22…56. As
we have already stated the Chapter is the reproduction of a memoir: see
Art. 1286. The title is rather vague. We shall find that the most impor-
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tant subjects discussed are the form of the ocean, and the constitution of
the interior of the Earth. An analysis of the contents of the Chapter is
given by Laplace on pages 11…16 of the volume. The following summary
occurs at the beginning of the memoir of 1817, but is not reproduced:

Les géomètres ont, jusqu’à présent, considéré la terre comme un sphéroïde
formé de couches de densités quelconques, et recouvert en entier d’un fluide en
équilibre. Ils ont donné les expressions de la figure de ce fluide, et de la pesan-
teur à sa surface; mais ces expressions, quoique fort étendues, ne représentent
pas exactement la nature. L’Océan laisse à découvert une partie du sphéroïde
terrestre; ce qui doit altérer les résultats obtenus dans l’hypothèse d’une inon-
dation générale, et donner naissance à de nouveaux résultats. A la vérité, la
recherche de la figure de la terre présente alors plus de difficultés; mais le pro-
grès de l’analyse, sur-tout dans cette partie, fournit le moyen de les vaincre, et
de considérer les continens et les mers, tels que l’observation nous les présente.
C’est l’objet de l’analyse suivante, qui, comparée aux expériences du pendule,
aux mesures des degrés et aux observations lunaires, conduit à ces résultats:

1o La densité des couches du sphéroïde terrestre croît de la surface au cen-
tre;

2o Ces couches sont à très-peu-près régulièrement disposées autour de son
centre de gravité;

3o La surface de ce sphéroïde, dont la mer recouvre une partie, a une figure
peu différente de celle qu’elle prendrait en vertu des loix de l’équilibre, si la mer
cessant de la recouvrir, elle devenait fluide;

4o La profondeur de la mer est une petite fraction de la différence des deux
axes de la terre;

5o Les irrégularités de la terre et les causes qui troublent sa surface, ont peu
de profondeur;

6o Enfin, la terre entière a été primitivement fluide.

Ces résultats de l’analyse, des observations et des experiences, me semblent
devoir être placés dans le petit nombre des vérités que nous offre la géologie.

1302. Let there be a point on the surface of the sea. Let 𝑟 be its ra-
dius vector, and 𝜇 the cosine of the angle which the radius vector makes
with the axis. Let 𝑉 be the potential of the solid part, 𝑊 the potential
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of the sea itself, 𝜔 the angular velocity. Then the condition of relative
equilibrium is

𝑉 +𝑊 +
𝜔2

2
𝑟2(1 − 𝜇2) = constant. (1)

Now this equation is to be transformed into the notation generally
employed by Laplace in these researches.

1303. The Earth is supposed to consist of nearly spherical strata. Let
𝑎(1 + 𝛼𝑦) denote the radius vector of a stratum, where 𝑎 is a parame-
ter which particularises the stratum, 𝛼 is a very small constant, and 𝑦 a
function of 𝑎 and of the usual polar coordinates. Let 𝜌 be the density of
the stratum, 𝜌 being a function of 𝑎.

Supposing 𝑦 expanded in a series of Laplace’s functions, so that

𝑦 = 𝑌0 + 𝑌1 + 𝑌2 +…

Then by Arts. 900 and 1074

𝑉 =
4𝜋
𝑟
∫

a

0
𝜌𝑎2 𝑑𝑎 + 4𝛼𝜋∫

a

0
𝜌
𝑑
𝑑𝑎

{
𝑎3𝑌0
𝑟

+
𝑎4𝑌1
3𝑟2

+
𝑎5𝑌2
5𝑟3

+…}𝑑𝑎.

Here the upper limit of the integrals denotes the value of 𝑎 at the
surface. Laplace uses unity for it.

Let 𝑦 denote the value of 𝑦 at the surface of the solid part, and let the
radius vector of the surface of the sea be a(1 + 𝛼𝑦 + 𝛼𝑧), Laplace uses 𝑦′
for 𝑧. Suppose that 𝑧 can be expanded in a series of Laplace’s functions,
so that

𝑧 = 𝑍0 + 𝑍1 + 𝑍2 +…

Then a𝛼𝑧 expresses to our order of approximation the depth of the
sea. Where the land rises above the sea 𝑧 becomes negative, so that
−a𝛼𝑧 then is what we may call the height above the level of the sea:
see Laplace’s page 39.
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Denote the density of the sea by 𝜎; Laplace denotes it by unity.
Let 𝑊1 denote the potential for a homogeneous spheroid of density

𝜎 and radius vector a(1 + 𝛼𝑦 + 𝛼𝑧). Let 𝑊2 denote the potential for a
homogeneous spheroid of density 𝜎 and radius vector a(1 + 𝛼𝑦). Then

𝑊 = 𝑊1 −𝑊2 + 𝑋,

where 𝑋 denotes the potential for that part of the dry land which is above
the level of the sea, and supposed to have the density 𝜎; for all this oc-
curs negatively in 𝑊1 − 𝑊2, and so we must allow for it in expressing
𝑊.

Now

𝑊1 =
4𝜋a3𝜎
3𝑟

+ 4𝛼𝜋𝜎 {
a3(𝑌0 + 𝑍0)

𝑟
+
a4(𝑌1 + 𝑍1)

3𝑟2
+
a5(𝑌2 + 𝑍2)

5𝑟3
+…} ,

𝑊2 =
4𝜋a3𝜎
3𝑟

+ 4𝛼𝜋𝜎 {
a3𝑌0
𝑟

+
a4𝑌1
3𝑟2

+
a5𝑌2
5𝑟3

+…} .

Therefore

𝑊1 −𝑊2 = 4𝛼𝜋𝜎 {
a3𝑍0
𝑟

+
a4𝑍1
3𝑟2

+
a5𝑍2
5𝑟3

+…} .

Hence finally (1) becomes

constant =
4𝜋
𝑟
∫

a

0
𝜌𝑎2 𝑑𝑎

+ 4𝛼𝜋∫
a

0
𝜌
𝑑
𝑑𝑎

𝐿(𝑎, 𝑟, 𝑌)𝑑𝑎

+ 4𝛼𝜋𝜎𝐿(a, 𝑟, 𝑍)

+ 𝑋 −
𝜔2𝑟2

2
(𝜇2 −

1
3
) , (2)
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where 𝐿 is a functional symbol, such that

𝐿(𝑎, 𝑟, 𝑌) =
𝑎3𝑌0
𝑟

+
𝑎4𝑌1
3𝑟2

+
𝑎5𝑌2
5𝑟3

+…

It will be seen that 𝜔2𝑟2 differs from a constant by a term of the order
we reject; and thus we have modified the last term on the left-hand side
of (1) for convenience.

1304. Let 𝑗 denote the ratio of the centrifugal force at the equator to
the attraction there; then

a𝜔2

4𝜋
a2

∫
a

0
𝜌𝑎2 𝑑𝑎

= 𝑗 very approximately,

so that
𝜔2 =

4𝜋𝑗
a3

∫
a

0
𝜌𝑎2 𝑑𝑎.

We may use this expression for 𝜔2 in (2) if we please; Laplace always
uses it: but for the sake of simplicity we shall frequently retain 𝜔2.

1305. If we differentiate the right-hand side of (2) with respect to 𝑟,
and change the sign, we obtain an expression for gravity at any point,
Laplace’s pesanteur. Denote it by 𝑝: thus

𝑝 =
4𝜋
𝑟2

∫
a

0
𝜌𝑎2 𝑑𝑎 − 4𝛼𝜋∫

a

0
𝜌

𝑑2

𝑑𝑟 𝑑𝑎
𝐿(𝑎, 𝑟, 𝑌)𝑑𝑎

−4𝛼𝜋𝜎
𝑑
𝑑𝑟
𝐿(a, 𝑟, 𝑍) −

𝑑𝑋
𝑑𝑟

+ 𝜔2𝑟 (𝜇2 −
1
3
) . (3)

This is the value of gravity at the surface of the sea.

1306. The preceding equations (2) and (3) are those which Laplace
denotes by the same numbers, with slight differences of notation. At
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this point he interposes a discussion of his well-known equation; but we
have given sufficient attention to this matter in Chapter XXX.

We will therefore assume with Laplace that

1
2
𝑋 + a

𝑑𝑋
𝑑𝑟

= 0. (4)

Multiply (2) by −
1
2a

and add to (3). Thus

𝑝 = constant + (
4𝜋
𝑟2

−
2𝜋
a𝑟
)∫

a

0
𝜌𝑎2 𝑑𝑎

−
2𝛼𝜋
a

∫
a

0
𝜌
𝑑
𝑑𝑎

𝐿(𝑎, 𝑟, 𝑌)𝑑𝑎 − 4𝛼𝜋∫
a

0
𝜌

𝑑2

𝑑𝑟 𝑑𝑎
𝐿(𝑎, 𝑟, 𝑌) 𝑑𝑎

−
2𝛼𝜋𝜎
a

𝐿(a, 𝑟, 𝑍) − 4𝛼𝜋𝜎
𝑑
𝑑𝑟
𝐿(a, 𝑟, 𝑍)

+
𝑟2𝜔2

4a
(𝜇2 −

1
3
) + 𝑟𝜔2 (𝜇2 −

1
3
) . (5)

Now put a(1 + 𝛼𝑦 + 𝛼𝑧) for 𝑟; then to our order of approximation we
obtain

𝑝 = constant −
6𝛼𝜋(𝑦 + 𝑧)

a2
∫

a

0
𝜌𝑎2𝑑𝑎

+ 2𝛼𝜋∫
a

0
𝜌
𝑑
𝑑𝑎

(
𝑎3𝑌0
a2

+
𝑎4𝑌1
a3

+
𝑎5𝑌2
a4

+…)𝑑𝑎

+ 2𝛼𝜋𝜎a𝑧 +
5
4
a𝜔2 (𝜇2 −

1
3
) . (6)

If the Earth is supposed homogeneous we have from (6)

𝑝 = constant − 2𝛼𝜋𝜌a(𝑦 + 𝑧) + 2𝛼𝜋𝜌a𝑦 + 2𝛼𝜋𝜎a𝑧 +
5
4
a𝜔2 (𝜇2 −

1
3
)

= constant − 2𝛼𝜋(𝜌 − 𝜎)a𝑧 +
5
4
a𝜔2 (𝜇2 −

1
3
) .
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And if the density of the sea is then supposed to be the same as that
of the land, we have

𝑝 = constant +
5
4
a𝜔2𝜇2 = 𝑃(1 +

5a𝜔2

4𝑃
𝜇2) ,

where 𝑃 is the value of 𝑝 at the equator.
Thus, by the definition of 𝑗 in Art. 1304, we get

𝑝 = 𝑃 (1 +
5
4
𝑗𝜇2) .

1307. It is very important to observe that equation (6) of the preced-
ing Article, and those which follow from it, hold even when we suppose
the surface of the dry land to be made irregular by elevated plains and
mountains. For by reason of these bodies a term would be added to (1)
expressing their potential, say 𝑋 ′; then for 𝑋 ′ the equation corresponding
to (4) would hold, so that 𝑋 ′ would not appear in (6). This is a remark-
able result of Laplace’s process.

Here we arrive at the end of the second section of the Eleventh Book.

1308. Laplace says that to determine the figure of the sea when that
of the Earth is given, the simplest method consists in arranging the ap-
proximations according to powers of the ratio of the density of the sea

to the mean density of the Earth; this ratio is about
2
11
.

Take equation (2) and divide by 4𝜋∫
a

0
𝜌𝑎2𝑑𝑎, which we shall denote

by 4𝜋𝜙(a). Thus

constant =
1
𝑟
+

𝛼
𝜙(a)

∫
a

0
𝜌
𝑑
𝑑𝑎

𝐿(𝑎, 𝑟, 𝑌)𝑑𝑎

+
𝛼𝜎
𝜙(a)

𝐿(a, 𝑟, 𝑍) +
𝑋

4𝜋𝜙(a)
−

𝜔2𝑟2

8𝜋𝜙(a)
(𝜇2 −

1
3
) .
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We have then to put a(1 + 𝛼𝑦 + 𝛼𝑧) for 𝑟, and reject the square of 𝛼.
Thus

𝛼
a
(𝑦 + 𝑧) =

𝛼
𝜙(a)

∫
a

0
𝜌
𝑑
𝑑𝑎

𝐿(𝑎, a, 𝑌)𝑑𝑎 +
𝛼𝜎
𝜙(a)

𝐿(a, a, 𝑍)

+
𝑋

4𝜋𝜙(a)
−

𝑗
2a

(𝜇2 −
1
3
) + constant. (7)

Laplace says that he will consider the figure of the sea, neglecting
the ratio just mentioned, that is, supposing the sea to be an infinitely
rare fluid. This, as he allows, would amount to neglecting the terms in
(7) which involve 𝜎. But instead of neglecting these terms in (7), he says
in his next sentence that he will neglect only the term 𝑋; this term of
course involves 𝜎 by its definition: see Art. 1303. There is something not
quite satisfactory in this process, for thus Laplace retains some terms,
and neglects others, which may be comparable with these. We may say
that he retains the sea, and neglects the dry land which is above the level
of the sea, supposed homogeneous and of the same density as the sea.

1309. In equation (7) we neglect 𝑋 and arrange both sides in a se-
ries of Laplace’s functions; then we equate to zero the aggregate of the
functions of the same order, supposing all the terms brought to one side.
Thus we obtain in general

𝑍𝑖 {1 −
a3𝜎

(2𝑖 + 1)𝜙(a)
} = −𝑌𝑖 +

∫
a

0
𝜌
𝑑
𝑑𝑎

(𝑎𝑖+3𝑌𝑖)𝑑𝑎

(2𝑖 + 1)a𝑖𝜙(a)
.

This holds for positive integral values of 𝑖 except 𝑖 = 2. When 𝑖 = 2

we must add the term −
𝑗
2𝛼

(𝜇2 −
1
3
) to the right-hand side. It does not

hold when 𝑖 = 0; for then a constant should be added to one side.
Now observation shews that 𝑌1, 𝑌3, 𝑌4,… are all small when com-
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pared with 𝑌2; and that 𝑌2 is very approximately −ℎ(𝜇2 −
1
3
), where ℎ

is a constant.

Put −ℎ(𝜇2 −
1
3
) for 𝑌2. Then the equation for determining 𝑍2 is

𝑍2 {1 −
a3𝜎
5𝜙(a)

} =
⎧⎪
⎨
⎪
⎩

ℎ −
∫

a

0
𝜌
𝑑
𝑑𝑎

(𝑎5ℎ)𝑑𝑎

5a2𝜙(a)
−

𝑗
2𝛼

⎫
⎪
⎬
⎪
⎭

(𝜇2 −
1
3
) .

Let ℎ′ stand for

⎧⎪
⎨
⎪
⎩

𝑗
2𝛼

− ℎ +
∫

a

0
𝜌
𝑑
𝑑𝑎

(𝑎5ℎ)𝑑𝑎

5a2𝜙(a)

⎫
⎪
⎬
⎪
⎭

÷ {1 −
a3𝜎
5𝜙(a)

} ;

then
𝑍2 = −ℎ′ (𝜇2 −

1
3
) .

The equation which defines ℎ′ may be put in the form

{𝛼(ℎ′ + ℎ) −
𝑗
2
} 5a2𝜙(a) = 𝛼ℎ′a5𝜎 + 𝛼∫

a

0
𝜌
𝑑
𝑑𝑎

(𝑎5ℎ)𝑑𝑎;

and thus it is seen to agree with what Clairaut had obtained. If we sup-
pose 𝜌 constant we have the result given in II. of Art. 324, neglecting
there the difference between 𝑟1 and 𝑟′; and if we do not suppose 𝜌 con-
stant, the result may be shewn to coincide with (2) of Art. 323. The 𝜖1
of those Articles is equivalent to the 𝛼(ℎ′ + ℎ) of the present Article.

1310. Laplace now says that

𝑧 = 𝑙 − ℎ′𝜇2,
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where 𝑙 is some constant. The constant 𝑙 may be supposed to arise partly

from the term
ℎ′

3
in 𝑍2, and partly from 𝑍0.

Thus, Laplace in fact takes 𝑍1 to be zero, and for this he gives the
following reason: the origin of the radii vectores is supposed to be at the
centre of gravity of the terrestrial spheroid, which makes 𝑌1 and 𝑍1 zero.
I do not understand this; there may be some connexion, though I cannot
trace it exactly, with the result established in the Connaissance des Tems
for 1821, which is also investigated in the third Chapter of the Eleventh
Book: see Art. 1281.

Plana in the Astronomische Nachrichten, Vol. xxxviii. page 236,
makes a remark with respect to this point which I will reproduce here
in the notation of my present Chapter.

If we take the origin at the centre of gravity of the solid part we have

∫
a

0
𝜌
𝑑
𝑑𝑎

(𝑎4𝑌1) 𝑑𝑎 = 0;

thus
𝑍1 = −

𝑌1

1 −
a3𝜎
3𝜙(a)

.

But the phenomena of the tides demonstrate that the existence of the
term 𝛼𝑍1 in the depth of the sea is inadmissible; so that we must have
𝑌1 = 0, in order that we may have 𝑍1 = 0.

I do not think that this appeal to the phenomena of the tides is sat-
isfactory when we are discussing the relative equilibrium of the fluid on
the Earth’s surface; so that I do not feel satisfied as to Plana’s develop-
ment of Laplace’s statement.

1311. Thus Laplace takes for the depth of the sea the expression

a𝛼(𝑙 − ℎ′𝜇2).
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Now he says it is easy to see that ℎ′ will be zero if the sea being
annihilated the surface of the spheroid should be in equilibrium on be-
coming fluid. I should prefer to put it thus: if ℎ has the value which
would belong to the earth considered as a fluid then we may suppose
ℎ′ = 0. Then Laplace says that if the surface is less flattened than in
this case ℎ′ will be positive; and if the surface is more flattened ℎ′ be-
comes negative. I do not quite understand these statements. Consider
the equations

𝑗
2𝛼

− ℎ +
∫

a

0
𝜌
𝑑
𝑑𝑎

(𝑎5ℎ)𝑑𝑎

5a2𝜙(a)
= 0,

and

𝑗
2𝛼

− ℎ +
∫

a

0
𝜌
𝑑
𝑑𝑎

(𝑎5ℎ)𝑑𝑎

5a2𝜙(a)
= 𝐶,

where 𝐶 is some positive quantity.
Laplace’s remark then would imply that the second equation neces-

sarily requires ℎ to be less than the first; but this seems to me not the
case: for the value of ℎ in terms of 𝑎 may be so adjusted possibly as to
allow ℎ in the second equation to be less than in the first. In other words
the sign of ℎ′ does not appear to depend solely on the ellipticity of the
bounding surface of the solid part, but also on the law of ellipticity of
the interior strata. It is obvious that Laplace does not assume the form
of the earth to be that which corresponds to original fluidity, for if he
did, then ℎ′ would be zero.

1312. It may happen that the volume of the sea is not sufficient to
cover the entire surface of the earth: in this case, if ℎ′ be positive the
equatorial part is covered, and if ℎ′ be negative the polar part is covered.

1313. We shall now obtain an expression for gravity.
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Take (6) and omit 𝑌3, 𝑌4, …; thus

𝑝 = constant −
6𝛼𝜋𝜙(a)

a2
(𝑦 + 𝑧) +

2𝛼𝜋
a4

∫
a

0
𝜌
𝑑
𝑑𝑎

(𝑎5𝑌2)𝑑𝑎

+ 2𝛼𝜋𝜎a𝑧 +
5
4
a𝜔2 (𝜇2 −

1
3
)

= constant −
6𝛼𝜋𝜙(a)

a2
(𝑦 + 𝑧)

+
2𝛼𝜋
a4

{(
𝑗
2𝛼

− ℎ) (𝜇2 −
1
3
) + 𝑧 [1 −

𝜎a3

5𝜙(a)
]} 5a2𝜙(a)

+ 2𝛼𝜋𝜎a𝑧 +
5
4
a𝜔2 (𝜇2 −

1
3
)

= constant +
6𝛼𝜋𝜙(a)

a2
(𝜇2 −

1
3
) {ℎ + ℎ′ +

5
3
(
𝑗
2𝛼

− ℎ)}

+
10𝛼𝜋𝜙(a)

a2
𝑧 +

5
4
a𝜔2 (𝜇2 −

1
3
)

= constant +
4𝛼𝜋𝜙(a)

a2
(𝜇2 −

1
3
) {
5
2
𝑗
𝛼
− ℎ − ℎ′} .

Thus
𝑝 = 𝑃 {1 +

4𝛼𝜋𝜙(a)
a2𝑃

(
5
2
𝑗
𝛼
− ℎ − ℎ′) 𝜇2} ,

where 𝑃 denotes the gravity at the equator. And in the small term we

may take
4𝜋𝜙(a)
a2𝑃

as unity, so that

𝑝 = 𝑃 {1 + (
5
2
𝑗 − 𝛼ℎ − 𝛼ℎ′) 𝜇2} .

In like manner we might put the expression for 𝑝 thus,

𝑝 = 𝑃 {1 − (
5
2
𝑗 − 𝛼ℎ − 𝛼ℎ′) (1 − 𝜇2)} ,

where 𝑃 now denotes the gravity at the poles.
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Laplace gives these two forms, taking the former in the case in which
ℎ′ is positive, and the latter in the case in which ℎ′ is negative. It is of
little importance, but it might seem more natural to use the first formula
when the sea covers the poles, and the second when it covers the equa-
tor, that is to reverse Laplace’s allotment.

Laplace uses the coefficient
5
2
in the first formula, but the coefficient

5
4
in the second. In the national edition

5
4
is taken in both cases. It

should be
5
2
in both cases, as I give it; and in fact it is so in Laplace’s

original memoir. This example is one of many which reflect little credit
on the editors of the national edition of Laplace’s works.

1314. Laplace now digresses to some very remarkable investigations
respecting Legendre’s functions.

He gives an expression for the 𝑛th function by means of a definite
integral, namely

𝑃𝑛 =
1
𝜋
∫

𝜋

0
{𝑥 − cos𝜙√(𝑥2 − 1)}𝑛𝑑𝜙;

see Laplace’s page 33. The investigation involves the use of imaginary
symbols. For another investigation see Heine’s Handbuch der Kugelfunc-
tionen, pages 11…14.

If 𝑥 = 1, the above formula shews that 𝑃𝑛 = 1. Laplace says that if 𝑥
is less than 1, the formula makes 𝑃𝑛 less than 1; “comme il est facile de
le prouver.” I presume he would adopt some such process as this:

If 𝑥 is less than 1, assume

𝑥 = 𝑘 cos𝜓,

and
cos𝜙√(1 − 𝑥2) = 𝑘 sin𝜓;
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so that
𝑘2 = 𝑥2 + (1 − 𝑥2) cos2 𝜙

= 1 − (1 − 𝑥2) sin2 𝜙.

Then

{𝑥 − cos𝜙√(𝑥2 − 1)}𝑛 = 𝑘
𝑛
2 {cos𝜓 − √(−1) sin𝜓}𝑛

= 𝑘
𝑛
2 {cos𝑛𝜓 − √(−1) sin𝑛𝜓}.

This expression is always less than unity; so that 𝑃𝑛 is less than unity,

for ∫
𝜋

0
𝑄𝑑𝜙 is less than 𝜋 if 𝑄 is always less than unity.

Laplace deduces from the definite integral for 𝑃𝑛 the following ap-
proximate value of 𝑃𝑛 when 𝑛 is very large

√2
√(𝑛𝜋 sin 𝜃)

cos {(𝑛 +
1
2
) 𝜃 −

1
4
𝜋} ,

where cos 𝜃 = 𝑥.
The investigation is given rather more fully in the original memoir

than in the Mécanique Céleste; in the latter place, instead of the details
of the process, there is a vague reference to the Mémoires de l’Académie
… for 1782, and to the Théorie des Probabilités.

The investigation cannot be considered very satisfactory, for it does
not supply us with any estimate of the amount of the error made in us-
ing this expression instead of the exact value of 𝑃𝑛. Moreover it is obvi-
ous that the result does not hold universally; for instance it is not true
when 𝜃 = 0, and we can have no confidence that it is true when 𝜃 is
very small.

Laplace gives another investigation in the supplement to the fifth vol-
ume of the Mécanique Céleste; this investigation makes no use of imag-
inary quantities, but can be considered only as a very rude process of
approximation.
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Heine does not advert to this approximate value of 𝑃𝑛, and I do not
know whether it has been discussed by any other writer than Laplace
himself.

A misprint at the bottom of Laplace’s page 33 is reproduced in the
national edition.

Also in the investigation in the supplement to the fifth volume it will
be found that in the two fundamental equations on the middle of page 3,

we must put on the right-hand side
cos 𝜃
sin 𝜃

instead of sin 𝜃. The misprint

is important; for if it were not corrected we should be at a loss to see why
the result cannot be relied on when 𝜃 = 0. The misprint is reproduced
in the national edition.

1315. Laplace has a few words about a second approximation to the
value of 𝑧; see his page 36: but he does not really work out his sugges-
tion. Nor does he make any use of the results he obtains with respect to
Legendre’s coefficients; an apparent exception to this statement occurs in
a paragraph on pages 36 and 37 relating to the case in which the earth
is supposed to be a figure of revolution. This paragraph was not in the
original memoir; it finishes with a formula which can command very
little confidence.

Here we arrive at the end of the third section of the Eleventh Book.

1316. Laplace now proposes to consider the variations of the lengths
of degrees and of the value of gravity at the surface of continents and
islands; these are the only variations which we can observe. In order to
obtain their analytical expression, imagine an atmosphere infinitely rare,
of constant density, very little elevated, but sufficiently so as to cover all
the mountains. Let a𝛼𝜁 represent the height above the surface of the
terrestrial spheroid; Laplace uses 𝑦″ for 𝜁.

The equation (2) neglecting 𝛼2 will apply to that part of the surface
of the atmosphere which is above the sea; we must put a(1+𝛼𝑦+𝛼𝜁) for
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r. But this equation also applies to the surface of the sea when we put
a(1+𝛼𝑦+𝛼𝑧) for 𝑟. Then if we subtract one of the results thus obtained
from the other, we have

a(𝛼𝜁 − 𝛼𝑧) = constant.

Therefore all the points of the surface of this atmosphere which cor-
respond to the surface of the sea are equally elevated above the latter
surface.

Then as to that part of the atmosphere which is above the solid part
of the earth. Here again Laplace makes out that (2) holds; for the po-
tential of the sea will be of the same form whether the point to which
it relates be close to the surface of the sea, or close to the surface of the
dry land.

Thus again we obtain

a(𝛼𝜁 − 𝛼𝑧) = constant.

Then the constant must be the same in these two equations, as we
see by considering the case of points just on the sea shore. This constant
Laplace denotes by a𝛼𝑙. Therefore

a(𝛼𝜁 − 𝛼𝑧) = a𝛼𝑙.

This equation then holds universally at the surface of the imaginary
atmosphere.

1317. In the preceding Article I have given, I think, the meaning of
Laplace; but I do not find him altogether clear. The surface determined
by the radius vector a(1 + 𝛼𝑦 + 𝛼𝑧) is what he calls the level of the sea;
where there is sea this equation represents the surface of the sea. Where
the dry land appears, if we suppose broad canals cut across the conti-
nents, the water would I apprehend from his equation still rise to the
level determined by the above radius vector. But he does not make this
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remark, though it seems to me necessary in order to have a clear con-
ception of his process. But he does partially state this in his page 53, or
something like it. See also the Annales de Chimie, Vol. viii. 1818, page
316.

1318. We have now to find an expression for gravity at the surface of
the supposed atmosphere. The equation (2) may be put in the form

constant =
4𝜋
𝑟
∫

a

0
𝜌𝑎2𝑑𝑎 + 4𝛼𝜋∫

a

0
𝜌
𝑑
𝑑𝑎

𝐿(𝑎, 𝑟, 𝑌)𝑑𝑎

+ 𝑉1 −
𝜔2𝑟2

2
(𝜇2 −

1
3
) , (8)

where 𝑉1 denotes the potential of the sea. We may even suppose, for
greater generality, that 𝑉1 includes the potential arising from the moun-
tains and cavities of the surface of the Earth, observing that the part of
𝑉1 relative to the cavities is negative.

Hence denoting the gravity by 𝑝′ we have

𝑝′ =
4𝜋
𝑟2

∫
a

0
𝜌𝑎2𝑑𝑎 − 4𝛼𝜋∫

a

0
𝜌

𝑑2

𝑑𝑎𝑑𝑟
𝐿(𝑎, 𝑟, 𝑌)𝑑𝑎

−
𝑑𝑉1
𝑑𝑟

+ 𝜔2𝑟 (𝜇2 −
1
3
) . (9)

Multiply (8) by −
1
2a

and add to (9); thus to our order we obtain, as
in Art. 1306,

𝑝′ = constant −
6𝛼𝜋(𝑦 + 𝜁)

a2
∫

a

0
𝜌𝑎2𝑑𝑎

+ 2𝛼𝜋∫
a

0
𝜌
𝑑
𝑑𝑎

(
𝑎3𝑌0
a2

+
𝑎4𝑌1
a3

+
𝑎5𝑌2
a4

+…)𝑑𝑎

+
5
4
a𝜔2 (𝜇2 −

1
3
) . (10)
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Now if 𝑝″ be the gravity at the surface of the spheroid corresponding
to 𝑝′ at the surface of the atmosphere, we have

𝑝′ = 𝑝″ −
2a𝛼𝑃𝜁
a

,

where 𝑃 may denote the gravity at the equator at the level of the sea.
Hence

𝑝″ − 2𝛼𝑃𝜁 = constant −
6𝛼𝜋𝜁
a2

∫
a

0
𝜌𝑎2 𝑑𝑎

−
6𝛼𝜋
a2

𝑦∫
a

0
𝜌𝑎2 𝑑𝑎 + 2𝛼𝜋∫

a

0
𝜌
𝑑
𝑑𝑎

(
𝑎3𝑌0
a2

+
𝑎4𝑌1
a3

+
𝑎5𝑌2
a4

+…)𝑑𝑎

+
5
4
a𝜔2 (𝜇2 −

1
3
) .

By integrating by parts the terms in the second line we obtain

𝑝″ = constant +
1
2
𝛼𝑃𝜁

+
2𝛼𝜋
a2

𝑦∫
a

0
𝑎3
𝑑𝜌
𝑑𝑎

𝑑𝑎 − 2𝛼𝜋∫
a

0

𝑑𝜌
𝑑𝑎

(
𝑎3𝑌0
a2

+
𝑎4𝑌1
a3

+…)𝑑𝑎

+
5
4
a𝜔2 (𝜇2 −

1
3
) . (11)

Laplace observes that this expression for 𝑝″ includes the attraction of
the mountains, and generally all the effects of attraction due to the irreg-
ularities of the surface, provided that the attracted point is far removed
from them; for this condition is necessary to the existence of the equation

0 =
𝑑𝑉1
𝑑𝑟

+
1
2a
𝑉1.

In the words which I have marked with Italics it seems to me that
Laplace really treats his own much used equation with that caution
which Ivory would have desired. See Chapter XXX.
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1319. Suppose the earth homogeneous, so that
𝑑𝜌
𝑑𝑎

is zero; then from
(11) we have

𝑝″ = 𝑃 {1 −
1
2
𝛼(𝑙 − 𝜁) +

5
4
𝑗𝜇2} ,

where 𝑃 now denotes the gravity at the equator at the level of the sea;
Laplace calls this an expression remarquable: see Art. 1283. He draws
attention to it as one of his most interesting results on his page 11.

Laplace says that this formula may be used to test the hypothesis of
homogeneity. For the atmosphere which we have hitherto imagined may
be taken to be the real atmosphere reduced to its mean density. Then
if to the value of 𝑝″ determined by the pendulum, we add the value of
1
2
𝑃𝛼(𝑙 − 𝜁) determined by the barometer, the value of gravity thus cor-

rected should become 𝑃 (1 +
5
4
𝑗𝜇2).

Now
5
4
𝑗 = ·004325.

Thus the increment of gravity would be ·004325𝑃𝜇2.
But numerous experiments in both hemispheres agree in making this

increment about ·0054𝑃𝜇2. Hence Laplace concludes that the hypothesis
of homogeneity is excluded by these experiments.

On his page 12 Laplace referred to pendulum experiments, and stated
the result which is here obtained; and then he added on that page

On voit de plus, en les comparant à l’analyse, que les densités des couches
terrestres vont en croissant de la surface au centre.

But I do not see where Laplace really establishes the statement thus
made.

Moreover he says that the heterogeneity of the strata must extend
from the surface beyond quantities of the order 𝛼, in order that the quan-



fifth volume of the mécanique céleste. 375

tity in equation (11)

2𝛼𝜋
a2

𝑦∫
a

0
𝑎3
𝑑𝜌
𝑑𝑎

𝑑𝑎 − 2𝛼𝜋∫
a

0

𝑑𝜌
𝑑𝑎

(
𝑎3𝑌0
a2

+
𝑎4𝑌1
a3

+…)𝑑𝑎,

may be of the order 𝛼 and become equal to

𝑃(·0054 − ·004325) (𝜇2 −
1
3
) .

It seems to me that Laplace should not say that it must become equal
to this, for it might differ from this by a constant.

Here we arrive at the end of the fourth section of the Eleventh Book.

1320. Laplace begins his next section thus: “Comparons maintenant
l’analyse aux observations.” As he has just made a very important com-
parison of this kind, he ought to have said: “let us proceed with our
comparison of the analysis with observations.”

In this section such comparison is made with respect to four different
things, namely, pendulum experiments, certain terms in the lunar theory,
measures of degrees of the meridian, and precession and nutation.

1321. Multiply (8) by
3
2a
, reduce it to our order of approximation and

subtract it from (10); thus

𝑝′ = constant + 4𝛼𝜋∫
a

0
𝜌
𝑑
𝑑𝑎

{−
𝑎3𝑌0
a2

+
𝑎5𝑌2
5a4

+
2𝑎6𝑌3
7a5

+…}𝑑𝑎

−
3
2a
𝑉1 + 2a𝜔2 (𝜇2 −

1
3
) . (12)

Developing 𝑉1 in powers of
1
𝑟
, and ultimately putting a for 𝑟, we ob-

tain an expression of this form

𝑈0 + 𝑈1 + 𝑈2 +…
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where 𝑈𝑛 denotes a Laplace’s function of the 𝑛th order. Then as the
terms arising from 𝑌0 and 𝑈0 may be included in the constant, we obtain
from (12)

𝑝′ = constant + 4𝛼𝜋∫
a

0
𝜌
𝑑
𝑑𝑎

{
𝑎5𝑌2
5a4

+
2𝑎6𝑌3
7a5

+…}𝑑𝑎

−
3
2a

{𝑈1 + 𝑈2 + 𝑈3 +…} + 2a𝜔2 (𝜇2 −
1
3
) . (13)

It follows from numerous experiments with the pendulum that

𝑝′ = constant + 𝛼𝑞𝑃 (𝜇2 −
1
3
) ,

where 𝛼𝑞 is very nearly equal to ·0054, and 𝑃 denotes the gravity at the
equator, so that a𝜔2 = 𝑗𝑃 approximately.

Hence it follows that

4𝛼𝜋∫
a

0
𝜌
𝑑
𝑑𝑎

{
2𝑎6𝑌3
7a5

+
3𝑎7𝑌4
9a6

+…}𝑑𝑎 −
3
2a

{𝑈1 + 𝑈3 + 𝑈4 +…}

is very small relatively to the term 𝛼𝑞𝑃 (𝜇2 −
1
3
); and that the function

4𝛼𝜋
5a4

∫
a

0
𝜌
𝑑
𝑑𝑎

(𝑎5𝑌2) 𝑑𝑎 −
3
2
𝑈2

is very nearly equal to (𝛼𝑞 − 2𝑗)𝑃 (𝜇2 −
1
3
).

The general expression of the above Laplace’s function of the second
order is

𝐴(𝜇2 −
1
3
) + 𝐴1𝜇√(1 − 𝜇2) sin𝜙 + 𝐴2𝜇√(1 − 𝜇2) cos𝜙

+ 𝐴3(1 − 𝜇2) sin 2𝜙 + 𝐴4(1 − 𝜇2) cos 2𝜙.
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Hence 𝐴1, 𝐴2, 𝐴3, 𝐴4 must be very small compared with 𝐴; and we
have very approximately

𝐴 = (𝛼𝑞 − 2𝑗)𝑃.

Now the pendulum experiments make 𝛼𝑞 = ·0054 very nearly; and

𝑗 =
1
289

: thus we obtain

𝐴 = −·00152𝑃. (14)

1322. Next Laplace takes a certain term in the Lunar Theory, and
compares it with observations.

Let 𝑄(𝜇2 −
1
3
) denote the part of 𝑈2, which is independent of the

angle 𝜙. Then he finds that

𝐴 +
5
2
𝑄 = −·001558𝑃. (15)

Laplace obtains 𝑄 = −·00015𝑃 from equations (14) and (15); but it
should be −·0000152𝑃. There is a misprint, but not the same, in the
original memoir at this point.

A second term in the Lunar Theory gives also the same result.
The errors of observations and of experiments would render this

value very uncertain; but still we may safely infer that 𝑄 is very small.
Hence we conclude that the sea is neither very deep nor very dense.

1323. The measures of degrees of the meridian reduced to the level
of the supposed atmosphere are next considered.
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Equation (8) is put by Laplace in the following form:

a𝛼(𝑦 + 𝜁)𝑃 = 4𝛼𝜋∫
a

0
𝜌
𝑑
𝑑𝑎

(
𝑎5𝑌2
5a3

+
𝑎6𝑌3
7a4

+…)𝑑𝑎

+ 𝑈2 + 𝑈3 +…−
𝑗𝑃a
2

(𝜇2 −
1
3
) + constant; (16)

he says that the origin of coordinates is at the common centre of gravity
of the sea and of the terrestrial spheroid, which makes the quantities 𝑌1
and 𝑈1 and the other functions of the same nature disappear: see Art.
1310.

The comparison of degrees measured in distant parts of the world led
Delambre to the result

𝛼(𝑦 + 𝜁) = constant − ·00324 (𝜇2 −
1
3
) . (17)

When 𝜁 is supposed expanded in a series of Laplace’s functions let

−ℎ″ (𝜇2 −
1
3
) be that part of the function of the second order which is

independent of the angle 𝜙. Let −ℎ(𝜇2 −
1
3
) be the similar term in 𝑦.

Thus
𝛼(ℎ + ℎ″) = ·00324. (18)

Laplace has a troublesome misprint as to this notation at the top of
his page 45, which is reproduced in the national edition: the original
memoir is correct.

By comparing (17) with (16) we see that 𝑌3, 𝑌4, … 𝑈2, 𝑈3, 𝑈4, … are
very small; as appears also from the pendulum experiments. Then from
(16)

−𝑃𝛼(ℎ + ℎ″) = 𝐴 +
5
2
𝑄 −

𝑗
2
𝑃,
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and from (18) we obtain

𝐴 +
5
2
𝑄 = −·00151𝑃. (19)

It is obvious that (19) agrees very closely with (15).
Laplace says he has supposed the degrees measured on the surface of

the spheroid and reduced to the level of the atmosphere, to be the same
as the degrees measured at the surface of the atmosphere. In order to
justify this it must be shewn that rejecting 𝛼2 the direction of gravity is
the same at the surface of the spheroid as at the surface of the atmo-
sphere. He proceeds to shew this briefly. What he seems to make out
is, that the direction of gravity at the level of the sea is the same as at
the level of the atmosphere; and this, I presume, is what really ought to
be shewn, as the degrees measured on the Earth’s surface are in general
referred to the level of the sea. That the correspondence required be-
tween degrees referred to the surface of the sea and to the surface of the
atmosphere really exists, follows from the fact, that the former surface
is at a small constant elevation above the latter: see Art. 1316. Laplace’s
remarks are rather obscure; the real point seems to me to lie in the state-
ment which I have just given in italics.

1324. Lastly, Laplace refers to Precession and Nutation. This how-
ever does not yield any very decisive result, as we are obliged to make
some hypothesis respecting the density of the Earth. The treatment of
this point in the original memoir and that in the Mécanique Céleste are
rather different. But the matter belongs properly not to our subject, but
to the theory of Precession and Nutation. It will be sufficient to say that
in the Mécanique Céleste Laplace takes as an hypothesis that the density
increases from the surface to the centre in arithmetical progression; and
assuming that the mean density at the surface is three times that of the
sea, he finds that the mean density of the Earth is 4·761 times that of
the sea.

Plana has discussed this passage of the Mécanique Céleste in the
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Astronomische Nachrichten, Vol. xxxv. pages 177…192. Plana considers
that the mean density of the surface cannot be so great as Laplace
supposed. Plana also discusses this law of density in the Astronomische
Nachrichten, Vol. xxxvi. pages 313…334. And a memoir by Plana in
Vol. xxxviii. of the Astronomische Nachrichten may be said to go over
nearly the same extent of ground as the §§ 2…5 of Laplace’s Eleventh
Book.

Here we arrive at the end of the fifth section of the Eleventh Book.

1325. Laplace’s next section is devoted to the discussion of a cer-
tain hypothetical law connecting the pressure and the density inside the

Earth; namely, the law expressed by the equation
𝑑Π
𝑑𝜌

= 2𝑘𝜌, where Π is

the pressure, 𝜌 the density, and 𝑘 a constant. This section comes from
the Addition to the original memoir: see Art. 1286. This section has
now passed substantially into the elementary books, and has thus be-
come familiar to us. See Airy’s Mathematical Tracts, Pratt’s Figure of the
Earth, O’Brien’s Mathematical Tracts, and Resal’s Traité Elémentaire de
Mécanique Céleste. I shall offer only a few remarks.

1326. Laplace arrives from his hypothesis at a law of density which
Legendre had formerly given as an example: see Art. 942. Thus Laplace
says on his page 51:

Je dois observer ici que M. Legendre a déterminé l’aplatissement de la Terre,

dans le cas où la densité des couches est exprimée par
𝐴
𝑎
. sin 𝑎𝑛.

But this does not ascribe to Legendre the idea of the hypothetical law

expressed by
𝑑Π
𝑑𝜌

= 2𝑘𝜌; and I conclude that Resal is wrong in saying, as

he does on his page 227, that this hypothesis was imagined and discussed
by Legendre.

1327. Laplace arrives in his discussion at the following differential
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equation
𝑑2𝑣
𝑑𝑎2

+ (𝑛2 −
6
𝑎2
) 𝑣 = 0, (20)

where 𝑣 stands for ℎ∫
𝑎

0
𝜌′𝑎𝑑𝑎, and 𝜌′ is such that

𝑑2𝜌′

𝑑𝑎2
+ 𝑛2𝜌′ = 0.

Laplace observes that it is easy to see that the equation for 𝑣 is satis-
fied by

𝑣 = 𝐻𝜌′ (1 −
3

𝑛2𝑎2
) +

3𝐻
𝑛2𝑎

𝑑𝜌′

𝑑𝑎
,

where 𝐻 is an arbitrary constant.
As 𝜌′ may be supposed equal to 𝐴 sin(𝑛𝑎 + 𝐵), where 𝐴 and 𝐵 are

arbitrary constants, this value of 𝑣 will involve, as it should do, two ar-
bitrary constants. Thus in fact we may say that

𝑣 = 𝐶 {(1 −
3

𝑛2𝑎2
) sin(𝑛𝑎 + 𝐵) +

3
𝑛𝑎

cos(𝑛𝑎 + 𝐵)} .

For the integration of a general equation which includes (20) as a par-
ticular case see Art. 942, and Boole’s Differential Equations, third edition,
page 424.

1328. A troublesome misprint occurs on Laplace’s page 52 in the

fourth line. Instead of 𝐷 =
3𝑞
𝑛2

we must read
𝐷
(𝜌)

=
3𝑞
𝑛2
. This misprint

occurs in the original Addition, as well as in the Connaissance des Tems
for 1822, and in the national edition of Laplace’s works.

A student who wishes to verify Laplace’s numerical calculations must
remember that the radius of the earth is assumed to be unity. The results
obtained on page 52 should be compared with those given in Schmidt’s
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Lehrbuch der Mathematischen und Physischen Geographie, Vol. i. page
387. Schmidt makes the mean density of the earth 1·814 times the den-
sity of the superficial stratum, and the mean density of the earth 4·785
times that of water. In Humboldt’s Cosmos, Vol. i. Note 136, this num-
ber 4·785 is mentioned in connexion with 4·761 given by Laplace on his
page 47; but there Laplace has a very different law of density, and there
is no just ground for the connexion.

1329. The expression obtained by theory for the Precession of the
Equinoxes involves various Astronomical elements, such as the ratio of
the Moon’s mass to the Earth’s, and the ratio of the mean motion of the
Moon round the Earth to that of the mean motion of the Earth round
the Sun. But in connexion with our subject the most important element

involved is the fraction
∫𝜌𝑎4 𝑑𝑎

∫𝜌𝑎2 𝑑𝑎
, where 𝜌 denotes the density of the

stratum having the parameter 𝑎; the integrals are taken between the lim-
its zero and the extreme value of 𝑎. Suppose we calculate the value of
this fraction on the assumption that 𝜌 has the form which Laplace is
here discussing; then we can make an interesting comparison of the the-
oretical expression with the results of observation.

Similar remarks apply to the expression for Lunar nutation.
Such a comparison is made in the three elementary works cited in

Art. 1325; so that I need not enter upon it here.
I shall therefore only remark that Laplace himself treats on this com-

parison briefly in his original memoirs; see Arts. 1285 and 1286: but he
does not reproduce his remarks in the Mécanique Céleste.

1330. Some general observations which form the first seven pages
of the Addition are reproduced in substance in the first Chapter of the
Eleventh Book of the Mécanique Céleste. One slight change may be
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noted. After remarking that geometers had not yet introduced in their
researches on the figure of the Earth the compressibility of the strata
Laplace says in the Addition:

M. Young vient d’appeller leur attention sur cet objet, par la remarque in-
génieuse, que l’on peut expliquer de cette manière l’accroissement de densité
des couches du sphéroïde terrestre.

This is omitted in the Mécanique Céleste, Vol. v. page 15, and we have
instead:

… quoique Daniel Bernoulli, dans sa pièce sur le flux et le reflux de la
mer, eût déjà indiqué cette cause de l’accroissement de densité des couches du
sphéroïde terrestre.

The remark of Young is to be found in the Philosophical Transactions
for 1819: see his Works, Vol. ii. pages 19, 78, 82.

