


The Project Gutenberg eBook of A history of the mathematical
theories of attraction and the figure of the earth from the time of

Newton to that of Laplace. Volume 1 by Isaac Todhunter
This eBook is for the use of anyone anywhere in the United States and most other
parts of the world at no cost and with almost no restrictions whatsoever. You may
copy it, give it away or re-use it under the terms of the Project Gutenberg License
included with this eBook or online at www.gutenberg.org. If you are not located in
the United States, you will have to check the laws ofthe country where you are
located before using this eBook.

Title: A history of the mathematical theories of attraction and the
figure of the earth from the time of Newton to that of
Laplace. Volume 1

Author: Isaac Todhunter

Release Date: January 21, 2023 [eBook #69831]

Language: English

Credits: The Online Distributed Proofreading Team at
https://www.pgdp.net (This file was produced from images
generously made available by The Internet Archive)

*** START OF THE PROJECT GUTENBERG EBOOK A history of the mathematical
theories of attraction and the figure of the earth from the time of Newton to that

of Laplace. Volume 1 ***

www.gutenberg.org/license.html


HISTORY OF

THE THEORIES OF ATTRACTION
AND

THE FIGURE OF THE EARTH.

VOLUME I.



Cet admirable Ouvrage [Newton’s Principia] contient les germes de toutes
les grandes découvertes qui ont été faites depuis sur le système du monde: l’his-
toire de leur développement par les successeurs de ce grand géomètre serait à la
fois le plus utile commentaire de son Ouvrage, et le meilleur guide pour arriver
à de nouvelles découvertes.

Laplace. Connaissance des Tems pour l’an 1823.



A H I S TO RY

OF THE

MATHEMATICAL THEORIES OF ATTRACTION
AND

THE FIGURE OF THE EARTH,

FROM THE TIME OF NEWTON TO THAT
OF LAPLACE.

BY

I. TODHUNTER, M.A., F.R.S.

IN TWO VOLUMES.

VOLUME I.

London:
MACMILLAN AND CO.

1873.

[All Rights reserved.]



Cambridge:
PRINTED BY C. J. CLAY, M.A.

AT THE UNIVERSITY PRESS.



PREFACE.
In the volumes now offered to students I have written the history

of an important branch of science in the manner in which I formerly
treated the Calculus of Variations and the mathematical theory of Prob-
ability; and in the present work, as in those, I undertake a task hith-
erto unattempted. For although much has been published on the History
of Astronomy, yet the progress of the mathematical development of the
principle of Attraction has been left almost untouched. The last of the
six volumes which constitute the great work of Delambre is devoted to
the Astronomy of the eighteenth century; but the Astronomy discussed
is almost entirely that of observation, and the investigations of the em-
inent mathematicians who contributed to fill up the outline traced by
Newton are scarcely noticed. There are indeed interesting and valuable
works in which the results obtained by theory are stated in popular lan-
guage for the benefit of general readers; such is the well-known history
by Bailly in French, with its continuation by Voiron; and in English we
have various excellent productions of the same kind, especially Narrien’s
Historical Account of the Origin and Progress of Astronomy, and Grant’s
History of Physical Astronomy. But the object of these works is quite dis-
tinct from that which I have kept in view in my contributions to scientific
history. I desire not merely to record the results which may have been
obtained but to trace the analysis which led to those results, to estimate
its value, and to discriminate between its failure and its success, its er-
ror and its truth. So far as I know the only example of a mathematical
treatise bearing on the history of Physical Astronomy is Gautier’s Essai
Historique sur le problême des trois corps: but as this treats of the Lunar
and Planetary Theories, omitting the Figure of the Bodies, it has nothing
in common with the present work.

In the fifth volume of the Mécanique Céleste Laplace arranges the
whole subject of Physical Astronomy in six divisions, and gives brief
sketches of the progress of the theory of all: in every case sound
knowledge practically begins with Newton. Laplace’s first division is
devoted to the Figure and Rotation of the Earth; and this has suggested
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to me the subject of the present work. I undertake accordingly to trace
the history of the Theories of Attraction and of the Figure of the Earth
from Newton to Laplace. The two subjects are necessarily associated
in origin, and have been historically always united; they are discussed
together by Laplace in the second volume of his great work. I have
confined myself to a single division of the wide subject of Physical
Astronomy, for the extent and difficulty of the whole might deter even
a professional cultivator of the science; and the numerous unfinished
fragments of works intended to bear on the Mécanique Céleste furnish
an impressive warning against the rashness of any extravagant design.

I will now give an outline of the plan of my work. The first Chapter
is necessarily occupied with Newton, the founder of Physical Astronomy.
The power revealed in all his efforts is nowhere more conspicuous than
in his treatment of our two subjects.

In the theory of attraction, among other important results, he shewed
that the attraction of a spherical shell on an external particle is the same
as if the shell were collected at its centre, and that the attraction on an
internal particle is zero. These two propositions constitute a complete
theory of the attraction of a sphere in which the density varies as the
distance from the centre. Moreover the result with respect to an internal
particle was extended by Newton to the case in which the bounding sur-
faces of the shell are similar, similarly situated, and concentric ellipsoids
of revolution.

Newton originated the idea of investigating the Figure of the Earth
on the supposition that it might be treated as a homogeneous fluid ro-
tating with uniform angular velocity. He assumed as a postulate that
there could be relative equilibrium in such a case if the form were that
of an oblate ellipsoid of revolution; and he determined the ratio of the
axes and the law of variation of gravity at the surface. The investigation,
though not free from imperfection, is a rare example of success in the
first discussion of a most difficult problem, and constitutes an enduring
monument to the surpassing ability of its author.

The second Chapter is devoted to Huygens. To him we owe the im-
portant condition of fluid equilibrium, that the resultant force at any
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point of the free surface must be normal to the surface at that point; and
this has indirectly promoted the knowledge of our subject. But Huygens
never accepted the great principle of the mutual attraction of particles
of matter; and thus he contributed explicitly only the solution of a the-
oretical problem, namely the investigation of the form of the surface of
rotating fluid under the action of a force always directed to a fixed point.

The third Chapter treats of various miscellaneous investigations con-
nected with the subject in the course of one generation after the publica-
tion of the Principia. No real addition was made to Newton’s theoretical
results, while the measurements of arcs of the meridian in France led
the Cassinis to adopt the hypothesis that the form of the Earth was not
oblate but oblong.

The fourth Chapter relates to Maupertuis. He wrote various mem-
oirs, among which were two in the form of commentaries on Newton’s
theories of Attraction and the Figure of the Earth. These theories were
rendered more accessible by the translation from their original geometri-
cal expression into the familiar analytical language of the epoch. By ad-
hering to Newton’s conclusions Maupertuis must have contributed much
to maintain the truth among his countrymen, in opposition to the errors
recommended by the authority of Des Cartes and the Cassinis.

The important postulate assumed by Newton was first considered by
Stirling, a mathematician of great power: the fifth Chapter shews that
he obtained, at least implicitly, an approximate demonstration of the re-
quired result.

In the sixth Chapter an account is given of various memoirs by
Clairaut which preceded the publication of his important work on
the Figure of the Earth. Clairaut explicitly demonstrated the truth
of Newton’s postulate approximately. He also gave the theorem,
called Clairaut’s theorem, which establishes a connection between the
ellipticity of the earth and the coefficient of the term expressing the
increase of gravity in passing from the equator to the pole.

The seventh Chapter narrates briefly the circumstances of the mea-
surement of an arc of the meridian in Lapland. I have undertaken to
develop the progress of the Mathematical Theories of Attraction and of



preface. viii

the Figure of the Earth; but I do not profess to include the practical oper-
ations conducive to our knowledge of the exact dimensions of the Earth.
These consist mainly of observations of pendulums, and measurements
of arcs; and an account of them drawn from the original sources would
form an interesting and instructive work. But the more difficult mat-
ters to which I have devoted the present volumes have furnished ample
employment without any serious divergence into the department of prac-
tical application. I have therefore limited myself to short notices of the
earlier pendulum experiments, and of the two great measurements in La-
pland and Peru; these measurements deserve some attention on account
of their historical interest and their decisive testimony to the oblate form
of the Earth.

The eighth Chapter treats of various miscellaneous investigations be-
tween 1721 and 1740. Desaguliers maintained, with a zeal not uniformly
discreet, the oblate form against the Cassinian hypothesis; on the other
hand, the measurements in France were still held to be in favour of that
hypothesis. Towards the end of the period the Academy of Paris pro-
posed the Tides as the subject of a Prize Essay; and this led to the im-
portant researches of Maclaurin.

The ninth Chapter is devoted to Maclaurin. He completely solved
the problem of the attraction of an ellipsoid of revolution on an internal
or superficial particle; and his method and results admitted of obvious
extension to the case of an ellipsoid not of revolution. The extent to
which he proceeded for the case of an external particle requires to be
stated with accuracy, in order to correct errors of opposite kinds which
are current. The most general result yet attained may be stated thus:
the potentials of two confocal ellipsoids at a given point external to both
are as their masses. This theorem was first established by Laplace, but
Maclaurin demonstrated it for the particular case in which the external
point is on the prolongation of an axis of the ellipsoids. In the theory
of the Figure of the Earth, Maclaurin’s main achievement was an exact
demonstration of Newton’s postulate, of which hitherto only approximate
investigations had been given.

In the tenth Chapter the contributions of Thomas Simpson are no-
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ticed. This eminent mathematician explicitly shewed that if the angular
velocity of rotation exceeds a certain value, the oblatum is not a possible
form of relative equilibrium for a fluid mass; and it followed implicitly
from his results that for any value of the angular velocity less than the
limit, more than one figure for relative equilibrium would exist. Simpson
also gave a remarkable investigation of the attraction at the surface of a
very extensive class of nearly spherical bodies.