Some observations bearing on the subject of this section of Laplace
by Plana will be found in the fifth volume of De Zach’s Correspondance
Astronomique.

Here we arrive at the end of the sixth section of the Eleventh Book.

1331. Take equations (13) and (16); subtract: neglect 𝑈1, 𝑈2, 𝑈3, … on
the ground that the action of the sea is small owing to its small density
or small depth; and assume the strata to be elliptical so that 𝑌3, 𝑌4, …
vanish. Thus

𝑝′ − 𝑃𝛼(𝑦 + 𝜁) = constant +
5
2
𝑗𝑃 (𝜇2 −

1
3
) .

Laplace omits the constant. The coefficients of 𝜇2 −
1
3
in −𝑦 and −𝜁

are supposed to be ℎ and ℎ″ respectively. Let 𝛼𝑞𝑃 be the coefficient of
this term in 𝑝′. Then from the above equation

𝛼𝑞 + 𝛼(ℎ + ℎ″) =
5
2
𝑗.
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This is in fact Clairaut’s theorem applied to the supposed atmosphere
surrounding the earth. It will be observed that 𝛼(ℎ+ℎ″) is the ellipticity
of the surface of the atmosphere, and therefore of the sea, since one of
these surfaces is at a small constant distance from the other.

Let 𝑝 denote the gravity at the surface of the earth corresponding to
𝑝′; thus, according to Laplace,

𝑝 = 𝑝′ + 2𝛼(𝑙 − 𝜁)𝑃.

If then 𝛼𝑞𝑃 be the coefficient of the term 𝜇2 −
1
3
in 𝑝 we must have

𝑞 = 𝑞 + 2ℎ″.

But the correct formulæ should be

𝑝 = 𝑝′ + 2𝛼𝜁𝑃, 𝑞 = 𝑞 − 2ℎ″.

The result obtained by Laplace would give, he remarks, the difference
𝛼ℎ″ of the ellipticities of the atmosphere and of the terrestrial spheroid,
if we knew by the pendulum experiments the values of 𝑞 and 𝑞. But he
says it follows from the experiments which have been made for the most
part at the level of the sea or a little above it that 𝛼ℎ″ is very small and
almost insensible.

I presume he means that 𝑞 is determined directly by observation, and
𝑞 is deduced by allowing for the difference in elevation, which is ascer-
tained by the aid of the barometer. But I find it difficult to catch pre-
cisely Laplace’s train of thought. The words which immediately follow,
on his page 54, “La surface de l’atmosphère supposée” … seem to me the
commencement of a new paragraph, and they should, I think, have been
so distinguished in printing. Laplace is actually about to investigate the
effect of an elevated plateau, like that on which Quito is situated, on the
value of gravity.
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1332. Accordingly on his pages 55 and 56 Laplace considers the effect
of the attraction of a mountain. He obtains the common result which
is now in elementary books; namely, 2𝜋𝜌1𝑘 for the attraction, where 𝜌1
is the density and 𝑘 the height of the mountain. Laplace applies this
to an experiment recorded by Bouguer, and infers that the density of
the mountains near Quito is about one-fifth of the mean density of the
Earth, that is about the density of water. Plana has touched on the sub-
ject in the first of his three memoirs cited in Art. 1324.

1333. The original memoir by Laplace contains in its pages 178…182
matter which is not reproduced in the Mécanique Céleste. This relates
principally to the influence of the attraction of a mountain on the mea-
sure of the degrees of the meridian. It is interesting and not difficult.

1334. The memoir terminates with some remarks on the stability of
the figure of the Earth; see the pages 182…184 of the memoir. These re-
marks relate to the subject discussed in the third Chapter of the Eleventh
Book, namely, the axis of rotation of the Earth. The remarks bear upon
the case in which the sea is not supposed to cover the whole earth; they
are not reproduced in the Mécanique Céleste, though Laplace alludes to
the same matter on his page 71.

1335. In leaving Chapter ii. of the Eleventh Book of the Mécanique
Céleste, I may state that there are numerous misprints; and most of them
are reproduced in the national edition.

It will be seen from our analysis that the Chapter contains important
matter, and that it is original.

1336. The third Chapter of the Eleventh Book of the Mécanique
Céleste is entitled De l’axe de rotation de la Terre: it occupies pages
57…71.

1337. The pages 57…67 are devoted to the investigation of the the-
orem which we have given in Art. 1282. As I have already remarked,
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Laplace’s original investigation is much simpler than that which he gives
here.

But it is true he establishes something more here. We know that
at any point of a given mass a system of principal axes can be found;
Laplace himself gives a demonstration of this in his Livre i. § 27. It
might seem at first sight that he is giving again a demonstration of this
theorem; thus he says on his page 63, “L’existence d’un pareil axe est
donc toujours possible….” However, what he really shews is something
different, namely, that if we reject the square of the usual small quantity
𝛼, the conditions necessary for the existence of principal axes can be sat-
isfied. But it does not seem to me that for his main purpose this result
is of any importance.

1338. Let us pass on to his next point, which was not in the original
memoir. Suppose the Earth covered by the sea to be in relative equilib-
rium, rotating round one of the principal axes through the centre of grav-
ity; if it be made to rotate round one of the other principal axes instead
of the actual axis the figure of the sea would change. The three figures
which can thus be obtained by taking in succession the three principal
axes, have between themselves some simple relations which are interest-
ing to know.

Suppose the whole mass rotating round an axis, which we will call
the first principal axis. With the notation of Art. 1303, we have for the
radius vector of the surface of the sea

a {1 + 𝛼𝑙 + 𝛼(𝑌1 + 𝑍1) + 𝛼(𝑌2 + 𝑍2) + 𝛼(𝑌3 + 𝑍3) + …},

where 𝑙 is a constant, such that a𝛼𝑙 expresses the mean depth of the sea.
If 𝛼𝑚 denote the whole volume of the sea, we have

𝛼𝑚 = a3∫
2𝜋

0
∫

1

−1
𝛼𝑙 𝑑𝜙 𝑑𝜇;

therefore
𝛼𝑚 = 4𝜋a3𝛼𝑙. (21)
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Now we have by Art. 1309,

𝑍𝑖 =
−𝑌𝑖(2𝑖 + 1)a𝑖𝜙(a) +∫

a

0
𝜌
𝑑
𝑑𝑎

(𝑎𝑖+3𝑌𝑖)𝑑𝑎

{(2𝑖 + 1)𝜙(a) − a3𝜎}a𝑖
,

except when 𝑖 = 2, and then we must add a certain term to the numer-
ator on the right-hand side.

Hence

𝑍𝑖 + 𝑌𝑖 =
∫

a

0
(𝜌 − 𝜎)

𝑑
𝑑𝑎

(𝑎𝑖+3𝑌𝑖)𝑑𝑎

{(2𝑖 + 1)𝜙(a) − a3𝜎}a𝑖
, (22)

except when 𝑖 = 2; and then we have

𝑍2 + 𝑌2 =
∫

a

0
(𝜌 − 𝜎)

𝑑
𝑑𝑎

(𝑎5𝑌2)𝑑𝑎 −
5
2
𝑗
𝛼
(𝜇12 −

1
3
) a2𝜙(a)

{5𝜙(a) − a3𝜎}a2
.

Let 𝑢 denote the sum of the values of the expression on the right-
hand side of (22) from 𝑖 = 1 to 𝑖 = infinity. Then the radius vector of
the sea becomes

a + a𝛼𝑙 + a𝛼𝑢 −

5
2
a𝑗 (𝜇12 −

1
3
) 𝜙(a)

5𝜙(a) − a3𝜎
.

Now let us suppose that the whole mass turns round the second prin-
cipal axis. What we denoted by 𝜇1 may now be denoted by 𝜇2, so that
we have for the radius vector

a + a𝛼𝑙 + a𝛼𝑢 −

5
2
a𝑗 (𝜇22 −

1
3
) 𝜙(a)

5𝜙(a) − a3𝜎
.

Laplace says it is clear that 𝛼𝑙 and 𝛼𝑢 corresponding to the same point
of the sea are the same as before. This is obvious with respect to 𝑙 from
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equation (21). With respect to 𝑢, I suppose we see them to be the same
by the following argument: it is obvious that 𝑢 does not involve the an-
gular velocity, and if this angular velocity be zero, the two expressions
denoted by 𝑢 must be the same; hence they must always be the same.

In like manner for the third principal axis we find that the radius
vector of the surface of the sea will be

a + a𝛼𝑙 + a𝛼𝑢 −

5
2
a𝑗 (𝜇32 −

1
3
) 𝜙(a)

5𝜙(a) − a3𝜎
.

Now we know that

𝜇12 + 𝜇22 + 𝜇32 = 1, (23)

so that if we take the mean of the three values of the radius vector we
obtain

a + a𝛼𝑙 + a𝛼𝑢,

which is independent of the angular velocity of rotation, and is the same
as the radius vector of the sea, supposed in equilibrium on the earth
without any rotation.

Laplace does not use equation (23), but proceeds in a less simple
manner. By a misprint, followed in the national edition, he omits the
term 𝜙(a) in the numerator in the expression for the radius vector in the
second and third cases.

I shall give some remarks which may perhaps be of service to a stu-
dent of this Chapter of Laplace. The Chapter is original; but it does not
seem to me very important.

1339. On page 57, at the beginning, Laplace says that the origin is
supposed to be at the centre of gravity of the spheroid. By spheroid here
he means the solid part of the Earth. But he really does not make any
use of the supposition that the origin is at the centre of gravity of the
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solid part: the origin may be at any fixed point very near this centre of
gravity.

1340. Let 𝜇1 and 𝜙1 denote the usual angular polar coordinates. Let
there be a fixed radius for which 𝜇1 is cosΘ, and 𝜙1 is Φ. Let 𝜇 and 𝜙 be
the polar coordinates referred to this fixed radius as a new axis, the angle
𝜙 being counted from the meridian which contains the original axis and
the new axis.

Then Laplace gives, on his page 58, the following formulæ which
connect the old and the new polar coordinates:

𝜇 = cosΘ𝜇1 + sinΘ√(1 − 𝜇12) cos(𝜙1 − Φ),

√(1 − 𝜇2) sin𝜙 = √(1 − 𝜇12) sin(𝜙1 − Φ).

These are obvious from Spherical Trigonometry. He says they lead to

√(1 − 𝜇2) cos𝜙 = cosΘ√(1 − 𝜇12) cos(𝜙1 − Φ) − sinΘ𝜇1.

The truth of this last result may be shewn thus. If we square and
add our three equations we shall obtain an identity; so that as the other
two are known to hold this must hold. But in this way we are left in
doubt whether the sign on the left-hand side should not be negative. The
best way of verifying the formula is to use Spherical Trigonometry. If we
employ the ordinary notation the formula becomes

− sin 𝑐 cos𝐵 = cos 𝑎 sin 𝑏 cos𝐶 − sin 𝑎 cos 𝑏.

If we substitute for cos𝐵 and cos𝐶 their known values, we shall find
that this is always true.

1341. On his page 61 Laplace says: “Pour que le centre de gravité de
la Terre soit libre, et dans l’axe principal de rotation,”… I see no meaning
in the words soit libre.
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1342. On his page 63 Laplace says: “L’existence d’un pareil axe est
donc toujours possible….” These words seem to me premature; for it is
not until page 65 that Laplace discusses the equations he has obtained,
and shews that they always have a real solution.

1343. On his page 63 Laplace quotes the equation we have given in
Art. 1338, connecting what we call 𝑌2 and 𝑍2. Laplace adds “les quan-
tités 𝑍2, 𝑌2, 𝑌2, se rapportant ici à l’axe des 𝜇. Mais rapportées à l’axe des
𝜇1, elles restent les mêmes:…” I cannot understand what is meant by the
last four words I have quoted. It seems to me that when we change our
axes, 𝑍2, 𝑌2 and 𝑌2 do not remain the same; but that they are transformed
by the aid of such formulæ as we have given in Art. 1340.

1344. Some troublesome misprints which occur in Laplace’s edition
and are preserved in the national edition may be noticed.

On page 63 in line 4 for 𝐻 read Π.
On page 65 at the bottom there is a letter 𝑞 which carries a bar, a

dash, and another letter: the dash should be omitted.
On page 67 Laplace says “on aura 𝑞(𝑠) = 0.” He ought to say “on aura

∫(𝜌 − 1) .
𝑑
𝑑𝑎

(𝑎4𝑞(𝑠))𝑑𝑎 = 0.”

1345. The fourth Chapter of the Eleventh Book of the Mécanique
Céleste is entitled De la chaleur de la Terre, et de la diminution de la durée
du jour par son refroidissement; it occupies pages 72…85.

1346. This Chapter belongs rather to the researches on the theory of
Heat, by Fourier, Poisson, and others, than to our proper subject. I do
not profess to have verified the numerical calculations, but I have gone
over the analysis, and shall make a few remarks which may be of ser-
vice to the student. The Chapter is substantially reproduced from the
Connaissance des Tems for 1823; see Art. 1289: but the last page is new.

1347. Laplace starts with two fundamental equations given by
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Fourier; he says “j’en donnerai la démonstration, dans un autre livre.” I
do not find that this intention was carried out.

1348. Laplace arrives at the differential equation

𝑑2𝑞′

𝑑𝑥2
+ 𝑞′ −

𝑖(𝑖 + 1)
𝑥2

𝑞′ = 0,

and gives a process of solution.
In the original memoir he omitted the process and referred to Legen-

dre’s memoir of 1789: see Art. 942.

1349. As I have stated in Art. 942, the solution of the equation is
now known to take the following compact form,

𝐶
𝑥𝑖

𝑑𝑖

𝑑𝑎𝑖
sin(𝑥√𝑎 + 𝐵)

√𝑎
,

where unity is to be substituted for 𝑎 after the differentiation.
Laplace requires the expression to be finite when 𝑥 is zero; this can-

not be unless 𝐵 = 0.

We shall put 𝑦𝑛 for
𝑑𝑛

𝑑𝑎𝑛
sin𝑥√𝑎

√𝑎
, it being supposed that unity is sub-

stituted for 𝑎 after the differentiations.
Now 𝑦𝑛 vanishes when 𝑥 = 0. Suppose 𝑥 to increase from zero, it is

important for Laplace to know when 𝑦𝑛 first vanishes after 𝑥 = 0.
It is obvious that 𝑦0 first vanishes when 𝑥 = 𝜋. Laplace says that 𝑦1

first vanishes when 𝑥 is between 𝜋 and that
3𝜋
2
, that 𝑦2 first vanishes

when 𝑥 is between
3𝜋
2

and 2𝜋, that 𝑦3 first vanishes when 𝑥 is between

2𝜋 and
5𝜋
2
, “et ainsi du reste”: see his page 76.
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1350. It will be found that

𝑦1 = −
1
2
(sin𝑥 − 𝑥 cos𝑥),

𝑦2 =
3
4
{sin𝑥 (1 −

𝑥2

3
) − 𝑥 cos𝑥} ,

𝑦3 = −
15
8
{sin𝑥 (1 −

2𝑥2

5
) − 𝑥 cos𝑥 (1 −

𝑥2

15
)} ;

and thus Laplace’s statements with respect to 𝑦1, 𝑦2 and 𝑦3 may be veri-
fied. The following formula will be useful:

𝑑𝑦𝑛
𝑑𝑥

=
𝑑𝑛

𝑑𝑎𝑛
𝑑
𝑑𝑥

sin𝑥√𝑎
√𝑎

=
𝑑𝑛

𝑑𝑎𝑛
cos𝑥√𝑎

= −
𝑥
2
𝑑𝑛−1

𝑑𝑎𝑛−1
sin𝑥√𝑎

√𝑎

= −
𝑥
2
𝑦𝑛−1.

Thus 𝑦𝑛 continually increases numerically as 𝑥 changes from zero to
the value for which 𝑦𝑛−1 first vanishes.

1351. At the bottom of his page 82 Laplace gives a formula which
reduced to his degree of approximation amounts to this:

∫
𝑎

0

𝑟𝑠

𝑎𝑠+1
sin

𝜋𝑟
𝑎
𝑑𝑟 =

1
𝜋
{1 −

𝑠(𝑠 − 1)
𝜋2

+
𝑠(𝑠 − 1)(𝑠 − 2)(𝑠 − 3)

𝜋4
−…} .

But it ought to be stated that if 𝑠 is even, the last term within the
brackets must be doubled.

Thus, for example, ∫
𝑎

0

𝑟2

𝑎3
sin

𝜋𝑟
𝑎
𝑑𝑟 is not

1
𝜋
(1 −

2
𝜋2
), but

1
𝜋
(1 −

4
𝜋2
). Laplace seems to have gone wrong here. Thus a coefficient
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at the top of his page 83, which he makes to be 3 − 𝑒 (1 −
8
𝜋2
), should

be 3 − 𝑒 (1 −
16
𝜋2
). This correction will affect some of his numerical

results on his page 84.

1352. We may observe that Plana, by using a different value of the
quantity denoted by 𝑒, strengthens Laplace’s conclusions as to the per-
manence of the length of a day: see the Astronomische Nachrichten, Vol.
xxxv. page 183.

1353. There are some misprints in this Chapter which do not occur
in the original memoir nor in the national edition.

1354. The contributions made by Laplace to our subject, which are
contained in his fifth volume, fall below those of his earlier years in in-
terest and importance; but they are not unworthy of his eminent reputa-
tion. Those in the second Chapter seem the most remarkable, and may
be said to consist of three parts. We have the process by which, instead
of supposing fluid to cover the whole surface of the Earth, an investiga-
tion is given which may apply to the actual constitution of the Earth and
sea; we have the important theorems respecting the approximate values
of Laplace’s coefficients; and lastly, there is the discussion of a certain
hypothetical law connecting the pressure with the density. The later vol-
ume seems more obscure than the earlier volumes, and is certainly more
disfigured by misprints; these defects may probably be attributed to the
infirmity of advancing age, and may well be excused in the closing years
of a life so full of great scientific achievements.



CHAPTER XXXV.

POISSON.

1355. I have undertaken to carry the history of the theories of Attrac-
tion and of the Figure of the Earth down to the researches of Laplace,
so that I shall not in general pass beyond the end of the first quarter
of the present century. But I propose to make exceptions with respect
to Poisson, Ivory, and Plana, and to give an account of all the contribu-
tions of these mathematicians to our subject. The labours of all three
connect themselves closely and naturally with the matters we have al-
ready discussed; Poisson and Plana especially may be regarded as disci-
ples and successors of Laplace, and may be conveniently and justly as-
sociated with him in mathematical history.

The present Chapter will be devoted to Poisson.

1356. The writings of Poisson, arranged chronologically, which may
be considered as belonging to our subject, are the following, according
to the list of his works and memoirs drawn up by himself and published
at Paris in 1851:

I. Leçons de Mécanique. One volume in 4to. I have never seen this.
II. Traité de Mécanique. First edition in two volumes in 8vo. I have

not seen this edition, which appeared I think in 1811.
III. Mémoire sur la Distribution de l’électricité à la surface des corps

conducteurs.
Second Mémoire sur le même sujet.
IV. Extrait d’un Mémoire de M. Yvori sur l’attraction des Ellipsoïdes

homogènes.
V. Addition à l’article précédent.
I have already noticed IV. and V.: see Art. 1160.
VI. Remarques sur une Equation qui se présente dans la théorie des
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attractions des sphéroïdes.
I have already noticed this: see Art. 1237.
VII. Mémoire sur la distribution de la Chaleur dans les corps solides.
I have already noticed this: see Art. 1223.
VIII. Observations relatives à un Mémoire de M. Ivory, sur l’Equilibre

d’une masse fluide. Annales de Chimie … 1824.
This criticises an assumption made by Ivory which will be noticed

hereafter.
IX. Annonce de mon Mémoire sur l’Attraction des sphéroïdes. Nou-

veau Bulletin … Philomatique 1826.
This is a notice, extending to about a dozen pages of the memoir

numbered X.
X. Mémoire sur l’Attraction des sphéroïdes. Connaissance des Tems

1829.
XI. Note sur une formule relative à l’Attraction des sphéroïdes Philo-

sophical Magazine 1827.
XII. Additions au Mémoire sur l’Attraction des sphéroïdes. Connais-

sance des Tems 1831.
XIII. Traité de Mécanique. Second edition 1833.
XIV. Mémoire sur l’Attraction dun ellipsoïde homogène. Paris Mé-

moires for 1835.
XV. Note sur l’Attraction d’un ellipsoïde hétérogène. Connaissance

des Tems 1837.
XVI. Note sur un passage de la Mécanique céleste.
I have already noticed this: see Art. 1265.
XVII. Remarques à l’occasion d’un Rapport relatif à l’Attraction des

ellipsoïdes. Comptes Rendus … Vol. vi.
Addition à ces Remarques. Comptes Rendus … Vol. vii.
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XVIII. Note sur une Propriété générale des formules relatives aux at-
tractions des sphéroïdes. Comptes Rendus … Vol. vii.

I proceed to give an account of such of these writings as have not
been already noticed; the first of these is that numbered III.

1357. Two memoirs by Poisson entitled Sur la distribution de l’élec-
tricité à la surface des corps conducteurs are contained in the Mémoires
… de l’Institut for 1811. The subject of the distribution of electricity is
connected with that of attraction; but it is too extensive and important
to be included in the present work: I must therefore content myself with
expressing the hope that it may soon find its own historian.

Here I will only just notice the proof of Coulomb’s theorem which
was supplied by Laplace to Poisson, and inserted by the latter in his first
memoir: see pages 5 and 29 of the memoir.

I have already explained the theorem in Art. 993. The present proof
resembles that, in dividing the film into the two parts which I call 𝑆 and
𝑆′; but differs in another respect. Here it is observed that if the film is
spherical we have obviously 4𝜋𝜌 for the joint action of 𝑆 and 𝑆′ at 𝑃′;
this is independent of the radius of the sphere.

Now whatever be the form of the film we may consider the part 𝑆
cut into elements by planes which all pass through the common normal,
the angle between two consecutive planes being infinitesimal. Then we
may admit that the action of any element will be the same at 𝑃′ as the
action of a spherical element of the same curvature. And in this way
we obtain 2𝜋𝜌 for the whole action of 𝑆. Then as in Coulomb’s proof
we obtain 4𝜋𝜌 for the action of 𝑆 and 𝑆′, since the two parts will exert
equal actions.

Some remarks for the purpose of rendering the demonstration more
rigorous are given by Plana in his Mémoire sur la distribution de l’élec-
tricité … Turin, 1845: see page 23 of the memoir.

1358. In the Connaissance des Tems for 1829, published in 1826, there
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is a memoir by Poisson entitled Mémoire sur l’attraction des Sphéroïdes.
The memoir occupies pages 329…379 of the volume. There is an Addi-
tion to the memoir in the Connaissance des Tems for 1831, published in
1828; this occupies pages 49…57 of the volume.

1359. The memoir is divided into three sections. The first section
is entitled Formules préliminaires; it occupies pages 329…353. The sec-
ond section is entitled Formules relatives aux attractions des corps quel-
conques; it occupies pages 354…364. The third section is entitled For-
mules relatives aux sphéroïdes très-peu différens d’une sphère; it occupies
pages 364…379. The memoir may be said to form a new edition, with
important improvements, of Laplace’s researches on the subject.

1360. The first section constitutes a treatise on Laplace’s functions.
Poisson discussed these functions in a peculiar manner; he seems to have
attached great importance to his process, and repeats it in various places.
He refers to the Journal de l’École Polytechnique, 19e cahier, page 145.
Poisson shews that a function of two variables, 𝜃 and 𝜓, can be expanded
in a series of Laplace’s coefficients; the expansion holds for values of 𝜃
between 0 and 𝜋, and of 𝜓 between 0 and 2𝜋. Exceptions may occur at
the limiting values of the variables.

It is unnecessary to enter on Poisson’s method here, because it is not
our principal subject, but belongs rather to the history of the theory of
Laplace’s functions. Moreover it is readily accessible; for instance Pois-
son repeats it in the eighth Chapter of his Théorie Mathématique de la
Chaleur. Some account of it will be found in Pratt’s treatise on the Figure
of the Earth.

1361. Supposing that a function has been expanded in a series of
Laplace’s coefficients, it will have to be investigated whether we shall
continue to obtain equalities if we integrate or differentiate both mem-
bers of the equation with respect to either of the variables 𝜃 and 𝜓. Pois-
son discusses this important point with great care. He shews that the
formulæ obtained by integration are subject to no restriction; but those
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obtained by differentiation are liable to exceptions at the extreme values
of the variables. He refers on page 337 to researches of his own on the
subject “dans les derniers cahiers du Journal de l’Ecole Polytechnique,…”

1362. Poisson’s second section gives formulæ for the attraction of any
body, expressed by means of the potential function as we call it.

Let 𝑟′, 𝜃′, 𝜓′ be the coordinates of any element of the attracting body;
let 𝜌′ be the density at that point. Let 𝑟, 𝜃, 𝜓 be the coordinates of the
attracted particle. Let 𝑃𝑛′ be Laplace’s 𝑛th coefficient, a function of 𝜃′ and
𝜓′. Let 𝑢 denote the radius of the surface corresponding to 𝜃′ and 𝜓′.

Poisson uses 𝑑𝜔 for sin 𝜃′ 𝑑𝜃′ 𝑑𝜓′, so that 𝑑𝜔 may be considered to be
the element of the surface of a sphere of radius unity which is described
with the origin as centre. The double integration with respect to 𝜃′ and
𝜓′ may be replaced by a symbol of single integration; the integration will
extend over the whole or some definite part of the spherical surface.

1363. It is almost unnecessary to write down the formula for 𝑉 when
𝑟 is greater than any value of 𝑢, as it has been given before. But for
convenience we may repeat it.

𝑉 = ∑[
1

𝑟𝑛+1
∫(∫

ᵆ

0
𝜌′𝑟′𝑛+2 𝑑𝑟′) 𝑃𝑛′ 𝑑𝜔] . (1)

Here, and throughout, ∑ denotes summation with respect to 𝑛 from
𝑛 = 0 to 𝑛 = ∞.

Next consider such an internal point that 𝑟 is less than any value of
𝑢. Then

𝑉 = ∑[
1

𝑟𝑛+1
∫(∫

𝑟

0
𝜌′𝑟′𝑛+2 𝑑𝑟′) 𝑃𝑛′ 𝑑𝜔]

+∑[𝑟𝑛∫(∫
ᵆ

𝑟

𝜌′ 𝑑𝑟′

𝑟′𝑛−1
) 𝑃𝑛′ 𝑑𝜔] . (2)
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In the last place suppose the external or internal point is such that 𝑟
is greater than some values of 𝑢, but less than other values. Then

𝑉 = ∑[
1

𝑟𝑛+1
∫

′
(∫

ᵆ

0
𝜌′𝑟′𝑛+2 𝑑𝑟′) 𝑃𝑛′ 𝑑𝜔]

+∑[
1

𝑟𝑛+1
∫′(∫

𝑟

0
𝜌′𝑟′𝑛+2 𝑑𝑟′) 𝑃𝑛′ 𝑑𝜔]

+∑[𝑟𝑛∫′(∫
ᵆ

𝑟

𝜌′ 𝑑𝑟′

𝑟′𝑛−1
) 𝑃𝑛′ 𝑑𝜔] . (3)

The integral indicated by ∫
′
extends to those directions of 𝑟′ in

which 𝑢 is less than 𝑟; and the integrals indicated by ∫′ to those

directions of 𝑟′ in which 𝑢 is greater than 𝑟.

The limits of the integrals ∫
′
and ∫′relative to 𝜃

′ and 𝜓′ depend im-

plicitly on the position of the attracted point, that is on its coordinates 𝑟,
𝜃, and 𝜓; and it will be necessary to remember this when we differenti-
ate 𝑉 with respect to these variables. But we shall find that this will not
affect the differential coefficients of 𝑉 of the first order.

In fact we have identically

∫
ᵆ

0
𝜌′𝑟′𝑛+2 𝑑𝑟′ = ∫

𝑟

0
𝜌′𝑟′𝑛+2 𝑑𝑟′ +∫

ᵆ

𝑟
𝜌′𝑟′𝑛+2 𝑑𝑟′;

∫
′
(∫

𝑟

0
𝜌′𝑟′𝑛+2 𝑑𝑟′) 𝑃𝑛′ 𝑑𝜔 +∫′(∫

𝑟

0
𝜌′𝑟′𝑛+2 𝑑𝑟′) 𝑃𝑛′ 𝑑𝜔

= ∫(∫
𝑟

0
𝜌′𝑟′𝑛+2 𝑑𝑟′) 𝑃𝑛′ 𝑑𝜔,
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where the symbol ∫ indicates the complete integral extended to all the

directions of 𝑟′.
Therefore the last formula for 𝑉 may be expressed thus:

𝑉 = ∑[
1

𝑟𝑛+1
∫(∫

𝑟

0
𝜌′𝑟′𝑛+2 𝑑𝑟′) 𝑃𝑛′ 𝑑𝜔]

+∑[
1

𝑟𝑛+1
∫

′
(∫

ᵆ

𝑟
𝜌′𝑟′𝑛+2 𝑑𝑟′) 𝑃𝑛′ 𝑑𝜔]

+∑[𝑟𝑛∫′(∫
ᵆ

𝑟

𝜌′ 𝑑𝑟′

𝑟′𝑛−1
) 𝑃𝑛′ 𝑑𝜔] . (4)

Now the differential coefficient of 𝑉 with respect to 𝑟, 𝜃, or 𝜓 will not
involve any term arising from the variability of the limits in the integrals

denoted by ∫
′
and ∫′. For consider the former integral; a differential

coefficient, so far as it depends on the variability of the limits, will have

as a factor the value, at the limit considered, of ∫
ᵆ

𝑟
𝜌′𝑟′𝑛+2 𝑑𝑟′; but at

this limit by supposition 𝑟 = 𝑢; and so this factor vanishes.

1364. Poisson says, and quite correctly, that commonly only two for-
mulæ for 𝑉 had been given, namely (1) and (2); and it had been assumed
that (1) held for all external points, and (2) for all internal points. It is
however obvious that there are external points, and there are internal
points, for which the correct form is (3) or its equivalent (4). For exam-
ple, if we consider a homogeneous ellipsoid, and place the origin at the
centre, the formula (1) applies only to such external points as have the
radius vector 𝑟 greater than the greatest of the three semiaxes of the el-
lipsoid; and the formula (2) applies only to such internal points as have
the radius vector 𝑟 less than the least of the three semiaxes.
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1365. The terms in (1) and (2) considered as functions of 𝜃 and 𝜓
will be Laplace’s functions; this depends on the fact that the limits of
the integrations are independent of 𝜃 and 𝜓. But this will not be the
case with the terms in (3) and (4).

With respect to an internal particle we may always take the origin
so that 𝑟 does not exceed any value of 𝑢; then the formula (2) will be
applicable.

Accordingly Poisson makes an application of (2) to establish the cor-
rection which he had introduced in Laplace’s fundamental equation for
𝑉 with respect to an internal particle: see Art. 1237.

Since 𝑃𝑛 satisfies the equation

1
sin 𝜃

𝑑
𝑑𝜃

(sin 𝜃
𝑑𝑃𝑛
𝑑𝜃

) +
1

sin2 𝜃
𝑑2𝑃𝑛
𝑑𝜓2

= −𝑛(𝑛 + 1)𝑃𝑛,

we have from (2)

1
sin 𝜃

𝑑
𝑑𝜃

(sin 𝜃
𝑑𝑉
𝑑𝜃

) +
1

sin2 𝜃
𝑑2𝑉
𝑑𝜓2

= −∑[
𝑛(𝑛 + 1)
𝑟𝑛+1

∫(∫
𝑟

0
𝜌′𝑟′𝑛+2 𝑑𝑟′) 𝑃𝑛′ 𝑑𝜔]

−∑[𝑛(𝑛 + 1)𝑟𝑛∫(∫
ᵆ

𝑟

𝜌′ 𝑑𝑟′

𝑟′𝑛−1
) 𝑃𝑛′ 𝑑𝜔] . (5)

If we differentiate 𝑟𝑉 once with respect to 𝑟 we shall find that no term
arises from the variability of the limits in the integrations with respect
to 𝑟′. This result depends on the fact that

𝑑
𝑑𝑟

∫
𝑟

0
𝜌′𝑟′𝑛+2 𝑑𝑟′ = 𝜌𝑟𝑛+2,

and
𝑑
𝑑𝑟

∫
ᵆ

𝑟

𝜌′𝑑𝑟′

𝑟′𝑛−1
= −

𝜌
𝑟𝑛−1

;
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𝜌 being the density at the point corresponding to 𝑟, 𝜃, 𝜓.
Hence we have simply

𝑑(𝑟𝑉)
𝑑𝑟

= −∑[
𝑛

𝑟𝑛+1
∫(∫

𝑟

0
𝜌′𝑟′𝑛+2 𝑑𝑟′) 𝑃𝑛′ 𝑑𝜔]

+∑[(𝑛 + 1)𝑟𝑛∫(∫
ᵆ

𝑟

𝜌′𝑑𝑟′

𝑟′𝑛−1
) 𝑃𝑛′ 𝑑𝜔] .

But when we differentiate this again with respect to 𝑟, we shall obtain
terms from the variability of the limits. Thus we shall have

𝑟
𝑑2(𝑟𝑉)
𝑑𝑟2

= ∑[
𝑛(𝑛 + 1)
𝑟𝑛+1

∫(∫
𝑟

0
𝜌′𝑟′𝑛+2 𝑑𝑟′) 𝑃𝑛′ 𝑑𝜔]

+∑[𝑛(𝑛 + 1)𝑟𝑛∫(∫
ᵆ

𝑟

𝜌′𝑑𝑟′

𝑟′𝑛−1
) 𝑃𝑛′ 𝑑𝜔]

− 𝑟2∑(2𝑛 + 1)∫𝜌′𝑃𝑛′ 𝑑𝜔. (6)

Hence from (5) and (6) we have for an internal particle

𝑟
𝑑2(𝑟𝑉)
𝑑𝑟2

+
1

sin 𝜃
𝑑
𝑑𝜃

(sin 𝜃
𝑑𝑉
𝑑𝜃

) +
1

sin2 𝜃
𝑑2𝑉
𝑑𝜓2

= −𝑟2∑(2𝑛 + 1)∫𝜌′𝑃𝑛′ 𝑑𝜔. (7)

Now suppose 𝜌′ developed in a series of Laplace’s functions; so that

𝜌′ = 𝑄0
′ + 𝑄1

′ + 𝑄2
′ +…+ 𝑄𝑛

′ +…

Then, by Art. 1069, we have

∫𝜌′𝑃𝑛′ 𝑑𝜔 =
4𝜋

2𝑛 + 1
𝑄𝑛.
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Therefore the right-hand side of (7) becomes

− 4𝜋𝑟2∑𝑄𝑛,
that is

− 4𝜋𝑟2𝜌.

Hence too if 𝑉 be expressed as a function of the rectangular coordi-
nates 𝑥, 𝑦, 𝑧, we shall have for an internal particle

𝑑2𝑉
𝑑𝑥2

+
𝑑2𝑉
𝑑𝑦2

+
𝑑2𝑉
𝑑𝑧2

= −4𝜋𝜌.

1366. Poisson on his pages 362…364 determines the value of 𝑉 rela-
tive to a sphere for any point external or internal; the method which he
uses has now passed into the elementary books: see Statics, Art. 240.

1367. In his third section Poisson applies his formulæ for 𝑉 to the
case of spheroids which differ but little from spheres. He begins with
supposing the body homogeneous.

The radius of the surface is denoted by 𝑎(1 + 𝛼𝑦′) where 𝑎 is a
constant, being the radius of a sphere which differs but little from
the spheroid, and 𝛼 is very small; and the peculiarity of Poisson’s
investigation is that he does not limit himself to the first power of 𝛼,
but retains in general all the powers of 𝛼.

If 𝑟 is greater than the greatest value of 𝑢 we take the formula (1);
we can separate the integrals relative to 𝑟′ into two parts, one extending
from 𝑟′ = 0 to 𝑟′ = 𝑎, and the other from 𝑟′ = 𝑎 to 𝑟′ = 𝑢. In the first
part the integrals will be constants; and by reason of the properties of
the function 𝑃𝑛′ we shall have simply

∑[
1

𝑟𝑛+1
∫(∫

𝑎

0
𝜌′𝑟′𝑛+2 𝑑𝑟′) 𝑃𝑛′ 𝑑𝜔] =

4𝜋𝜌𝑎3

3𝑟
.
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Hence the complete value of 𝑉 will be in this case

𝑉 =
4𝜋𝜌𝑎3

3𝑟
+ 𝜌∑[

1
𝑟𝑛+1

∫(∫
ᵆ

𝑎
𝑟′𝑛+2 𝑑𝑟′) 𝑃𝑛′ 𝑑𝜔] . (8)

If 𝑟 is less than the least value of 𝑢 we take the formula (2). Then
we have

∑[
1

𝑟𝑛+1
∫(∫

𝑟

0
𝜌′𝑟′𝑛+2 𝑑𝑟′) 𝑃𝑛′ 𝑑𝜔] =

4𝜋𝜌𝑟2

3
.

The integrals with respect to 𝑟′ which are taken between 𝑟′ = 𝑟 and
𝑟′ = 𝑢 we separate into two parts, one extending from 𝑟′ = 𝑟 to 𝑟′ = 𝑎,
and the other from 𝑟′ = 𝑎 to 𝑟′ = 𝑢. For the first part we shall have

∑[𝑟𝑛∫(∫
𝑎

𝑟

𝜌′ 𝑑𝑟′

𝑟′𝑛−1
) 𝑃𝑛′ 𝑑𝜔] = 2𝜋𝜌(𝑎2 − 𝑟2).

Hence the complete value of 𝑉 in this case is

𝑉 = 2𝜋𝜌𝑎2 −
2𝜋𝜌𝑟2

3
+ 𝜌∑[𝑟𝑛∫(∫

ᵆ

𝑎

𝑑𝑟′

𝑟′𝑛−1
) 𝑃𝑛′ 𝑑𝜔] . (9)

Let 𝑦 denote the value of 𝑦′ when for 𝜃′ and 𝜓′ we put 𝜃 and 𝜓 re-
spectively; and suppose 𝑦 and its powers developed in series of Laplace’s
functions.

Let
𝑦 = 𝑌0 + 𝑌1 + 𝑌2 +…+ 𝑌𝑛 +…

and generally

𝑦𝑖+1 = 𝑌0(𝑖) + 𝑌1(𝑖) + 𝑌2(𝑖) +…+ 𝑌𝑛(𝑖) +…

Since

∫
ᵆ

𝑎
𝑟′𝑚 𝑑𝑟′ = 𝑎𝑚+1 (𝛼𝑦′ +

𝑚
2
𝛼2𝑦′2 +

𝑚(𝑚 − 1)
2 . 3

𝛼3𝑦′3 +…) ,
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we shall have

∫(∫
ᵆ

𝑎
𝑟′𝑛+2 𝑑𝑟′) 𝑃𝑛′ 𝑑𝜔

=
4𝜋𝑎𝑛+3

2𝑛 + 1
{𝛼𝑌𝑛 +

𝑛 + 2
2

𝛼2𝑌𝑛(1) +
(𝑛 + 2)(𝑛 + 1)

2 . 3
𝛼3𝑌𝑛(2) +…} ,

∫(∫
ᵆ

𝑎

𝑑𝑟′

𝑟′𝑛−1
) 𝑃𝑛′ 𝑑𝜔

=
4𝜋𝑎−𝑛+2

2𝑛 + 1
{𝛼𝑌𝑛 −

𝑛 − 1
2

𝛼2𝑌𝑛(1) +
(𝑛 − 1)𝑛
2 . 3

𝛼3𝑌𝑛(2) −…} .

Hence the preceding values of 𝑉 will present themselves as series ar-
ranged in powers of 𝛼; we shall have from (8)

𝑉 =
4𝜋𝜌𝑎3

3𝑟
+
4𝜋𝜌𝑎3

𝑟
{𝛼∑

1
2𝑛 + 1

𝑎𝑛

𝑟𝑛
𝑌𝑛

+
𝛼2

2
∑

𝑛 + 2
2𝑛 + 1

𝑎𝑛

𝑟𝑛
𝑌𝑛(1) +

𝛼3

2 . 3
∑

(𝑛 + 2)(𝑛 + 1)
2𝑛 + 1

𝑎𝑛

𝑟𝑛
𝑌𝑛(2) +…}, (10)

and we shall have from (9)

𝑉 = 2𝜋𝜌𝑎2 −
2𝜋𝜌𝑟2

3
+ 4𝜋𝜌𝑎2{𝛼∑

1
2𝑛 + 1

𝑟𝑛

𝑎𝑛
𝑌𝑛

−
𝛼2

2
∑

𝑛 − 1
2𝑛 + 1

𝑟𝑛

𝑎𝑛
𝑌𝑛(1) +

𝛼3

2 . 3
∑

(𝑛 − 1)𝑛
2𝑛 + 1

𝑟𝑛

𝑎𝑛
𝑌𝑛(2) −…}. (11)

1368. Poisson says that the formula (10) holds for external points, and
the formula (11) for internal points, provided the point is not too near the
surface. It had however been usual to neglect this condition, and to apply
(10) for any external point, and (11) for any internal point. The matter
requires examination, and accordingly Poisson proceeds to consider it,
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starting from equation (4), which has been rigorously demonstrated. As
we have stated in Art. 843, he does not consider it sufficient that the
series finally obtained are convergent; he holds that the series employed
throughout the investigation should be convergent; see his page 366.

1369. Since the spheroid is supposed homogeneous, the first series

contained in (4) is reduced to its first term; and is equal to
4𝜋𝜌𝑟2

3
.

Also whatever 𝑄′ may denote we have identically

∫
′
𝑄′𝑑𝜔 +∫′𝑄

′𝑑𝜔 = ∫𝑄′𝑑𝜔.

Hence if we eliminate successively each of the partial integrals de-

noted by ∫
′
and ∫′, and put for abbreviation

1
𝑟𝑛+1

∫
ᵆ

𝑟
𝑟′𝑛+2𝑑𝑟′ − 𝑟𝑛∫

ᵆ

𝑟

𝑑𝑟′

𝑟′𝑛−1
= 𝑈,

the equation (4) will take either of the two following equivalent forms:

𝑉 =
4𝜋𝜌𝑟2

3
+ 𝜌∑[

1
𝑟𝑛+1

∫(∫
ᵆ

𝑟
𝑟′𝑛+2 𝑑𝑟′) 𝑃𝑛′ 𝑑𝜔] − 𝜌∑∫′𝑈𝑃𝑛

′ 𝑑𝜔,

𝑉 =
4𝜋𝜌𝑟2

3
+ 𝜌∑[𝑟𝑛∫(∫

ᵆ

𝑟

𝑑𝑟′

𝑟′𝑛−1
) 𝑃𝑛′ 𝑑𝜔] + 𝜌∑∫

′
𝑈𝑃𝑛′ 𝑑𝜔. (12)

It will be sufficient to consider the first of these formulæ; the reason-
ing will apply without difficulty to the second.

Let 𝑢 = 𝑟−𝑧′, so that 𝑧′ represents a function of 𝜃′ and 𝜓′, the value
of which is very small, and of the same order of magnitude as 𝛼, for
those values of 𝑟 which we have to consider.
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If we effect the integrations in 𝑈 we shall find that

𝑈 =
2𝑛 + 1
2

𝑧′2 −
2𝑛 + 1
3𝑟

𝑧′3 +
(2𝑛 + 1)(𝑛 + 1)𝑛

2 . 3 . 4𝑟2
𝑧′4 −…

The integrals denoted by ∫′extend only to negative values of 𝑧
′; but

if we denote by 𝜁′ a discontinuous function of 𝜃′ and 𝜓′, such that we
have 𝜁′ = 𝑧′, or 𝜁′ = 0, according as 𝑧′ is negative or positive, we can

change ∫′ into the complete integral ∫; and then we shall have

∫′𝑈𝑃𝑛
′ 𝑑𝜔 =

2𝑛 + 1
2

∫𝜁′2𝑃𝑛′ 𝑑𝜔 −
2𝑛 + 1
3𝑟

∫𝜁′3𝑃𝑛′ 𝑑𝜔 +… (13)

At this stage Poisson limits the approximation to the order 𝛼3 inclu-
sive, by rejecting powers of 𝜁′ above the third.

Now suppose 𝜁2 and 𝜁3 are developed in series of Laplace’s functions;
and it must be observed that discontinuous functions may be so devel-
oped: let then

𝜁2 = 𝑋0 + 𝑋1 + 𝑋2 +…+ 𝑋𝑛 +…
𝜁3 = 𝑍0 + 𝑍1 + 𝑍2 +…+ 𝑍𝑛 +…

Then by the known properties of Laplace’s functions we shall have
from (13),

∫′𝑈𝑃𝑛
′ 𝑑𝜔 = 2𝜋𝑋𝑛 −

4𝜋
3𝑟
𝑍𝑛 ;

and therefore
∑∫′𝑈𝑃𝑛

′ 𝑑𝜔 = 2𝜋𝜁2 −
4𝜋
3𝑟
𝜁3.
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Now by the nature of 𝜁 this is zero whenever the attracted point is
outside the spheroid. Thus for all such points the first equation (12) re-
duces to

𝑉 =
4𝜋𝜌𝑟2

3
+ 𝜌∑[

1
𝑟𝑛+1

∫(∫
ᵆ

𝑟
𝑟′𝑛+2 𝑑𝑟′) 𝑃𝑛′ 𝑑𝜔] .

This will agree with (8) if we observe that

∫
ᵆ

𝑟
𝑟′𝑛+2 𝑑𝑟′ = ∫

ᵆ

𝑎
𝑟′𝑛+2 𝑑𝑟′ −∫

𝑟

𝑎
𝑟′𝑛+2 𝑑𝑟′,

and that the part of the sum denoted by ∑ which corresponds to the

second integral becomes
4𝜋𝑟2

3
−
4𝜋𝑎3

3𝑟
.

In the same manner it may be shewn that the sum ∑∫
′
𝑈𝑃𝑛′ 𝑑𝜔

which occurs in the second of equations (12) is zero whenever the at-
tracted point is within the spheroid; so that for all internal points we
shall have

𝑉 =
4𝜋𝜌𝑟2

3
+ 𝜌∑[𝑟𝑛∫(∫

ᵆ

𝑟

𝑑𝑟′

𝑟′𝑛−1
) 𝑃𝑛′ 𝑑𝜔] .

This will agree with (9) if we observe that

∫
ᵆ

𝑟

𝑑𝑟′

𝑟′𝑛−1
= ∫

ᵆ

𝑎

𝑑𝑟′

𝑟′𝑛−1
+∫

𝑎

𝑟

𝑑𝑟′

𝑟′𝑛−1
,

and that the part of the sum denoted by ∑ which corresponds to the

second integral becomes 2𝜋𝑎2 − 2𝜋𝑟2.
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1370. Poisson then says that it has been shewn that the two formulæ
(8) and (9), or the two formulæ (10) and (11), which are the develop-
ments of them in convergent series, will apply to all positions of the at-
tracted particle, namely (8) and (10) to all external positions, and (9) and
(11) to all internal positions. If we differentiate the expression for 𝑉 with
respect to 𝑟, 𝜃, and 𝜓 we obtain in the usual way expressions for the re-
solved attraction.

For example, suppose we require the attraction resolved along the ra-
dius. We thus get from (10)

𝑑𝑉
𝑑𝑟

= −
4𝜋𝜌𝑎3

3𝑟2
−
4𝜋𝜌𝑎3

𝑟2
[𝛼∑

𝑛 + 1
2𝑛 + 1

𝑎𝑛

𝑟𝑛
𝑌𝑛

+
𝛼2

2
∑

(𝑛 + 2)(𝑛 + 1)
2𝑛 + 1

𝑎𝑛

𝑟𝑛
𝑌𝑛(1)

+
𝛼3

2 . 3
∑

(𝑛 + 1)2(𝑛 + 2)
2𝑛 + 1

𝑎𝑛

𝑟𝑛
𝑌𝑛(2) +…]; (14)

this holds for external particles.
And we get from (11)

𝑑𝑉
𝑑𝑟

= −
4𝜋𝜌𝑟
3

+
4𝜋𝜌𝑎2

𝑟
[𝛼∑

𝑛
2𝑛 + 1

𝑟𝑛

𝑎𝑛
𝑌𝑛

−
𝛼2

2
∑

𝑛(𝑛 − 1)
2𝑛 + 1

𝑟𝑛

𝑎𝑛
𝑌𝑛(1)

+
𝛼3

2 . 3
∑

𝑛2(𝑛 − 1)
2𝑛 + 1

𝑟𝑛

𝑎𝑛
𝑌𝑛(2) +…]; (15)

this holds for internal particles.

1371. I do not quite understand the view which Poisson takes of his
results. Both here and in the latter part of his memoir he seems to imply
that they are true for all powers of 𝛼, whereas he has only demonstrated
them so far as 𝛼3 inclusive. In a paper published in the Proceedings of
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the Royal Society, Vol. xx. 1872, I have extended Poisson’s investigation
to all powers of 𝛼.

1372. When the point considered is on the surface of the spheroid

the values of 𝑉 ought to coincide, as well as those of
𝑑𝑉
𝑑𝑟
. We will verify

this coincidence as far as the order 𝛼2 inclusive.
We put then 𝑟 = 𝑎(1 + 𝛼𝑦). Thus (10) becomes

𝑉 =
4𝜋𝜌𝑎2

3
+ 4𝜋𝜌𝑎2𝛼 {∑

1
2𝑛 + 1

𝑌𝑛 −
𝑦
3
}

+4𝜋𝜌𝑎2𝛼2 {
1
2
∑

𝑛 + 2
2𝑛 + 1

𝑌𝑛(1) − 𝑦∑
𝑛 + 1
2𝑛 + 1

𝑌𝑛 +
𝑦2

3
} . (16)

In the same way (11) becomes

𝑉 =
4𝜋𝜌𝑎2

3
+ 4𝜋𝜌𝑎2𝛼 {∑

1
2𝑛 + 1

𝑌𝑛 −
𝑦
3
}

+4𝜋𝜌𝑎2𝛼2 {−
1
2
∑

𝑛 − 1
2𝑛 + 1

𝑌𝑛(1) + 𝑦∑
𝑛

2𝑛 + 1
𝑌𝑛 −

𝑦2

6
} . (17)

Now it is obvious that in these two values of 𝑉 the term without 𝛼 is
the same in both; so also the term involving 𝛼 is the same in both. The
terms involving 𝛼2 will agree provided

1
2
∑

𝑛 + 2
2𝑛 + 1

𝑌𝑛(1) − 𝑦∑
𝑛 + 1
2𝑛 + 1

𝑌𝑛 +
𝑦2

3

= −
1
2
∑

𝑛 − 1
2𝑛 + 1

𝑌𝑛(1) + 𝑦∑
𝑛

2𝑛 + 1
𝑌𝑛 −

𝑦2

6
;

this leads to
1
2
∑𝑌𝑛(1) − 𝑦∑𝑌𝑛 +

𝑦2

2
= 0,

that is
1
2
∑𝑌𝑛(1) − 𝑦2 +

𝑦2

2
= 0;
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and this is obviously true.

Now let us compare the values of
𝑑𝑉
𝑑𝑟

for a point on the surface. We

put then 𝑟 = 𝑎(1 + 𝛼𝑦). Thus (14) becomes

𝑑𝑉
𝑑𝑟

= −
4𝜋𝜌𝑎
3

+ 4𝜋𝜌𝑎𝛼 {−∑
𝑛 + 1
2𝑛 + 1

𝑌𝑛 +
2
3
𝑦}

+4𝜋𝜌𝑎𝛼2 {−
1
2
∑

(𝑛 + 2)(𝑛 + 1)
2𝑛 + 1

𝑌𝑛(1) + 𝑦∑
(𝑛 + 2)(𝑛 + 1)

2𝑛 + 1
𝑌𝑛 − 𝑦2} . (18)

In the same way (15) becomes

𝑑𝑉
𝑑𝑟

= −
4𝜋𝜌𝑎
3

+ 4𝜋𝜌𝑎𝛼 {∑
𝑛

2𝑛 + 1
𝑌𝑛 −

𝑦
3
}

+4𝜋𝜌𝑎𝛼2 {−
1
2
∑

𝑛(𝑛 − 1)
2𝑛 + 1

𝑌𝑛(1) + 𝑦∑
𝑛(𝑛 − 1)
2𝑛 + 1

𝑌𝑛} .

Now it is obvious that in these two values of
𝑑𝑉
𝑑𝑟

the term without 𝛼

is the same in both. The terms involving 𝛼 agree, for by equating them
we arrive at the identity −∑𝑌𝑛+𝑦 = 0. The terms involving 𝛼2 agree, for
by equating them we arrive at the identity −∑𝑌𝑛(1) + 2𝑦∑𝑌𝑛 − 𝑦2 = 0.

1373. Some of the coefficients which occur in the preceding Article
admit of transformations which may be occasionally useful. Thus the co-
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efficient of 𝛼2 in (16) is transformed by Poisson in the following manner:

1
2
∑

𝑛 + 2
2𝑛 + 1

𝑌𝑛(1) − 𝑦∑
𝑛 + 1
2𝑛 + 1

𝑌𝑛 +
𝑦2

3

=
1
2
∑

𝑛 + 2
2𝑛 + 1

𝑌𝑛(1) − 𝑦∑
𝑛 +

1
2
+
1
2

2𝑛 + 1
𝑌𝑛 +

𝑦2

3

=
1
2
∑

𝑛 + 2
2𝑛 + 1

𝑌𝑛(1) −
𝑦
2
∑𝑌𝑛 −

𝑦
2
∑

1
2𝑛 + 1

𝑌𝑛 +
𝑦2

3

=
1
2
∑

𝑛 + 2
2𝑛 + 1

𝑌𝑛(1) −
𝑦2

6
−
𝑦
2
∑

1
2𝑛 + 1

𝑌𝑛

=
1
2
∑(

𝑛 + 2
2𝑛 + 1

−
1
3
) 𝑌𝑛(1) −

𝑦
2
∑

1
2𝑛 + 1

𝑌𝑛

=
1
6
∑

𝑛 + 5
2𝑛 + 1

𝑌𝑛(1) −
𝑦
2
∑

1
2𝑛 + 1

𝑌𝑛.

1374. Let us proceed with Poisson to an application of the formulæ
in Art. 1372.

Take the value of 𝑉 from (16) and the value of
𝑑𝑉
𝑑𝑟

from (18); thus
we shall find that

𝑑𝑉
𝑑𝑟

+
1
2𝑎
𝑉 +

2𝜋𝜌𝑎
3

= 2𝜋𝜌𝑎𝛼 {∑
1

2𝑛 + 1
𝑌𝑛 −

𝑦
3
−∑

2𝑛 + 2
2𝑛 + 1

𝑌𝑛 +
4
3
𝑦}

+4𝜋𝜌𝑎𝛼2 {
1
4
∑

𝑛 + 2
2𝑛 + 1

𝑌𝑛(1) −
𝑦
2
∑

𝑛 + 1
2𝑛 + 1

𝑌𝑛 +
𝑦2

6

−
1
2
∑

(𝑛 + 2)(𝑛 + 1)
2𝑛 + 1

𝑌𝑛(1) + 𝑦∑
(𝑛 + 2)(𝑛 + 1)

2𝑛 + 1
𝑌𝑛 − 𝑦2} .

The term involving 𝛼 disappears; that involving 𝛼2 is

𝜋𝜌𝑎𝛼2 {−∑(𝑛 + 2)𝑌𝑛(1) + 2𝑦∑(𝑛 + 1)𝑌𝑛 + 4𝑦∑
𝑛 + 1
2𝑛 + 1

𝑌𝑛 −
10𝑦2

3
} ,
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which may be reduced to

𝜋𝜌𝑎𝛼2 {−∑𝑛𝑌𝑛(1) + 2𝑦∑𝑛𝑌𝑛 + 4𝑦∑
𝑛 + 1
2𝑛 + 1

𝑌𝑛 −
10𝑦2

3
} .

Poisson does not work out the term 𝛼2 as it is given here; and I do
not know that any previous writer has put it explicitly in this form. If
we neglect the term in 𝛼2 we arrive at Laplace’s equation: see Art. 1196.

1375. Poisson for an application of his formulæ discusses the relative
equilibrium of a mass of homogeneous fluid in rotation. His method
presents some novelty.

In order that the figure may be nearly spherical, the centrifugal force
must be small compared with the attraction. Accordingly he supposes
that 𝛼 expresses the ratio of the centrifugal force at the distance 𝑎 from
the axis to the mean attraction at the same distance; so taking 𝑎 as the
radius of a sphere equal in volume to that of the fluid, the mean attrac-

tion is
4𝜋𝜌𝑎
3

, and the centrifugal force is
4𝜋𝜌𝑎𝛼
3

. Hence at a distance

𝑥 from the axis of rotation, the centrifugal force will be
4𝜋𝜌𝑥𝛼
3

. There-

fore, by the principles of Hydrostatics, the surface of the fluid will be
determined by the equation

2𝜋𝛼𝜌𝑥2

3
+ 𝑉 = constant, (19)

where 𝑉 and 𝑥 relate to the same point of the surface.
Now Poisson does not assume as usual that the axis from which his

𝜃 is reckoned coincides with the axis of rotation, but only that the two
straight lines are parallel. Let 𝜖 denote the distance between them. The
plane containing these two straight lines is the plane from which the
angle 𝜓 is reckoned.
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Since the distance from the axis of 𝜃 of a point on the surface is
𝑎(1 + 𝛼𝑦) sin 𝜃, we see that

𝑥2 = 𝑎2(1 + 𝛼𝑦)2 sin2 𝜃 − 2𝑎𝜖(1 + 𝛼𝑦) sin 𝜃 cos𝜓 + 𝜖2. (20)

In (19), substitute the value of 𝑥2 from (20), and the value of 𝑉 from
(16); then collecting the constant terms, we have

constant =
𝛼
2
(1 + 𝛼𝑦)2 sin2 𝜃

−
𝛼𝜖
𝑎
(1 + 𝛼𝑦) sin 𝜃 cos𝜓 + 3𝛼 (∑

1
2𝑛 + 1

𝑌𝑛 −
𝑦
3
)

+ 3𝛼2 {
1
2
∑

𝑛 + 2
2𝑛 + 1

𝑌𝑛(1) − 𝑦∑
𝑛 + 1
2𝑛 + 1

𝑌𝑛 +
𝑦2

3
} +… (21)

Since 𝑎 is the radius of a sphere of equal volume, we have

𝑎3

3
∬(1 + 𝛼𝑦)3 sin 𝜃 𝑑𝜃 𝑑𝜓 =

4𝜋𝛼3

3
, (22)

the integrals being taken for 𝜃 from 0 to 𝜋, and for 𝜓 from 0 to 2𝜋.
If we expand 𝑦, 𝑦2, and 𝑦3 in a series of Laplace’s functions, we shall

obtain by the aid of the fundamental properties of the functions

𝑌0 + 𝛼𝑌0(1) +
1
3
𝛼2𝑌0(2) = 0, (23)

where the notation is that of Art. 1367.
Then in order that nothing may be left undetermined it is convenient

to fix the position of the origin of coordinates; let us take it at the centre
of gravity of the mass. Then we have the three conditions

∬(1 + 𝛼𝑦)4 cos 𝜃 sin 𝜃 𝑑𝜃 𝑑𝜓 = 0,

∬(1 + 𝛼𝑦)4 sin2 𝜃 sin𝜓𝑑𝜃 𝑑𝜓 = 0,

∬(1 + 𝛼𝑦)4 sin2 𝜃 cos𝜓𝑑𝜃 𝑑𝜓 = 0.
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Now if we substitute in these integrals the expansions of 𝑦, 𝑦2, 𝑦3,
and 𝑦4, all the terms disappear from the integrals except those which
involve Laplace’s coefficients of the first order. Moreover, each of these
coefficients of the first order is of the form

ℎ cos 𝜃 + ℎ′ sin 𝜃 sin𝜓 + ℎ″ sin 𝜃 cos𝜓,

where ℎ, ℎ′ and ℎ″ are constants.
Hence the integrations can be completely effected; and by adding the

results we obtain

𝑌1 +
3𝛼
2
𝑌1(1) + 𝛼2𝑌1(2) +

𝛼3

4
𝑌1(3) = 0. (24)

The equations (23) and (24) shew that 𝑌0 and 𝑌1 are both of the order
𝛼, on our hypothesis as to the value of 𝑎 and the position of the origin;
and as these terms are multiplied by 𝛼 in the expression 𝑎(1 + 𝛼𝑦), they
are to be neglected when we neglect quantities of the order 𝛼2.

The quantity 𝜖 is unknown; but as only whole positive powers of 𝛼
occur in equation (21) we see that 𝜖 may be represented thus

𝜖 = 𝑒 + 𝑒′𝛼 + 𝑒″𝛼2 +… ,

where the coefficients 𝑒, 𝑒′, 𝑒″, … are quantities independent of 𝛼, which
have to be determined.

1376. Thus we see that the novelties in the process are these: Pois-
son has the accurate equations (23) and (24), of which Laplace used the
approximate forms. Also Poisson does not assume that the axis of rota-
tion passes through the centre of gravity; but takes the distance of the
centre of gravity from the axis of rotation as one of the quantities to be
determined.

1377. Let us proceed with Poisson’s solution. Take the equation (21)
and retain only the first powers of 𝛼. Then

constant =
𝛼
2
sin2 𝜃 −

𝛼𝑒
𝑎
sin 𝜃 cos𝜓 + 3𝛼∑(

1
2𝑛 + 1

𝑌𝑛 −
𝑦
3
) ,
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that is,

constant =
𝛼
2
sin2 𝜃 −

𝛼𝑒
𝑎
sin 𝜃 cos𝜓 − 2𝛼∑

𝑛 − 1
2𝑛 + 1

𝑌𝑛.

Equate to zero in the right-hand member the sum of the terms which

relate to each index 𝑛, except 𝑛 = 0; then since sin2 𝜃−
2
3
is of the nature

of 𝑌2, and sin 𝜃 cos𝜓 is of the nature of 𝑌1, we see that 𝑌𝑛 must be zero
for every value of 𝑛 greater than 2. And also

𝑒 = 0,

𝑌2 =
5
4
(sin2 𝜃 −

2
3
) .

Hence the radius of the surface, which is 𝑎(1 + 𝛼𝑦), becomes

𝑎 {1 +
5𝛼
4
(sin2 𝜃 −

2
3
)} .

If we wish to proceed to a second approximation we may put

𝑦 =
5
4
(sin2 𝜃 −

2
3
) + 𝛼𝑧,

and suppose that 𝑧 is expanded in a series of Laplace’s Functions; so that
𝑧 = ∑𝑍𝑛.

Neglect in (21) the powers of 𝛼 above the second. It will be easily
seen that 𝑍𝑛 vanishes if 𝑛 be greater than 4. Also it will be found that
𝑒′ = 0, and 𝑍3 = 0; and the values of 𝑍2 and 𝑍4 will be obtained. The
values of 𝑍0 and 𝑍1 must be obtained from (23) and (24); which will
give, to the order of approximation with which we are concerned,

𝑍0 = −𝑌0(1),

𝑍1 = −
3
2
𝑌1(1);
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and 𝑌0(1) and 𝑌1(1) are known by our first approximation, which indeed
gives 𝑌1(1) = 0, neglecting 𝛼 as we may here.

1378. We will work out the approximation to the second order, which
Poisson only sketches, as by comparison with what we gave from Legen-
dre’s fourth memoir, the two processes will afford mutual verification.

The equation (21) gives us to the second order

constant =
𝛼
2
(1 + 2𝛼𝑌2) sin

2 𝜃 −
𝛼𝜖
𝑎
(1 + 𝛼𝑌2) sin 𝜃 cos𝜓

−
2𝛼
5
𝑌2 − 2𝛼2∑

𝑛− 1
2𝑛 + 1

𝑍𝑛

+ 3𝛼2 {
1
6
∑

𝑛 + 5
2𝑛 + 1

𝑌𝑛(1) −
𝑌2
2
.
𝑌2
5
} ,

where 𝑌2 stands for
5
4
(sin2 𝜃 −

2
3
).

The transformation of Art. 1373 has been used here.
Thus the equation reduces to

constant = 𝛼2𝑌2 sin
2 𝜃 −

𝛼2𝑒′

𝑎
sin 𝜃 cos𝜓 − 2𝛼2∑

𝑛− 1
2𝑛 + 1

𝑍𝑛

+3𝛼2 {
1
6
∑

𝑛 + 5
2𝑛 + 1

𝑌𝑛(1) −
1
10
(𝑌2)2} .

Now sin2 𝜃 =
4
5
𝑌2 +

2
3
. Hence

constant =
2
3
𝛼2𝑌2 −

𝛼2𝑒′

𝑎
sin 𝜃 cos𝜓 − 2𝛼2∑

𝑛− 1
2𝑛 + 1

𝑍𝑛

+
𝛼2

2
∑(

𝑛 + 5
2𝑛 + 1

+ 1)𝑌𝑛(1).

We may divide by 𝛼2 which is constant. Since there is no term to
balance 𝑍𝑛 when 𝑛 is greater than 4, we see that then 𝑍𝑛 must vanish.
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Also 𝑒′ = 0, for there is no term of the first order in Laplace’s functions,
except that in which 𝑒′ occurs. In like manner 𝑍3 = 0. The terms 𝑍0 and
𝑌0(1) may be included in the constant. Hence finally

constant =
2
3
𝑌2 − 2 {

1
5
𝑍2 +

1
3
𝑍4} +

6
5
𝑌2(1) + 𝑌4(1).

Therefore
2
5
𝑍2 =

2
3
𝑌2 +

6
5
𝑌2(1),

and
2
3
𝑍4 = 𝑌4(1).

But 𝑌2 = −
5
6
𝑃2, so that (𝑌2)2 =

25
36
(𝑃2)2; and it will be found that

35(𝑃2)2 = 18𝑃4 + 10𝑃2 + 7. See Art. 913.
Thus

𝑍4 =
3
2
.
5
14
𝑃4,

𝑍2 =
5
3
𝑌2 +

3 . 25
7 . 18

𝑃2 = −
4
7
.
25
18
𝑃2.

And from Art. 1377 we find that

𝑍0 = −
5
36
, 𝑍1 = 0.

Hence we obtain for the radius vector of the surface

𝑎 {1 + 𝛼𝑌2 + 𝛼2 [
3
2
.
5
14
𝑃4 −

4
7
.
25
18
𝑃2 −

5
36
]} .

It will be found that the term involving 𝛼2 reduces to

𝛼2 [
75
32

cos4 𝜃 −
43
7
.
25
48

cos2 𝜃 +
25 . 37
7 . 9 . 32

] ;
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so that the radius vector of the surface becomes

𝑎 {1 +
5
4
𝛼 (sin2 𝜃 −

2
3
) + 𝛼2 [

75
32

cos4 𝜃 −
43
7
.
25
48

cos2 𝜃 +
25 . 37
7 . 9 . 32

]} .

Let 𝑏 denote the polar radius; then

𝑏 = 𝑎 {1 −
5
4
.
2
3
𝛼 + 𝛼2 [

75
32

−
43
7
.
25
48

+
25 . 37
7 . 9 . 32

]} .

Substitute for 𝑎 in terms of 𝑏 in the expression for the radius vector;
and to the second order we shall find that the radius vector

= 𝑏 {1 +
5
4
𝛼 sin2 𝜃 + 𝛼2 sin2 𝜃 [−

75
32
(1 + cos2 𝜃) +

43
7
.
25
48

+
25
24
]}

= 𝑏 {1 +
5
4
𝛼 sin2 𝜃 + 𝛼2 sin2 𝜃 (

75
32

sin2 𝜃 −
25
56
)} .

We may now compare this with Legendre’s result.
The expression in equation (16) of Art. 914 becomes, when the body

is homogeneous,

𝑏 {1 +
5
4
𝜅 sin2 𝜃 +

3 . 25
4 . 28

𝜅2 sin2 𝜃 (4 +
7
2
sin2 𝜃)} .

Now 𝜔 being the angular velocity we have Legendre’s 𝜅 =
𝑏3𝜔2

𝑀
, and

Poisson’s 𝛼 =
𝑎3𝜔2

𝑀
; so that

𝜅
𝛼
=
𝑏3

𝑎3
and therefore

𝜅 = 𝛼 −
5
2
𝛼2 approximately.
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Using this value of 𝜅 in terms of 𝛼 we shall find that Legendre’s ex-
pression for the radius vector coincides with Poisson’s.

To complete the comparison of the two results we may determine the
ellipticity furnished by Poisson’s process; this of course will agree with
Legendre’s. Let the equatorial radius be denoted by 𝑏(1 + 𝜖); then

𝑏(1 + 𝜖) = 𝑎 {1 +
5
12
𝛼 +

25 . 37
7 . 9 . 32

𝛼2} ,

and

𝑏 = 𝑎 {1 −
5
6
𝛼 −

25
63
𝛼2} ;

hence by division we find that to the order 𝛼2

𝜖 =
5
4
𝛼 +

25 . 17
7 . 32

𝛼2.

Now Legendre’s value, given in equation (17) of Art. 914, becomes
when the body is homogeneous

𝜖 =
5
4
𝜅 +

75 . 15
8 . 28

𝜅2.

Put 𝛼 −
5
2
𝛼2 for 𝜅, and it will be found that this coincides with the

value obtained by Poisson’s process.

1379. Poisson concludes his discussion of the problem with some re-
marks; one passage has been quoted in Art. 1084.

1380. We will now return to equations (10) and (11). Suppose in
succession two spheroids of the same matter, very little different from
the same sphere. Let 𝑎(1 + 𝛼𝑦) denote the radius vector of one, and let
𝑎(1+𝛼𝑦+𝛼𝑧) denote the radius vector of the other. Here 𝑧 is supposed to
be a given function of 𝜃 and 𝜓, as 𝑦 is; and we suppose also that 𝑧 may
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be developed in a series of Laplace’s functions, which may be denoted
by ∑𝑍𝑛. Let Δ𝑉 represent that part of 𝑉 which arises from the matter
between these two surfaces. Then if we neglect powers of 𝛼 superior to
the first, we have from (10) and (11) respectively

Δ𝑉 =
4𝜋𝜌𝑎3𝛼

𝑟
∑

1
2𝑛 + 1

𝑎𝑛

𝑟𝑛
𝑍𝑛,

Δ𝑉 =4𝜋𝜌𝑎2𝛼∑
1

2𝑛 + 1
𝑟𝑛

𝑎𝑛
𝑍𝑛.

The first formula supposes the attracted particle to be outside the
outer surface, and the second formula supposes the attracted particle to
be inside the inner surface. Let 𝑅1 denote the action towards the centre
in the first case, and 𝑅2 that in the second case. Then

𝑅1 =
4𝜋𝜌𝑎3𝛼
𝑟2

∑
𝑛+ 1
2𝑛 + 1

𝑎𝑛

𝑟𝑛
𝑍𝑛,

𝑅2 = −
4𝜋𝜌𝑎2𝛼

𝑟
∑

𝑛
2𝑛 + 1

𝑟𝑛

𝑎𝑛
𝑍𝑛.

If we make 𝑟 = 𝑎 in these formulæ we see that

𝑅1 − 𝑅2 = 4𝜋𝜌𝑎𝛼∑𝑍𝑛 = 4𝜋𝜌𝑎𝛼𝑧.

This shews that if two particles are situated on the same radius, one
at the outer surface of the stratum and the other at the inner surface of
the stratum, the difference of the actions at these points in the direction
of the radius is proportional to the thickness of the stratum and is the
same as if the stratum were spherical.

Poisson adds:
On trouve une démonstration synthétique et plus générale de cette même

proposition, dans mon premier Mémoire sur l’Electricité; M. Cauchy l’a aussi
démontrée d’une autre manière dans le Bulletin de la Société Philomatique.
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The synthetical demonstration is, I presume, more general from not
assuming the form to be nearly spherical: see Art. 1357.

1381. The transition is easy and obvious from the formulæ that have
been given to those which will apply to a heterogeneous body, in which
the density is a function of the parameter 𝑎 by which each stratum is
determined.

Let 𝑐 be the value of 𝑎 at the surface. Then from (10) we see that for
an external particle

𝑉 =
4𝜋
𝑟
∫

𝑐

0
𝜌𝑎2 𝑑𝑎+

4𝜋
𝑟
[𝛼∑

1
(2𝑛 + 1)𝑟𝑛

𝑄𝑛 +
𝛼2

2
∑

𝑛 + 2
(2𝑛 + 1)𝑟𝑛

𝑄𝑛
(1) +…] ,

where 𝑄𝑛
(𝑖) stands for ∫

𝑐

0
𝜌
𝑑 . 𝑎𝑛+3𝑌𝑛(𝑖)

𝑑𝑎
𝑑𝑎.

For an internal particle situated on the stratum of which the param-
eter is 𝑎0 we shall have for 𝑉 a formula consisting of two parts; one part
is derived from (10) applied to the body so far as it is comprised between
𝑎 = 0, and 𝑎 = 𝑎0; and the other part is derived from (11) so far as it is
comprised between 𝑎 = 𝑎0 and 𝑎 = 𝑐. Thus

𝑉 =
4𝜋
𝑟
∫

𝑎0

0
𝜌𝑎2 𝑑𝑎

+
4𝜋
𝑟
[𝛼∑

1
(2𝑛 + 1)𝑟𝑛

𝐴𝑛 +
𝛼2

2
∑

𝑛 + 2
(2𝑛 + 1)𝑟𝑛

𝐴𝑛
(1) +…]

+ 4𝜋∫
𝑐

𝑎0

𝜌𝑎𝑑𝑎 + 4𝜋 [𝛼∑
𝑟𝑛

2𝑛 + 1
𝐵𝑛 −

𝛼2

2
∑

(𝑛 − 1)𝑟𝑛

2𝑛 + 1
𝐵𝑛(1) +…] , (25)

where 𝐴𝑛
(𝑖) stands for ∫

𝑎0

0
𝜌
𝑑 . 𝑎𝑛+3𝑌𝑛(𝑖)

𝑑𝑎
𝑑𝑎,

and 𝐵𝑛(𝑖) stands for ∫
𝑐

𝑎0

𝜌
𝑑 . 𝑎2−𝑛𝑌𝑛(𝑖)

𝑑𝑎
𝑑𝑎.
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Moreover we must remember that 𝑟 = 𝑎0(1 + 𝛼𝑦), so that if we sub-
stitute this value 𝑉 will become a function of 𝜃 and 𝜓.

The subscript may be omitted from 𝑎0 without danger in the use we
shall make of the formula for 𝑉.

1382. We shall have to be careful in determining the values of the
differential coefficients of 𝑉 for an internal particle. Poisson says that
the differential coefficients of 𝑉 with respect to 𝜃 and 𝜓 are to be taken
before the substitution of the value of 𝑟; and hence neglecting 𝛼2 we
shall have from the fundamental equation of Laplace’s functions applied
to 𝑉,

1
sin 𝜃

𝑑
𝑑𝜃

(sin 𝜃
𝑑𝑉
𝑑𝜃

) +
1

sin2 𝜃
𝑑2𝑉
𝑑𝜓2

=

−
4𝜋𝛼
𝑎

∑
𝑛(𝑛 + 1)
(2𝑛 + 1)𝑎𝑛

𝐴𝑛 − 4𝜋𝛼∑
𝑛(𝑛 + 1)𝑎𝑛

2𝑛 + 1
𝐵𝑛. (26)

It seems to me that Poisson ought also to have stated that the differ-
ential coefficients of 𝑉 with respect to 𝜃 and 𝜓 are formed on the sup-

position that 𝑟 is constant. Hence when we require
𝑑𝑉
𝑑𝜃

we must vary

𝑎0 in such a manner that
𝑑
𝑑𝜃
𝑎0(1 + 𝛼𝑦) = 0: but this will not have any

influence to the order he has retained.

To find
𝑑𝑉
𝑑𝑟

Poisson substitutes for 𝑟 its value: thus neglecting 𝛼2 we

have

𝑉 =
4𝜋
𝑎
(1 − 𝛼𝑦)∫

𝑎

0
𝜌𝑎2𝑑𝑎 + 4𝜋∫

𝑐

𝑎
𝜌𝑎𝑑𝑎

+
4𝜋𝛼
𝑎

∑
𝐴𝑛

(2𝑛 + 1)𝑎𝑛
+ 4𝜋𝛼∑

𝑎𝑛𝐵𝑛
2𝑛 + 1

. (27)
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If we differentiate with respect to 𝑎 we shall find that the terms
which arise from the variation in the limits of the integrals cancel; and
so we get

𝑑𝑉
𝑑𝑎

= −
4𝜋
𝑎2

{1 − 𝛼𝑦 + 𝛼𝑎
𝑑𝑦
𝑑𝑎

}∫
𝑎

0
𝜌𝑎2𝑑𝑎

−
4𝜋𝛼
𝑎2

∑
𝑛+ 1

(2𝑛 + 1)𝑎𝑛
𝐴𝑛 +

4𝜋𝛼
𝑎

∑
𝑛𝑎𝑛

2𝑛 + 1
𝐵𝑛.

But we have
𝑑𝑉
𝑑𝑎

=
𝑑𝑉
𝑑𝑟

𝑑𝑟
𝑑𝑎

=
𝑑𝑉
𝑑𝑟

(1 + 𝛼𝑦 + 𝛼𝑎
𝑑𝑦
𝑑𝑎

); and hence, putting

for
𝑑𝑉
𝑑𝑎

its value, it follows that

𝑑𝑉
𝑑𝑟

= −
4𝜋
𝑎2
(1 − 2𝛼𝑦)∫

𝑎

0
𝜌𝑎2𝑑𝑎

−
4𝜋𝛼
𝑎2

∑
𝑛+ 1

(2𝑛 + 1)𝑎𝑛
𝐴𝑛 +

4𝜋𝛼
𝑎

∑
𝑛𝑎𝑛

2𝑛 + 1
𝐵𝑛. (28)

Poisson says that this is the same result as we should have obtained
if we had differentiated 𝑉 before the value of 𝑟 was substituted, and had

not varied 𝑎; but we should go wrong if we formed the value of
𝑑2𝑉
𝑑𝑟2

in

this other way.
The equations (27) and (28) give

𝑑
𝑑𝑟
(𝑟𝑉) = 4𝜋∫

𝑐

𝑎
𝜌𝑎𝑑𝑎 −

4𝜋𝛼
𝑎

∑
𝑛

(2𝑛 + 1)𝑎𝑛
𝐴𝑛 + 4𝜋𝛼∑

(𝑛 + 1)𝑎𝑛

2𝑛 + 1
𝐵𝑛.

Differentiate with respect to 𝑎, and multiply by 𝑟
𝑑𝑎
𝑑𝑟
, that is by
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𝑎 (1 − 𝛼𝑎
𝑑𝑦
𝑑𝑎

). Then we shall get

𝑟
𝑑2(𝑟𝑉)
𝑑𝑟2

= −4𝜋𝜌𝑎2(1 + 2𝛼𝑦)

+
4𝜋𝛼
𝑎

∑
𝑛(𝑛 + 1)
(2𝑛 + 1)𝑎𝑛

𝐴𝑛 + 4𝜋𝛼∑
𝑛(𝑛 + 1)𝑎𝑛

2𝑛 + 1
𝐵𝑛, (29)

after suppressing the terms which vanish since

𝑦 = ∑𝑌𝑛, and
𝑑𝑦
𝑑𝑎

= ∑
𝑑𝑌𝑛
𝑑𝑎

.

The formula in (29) includes the term −4𝜋𝜌𝑎2(1+2𝛼𝑦) which would
not have appeared if we had differentiated twice with respect to 𝑟 with-
out varying 𝑎.

From (26) and (29) we have by addition

𝑟
𝑑2(𝑟𝑉)
𝑑𝑟2

+
1

sin 𝜃
𝑑
𝑑𝜃

(sin 𝜃
𝑑𝑉
𝑑𝜃

) +
1

sin2 𝜃
𝑑2𝑉
𝑑𝜓2

= −4𝜋𝜌𝑎2(1 + 2𝛼𝑦).

The right-hand member is −4𝜋𝜌𝑟2, since we have neglected 𝛼2. Thus
the result agrees with one already found, namely Poisson’s correction of
Laplace’s fundamental equation for the case of an internal particle: see
Art. 1365.

1383. There is nothing inadmissible in the way in which Poisson

finds the value of
𝑑𝑉
𝑑𝑟

for an internal particle; but I prefer another way.

It seems to be more natural to take equation (25) and to put

𝑑𝑉
𝑑𝑟

= (
𝑑𝑉
𝑑𝑟
) + (

𝑑𝑉
𝑑𝑎

)
𝑑𝑎
𝑑𝑟
,
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where (
𝑑𝑉
𝑑𝑟
) means that 𝑟 alone varies, and (

𝑑𝑉
𝑑𝑎

) means that 𝑎 alone

varies. Then after differentiation substitute for 𝑟 its value. Thus

(
𝑑𝑉
𝑑𝑟
) = −

4𝜋
𝑟2

∫
𝑎

0
𝜌𝑎2 𝑑𝑎 −

4𝜋
𝑟2
𝛼∑

𝑛 + 1
(2𝑛 + 1)𝑟𝑛

𝐴𝑛 + 4𝜋𝛼∑
𝑛𝑟𝑛−1

2𝑛 + 1
𝐵𝑛,

(
𝑑𝑉
𝑑𝑎

) =
4𝜋𝜌𝑎2

𝑟
− 4𝜋𝜌𝑎 +

4𝜋𝛼
𝑟

∑
1

(2𝑛 + 1)𝑟𝑛
𝑑𝐴𝑛
𝑑𝑎

+ 4𝜋𝛼∑
𝑟𝑛

2𝑛 + 1
𝑑𝐵𝑛
𝑑𝑎

.

When we develop the expression for (
𝑑𝑉
𝑑𝑎

) we find that

(
𝑑𝑉
𝑑𝑎

) = 4𝜋𝜌𝑎 (
𝑎
𝑟
− 1) + 4𝜋𝜌𝑎𝛼∑𝑌𝑛 = −4𝜋𝜌𝑎𝛼𝑦 + 4𝜋𝜌𝑎𝛼𝑦 = 0.

Thus to our order of approximation

𝑑𝑉
𝑑𝑟

= (
𝑑𝑉
𝑑𝑟
) = −

4𝜋
𝑎2
(1 − 2𝛼𝑦)∫

𝑎

0
𝜌𝑎2 𝑑𝑎

−
4𝜋𝛼
𝑎2

∑
𝑛+ 1

(2𝑛 + 1)𝑎𝑛
𝐴𝑛 +

4𝜋𝛼
𝑎

∑
𝑛𝑎𝑛

2𝑛 + 1
𝐵𝑛.

In like manner

𝑑2𝑉
𝑑𝑟2

= (
𝑑2𝑉
𝑑𝑟2

) + 2 (
𝑑2𝑉
𝑑𝑎𝑑𝑟

)
𝑑𝑎
𝑑𝑟

+ (
𝑑2𝑉
𝑑𝑎2

) (
𝑑𝑎
𝑑𝑟
)
2
+ (

𝑑𝑉
𝑑𝑎

)
𝑑2𝑎
𝑑𝑟2

.

Now it will be found that to our order

(
𝑑2𝑉
𝑑𝑎𝑑𝑟

) = −4𝜋𝜌 (1 + 𝛼𝑦 + 𝑎𝛼
𝑑𝑦
𝑑𝑎

) = −4𝜋𝜌
𝑑𝑟
𝑑𝑎

,

so that
(
𝑑2𝑉
𝑑𝑎𝑑𝑟

)
𝑑𝑎
𝑑𝑟

= −4𝜋𝜌.
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And

(
𝑑2𝑉
𝑑𝑎2

) = 4𝜋𝜌 (1 + 2𝛼𝑦 + 2𝑎𝛼
𝑑𝑦
𝑑𝑎

) = 4𝜋𝜌 (
𝑑𝑟
𝑑𝑎

)
2
,

so that

(
𝑑2𝑉
𝑑𝑎2

) (
𝑑𝑎
𝑑𝑟
)
2
= 4𝜋𝜌.

Hence to our order

𝑑2𝑉
𝑑𝑟2

= (
𝑑2𝑉
𝑑𝑟2

) − 8𝜋𝜌 + 4𝜋𝜌 = (
𝑑2𝑉
𝑑𝑟2

) − 4𝜋𝜌.

1384. That part of Poisson’s memoir which relates to the expansion
of a series in terms of Laplace’s functions was criticised by Ivory in the
Philosophical Magazine for May 1827: I do not see any fresh matter of
importance.

Poisson replied in a paper inserted in the Philosophical Magazine for
July 1827, entitled Observations relatives à un Article de Mr. Ivory, inséré
dans le No. 5. du Philosophical Magazine…. This is numbered XI. in the
list of Art. 1356; the title there given was probably quoted by Poisson
from memory, as it is not quite accurate; also the paper is assigned to
June 1827, instead of to July 1827. Poisson’s reply seems to me suffi-
cient. He states here without demonstration the general theorem in the
first section of the work numbered XII. in Art. 1356, to which we now
proceed.

1385. We have to notice the Addition to Poisson’s memoir which was
published in the Connaissance des Tems for 1831: see Art. 1358.

This Addition consists of four Articles, and is mainly occupied with
the theory of Laplace’s functions.

1386. In his first Article, Poisson finds the value, when 1 − 𝛼 is in-
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finitesimal, of the double integral

𝑐
𝜋21+𝑐

∫
𝜋

0
∫

2𝜋

0

(1 − 𝛼2)𝑐𝑓(𝜃′, 𝜓′) sin 𝜃′ 𝑑𝜃′ 𝑑𝜓′

(1 − 2𝛼𝑝 + 𝛼2)1+ 𝑐
2

,

where
𝑝 = cos 𝜃 cos 𝜃′ + sin 𝜃 sin 𝜃′ cos(𝜓 − 𝜓′).

This is a more general process than that in the original memoir,
where he had confined himself to the case of 𝑐 = 1.

The value of the double integral is found to be 𝑓(𝜃, 𝜓).

1387. In his second Article, Poisson gives a particular case of the
general investigation of his first Article; namely that in which 𝑓(𝜃′, 𝜓′) =
𝑝.

1388. In his third Article, Poisson combats the notions of Ivory on
Hydrostatics; these notions will come before us in the next Chapter. Pois-
son says on his page 53:

… M. Ivory a persisté dans son opinion, et en a pris occasion de la dévelop-
per dans plusieurs articles du Philosophical Magazine. Je persiste également
dans la mienne, et j’abandonne au jugement des géomètres les motifs que j’en
ai donnés; je demande toutefois la permission d’ajouter à la note qui les ren-
ferme, une observation dont j’ai lieu d’espérer que mon honorable adversaire
sera frappé.

The argument which is thus introduced is given again by Poisson in
his Traité de Mécanique, Vol. ii. page 549, but there he does not mention
Ivory.

We may observe that the French writers or printers have been very
unfortunate in their efforts to spell Ivory’s name. Poisson has Yvory
in the Connaissance des Tems for 1829, and Yvori in his Traité de
Mécanique, Vol. i. page 194. Laplace has Ivori in the Mécanique Céleste,
Vol. v. page 10.
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1389. In his fourth Article Poisson treats of the convergence of the
series obtained when a function is expanded in a series of Laplace’s func-
tions. This Article is reproduced by Poisson in his Théorie de la Chaleur,
pages 222 and 223. A few lines at the end respecting approximate val-
ues of Laplace’s coefficients, in which Poisson refers to the third page
of the Supplement to the fifth volume of the Mécanique Céleste, are not
reproduced.

1390. The second edition of Poisson’s Traité de Mécanique was pub-
lished in 1833 in two octavo volumes. There is nothing new in the work
with regard to our subject. The first volume contains a Chapter on the
attraction of bodies, which occupies pages 169…202; and also a calcula-
tion of the attraction of a mountain, on pages 492…496: this arrives at
the result which, as we stated in Art. 363, was first given by Bouguer.
The second volume contains, on pages 538…549, a brief account of the
problem of the Figure of the Earth considered as a homogeneous fluid
rotating with uniform angular velocity.

1391. We pass now to the memoir which is numbered XIV. in Art.
1356.

In the Mémoires … de l’Institut de France, Vol. xiii., published in
1835, there is a memoir entitled Mémoire sur l’attraction d’un ellipsoïde
homogène. The memoir occupies pages 497…545 of the volume. The
memoir was read to the Academy on October 7, 1833.

1392. The memoir may be described as consisting essentially of a
new and easy demonstration of the final result obtained by Legendre in
his remarkable but most difficult memoir of 1788: Poisson’s memoir is
a fine specimen of his great mathematical powers; admirable alike for
simplicity and profundity. He treats of the attraction both on an internal
and an external particle; but it is only in the treatment of the latter that
the novelty of the method consists.

1393. Poisson’s introduction is very interesting, giving a brief sketch
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of the labours of preceding writers; I have quoted a passage from it in
Art. 887.

1394. The main principle of the memoir is the mode of decompo-
sition of the ellipsoid into elements. Poisson decomposes the ellipsoid
into films bounded by similar, similarly situated, and concentric ellip-
soids. He determines the attraction of such a film, and demonstrates the
remarkable result that the attraction it exerts on an external particle is
directed along the axis of the cone which has its vertex at the attracted
particle and envelopes the film. An elementary demonstration of this re-
sult was given by Steiner in Crelle’s Journal für Mathematik, Vol. xii. See
Statics, Chapter XIII.

1395. We have in this memoir expressions for the components of the
attraction of an ellipsoid under a form slightly different from that which
had been previously given by all the writers on the subject, except Ro-
drigues.

Let 𝑎, 𝑏, 𝑐 be the semiaxes of an ellipsoid; let 𝑓, 𝑔, ℎ be the corre-
sponding coordinates of an attracted particle. Then the resolved attrac-
tion parallel to the direction of 𝑎 is

2𝜋𝑓𝑎𝑏𝑐∫
∞

𝜏

𝑑𝑡
(𝑡 + 𝑎2)√𝑇

,

where
𝑇 = (𝑡 + 𝑎2)(𝑡 + 𝑏2)(𝑡 + 𝑐2),

and 𝜏 is found from the equation

𝑓2

𝜏 + 𝑎2
+

𝑔2

𝜏 + 𝑏2
+

ℎ2

𝜏 + 𝑐2
= 1,

for the case of any external particle.
For a particle on the surface or within the body we put 0 for 𝜏.
Poisson’s own notation is not symmetrical like this; but his result is

substantially the same.
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The resolved attractions parallel to the directions of 𝑏 and 𝑐 can be
immediately deduced by symmetry from the formula which has just been
given.

1396. The expression given in the preceding Article may be easily
obtained from the older form by transformation. In the formula of Art.
885 suppose

𝑥2 =
𝜏 + 𝑎2

𝑡 + 𝑎2
and 𝑘2 = 𝜏 + 𝑎2;

then we arrive at the new expression for the case of an external particle.
And conversely from the new expression given by Poisson we can

pass as he does to the older form.
The expression given in the preceding Article may also be readily ob-

tained from the value of the potential 𝑉 which is investigated in Art.
1184; Rodrigues himself brings out results which are practically equiva-
lent to Poisson’s expression.

1397. It will be found on examination that Poisson’s first three sec-
tions contain nothing that is really new, except the pages 508 and 509,
which are used in his fourth section. The fourth section which occupies
pages 533…545 is the important part.

1398. Poisson has followed Legendre’s memoir, of 1812 in expressing
the attractions on an external particle by means of elliptic integrals.

Let 𝑋, 𝑌, 𝑍 be the resolved attractions on the external point, 𝑓, 𝑔, ℎ;
then Poisson shews that

𝑋
𝑓
+
𝑌
𝑔
+
𝑍
ℎ
=

4𝜋𝑎𝑏𝑐
√{(𝜏 + 𝑎2)(𝜏 + 𝑏2)(𝜏 + 𝑐2)}

,

where 𝜏 is the same as in Art. 1395.
It could also be shewn that

𝑋(𝜏 + 𝑎2)
𝑓

+
𝑌(𝜏 + 𝑏2)

𝑔
+
𝑍(𝜏 + 𝑐2)

ℎ
=

4𝜋𝑎𝑏𝑐
√(𝑐2 − 𝑎2)

𝐹(𝑘, 𝜙),
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where 𝐹(𝑘, 𝜙) is a certain elliptic integral of the first kind, and 𝑎 is the
least semiaxis and 𝑐 the greatest.

These results are due to Legendre: see his memoir of 1812.
It follows that

𝑋𝑎2

𝑓
+
𝑌𝑏2

𝑔
+
𝑍𝑐2

ℎ
=

4𝜋𝑎𝑏𝑐
√(𝑐2 − 𝑎2)

𝐹(𝑘, 𝜙) −
4𝜋𝑎𝑏𝑐𝜏

√{(𝜏 + 𝑎2)(𝜏 + 𝑏2)(𝜏 + 𝑐2)}
.

See Arts. 1157 and 1158 for the case of an internal particle.

1399. In the Supplément au Livre v. of his Théorie Analytique du
Système du Monde, Pontécoulant reproduces the substance of Poisson’s
memoir of 1835. Pontécoulant confines himself to what is new in the
memoir, and thus condenses it into pages 1…20 of his supplement.

Pontécoulant makes some changes in the notation which I think are
not improvements; he has a few misprints, which are not serious except
on his pages 20 and 21, where he gives two results which were obtained
by Legendre in his memoir of 1812. The second of these results Pon-
técoulant states incorrectly both for the internal and external point: see
Art. 1398.

1400. In the Connaissance des Tems for 1837, which was published in
1834, there is a note by Poisson entitled Note relative à l’attraction d’un
ellipsoïde hétérogène. The note occupies pages 93…102 of the volume: it
was read to the French Academy on Nov. 24th, 1834. This note may be
considered as an Appendix to the memoir in the Mémoires … de l’Institut
for 1835.

1401. Poisson begins by referring to a letter recently sent by Jacobi
to the French Academy, in which two results were enunciated. One was
what we call Jacobi’s theorem, namely that an ellipsoid is a possible form
of relative equilibrium for rotating fluid. The other related to the attrac-
tion of a heterogeneous ellipsoid; the components of this attraction might
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be expressed in certain cases in a finite form, by arcs of circles and loga-
rithms, without the aid of elliptic functions. Poisson’s note relates to the
second result; Jacobi had not published his demonstration, and mean-
while Poisson proposed to shew that the integration could be readily de-
duced from the formulæ which he had given in his memoir.

1402. Suppose an ellipsoid to consist of infinitesimally thin shells,
each shell being bounded by similar, similarly situated, and concentric
ellipsoids. Let the principal semiaxes of a shell be denoted by 𝑘, 𝑘√𝑚,
and 𝑘√𝑛, where 𝑚 and 𝑛 are constant for all the shells. Let the density of
the shells be expressed by a function of 𝑘. Then Poisson gives formulæ
for determining the components of the attraction of the ellipsoid at a
given point, external or internal.

1403. Poisson works out fully the particular case in which the density
varies inversely as 𝑘. In this case although the density is infinite at the
centre, yet the components of the attraction are finite quantities. If the
attracted point is within the ellipsoid, the components remain constant
along a given direction from the centre to the surface.

This particular case is also discussed by Pontécoulant in pages 22…26
of the work named in Art. 1399. Pontécoulant follows Poisson closely,
though with rather less detail.

Poisson said in his note that it would be difficult to discover from the
ancient formulæ for the attraction of an ellipsoid, when the integration
could be effected in finite terms; but Pontécoulant does not admit this. In
fact the ancient formulæ and those which Poisson prefers are connected,
as we have seen in Art. 1396, by a very simple transformation. Thus
practically what could be derived from Poisson’s formulæ could also be
derived from the ancient formulæ.

1404. It will be convenient to notice here the controversy in 1837 be-
tween Poisson and Poinsot concerning the history of the problem of the
attraction of an ellipsoid on an external particle. See the Comptes Rendus
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… Vol. vi. pages 808…812, 837…840, 869…872; and Vol. vii. pages 1…3,
23 and 24.

Poisson’s share in the controversy forms the articles which are num-
bered XVII. in the list of Art. 1356.

Chasles presented to the Academy a memoir entitled Solution synthé-
tique du problème de l’attraction des ellipsoïdes, dans le cas général d’un
ellipsoïde hétérogène, et d’un point extérieur. The memoir was referred by
the Academy to Libri and Poinsot; and the report on the memoir was
made by Poinsot.

1405. In this report Poinsot gave no reference to Poisson’s memoir.
Poisson made some remarks on the report; in these remarks, after stat-
ing the nature of Legendre’s memoir of 1788, he proceeds to his own
researches. He lays great stress on the fact that he had decomposed the
ellipsoid into shells indefinitely thin and bounded by homothetical sur-
faces, and had determined the attraction of such a shell on an external
particle. He does not hesitate to say that this is the only mode of decom-
position by which the double integrals occurring in the problem can be
reduced to single integrals. He thinks that the title of his memoir might
have been mentioned in the report respecting Chasles’s memoir, in which
the same method of decomposition was in fact adopted. It seems to me
that Poisson is both just and reasonable in all he says.

The following passage from page 839 is of sufficient interest to be
reproduced:

Si quelqu’un se fût avisé de différentier les expressions que Laplace a donné
le premier, des composantes de l’attraction d’un ellipsoïde sur un point extérieur,
en faisant varier les trois axes suivant un même rapport, il aurait vu que les
intégrales disparaissent dans le résultat, et que les composantes de l’attraction
d’une couche elliptique s’expriment sous forme finie. Cette remarque, que je n’ai
faite qu’après coup, aurait mis sur la voie de la solution directe du problème, en
montrant que pour réduire les intégrales doubles à des intégrales simples, il suff-
isait de déterminer à priori, en grandeur et en direction, par des considérations
géométriques ou par l’analyse, l’attraction sur un point extérieur d’une couche
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infiniment mince, comprise entre deux surfaces elliptiques semblables.

1406. I may observe that Poisson in his remarks speaks of the theo-
rem of Laplace; and I am glad to have his authority for this title, which
I had adopted before I had read this passage, or that cited from Ivory in
Art. 1142.

1407. Poisson draws attention to a slight want of accuracy in a phrase
used by Poinsot, who spoke in fact of an infinitely thin ellipsoidal shell,
without explicitly stating that the inner surface was homothetical with
the outer. Poisson is right; but Poinsot probably assumed that his context
made the matter clear.

1408. Poinsot replied to Poisson’s remarks. In the reply Poinsot insists
strongly that Legendre’s solution is a direct solution, and the first direct
solution. He also holds that the merit of decomposing the ellipsoid into
films in the manner of Poisson’s memoir belongs to Rodrigues. Poinsot
allows on his page 870 that Maclaurin established a particular case of
the theorem which I call Laplace’s; thus he is more correct than many
other French writers: see Art. 260.

1409. Thus far we have been consulting the sixth volume of the
Comptes Rendus …; the last words on the subject are contained in the
seventh volume, which we will reproduce, and then add a few remarks.

1410. The first paper is by Poisson; it occurs on the first three pages
of the volume:

Addition aux Remarques insérées dans le Compte rendu de la séance du 18 juin;
par M. Poisson.

Ces remarques ayant été l’objet d’une Note qui fait partie du Compte rendu
de la séance suivante, je me trouve obligé d’y faire une très-courte addition.

Ainsi que je l’ai dit dans cet article, j’abandonne mon analyse au jugement
des géomètres. Il ne me conviendrait pas d’en faire moi-même la comparaison
avec celle de Legendre, ni de tout autre. Je ferai seulement remarquer la dif-
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férence essentielle qui existe entre la méthode que j’ai suivie et celle qu’avait
employée cet illustre géomètre; différence qui ne résulte pas des progrès de
l’analyse; car je n’ai fait usage d’aucun procédé de calcul qu’il n’ait pu également
employer, et même Lagrange, en 1773, à l’époque de son premier Mémoire. J’ai
décomposé l’ellipsoïde en couches terminées par des surfaces elliptiques et sem-
blables; ce qu’on n’avait pas fait auparavant, et ce qui m’a conduit à un théorème
nouveau sur l’attraction d’une pareille couche, qui trouve une application im-
médiate dans la théorie de l’électricité. Legendre a divisé ce corps en couches
coniques dont le sommet est au point attiré. Mais à raison de la complication
du calcul qui en est résulté, il a été contraint, à la page 480 de son Mémoire,
de recourir à une considération particulière et d’abandonner le procédé direct
d’intégration qu’il avait suivi jusque là, et qui n’aurait pu le conduire, comme il
le dit lui-même, presque à aucune conclusion après d’aussi longs calculs.

Souvent il est arrivé qu’une idée très simple a fourni la solution d’une dif-
ficulté qui avait long-temps arrêté; mais relativement à la décomposition des
couches elliptiques et semblables, je dois dire que cette idée, quel que soit le
peu d’importance qu’on y veuille attacher, ne s’est présentée à moi qu’après
plusieurs autres tentatives, et que j’y ai été conduit par la considération atten-
tive des formules, ainsi qu’on peut le voir dans le no 4 de mon Mémoire. Il y
a plus; Legendre dit, à la fin du sien, que la décomposition du sphéroïde en
couches coniques, lui paraît être la seule que l’on puisse employer; et il faut
observer que ce Mémoire avait précisément pour objet général, le choix des
variables le plus propres à la réduction des intégrales doubles, ou en d’autres
termes, la manière la plus convenable de décomposer les corps auxquels elles
se rapportent. Legendre ajoute que l’attraction d’une couche conique exigeant
une intégration très-difficile, le problème est vraisemblablement au-dessus des
moyens ordinaires de la synthèse, ce qui serait effectivement vrai en suivant
la marche qu’il avait adoptée; mais, au contraire, l’intégration relative à une
couche elliptique est assez simple, pour qu’on ait pu facilement l’effectuer par
des considérations géométriques, dès que le résultat en a été connu.

Enfin, dans la Note à laquelle je réponds, il est dit que M. Rodrigues, en
soutenant, il y a vingt ans, une thèse pour le doctorat, avait employé bien avant
moi cette décomposition de l’ellipsoïde en couches infiniment minces, pour le
calcul même de l’attraction sur les points extérieurs: cela n’est aucunement vrai;
et il est même évident, pour tous ceux qui comprennent la question, que M.
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Rodrigues n’aurait point atteint le but qu’il se proposait, par la considération
de couches pareilles à celles dont il s’agit. L’erreur où est tombé l’auteur de la
Note, vient, sans doute, de ce qu’il n’a point eu égard à la condition de simili-
tude des deux surfaces, externe et interne, de chaque couche elliptique, qui en
est cependant le caractère essentiel. En aucun endroit de sa thèse, d’ailleurs fort
remarquable, M. Rodrigues n’a considéré l’attraction d’une couche elliptique ter-
minée par des surfaces semblables. Dans l’endroit où il démontre le théorème
de Maclaurin ou de Laplace, il différentie, relativement aux trois axes de l’ellip-
soïde et en supposant constantes les deux distances focales, le rapport de son
attraction à son volume, afin de faire voir que cette différentielle se réduit alors
à zéro. S’il eût différentié, sous ce point de vue, l’attraction même, il aurait
obtenu celle d’une couche elliptique dont les deux surfaces ont les mêmes foy-
ers, et, par conséquent, ne sont pas semblables. Les signes d’intégration n’au-
raient pas disparu dans son expression, et la considération de cette force n’eût
pas été plus simple que celle de l’attraction de l’ellipsoïde entier; au lieu que
l’attraction d’une couche elliptique, terminée par deux surfaces semblables, s’ex-
prime sous forme finie; ce qui, quand on a déterminé sa valeur à priori, réduit
ensuite à une intégrale simple, l’attraction de l’ellipsoïde entier, homogène ou
hétérogène. Au reste, la démonstration que M. Rodrigues a rapportée dans sa
thèse, est celle que M. Gauss a donnée en 1813, et qui est fondée sur la trans-
formation des variables employées par M. Ivory, et sur une propriété générale
des surfaces fermées.

1411. Next we have Poinsot’s reply on pages 23 and 24 of the volume.
Note deM. Poinsot, en réponse à l’auteur des Remarques insérées dans le Compte

rendu de la séance du 2 juillet.

Le dissentiment qui existe entre cet auteur et moi, au sujet de la partie his-
torique du problème de l’attraction d’un ellipsoïde sur un point extérieur, roule
sur les trois propositions suivantes:

J’ai avancé:

1o. Que M. Legendre avoit résolu la question directement, c’est-à-dire, sans
passer par le théorème de Maclaurin. (Compte rendu, page 869.)

2o. Que M. Rodrigues, pour la démonstration du théorème de Maclaurin,
auquel il ramène le cas des points extérieurs, a fait usage de la considération
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d’une couche infiniment mince, comprise entre deux surfaces semblables entre elles,
et semblables à la surface de l’ellipsoïde dans laquelle la couche est prise.

3o. Enfin, que la phrase de notre Rapport, où l’auteur a cru voir une in-
exactitude (Compte rendu, page 840), est géométriquement et grammaticalement
exacte, et qu’il n’y a rien à y changer.

Je maintiens ces trois propositions.

Je les soumets à l’attention des géomètres, et j’espère qu’après un nouvel
examen, l’auteur des Remarques lui-même se rendra à l’évidence, sans que j’aie
besoin de lui signaler les erreurs sur lesquelles il a fondé sa prétendue réfutation
de l’opinion que j’avais émise au sujet du travail de M. Rodrigues.

There are two notes at the foot of the pages; one relates to the first
of Poinsot’s three propositions, and the other to the second. They stand
thus:

L’auteur, au contraire, avait avancé que, “pour le cas général, M. Legendre
s’était contenté de donner une démonstration du théorème de Laplace (lisez de
Maclaurin), encore plus compliquée que celle de l’auteur (lisez de Laplace).”
Compte rendu, page 838.

Voyez, tome iii. de la Correspondance sur l’Ecole Polytechnique, le commence-
ment de la page 367, où l’on trouve ces mots: Considérons une couche elliptique,
etc., et voyez si cette couche n’est pas bien précisément celle qu’on vient de
définir, et si la considération de cette même couche n’entre pas essentiellement
dans la démonstration.

1412. Let us take the points in the order adopted by Poinsot.
I. As to the value of Legendre’s solution. Perhaps Poisson rather un-

derrates, and Poinsot rather overrates this. Legendre, as we see from Art.
1150, claims for it the merit of being direct, and Poinsot lays great stress
also on this merit. But the term direct ought to be carefully defined if so
much importance is attached to it; and it does not appear to me that it
can be applied in any very strict sense to the whole of Legendre’s process.
In the note Poinsot elaborately corrects Poisson’s phrase, the theorem of
Laplace, into the theorem of Maclaurin; it is of no great importance by
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what name we call the theorem, provided we understand what theorem
is meant, but I consider that Laplace’s name and not Maclaurin’s is the
proper one.

II. As to what had been accomplished by Rodrigues. Here I hold
Poisson to be right. It is true that in order to effect a certain integra-
tion Rodrigues decomposed the ellipsoid in the manner which Poinsot
indicates; but Rodrigues did not determine the attraction of one of the
infinitesimal shells: and this was the important novelty which Poisson
claimed, and justly, for himself.

III. As to the charge of inexactness. The matter is of small account,
but Poisson was certainly right: see Art. 1407.

1413. We now arrive at the last of Poisson’s contributions. It is enti-
tled Note sur une propriété générale des formules relatives aux attractions
des sphéroïdes. This is given in the Comptes Rendus … Vol. vii. 1838,
pages 3…5.

Let there be a sphere in which the density is any function of the dis-
tance from the centre. Let 𝑎, 𝑏, 𝑐 be the coordinates of the centre. Let 𝑥,
𝑦, 𝑧 be the coordinates of any other point; and let 𝑑𝑚 denote the element
of mass at that point. Suppose a body entirely external to the sphere; and
let 𝑑𝑚𝜙1(𝑥, 𝑦, 𝑧) denote the attraction of this body on 𝑑𝑚 parallel to the
axis of 𝑥; similarly let 𝑑𝑚𝜙2(𝑥, 𝑦, 𝑧) and 𝑑𝑚𝜙3(𝑥, 𝑦, 𝑧) denote the attrac-
tions parallel to the axes of 𝑦 and 𝑧 respectively. Then will

∫𝜙1(𝑥, 𝑦, 𝑧)𝑑𝑚 = 𝜇𝜙1(𝑎, 𝑏, 𝑐),

∫𝜙2(𝑥, 𝑦, 𝑧)𝑑𝑚 = 𝜇𝜙2(𝑎, 𝑏, 𝑐),

∫𝜙3(𝑥, 𝑦, 𝑧)𝑑𝑚 = 𝜇𝜙3(𝑎, 𝑏, 𝑐),

where 𝜇 denotes the mass of the sphere, and the integrations extend
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throughout the sphere.
Poisson demonstrates the equations thus: let 𝑃 denote any element of

the external body. Then the attraction of the sphere on 𝑃 is the same as
if the sphere were collected at its centre. Hence the attraction of 𝑃 on
the sphere will be the same as if the sphere were collected at its centre.
Hence the attraction of the whole external body on the sphere will be the
same in magnitude and direction as that of the attraction of this body
on a particle of mass 𝜇 at the centre of the sphere. This result is the
translation of the three equations which were to be demonstrated.

Also if 𝑑𝑚𝑓(𝑥, 𝑦, 𝑧) denote the potential of the external body on 𝑑𝑚
we shall have

∫𝑓(𝑥, 𝑦, 𝑧)𝑑𝑚 = 𝜇𝑓(𝑎, 𝑏, 𝑐).

Poisson says that this is a remarkable example of the rare cases in
which simple reasoning, or what may be called the synthetical method,
has a great advantage over analysis; for it would be very difficult
to demonstrate, in all their generality, the preceding equations by
mathematical analysis. But Liouville shewed that the equations could
be easily obtained by analysis; see pages 84…86 of the same volume.

1414. Let us now give Liouville’s process. He takes the last equation
for example. Then expressing 𝑑𝑚 in the usual polar coordinates we have
to shew that

∫
𝑙

0
∫

𝜋

0
∫

2𝜋

0
𝑓(𝑥, 𝑦, 𝑧)𝜌𝑟2 sin 𝜃 𝑑𝑟 𝑑𝜃 𝑑𝜓 = 𝜇𝑓(𝑎, 𝑏, 𝑐),

where 𝜌 is the density, and 𝑙 the radius of the sphere.
Denote the left-hand member by 𝑈.
By the definition of the function 𝑓(𝑥, 𝑦, 𝑧) we have

𝑓(𝑥, 𝑦, 𝑧) =∭
𝜌′ 𝑑𝑥′ 𝑑𝑦′ 𝑑𝑧′

{(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2} 12
,
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where 𝑥′, 𝑦′, 𝑧′ denote the coordinates of an element 𝜌′ 𝑑𝑥′ 𝑑𝑦′ 𝑑𝑧′ of
the external body.

Let

𝑅 = ∫
𝑙

0
∫

𝜋

0
∫

2𝜋

0

𝜌𝑟2 sin 𝜃 𝑑𝑟 𝑑𝜃 𝑑𝜓
{(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2} 12

.

Then
𝑈 =∭𝑅𝜌′ 𝑑𝑥′ 𝑑𝑦′ 𝑑𝑧′.

Also

𝑥 = 𝑎 + 𝑟 cos 𝜃, 𝑦 = 𝑏 + 𝑟 sin 𝜃 sin𝜓, 𝑧 = 𝑐 + 𝑟 sin 𝜃 cos𝜓;

and as we assume that (𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧− 𝑧′)2 cannot vanish, the
common methods give

𝑅 =
𝜇

{(𝑎 − 𝑥′)2 + (𝑏 − 𝑦′)2 + (𝑐 − 𝑧′)2} 12
.

Hence
𝑈 = 𝜇∭

𝜌′ 𝑑𝑥′ 𝑑𝑦′ 𝑑𝑧′

{(𝑎 − 𝑥′)2 + (𝑏 − 𝑦′)2 + (𝑐 − 𝑧′)2} 12
,

that is,
𝑈 = 𝜇𝑓(𝑎, 𝑏, 𝑐),

which was to be demonstrated.
This analytical demonstration is founded on principles like those

which M. Poisson himself employs in the fifth Article of his Memoir
Sur la propagation du mouvement dans les milieux élastiques. It
corresponds exactly to the synthetical demonstration; we may say that
they substantially coincide; at least they differ only in language.

1415. It will be seen that Poisson holds a distinguished place in the
history of our subject. The correction which he supplied to Laplace’s
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differential equation for the potential, has become a permanent part of
the theory; so also has the extension of Ivory’s theorem to any law of
attraction.

The two great memoirs, which I have numbered X. and XIV. in my
list, still deserve the careful study of those who wish to obtain a profound
knowledge of the subject; the latter memoir may be justly considered to
be the immediate preparation for the researches of Chasles.

Poisson himself appears to have attached great importance to his
method of treating the theory of Laplace’s functions; for he repeated it
in various places. But this method does not seem to find favour with
later writers; I doubt whether it is even alluded to in Heine’s work,
cited in Art. 784.

We may well concur with Legendre in thinking that the task of im-
proving the Mécanique Céleste seemed to devolve naturally on Poisson:
see Pontécoulant’s Système du Monde, Vol. iii. at the beginning.



CHAPTER XXXVI.

IVORY.

1416. The writings of Ivory, arranged chronologically, which may be
considered as connected with our subject are the following:

I. On the Attractions of Homogeneous Ellipsoids. Philosophical
Transactions for 1809. I have noticed this in Chapter xxix.

II. On the Grounds of the Method which Laplace has given in the
second Chapter of the third Book of his Mécanique Céleste for computing
the Attractions of Spheroids of every Description. Philosophical Transac-
tions for 1812. I have noticed this in Chapter xxx.

III. On the Attractions of an extensive Class of Spheroids. Philosoph-
ical Transactions for 1812.

IV. On the Expansion in a Series of the Attraction of a Spheroid.
Philosophical Transactions for 1822.

V. On the Figure requisite to maintain the Equilibrium of a Homoge-
neous Fluid Mass that revolves upon an axis. Philosophical Transactions
for 1824.

VI. The article Attraction for the Supplement to the Encyclopædia Bri-
tannica.

VII. Remarks on the Theory of the Figure of the Earth. Philosophical
Magazine, May 1824.

VIII. Investigations connected with the Properties of the Geodetic
Line on an Oblatum will be found in the Philosophical Magazine for
July 1824, April 1825, April 1826, and May 1826. Towards the end Ivory
compares some results which Bessel had obtained with his own, and ex-
presses himself in a tone of dissatisfaction. But the matter belongs rather
to Analytical Geometry than to our subject, and so I shall not notice it
further.
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IX. On the Theory of the Figure of the Earth. Philosophical Maga-
zine, April 1825.

X. On the Variation of Density and Pressure in the interior Parts of
the Earth. Philosophical Magazine, November 1825.

XI. On the Theory of the Figure of the Planets contained in the Third
Book of the Mécanique Céleste. Philosophical Magazine, December 1825,
January 1826, and February 1826.

XII. Notice relating to the Theory of the Equilibrium of Fluids. Philo-
sophical Magazine, June 1826.

XIII. On the Equilibrium of a Fluid attracted to a fixt Centre. Philo-
sophical Magazine, July 1826.

XIV. Six papers of various titles, but all relating to pendulum experi-
ments, are published in the volume of the Philosophical Magazine which
extends from July to December 1826.

XV. Notice respecting the Seconds Pendulum at Port Bowen. Philo-
sophical Magazine, March 1827.

XVI. Some Remarks on a Memoir by M. Poisson, read to the
Academy of Sciences at Paris, Nov. 20, 1826, and inserted in the Conn.
des Tems, 1829. Philosophical Magazine, May 1827.

XVII. Six papers of various titles, but all relating to Laplace’s Func-
tions, or to the conditions of fluid equilibrium, are published in the vol-
ume of the Philosophical Magazine which extends from July to December
1827.

XVIII. Three papers on the Ellipticity of the Earth, as deduced from
Experiments with the Pendulum, and two papers on the Figure of the
Earth, as deduced from Measurements of the different Portions of the
Meridian, are published in the volume of the Philosophical Magazine
which extends from January to June 1828.

XIX. Some Remarks on an Article in the Bulletin des Sciences Math-
ématiques Physiques et Chimiques, for March 1828. Philosophical Maga-
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zine, October 1828.
XX. Four papers of various titles, but all relating to the measurement

of an arc perpendicular to the meridian, are published in the volume of
the Philosophical Magazine which extends from July to December 1828;
and two papers connected with these are published in the volume which
extends from January to June 1829.

XXI. Some Arguments tending to prove that the Earth is a Solid of
Revolution. Philosophical Magazine, March 1829.

XXII. Some Remarks on an Article in the “Bulletin des Sciences
Mathématiques” for June 1829, § 269. Philosophical Magazine, October
1829.

XXIII. Letter relating to the Figure of the Earth. Philosophical Mag-
azine, April 1830.

XXIV. On the Figure of the Earth. Philosophical Magazine, June
1830.

XXV. Two papers relating to the Shortest Distance between Two
Points on the Earth’s Surface are published in the volume of the
Philosophical Magazine which extends from July to December 1830.

XXVI. On the Equilibrium of Fluids and the Figure of a Homoge-
neous Planet in a Fluid State. Philosophical Transactions for 1831.

XXVII. On the Equilibrium of a Mass of Homogeneous Fluid at lib-
erty. Philosophical Transactions for 1834.

XXVIII. Of such Ellipsoids consisting of Homogeneous Matter as are
capable of having the Resultant of the Attraction of the Mass upon a Par-
ticle in the Surface, and a Centrifugal Force caused by revolving about
one of the Axes, made perpendicular to the Surface. Philosophical Trans-
actions for 1838, with a note in the Volume for 1839.

XXIX. Three papers of various titles, but all relating to the subject
of fluid equilibrium, are published in the volume of the Philosophical
Magazine which extends from July to December 1838.
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XXX. On the Conditions of Equilibrium of an Incompressible Fluid,
the Particles of which are acted on by Accelerating Forces. Philosophical
Transactions for 1839.

I proceed to give an account of such of these writings as have not
been already noticed; the first of these is that numbered III.

1417. A memoir entitled On the Attractions of an extensive Class of
Spheroids is contained in the Philosophical Transactions for 1812, pub-
lished in that year. The memoir occupies pages 46…82 of the volume; it
was read on November 14, 1811.

1418. The class of spheroids to which this memoir relates consists of
those which have their radii vectores rational integral functions of the
angular coordinates.

By a rational integral function Ivory seems to mean, at least some-
times, any function which can be expanded in a series of rational inte-
gral terms: see his page 75, and also pages 43 and 44 of the memoir II.
in the list of Art. 1416.

Ivory arrives at results equivalent to those given by Laplace in his
treatment of the problem in the third Book of the Mécanique Céleste.
Ivory does not use any property of Laplace’s functions, but carries on his
process so far as to shew how the requisite integrations can be theoreti-
cally effected.

On his page 48 he repeats an objection which he had given on page
33 of his memoir II.: see Art. 1215.

The memoir seems to me of small importance now; it might have
been of some service perhaps as establishing various formulæ rigorously,
so as to liberate an early student from any doubts left on his mind by
Laplace’s process.

1419. A memoir entitled On the expansion in a series of the attrac-
tion of a Spheroid is contained in the Philosophical Transactions for 1822,
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published in that year. The memoir occupies pages 99…112 of the vol-
ume; it was read January 17, 1822.

1420. Ivory has doubts as to the statement that any function can be
expanded in a series of Laplace’s functions, though he allows that any
rational integral function of the three rectangular coordinates of a point
can be so expanded. He holds that there is a real distinction to be made
between the case in which the function proposed for expansion is an
explicit function of the three rectangular coordinates of a point, and the
case in which it is not. He says on his page 106:

A method of calculation which is clear, exact and elegant, when it is con-
fined to the first case, becomes clouded with obscurity, if not merely symbolical,
when it is extended to the other case. To say the least, there are certainly great
difficulties which are not explained; and if there be any geometers who hesitate,
and have doubts, they are not without their excuse, and ought not to be entirely
condemned.

I have already adverted to one of the topics considered in this mem-
oir; see Art. 1224. I do not attach any importance to the memoir. Perhaps
Ivory is less confident in his condemnation of the proposition about the
expansion of any function than he was ten years earlier.

1421. A memoir entitled On the figure requisite to maintain the equi-
librium of a homogeneous fluid mass that revolves upon an axis is con-
tained in the Philosophical Transactions for 1824, published in that year.
The memoir occupies pages 85…150 of the volume; it was read Decem-
ber 18, 1824.

1422. This memoir assumed a new principle to be necessary for fluid
equilibrium, namely the following: in order that a mass of fluid may be
in equilibrium it is necessary that the arrangement of the strata be such
that the matter comprised between any two level surfaces should exercise
no attraction on a particle within the inner boundary. Ivory attempts to
justify this assumption; but his efforts seem to me quite in vain.
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We shall find that Ivory continued to advocate his peculiar notions in
subsequent memoirs; he supposed that he modified them slightly in the
memoirs XXVI. and XXVII., as we shall see hereafter.

Poisson criticised Ivory’s assumption; see the Annales de Chimie …
Vol. xxvii. 1824, pages 225…236, and the Connaissance des Tems for
1831, page 53. See also a paper by Robert Leslie Ellis in the Cambridge
Mathematical Journal, Vol. ii. pages 18…22. We shall notice some
miscellaneous topics in the memoir.

1423. On his page 93 Ivory demonstrates the formula for Legendre’s
coefficients, which had been previously given by Rodrigues: see Art.
1187. We may infer that Ivory obtained the formula independently, as
he adds no reference.

1424. A theorem is given on page 94, which may be reproduced. Let
𝑉 denote the potential of an attracting mass at a point of which the
radius vector is 𝑟, let 𝑑𝑚′ denote an element of the attracting mass of
which the radius vector is 𝑟′; then

𝑉 = ∫
𝑑𝑚′

√(𝑟2 − 2𝑟𝑟′𝛾 + 𝑟′2)
,

where 𝛾 is the cosine of the angle between the directions of 𝑟 and 𝑟′.
Therefore

−𝑟
𝑑𝑉
𝑑𝑟

= ∫
(𝑟2 − 𝑟𝑟′𝛾)𝑑𝑚′

(𝑟2 − 2𝑟𝑟′𝛾 + 𝑟′2) 32
.

Put 𝑠 for √(𝑟2 − 2𝑟𝑟′𝛾 + 𝑟′2); thus 𝑟2 − 𝑟𝑟′𝛾 = 𝑠2 + 𝑟𝑟′𝛾 − 𝑟′2; and

−𝑟
𝑑𝑉
𝑑𝑟

= ∫
𝑑𝑚′

𝑠
+∫

𝑟𝑟′𝛾 − 𝑟′2

𝑠3
𝑑𝑚′.

Therefore
2𝑉 − 𝑟

𝑑𝑉
𝑑𝑟

= 3∫
𝑑𝑚′

𝑠
+∫

𝑟𝑟′𝛾 − 𝑟′2

𝑠3
𝑑𝑚′.
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Now substitute for 𝑑𝑚′ the usual expression 𝜌𝑟′2𝑑𝜇′𝑑𝜙′𝑑𝑟′, where 𝜌
denotes the density; thus

2𝑉 − 𝑟
𝑑𝑉
𝑑𝑟

=∬𝑑𝜇′ 𝑑𝜙′ ∫𝜌{
3𝑟′2

𝑠
+
𝑟′2(𝑟𝑟′𝛾 − 𝑟′2)

𝑠3
} 𝑑𝑟′.

This may be expressed thus,

−𝑟3
𝑑
𝑑𝑟

(
𝑉
𝑟2
) =∬𝑑𝜇′ 𝑑𝜙′ ∫𝜌

𝑑
𝑑𝑟′

(
𝑟′3

𝑠
) 𝑑𝑟′.

If the body is homogeneous so that 𝜌 is constant, we obtain

−𝑟3
𝑑
𝑑𝑟

(
𝑉
𝑟2
) = 𝜌∬

𝑟′3 𝑑𝜇′ 𝑑𝜙′

𝑠
,

where 𝑟′ now represents the radius vector of a point on the surface of
the body corresponding to the other polar coordinates 𝜇′ and 𝜙′.

1425. On his page 99 Ivory says that in a heterogeneous fluid body
it is easy to perceive that the densities must decrease in approaching
the outer surface. His reason for this furnishes a good specimen of the
vagueness and inconclusiveness of his language; he says:

For, in two contiguous strata of different densities, if we take two molecules
equal in volume, and placed at the same point of the separating surface; the
common gravity acting upon both will produce a greater pressure in the denser
molecule. Wherefore, if the denser matter were nearer the outer surface, it
would penetrate into the rarer matter below it; which is contrary to the perfect
separation of the strata of different densities.

1426. Ivory enunciates on his pages 111 and 112 his first Proposition
in these words:

If a homogeneous fluid body revolving about an axis, be in equilibrio by the
attraction of its particles in the inverse proportion of the square of the distance;
any other mass of the same fluid having a similar figure, and revolving with
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the same rotatory velocity about an axis similarly placed, will likewise be in
equilibrio, supposing that its particles attract one another by the same law.

This he establishes in four pages of general reasoning.

1427. On his page 115 Ivory enunciates his second Proposition in
these words:

If a homogeneous fluid mass revolve about an axis, and be in equilibrio
by the attraction of its particles in the inverse proportion of the square of the
distance; all the level surfaces will be similar to the outer one: and any stratum
of the fluid contained between two level surfaces will attract particles in the
inside with equal force in opposite directions.

To this he devotes three pages of general reasoning, but I cannot al-
low that it is satisfactory. The proposition asserted is true in the case in
which the fluid takes the form of an ellipsoid or of an oblatum, as we
know from other sources; but we cannot affirm that it is necessarily true.

1428. On Ivory’s page 125, combined with his page 98, we have a
curious error.

He has shewn that if certain radii are in the same proportion then
𝐾 = 𝐾1; and he wants to shew conversely that if 𝐾 = 𝐾1 these radii are
in the same proportion. Now he obtains in fact the equation

𝐾 − 𝐾1 =∬ log
𝑅′

𝑅1′
𝐶(2)𝑑𝜇′𝑑𝜛′,

where 𝑅′ and 𝑅1′ are the radii, and 𝐶(2) is a Laplace’s coefficient of the
second order; the integration is supposed to extend over the entire sur-

face. To make this vanish it is not necessary that log
𝑅′

𝑅1′
should be con-

stant, as Ivory implies; it may be a Laplace’s coefficient of any order ex-
cept the second.

1429. If a homogeneous stratum be bounded by similar, similarly sit-
uated, and concentric ellipsoids, it exerts no attraction on an internal
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particle: this is well known. Conversely we might take this problem:
Given that a homogeneous stratum bounded by similar, similarly situ-
ated, and concentric surfaces exerts no attraction on an internal particle,
find the form of the surfaces from this condition. Ivory in fact discusses
this, though he does not formally enunciate it in this way. By using the
properties of Laplace’s coefficients, he comes to the conclusion that the
surfaces must be ellipsoids: see his pages 125…129. Ivory repeats this
investigation in later memoirs; see page 512 of the memoir XXVII. and
page 263 of the memoir XXX.

1430. Ivory says on his page 131:
We are now to conclude that a homogeneous fluid mass cannot be in equi-

librio by the attraction of its particles and a centrifugal force of rotation, unless
it have the figure of an ellipsoid….

That is, Ivory claims to have solved the problem which I have called
Legendre’s in Art. 744, even without the limitation to surfaces of revolu-
tion. But it is almost needless to say that Ivory’s process is unsatisfactory,
for it is based on the principle which he unjustifiably assumed: see Art.
1422.

1431. In his pages 132…139 Ivory gives in effect a solution of the
problem of the attraction of an ellipsoid on an internal particle. He ex-
hibits the potential in the form of an expression which involves only sin-
gle integrals.

1432. On his page 141 Ivory expresses in an interesting form the stan-
dard equation of Art. 581, namely

2𝑞
3
=
(𝜆2 + 3) tan−1 𝜆 − 3𝜆

𝜆3
;

this may be written

2𝑞
9
=
1
3
− (

1
3
+

1
𝜆2
) (1 −

tan−1 𝜆
𝜆

) .
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Put tan−1 𝜆 = 𝜙; thus we get

2𝑞
9
=
1
3
− (

1
sin2 𝜙

−
2
3
) (1 −

𝜙
tan𝜙

) . (1)

Now if
𝜙

tan𝜙
be expanded in powers of sin𝜙 it may be shewn that

the expansion is of the form

1 − 𝐴2 sin
2 𝜙 − 𝐴4 sin

4 𝜙 −…− 𝐴2𝑛 sin
2𝑛 𝜙 −… ,

where 𝐴2 =
1
3
, and 𝐴2𝑛 =

2 . 4 . 6… (2𝑛 − 2)
3 . 5… (2𝑛 + 1)

if 𝑛 is greater than 1; see

Differential Calculus, Art. 374.
Hence we find that (1) becomes

𝑞 =
2
5
sin2 𝜙 +

2
5 . 7

sin4 𝜙 −
2 . 4 . 6

5 . 7 . 9 . 11
sin8 𝜙

−2
2 . 4 . 6 . 8

5 . 7 . 9 . 11 . 13
sin10 𝜙 −… (2)

Ivory gives the terms so far with a slight misprint in the last. The
general term on the right-hand side of (2) is

−
2 . 4… (2𝑛 − 2)
5 . 7… (2𝑛 + 3)

.
2𝑛 − 6
2

. sin2𝑛 𝜙,

where 𝑛 is supposed greater than 2.
The convergent series which forms the right-hand side of (2) vanishes

when 𝜙 = 0; it must also vanish when 𝜙 =
𝜋
2
, as we see by looking

at the expression in (1), from which it was derived. It will be observed
that the series presents only one change of sign; and if we differentiate
with respect to 𝜙 we obtain the product of sin𝜙 cos𝜙 into a series which
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has only one change of sign. Hence, by employing a principle which is
explained in the Theory of Equations, we infer that as 𝜙 changes from 0

to
𝜋
2
the series is always positive, first increases continually from zero to

its maximum value, and then decreases continually from its maximum
value to zero. See Theory of Equations, Art. 22.

Thus from the form of the second side of (2) we have an evident
demonstration of the result established in Art. 586.

1433. Ivory makes the following remarks on his pages 142 and 143:
When the rotatory velocity is greater than the maximum, the equilibrium

cannot take place: for, on the one hand, the proposed rotation is inconsistent
with the figure of an ellipsoid; and, on the other, it has been proved, that a ho-
mogeneous fluid cannot be in equilibrio unless it have that figure. In this case,
therefore, the fluid would first extend itself, and flatten to a certain degree with
a decreasing velocity of rotation, and then oscillate back with an increasing ro-
tatory motion. But the tenacity of the particles would gradually diminish, and
finally destroy, the oscillations of the fluid; which would therefore ultimately
settle in one of the figures of equilibrium; that is, in an elliptical spheroid of
revolution having the equatorial diameter more than 2·71.. times the axis of rev-
olution.

This for the most part is merely assertion on the part of Ivory, and it
is obvious that difficult problems in hydrodynamics cannot be solved in
this rapid manner.

1434. Ivory admits that the ordinary equation, which we denote by
(1) in Art. 831, is necessary for equilibrium; this is his equation (A). But
he asserts that it is not sufficient for equilibrium; one reason which he
gives for this assertion, on which he seems to lay great stress, is quite
unintelligible to me; he says on his page 144:

McLaurin first proved synthetically that the ellipsoid, whatever be the de-
gree of oblateness, fulfils all the conditions requisite for maintaining the equilib-
rium of a homogeneous fluid mass that revolves about an axis. If therefore the
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equation (𝐴) were alone sufficient for the equilibrium, the ellipsoid must be de-
ducible from it, not in particular suppositions and approximately, but generally,
and by an accurate process of reasoning. But this has not been accomplished,
nor even attempted, by any geometer.

See also his pages 145 and 150.

1435. We have next to notice the article Attraction, which Ivory wrote
for the Supplement to the Encyclopædia Britannica; the article occupies
pages 627…644 of the volume, published in 1824, and it forms a good el-
ementary treatise, proceeding as far as a complete account of the attrac-
tion of homogeneous ellipsoids. The following points may be noticed:

Ivory deduces the attraction of a sphere on an external particle from
the attraction of a sphere on a particle at its surface, by an elementary
process of the same kind as he used in establishing the theorem on the
attraction of ellipsoids, which is called by his name.

Ivory investigates Laplace’s theorem which we have given in Art.
1046. Ivory adopts the method of expansion which we have noticed
at the end of the Article. He says that “Laplace has arrived at the
same conclusion by a different process”: but Ivory’s process is rather a
modification of Laplace’s than essentially different.

Towards the end of his article Ivory says:
In the preceding investigations, we have followed the method of Maclaurin

for points situated in the surface of a spheroid, or within the solid. This method
has always been justly admired; but neither its inventor, nor, as far as we know,
any other Geometer, has applied it, excepting to spheroids of revolution; and it
is here, for the first time, extended to ellipsoids.

But it must be observed that the extension of Maclaurin’s method to
ellipsoids in general is so obvious that it does not require any formal
explanation; D’Alembert for instance, as we have seen in Art. 615, took
this view.

1436. An article entitled Remarks on the Theory of the Figure of the
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Earth, occurs on pages 339…348 of the Philosophical Magazine for May,
1824.

This article gives first a good sketch of the history of the subject, and
then a brief account of Ivory’s peculiar views on fluid equilibrium, with
a reference to the memoir V. for proofs.

The following passage occurs on the first page:
To whatever branch of the philosophical system of the universe we turn

our attention, we are immediately led to the immortal author of the true the-
ory founded on the law of universal gravitation. Newton not only laid down
the principles: he, in a great measure, reared the superstructure; or, at least,
he sketched out so accurately the proper view to be taken of every part of the
subject, that his followers have done little else but fill up his original outlines.
The modern theory of the figure of the planets, still imperfect in some respects,
coincides in the main with the physical ideas of Newton, which the progress of
the mathematical sciences has enabled the philosophers of the present day to
develop and extend.

1437. An article entitled On the Theory of the Figure of the Earth
occurs on pages 241…249 of the Philosophical Magazine for April, 1825.

This consists mainly of the two Propositions which we have noticed
in Arts. 1426 and 1427.

1438. An article entitled On the Variation of Density and Pressure in
the interior Parts of the Earth occurs on pages 321…329 of the Philosoph-
ical Magazine for November, 1825.

This is substantially coincident with the matter contained in the Mé-
canique Céleste, Livre xi. § 6, to which Ivory refers: see Art. 1325.

1439. We have next to notice an article entitled On the Theory of the
Figure of the Planets contained in the Third Book of the Mécanique Céleste.
This is published in the Philosophical Magazine in three parts, which oc-
cur respectively on pages 429…439 of the number for December, 1825,
on pages 31…37 of the number for January, 1826, and on pages 81…88
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of the number for February, 1826.
The first two parts repeat the objections against Laplace’s favourite

equation, and the consequence which he drew from it: we have suffi-
ciently considered the matter in Chapter XXX.

The third part is devoted to Ivory’s peculiar views on fluid equilib-
rium, as developed by him in the memoir numbered V.

The following passage occurs at the end of the second part of this
series of papers:

An attentive reader who considers the foregoing observations must allow
that some material inadvertencies and inaccuracies have originally slipt into the
analysis of Laplace. But the theory having been published, it has been deemed
advisable to repel all objections, and to defend it to the utterance.

1440. An article entitled Notice relating to the Theory of the Equilib-
rium of Fluids occurs on pages 439…442 of the Philosophical Magazine
for June, 1826.

Ivory repeats the statement of his peculiar opinions on fluid equilib-
rium.

1441. An article entitled On the equilibrium of a Fluid attracted to a
fixt Centre occurs on pages 10 and 11 of the Philosophical Magazine for
July, 1826.

The equation (2) of Art. 57 represents an ellipse approximately when

𝑎𝜔2÷
𝜇
𝑎2

is small. Ivory proceeds to interpret the equation to a closer or-

der of approximation, which he does accurately. We shall notice the mat-
ter hereafter in connexion with a paper published by Dr Thomas Young
in 1826.

1442. The six papers which we have brought together under the num-
ber XIV. are not very closely connected with our subject. The first just
touches on our theories. After having stated his peculiar opinions on
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fluid equilibrium, Ivory says on his page 5:
The theory we have been explaining has been opposed, and has been re-

jected superciliously without examination. But it is founded on truth, and will
ultimately be adopted. No other way but by investigating the physical properties
of equilibrium, can be successful in simplifying a very difficult subject, and in
rendering it completely satisfactory.

Ivory then states that he has carried a certain process of approxi-
mation so far as to include the squares of the ellipticities; and accord-
ingly he gives without demonstration, an equation which corresponds to
Clairaut’s primary equation, extended so as to include small quantities of
the second order.

I have not been encouraged to attempt to verify Ivory’s equation; in-
deed it is not quite intelligible, for it contains a symbol 𝐴 which is de-
scribed as an “unknown function” of the polar axis of a stratum of equal
density. We are told however on page 6, that 𝐴 vanishes if the density
is constant; and thus we can test one of Ivory’s formulæ, and indeed his
main result. He gives an expression for the value of gravity which is
meant to be true to the second order of small quantities. According to
this expression the value of Clairaut’s fraction is

5
2
𝛽 − 𝛼 +

𝛼2

2
−
17
14
𝛼𝛽,

where 𝛼 and 𝛽 have the meaning assigned in Art. 978.
Now the fluid being homogeneous, we know that Clairaut’s fraction

is exactly equal to 𝛼; see Art. 922.
Hence we must have, true to the second order

𝛼 =
5
2
𝛽 − 𝛼 +

𝛼2

2
−
17
14
𝛼𝛽,

therefore

𝛼 =
5
4
𝛽 +

𝛼2

4
−
17
28
𝛼𝛽,
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therefore

𝛼 =
5
4
𝛽 −

165
448

𝛽2.

But this does not agree with the last result given in Art. 978; so that
we may infer the incorrectness of Ivory’s formula.

1443. The paper which we have numbered XV. occurs on pages
170…172 of the Philosophical Magazine for March, 1827.

Ivory draws attention to the discrepancy between an observation
made by Lieutenant Foster at Port Bowen, and an observation made by
Captain Sabine at Greenland.

1444. An article entitled Some Remarks on a Memoir by M. Poisson,
read to the Academy of Sciences at Paris, Nov. 20, 1826, and inserted in
the Conn. des Tems, 1829, occurs on pages 324…331 of the Philosophical
Magazine for May, 1827.

This article relates to the subject of the expansion of functions in a
series of Laplace’s functions; I do not see anything of importance in the
paper in addition to what Ivory had already given. Poisson replied to the
criticism: see Art. 1384.

Ivory adverts to the paper by Professor Airy read to the Cambridge
Philosophical Society in May, 1826: see Art. 1227. The tone which Ivory
adopts in controversy is so confident that it may be fairly called arrogant.

The following passage of interest occurs on the last page of the arti-
cle:

The theory of the figure of the planets originated with Newton and Huy-
gens: it has been the subject of incessant discussion for a century: it has been
attended with greater difficulty, and has occasioned a greater number of mem-
oirs, than any other branch of the system of the world.

1445. A brief notice will suffice of the six papers which we have
numbered XVII. The titles are the following:
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A letter to Professor Airy, in reply to his Remarks on some Passages in
a Paper by Mr Ivory; this occurs on pages 16…20 of the volume.

Letter to G. B. Airy, Esq., Lucasian Professor of the Mathematics in the
University of Cambridge; this occurs on pages 88…92.

Letter from Mr Ivory to the Editors of the Philosophical Magazine and
Annals of Philosophy; this occurs on pages 93 and 94.

On the Figure of Equilibrium of a Homogeneous Planet in a Fluid
State; in reply to the Observations of M. Poisson…. This is in three parts,
which occur respectively on pages 161…168, 241…247, and 321…326 of
the volume.

There is nothing to call for special remark in these papers, as they
merely repeat Ivory’s known opinions. But it may be of interest to ob-
serve some acknowledgement, however slight, of fallibility. We have on
page 17 the words: “… I find that I have drawn a wrong inference from
my analysis …” and on page 90 the words: “… I have expressed myself
rather unguardedly with respect to M. Poisson’s theorem:…”

1446. The papers which we have numbered XVIII. consist of numer-
ical application. The three which relate to pendulum experiments oc-
cur respectively on pages 165…173, 206…210, and 241…243 of the vol-
ume. The two which relate to measured arcs occur respectively on pages
343…349 and 431…436 of the volume.

Ivory considers that the arcs measured in Peru, India, France and

England give
1
309

for the ellipticity; and that Svanberg’s Swedish arc is

consistent with this.

1447. An article entitled Some Remarks on an Article in the Bulletin
des Sciences Mathématiques Physiques et Chimiques, for March, 1828, oc-
curs on pages 245…248 of the Philosophical Magazine for October, 1828.

Ivory asserts the accuracy of his peculiar views on fluid equilibrium;
and says he will address a short work on the subject to the Royal Society.
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1448. The titles of the first four of the set of papers which we have
numbered XX. are the following:

On the Latitudes and Difference of Longitude of Beachy Head and
Dunnose in the Isle of Wight …; this occurs on pages 6…11 of the
volume.

On Measurements on the Earth’s Surface perpendicular to the Merid-
ian; this occurs on pages 189…194 of the volume.

On the Method employed in the Trigonometrical Survey for finding the
Length of a Degree perpendicular to the Meridian; this occurs on pages
241…245 of the volume.

On the Method in the Trigonometrical Survey for finding the Difference
of Longitude of two Stations very little different in Latitude; this occurs on
pages 432…435 of the volume.

The most interesting matter considered in these papers is a theorem
to which we alluded in Art. 1037. The original investigation of the theo-
rem was obscure and unsatisfactory; and Ivory was led to the erroneous
conclusion that the theorem was inaccurate: see page 244 of the vol-
ume. He speaks of the method of calculation based on the theorem as
“the greatest delusion that has ever prevailed in practical mathematics”;
and he pronounces an unfavourable opinion on a demonstration of the
theory published by Dr Tiarks: see page 435 of the volume.

1449. The titles of the last two of the set of papers which we have
numbered XX. are the following:

On the Method of deducing the Difference of Longitude from the Lati-
tudes and Azimuths of two Stations on the Earth’s Surface; this occupies
pages 24…28 of the volume.

On the Method of deducing the Difference of Longitude from the Az-
imuths and Latitudes of two Stations; this occupies pages 106…109 of the
volume.

Ivory shews in the first paper that the theorem to which we have
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just alluded, is really very approximately true for an oblatum which is
nearly spherical; and in the second paper he extends the range of the
theorem to the case of any figure of revolution which is nearly spheri-
cal. He makes no reference to the contrary opinion, which, as we have
observed in the preceding Article, he had formerly held. See also a paper
by Dr Tiarks on pages 52 and 53 of the volume.

1450. An article entitled Some Arguments tending to prove that the
Earth is a Solid of Revolution, occurs on pages 205…209 of the Philo-
sophical Magazine for March, 1829. Ivory arrives at the conclusion that
certain measurements, transverse to the meridian, agreed well with the
hypothesis that the Earth is an ellipsoid of revolution.

1451. An article entitled Some Remarks on an Article in the “Bul-
letin des Sciences Mathématiques” for June, 1829, § 269, occurs on pages
272…275 of the Philosophical Magazine for October, 1829. Ivory states
briefly and obscurely some of his peculiar opinions on fluid equilibrium,
and on the expansion of a function in a series of Laplace’s functions.
Ivory asserts that in Clairaut’s theory of the equilibrium of fluids some
of the forces which act are omitted; but it is needless to say that this
assertion is contrary to the fact.

1452. An article entitled Letter relating to the Figure of the Earth oc-
curs on pages 241…244 of the Philosophical Magazine for April, 1830.
Ivory merely states in a controversial tone his peculiar opinions on fluid
equilibrium. He says in his first paragraph:

It is not my intention to add anything new on this subject, but merely to
state briefly what I have contributed to the theory, and to assert my claim to
my own proper notions.

1453. An article entitled On the Figure of the Earth occurs on pages
412…416 of the Philosophical Magazine for June, 1830.

Biot had inferred from pendulum experiments that the lengths of the
pendulum in different latitudes “are not accurately represented by the
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formula usually employed”; he found that “the coefficient of the term
proportional to the square of the sine of the latitude, is not an invariable
quantity, as usually assumed, but a quantity decreasing gradually from
the pole to the equator.” Ivory does not agree with Biot’s opinion.

1454. The titles of the two papers which we have connected in num-
ber XXV. are the following:

A direct Method of finding the shortest Distance between two Points on
the Earth’s Surface when their Geographical Position is given; this occurs
on pages 30…34 of the volume. On the Shortest Distance between two
Points on the Earth’s Surface; this occurs on pages 114…117 of the vol-
ume. These two papers belong rather to Solid Geometry than to our sub-
ject.

1455. A memoir entitled On the Equilibrium of Fluids, and the Figure
of a Homogeneous Planet in a Fluid State, is contained in the Philosoph-
ical Transactions for 1831, published in that year. The memoir occupies
pages 109…145 of the volume; it was read on January 13 and 20, 1831.

1456. The memoir seems to me quite destitute of value; it contains
nothing that is new, and repeats the errors which Ivory had already pub-
lished in his memoir of 1824.

It will be sufficient to give a few specimens of the statements which
Ivory makes, and for which there is no foundation. He says on page 121:

In a homogeneous planet in a fluid state, there are forces which prevail in
the interior parts and vanish at the surface; and, as Clairaut’s theory notices
no forces except those in action at the surface, it leaves out some of the causes
tending to change the figure of the fluid, and therefore it cannot lead to an
exact determination of the equilibrium.

Let 𝜙 be such a function that
𝑑𝜙
𝑑𝑥

,
𝑑𝜙
𝑑𝑦

, and
𝑑𝜙
𝑑𝑧

denote the accelerating

forces parallel to the corresponding axes; then Ivory says on his page 124:
… for 𝜙 must be always positive, and it must increase continually from the
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centre of gravity to the surface of the fluid.

Ivory asserts on his page 135 that an ellipsoid cannot be a form of
fluid equilibrium unless two of the axes are equal.

The language is often vague and scarcely intelligible. Thus on page
111 we have:

… 𝑓𝑑𝑚 is the motive force of the cylinder or prism, or the effort it makes
to move in the direction….

On page 126 we have:
It may be proper to add that the mass of fluid has no tendency to turn

upon an axis. For no motion of this kind can be produced by the pressures
propagated inward from the surface, the directions of which pass through the
centre of gravity. Neither can the accelerating forces urging the particles, cause
any such motion, these being wholly employed in counteracting the inequality
of pressure.

1457. A memoir entitled On the Equilibrium of a Mass of Homoge-
neous Fluid at liberty is contained in the Philosophical Transactions for
1834, published in that year. The memoir occupies pages 491…530 of
the volume; it was read May 29, 1834.

1458. This memoir also seems to me quite destitute of value; the old
errors are repeated, and statements made without any foundation. Thus
Ivory asserts on his pages 494 and 498 that the forces must be such as
to vanish at the centre of gravity; “for without this condition the equilib-
rium of the mass of fluid would be impossible.”

On his page 501 he has two functions 𝜙(𝑥, 𝑦, 𝑧) and 𝜙′(𝑥, 𝑦, 𝑧); he says
that 𝜙′(𝑥, 𝑦, 𝑧) must not contain such terms as 𝐴𝑥, 𝐵𝑦, 𝐶𝑧; and that as
𝜙(𝑥, 𝑦, 𝑧) coincides with 𝜙′(𝑥, 𝑦, 𝑧) at the surface, 𝜙(𝑥, 𝑦, 𝑧) can contain no
such term. But this is untenable. For suppose 𝑢 = 1 to be the equation
to the surface; and let

𝜙′(𝑥, 𝑦, 𝑧) = 𝑓(𝑥, 𝑦, 𝑧) + 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + (𝑢 − 1)(𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧),



ivory. 464

and
𝜙(𝑥, 𝑦, 𝑧) = 𝑓(𝑥, 𝑦, 𝑧) + 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧.

Then 𝜙′(𝑥, 𝑦, 𝑧) does not contain such terms as 𝐴𝑥, 𝐵𝑦, 𝐶𝑧; while
𝜙(𝑥, 𝑦, 𝑧) does contain them; and yet the two coincide at the surface.

On page 513 Ivory undertakes to demonstrate that fluid in the form
of an ellipsoid with three unequal axes cannot be in equilibrium: but we
know that his result is untrue.

1459. We have stated in Art. 1422 the new principle of fluid equi-
librium which Ivory assumed. In his memoir of 1831 he modified his
statement; see page 133 of that memoir. In the present memoir he calls
attention to the circumstance that there was something exceptionable in
the memoir of 1824, but that the memoir of 1831 is not liable to the same
reproach: see pages 528 and 529 of the present memoir. The difference
between his two opinions may be thus expressed in modern language;
at first he assumed that the potential of the fluid bounded by the level
surfaces would be constant throughout the space enclosed by the inte-
rior surface, but afterwards he assumed that it would be constant for all
points on the interior surface. However we now know that there is re-
ally no difference between the two opinions; for, by a theorem due to
Gauss, if the potential is constant for all points of the interior surface, it
will also be constant for all points of the space bounded by that surface;
see Gauss’s memoir, Allgemeine Lehrsätze … 1840; or the Cambridge and
Dublin Mathematical Journal, Vol. iv. page 200.

1460. A memoir entitled Of such Ellipsoids consisting of Homogeneous
Matter as are capable of having the Resultant of the Attraction of the Mass
upon a Particle in the Surface, and a Centrifugal Force caused by revolv-
ing about one of the axes, made perpendicular to the surface, is contained
in the Philosophical Transactions for 1838, published in that year. The
memoir occupies pages 57…66 of the volume; it was read December 11,
1837. There is a note connected with the memoir on pages 265 and 266
of the succeeding volume of the Philosophical Transactions.
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The memoir discusses Jacobi’s theorem; it contains numerous impor-
tant errors, which I have corrected in a paper published in the Proceed-
ings of the Royal Society, Vol. xix. 1871.

1461. The titles of the papers which we have numbered XXIX. are
the following:

On the Conditions of Equilibrium of a Homogeneous Planet in a Fluid
State; this occupies pages 81 and 82 of the volume.

A Remark on an Article of M. Poisson’s Traité de Mécanique (Edition
2nd. No. 593); this occupies pages 274…276 of the volume.

On a Principle laid down by Clairaut for determining the Figure of
Equilibrium of a Fluid, the Particles of which are urged by accelerating
forces …; this occupies pages 321…324 of the volume.

These papers are merely repetitions of the peculiar views which Ivory
had already frequently published; perhaps they are expressed even with
more than the usual confidence. The following sentences from page 82
may serve as an illustration of the style:

Now the least attention to the nature of this equation will shew that the
attraction of the matter without the level surface is entirely independent of the
rest of the equation….

Now these two equations are the same with those given in a paper in the
Philosophical Transactions for 1824, and in two subsequent papers written for
the purpose of obviating some objections (I had almost said, frivolous objec-
tions) of M. Poisson.

1462. A memoir entitled On the Conditions of Equilibrium of an In-
compressible Fluid, the Particles of which are acted upon by Accelerating
Forces, is contained in the Philosophical Transactions for 1839, published
in that year. The memoir occupies pages 243…264 of the volume; it was
read June 20, 1839.

1463. This memoir is only a reproduction of the same unsatisfactory
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matter as Ivory had already often published; there does not seem to be
any improvement, nor even any novelty. Ivory still holds to his assump-
tion that it is necessary for equilibrium that the fluid between two level
surfaces should exert no tangential action on a particle placed on the in-
ner surface; that is, in modern language he assumes that the potential of
the stratum is constant all over the inner surface. A reference is given
on page 257 to Poisson, who had recorded his dissent from Ivory’s opin-
ion; and it is plainly suggested that this dissent arises from the want of
a “little patience.”

On page 253 we are told that the true principle of the equilibrium
of a fluid is that “the level surfaces at all depths must have determinate
figures”: it may be safely said that no valuable result could be deduced
from such an obvious truism.

1464. The writings of Ivory on our subject, disregarding those which
were published in the Philosophical Magazine, occupy about 300 quarto
pages of the Philosophical Transactions; probably all which is valuable in
them could be compressed into a tenth of that space. I consider these
meritorious investigations to consist of three parts; the demonstration in
the first memoir of the theorem which is usually called Ivory’s, the indi-
cation in the second memoir of a weakness in one of Laplace’s demon-
strations, and some analytical results in the memoir of 1824, relating to
Laplace’s coefficients: in the last part however Rodrigues had anticipated
Ivory; see Art. 1187.

But the discussions on fluid equilibrium are unworthy of Ivory,
and their publication reflects little credit on the state of English
mathematics, or on the administration of the Royal Society, at the
epoch. It might perhaps have been permitted to a writer of Ivory’s
reputation to expound once his peculiar opinions; though even this is
doubtful, since these opinions were opposed to the principles received
by every scientific authority of the period: but even if the appearance
of the memoir of 1824 is thus excused, there can be no justification for
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the repetition of the same unsatisfactory matter in the memoirs of 1831,
1834, and 1839.



CHAPTER XXXVII.

PLANA.

1465. The writings of Plana, arranged chronologically, which belong
to our subject are the following:

I. Sulla teoria dell’attrazione degli sferoidi elittici. I have already no-
ticed this: see Art. 1147.

II. Mémoire sur l’attraction des Sphéroïdes Elliptiques Homogènes.
Gergonne’s Annales de Mathématiques, 1812 and 1813.

III. A Letter relating to Saturn’s Ring occurs in De Zach’s Correspon-
dance Astronomique, Vol. i. 1818. We have already noticed this letter in
Art. 867.

IV. Solution de différens Problèmes relatifs à la loi de la résultante
de l’attraction…. Turin Memorie, Vol. xxiv. 1820.

V. Note sur la Densité et la Pression des Couches du Sphéroïde Ter-
restre. De Zach’s Correspondance Astronomique, Vol. v. 1821.

VI. Mémoire sur Différens Procédés d’intégration, par lesquels on
obtient l’attraction d’un Ellipsoïde Homogène…. Crelle’s Journal für …
Mathematik, 1840.

VII. Note sur l’intégrale ∫
𝑑𝑀
𝑟

= 𝑉…. This occurs in the same vol-

ume as number VI.
VIII. Appendix to the memoir number VI. Crelle’s Journal für …

Mathematik, 1843.
IX. Two Notes relating to propositions in Newton’s Principia occur in

the Turin Memorie, Vol. xi. 1851.
X. Note sur la densité moyenne de l’écorce superficielle de la Terre.

Astronomische Nachrichten, Vol. xxxv.
XI. Note sur la Figure de la Terre et la loi de la Pesanteur à sa
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surface d’après l’hypothèse d’Huygens, publiée en 1690. Astronomische
Nachrichten, Vol. xxxv.

XII. Sur la Théorie mathématique de la Figure de la Terre, publiée
par Newton en 1687. Et sur l’état d’équilibre de l’ellipsoïde fluide à trois
axes inégaux. Astronomische Nachrichten, Vol. xxxvi.

XIII. Sur la loi des Pressions, et la loi des Ellipticités des couches
terrestres, … Astronomische Nachrichten, Vol. xxxvi.

XIV. Sur la loi de la Pesanteur à la Surface de la mer, dans son état
d’Equilibre. Astronomische Nachrichten, Vol. xxxviii.

I proceed to give an account of such of these writings as have not
been already noticed; the first of these is that numbered II.

1466. A memoir entitled Mémoire sur l’attraction des Sphéroïdes Ellip-
tiques Homogènes is contained in the third volume of Gergonne’s Annales
de Mathématiques, which is dated 1812 and 1813. The memoir occupies
pages 273…279 of the volume.

1467. The memoir may be described as a commentary on a passage
of Lagrange’s Mécanique Analytique, which occurs on pages 113 and 114
of the second edition, and on pages 106…108 of the third edition.

Plana investigates the general result which is quoted in Art. 1004; this
he does by transforming the variables in the manner of Ivory, to whom
he refers. The transformation is the same as was also used by Gauss: see
Art. 1173.

Plana illustrates the advantage of Lagrange’s result in a subsequent
memoir: see Crelle’s Journal für … Mathematik, Vol. xx. page 279.

1468. We now come to a memoir entitled Solution de différens prob-
lèmes relatifs à la loi de la résultante de l’attraction exercée sur un point
matériel par le cercle, les couches cylindriques, et quelques autres corps qui
en dépendent par la forme de leurs elémens.

This memoir is contained in Vol. xxiv. of the Turin Memorie which



plana. 470

was published in 1820. The memoir occupies pages 389…450 of the vol-
ume. The memoir was read on the 28th of February, 1819.

1469. The first problem considered is the attraction exerted by the
perimeter of a circle on a given point which is not necessarily in the
plane of the circle: this occupies pages 394…408. Plana gives expressions
for the two components into which the attraction may be resolved: the
expressions involve complete elliptic integrals.

1470. In the particular case in which the given point is situated on
the straight line drawn through the centre of the circle at right angles to

its plane, the resultant attraction is
2𝜋𝑘𝑧

(𝑧2 + 𝑘2) 32
; where 𝑘 is the radius of

the given circle, and 𝑧 is the distance of the given point from the centre
of the given circle. Plana says on his pages 403 and 404:

Cette expression est remarquable par sa simplicité, et en ce qu’elle nous fait
voir, que la masse de la périphérie du cercle agit comme si elle était toute con-
centrée dans un quelconque de ses points.

This remark seems to me unnecessary: it is of course obvious, with-
out any calculations, that every element of the circumference of the cir-
cle is at the same distance from the given point, and also exerts the same
attraction along the direction of the resultant.

1471. Plana’s formulæ may be applied to the case in which the given
point is in the plane of the circle. Likewise he obtains immediately the
attraction which a sphere exerts on a ring which is outside it in a plane
passing through the centre of the sphere: this leads to the remark as to
the instability of such a system made by Laplace, to whom Plana refers.
See Art. 872.

1472. Plana passes naturally to consider the attraction of a shell, sup-
posed to be of uniform infinitesimal thickness, and in the form of a sur-
face of revolution, at a given point in the axis. He states the definite
result for the case in which the shell is in the form of an oblongum,
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with the given point at the focus: see his page 407. But his result is
wrong. Let 𝑒 be the excentricity; then adopting his mode of expression,
the result should be

4𝜋𝑒
3

−
4𝜋
𝑒
−
2𝜋2√(1 − 𝑒2)

𝑒2
+
8𝜋√(1 − 𝑒2)

𝑒2
tan−1

√(1 + 𝑒)
√(1 − 𝑒)

.

But instead of the first two terms Plana has

−
4𝜋𝑒
3

−
12𝜋
𝑒
.

Since tan−1
√(1 + 𝑒)
√(1 − 𝑒)

=
𝜋
4
+
1
2
sin−1 𝑒, the result may be expressed thus:

4𝜋𝑒
3

−
4𝜋
𝑒
+
4𝜋√(1 − 𝑒2)

𝑒2
sin−1 𝑒.

This is the attraction from the centre.
It is shewn in Differential Calculus, Art. 374, that

√(1 − 𝑒2) sin−1 𝑒 = 𝑒 −
1
3
{𝑒3 +

2
5
𝑒5 +

2 . 4
5 . 7

𝑒7 +
2 . 4 . 6
5 . 7 . 9

𝑒9 +…} .

Hence the attraction towards the centre is

4𝜋
3
{
2
5
𝑒3 +

2 . 4
5 . 7

𝑒5 +
2 . 4 . 6
5 . 7 . 9

𝑒7 +…} .

1473. Plana concludes this section of his memoir thus, referring to
the particular case just considered:

Ce cas particulier satisfait pour faire voir qu’un point matériel ne saurait
demeurer en équilibre dans l’intérieur d’une couche elliptique d’épaisseur con-
stante: il faut pour cela, que l’épaisseur soit variable comme l’intervalle compris
entre deux ellipses dont le rapport des axes est le même.
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He leaves his readers to establish this statement for themselves. The
argument may take the following shape, which holds whether the surface
be of revolution or not.

The inner surface of the shell is assumed to be that of an ellipsoid;
if possible let the outer surface be of some other form, and not a similar
and similarly situated and concentric ellipsoid. Take a similar, similarly
situated, and concentric ellipsoidal surface just big enough to include the
supposed outer surface, and therefore touching it at least at one point,
say 𝑃. Then we have two shells which exert no attraction on an inter-
nal particle; namely one shell by hypothesis, and another by a known
demonstration. Hence the difference of these two shells exerts no attrac-
tion. This difference is a shell which is of zero thickness at 𝑃. Suppose
a particle very near to 𝑃 inside the shell; draw a plane through the parti-
cle parallel to the tangent plane at 𝑃. Then of the two parts into which
the shell is thus divided, that round 𝑃 ultimately exercises no attraction:
the attraction being in fact 2𝜋𝜌 where 𝜌 is ultimately zero: see Art. 993.
Hence the attraction of the other part is unbalanced and the particle can-
not be in equilibrium.

Thus the outer boundary of the shell can be nothing but an ellipsoid
homothetical with the inner boundary.

1474. I will for an example solve one problem suggested by this sec-
tion of Plana’s memoir.

To find the attraction exerted by the circumference of a circle at an
external point in the plane of the circle.

Let 𝐶 be the centre, 𝑃 the external particle; let 𝑘 denote the radius,
and 𝑝 the distance 𝐶𝑃.

Draw from 𝑃 any straight line 𝑃𝑄𝑅 to cut the circle. Let 𝐶𝑃𝑄 = 𝜃,
and 𝐶𝑄𝑅 = 𝜙; let 𝑃𝑄 = 𝑟1, and 𝑃𝑅 = 𝑟2.

The attraction of the element of the circumference of the circle at 𝑄

maybe denoted by
𝑟1𝑑𝜃 sec𝜙

𝑟12
, and the attraction of the element of the
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circumference at 𝑅 by
𝑟2𝑑𝜃 sec𝜙

𝑟22
.

Hence the attraction of the two elements resolved along 𝑃𝐶

=
(𝑟1 + 𝑟2) sec𝜙 cos 𝜃 𝑑𝜃

𝑟1𝑟2
=
2𝑝 cos2 𝜃 sec𝜙𝑑𝜃

𝑝2 − 𝑘2
.

Now 𝑘 sin𝜙 = 𝑝 sin 𝜃; therefore 𝑘 cos𝜙𝑑𝜙 = 𝑝 cos 𝜃𝑑𝜃. Hence the
whole attraction of the circle

=
4𝑘

𝑝2 − 𝑘2
∫

𝜋
2

0
cos 𝜃𝑑𝜙 =

4𝑘
𝑝2 − 𝑘2

∫
𝜋
2

0
√(1 −

𝑘2

𝑝2
sin2 𝜙) 𝑑𝜙.

Thus the whole attraction is expressed as a complete elliptic integral
of the second order.

Plana’s result involves two complete elliptic integrals; one of the first
order and one of the second order; see his page 401 at the top. He rather
has in view a point within the circle, but the requisite slight modification
is easily made. His result can be made to agree with that just given by
means of the known properties of complete elliptic integrals.

We may put the above expression thus

4𝑘
𝑝√(𝑝2 − 𝑘2)

∫
𝜋
2

0
√(

𝑝2 − 𝑘2 sin2 𝜙
𝑝2 − 𝑘2

) 𝑑𝜙.
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As 𝑝 diminishes, the factor outside the integral sign increases; and so
also does the expression under the integral sign. Thus the attraction con-
tinually increases as 𝑃 approaches the circumference; this might proba-
bly have been anticipated, though the demonstration is not immediately
obvious.

1475. The second problem considered by Plana is the attraction ex-
erted by a circular lamina on a particle which is not necessarily in the
plane of the circle.

This occupies pages 408…421. Here, as in the first problem, the ex-
pressions obtained for the components of the attraction involve elliptic
integrals.

1476. On his page 410, Plana omits 𝑝 in the second term of his ex-
pression for an attraction. The error is obvious because it makes the two
terms of his expression of different dimensions. Nevertheless the error
is continued on pages 417, 418, and 421. There are several instances of
this kind of error or misprint in the memoir. It is strange that such an
elementary consideration as the necessity of having the various terms of
an expression of the same dimension should apparently have been quite
disregarded in writing the memoir, or in correcting the press.

1477. On his page 416, Plana says:
… il me semble qu’il conviendrait d’employer ici les formules données par

Cotes pour avoir des valeurs approchées des intégrales.

I suppose that Plana here refers to pages 30…33 of the Chapter De
Methodo Differentiali Newtoniana by Cotes. They relate to what we
should now speak of as the approximate calculation of the area of a
curve by the method of equidistant ordinates.

1478. On his page 417, Plana says:
Je présume, que à l’aide des formules précédentes on peut démontrer qu’un

point placé entre les centres de deux cercles qui ne se coupent pas doit pren-
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dre un mouvement oscillatoire sur la ligne qui joint les centres des cercles sans
pouvoir jamais atteindre la circonférence du plus petit cercle.

It is not quite clear to me what Plana means. But I presume that one
circle is supposed to fall entirely within the other; or we may for facility
of conception suppose the two circles parallel, but indefinitely close, and
the particle to move between them.

Of course he cannot mean the two circles to be in the same plane,
and one quite without the other. For in such a case there is indeed a
position of equilibrium for a particle on the line joining the centres and
between the two circumferences: but the equilibrium is unstable, and if
the particle is moved towards either circle, it will move up to contact
with that circle. This follows from the fact that if a particle in the plane
of a circle, outside the circle, move towards the circle, the attraction con-
tinually increases. This fact is established by supposing the circle decom-
posed into thin strips at right angles to the straight line on which the
particle is supposed to move; for the attraction of a strip varies inversely
as the distance from the particle, and directly as the sine of half the an-
gle subtended by the strip at the particle: hence the attraction of every
strip increases as the particle approaches the circle.

1479. On his pages 418…420 Plana gives some numerical calculations
as to the attraction of a thin ring, like that of Saturn, on a particle near
the inner or outer boundary. He uses his results to throw doubts on some
remarks made by Laplace in his sixth memoir: see Art. 871.

1480. I will give here a simple investigation of a problem connected
with this section of Plana’s memoir.

Find the attraction exerted by a circular cylinder on a particle placed
in contact with the curved surface at a point equally distant from the
ends of the cylinder.

Let 2ℎ be the height of the cylinder, and 𝑎 the diameter of the cylin-
der.
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Take the origin at the point considered; let the axis of 𝑥 be the normal
at this point, and the axis of 𝑧 the generating line of the cylinder.

Then the resultant attraction is obviously directed along the axis of
𝑥, and is equal to

∭
𝑥𝑑𝑥𝑑𝑦𝑑𝑧

(𝑥2 + 𝑦2 + 𝑧2) 32
,

the integration extending over the whole cylinder. Integrate with respect
to 𝑧; the limits are −ℎ and ℎ: thus we obtain

2ℎ∬
𝑥𝑑𝑥𝑑𝑦

(ℎ2 + 𝑟2) 12 𝑟2
,

where 𝑟2 stands for 𝑥2 + 𝑦2.
Transform in the usual way to polar coordinates; thus we obtain

2ℎ∬
cos 𝜃 𝑑𝜃 𝑑𝑟
(ℎ2 + 𝑟2) 12

.

Integrate with respect to 𝑟; the limits are 0 and 𝑎 cos 𝜃; thus we obtain

2ℎ∫ cos 𝜃 log
√(ℎ2 + 𝑎2 cos2 𝜃) + 𝑎 cos 𝜃

ℎ
𝑑𝜃.

The limits for 𝜃 are −
𝜋
2
and

𝜋
2
. Integrate by parts, and the integral

reduces to

4𝑎ℎ∫
𝜋
2

0

sin2 𝜃 𝑑𝜃
√(ℎ2 + 𝑎2 cos2 𝜃)

.

We may express this as

4ℎ√(ℎ2 + 𝑎2)
𝑎

(𝐹 − 𝐸),
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where 𝐹 and 𝐸 denote complete elliptic integrals of the first and second

order respectively; the modulus being
𝑎

√(ℎ2 + 𝑎2)
.

This is exact. If we suppose ℎ very small compared with 𝑎, we have
approximately

𝐹 = log
4√(𝑎2 + ℎ2)

ℎ
, and 𝐸 = 1;

so that finally the attraction approximately

= 4ℎ (log
4𝑎
ℎ
− 1) .

It will be found that this agrees with a result given by Plana on his
page 418, after we correct the mistake noticed in Art. 1476. We must in
his formula suppose 𝑝 = 𝑘, and double the result to get the attraction of
the whole cylinder.

For a numerical example suppose ℎ =
1
30

and 𝑎 = 2; we get

4
30

(log 240 − 1), that is
4
30

of 4·48064, that is ·59742. This agrees with

the result given by Plana on his page 419 in the form 2 × ·29871.

For another example suppose ℎ =
1
30

and 𝑎 =
14
5
; we get

4
30
(log 336−

1), that is
4
30

of 4·81711, that is ·64228. This does not agree with the

result given by Plana on his page 419 in the form 2 × ·342933.

1481. The third problem considered by Plana is the attraction of a
right cylindrical surface with a circular base on a particle in the plane
of the base. This occupies pages 422…445. As before, the expressions
obtained involve elliptic integrals.
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1482. In the particular case in which the height of the cylinder is
infinite, the attraction on an internal particle resolved along the plane of
the base is zero. This may be easily verified. For suppose the cylinder to
extend to infinity both above and below the plane in which the particle is
situated; then the attraction vanishes, as may be shewn by a process like
that of Newton for an ellipsoidal shell. Hence, as the attractions of the
parts above and below the plane resolved along the plane are obviously
equal, each must vanish. In exactly the same manner, if a particle be
placed inside an ellipsoidal shell, at any point of a principal plane, the
attraction of each half into which the principal plane divides the shell
resolved along the plane is zero.

1483. There are numerous misprints in this section. For instance, on
page 427 in Plana’s formulæ (e) and (i), for 2𝜆 − 1 read 𝜆. This misprint
is obvious from the principle of dimensions to which I have referred in
Art. 1476; the misprint extends its influence over many of the subsequent
formulæ.

1484. On his pages 439…443 Plana investigates the values of the fol-
lowing definite integrals:

∫
𝛼

−𝛼
tan−1

𝛽√(𝛼2 − 𝑥2)
𝛼(𝑞 − 𝑥)

𝑑𝑥 and ∫
𝛼

−𝛼
𝑥 tan−1

𝛽√(𝛼2 − 𝑥2)
𝛼(𝑞 − 𝑥)

𝑑𝑥.

His process may be much improved.

Assume with him 𝑥 =
(𝑦2 − 1)𝛼
𝑦2 + 1

; then the definite integrals become

4𝛼∫
∞

0

𝑦 𝑑𝑦
(1 + 𝑦2)2

tan−1
2𝛽𝑦

𝑞 + 𝛼 + 𝑦2(𝑞 − 𝛼)
,

and
4𝛼2∫

∞

0

𝑦(𝑦2 − 1)𝑑𝑦
(1 + 𝑦2)3

tan−1
2𝛽𝑦

𝑞 + 𝛼 + 𝑦2(𝑞 − 𝛼)
.
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After this his process becomes very laborious. A better way will be
to assume

tan−1
2𝛽𝑦

𝑞 + 𝛼 + 𝑦2(𝑞 − 𝛼)
= tan−1𝑀𝑦 − tan−1 𝑁𝑦;

this gives

𝑀 −𝑁 =
2𝛽

𝑞 + 𝛼
, 𝑀𝑁 =

𝑞 − 𝛼
𝑞 + 𝛼

;

thus
𝑀 +𝑁 =

2
𝑞 + 𝛼

√{𝛽2 + 𝑞2 − 𝛼2}.

Hence 𝑀 and 𝑁 are known.
Consider the first integral, which Plana denotes by 𝑋, so that

𝑋 = 4𝛼∫
∞

0
(tan−1𝑀𝑦 − tan−1 𝑁𝑦)

𝑦𝑑𝑦
(1 + 𝑦2)2

.

Integrate by parts; thus

𝑋 = 2𝛼∫
∞

0
(

𝑀
1 +𝑀2𝑦2

−
𝑁

1 + 𝑁2𝑦2
)

𝑑𝑦
1 + 𝑦2

. (1)

But

∫
∞

0

𝑑𝑦
(1 + ℎ2𝑦2)(1 + 𝑘2𝑦2)

=
1

ℎ2 − 𝑘2
∫

∞

0
(

ℎ2

1 + ℎ2𝑦2
−

𝑘2

1 + 𝑘2𝑦2
) 𝑑𝑦

=
1

ℎ2 − 𝑘2
(ℎ − 𝑘)

𝜋
2
=

𝜋
2(ℎ + 𝑘)

. (2)

From (1) and (2) we see that

𝑋 = 𝜋𝛼 (
𝑀

𝑀 + 1
−

𝑁
𝑁 + 1

) =
(𝑀 − 𝑁)𝜋𝛼

1 +𝑀 + 𝑁 +𝑀𝑁

=
𝛼𝛽𝜋

𝑞 + √(𝑞2 + 𝛽2 − 𝛼2)
=
𝜋𝛼𝛽{𝑞 − √(𝑞2 + 𝛽2 − 𝛼2)}

𝛼2 − 𝛽2
.
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Now consider the second integral, which Plana denotes by 𝑋 ′. Inte-
grate by parts; thus

𝑋 ′ = 2𝛼2∫
∞

0
(

𝑀
1 +𝑀2𝑦2

−
𝑁

1 + 𝑁2𝑦2
)

𝑦2𝑑𝑦
(1 + 𝑦2)2

. (3)

If we differentiate (2) with respect to 𝑘 we find that

∫
∞

0

𝑦2𝑑𝑦
(1 + ℎ2𝑦2)(1 + 𝑘2𝑦2)2

=
𝜋

4𝑘(ℎ + 𝑘)2
. (4)

From (3) and (4) we see that

𝑋 ′ =
𝜋𝛼2

2
{

𝑀
(𝑀 + 1)2

−
𝑁

(𝑁 + 1)2
}

=
𝜋𝛼2

2
𝑀(𝑁 + 1)2 − 𝑁(𝑀 + 1)2

(𝑀 + 1)2(𝑁 + 1)2

=
𝜋𝛼2

2
(𝑀 − 𝑁)(1 − 𝑀𝑁)
(𝑀 + 1)2(𝑁 + 1)2

=
𝜋𝛼3

2
𝛽

{𝑞 + √(𝑞2 + 𝛽2 − 𝛼2)}2

=
𝜋𝛼3𝛽
2

{
𝑞 − √(𝑞2 + 𝛽2 − 𝛼2)

𝛼2 − 𝛽2
}
2

.

Thus, as Plana says on his page 443, we have

𝑋 ′ =
𝛼
2𝜋𝛽

𝑋2;

he adds: “ce qui constitue un théorème assez remarquable.”
Let there be an infinite right elliptic cylinder; let 2𝛼 be the major axis

and 2𝛽 the minor axis of the ellipse. Then 4𝑋 expresses the attraction of
the cylinder on a particle situated on the axis major produced, and at a
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distance 𝑞 from the centre. This is easily shewn by cutting up the cylin-
der into infinitesimal rods parallel to the generating lines, and summing
the attractions of the rods which form a slice at right angles to the major
axis of the ellipse.

1485. The last problem considered by Plana is the attraction of an
infinite right elliptic cylinder on an external particle. This occupies pages
445…450.

Let 𝑓 and 𝑔 be the coordinates of the attracted particle, estimated
from a fixed point in a plane at right angles to the generating lines of
the cylinder. Let 𝑉 denote the potential of the cylinder. Then we know
that 𝑉 will be a function of 𝑓 and 𝑔 determined by

𝑑2𝑉
𝑑𝑓2

+
𝑑2𝑉
𝑑𝑔2

= 0.

Hence
𝑉 = 𝜙{𝑓 + 𝑔√(−1)} + 𝜓{𝑓 − 𝑔√(−1)},

where 𝜙 and 𝜓 denote functions at present undetermined.

The resolved attractions we know are equal to
𝑑𝑉
𝑑𝑓

and
𝑑𝑉
𝑑𝑔

respec-

tively. Hence we obtain for these resolved attractions expressions like
that given for 𝑉.

Now Plana obtains these expressions for the resolved attractions with-
out any use of the potential; and this is the only novelty in his solution:
see his page 449.

1486. In the fifth volume of De Zach’s Correspondance Astronomique
…, published in 1821, is a note by Plana entitled, Note sur la densité et
la pression des couches du sphéroïde terrestre; it occupies pages 68…79 of
the volume.

1487. The note relates to the law of density and the law of pressure



plana. 482

discussed by Laplace in the Connaissance des Tems for 1822: see Arts.
1285 and 1325.

Plana calculates the values of the density and of the pressure at var-
ious depths below the surface of the Earth by Laplace’s formulæ; but he
adds nothing to the theoretical investigations. He also makes some com-
parison of the theory with observations.

I will notice two or three points which present themselves.

1488. His formula (2) on page 70 involves some strange mistake or

misprint; the term (
5𝜋
6√6

+
1
3√2

)
2
is wrong.

1489. Plana works out in detail the comparison of theory with obser-
vation, to which Laplace himself gave some attention: see Art. 1329. By
this comparison Plana arrives at the result that the ratio of the Moon’s

mass to the Earth’s mass is ·0122651, which he says lies between
1
82

and

1
83
; but it should be between

1
82

and
1
81
.

Plana says:

La masse de la lune ·0122651 diffère sensiblement de la fraction
1

68·5
que

l’on obtient autrement comme l’on sait. Mais malgré cela on doit, ce me semble,
admettre, que cette loi de la densité des couches du sphéroïde terrestre s’accorde
assez bien avec l’ensemble des phénomènes connus. Cela posé, il me paraît cer-
tain, que la valeur de

∫𝜌𝑎4 𝑑𝑎

∫𝜌𝑎2 𝑑𝑎
= ·27216,

trouvée par M. le Baron de Lindenau (voyez Éphémérides de Berlin pour 1820,
page 211) doit etre trop éloignée de la véritable, puisque la théorie précédente
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donne ·485967 avec un degré d’approximation plus plausible.

Au reste, il est essentiel d’observer, que le rapport de ces deux intégrales
définies a été calculé par M. de Lindenau à l’aide de la formule

∫𝜌𝑎4 𝑑𝑎

∫𝜌𝑎2 𝑑𝑎
=
3
5
(1 −

𝑗
2𝜖
) ,

qui lui a été communiquée par M. Gauss.

J’ignore dans ce moment le juste degré d’approximation de cette formule
ainsi que le moyen de la dériver de la condition de l’équilibre de l’océan….

I have expressed the formula given by Gauss in my own notation; 𝜖 is
the Earth’s ellipticity and 𝑗 is, as usual, the ratio of the centrifugal force
at the equator to the attraction there.

I am, like Plana, quite ignorant as to the origin of the formula. I
have no faith in it. It looks to me as if Gauss had intended to suppose
the Earth to be composed of similar elliptic strata, surrounded by a film

of fluid; then the
3
5
must be cancelled. See equation (2) of Art. 323; and

there suppose 𝜖 constant.

1490. Plana brings evidence from a comparison of the lunar the-
ory with observation to confirm the value of the moon’s mass he had
obtained, which, as we have seen, was rather smaller than the value
found otherwise. The present received value seems still smaller than that
adopted by Plana.

1491. Plana concludes thus:
Telles sont toutes les principales conséquences qui dérivent immédiatement

de la loi supposée pour la densité des couches du sphéroïde terrestre. En con-
sidérant l’ensemble des phénomènes, l’accord est tellement satisfaisant, que l’on
paraît autorisé à regarder cette loi comme celle de la nature.
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Perhaps this is expressed rather too strongly. Let us consider what is
meant by l’ensemble des phénomènes.

Taking with Legendre and Laplace, as in Art. 1326, for the density

the expression 𝐴
sin 𝑎𝑛
𝑎

, it is found that if 𝑛 is supposed equal to
5𝜋
6
, the

ellipticity of the Earth agrees well with observation. But we can hardly
say that this gives any evidence in favour of the supposed law of density;
the coincidence has in fact been secured by a proper selection of a cer-
tain arbitrary constant. Thus all that seems to remain is that the value of

∫𝜌𝑎4 𝑑𝑎

∫𝜌𝑎2 𝑑𝑎
, as found by our expression for 𝜌, agrees reasonably well with

the phenomena of precession and nutation.

1492. The next memoir by Plana which we have to consider is en-
titled Mémoire sur différens procédés d’intégration, par lesquels on obtient
l’attraction d’un ellipsoïde homogène dont les trois axes sont inégaux, sur
un point extérieur. This memoir occupies pages 189…270 of Crelle’s Jour-
nal für … Mathematik, Vol. xx., which was published in 1840.

1493. Plana begins by alluding to some discussions in the Academy
of Paris, which we have seen took place towards the close of Poisson’s
career: see Art. 1404. He says that he drew up the memoir principally
for his own instruction, after reading that by Poisson in Vol. xiii. of the
Memoirs of the Academy of Paris. On reflection his memoir seemed to
him to gain a greater degree of importance by the novelty of the methods
employed, either to obtain the known results or to illustrate them.

1494. The memoir is divided into four sections; each section might be
considered in certain respects as an independent memoir: but in uniting
them they afforded mutual assistance.
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1495. The following sentences from the introduction may be noticed
as giving Plana’s opinion on a point discussed between Poisson and
Poinsot:

On verra dans le quatrième paragraphe quelle est mon opinion et ma
manière de considérer la solution donnée par Legendre en 1788. C’est un
chef-d’-œuvre d’analyse; si par le mot analyse, on veut bien entendre une suite
de transformations des formules primitives dans lesquelles le raisonnement
est en partie remplacé par le mécanisme du calcul. Abstraction faite de la
longueur des calculs c’est, à mon avis, la solution la plus directe qu’on ait
donné de ce problème jusqu’à ce jour.

Plana proceeds then to explain in what sense he takes the word di-
rect, so as to justify the high commendation he thus pronounces on Leg-
endre’s solution: but the remarks do not altogether commend themselves
to my judgement.

1496. The memoir is useful as bringing together various investiga-
tions which were originally published in other places, and supplying
some explanatory comment, yet it cannot be said to contain anything
essentially new and important.

1497. Suppose we have a given ellipsoid, and we wish to determine a
confocal ellipsoid which shall pass through a given point: this problem
we know occurs in Ivory’s mode of treating the attraction of an ellipsoid.
The problem leads to a cubic equation. Plana’s first section is devoted to
the discussion of this problem: it occupies his pages 193…206.

1498. The following passage may be noticed:
… Legendre avait dit (et Mr. De Pontécoulant a répété d’après lui, voyez p.

354 du second volume de sa Théorie analytique du systême du monde) que cette
équation n’a qu’une seule racine réelle (voyez p. 542 du tome 1er de son Traité
des fonctions elliptiques); mais la réalité de ses trois racines est maintenant hors
de doute.

Plana is wrong in his charge so far as relates to Pontécoulant. The
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equation which Pontécoulant takes is

𝑎2

𝑘2
+

𝑏2

𝑘2 + 𝑒2
+

𝑐2

𝑘2 + 𝑒′2
= 1;

this equation has doubtless three roots for 𝑘2, namely, one positive and
two negative, but the latter do not make 𝑘2 real: so there is but one real
value of 𝑘2.

Legendre indeed is incautious; his equation is

𝑓2

𝛼2 + 𝜉
+

𝑔2

𝛽2 + 𝜉
+

ℎ2

𝛾2 + 𝜉
= 1;

and he says that there is only one real value of 𝜉: but the context sug-
gests that he means only one real positive value.

1499. Plana’s second section relates to the equation of the cone which
has its vertex at a given point and circumscribes a given ellipsoid; it occu-
pies pages 206…216. He shews how to put this equation in its simplest
form by changing the axes of coordinates. The last twelve lines of the
section contain some troublesome misprints in formulæ which relate to
the circular sections of the cone.

1500. Plana’s third section purports to treat of the formulæ for de-
termining the attraction of an indefinitely thin ellipsoidal shell bounded
by similar surfaces, on an external particle; it occupies pages 216…240.
But the title is inadequate, as there are many other formulæ in the sec-
tion besides those which relate to the attraction of the film bounded by
homothetical ellipsoids.

1501. In the beginning of this section Plana draws various useful de-
ductions from the known formulæ for the attraction of an ellipsoid on
an external point. We will reproduce some of these; but it will be suffi-
cient for us to confine ourselves to one of the three components of the
attraction.
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Denote by 𝑋 the component considered in Art. 885. Then with the
notation there employed we have

𝑋 =
4𝜋𝑎𝑏𝑐𝑓

𝑘
∫

1

0

𝑥2 𝑑𝑥
√𝑘2 + (𝑏2 − 𝑎2)𝑥2√𝑘2 + (𝑐2 − 𝑎2)𝑥2

,

where 𝑘2 has to be found from an equation there given.

Put 𝑚 =
𝑎2

𝑏2
, 𝑛 =

𝑎2

𝑐2
, 𝑘2 = 𝑎2(1 + 𝜈).

Then the equation for determining 𝜈 and 𝑘2 becomes

𝑓2

1 + 𝜈
+

𝑚𝑔2

1 + 𝑚𝜈
+

𝑛ℎ2

1 + 𝑛𝜈
= 𝑎2, (1)

and we have

𝑋 =
4𝜋𝑓

√(1 + 𝜈)
∫

1

0

𝑥2 𝑑𝑥
√𝑚(1 + 𝜈) + (1 − 𝑚)𝑥2√𝑛(1 + 𝜈) + (1 − 𝑛)𝑥2

.

Now if we form
𝑑𝑋
𝑑𝜈

𝑑𝜈, we shall obtain the expression for the com-

ponent attraction of a film bounded by homothetical ellipsoids; because
by the change of 𝑎 into 𝑎 + 𝑑𝑎 and of 𝜈 into 𝜈 + 𝑑𝜈, we pass from one
ellipsoid to a similar, similarly situated, and concentric ellipsoid infinites-
imally different from the former.

In this way we can verify Poisson’s theorem as to the attraction of
a certain film: see Art. 1394. Poisson himself says that he did this: his
words are quoted in Art. 1405. If however we differentiate with respect
to 𝜈 the value of 𝑋 in the form in which we have left it, the integral sign
does not obviously disappear. It is convenient to change the variable. Put

𝑥2 =
1 + 𝜈
1 + 𝑢

;
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then we obtain

𝑋 = 2𝜋𝑓∫
∞

𝜈

(1 + 𝑢)− 3
2 𝑑𝑢

√(1 + 𝑚𝑢)(1 + 𝑛𝑢)
. (2)

Therefore
𝑑𝑋
𝑑𝜈

= −
2𝜋𝑓(1 + 𝜈)− 3

2

√(1 + 𝑚𝜈)(1 + 𝑛𝜈)
.

Hence the component
𝑑𝑋
𝑑𝜈

𝑑𝜈 is expressed free from the integral sign.

Similarly the other components can be expressed free from the inte-
gral sign.

Plana’s formulæ give the direction of the resultant attraction; but we
do not delay on this point.

1502. Put

(1 + 𝑢)𝑎2 = 𝑣12, (1 + 𝑚𝑢)𝑏2 = 𝑣22, (1 + 𝑛𝑢)𝑐2 = 𝑣32.

Then (1) becomes

𝑋 = 4𝜋𝑓𝑎𝑏𝑐∫
∞

𝑘

𝑑𝑣1
𝑣12𝑣2𝑣3

. (3)

This form agrees with that given by Rodrigues; see Art. 1396.
Thus, as Plana observes, Rodrigues had only one step to take in order

to obtain from his formulæ the attraction of the film. He had in fact only
to pass from (3) to (2), and then differentiate with respect to 𝜈. However
Rodrigues did not take this step; and the result was first given by Poisson.

1503. Plana finishes the section with remarks which demand some
criticism.
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By a certain transformation of the expression already given for 𝑋 he
obtains a result of the form

𝑋 = 4𝜋∫𝑓(𝜔) 𝑑𝜔,

where the limits of the variable 𝜔 are 0 and √𝐴′.
Then he says he will interpret this geometrically. Now a certain se-

ries of cones has presented itself in his investigations, determined by a
parameter which varies between 0 and √𝐴′. Hence he infers that the re-
solved attraction of that part of the ellipsoid which is contained between
the cones corresponding to the values 𝜔 and 𝜔 + 𝑑𝜔 is 4𝜋𝑓(𝜔) 𝑑𝜔. This
is quite unsound. We might on the same ground take the expression

for 𝑋 given in the beginning of Art. 1501, change 𝑥 into
𝜔
√𝐴′

so that 𝑋

becomes say ∫𝜓(𝜔) 𝑑𝜔, and then assert that 𝜓(𝜔) 𝑑𝜔 represents the at-

traction of the conical element. In other words Plana proves fairly that

4𝜋∫𝑓(𝜔) 𝑑𝜔 between the specified limits represents the resolved attrac-

tion of the ellipsoid; but he has no ground whatever for his assertion as
to the geometrical meaning of 4𝜋𝑓(𝜔) 𝑑𝜔. The assertion is indeed true,
for Legendre demonstrated it; but Plana gives no demonstration of his
assertion.

1504. The fourth section of Plana’s memoir is devoted to the demon-
stration of a certain formula of Legendre’s; this section occupies pages
240…270. The formula is that to which we alluded in the preceding Ar-
ticle.

In our account of Legendre’s third memoir we have stated that Legen-
dre supposes a certain series of cones having their common vertex at the
attracted point. Two consecutive conical surfaces will determine a con-
ical shell; Legendre finds an expression for the attraction at the vertex
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of that part of such a shell which is bounded by the attracting ellipsoid.
This expression is that of his formula (𝑔′) in page 479: it is

2𝜋𝜔2𝑑𝜔
𝐹

{
𝐺
√𝐻

+
𝐺′

√𝐻′ } ,

where 𝜔 is a parameter which determines the conical shell, and the cap-
ital letters denote certain complicated functions of the parameter, the co-
ordinates of the attracted point, and the semiaxes of the ellipsoid.

Legendre devotes his pages 470…479 to the investigation of the for-
mula. As I have said however his process is rather indicated than worked
out.

1505. Now Plana gives the operations in detail; and this constitutes
the business of his thirty pages. He says himself on his page 240:

Les artifices de calcul par lesquels Legendre est parvenu à une démonstra-
tion directe de la formule … sont fort ingénieux. Mais, il est impossible d’ap-
précier au juste le degré de la complication et le mérite de la difficulté vaincue,
sans suivre pas à pas les transformations et les réductions à travers lesquelles
on doit passer pour mettre en évidence la propriété caractéristique du résultat
obtenu par le procède de son intégration. Malgré les indications laissées par
Legendre il n’est pas fort aisé (du moine pour moi) de retrouver, ni les résultats
intermédiaires ni le résultat final. Je pense qu’il ne sera pas tout-à-fait inutile
d’exposer ici avec détail la marche que j’ai suivie par y parvenir.

1506. I had myself gone over Legendre’s work in his own order and
with his own notation, before I had seen Plana’s memoir. I find that
the additional developments thus required will fill about seven quarto
pages like Plana’s. To a patient student such a course would not be more
laborious than the study of Plana’s pages.

1507. Legendre effects a certain transformation which at first sight
does not appear to have produced any simplification. Plana observes that
perhaps it was only after trial justified by the subsequent investigations
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that he found the advantage of his transformation. Plana adds on his
page 248:

Un récit naïf des tâtonnements de ce genre serait fort instructif; mais, par
des motifs difficiles à deviner, il est rare de rencontrer dans les écrits des grands
géomètres des exemples comparables à ceux qui nous frappent en lisant les ou-
vrages d’Euler.

1508. Legendre’s formula (𝑔′) presents a very complicated appear-
ance; Legendre simplifies it by a peculiar process, not by direct calcu-
lation: see what has been said with respect to this point in Arts. 888 and
889. Plana appears to allude to this in the last paragraph of his memoir;
he says:

Le calcul dont nous venons de parler (fort pénible même dans le cas parti-
culier où le point attiré serait placé dans le plan d’une des trois sections princi-
pales de l’éllipsoïde) est sans doute celui que Mr. Poisson qualifie d’inextricable:
mais la démonstration de Legendre ne réclame point, ni l’exécution effective de
ce calcul, ni l’appui d’aucun théorême dérivé d’une autre source. Le théorême
qu’il avait en vue, et son expression analytique sous la forme la plus simple,
découlent des principes les plus rigides du Calcul Intégral. L’état progressif de
l’analyse fait espérer que cette espèce de lacune laissée par Legendre sera un jour
heureusement remplie. Il est même probable qu’elle le sera par un de ces traits
de génie qui attestent la force des principes, et la difficulté de saisir le véritable
mode d’en faire l’application.

I do not feel quite certain as to Plana’s meaning; but I presume by
le calcul he means a simplification of Legendre’s formula (𝑔′) by actual
algebraical work. When he says that Legendre’s demonstration does not
require this work, I suppose he means that the peculiar process adopted
by Legendre is sound; in this I agree with him. Thus Plana, according to
my view, is correct in the sense he assigns to Poisson’s word inextricable;
the meaning being that at a certain stage Legendre could not obtain his
desired result by actual algebraical work, but adopted a peculiar process.
This actual algebraical work Plana describes on his last page as “effrayant
pour le plus intrépide algèbriste.”
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1509. The next memoir by Plana is entitled Note sur l’intégrale

∫
𝑑𝑀
𝑟

= 𝑉, qui exprime la somme des élémens de la masse d’un

ellipsoïde, divisés respectivement par leur distance à un point attiré. This
occurs in the same volume as the preceding memoir: it occupies pages
271…282.

1510. The memoir investigates a certain expression for the potential
of an ellipsoid which agrees with that given in Art. 1184. Let the nota-
tion be as in Art. 1501; then the potential 𝑉 is determined by

𝑉 = −𝜋∫
∞

𝜈
{
𝑓2

1 + 𝑢
+

𝑚𝑔2

1 + 𝑚𝑢
+

𝑛ℎ2

1 + 𝑛𝑢
− 𝑎2}

𝑑𝑢
√𝑈

, (4)

where 𝑈 = (1 + 𝑢)(1 + 𝑚𝑢)(1 + 𝑛𝑢).
For an external point 𝜈 must be found by the equation (1) of Art.

1501. For an internal point we must put zero for 𝜈.
Plana considered the potential for an internal point again in a subse-

quent memoir. See the Astronomische Nachrichten, Vol. xxxvi. page 172,
and Art. 1543.

To justify his formula we observe that if we differentiate with respect
to 𝑓, 𝑔, or ℎ, we obtain a correct result. Thus, for example, it gives

𝑑𝑉
𝑑𝑓

= −2𝜋𝑓∫
∞

𝜈

𝑑𝑢
(1 + 𝑢)√𝑈

,

for no term arises from the variation of 𝜈, since the expression under the
integral sign vanishes when 𝑈 = 𝜈, by equation (1) of Art. 1501.

Now this value of
𝑑𝑉
𝑑𝑓

is correct, because −
𝑑𝑉
𝑑𝑓

we know is equal to

the 𝑋 of Art. 1501; and so we see that our result is true by (1) of that
Article.

In like manner, if we differentiate (4) with respect to 𝑔 or to ℎ, we
obtain a correct result. Hence (4) must be true, provided it is true for any
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special values of 𝑓, 𝑔, ℎ; that is, we have only to shew that no arbitrary
constant is required in (4).

Plana effects this comparison by calculating directly the value of 𝑉
for an external particle, and shewing that the expression agrees with (4).

A simple mode is by shewing that when 𝑓, 𝑔, and ℎ are infinite, the
expression for 𝑉 in (4) vanishes as it should.

When 𝑓, 𝑔, ℎ are infinite, we have 𝜈 infinite by (1) of Art. 1501.

But
𝑓2

1 + 𝑢
+

𝑚𝑔2

1 + 𝑚𝑢
+

𝑛ℎ2

1 + 𝑛𝑢
is numerically less than when 𝑢 = 𝜈;

so that it is finite. And √𝑈 is greater than 𝑢 3
2√(𝑚𝑛); hence ∫

∞

𝜈

𝑑𝑢
√𝑈

van-

ishes when 𝜈 is infinite; and so also does ∫
∞

𝜈

𝑣 𝑑𝑢
√𝑈

if 𝑣 be any finite

quantity.

1511. Plana shews that his value of 𝑉 involves a demonstration of a
result originally obtained by Jacobi and investigated by Poisson: see Art.
1401.

1512. If the value of 𝑉 is required in a series proceeding according
to inverse powers of the distance of the attracted point from the centre
of the ellipsoid, Plana considers that the best way would be to combine
the methods of Laplace and Lagrange. Laplace’s method is that which
is contained in the Mécanique Céleste, Livre iii. Chapitre ii. Lagrange’s
method is that to which we allude in Art 1467. Plana applies both meth-
ods.

1513. The next memoir by Plana is entitled Appendice au Mémoire
sur l’attraction de l’ellipsoïde homogène imprimé dans le Tome xx. de ce
journal. This memoir occupies pages 132…146 of Crelle’s Journal für …
Mathematik, Vol. xxvi., which was published in 1843.



plana. 494

1514. In this memoir Plana gives in detail the operations required in
the third Section of Legendre’s memoir: see Art. 880.

Legendre himself left much of the work to be done by the reader.
A patient student would find it perhaps as easy to fill up the steps for
himself in Legendre’s memoir as to read Plana’s.

Plana concludes thus:
On doit comprendre maintenant que l’analyse de Legendre avoit besoin de

ce long développement, pour pouvoir saisir plusieurs des motifs secrets qui ont
guidée la marche de son calcul. J’ignore s’il est permis de soutenir, que de tels
motifs peuvent être aisément devinés d’après le texte de Legendre.

1515. Two notes by Plana were published in the Turin Memorie, Vol.
xi. 1851. The first note purports to relate to Newton’s Proposition lxxi.,
and the second note to Newton’s Propositions lxxx. and lxxxiv. The
notes occupy pages 391…406 of the volume.

1516. The notes may be said to consist of translations of Newton’s
investigations respecting attractions into analytical language. Thus,
take Newton’s Proposition lxxi. We have seen in Art. 4, that Newton’s

investigation leads to this result: the attraction =
4𝜋𝑘𝜌𝑎
𝑐2

∫
𝑝𝑑𝑝

√(𝑎2 − 𝑝2)
,

the integration being taken between proper limits. Thus we have
4𝜋𝑘𝜌𝑎
𝑐2

∫𝑑 .√(𝑎2 − 𝑝2) between proper limits. Now √(𝑎2 − 𝑝2) is equal

to half a certain chord in Newton’s figure, which he calls 𝐻𝐾. Plana
arrives at this expression by a method somewhat different from that
which we have used.

1517. Plana gives what he considers an exposition of Newton’s mode
of establishing his Proposition lxx; we may however state briefly that
the exposition is inaccurate. Plana asserts that Newton uses the property
about the intersecting chords of a circle; Euclid iii. 35 is meant. Newton
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does not use this property: he seems to use the equality of angles in the
same segment.

1518. There is nothing important or remarkable in Plana’s analyti-
cal translations of Newton’s processes; they are substantially the same as
would occur to any person acquainted with the elements of the Differ-
ential and Integral Calculus, and had in fact been given by Maupertuis
in his memoir of 1732.

1519. Plana seems to think that Newton adopted geometrical forms
in order to conceal his peculiar methods. Thus he says:

Mais, Newton, qui, probablement, ne voulait pas dévoiler à ses lecteurs
toutes les ressources de ce calcul, alors naissant, a imaginé une démonstration,
où, le procédé de l’intégration est déguisé….

Again:
On ne peut éviter cette traduction algébrique sans nuire à la clarté, et sans

renforcer l’opinion que Newton ne voulait pas exposer ses découvertes avec cette
ingénuité qui les aurait rendues accessibles aux hommes doués d’une médiocre
intelligence.

1520. The next memoir by Plana is contained in the Astronomische
Nachrichten, No. 828, which was published in September 1852: this num-
ber forms part of Vol. xxxv. of the Journal.

The memoir consists of three parts, namely a Note and two Additions.
The memoir is entitled Note sur la densité moyenne de l’écorce superficielle
de la Terre.

1521. Plana begins thus:
C’est un fait incontestable, que la densité des couches elliptiques du

sphéroïde terrestre est croissante depuis la surface jusqu’au centre. La loi de
cet accroissement est inconnue; mais comme elle est intimement liée à tous
les phénomènes qui dépendent du mouvement de rotation de la Terre autour
de son centre de gravité, on peut faire des hypothèses sur son expression
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algébrique, et comparer ensuite les résultats qu’elles fournissent à ceux que
l’observation a fait connaître avec un précision suffisante. Je vais examiner,
sous ce point de vue, la plus simple de toutes les hypothèses, proposée par
Laplace à la page 46 du cinquième volume de la Mécanique Céleste.

1522. Thus Plana’s Note relates to the hypothesis proposed by Laplace
in the page just cited. The hypothesis is that the density increases from
the surface to the centre in Arithmetical Progression. The hypothesis is
expressed symbolically in the following manner. Let (𝜌) denote the den-
sity at the surface, 𝜌 the density at the distance 𝑎 from the centre, the
mean radius of the Earth being taken as unity. Then 𝜌 = (𝜌){1 + 𝑒 − 𝑒𝑎},
where 𝑒 is some constant to be determined.

Taking the density of the sea for unity, Laplace assumed that (𝜌) = 3,
which is about the density of granite: then he obtained 𝑒 = 2·349.

1523. Plana considers that 3 is too large a value for (𝜌). He does not
assume a value for (𝜌), but considers that it has been well established
by the experiments of Reich that the mean density of the Earth is 5·44.
Taking this for granted, and employing certain formulæ from other parts
of the Mécanique Céleste, Plana finds that 𝑒 is about 7·8907.

1524. The Note contains nothing new in theory; it consists entirely
of numerical calculation. I have not verified this. Indeed there are some
difficulties, which though not very serious discourage any attempt to go
over the work. I will state them, as some other student may be fortunate
enough to explain them.

(1) I do not see how the coefficient of 𝜇 in Plana’s equation (6) is
obtained; apparently it should be the product of ·12065 and ·0163; but it
is not equal to this.

(2) In comparing his equations (6) and (7) the sign of the coefficient
of 𝜇 seems arbitrarily changed from − to +.

(3) Having arrived at his equation (17) Plana seems to assert that the
density at the centre is more likely to be greater than 16·301 than less. I
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cannot conjecture how he obtained any knowledge as to the numerical
value of the density at the centre.

(4) Towards the beginning of his Note, Plana says that 16·27 is the
density at the centre; but from his equation (17) it would appear that
this density is greater than 16·301. I cannot reconcile these statements.

(5) Plana says that Legendre’s law of density leads to less satisfactory
results. According to this law, see Art. 1326,

𝜌 =
(𝜌) sin 𝑎𝑛
𝑎 sin𝑛

.

If 𝑛 =
5𝜋
6
, Plana obtains for the density at the centre 9·4235; and

if 𝑛 =
7𝜋
8
, he obtains 12·89. Then I gather that these results are un-

satisfactory to him, because they do not make the density at the centre
great enough. But, as I have already said, I cannot conjecture how Plana
obtained any knowledge as to what the density at the centre ought to be.

(6) Suppose that in the last expression for 𝜌 we give to 𝑛 a small
increment 𝛿𝑛; then Plana says that 𝜌 becomes

(𝜌) sin 𝑎𝑛
𝑎 sin𝑛

+
(𝜌)𝛿𝑛 sin(𝑛 − 𝑎𝑛)

sin2 𝑛
.

It seems to me that the second term should be

(𝜌)𝛿𝑛
𝑎 cos 𝑎𝑛 sin𝑛 − sin 𝑎𝑛 cos𝑛

𝑎 sin2 𝑛
.

1525. Laplace obtained for the mean density of the Earth 4·76. Plana
finds that the same value of the mean density would follow from suppos-
ing (𝜌) = 1·6, instead of (𝜌) = 3; and remarks that this is rather singular.



plana. 498

1526. It appears from the conclusion of the Note that Plana under-
took the discussion at the request of Humboldt. Towards the beginning
of the Note Plana refers to what Humboldt had said on the subject in
his Kosmos, Vol. i. page 177, of the German edition. See Vol. i. page 159,
of Sabine’s English translation, fifth edition.

1527. In the first Addition to his Note, Plana adverts to the deter-
mination of the density of a mountain by the aid of pendulum exper-
iments. Laplace had touched on this subject in the Mécanique Céleste,
Vol. v. pages 55 and 56. Plana adds nothing of importance.

Plana gives in this Addition the calculation necessary to solve the fol-
lowing problem. Suppose a sphere to have the same mass as the moun-
tain Schehallien, find at what distance it must be placed from a pendu-
lum, to produce the same amount of deviation as the mountain Schehal-
lien produced, according to Maskelyne’s observations.

1528. Plana’s second Addition relates to the expression of the force
of gravity at various places of the Earth’s surface.

Let 𝑃 denote the value of gravity at the latitude 𝜃, and 𝑃′ that for the

latitude sin−1
1
√3

; then Plana says that

𝑃 = 𝑃′ + 𝑃′ (sin2 𝜃 −
1
3
)

⎧
⎪

⎨
⎪
⎩

2𝑗 − 𝜖
∫

1

0
𝜌𝑎4 𝑑𝑎

∫
1

0
𝜌𝑎2 𝑑𝑎

⎫
⎪

⎬
⎪
⎭

.

This formula is obtained on the supposition that all the strata are
similar, and that 𝜖 is the ellipticity. It may be easily verified from results
given by Clairaut: see Arts. 336 and 323. With the law of density which
is under examination Plana obtains a value of 𝑃, which he says agrees
well with observation.
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Plana proceeds to a calculation as to the value of a certain term in
the expression for the depth of the sea. But the formula which he quotes
is wrong. It amounts in fact to taking the expression for ℎ′ given in the
Mécanique Celeste, Vol. v. page 30, and omitting the denominator.

Plana himself in a subsequent memoir gives the same formula as
Laplace: see Astronomische Nachrichten, No. 861, equation (38).

1529. The next memoir by Plana is contained in the Astronomische
Nachrichten, No. 839, which was published in December 1852; this num-
ber forms part of Vol. xxxv. of the Journal. The memoir is entitled Note
sur la figure de la terre et la loi de la pesanteur à sa surface, d’après l’hy-
pothèse d’Huygens, publiée en 1690.

1530. Plana begins thus:
Quoique cette hypothèse soit démentie par l’ensemble des faits observés, il

est curieux de l’exhumer, et de la présenter développée avec le langage de l’anal-
yse moderne, afin de pouvoir juger si Huygens, dans l’appendice à sa disser-
tation sur la cause de la gravité, a réellement été capable de démontrer que
son hypothèse conduit aux deux résultats que Laplace lui attribue dans sa no-
tice historique, exposée vers le commencement du xième livre de sa Mécanique
Céleste. Comme je pense que, Huygens n’était pas en possession de principes
suffisants pour comprendre dans son analyse la double hypothèse de la force
constante et celle de la force variable, j’ai voulu mettre en évidence par quelle
espèce d’heureuse divination, il a pu, à travers des calculs bornés, en conclure
le véritable rapport entre la pesanteur au pôle et la pesanteur à l’équateur, dans
le cas, où, sans admettre l’attraction de molécule à molécule, on suppose, que
chaque molécule d’une masse fluide homogène, tournant sur un axe, tend vers
le centre de gravité de cette masse, en raison inverse du carré de sa distance à
ce point. On verra que cela tient à une extension hasardée que Huygens donnait
au résultat obtenu pour le cas de la force constante.

Plana maintains that in two points rather more has been ascribed to
Huygens than is justly due to him.

1531. Let us take the first point. Laplace says with respect to Huygens
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in the Mécanique Céleste, Vol. v. page 5:
Il n’admet point l’attraction de molécule à molécule, et il suppose que

chaque molécule d’une masse fluide homogène, tournant sur un axe, tend vers
le centre de gravité de cette masse, en raison inverse du carré de sa distance à
ce point.

But this is not correct, for Huygens assumes that the central force is
constant. It is true that the result as to the ellipticity, supposed small,
is the same as if the force varies according to any law of the distance;
but this was not shewn by Huygens, though he does indeed make such
a statement: see Art. 56.

There is however another matter connected with this which has given
occasion to error: see Art. 64.

1532. Now let us take the second point. Laplace says on the page
already cited:

Il trouve ensuite que la pesanteur croît de l’équateur aux pôles, proportion-
nellement au carré du sinus de la latitude, et de manière que la pesanteur étant
supposée 1 à l’équateur, elle est 1 + 2𝜙 aux pôles.

Laplace’s 𝜙 is our 𝑗.
Plana, however, holds that Huygens did not obtain this definite result;

but that Laplace has himself given his own extension to the theory of
Huygens. I do not agree with Plana; I hold that Laplace’s words fairly
represent what Huygens obtained. The passage to be examined is page
166 of the Discours de la Cause de la Pesanteur.

1533. The next memoir by Plana is contained in the Astronomis-
che Nachrichten, Numbers 850 and 851, which were published in March,
1853; these numbers form part of Vol. xxxvi. of the Journal. The mem-
oir is entitled Sur la Théorie mathématique de la Figure de la Terre, pub-
liée par Newton en 1687. Et sur l’état d’équilibre de l’ellipsoïde fluide à
trois axes inégaux.

Thus it is seen that the memoir consists of two parts.
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1534. The first part of the memoir consists of the ordinary analytical
theory of the relative equilibrium of a rotating oblatum of fluid: it adds
nothing substantially to what we find in the Mécanique Céleste, Livre iii.
Chapitre iii. The object of Plana in reproducing this known theory seems
to have been to point out what he considers an important error in New-
ton’s process; in Plana’s words, un vice inhérent à son analyse. But the
error exists only in Plana’s imagination.

Newton required the value of the attraction of a nearly spherical obla-
tum on a particle at the equator. He determined this indirectly, by the
theorem that this attraction may be considered to be a mean proportional
between the attraction of a certain sphere on a particle at its surface, and
the attraction of a certain oblongum on a particle at its pole. Plana then
holds that Newton considered this theorem to be absolutely true; there
can be no doubt that Newton only considered it to be approximately true:
which it is. I think that Plana is alone in this untenable opinion as to
Newton’s meaning. See Art. 22.

1535. Plana says with reference to his supposed correction of Newton:
… Si je ne me trompe, cette remarque n’avait pas encore été faite. Elle a

échappé au Commentateur Calandrini, au point, qu’il a entrepris de démontrer,
que le théorème dont je parle était vrai sans restriction (voyez les pages 83 et
84 du troisième volume des Principia. Edition de Genève).

This assertion with regard to Calandrini is in direct contradiction
to the fact. The commentator certainly considered the theorem as an
approximate truth: the words quam proxime occur four times in the
demonstration.

1536. Thus it is sufficiently obvious that the first part of Plana’s mem-
oir was quite unnecessary, being founded on a misconception of his own.
Some incidental points may be noticed.

1537. Plana begins thus:
Laplace, en imitant les raisonnemens, que Clairaut avait développés dans
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la première partie de son Introduction à l’ouvrage des Principes, a exposé sans
l’emploi des formules algébriques, cette Théorie de Newton au commencement
du xi Livre de la Mécanique Céleste.

This rather vague reference to Clairaut is, I presume, intended to
apply to the translation of the Principia into French by Madame du
Chastellet, who was assisted by Clairaut. See Art. 560.

1538. The equation which connects the excentricity of the oblatum
with the angular velocity is in Laplace’s symbols

tan−1 𝜆 =
9𝜆 + 2𝑞𝜆3

9 + 3𝜆2
.

Plana gives the approximate solution of the equation for the case
when 𝜆 is a small quantity, carried further than Laplace. Plana’s results
are

5
4
𝑞 =

𝜆2

2
− 15 {

2 . 2
5 . 7

(
𝜆2

2
)
2

−
3 . 22

7 . 9
(
𝜆2

2
)
3

+
4 . 23

9 . 11
(
𝜆2

2
)
4

−…} ,

from which by reversion of series

𝜆2

2
=
5
4
𝑞 +

12
7
(
5
4
𝑞)

2
+
148
49

(
5
4
𝑞)

3
+
21673
11319

(
5
4
𝑞)

4
+…

I have not verified the last line.
It is known that for a given angular velocity we have in general two

solutions: for example, if the angular velocity is small besides the solu-
tion in which 𝜆 is a small quantity there is a solution in which 𝜆 is great.
Plana says that this second solution was first indicated by Laplace; this
is wrong, for, as we have remarked, Thomas Simpson and D’Alembert
preceded him: see Art. 580.

1539. Plana puts in a convenient form the equation which shews that
the oblongum is not a possible form of relative equilibrium.
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Suppose the equation to the oblongum to be

𝑥2 + 𝑦2

𝑎2
+

𝑧2

𝑎2(1 + 𝛾2)
= 1.

Let the attractions of the oblongum resolved parallel to the axes at a
point (𝑥, 𝑦, 𝑧) within it or on its surface be denoted respectively by

𝐴𝑥, 𝐴𝑦, 𝐶𝑧.

Then the values of 𝐴 and 𝐶 are well known; and Plana puts them in
the form

𝐴 =
4𝜋𝜌 cos2 𝜓
sin3 𝜓

∫
𝜓

0

sin2 𝑥
cos3 𝑥

𝑑𝑥,

𝐶 =
4𝜋𝜌 cos2 𝜓
sin3 𝜓

∫
𝜓

0

sin2 𝑥
cos𝑥

𝑑𝑥,

where 𝜓 is such that tan𝜓 = 𝛾; and 𝜌 is the density.
The condition for relative equilibrium is

𝐴 − 𝜔2 = 𝐶(1 + 𝛾2),

where 𝜔 denotes the angular velocity.

Put 𝑞 for
3𝜔2

4𝜋𝜌
; then the condition becomes

𝑞 =
3

sin3 𝜓
∫

𝜓

0

sin2 𝑥
cos3 𝑥

(sin2 𝑥 − sin2 𝜓)𝑑𝑥.

This is impossible: for the left-hand member is positive and the right-
hand member is negative.

1540. We now pass to the second part of the memoir. In this Plana
demonstrates Jacobi’s theorem, that a fluid ellipsoid rotating round its



plana. 504

least axis may be a form of relative equilibrium. The demonstration
presents nothing novel. Plana however employs the expressions for
the attraction of an ellipsoid by means of elliptic integrals, which had
been used by Legendre and Poisson: see Art. 1398. Hence he calculates
certain numerical results which give him the dimensions of various
ellipsoids which satisfy the condition of relative equilibrium. These
results are collected in the following table. The smallest semiaxis is
taken for unity, this is that about which the body is supposed to rotate.
The largest semiaxis is √(1 + 𝛾2); the values of this are given in the first
column. The other semiaxis is √(1 + 𝛾′2); the values of this are given

in the second column. The third column contains the values of
3𝜔2

4𝜋𝜌
,

where 𝜔 is the angular velocity and 𝜌 is the density.
1·41545 1·41448 ·21159
1·41836 1·41564 ·22128
1·42672 1·42126 ·21545
1·43524 1·42405 ·20591
1·52425 1·47261 ·225875
1·66164 1·52340 ·260562
1·83608 1·54643 ·27235
2·09574 1·54976 ·280143
2·13005 1·52015 ·27612
2·20269 1·50573 ·27543
2·28117 1·43210 ·263034
2·45860 1·26100 ·220114
2·79044 1·09756 ·1042
5·24086 1·03561 ·21524

These numbers rest on Plana’s authority. The entry ·1042 in the third
column looks suspiciously small; but he gives it in two places, namely his
pages 151 and 170.

1541. There are some misprints in the memoir which will not cause
serious trouble; except perhaps in Plana’s equations (36). In the last of
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these equations for Δ read Δ3.

1542. On his page 170, Plana speaking with respect to the ellipsoid
in Jacobi’s theorem, says:

La grande inégalité entre les deux aplatissements d’un tel ellipsoïde, ne per-
met pas de le considérer comme un corps semblable à la Terre.

This is wrong. There is not necessarily such a great difference be-
tween the two ellipticities: it is sufficient for example to look at the first
case given in the preceding table.

For information as to Jacobi’s theorem I may refer to my paper cited
in Art. 1460.

1543. Plana finds the value of the potential at any internal point of
an ellipsoid; this subject he had formerly considered: see Art. 1510. He
now definitely expresses the potential by means of elliptic integrals.

Suppose that the attractions at the point (𝑥, 𝑦, 𝑧) parallel to the axes
are respectively

𝐴𝑥, 𝐵𝑦, 𝐶𝑧.

Let 𝑉 denote the potential: then

𝑉 = 𝐻 −
𝐴𝑥2

2
−
𝐵𝑦2

2
−
𝐶𝑧2

2
,

where 𝐻 is some constant to be determined.
It is obvious that 𝐻 must be equal to the potential for a point at the

centre of the ellipsoid.
Take for the equation to the ellipsoid

𝑧2

𝑎2
+

𝑦2

𝑎2(1 + 𝛾2)
+

𝑥2

𝑎2(1 + 𝛾′2)
= 1.

Then with the usual polar notation

𝐻 = 𝜌∭𝑟 sin 𝜃 𝑑𝜃 𝑑𝜙𝑑𝑟 .
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We have first to integrate with respect to 𝑟 from 𝑟 = 0 to

𝑟2 =
𝑎2

cos2 𝜃 + sin2 𝜃 (
cos2 𝜙
1 + 𝛾′2

+
sin2 𝜙
1 + 𝛾2

)
.

Thus
𝐻 =

𝜌𝑎2

2
∬

sin 𝜃 𝑑𝜃 𝑑𝜙

cos2 𝜃 + sin2 𝜃 (
cos2 𝜙
1 + 𝛾′2

+
sin2 𝜙
1 + 𝛾2

)
.

Then we integrate with respect to 𝜙; the limits are 0 and 2𝜋. We may
take 0 and

𝜋
2
for the limits, and multiply by 4. Thus we get

𝐻 = 𝜋𝜌𝑎2∫
𝜋

0

sin 𝜃 𝑑𝜃

√{(cos2 𝜃 +
sin2 𝜃
1 + 𝛾′2

) (cos2 𝜃 +
sin2 𝜃
1 + 𝛾2

)}

= 2𝜋𝜌𝑎2√ {(1 + 𝛾2)(1 + 𝛾′2)}∫
𝜋
2

0

sin 𝜃 𝑑𝜃
√ {(1 + 𝛾2 cos2 𝜃)(1 + 𝛾′2 cos2 𝜃)}

.

By assuming cos 𝜃 =
tan𝜓
𝛾

we obtain

𝐻 =
2𝜋𝜌𝑎2

𝛾
√ {(1 + 𝛾2)(1 + 𝛾′2)}∫

𝛽

0

𝑑𝜓
Δ
,

where Δ2 = 1 −
𝛾2 − 𝛾′2

𝛾2
sin2 𝜓, and tan 𝛽 = 𝛾.

Thus 𝐻 is expressed by an elliptic function. And 𝐴, 𝐵, 𝐶 can also be
similarly expressed: see Art. 1540. Thus finally 𝑉 can be so expressed.

1544. Poisson had maintained that for points on the surface of a body

𝑑2𝑉
𝑑𝑥2

+
𝑑2𝑉
𝑑𝑦2

+
𝑑2𝑉
𝑑𝑧2

= −2𝜋𝜌;
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but, as we have remarked, this cannot be considered satisfactory: see Art.
1253.

Plana here objects to Poisson’s opinion; but Plana is himself equally
unsatisfactory. Plana affirms that at the surface of a homogeneous el-
lipsoid the right-hand member of the equation must be −4𝜋𝜌. Plana’s
sole argument is, that such is the value for any internal point, and con-
sequently such must be the value at the surface. It is astonishing that
Plana did not see the unsoundness of the argument. For we know that
for any external point the right-hand side of the equation is zero; and so
we might just as readily assert that it must be zero for a point on the
surface.

1545. On his page 171, Plana referring to Jacobi’s theorem, speaks of
what he calls les formules primitives de Jacobi. I do not know what this
means. I am not aware that Jacobi gave any investigation of his theorem,
or any formulæ.

1546. The next memoir by Plana is contained in the Astronomische
Nachrichten, Numbers 860 and 861, which were published in May, 1853;
these numbers form part of Vol. xxxvi. of the Journal. The memoir is
entitled Sur la loi des pressions, et la loi des ellipticités des couches ter-
restres, en supposant leur densité uniformément croissante depuis la sur-
face de la Terre jusqu’à son centre.

1547. Assuming that the earth consists of fluid elliptical strata,
Clairaut obtained an equation connecting the law of the ellipticity with
the law of the density: see Art. 341. Plana then assumes the law of
density given in Art. 1522, and applies Clairaut’s equation to determine
the ellipticity. He integrates Clairaut’s differential equation in the form

of a convergent series. He obtains about
1
320

for the ellipticity at the

surface.
Again with the same law of density Plana now takes the hypothesis
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that the earth consists of a solid part surrounded by a layer of fluid. If
this layer is treated as infinitesimal, and the solid strata be assumed to

have all the same ellipticity, he finds that the ellipticity is about
1
308

. If

the layer is supposed of finite but small depth, and the solid strata have
as before the same ellipticity, he finds that the ellipticity of the solid part

is about
1
301

; and that of the surface of the fluid about ·000044. The

latter he makes to be
1

74·471
of the former; in his introductory part he

speaks of this as about
1
100

.

The theory is again Clairaut’s, being all involved in equation (2) of
Art. 323.

1548. The memoir contains nothing new in theory; it may be re-
garded as a mathematical exercise. But it shews I think that the law of
density which is assumed merits nearly as much attention as that which
Laplace discussed after Legendre. The English elementary treatises of
Airy, Pratt, and O’Brien, seem to me to attach implicitly a greater impor-
tance to this law than Laplace himself did; see his language on page 16
of his Volume v. where he explains his object in adopting this law.

Besides Legendre’s law of density, and the present law, a third has
been considered, namely that by Roche and Resal: see the Traité Elé-
mentaire de Mécanique Céleste, page 232.

1549. In his introductory remarks Plana states his opinion on some
points connected with the formation of the earth and with the temper-
ature of its interior; they seem to me expressed too positively as if they
involved known facts instead of hypotheses.

1550. Plana gives at the end of his memoir a theorem for the approx-
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imate calculation of an integral. He says it is new; but I do not see what
is the novelty which is claimed. The main result seems to be this

∫
ℎ

0
𝑦𝑑𝑥 = ℎ

Δ𝑦
log(1 + Δ𝑦)

,

where the expression on the right hand is to be expanded in powers of
Δ𝑦, and any power as (Δ𝑦)𝑛 changed to Δ𝑛𝑦.

But this cannot be called new. See for instance De Morgan’s Differ-
ential and Integral Calculus, pages 262 and 265.

1551. The next memoir by Plana is contained in the Astronomische
Nachrichten, Numbers 903, 904, and 905, which were published in May,
1854: these numbers form part of Vol. xxxviii. of the Journal. The mem-
oir is entitled Sur la loi de la pesanteur à la surface de la mer, dans son
état d’équilibre.

1552. The memoir may be said to go over the same ground as Laplace
in the Mécanique Céleste, Livre xi. Chapitre ii. §§ 2…5. Plana thus de-
scribes what Laplace proposed to effect:

La loi de la pesanteur à la surface de la mer, a été donnée au No. 33 du 3ème
livre de la Mécanique Céleste, en supposant le sphéroïde terrestre entièrement
recouvert par une couche très-mince d’eau en équilibre. La petitesse de la pro-
fondeur que l’on attribue ainsi à la mer, et à sa masse totale, permet de négliger
l’action qu’elle exerce sur ses propres molécules, soit comparativement à celle
de la Terre, soit en comparaison de la force centrifuge, (beaucoup plus petite)
née de sa rotation diurne. Laplace, considérant ensuite que sa théorie, fondée
sur la double hypothèse d’une inondation générale, et de la nullité d’action à
l’égard de la masse de la mer, ne pouvait pas représenter le cas de la nature, a
repris la question dans le XIème livre de son ouvrage, pour la tracer avec plus
de généralité.

Accordingly as I have said Plana goes over the same ground as
Laplace did in the Mécanique Céleste. Plana’s analysis is rather more
elaborate; but substantially the process is the same as Laplace gave.
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We will notice a few points of detail.

1553. In Art. 1306 I have given in my own notation the equation

1
2
𝑋 + a

𝑑𝑋
𝑑𝑟

= 0. (1)

This equation is much used by Laplace in Chapter ii. of his Eleventh
Book.

Plana begins by considering this equation. He regards Laplace’s
demonstration as insufficient; and substitutes another which rests on the
theory of the expansion of functions in a series of Laplace’s functions.
In this way he arrives at a more general form of the theorem. He finds
that

1
2
𝑋 + a

𝑑𝑋
𝑑𝑟

= −2𝜋𝜌𝛼𝑧, (2)

where 𝜌 denotes the density of the matter of which 𝑋 is the potential,
and 𝑧 may be called the elevation above the level of the sea. Thus 𝑧 is
in fact discontinuous, being zero for any point on the surface of the sea,
and for any point on a continent expressing the height above the level of
the sea. This is the same result as Lagrange obtained: see Art. 1199.

The analysis is simple and interesting by which Plana proves his
equation (2); and this may be considered an improvement on Laplace’s
process. Perhaps Plana overestimates the importance of the result. He
says it is indispensable that equation (1) should be true exclusively for
the part of the earth which is covered by the sea. It seems to me that
for Laplace’s purpose it is sufficient to know that the equation is true
for this part, and it is of scarcely any interest to know whether the
equation is or is not true for other parts of the earth.

1554. Plana quotes from Fourier’s Théorie de la Chaleur, page 245,
the statement that the series

2𝜔 {
sin𝜔 sin 𝜃
𝜋2 − 𝜔2

+
sin 2𝜔 sin 2𝜃
𝜋2 − 22𝜔2

+
sin 3𝜔 sin 3𝜃
𝜋2 − 32𝜔2

+…} ,
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is equal to sin 𝜃 for values of 𝜃 comprised between 0 and 𝜔: it should be

equal to sin
𝜋
𝜔
𝜃. See Integral Calculus, Art. 325.

1555. I have already called attention to a passage in this memoir: see
Art. 1310.

1556. Plana deduces from his investigations the formulæ given by
Clairaut on his pages 217 and 226 of his work; and takes the opportu-
nity of stating that D’Alembert was wrong in his objections to Clairaut’s
formulæ. Plana says, with reference to Clairaut’s equation on page 226,

… Ainsi, il est démontré que cette équation est conforme à l’hypothèse d’une
profondeur constante de la mer, admise par Clairaut; ce qui fait tomber la cri-
tique publiée par D’Alembert en 1773, (après la mort de Clairaut) dans les pages
227…230 du sixième volume de ses Opuscules Mathématiques. Ce jugement
de D’Alembert prouve qu’il n’avait pas senti toute la justesse de la Théorie de
Clairaut.

I quite concur with the last sentence. I have pointed out the precise
point at which D’Alembert went wrong in my Art. 634.

1557. In his equation (49) Plana gives an expression for the length
of a degree of the meridian. But the signs and the numerical values of
many of the terms in this expression seem to me wrong. In his equation
(58) he puts the expression into a numerical form; but if I am right his
expression will be quite unsatisfactory.

1558. Plana touches on the subject of the Tides in the course of his
memoir; I do not however enter on this subject in the present work. But
one remark must be made. In sections v. and xi. of his memoir Plana
quotes and accepts a formula given by Laplace in the Mécanique Céleste,
Vol. ii. page 192. But in a note to section xi. Plana objects to the formula.
He says:

Mais en examinant de plus prés les calculs par lesquels cette formule a été
déduite, je viens de reconnaître qu’elle n’est pas le véritable résultat fourni par
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l’intégration des trois équations différentielles qui déterminent les oscillations
de l’Océan.

Plana then proceeds to state his own results which he says he has
obtained by an analysis, too long to be exhibited here. He concludes his
note thus:

C’est de quoi je donnerai ailleurs une démonstration, fondée sur l’inté-
gration des équations qui renferment implicitement, l’explication de tous les
phénomènes que présente le flux et le reflux de la mer.

I do not find that the intention thus expressed was carried into effect.

1559. In the last section of his memoir Plana applies his formulæ to
the case in which the Earth is supposed to be homogeneous and entirely
fluid. He obtains an expression for the radius vector, and an expression
for the value of gravity; then from these it follows that the latter varies
inversely as the former. Plana then says:

C’est en vertu de cette transformation de la valeur précédente de 𝑝, que New-
ton disait dans sa Proposition xx. du 3ème livre des Principes que “les poids des
corps dans quelque région de la Terre que ce soit, sont réciproquement comme
les distances des lieux du centre de la Terre.”

I do not wish to lay undue stress on the words; but they seem to im-
ply that Newton must have obtained his result in the way Plana verifies
it; namely in virtue of a certain transformation. But it is probable that
Newton adopted quite a different way; see Art. 33. The matter is not im-
portant; but there are other instances in which Plana seems to assume
that the course which his own analysis takes in verifying Newton’s re-
sults must have been the course by which Newton originally obtained
them.

1560. In closing the survey of Plana’s memoirs on our subject it will
be obvious that although extensive in quantity they add but little to what
had been already obtained. The most valuable of them are those which
we introduce to notice in Arts. 1520, 1546, and 1551: these may be con-
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sidered as forming extensions of parts of the second Chapter of Laplace’s
eleventh Book.



CHAPTER XXXVIII.

MISCELLANEOUS INVESTIGATIONS BETWEEN THE YEARS 1801
AND 1825.

1561. The present Chapter will contain an account of various mis-
cellaneous investigations between the years 1801 and 1825.

The works of La Lande and Reuss, to which allusion is made in Arts.
738 and 739, do not afford us guidance beyond the close of the eigh-
teenth century; and thus it is possible that in the present Chapter some
books and memoirs which ought to have been noticed, may have been
omitted from ignorance of their existence.

1562. A memoir entitled Observations on the Figure of the Earth, by
Joseph Clay, is published in the Transactions of the American Philosoph-
ical Society, held at Philadelphia … Vol. v. 1802. The memoir occupies
pages 312…319 of the volume.

The memoir commences thus:
The subject of this paper was suggested to me by a perusal of the “Studies

of Nature,” by Bernardin de St. Pierre. The positive manner in which that au-
thor asserts that the earth is a prolate spheroid, the arrogance with which he
challenges refutation, and above all the erroneous theories which he has built
on this assertion, seem to require all doubts to be removed by a mathematical
demonstration.

The error of St Pierre was that of Keill and Cassini: see Art. 972.
It was scarcely necessary to correct this error at the beginning of the
nineteenth century.

The mathematical investigation of the memoir amounts to establish-
ing the following theorem: let 𝐴 be the extremity of the axis major, and
𝐵 of the axis minor of an ellipse, 𝑃 the point on the arc 𝐴𝐵 where the
tangent is equally inclined to the axes; then the arc 𝐵𝑃 is longer than the
arc 𝐴𝑃.
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The process adopted is rather rude. If 𝑎 denote the semi-
axis major, and 𝑏 the semiaxis minor, it is to be shewn that

∫
𝑎2
𝑐

0

√(𝑎4 − 𝑎2𝑥2 + 𝑏2𝑥2)
𝑎√(𝑎2 − 𝑥2)

𝑑𝑥 is greater than ∫
𝑏2
𝑐

0

√(𝑏4 − 𝑏2𝑦2 + 𝑎2𝑦2)
𝑏√(𝑏2 − 𝑦2)

𝑑𝑦,

where 𝑐 is put for √(𝑎2 + 𝑏2).
Clay expands the numerator and the denominator of the expression

to be integrated, divides the former result by the latter, then integrates,
and thus obtains an infinite series. We may arrive at the required result
more simply by assuming 𝑥 = 𝑎𝑧 in the first integral, and 𝑦 = 𝑏𝑧 in the
second; then the integrals become respectively

∫
𝑎
𝑐

0

√(𝑎2 − 𝑎2𝑧2 + 𝑏2𝑧2)
√(1 − 𝑧2)

𝑑𝑧 and ∫
𝑏
𝑐

0

√(𝑏2 − 𝑏2𝑧2 + 𝑎2𝑧2)
√(1 − 𝑧2)

𝑑𝑧 .

Each element of the first integral is greater than the corresponding
element of the second, for the values of 𝑧 within the range of the second
integral; moreover the upper limit of the first integral is greater than the
upper limit of the second: therefore the first integral is the greater.

But the result follows immediately from the fact that the radius of
curvature increases continually from 𝐴 to 𝐵, so that it is greater through
𝑃𝐵 than through 𝐴𝑃.

1563. We may just refer to the work entitled Dr. Benzenberg’s Ver-
suche über die Umdrehung der Erde, which was published in 1804 at
Dortmund. This is an octavo volume, containing xii + 542 pages, and
a page of errata; there are seven plates besides the frontispiece and the
engraved title-page.

Benzenberg made experiments with the view of determining the de-
viation from the vertical of a body falling through a considerable space.
Some of the experiments were made from a high church-tower, that of
St Michael, in Hamburg; and others down the shaft of a coal-mine. In
both cases the mean of the results gave a deviation towards the east; in
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the former case they gave also a deviation towards the south: but there
were considerable discrepancies in the experiments among themselves.
The church-tower still, I believe, adorns the city of Hamburg.

There is also a work which may be regarded as a supplement to the
preceding, entitled Versuche über die Umdrehung der Erde. Aufs Neue
berechnet von Dr. Benzenberg. Düsseldorf, 1845.

Benzenberg’s two publications are very interesting and contain much
historical information connected with the subject; which is however be-
yond our limit. The student who wishes to pursue it should consult the
Cambridge and Dublin Mathematical Journal, Vol. iv. page 97; and the
collected edition of the works of Gauss, Vol. v. page 495.

1564. The first two volumes of the Mécanique Céleste were translated
into German, and published at Berlin under the title Mechanik des Him-
mels von P. S. Laplace, … Aus dem Französischen übersetzt und mit er-
läuternden Anmerkungen versehen von J. C. Burckhardt. The first volume
is dated 1800, and the second 1802.

The notes are neither very numerous nor very important; they sup-
ply the detail of some of the analytical processes which Laplace himself
treated rather briefly. The most useful note in the part of the work with
which we are concerned is that to which we have already alluded in Art.
1060.

1565. It may be convenient here to notice other publications of the
nature of Burckhardt’s; by some strange accident the like character of
incompleteness seems to attach to them all.

A translation of the first book of the Mécanique Céleste with notes
was published at Nottingham in 1814, by the Rev. John Toplis; this forms
one octavo volume.

A translation of the first volume of the Mécanique Céleste with notes
was published by the Rev. Henry Harte at Dublin, in two quarto parts,
the first in 1822 and the second in 1827.
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The translation by Bowditch with notes, to which I have frequently
referred, extends to the first four volumes of the original; the translation
is in four quarto volumes, published at Boston in America, between 1829
and 1839.

Pontécoulant’s Théorie Analytique du Système du Monde consists of
four octavo volumes, published between 1829 and 1846; the subjects with
which we are concerned are discussed in the second volume and an Ap-
pendix. The work is still unfinished. A new edition of the first and sec-
ond volumes appeared in 1856.

The first and only volume of a work entitled Elementi di Meccanica
Celeste di Francesco Bertelli was published at Bologna in 1841. The vol-
ume is in quarto. It does not treat on our subject.

1566. We now come to a memoir by Playfair, entitled Investigation of
certain Theorems relating to the Figure of the Earth. This memoir appears
in Volume v. of the Transactions of the Royal Society of Edinburgh; it oc-
cupies pages 1…30 of the volume; the date of publication of the volume
is 1805: the memoir was read on the 5th of February, 1798.

1567. The memoir relates to the geometry of the subject; investiga-
tions are given with respect to the lengths of arcs of the meridian, of
arcs perpendicular to the meridian, and of arcs parallel to the equator.

1568. Suppose 2𝑎 and 2𝑏 the major and minor axes of an ellipse;
then the radius of curvature at the point where the normal is inclined at

an angle 𝜙 to the major axis is known to be
𝑎2𝑏2

(𝑎2 cos2 𝜙 + 𝑏2 sin2 𝜙) 32
. By

integrating this with respect to 𝜙 we obtain the length of an arc of the
meridian. Let 𝑏 = 𝑎(1−𝜖); then neglecting powers of 𝜖 above the second
we shall find that the length of the arc measured from the equator to the
latitude 𝜙 is

𝑎𝜙 −
𝑎𝜖
2
(𝜙 +

3
2
sin 2𝜙) +

𝑎𝜖2

16
(𝜙 +

15
4
sin 4𝜙);
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this will be found to be consistent with Art. 1014, observing that

𝜖 =
𝑒2

2
+
𝑒4

8
.

Playfair applies this formula, neglecting 𝜖2, to the Peruvian arc of
3° 7′ 1″ and the French arc of 8° 20′ 2″; and he obtains for 𝜖 the value
1
300

nearly.

1569. Playfair in like manner gives a formula for the case of an arc
supposed of small extent, measured perpendicular to the meridian; the
arc in this case may be considered to belong to a circle which has for its
radius the length of the part of the normal intercepted between the point
at which the arc begins and the minor axis of the generating ellipse.

Also finally Playfair gives a formula for the case of an arc of a parallel
of latitude.

1570. Thus there are three kinds of arcs considered. The elements
of the Earth’s figure can be determined either from two arcs of different
kinds, or from two arcs of the same kind in different latitudes. Play-
fair gives various combinations and discusses the merits of each. But
these discussions are of small importance, because they relate only to the
forms of trigonometrical expressions, and take no account of the relative
accuracy with which the necessary astronomical and geodetical opera-
tions can be performed.

1571. It appears from his pages 28 and 29, that Playfair intended to
pursue his investigations on what may be called spheroidal trigonometry;
but the intention does not seem to have ever been carried into execution.

1572. Playfair gives an example on his page 17, taken from the de-
grees of the meridian and perpendicular measured in the South of Eng-
land. He refers to the Philosophical Transactions, 1795, page 537. In
the separate account of this survey, the corresponding place is Vol. i.
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page 309: see Art. 984. The ellipticity deduced is about
1
148

, which is

of course far too great. But it seems “that all the other comparisons of
the degrees of the meridian, with those of the curve perpendicular to it,
made from the observations in the South of England, agree nearly in giv-
ing the same oblateness to the terrestrial spheroid.” “The authors of the
Trigonometrical Survey seem willing, therefore, to give up the elliptic fig-
ure of the earth.” Here Playfair refers to page 527 of the above volume
of the Philosophical Transactions; the passage is in Vol. i. page 302 of the
separate work.

In the Philosophical Transactions the sentence runs thus: “Now this
comparison between the measured and computed degrees, sufficiently
proves that the Earth is not an ellipsoid,…” But in the separate work
instead of “sufficiently proves” we have “seems to prove.”

Playfair thinks that the anomaly may arise from the fact that in the
part of England where these measures were taken, “the strata are of
chalk, and though of great extent, are bordered on all the sides that we
have access to examine by strata much denser and more compact.” See
his pages 6, 18, and 19.

1573. The following passage occurs on page 29:
… In the mean time, I think it is material to observe, that the principle laid

down by Mr Dalby, viz. that in a spheroidal triangle, of which the angle at the
pole and the two sides are given, the sum of the angles at the base is the same
as in a spherical triangle, having the same sides, and the same vertical angle,
is not strictly true, unless the excentricity of the spheroid be infinitely small, or
the triangle be very nearly isosceles.”

The pages seem to be 524 and 529 which Playfair has in view; in the
separate work the corresponding places are, Vol. i. pages 298 and 302;
perhaps Mr Dalby intended to limit the principle to the case of a triangle
nearly isosceles. See Art. 1037.

1574. Playfair offers a brief criticism on a passage in the Philosophi-
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cal Transactions, page 529, which corresponds to Vol. i. page 303 of the
separate work. He says:

“This shews, that the method of ascertaining the figure of the earth, pro-
posed by the authors of the Trigonometrical Survey as a subject of future inquiry,
is less exact than that which is founded on their own observations.”

1575. A work was published at Stockholm in 1805, entitled Exposi-
tion des opérations faites en Lapponie, pour la détermination d’un arc du
méridien en 1801, 1802 et 1803; … redigée par Jons Svanberg.

This is an octavo volume containing xxxi + 196 pages, besides the
Title and three Plates. The work gives an account of the remeasurement
of the Lapland arc, as stated in Art. 197; for some further information
respecting it, I may refer to the memoir named in Art. 199.

1576. In De Zach’s Monatliche Correspondenz, Vol. xiii. 1806, we have
a memoir entitled Gedanken über die Figur der Erde von dem … Anton
Freyherrn von Zach. The memoir occupies pages 221…235 of the volume.

The writer was apparently a brother of the editor of the periodical.
The memoir is not mathematical, and belongs rather to Physical Geog-
raphy than to our subject; there are indeed some remarks which depend
on the principles of mechanics, but they exhibit inaccuracy of knowledge
or at least of expression.

1577. We will now advert briefly to the work which gives an account
of the great French measurement commenced towards the end of the
eighteenth century.

There are three quarto volumes entitled Base du système métrique
décimal, ou mesure de l’arc du méridien compris entre les parallèles de
Dunkerque et Barcelone, exécutée en 1792 et années suivantes, par MM.
Méchain et Delambre. Rédigée par M. Delambre….

The first volume was published in 1806, the second in 1807, and the
third in 1810.
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A fourth volume, also in quarto and connected with these, was
published in 1821: it is entitled Recueil d’observations géodésiques,
astronomiques et physiques, … rédigé par MM. Biot et Arago.

It would appear from page xxx of the Introduction to this volume,
that Arago intended to publish in another volume an account of some
operations which he carried on alone; but this intention does not seem
to have been realised.

There are, however, two memoirs subsequently published by Biot,
which relate to pendulum observations, and may be considered as con-
nected with the present work.

One is entitled Mémoire sur la Figure de la Terre; this was read to the
French Academy, on December 5th, 1827, and is published in Vol. viii.
of the Mémoires de l’Académie Royale … de France.

The other is entitled Mémoire sur la latitude de l’extrémité australe
de l’arc méridien de France et d’Espagne; this was read to the French
Academy on May 15th, 1843, and is published in Vol. xix. of the Mé-
moires.

The Introduction to the volume of 1821, and the pages 521…541, are
reprinted in Biot’s Mélanges Scientifiques et Littéraires, Vol. i. 1858; the
reprint is followed by two papers, the first of which gives a popular ac-
count of other operations of the author, bearing on the determination of
the Figure of the Earth, and the second offers suggestions as to future
labours. The whole series is extremely interesting, and well worthy of
Biot’s great literary and scientific reputation.

I may observe that on page 119 of Vol. ii. of the Base du système
métrique, we have one of the four formulæ which are usually, but im-
properly, called Gauss’s Theorems, namely

sin
1
2
𝑐 cos

1
2
(𝐴 − 𝐵) = sin

1
2
𝐶 sin

1
2
(𝑎 + 𝑏).

As this volume is dated July, 1807, the formula may have been now
printed for the first time; Delambre refers to this place in the Connais-
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sance des Tems for 1809, which is dated April, 1807: here the four for-
mulæ were first published. I have vindicated Delambre’s claim to the
formulæ in an article in the Philosophical Magazine for February, 1873.

On page 306 of Vol. iii. of the Base du système métrique, we have
the unpretending name of the English mathematician Dalby refined into
d’Alby.

The metre, as is well known, was intended to be such that 10,000,000
metres should be the length of a quadrant of the Earth’s meridian. On
page 158 of the work cited in Art. 100, we have a suggestion by J. Cassini,
that the unit of length might be such that 10,000,000 units should be the
length of the Earth’s radius.

1578. Two papers bearing on our subject by Dr Young, were
published in 1808 in Nicholson’s Journal, and are reprinted on pages
120…128 of the second volume of the Miscellaneous Works of the
late Thomas Young…. The first paper is entitled A concise Method of
determining the Figure of a Gravitating Body revolving round another.
The second paper is entitled Calculation of the Direct Attraction of a
Spheroid, and Demonstration of Clairaut’s Theorem.

These papers are of no importance. The conciseness which is claimed
for them is obtained by stating results in words instead of demonstrating
them by the aid of symbols. The process would not be intelligible to a
reader, unless he could supply the usual mathematical investigation; and
would be superfluous if he could.

At the end of the second paper there is an absurd misprint, both in
the original and in the reprint; we have upper real diminution instead of
apparent diminution: the misprint is corrected in a volume in my pos-
session, containing a copy of the original paper, which seems to have
formerly belonged to Dr Young himself.

1579. In De Zach’s Monatliche Correspondenz, Vol. xxi. 1810, we
have a memoir entitled Uber Densität der Erde und deren Einfluss auf
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geographische Ortsbestimmungen; the memoir occupies pages 293…310
of the volume.

No name is mentioned; but we may safely ascribe the memoir to the
editor of the periodical himself. We have here a brief popular account of
the subject, especially of the operations of Bouguer at Chimborazo, and
of Maskelyne at Schehallien. The possibility and actual existence of local
attractions are said to be put beyond doubt also by more recent observa-
tions, due to Schiegg, to Méchain, and to Mudge. The writer urges the
advantage which will follow from further investigations on the subject,
and points out suitable localities in Germany and elsewhere.

The following two points may be noticed.
On page 297, some numerical statements are taken from Bouguer’s

Figure de la Terre, but not quite accurately; for instance it is said to be
possible to approach to within 18 toises of the centre of Chimborazo, but
it should be 1800 toises.

After giving an account of the operations at Schehallien, the writer
points out that the result obtained from them agreed with Newton’s con-
jecture that the ratio of the density of water to the mean density of the
earth might lie between the ratios of 1 to 5 and 1 to 6. He then adds on
his page 307:

… Die unter verschiedenen Breiten beobachteten Längen des einfachen
Secunden-Pendels, gaben nach gehöriger Rechnung jenes Verhältniss 1 ∶ 3·7.

I do not know what observations and calculation the writer here has
in view.

1580. The second edition of the Mécanique Analytique consists of
two volumes, the first of which was published in 1811, and the sec-
ond in 1815. A third edition with notes by Bertrand was published in
1853…1855.

A few remarks relating to Attraction occur in the first volume, on
pages 111…115 of the second edition, and 105…108 of the third edition.
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These remarks treat very briefly on the value of the potential of an el-
lipsoid at any external point; they are connected with the memoir by
Lagrange in the Berlin Mémoires of 1792 and 1793: see Art. 1004. The
precise relation of these remarks to the memoir is however not quite ob-
vious.

In that memoir Lagrange treated of the value of the potential, and
shewed that certain terms depending on 𝑃2, 𝑃4, and 𝑃6 could be expressed
as functions of 𝑏2 − 𝑎2, and 𝑐2 − 𝑎2: see Art. 1011. Now in the present
work he substantially asserts that such a result will hold universally, that
is for the term depending on 𝑃2𝑛, where 𝑛 is any positive integer. He
gives however no demonstration of this statement, except what may be
derived from the following words:

M. Laplace a donné, dans sa Théorie des attractions des sphéroïdes, une très-
belle formule par laquelle on peut former successivement tous les termes de la
série,…

J’ai trouvé qu’en partant de ce résultat et faisant usage du théorème que j’ai
donné dans les Mémoires de Berlin de 1792—3, on pouvait construire tout d’un
coup la série dont il s’agit….

The très-belle formule must doubtless be one of those contained in
the Mécanique Céleste, Livre iii., Chapter I.; but I am not certain which is
meant: nor am I certain to which theorem in his own memoir of 1792—3
Lagrange alludes. Moreover Lagrange’s words would seem to suggest that
the très-belle formule had been given subsequent to 1792—3, and that by
combining this with a theorem of his own he had been able to arrive at
the general result. But this is not the case, for all that Laplace published
on the subject is to be found substantially in his memoir of 1782.

Thus finally it seems that if the entire series could be constructed tout
d’un coup in 1811, it might have been also in 1792; and Lagrange ought
to have explained more fully the statement he made in 1811.

There is a memoir by Plana in the third volume of Gergonne’s An-
nales de Mathématiques, which forms a commentary on this passage of
the Mécanique Analytique; but it does not touch on the point I have no-
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ticed. See Art. 1466.
On the whole it seems to me that the case may be stated thus: In the

memoir of 1792—3, Lagrange attempted to put the series for the poten-
tial in such a form as to furnish a proof of the theorem due to Laplace,
usually called by the name of Ivory; but the attempt was attended with
only slight success. In the book Lagrange gives up this attempt, and as-
suming the truth of Laplace’s theorem, deduces the constitution of the
series.

1581. A few remarks relating to our subject occur also in the first
volume of the Mécanique Analytique, on pages 199…204 of the second
edition, and 188…193 of the third edition.

Lagrange had previously investigated the conditions of fluid equilib-
rium; and he now applies them to the case of fluid surrounding a solid
nucleus, when the nucleus is an ellipsoid, and the outer surface of the
fluid that of another ellipsoid. The two ellipsoids have the same centre,
and the same directions for their axes, and differ but little from spheres.

The first thing required is the potential of a homogeneous ellipsoid
at an external particle. Let 𝑎, 𝑏, 𝑐 be the semiaxes of an ellipsoid; and
suppose that

𝑏2 = 𝑎2 + 𝛽2, 𝑐2 = 𝑎2 + 𝛾2;

let 𝑀 denote the mass of the ellipsoid. Then if we confine ourselves
to the first powers of 𝛽2 and 𝛾2 we have for the potential at the point
(𝑥, 𝑦, 𝑧)

𝑀
𝑟
{1 −

𝛽2 + 𝛾2

10𝑟2
+
3(𝛽2𝑦2 + 𝛾2𝑧2)

10𝑟4
} ,

where 𝑟2 = 𝑥2 + 𝑦2 + 𝑧2.
Lagrange had given this formula in the investigations which we have

just noticed; it may be easily verified.
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For we have with the usual notation,

𝑉 =∭
𝑟′2 𝑑𝜇′ 𝑑𝜓′ 𝑑𝑟′

√(𝑟2 − 2𝑟𝑟′𝜆 + 𝑟′2)
,

where 𝜆 stands for

𝜇𝜇′ + √(1 − 𝜇2)√(1 − 𝜇′2) cos(𝜓 − 𝜓′).

Now if 𝑟1′ denote the value of 𝑟′ at the surface of the ellipsoid we
have

𝑟1′2 {
𝜇′2

𝑎2
+
1 − 𝜇′2

𝑎2 + 𝛽2
cos2 𝜓′ +

1 − 𝜇′2

𝑎2 + 𝛾2
sin2 𝜓′} = 1;

thus to our order of approximation

𝑟1′2 {1 −
𝛽2 cos2 𝜓′ + 𝛾2 sin2 𝜓′

𝑎2
(1 − 𝜇′2)} = 𝑎2,

and

𝑟1′ = 𝑎 {1 +
𝛽2 cos2 𝜓′ + 𝛾2 sin2 𝜓′

2𝑎2
(1 − 𝜇′2)} .

Then in the usual way we obtain

𝑉 =∭
1
𝑟
{1 + 𝑃1

𝑟′

𝑟
+ 𝑃2

𝑟′2

𝑟2
+…} 𝑟′2 𝑑𝜇′ 𝑑𝜓′ 𝑑𝑟′ .

The first term of the series here exhibited is
𝑀
𝑟
.

The second term which depends on 𝑃1 vanishes by the property of
Laplace’s coefficients.

Next ∫𝑟′4𝑑𝑟′ =
𝑟1′5

5
; and to our order this

=
𝑎5

5
{1 +

5(1 − 𝜇′2)
2𝑎2

(𝛽2 cos2 𝜓′ + 𝛾2 sin2 𝜓′)} ;
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and to facilitate the integrations with respect to 𝜓′ and 𝜇′ we arrange
this as

𝑎5

5
+
𝑎3

2
{
1
3
(𝛽2 + 𝛾2) +

𝛽2 + 𝛾2

2
(
1
3
− 𝜇′2) +

𝛽2 − 𝛾2

2
(1 − 𝜇′2) cos 2𝜓′} .

Moreover 𝑃2 =

9
4
(𝜇2 −

1
3
) (𝜇′2 −

1
3
) + 3𝜇𝜇′√(1 − 𝜇2)√(1 − 𝜇′2) cos(𝜓 − 𝜓′)

+
3
4
(1 − 𝜇2)(1 − 𝜇′2) cos 2(𝜓 − 𝜓′).

Thus the term in 𝑉𝑟3 which depends on 𝑃2 reduces to

3𝑎3

16
(𝛽2 − 𝛾2)(1 − 𝜇2)∬(1 − 𝜇′2)2 cos 2(𝜓 − 𝜓′) cos 2𝜓′𝑑𝜇′𝑑𝜓′

+
9𝑎3

16
(𝛽2 + 𝛾2) (

1
3
− 𝜇2)∬(

1
3
− 𝜇′2)

2
𝑑𝜇′𝑑𝜓′.

The limits for 𝜓′ are 0 and 2𝜋, and the limits for 𝜇′ are −1 and 1.
Hence our result

=
3𝑎3

16
(𝛽2 − 𝛾2)(1 − 𝜇2)

16
15
𝜋 cos 2𝜓 +

9𝑎3

16
(𝛽2 + 𝛾2) (

1
3
− 𝜇2)

16
45
𝜋

=
𝑎3𝜋
5

{(𝛽2 − 𝛾2)(1 − 𝜇2) cos 2𝜓 + (𝛽2 + 𝛾2) (
1
3
− 𝜇2)}

=
𝑎3𝜋
5𝑟2

{(𝛽2 − 𝛾2)(𝑦2 − 𝑧2) + (𝛽2 + 𝛾2) (
𝑟2

3
− 𝑥2)}

=
𝑎3𝜋
5𝑟2

{2𝛽2𝑦2 + 2𝛾2𝑧2 −
2
3
𝑟2(𝛽2 + 𝛾2)}

= −
𝑀
10
(𝛽2 + 𝛾2) +

3𝑀
10𝑟2

(𝛽2𝑦2 + 𝛾2𝑧2)
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to our order of approximation.
Thus the proposed formula is verified.

Now let 𝜎 be the density of the solid, and 𝜌 the density of the fluid.
Then we may consider that we have an ellipsoid of density 𝜌, and an-
other of the density 𝜎 − 𝜌, as in Art. 383. Let 𝑎1, 𝑏1, 𝑐1 be the semiaxes
of the fluid surface; and let 𝛽1

2 = 𝑏1
2−𝑎12 and 𝛾12 = 𝑐12−𝑎12. Then the

whole potential at the point (𝑥, 𝑦, 𝑧) will be

4𝜋𝑎1𝑏1𝑐1𝜌
3𝑟

{1 −
𝛽1

2 + 𝛾12

10𝑟2
+
3(𝛽1

2𝑦2 + 𝛾12𝑧2)
10𝑟4

}

+
4𝜋𝑎𝑏𝑐(𝜎 − 𝜌)

3𝑟
{1 −

𝛽2 + 𝛾2

10𝑟2
+
3(𝛽2𝑦2 + 𝛾2𝑧2)

10𝑟4
} .

Let there also be at the point (𝑥, 𝑦, 𝑧) the accelerations 𝑓𝑥, 𝑔𝑦, ℎ𝑧,
parallel to the axes of 𝑥, 𝑦, 𝑧 respectively, and directed outwards. Then
if 𝑉 denote the whole potential we must have for equilibrium

𝑉 +
1
2
(𝑓𝑥2 + 𝑔𝑦2 + ℎ𝑧2) = constant. (1)

But by hypothesis the surface is an ellipsoid determined by the equa-
tion

𝑥2

𝑎12
+

𝑦2

𝑏1
2 +

𝑧2

𝑐12
= 1. (2)

Hence by comparing (1) and (2) we arrive at the conditions which
must hold.

To obtain these conditions we may substitute in (1) the approximate
value for 𝑟, namely

𝑟 = 𝑎1 {1 +
𝛽1

2𝑦2 + 𝛾12𝑧2

2𝑎14
} .
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Then (1) reduces to

𝑓𝑥2

2
+ (𝐵 +

𝑔
2
) 𝑦2 + (𝐶 +

ℎ
2
) 𝑧2 = constant;

where

𝐵 =
4𝜋
3𝑎15

{𝑎𝑏𝑐(𝜎 − 𝜌) (
3
10
𝛽2 −

1
2
𝛽1

2) −
1
5
𝑎1𝑏1𝑐1𝜌𝛽1

2} ,

and
𝐶 =

4𝜋
3𝑎15

{𝑎𝑏𝑐(𝜎 − 𝜌) (
3
10
𝛾2 −

1
2
𝛾12) −

1
5
𝑎1𝑏1𝑐1𝜌𝛾12} .

And to make this agree with (2) we must have

𝐵 +
𝑔
2
=
𝑓𝑎12

2𝑏1
2 , 𝐶 +

ℎ
2
=
𝑓𝑎12

2𝑐12
,

that is,

𝑔
2
+

4𝜋
3𝑎15

[
3
10
𝑎𝑏𝑐(𝜎 − 𝜌)𝛽2 − {

𝑎𝑏𝑐(𝜎 − 𝜌)
2

+
𝑎1𝑏1𝑐1𝜌

5
} 𝛽1

2] =
𝑓𝑎12

2𝑏1
2 ,

and

ℎ
2
+

4𝜋
3𝑎15

[
3
10
𝑎𝑏𝑐(𝜎 − 𝜌)𝛾2 − {

𝑎𝑏𝑐(𝜎 − 𝜌)
2

+
𝑎1𝑏1𝑐1𝜌

5
} 𝛾12] =

𝑓𝑎12

2𝑐12
.

Suppose that the stratum of fluid is very thin; then our equations may
be written

𝑔
2
+
4𝜋𝑏𝑐
3𝑎4

{
3
10
(𝜎 − 𝜌)𝛽2 − (

𝜎 − 𝜌
2

+
𝜌
5
) 𝛽1

2} =
𝑓𝑎12

2𝑏1
2 ,

ℎ
2
+
4𝜋𝑏𝑐
3𝑎4

{
3
10
(𝜎 − 𝜌)𝛾2 − (

𝜎 − 𝜌
2

+
𝜌
5
) 𝛾12} =

𝑓𝑎12

2𝑐12
.
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As an example suppose that 𝑓 = 0, and that 𝑔 = ℎ = 𝜔2; then we
obtain

𝛽2(𝜎 − 𝜌) = 𝛽1
2 {
5𝜎
3
− 𝜌} −

5𝜔2

4𝜋
.
𝑎4

𝑏𝑐
,

𝛾2(𝜎 − 𝜌) = 𝛾12 {
5𝜎
3
− 𝜌} −

5𝜔2

4𝜋
.
𝑎4

𝑏𝑐
.

These results, allowing for difference of notation, agree with those in
Art. 383.

1582. Lagrange proceeds to the case in which the mass is entirely
composed of homogeneous fluid rotating with uniform angular velocity;
and here some points require to be noticed.

Let 𝑎, 𝑏, 𝑐 be the semiaxes of an ellipsoid; 𝑥, 𝑦, 𝑧 the corresponding
coordinates of any point at the surface. Then it is known that the at-
tractions at (𝑥, 𝑦, 𝑧) parallel to the axes are of the form 𝑀𝜆𝑥, 𝑀𝜇𝑦, 𝑀𝜈𝑧
respectively, where 𝑀 is the mass of the ellipsoid, and 𝜆, 𝜇, 𝜈 are certain
constants in the form of definite integrals. Lagrange says that hence

𝑉 =
𝑀
2
(𝜆𝑥2 + 𝜇𝑦2 + 𝜈𝑧2).

This is however inaccurate. In the first place this result could not be
obtained from the fact that the attractions at the surface take the specified
form, but from the fact that they do so throughout the body. In the sec-
ond place there should be a constant added to the value of 𝑉; although
for the object in view it is not necessary to determine this constant.

Lagrange then considers whether the rotating ellipsoid can be in rel-

ative equilibrium. If so the equation 𝑉 +
𝜔2

2
(𝑥2 + 𝑦2) = constant must

agree with the equation
𝑥2

𝑎2
+
𝑦2

𝑏2
+
𝑧2

𝑐2
= 1. This leads to the conditions

𝑀𝜆 + 𝜔2

𝑀𝜈
=
𝑐2

𝑎2
,

𝑀𝜇 + 𝜔2

𝑀𝜈
=
𝑐2

𝑏2
.
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Lagrange says that these give 𝑎 = 𝑏, because 𝜆 and 𝜇 are like func-
tions of 𝑎, 𝑏 and 𝑏, 𝑎. We now know that this inference is inaccurate;
it is not necessary that 𝑎 = 𝑏: the discovery is due to Jacobi. This in-
accuracy is corrected by Bertrand in the third edition of the Mécanique
Analytique.

1583. We come next to a memoir by Professor Playfair entitled Of
the Solids of Greatest Attraction, or those which, among all the Solids that
have certain Properties, Attract with the greatest Force in a given Direction.
This is published in the Transactions of the Royal Society of Edinburgh,
Vol. vi. 1812; it occupies pages 187…243 of the volume: it was read on
January 5th, 1807.

1584. Playfair first discusses Silvabelle’s problem: see Arts. 531 and
682. Playfair does not use the Calculus of Variations, but the easier
method which amounts to making the attraction, resolved in the given
direction, constant at all points of the bounding surface of the body.
Playfair solves various simple exercises connected with the result which
he obtains; thus for instance he finds the area of the generating curve,
and the volume of the solid which it generates by revolution: see his
pages 187…205.

Playfair does not refer to Silvabelle; but he says that the problem had
been treated of by Boscovich. But Playfair had never been able to procure
a sight of the memoir by Boscovich; nor have I been more fortunate.

1585. Playfair solves various problems respecting attractions, which
are examples of the ordinary methods of maxima and minima explained
in the Differential Calculus.

Thus on pages 206…209 he determines the form of a right circular
cone of given volume, so that the attraction at the vertex may be the
greatest possible.

On pages 209…214 he discusses the attraction which a right circular
cylinder exerts at the centre of one of the circular ends; and he deter-
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mines the ratio of the radius of the base to the height, so that when the
volume is given the attraction may be the greatest possible. Let 𝑢 denote
the ratio of the radius of the base to the height; then to determine the
value of 𝑢 Playfair obtains the equation

(2 − 𝑢)√(1 + 𝑢2) = 2 − 𝑢2. (1)

By squaring we have

(2 − 𝑢)2(1 + 𝑢2) = (2 − 𝑢2)2,

this reduces to
4𝑢2 − 9𝑢 + 4 = 0. (2)

From (2) we obtain

𝑢 =
9 ± √17

8
.

Playfair has some trouble in convincing himself and his readers that
we must take the lower sign in this expression for 𝑢. But the fact is very
simple: although both expressions satisfy (2), yet it is only the expression
with the lower sign which satisfies (1); and (1) is the equation which
really must be satisfied.

1586. On his pages 215 and 216 Playfair determines the attraction
of a rod of infinitesimal section and of finite length, on an external
point, resolved in the direction perpendicular to the rod. Then on
his pages 216…218 he applies this to demonstrate a result which he
gives elsewhere without demonstration: see Art. 731. And on pages
218…220 he proposes “to find the figure of a semi-cylinder, given in
magnitude, which shall attract a particle situated in the centre of its
base, with the greatest force possible, in the direction of a line bisecting
the base:” but the determination of the maximum leads to an equation
of considerable difficulty, and he contents himself with an approximate
solution obtained by trial.
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1587. On his pages 220…225, Playfair considers the following prob-
lem: to determine the oblate spheroid of a given solidity which shall at-
tract a particle at its pole with the greatest force. Here he makes some
curious mistakes.

Let 𝑎 be the major semiaxis, and 𝑏 the minor semiaxis of the gener-

ating ellipse. Suppose the given volume to be denoted by
4𝜋
3
𝑛3, so that

𝑎2𝑏 = 𝑛3. Then the attraction of the oblatum at the pole is

4𝜋𝑛
𝑒3

(1 − 𝑒2) 56 {
𝑒

√(1 − 𝑒2)
− sin−1 𝑒} ;

this may be easily deduced from Art. 261.
Put sin−1 𝑒 = 𝜙; thus we obtain

4𝜋𝑛
(cos𝜙) 43

tan𝜙 − 𝜙
tan3 𝜙

. (1)

When 𝜙 is very small this becomes approximately

4𝜋𝑛 (1 +
2
3
tan2 𝜙) (

1
3
−
1
5
tan2 𝜙) ,

that is,
4𝜋𝑛
3

(1 +
1
15

tan2 𝜙) .

Thus when 𝑒, and therefore 𝜙, increases from zero, the attraction be-
gins by increasing; but from the expression (1) it is obvious that the at-

traction vanishes when 𝜙 =
𝜋
2
: hence there must be a maximum for

some value of 𝜙 between 0 and
𝜋
2
.

But Playfair, on the contrary, implicitly denies the existence of this
maximum, and asserts that there is a maximum when 𝜙 = 0. This is
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the more curious, because he obtains correctly the equation which de-
termines when (1) is a maximum, namely

𝜙 =
tan𝜙(9 + 2 tan2 𝜙)

9 + 5 tan2 𝜙
. (2)

He seems to have believed that (2) has no solution except 𝜙 = 0; but
it is clear from what we have said that there must be a solution between

𝜙 = 0 and 𝜙 =
𝜋
2
; and it is easy to establish this statement from consid-

ering the equation itself.
Playfair finishes this section of his memoir with the following para-

graph:
If the oblateness of a spheroid diminish, while its quantity of matter re-

mains the same, its attraction will increase till the oblateness vanish, and the
spheroid becomes a sphere, when the attraction at its poles, as we have seen,
becomes a maximum. If the polar axis continue to increase, the spheroid be-
comes oblong, and the attraction at the poles again diminishes. This we may
safely conclude from the law of continuity, though the oblong spheroid has not
been immediately considered.

But the statements are inaccurate; the attraction will really decrease
till the oblateness vanishes; and there is no maximum when the spheroid
becomes a sphere: while the axis of revolution continually increases, as
here supposed, and does not deviate sensibly from the other axis, the
attraction continually decreases. This is in fact quite as consistent with
the law of continuity as Playfair’s erroneous result.

1588. Playfair on his pages 225…228 finds the attraction of a rect-
angular lamina at a point which is on the straight line drawn at right
angles to the plane of the lamina through one corner, resolved along the
direction of this straight line: this is probably the first appearance of the
result in finite terms. We have seen in Art. 1017 that Cavendish failed to
obtain it; and Playfair on his page 237 adverts to this circumstance.
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Playfair makes an easy application of his result to determine the at-
traction which a right pyramid on a square base exerts at the vertex; and
he finds the form of the pyramid so that the attraction may be the great-
est possible when the volume is given: see his pages 228…231.

1589. Playfair arrives on his page 233 at a general result, which we
may enunciate thus: suppose a lamina of any shape to attract an exter-
nal particle; then the resolved attraction in the direction perpendicular
to the lamina is measured by the product of the thickness of the lamina
into the solid angle subtended by the lamina at the particle. The solid
angle is to be measured in the usual way, by the portion of the surface of
a sphere of radius unity having its centre at the particle, which is deter-
mined by a straight line from this centre which describes the boundary
of the lamina.

Playfair demonstrates this by employing the expression which he had
obtained for the resolved attraction of a rectangular lamina. But it may
be obtained more simply by considering the action of an infinitesimal
element. Let 𝛿𝑆 denote an infinitesimal element of the lamina, 𝑟 its dis-
tance from the attracted particle, 𝜃 the angle between the direction of 𝑟
and the perpendicular from the particle on the lamina, 𝜅 the thickness

of the lamina. Then the resolved attraction of the element is
𝜅𝛿𝑆
𝑟2

cos 𝜃;

and it is obvious that
𝛿𝑆 cos 𝜃

𝑟2
is equal to the element of the spherical

surface which corresponds to 𝛿𝑆.

1590. On his pages 235…237, Playfair applies the general result of the
preceding Article to establish a proposition which is now given in our
elementary books, namely, that “whatever be the figure of any body, its
attraction will decrease in a ratio that approaches continually nearer to
the inverse ratio of the squares of the distances, as the distances them-
selves are greater.” He considers that this proposition is usually taken
for granted without any other proof than “some indistinct perception of
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what is required by the law of continuity.”

1591. On his pages 239…243 Playfair investigates the attraction of
a rectangular parallelepiped resolved parallel to an edge at a point on
the edge produced. This is an easy deduction from the result he had
obtained as to a rectangular lamina: see Art. 1588. Playfair’s formula
on his page 242 must have its sign changed if the attraction is to be a
positive quantity.

1592. It will be seen from our account that the main contributions
of the memoir to our subject are the resolved attraction of a rectangular
lamina given in Art. 1588, and the general result of Art. 1589.

1593. The next memoir which we have to notice is entitled Of the At-
traction of such Solids as are terminated by Planes; and of Solids of great-
est Attraction. By Thomas Knight.

This memoir is contained in the Philosophical Transactions for 1812,
published in that year; it occupies pages 247…309 of the volume. The
memoir was read on March 19th, 1812.

1594. The memoir begins thus:
Mathematicians, in treating of the attraction of bodies, have confined their

attention, almost entirely, to those solids which are bounded by continuous
curve surfaces; and Mr. Playfair, if I do not mistake, is the only writer, who
has given any example of that kind of inquiry, which is the chief object of
the present paper. This learned mathematician has found expressions for the
action of a parallelopiped; and of an isosceles pyramid, with a rectangular
base, on a point at its vertex; and observes, on occasion of the first mentioned
problem, that what he has there done, “gives some hopes of being able to
determine generally the attraction of solids bounded by any planes whatever.”

It is this general problem, that I venture to attempt the solution of, in what
follows:…

1595. Thus it appears that Knight’s memoir was suggested by Play-
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fair’s; but, as we shall soon see, proceeded somewhat farther.
Let 𝑂𝑃𝑄 be a right-angled triangle, having the right angle at 𝑃;

through 𝑂 draw a straight line at right angles to the plane of the
triangle; then Knight determines the components of the attraction
which a lamina of infinitesimal thickness in the shape of the triangle
exerts at any point of the straight line. Playfair took a rectangle instead
of a triangle, and confined himself to estimating the value of the
component which is along the straight line: thus his investigations are
more restricted than Knight’s.

It may be said that the problem thus enunciated is the basis of nearly
the whole of Knight’s memoir.

1596. Let 𝑁 denote the point in the straight line; let 𝑁𝑂 = 𝑎, 𝑂𝑃 = 𝑏,
𝑃𝑄 = 𝑐.

Let 𝑋 denote the component of the attraction along 𝑁𝑂, let 𝑌 denote
the component parallel to 𝑂𝑃, and 𝑍 the component parallel to 𝑃𝑄. Take
𝑂 as the origin, 𝑂𝑃 as the axis of 𝑦, and a straight line through 𝑂 parallel
to 𝑃𝑄 as the axis of 𝑧. Let 𝑦 and 𝑧 be the coordinates of any point of
the triangle.

Then

𝑋 = 𝜇𝑎∬
𝑑𝑦𝑑𝑧
𝑠3

, 𝑌 = 𝜇∬
𝑦𝑑𝑦𝑑𝑧
𝑠3

, 𝑍 = 𝜇∬
𝑧𝑑𝑦𝑑𝑧
𝑠3

;

where 𝜇 represents the infinitesimal thickness of the lamina, and 𝑠
stands for √(𝑎2 + 𝑦2 + 𝑧2). The integrations must extend over the whole
area of the triangle.

1597. It is easy to effect the integrations; we will not follow Knight
extremely closely.

∫
𝑑𝑧
𝑠3

=
𝑧

(𝑎2 + 𝑦2)√(𝑎2 + 𝑦2 + 𝑧2)
;



miscellaneous investigations between 1801 and 1825. 538

the limits of 𝑧 are 0 and 𝑡𝑦, where 𝑡 denotes the tangent of 𝑃𝑂𝑄; so that

𝑡 =
𝑐
𝑏
. Thus

𝑋 = 𝜇𝑎𝑡∫
𝑦𝑑𝑦

(𝑎2 + 𝑦2)√(𝑎2 + 𝑦2 + 𝑡2𝑦2)
.

Assume 𝑎2 + 𝑦2(1 + 𝑡2) = 𝑣2; then we find that

𝑋 = 𝜇𝑎𝑡∫
𝑑𝑣

𝑣2 + 𝑡2𝑎2
= 𝜇 tan−1

𝑣
𝑎𝑡
.

And taking this between the appropriate limits we obtain finally

𝑋 = 𝜇 {tan−1
√{𝑎2 + 𝑏2(1 + 𝑡2)}

𝑎𝑡
− tan−1

1
𝑡
} .

Similarly by effecting the integration with respect to 𝑧 we obtain

𝑌 = 𝜇𝑡∫
𝑦2 𝑑𝑦

(𝑎2 + 𝑦2)√(𝑎2 + 𝑦2 + 𝑡2𝑦2)

= 𝜇𝑡∫
𝑑𝑦

√(𝑎2 + 𝑦2 + 𝑡2𝑦2)
− 𝜇𝑡𝑎2∫

𝑑𝑦
(𝑎2 + 𝑦2)√(𝑎2 + 𝑦2 + 𝑡2𝑦2)

.

The first term is immediately integrable; and to integrate the second

assume 𝑣 =
𝑦

√(𝑎2 + 𝑦2)
, so that

∫
𝑎2 𝑑𝑦

(𝑎2 + 𝑦2)√(𝑎2 + 𝑦2 + 𝑡2𝑦2)
= ∫

𝑑𝑣
√(1 + 𝑡2𝑣2)

.

Hence finally by taking the integrals between the appropriate limits
we get

𝑌 =
𝜇𝑡

√(1 + 𝑡2)
log

𝑏√(1 + 𝑡2) + √{𝑎2 + 𝑏2(1 + 𝑡2)}
𝑎

− 𝜇 log
𝑏𝑡 + √{𝑎2 + 𝑏2(1 + 𝑡2)}

√(𝑎2 + 𝑏2)
.
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And
∫

𝑧𝑑𝑧
(𝑎2 + 𝑦2 + 𝑧2) 32

= −
1

(𝑎2 + 𝑦2 + 𝑧2) 12
.

Thus
𝑍 = 𝜇∫{

1
√(𝑎2 + 𝑦2)

−
1

√(𝑎2 + 𝑦2 + 𝑡2𝑦2)
} 𝑑𝑦;

and integrating between the appropriate limits we get

𝑍 = 𝜇 log
𝑏 + √(𝑎2 + 𝑏2)

𝑎
−

𝜇
√(1 + 𝑡2)

log
𝑏√(1 + 𝑡2) + √{𝑎2 + 𝑏2(1 + 𝑡2)}

𝑎
.

1598. By decomposing any rectilinear lamina into triangles, Knight
can estimate the component attractions which it exerts at any point.
Then for any solid which can be decomposed into such laminæ the
component attractions may always be reduced to the form of single
integrals; and for various examples he actually works out the integration.

Four out of the five sections of the memoir are devoted to these sub-
jects; and the last section to the problem of Solids of greatest Attraction.

The mathematical processes are sound and satisfactory, though some-
times the results might be obtained with greater ease and elegance by
special methods instead of the general process which Knight uniformly
employs. I will offer a few remarks on some miscellaneous points.

1599. The fifth section commences thus:
The subject of this section has occupied the attention of Mr. Playfair, in

the same paper I have before noticed; it had previously been treated of by Silv-
abelle. Frisi also, in the third volume of his works, gives a solution of the same
problem as that which is first considered by Mr. Playfair, but his result is an
erroneous one. None of these writers have pursued the matter any further than
what relates to the figure of a homogeneous solid of revolution.

It does not appear to me that the solution given by Frisi is wrong:
see Art. 682.
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The extension which Knight undertakes to supply to the problem is
twofold. Instead of confining himself to the case of a body which can
be cut up into circular slices, he considers also various bodies which can
be cut up into rectilinear slices. And instead of confining himself to a
homogeneous body he considers some cases of varying density.

1600. In the case of a solid of revolution Knight shews that the re-
sult obtained by Silvabelle and Playfair for the homogeneous body is also
true when the density is any function of two assigned variables, namely
the distance from the axis of revolution, and the distance of the plane
of the circular slice from the origin. Knight uses the formal Calculus of
Variations, and not the simple principle adopted by Playfair after Silv-
abelle, that the bounding surface must be one of equal resolved attrac-
tion. The extension which Knight obtains can be immediately deduced
also by Playfair’s principle. It will be observed that under such a law of
density as Knight supposes the resultant attraction is along the axis of
revolution.

1601. Suppose however that we modify the problem, and allow the
density to be any function of the three coordinates of a point; then if we
require, not the maximum resultant attraction but, the maximum value
of the component along the axis of revolution, we shall still obtain the
form assigned by Silvabelle and Playfair. This is also an immediate de-
duction from the principle adopted by Playfair; but is less clearly obvious
according to Knight’s method. Knight may have seen it but he does not
make any mention of it. Let us apply his method.

1602. Take the attracted particle as the origin of coordinates, and the
axis of 𝑥 as that of revolution. Let 𝑠 stand for √(𝑥2 + 𝑦2 + 𝑧2), and 𝜙(𝑠)
for the law of attraction; then if 𝜌 be the density at the point (𝑥, 𝑦, 𝑧)

the resolved attraction of an element is
𝜌 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑥𝜙(𝑠)

𝑠
. Transform by

putting 𝑟 cos 𝜃 for 𝑦, and 𝑟 sin 𝜃 for 𝑧; then the resolved attraction of an
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element becomes
𝜌 𝑑𝑥 𝑟 𝑑𝑟 𝑑𝜃 𝑥𝜙(𝑠)

𝑠
, where 𝜌 is some function of 𝑥, 𝑟,

and 𝜃. Suppose we integrate with respect to 𝜃 from 0 to 2𝜋; the result
will be some function of 𝑟 and 𝑥 which we may denote by 𝑓(𝑟), for it is
not necessary to allude explicitly to 𝑥. Then integrate 𝑓(𝑟) with respect
to 𝑟 from 0 to 𝑦, where 𝑦 now denotes the extreme value of 𝑟, that is the
ordinate to the generating curve of the solid; denote the result by 𝜓(𝑦).

Thus finally the resolved attraction is ∫𝜓(𝑦)𝑑𝑥.

Then this is to be a maximum while the mass is constant. The mass

may be denoted by ∫𝜒(𝑦)𝑑𝑥, where 𝜒(𝑦) stands for

∫
𝑦

0
∫

2𝜋

0
𝜌𝑟 𝑑𝑟 𝑑𝜃 .

By the usual principles we must make the expression

∫{𝜓(𝑦) + 𝐶𝜒(𝑦)} 𝑑𝑥

a maximum, where 𝐶 is some constant.
This leads in the usual way to

𝜓′(𝑦) + 𝐶𝜒′(𝑦) = 0,

that is to

∫
2𝜋

0

𝜌𝑥𝜙(𝑠)
𝑠

𝑦 𝑑𝜃+𝐶∫
2𝜋

0
𝜌𝑦 𝑑𝜃 = 0,

that is to

∫
2𝜋

0
{
𝑥𝜙(𝑠)
𝑠

+ 𝐶} 𝑦𝜌 𝑑𝜃 = 0,
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that is to

{
𝑥𝜙(𝑠)
𝑠

+ 𝐶} 𝑦∫
2𝜋

0
𝜌 𝑑𝜃 = 0.

Hence
𝑥𝜙(𝑠)
𝑠

+ 𝐶 = 0. In this equation we have 𝑠 = √(𝑥2 + 𝑦2); and

thus the equation expresses the fact that the resolved attraction is to be
constant over the surface of the solid. Thus we have the same form as
we should obtain when the body is homogeneous.

1603. A formula in the Integral Calculus occurs on page 292, which
may deserve notice, namely

∫
𝑑𝑥

(𝑎2 + 𝑥2)
𝑛+1
2

= {
𝑥
𝑎2

+
(𝑛 − 2)𝑥3

3𝑎4
+
(𝑛 − 2)(𝑛 − 4)𝑥5

3 . 5𝑎6
+…}

1

(𝑎2 + 𝑥2)
𝑛−1
2
.

The mode of demonstration will indicate more distinctly the form of
the last term, which must be supplied when 𝑛 is not an even positive
integer.

∫
𝑑𝑥

(𝑎2 + 𝑥2)
𝑛+1
2

= ∫
1

𝑎2(𝑎2 + 𝑥2)
𝑛−2
2

𝑑
𝑑𝑥

𝑥
√(𝑎2 + 𝑥2)

𝑑𝑥

=
𝑥

𝑎2(𝑎2 + 𝑥2)
𝑛−1
2

+
𝑛 − 2
𝑎2

∫
𝑥2

(𝑎2 + 𝑥2)
𝑛+1
2

𝑑𝑥; (1)

∫
𝑥2 𝑑𝑥

(𝑎2 + 𝑥2)
𝑛+1
2

=
1
3𝑎2

∫
1

(𝑎2 + 𝑥2)
𝑛−4
2

𝑑
𝑑𝑥

𝑥3

(𝑎2 + 𝑥2) 32
𝑑𝑥

=
1
3𝑎2

𝑥3

(𝑎2 + 𝑥2)
𝑛−1
2

+
𝑛 − 4
3𝑎2

∫
𝑥4

(𝑎2 + 𝑥2)
𝑛+1
2

𝑑𝑥 . (2)
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Substitute from (2) in (1), thus

∫
𝑑𝑥

(𝑎2 + 𝑥2)
𝑛+1
2

=
𝑥

𝑎2(𝑎2 + 𝑥2)
𝑛−1
2

+
𝑛 − 2
3𝑎4

.
𝑥3

(𝑎2 + 𝑥2)
𝑛−1
2

+
(𝑛 − 2)(𝑛 − 4)

3𝑎4
∫

𝑥4 𝑑𝑥

(𝑎2 + 𝑥2)
𝑛+1
2
. (3)

The process may be continued by putting the last integral in (3) in
the following form:

∫
𝑥4 𝑑𝑥

(𝑎2 + 𝑥2)
𝑛+1
2

=
1
5𝑎2

∫
1

(𝑎2 + 𝑥2)
𝑛−6
2

𝑑
𝑑𝑥

.
𝑥5

(𝑎2 + 𝑥2) 52
𝑑𝑥.

1604. One of Knight’s examples may be of sufficient interest to be re-
produced here; we shall however adopt a method which is simpler than
his.

Suppose that the law of attraction is that of the inverse 𝑛th power of
the distance: find an expression for the attraction of a prism of infinites-
imal section, but of infinite length both ways, at an external point.

Let 𝑥 denote the perpendicular distance of the point from the prism;
let any other straight line drawn from the point to the prism make an an-
gle 𝜃 with the perpendicular distance; let 𝜇 be the area of a section of the
prism. Then the volume of an element of the prism will be 𝜇𝑑 . 𝑥 tan 𝜃,

that is
𝜇𝑥𝑑𝜃
cos2 𝜃

. Hence the resultant attraction is ∫
cos 𝜃

(𝑥 sec 𝜃)𝑛
𝜇𝑥𝑑𝜃
cos2 𝜃

, that

is
𝜇

𝑥𝑛−1
∫ cos𝑛−1 𝜃 𝑑𝜃. The limits of 𝜃 are −

𝜋
2
and

𝜋
2
; so that the attrac-

tion becomes
𝐴𝜇
𝑥𝑛−1

, where 𝐴 is a function of 𝑛 alone. The value of 𝐴

can be determined immediately if 𝑛 is a positive integer; but we do not
require this value for the application we have in view.
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Required the form of an infinitely long cylinder so that the attraction
may be a maximum at an external point.

It will follow by the use of the principle which Playfair adopted that
the resolved attraction must be constant throughout the curve formed by
a section of the cylinder by a plane at right angles to the generating lines
and passing through the external point. Let 𝑟 be the distance from the
external point to an element of the curve formed by this section of the
cylinder. Let 𝜃 be the angle between the direction of 𝑟 and that of the

resultant attraction. Then we must have
𝐴 cos 𝜃
𝑟𝑛−1

constant; therefore
cos 𝜃
𝑟𝑛−1

must be constant. The result is considered remarkable by Knight: see his
page 301.

If 𝑛 = 2 the equation is that of a circle, which passes through the
attracted point.

1605. A treatise was published in 1814 by De Zach entitled L’At-
traction des Montagnes et ses effets. The work is in octavo; it contains
xix + 715 pages, and three plates. De Zach made observations on a
mountain a few miles to the north-west of Marseilles, and also on an
island a few miles to the south-east. He found on the whole that the
mountain produced a deviation of very nearly two seconds in the direc-
tion of the plumb-line. But it has been doubted by the most competent
judges whether the small repeating circle which De Zach used was ad-
equate to such a delicate operation. See Arago’s Œuvres Complètes, Vol.
xi. pages 149…164, and the article Figure of the Earth in the Encyclopæ-
dia Metropolitana, page 173. There are no theoretical investigations to
engage our attention: I have alluded to the work in Art. 727, and will
merely notice a few points here.

1606. A preliminary discourse which occupies pages 1…28 of De
Zach’s work gives a history of the attempts made to ascertain the attrac-
tion of mountains.

De Zach observes that it is not necessary to have great mountains



miscellaneous investigations between 1801 and 1825. 545

in order to cause a deviation in the direction of the plumb-line; for a
defect of homogeneity in the internal strata of the earth near the point
of observation would produce the same effect, comme Newton l’a prouvé.
To justify these words a reference is given to Lib. iii. Prop. 20 of the
Principia. Newton makes indeed such a remark in this place, but cannot
be said to prove anything.

De Zach refers to the Chimborazo operations; see Art. 363. Here
it was not possible to make observations both on the north and south
sides of the mountain; so that one observation was made at the foot of
the mountain at the south side, and another at a second station about a
league and a half to the east of the first. Then in a note De Zach says:

Un Auteur très-illustre, en rapportant cette expérience, s’est trompé; il a cru
et supposé que ces Académiciens avoient observé au Nord et au Sud de la mon-
tagne, ce qui n’étoit pas le cas, comme on voit.

I do not know who is meant by this passage; it might have been sup-
posed perhaps that De Zach was alluding to some recent or contempo-
rary author, but the note had really been published about 60 years pre-
viously. It occurs on page 149 of the work which we have designated as
XVIII. in Art 352; and De Zach ought to have given a reference.

1607. Maskelyne makes this remark in the Philosophical Transactions
for 1775, pages 502 and 503:

Fortunately, however, Perthshire afforded us a remarkable hill, nearly in the
centre of Scotland, of sufficient height, tolerably detached from other hills, and
considerably larger from East to West than from North to South, called by the
people of the low country Maiden-pap, but by the neighbouring inhabitants
Schehallien; which, I have since been informed, signifies in the Erse language,
Constant Storm: a name well adapted to the appearance which it so frequently
exhibits to those who live near it, by the clouds and mists which usually crown
its summit.

This must I presume be the place from which De Zach obtained the
philological information which he thus curiously distorts on his page 21:
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… il trouva toutes les conditions requises réunies dans le Schehallien, mon-
tagne appelée dans le pays, en langue Erse, Maiden-Pap, qui veut dire orage
perpétuel.

A similar remark occurs on page 304 of the memoir which we have
noticed in Art. 1579.

1608. A work entitled Quotidiana Terræ conversio devio corporum
casu demonstrata. Auctore A. Tadino was published at Milan; the date
given is Anno 1o ab exacto Bonaparte, which I presume is about 1814.

The work consists of 125 pages in octavo, with very large margins.
The author refers to some theoretical investigation of the deviation

of falling bodies, which he had published in 1786, Ticinensibus
Ephemeridibus. He gives an account of the experiments he made from a
tower at Bergomi, about 100 feet high. The mean result of 143 trials was
an easterly deviation, agreeing closely with what had been calculated
from theory.

The work seems to be little known; it is not referred to by the au-
thorities cited in Art. 1563.

1609. On pages 53…56 of the Bulletin des Sciences par la Société
Philomatique de Paris, 1815, we have an article by Cauchy entitled De la
différence entre les attractions exercées par une couche infiniment mince
sur deux points très-rapprochés l’un de l’autre, situés l’un à l’intérieur,
l’autre à l’extérieur de cette même couche; par A. L. Cauchy, ingénieur des
ponts et chaussées.

The object of the article is to deduce from the general formulæ of at-
traction the theorem given in Poisson’s first memoir on electricity: see
Arts. 1357 and 1380. There is nothing in Cauchy’s analysis which is spe-
cially interesting; it does not even seem so convincing as the syntheti-
cal investigation contained in Poisson’s memoir on electricity, which we
know is due to Laplace.



miscellaneous investigations between 1801 and 1825. 547

1610. An academical dissertation entitled Dissertatio Academica de
Figura Telluris ope Pendulorum determinanda now presents itself to our
notice. This seems to have consisted of various parts; but I have seen
only Part 5 and Part 6. Part 5 is by Johannes Magnus a Tengstrom, and
is dated 27th May, 1815. Part 6 is by Johannes Gabriel Bonsdorff, and is
dated 27th June, 1815. Both parts were published at Abo.

I presume the entire dissertation contained a full account of the ob-
servations which had been made in various places with pendulums.

Parts 5 and 6 each consist of 10 pages.
Part 5 begins by adverting to some observations made by a Spanish

navigator named Ciscar; a reference is given to an article by Oltmanns
in De Zach’s Monatliche Correspondenz, 1812, page 468, &c.

Let 𝐸 denote the length of the seconds pendulum at the equa-
tor, 𝑝 the length at the latitude 𝑙; then we learn from theory that
𝑝 = 𝐸 + 𝑥 sin2 𝑙, where 𝑥 is some quantity which does not vary with the
latitude. Hence if we know the length of the seconds pendulum at two
different latitudes we can determine 𝐸 and 𝑥. Let 𝑃 = 𝐸 + 𝑥, so that
𝑃 is the length of the seconds pendulum at the pole. The values of 𝑃
obtained from a large number of binary combinations of observations
are given; and as an average of these combinations 𝑃 is found to be
441·4933, expressed in Paris lines.

In Part 6 the values of 𝐸 and 𝑥 are calculated from a large number
of observations by the method of least squares. This gives 𝑥 = 2·29695
and 𝐸 = 439·2393.

Then by Clairaut’s theorem the ellipticity of the Earth is
5
2
.
1
289

−
𝑥
𝐸
;

and with the above values of 𝑥 and 𝐸 this becomes
1

292·3
.

But from theoretical grounds, for which reference is made to the

work of Svanberg noticed in Art. 1575, it is considered that
1
305

is the
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correct value of the ellipticity. Then it is stated that by omitting some
of the pendulum observations, which appear to differ too much from
the rest, a result can be obtained from the rest which does not deviate

much from the fraction
1
305

. Thus if the observations at Kola, Mulgrave,

Melita, Megasaki, Umatog, Rio Janeiro, and St Helena are omitted, the
values found are 𝑥 = 2·32941, 𝐸 = 439·20943, and the ellipticity is
1

298·5
.

Then the author says:
Hac ratione plures instituimus comparationes, aliis aliisve omissis observa-

tionibus, quarum fides minor visa est, et præbuit nobis hic calculus valores el-

lipticitatis
1

312·6
,

1
309·8

,
1

303·7
,

1
301·4

, qui omnes aperte ostendunt, verum val-

orem ellipticitatis terræ ex observationibus penduli derivatum, utpote intra al-
latos hos limites medium, valori aliunde invento non modo non repugnare, sed
potius optime ita convenire, ut, si ex diversissimis similiter sitis locis haberen-
tur observationes penduli æque certæ, nullum esse videatur dubium, quin hæ

etiam ellipticitatem indicent =
1
305

uti maxime probabilem.

Finally the author assumes
1
305

for the ellipticity; and he considers

the length of the pendulum at Paris accurately known; thus he obtains
the formula 𝑝 = 439·2221 + 2·3596 sin2 𝑙.

1611. We may briefly advert to the Essays on the Theory of the Tides,
the Figure of the Earth, the Atomical Philosophy, and the Moon’s Orbit. By
Joseph Luckcock.

This work was published at London in 1817; it is in a small quarto
size, and consists of a Title-page, a Preface on iv pages, the Text on 96
pages, and five Plates. The Essay on the Figure of the Earth occupies
pages 23…47 of the volume; it is a foolish production by an ignorant
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writer: he rejects what is usually called the centrifugal force, and denies
that the Earth is elevated at the equator.

We may give a specimen of the work. The writer finds correctly, that
if we take the Earth as a sphere of 8000 miles diameter, we have corre-
sponding to a distance of one mile on the surface, a deviation of about
8 inches from a straight line. Then he proceeds thus on his page 41:

… But suppose a canal to be dug upon a meridian, from the pole to
the equator; the correction between the telescopic and the true level would
be grossly erroneous: the engineer who should have the temerity to work
according to the rule, would find the banks of his canal at the equator 18 12
miles deep! But the engineer happens to be right; and the rule will serve
him in cutting his canal east, west, north or south; no matter what direction
it may take; consequently the meridians are circles equally with the parallels
of latitude, and here is a demonstration that the equatorial regions are not
elevated above the natural level, otherwise there must be one rule for working
east and west, and another rule for working north and south; but which rule
has never yet been a desideratum, and which has never yet been heard of.

1612. We next notice a memoir entitled Investigation of the Figure of
the Earth, and of the Gravity in different Latitudes. By Robert Adrain.
This is published in the Transactions of the American Philosophical Soci-
ety … Vol. i. New Series. Philadelphia, 1818. The memoir occupies pages
119…135 of the volume: it was read October 7th, 1817.

We have seen in Art. 1108 that Laplace deduced, by two methods, a
general expression for the length of the seconds pendulum from fifteen
observed lengths. Adrain takes the same fifteen observations, and treats
them by the method of Least Squares instead of by either of Laplace’s
methods.

In Laplace’s deduction of the most probable ellipse from the pendu-
lum observations he made two mistakes of calculation; Adrain points
them out and gives the correct work: the mistakes are the last two out of
the four to which we allude in Art. 1110, and it is curious that Bowditch
makes no reference to Adrain. But the brief account of the origin of
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Laplace’s fourth mistake, which Adrain gives on his page 131, is not in-
telligible.

On his page 127 Adrain proposes an expression for the force of grav-
ity, when the place of observation is above the level of the sea. Thus if
𝑅 is the mean radius of the Earth, ℎ the height of the place above the
level of the sea, and 𝑔 the force of gravity at the level of the sea, he

takes
𝑔𝑅2

(𝑅 + ℎ)2
for the force of gravity at the place of observation. But

this makes no allowance for the attraction of the matter which is be-
tween the place of observation and the level of the sea.

It may be observed that Adrain claims the method of Least Squares
as his own discovery; he begins thus: “Having in the year 1808 discov-
ered a general method of resolving several useful problems, by ascertain-
ing the highest degree of probability where certainty cannot be found;…”
The principles on which he established the method are explained by him
elsewhere; and they have been examined by Mr Glaisher in the Memoirs
of the Royal Astronomical Society, Vol. xxxix. pages 75…81.

1613. The volume which contains the preceding memoir by Adrain
contains also another by him, entitled Research concerning the Mean Di-
ameter of the Earth. This occupies pages 353…366; it was read Nov. 7th,
1817.

The memoir consists of simple investigations relating to an oblatum
which is nearly spherical.

Let 𝑎 and 𝑏 denote the major and minor semiaxes of the generating
ellipse; and suppose it required to find the radius of the sphere which
has the same volume as the oblatum. Let 𝑟 denote the radius of the
sphere: then we must have 𝑟3 = 𝑎2𝑏. If the difference between 𝑎 and 𝑏

is small we obtain approximately 𝑟 =
2𝑎 + 𝑏
3

.

Now Adrain shews that the same approximate value is also obtained
from the solution of various other problems; as for instance if we require
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that the surface of the sphere shall be equal to the surface of the obla-
tum; or if we require that the curvature of the sphere shall be equal to
the mean curvature of the oblatum, with a suitable definition of mean
curvature.

1614. On pages 486…517 of the Philosophical Transactions for 1818,
published in that year, there is a memoir entitled, An abstract of the re-
sults deduced from the measurement of an arc on the meridian, extend-
ing from latitude 8° 9′ 38″·4, to latitude 18° 3′ 23″·6, N. By Lieut. Colonel
William Lambton…. The memoir was read on May 21st, 1818.

The memoir gives a short account of the operations on the great In-
dian arc, with references for details to volumes of the Asiatic Researches.
Lambton, by comparing his results with the lengths of arcs in France

and Sweden, arrives at an ellipticity of about
1
310

.

In some formulæ which occur on pages 497 and 499, Lambton gives
values for radii of curvature which are halves of what they should be;
but as he only uses the values in the form of ratios, this does not lead
to any final error. For a correction as to another point, see the article on
the Figure of the Earth in the Encyclopædia Metropolitana, page 210.

A note connected with the memoir will be found on pages 27…33 of
the Philosophical Transactions for 1823.

For the later history of the progress of the measurement of the Indian
arc the reader must consult the works published by the late Sir George
Everest: see the Proceedings of the Royal Society, Vol. xvi. pages xi.…xiv.

1615. We have next to notice a publication entitled Sopra l’identità
dell’ attrazione molecolare coll’ astronomica Opera del Cavaliere Leopoldo
Nobili … Modena, 1818.

This consists of 84 quarto pages, with 4 plates. It is divided into two
parts. The first part is a memoir which had been published in the Gior-
nale di Fisica … Pavia, 1817; and the second part is a supplement to
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enforce the doctrine of the memoir.
The author holds that the law of attraction according to the inverse

square of the distance will suffice for the explanation of the phenomena
of molecular action, as well as for the phenomena of astronomy. He
treats of adhesion, cohesion, and capillary attraction; and has scarcely
anything which falls within our subject.

He investigates the formula for the attraction of an indefinitely thin
spherical shell on any particle; but he does not use any symbol to repre-
sent the thickness of the shell: thus for example, if the particle is just on
the outside of the shell he obtains 4𝜋 for the resultant attraction. Then,
as in Art. 993, this attraction may be divided into two equal parts, one
arising from the part of the shell which is close to the particle, and the
other from the rest of the shell. Thus he gets the finite value 2𝜋 for the
attraction of a particle on an adjacent particle. If he had explicitly intro-
duced the thickness of the shell this apparently finite result would have
been really infinitesimal. This omission would be of no consequence for
many purposes; but with regard to the special object which Nobili has in
view it constitutes a fatal objection to almost the whole of the work.

Some illustration of the result obtained by considering attraction like
an emanation from a centre is given on pages 27…30: it seems to me
altogether unsatisfactory.

Two results, which are correct when we supply a factor to represent
the thickness of the shell, are obtained which may be noticed.

Let 𝑟 denote the radius of the shell, 𝛿𝑟 the thickness; suppose a par-
ticle inside the shell at the distance 𝑐 from the centre; then if the shell
be divided into two parts by a plane through the particle at right angles
to the radius on which it is situated the resultant attraction of each part
is

2𝜋𝑟2𝛿𝑟
𝑐2

−
2𝜋𝑟√(𝑟2 − 𝑐2)𝛿𝑟

𝑐2
.

Suppose such a shell as before, but let the law of attraction be that
of the inverse cube of the distance; then the resultant attraction on an
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external particle at the distance 𝑐 from the centre is

2𝜋𝑟2𝛿𝑟
𝑐(𝑐2 − 𝑟2)

+
𝜋𝑟𝛿𝑟
𝑐2

log
𝑐 + 𝑟
𝑐 − 𝑟

.

See pages 13 and 18 of the work.

1616. A memoir by Dr Young is next to be noticed, which occupies
pages 70…95 of the Philosophical Transactions for 1819: it is entitled Re-
marks on the Probabilities of Error in Physical Observations, and on the
Density of the Earth. The memoir is reprinted in the Miscellaneous Works
of the late Thomas Young. Vol. ii. pages 8…28.

We are concerned with only two sections of the memoir, namely one
entitled On the mean density of the earth, and another entitled On the
irregularities of the earth’s surface.

1617. The section On the mean density of the earth is important.
Laplace in the Mécanique Céleste, Livre xi. Chapitre ii. discussed the

hypothesis involved in the relation
𝑑Π
𝑑𝜌

= 2𝑘𝜌; this discussion was

apparently suggested by the remarks made by Dr Young in the present
section: see Art. 1330. Young’s hypothesis, however, is not the same as
that which Laplace adopted, but the more simple one which belongs to

elastic fluids, namely that involved in the relation
𝑑Π
𝑑𝜌

= 𝑘.

If 𝑥 denotes the distance from the centre of the Earth supposed
spherical we have from the ordinary principles of Hydrostatics

𝑑Π
𝑑𝑥

= −
4𝜋𝜌
𝑥2

∫
𝑥

0
𝜌𝑥2 𝑑𝑥;

thus
𝑑𝜌
𝑑𝑥

= −
4𝜋𝜌
𝑘𝑥2

∫
𝑥

0
𝜌𝑥2 𝑑𝑥 .
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Young in fact proposes to obtain from this equation a value of 𝜌 in
the form of a series in powers of 𝑥; and he gives some numerical cal-
culations. He considers the hypothesis adequate to meet the facts of the
subject.

I do not know what he means by “the experiment on the sound of
ice”: the language is strange if he is referring to an experimental deter-
mination of the velocity of sound transmitted through ice.

1618. The section On the irregularities of the earth’s surface treats of
the effect produced on the pendulum by “the attraction of a circum-
scribed mass, situated at a moderate depth below the earth’s surface.”
The word circumscribed seems here strange and unnecessary. Some cor-
rect results are obtained, but the process is neither clear nor interesting:
we will reproduce one of these results.

The earth is supposed fluid and nearly spherical; take its radius for
the unit of length, and its mass for the unit of mass. Suppose there is an
additional mass 𝑎 at the depth 𝑐 below what would be the spherical sur-
face if there were no irregularity. Let 𝑅 denote the distance of a point in
the surface of the fluid from the centre of the sphere, and 𝑟 the distance
of the point from the centre of the additional mass, then the surface will
be determined by the equation

1
𝑅
+
𝑎
𝑟
= a constant.

Let 𝑧 denote the elevation produced by the disturbing mass; then by
applying the above general equation to the top of the elevation, and also
to the point diametrically opposite, we obtain

1
1 + 𝑧

+
𝑎

𝑐 + 𝑧
=
1
1
+

𝑎
2 − 𝑐

.

If 𝑐 is supposed small we have from this approximately

𝑧 =
𝑎
𝑐
.
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This result is the same as Dr Young’s, but the process seems to me
much more natural than his, which begins thus: “the fluxion of the ele-
vation is as the fluxion of the arc and as the deviation … conjointly;…”

We have at the end of the section some remarks as to the value of
the earth’s attraction at the summit of a mountain; these embody what is
now usually called Dr Young’s Rule. This Rule coincides with the formula
originally given by Bouguer, and reproduced by D’Alembert; see Art. 593:
Dr Young does not refer to any preceding writer. He takes the density of

the mountain as
212
512

of the mean density of the earth. Then if 𝑥 be the

height of the mountain, 𝑟 the radius of the earth, and 𝑔 the value of the
attraction at the surface of the earth, the value of the attraction at the
summit of the mountain by Bouguer’s formula is

𝑔 {1 −
2𝑥
𝑟
+
3
2
.
5
11

.
𝑥
𝑟
} ,

that is
𝑔 {1 −

29
22

.
𝑥
𝑟
} ,

or
𝑔 {1 −

29
44

.
2𝑥
𝑟
} .

Thus the correction would be
2𝑥
𝑟

if we paid no regard to the attraction

of the mountain; but becomes
29
44

of
2𝑥
𝑟
, that is

66
100

of
2𝑥
𝑟
, when we

allow for this.

1619. A paper was published by Dr Young in Brande’s Quarterly Jour-
nal for 1820, and reprinted in the Miscellaneous Works of the late Thomas
Young, Vol. ii. pages 78…83, entitled Remarks on Laplace’s latest Compu-
tation of the Density of the Earth.

The paper begins with a very just remark:
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It cannot but be highly flattering to any native of this country, to have his
suggestions on an astronomical subject admitted and adopted by the Marquis
de Laplace:…

As we have stated in Art. 1617, Dr Young proposed the hypothesis
𝑑Π
𝑑𝜌

= 𝑘, while Laplace adopted the hypothesis
𝑑Π
𝑑𝜌

= 2𝑘𝜌. In the present

paper Dr Young states his objections against Laplace’s hypothesis. There
are no theoretical investigations, but Dr Young gives a table which as-
signs the value of the ellipticity corresponding to various values of the
superficial density of the earth, the mean density being taken as 5·4. I
am at a loss to understand how the table was calculated; Dr Young says:

In these calculations, it has not been necessary to have recourse to any for-
eign authority or assistance whatever…. The geographical elements of the prob-
lem have been supplied by the experiments and observations of Maskelyne and
Cavendish, compared with those of General Mudge, Colonel Lambton, and Cap-
tain Kater.

As Dr Young disclaims all foreign assistance he did not calculate the
ellipticity by the theory of Clairaut and Laplace; and I cannot conjecture
what he substituted. Nor do I know what are the geographical elements
which he obtained from his five countrymen.

Dr Young finishes thus:
It is unnecessary to enter into any inquiry respecting the precession and

nutation, as connected with the earth’s density, since these effects are known
to depend on the ellipticity of the spheroid and of its strata alone, without any
regard to the manner in which the density is distributed among them.

I do not understand this; on the contrary it seems to me that the
calculation of precession and nutation cannot be completed until the law
of density is assumed.

1620. Two other papers by Dr Young may be conveniently noticed,
although they fall beyond the date which we have fixed as the limit of
our survey. To these we proceed.
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1621. A contribution by Dr Young to our subject is entitled Estimate
of the Effect of the Terms involving the Square of the Disturbing Force on
the Determination of the Figure of the Earth. In a Letter to G. B. Airy,
Esq. This was published in Brande’s Quarterly Journal for 1826, and is
reprinted in the Miscellaneous Works of the late Thomas Young, Vol. ii.
pages 87 and 88.

The paper discusses only a very simple case of the general problem
implied in the title; namely the case “of a fluid supposed to be with-
out weight, and surrounding a spherical nucleus.” By the strange phrase
“without weight” is meant I believe that the attraction of the fluid it-
self is to be neglected. The problem is thus purely speculative, and is
treated in Young’s usual obscure and repulsive manner; the result, natu-
rally enough, is wrong. It may be useful to give a correct and intelligible
solution.

Let 𝜔 be the angular velocity, 𝑟 the radius vector of any point in the
surface of the fluid, and 𝜃 the inclination of 𝑟 to the plane of the equa-
tor. The attraction tends accurately to the centre of the spherical nu-

cleus, and may be denoted by
𝜇
𝑟2
. Then resolving along the tangent to

the meridian, we must have for relative equilibrium
𝜇
𝑟2
sin𝜓 = 𝑟𝜔2 cos 𝜃 sin(𝜃 + 𝜓),

where
tan𝜓 = −

1
𝑟
𝑑𝑟
𝑑𝜃
.

Let 𝑎 be the equatorial semiaxis; then we assume

𝑟 = 𝑎(1 − 𝜖 sin2 𝜃 + 𝑢),

where 𝜖 is a small quantity, and 𝑢 is small compared with 𝜖.

Put 𝑗 for 𝑎𝜔2 ÷
𝜇
𝑎2
; then our fundamental equation becomes

𝑗 cos 𝜃 sin 𝜃 + 𝑗 cos2 𝜃 tan𝜓 = (1 − 𝜖 sin2 𝜃 + 𝑢)−3 tan𝜓,
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where

tan𝜓 =
2𝜖 sin 𝜃 cos 𝜃 −

𝑑𝑢
𝑑𝜃

1 − 𝜖 sin2 𝜃 + 𝑢

Substitute the value of tan𝜓: thus

𝑗 cos 𝜃 sin 𝜃 + 𝑗 cos2 𝜃 (2𝜖 sin 𝜃 cos 𝜃 −
𝑑𝑢
𝑑𝜃

) (1 − 𝜖 sin2 𝜃 + 𝑢)−1

= (2𝜖 sin 𝜃 cos 𝜃 −
𝑑𝑢
𝑑𝜃

) (1 − 𝜖 sin2 𝜃 + 𝑢)−4.

By comparing the terms of the first order we obtain

𝑗 = 2𝜖.

Then by comparing the terms of the second order we obtain

2𝜖𝑗 cos3 𝜃 sin 𝜃 = 8𝜖2 sin3 𝜃 cos 𝜃 −
𝑑𝑢
𝑑𝜃

;

therefore
𝑢 = 2𝜖2 sin4 𝜃 + 𝜖2 cos4 𝜃 + constant.

The constant must be determined so as to leave 𝑟 = 𝑎 when 𝜃 = 0;
hence finally

𝑢 = 2𝜖2 sin4 𝜃 + 𝜖2 cos4 𝜃 − 𝜖2.

Dr Young makes

𝑢 = 𝜖2 sin4 𝜃 + 𝜖2 cos4 𝜃.

We may also obtain the correct result by the aid of equation (2) of
Art. 57.

Assume 𝑟 = 𝑎(1 − 𝜖 sin2 𝜃 + 𝑢); thus the equation becomes

(1 − 𝜖 sin2 𝜃 + 𝑢)−1 +
𝑗
2
cos2 𝜃(1 − 𝜖 sin2 𝜃 + 𝑢)2 = 1 +

𝑗
2
.
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By comparing the terms of the first order we obtain

𝜖 sin2 𝜃 =
𝑗
2
(1 − cos2 𝜃),

so that
𝑗
2
= 𝜖.

Then by comparing the terms of the second order we obtain

𝜖2 sin4 𝜃 − 𝑢 − 2𝜖2 sin2 𝜃 cos2 𝜃 = 0,

therefore
𝑢 = 𝜖2 sin4 𝜃 − 2𝜖2 sin2 𝜃 cos2 𝜃
= 2𝜖2 sin4 𝜃 + 𝜖2 cos4 𝜃 − 𝜖2.

It follows that the polar semi-axis is equal to 𝑎(1 − 𝜖 + 𝜖2) to the sec-
ond order. Dr Young maintained in fact the erroneous opinion that the
difference of the two semiaxes would not involve a term in 𝜖2. Ivory, as
we have said, treated the problem correctly at about the same date: see
Art. 1441.

1622. The other paper by Dr Young is entitled Determination of the
Figure of the Earth from a single tangent: this was first published in the
Life of Thomas Young, 1855, pages 511…514.

The title does not give any idea of the contents of the paper. The
problem discussed is this: given the difference of latitude and the differ-
ence of longitude of two adjacent places, and also the azimuth of each
as seen from the other, to determine the ellipticity of the earth.

The investigation is rather obscure, and there is a misprint of
cos

1
2
(𝛼 + 𝛼′) for sin

1
2
(𝛼 + 𝛼′) throughout the third paragraph. Also, 𝛼

and 𝛼′ denoting the two azimuths,
1
2
(𝛼 − 𝛼′) is very strangely called the

mean azimuth on page 513.
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It is stated in the note that, “The preliminary propositions are in-
volved in the method proposed by Dalby for determining arcs of parallel.”
I do not know what this means: Dr Young’s preliminary propositions in-
volve only Plane Trigonometry.

1623. The great and deserved reputation of Dr Young renders it nec-
essary to state that his mathematical writings are dangerous for students,
and should not be consulted by them except under sound professional
advice. Speaking generally the processes will be found unintelligible ex-
cept to persons well acquainted with the subject discussed, and then they
are superfluous.

One obscure and abstruse work bears the singularly inappropriate ti-
tle of Elementary Illustrations of the Celestial Mechanics of Laplace; if this
fell into the hands of a beginner, who had not been warned of its char-
acter, he might be alienated permanently from the study of Physical As-
tronomy.

The absurd opinions which Dr Young expresses in his life of Lagrange
prove that he was quite incapable even of appreciating the highest math-
ematical genius; they have drawn forth a just protest from Dr Peacock:
see the Miscellaneous Works of the late Thomas Young, Vol. ii. page 579.

1624. We may briefly notice a strange work entitled Address of M.
Hoene Wronski, to the British Board of Longitude, upon the actual state
of the Mathematics, their reform, and upon the new Celestial Mechanics,
giving the definitive Solution of the Problem of Longitude. Translated from
the original in French by W. Gardiner, London, 1820.

This is a duodecimo volume containing xii + 127 pages.
Wronski came to England with the hope of inducing the Board of

Longitude to reward his mathematical labours, on the ground of their
scientific value, and especially of their use with respect to the practical
problem of determining the longitude; but he seems to have received no
encouragement. From page xii we learn that he submitted to the Board
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a manuscript consisting on the whole of 930 quarto pages, which con-
tained a new theory of Celestial Mechanics, and a comparison of it with
the old theory.

The work is almost unintelligible, and it is obvious that the trans-
lator was an incompetent person, but the original French was probably
very obscure: the chief peculiarity which strikes a reader is the perpet-
ual reference to the Absolute, without any adequate explanation of the
mysterious term.

The pages 35…66 have some relation to the Figure of the Earth, or as
Wronski styles it, “the problem of the formation of the celestial globes.”
We have a sketch of the history of the subject, and then a statement
of the main results of the new theory of the author, which are five in
number. I do not profess to understand them; but as the fifth is the
shortest I will quote that as a specimen. It occurs on page 63:

At last, the fifth result of this theory of the construction of celestial globes
is, that by this known form of the earth, regular or irregular, simple or com-
plex, we can discover immediately the distribution itself of the masses in the
interior of our globe, that is to say, the interior structure of the earth—Thus,
we shall, with an astonishing facility, penetrate into these mysterious retreats,
where, distant from light, the plaistic mother, in her chambers of silence and
obscurity, prepares in great measure the generation of all that animates this our
globe; and into which the most unbridled imagination has not dared to enter,
but with fear and trembling to shadow her fanciful chimeras.

For an opinion on Wronski see the Miscellaneous Works of Dr Thomas
Young, Vol. ii. page 65.

1625. In the second volume of the Transactions of the Cambridge
Philosophical Society, which is dated 1827, we have a memoir entitled
On the Figure assumed by a Fluid Homogeneous Mass, whose Particles are
acted on by their mutual Attraction, and by small extraneous Forces. By
G. B. Airy….

The memoir occupies pages 203…216 of the volume; it was read
March 15, 1824.
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The memoir commences thus:
The principal difficulty in the solution of this problem, consists in the in-

vestigation of the attraction of any spheroid (differing little from a sphere) upon
a point in its surface. This has been found by Laplace, in a manner so general,
and by an analysis so powerful, that any new investigations might seem entirely
unnecessary. But the abstruse nature of that analysis, it must be acknowledged,
is such as to make a more simple investigation desirable: and the obscurities
which have led Laplace himself into error, serve to shew the value of a process
which involves nothing more difficult than the common applications of the dif-
ferential calculus.

I am not certain what error of Laplace’s is here alluded to; but per-
haps it is that which is discussed by the author in some subsequent pages
of the volume: see Art. 1230. It does not however appear to me that
Laplace himself was really wrong.

1626. The memoir then makes no use of Laplace’s coefficients, but
does use the proposition which reduces the determination of the attrac-
tion in any direction to the investigation of a single function, which we
now call the potential. It may be said to occupy a position intermedi-
ate between Laplace’s first three memoirs and his subsequent researches.
General formulæ are investigated by the aid of expansions according to
Taylor’s theorem; and they are applied to the complete discussion of a
problem which we may enunciate thus: Suppose a nearly spherical mass
of fluid in the form of a figure of revolution; let 𝑧 denote the ordinate of
any point measured parallel to the axis of figure from the centre of the
spheroid as origin: then the form for equilibrium is determined, when
besides the attraction of the mass there is a small force represented by
𝐴+𝐵𝑧2 +𝐷𝑧4 +𝐸𝑧6 +𝐹𝑧8, where 𝐴, 𝐵, … are constants. The numerical
work is laborious, but it is correct.

1627. An application is made to the case of Saturn and his ring. Sup-
pose that Saturn consists of homogeneous rotating fluid; then consider
the influence which the ring exerts on the figure of Saturn. We will re-
produce some of the investigation, though not with the original notation.



miscellaneous investigations between 1801 and 1825. 563

The ring is treated as if it were the perimeter of a circle. Let 𝑅 denote
the radius of this circle, and 𝜇 the mass of the ring. Take the centre of
the ring as the origin, and the plane of the ring as that of (𝑥, 𝑦). Then
the potential of the ring at the point (𝑥, 𝑦, 𝑧) being denoted by 𝑉, we have

𝑉 =
𝜇
2𝜋

∫
2𝜋

0

𝑑𝜃
√{(𝑅 cos 𝜃 − 𝑥)2 + (𝑅 sin 𝜃 − 𝑦)2 + 𝑧2}

.

Since the planet is supposed to be a figure of revolution, we
may without loss of generality, put 𝑦 = 0. We shall also assume that
𝑥2 + 𝑧2 = 𝑟2, so that for a first approximation the planet is treated as a
sphere of radius 𝑟.

Thus

𝑉 =
𝜇
2𝜋

∫
2𝜋

0

𝑑𝜃
√{𝑅2 + 𝑟2 − 2𝑅𝑥 cos 𝜃}

.

The expression under the integral sign may be expanded in a conver-
gent series; thus putting 𝜆 for √(𝑅2 + 𝑟2) we see that the general term of
𝑉 is

𝜇
2𝜋𝜆

.
1 . 3 . 5… (2𝑠 − 1)

2𝑠 𝑠
. (
2𝑅𝑥
𝜆2

)
𝑠
∫

2𝜋

0
cos𝑠 𝜃 𝑑𝜃 .

If 𝑠 is an odd number this vanishes; if 𝑠 is an even number it is equal
to

𝜇
𝜆
. (
2𝑅𝑥
𝜆2

)
𝑠
.
1 . 3 . 5… (2𝑠 − 1)

2𝑠 𝑠
.
(𝑠 − 1)(𝑠 − 3)…1
𝑠(𝑠 − 2)(𝑠 − 4)…2

.

Let 𝜌 denote the density of Saturn, so that the mass is
4𝜋𝑟3𝜌
3

; and

suppose that the mass of the ring is
1
𝑛
of that of Saturn: then 𝜇 =

4𝜋𝑟3𝜌
3𝑛

.

Thus

𝑉 =
4𝜋𝑟3𝜌
3𝑛𝜆

{1 +
12 . 3
22 . 4

4𝑥2𝑅2

𝜆4
+
12 . 32 . 5 . 7
22 . 42 . 6 . 8

16𝑥4𝑅4

𝜆8
+…} .
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Let the coefficient of 𝑥2𝑠 in this expression be denoted by
4𝜋𝜌
3𝑛

.
𝑒𝑠

𝑟2𝑠−2
;

then
𝑉 =

4𝜋𝜌
3𝑛

{
𝑟3

𝜆
+ 𝑒1𝑥2 +

𝑒2𝑥4

𝑟2
+
𝑒3𝑥6

𝑟4
+…} .

Here 𝑒1, 𝑒2, 𝑒3, … are abstract numbers independent of the unit of
length.

1628. At this stage a step is taken which may be said to be one of the
special characteristics of the investigation; we put 𝑟2−𝑧2 for 𝑥2, and then
rearrange in powers of 𝑧. Thus if we stop at the term in 𝑥8 we obtain

𝑉 = 𝑉0 +
4𝜋𝜌
3𝑛

{ − (𝑒1 + 2𝑒2 + 3𝑒3 + 4𝑒4)𝑧2

+ (𝑒2 + 3𝑒3 + 6𝑒4)
𝑧4

𝑟2
− (𝑒3 + 4𝑒4)

𝑧6

𝑟4
+
𝑒4𝑧8

𝑟6
},

where 𝑉0 is the value of 𝑉 when 𝑧 = 0, which is not required for the
investigation.

For numerical calculation put
𝑅
𝑟
= 2; then according to the memoir

𝑉 = 𝑉0 +
2𝜋𝜌
𝑛

{−·09233𝑧2 + ·04849
𝑧4

𝑟2
− ·01768

𝑧6

𝑟4
+ ·00295

𝑧8

𝑟6
} .

I am however unable to verify these numerical values. It seems to
me that we have the following exact results:

𝑒1 = ·024√5,

𝑒2 =
7
20
𝑒1 = ·0084√5,

𝑒3 =
44
100

𝑒2 = ·003696√5,

𝑒4 =
39
80
𝑒3 = ·0018018√5;
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and thus instead of the preceding expression we get

𝑉 = 𝑉0 +
2𝜋𝜌
𝑛

{−·08809𝑧2 + ·04517
𝑧4

𝑟2
− ·01625

𝑧6

𝑟4
+ ·00269

𝑧8

𝑟6
} .

1629. But besides this difference there is another point of importance,
namely, that in order to have the coefficient of any power of 𝑧2 correct
to five places of decimals it is not sufficient to stop at 𝑒4; we must take
in some of the following terms 𝑒6, 𝑒8, …. We shall find for instance that

𝑒5 =
5168
10000

𝑒4.

Therefore the coefficient of
𝑧8

𝑟6
instead of being only 𝑒4 ought to be

𝑒4 + 5𝑒5 + 15𝑒6 +…; and the term 5𝑒5 alone is greater than
5
2
𝑒4.

Thus if the coefficients are calculated accurately to five places of dec-
imals, the values will differ decidedly from those which are given in the
memoir. I have in consequence not carried my numerical verification of
the memoir beyond this point.

I may remark that on the last page ·185 seems to be given as the ellip-
ticity of an ellipse, of which the semiaxes are respectively 1 and √(1·415):
I am then not certain as to the exact meaning of the word ellipticity here.

1630. The conclusion obtained in the memoir is that the action of
the ring tends to give such a form to Saturn, that the generating curve
would fall within an ellipse having the same axes. Then it is stated:

… It is remarkable, that this deviation from the elliptic form, is exactly the
opposite to that given by the observations of Dr Herschel. This accurate ob-
server, in the Philosophical Transactions for 1805 and 1806, has given a great
number of his observations, which shew that Saturn is protuberant between the
poles and the equator, and that his longest diameter makes an angle of 43° with
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the plane of his equator. Here then is a complete discordance between theory
and observation; nor is it easy, with our present knowledge of the planet, to
suggest anything by which they can be reconciled.

1631. Some extensive trigonometrical operations were carried on in
Piedmont and Savoy, which are detailed in a work published at Milan
in 1825, entitled Opérations géodésiques et astronomiques pour la mesure
d’un arc du parallèle moyen,…

I have not seen this work, which appears to consist of two quarto
volumes, with a folio volume of plates. The operations involved a new
determination of Beccaria’s arc, to which allusion was made in Art. 717.
See the article Figure of the Earth in the Encyclopædia Metropolitana,
pages 208 and 212.

1632. I may notice an interesting article entitled Modern Astronomy,
published in the North American Review for April, 1825; this was written
by Bowditch. It is a brief sketch of the history of Astronomy during the
century preceding the date; and it is very valuable on account of the great
learning and ability of the author.

A sentence which relates to our subject may be quoted. After say-

ing that the geodetical measures indicated an ellipticity between
1
300

and

1
310

it is added:

It may also be observed, that this oblateness being less than
1
230

, proves by

Clairaut’s theorem, beforementioned, that the earth increases in density from
the surface towards the centre, confirming the proof deduced before from other
sources.

This seems to me to ascribe more to Clairaut’s theorem than it really

contains; from the fact that the ellipticity is less than
1
230

, it follows by
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the theorem that Clairaut’s fraction is greater than
1
230

: but then it does

not follow necessarily that the density increases from the surface to the
centre. Moreover by the “proof deduced before from other sources,” it
seems we must understand such results as those of the Schehallien ex-
periments, which shew that the mean density is much greater than the
superficial density: but this is not quite the same as we usually under-
stand by the statement that the density increases from the surface to the
centre. See Arts. 485 and 1319.
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Obvious typographical errors have been corrected.

In the expression following ‘and 𝐿 is put for’ in section 1055 a missing
parenthesis ‘(’ has been added.

In the equation following ‘and we have’ in section 1184 an apparently missing
superscript 2 has been added to 𝛽.
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