The eleventh Chapter consists of an analysis of the celebrated work
by Clairaut. The first part of the work treats on the principles of fluid
equilibrium; here Clairaut far surpassed his predecessors in extent and
accuracy, and left the theory in the form which it still retains, with the
single exception of the improvement effected by Euler, who introduced
the notion of the pressure at any point of the fluid, together with the
appropriate symbol by which it is denoted. The second part of the
work treats on the Figure of the Earth. For the case of a homogeneous
fluid Clairaut closely followed Maclaurin. The case of a heterogeneous
fluid had been hitherto practically untouched, and Clairaut invented
for it a beautiful process which has remained substantially unchanged
to the present time; the chief result is a certain equation connecting
the ellipticity of the strata with their density, which appears in two
forms: these I have called respectively Clairaut’s primary equation, and
Clairaut’s derived equation.

The twelfth Chapter narrates briefly the circumstances of the mea-
surement of an arc of the meridian in Peru. I have carefully examined
the extensive literature, much of which is controversial, arising from this
memorable expedition; and by means of exact references I have afforded
assistance to any student who wishes to render himself familiar with all
the circumstances.

The thirteenth Chapter is devoted to the earlier half of the writings of
D’Alembert which bear on our subjects. They are extensive in amount,
and may have served indirectly to diffuse the interest in such investiga-
tions which the writer must have felt himself; but on account of errors
in principle and inaccuracy of detail their direct value is small. In var-
ious attempts which D’Alembert made to criticise the work of Clairaut
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he was I believe almost uniformly wrong, so far as regards the Figure of
the Earth, and barely right on some unimportant points of Hydrostatics.
It is stated in the life of D’Alembert published in the Biographical Dic-
tionary of the Society for the Diffusion of Useful Knowledge that “He and
Clairaut were rivals, and no work of either appeared without finding a
severe critic in the other; but D’Alembert, the more cautious and pro-
found of the two, was generally on the right side of the question:…” The
judgment is pronounced by a most eminent authority to which I usu-
ally bow with reverence; but so far as the subjects of the present work
extend, I should venture to reverse it.

The fourteenth Chapter is devoted principally to Boscovich, whose
writings furnish elementary accounts of the most important results
which had been obtained up to their date. I have also given a brief
notice of the poem by Stay, for which Boscovich supplied notes and
supplementary dissertations.

The fifteenth Chapter treats of various miscellaneous investigations
between the years 1741 and 1760. It includes a brief notice of a Prize
Essay on the Figure of the Earth, published by Clairaut, some years after
his treatise.

The sixteenth Chapter is occupied with the later half of the writings
of D’Alembert. The general character is the same as of the earlier half;
the investigations themselves are disfigured by serious errors, but they
serve to suggest interesting and important matter.

The works of Frisi are noticed in the seventeenth Chapter: they re-
semble those of Boscovich in the fact that they served to teach the sub-
ject rather than to promote its progress.

The eighteenth Chapter treats of various miscellaneous investigations
between the years 1761 and 1780. The first three of Laplace’s memoirs
belong to this period, but for convenience the consideration of them is
postponed. The Chapter includes an account of a memoir by Lagrange in
which he proceeded by analysis to the point Maclaurin had reached by
geometry. The operations carried on at Schehallien for ascertaining the
density of the Earth are noticed, and references are supplied to the sub-
sequent labours on the same subject. Here the first volume ends, which
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contains the history of our subjects during the century which followed
the publication of Newton’s Principia.

The nineteenth Chapter takes the first three memoirs of Laplace. The
principal object of these memoirs may be said to be the solution of a
problem which is an extension of Newton’s postulate. Newton assumed
that an oblatum was a possible form of relative equilibrium for rotating
fluid; the present problem is to shew that an oblatum is the only possible
form, at least under certain restrictions. I call the problem Legendre’s,
because he was the first who solved it with tolerable success. D’Alembert
attempted the investigation, but failed. Laplace did not solve the problem
completely; but he shewed that for a very large class of nearly spherical
figures, the relative equilibrium was impossible. He also obtained the
expression for the law of gravity which would hold universally.

The twentieth Chapter is devoted to a memoir which is conspicuous
in the history of the Theory of Attraction, namely the earliest of Leg-
endre’s. The limit reached by Maclaurin is now for the first time left
behind; Legendre shews that the theorem with respect to confocal ellip-
soids is true for any position of the external point when the ellipsoids
are solids of revolution. Legendre introduces here the memorable ex-
pressions, hitherto unknown, which are now usually called Laplace’s co-
efficients; and also, at the suggestion of Laplace, the function now called
the Potential function takes its place in the subject.

The twenty-first Chapter brings before us a scarce treatise by Laplace,
and gives an analysis of that half of it which relates to Attraction and the
Figure of the Earth. Here was published for the first time, the demon-
stration of the theorem relating to the action of confocal ellipsoids at an
external point which I call by Laplace’s name. The subjects of the Attrac-
tion of Ellipsoids and of the homogeneous Figure of the Earth appear in
this treatise in nearly the same form as in the Mécanique Céleste.

The twenty-second Chapter relates to Legendre’s second memoir.
Here Legendre solves the problem which I call by his name. He assumes
that the fluid is in the form of a figure of revolution, and that it does
not deviate widely from the spherical form.

The twenty-third Chapter notices Laplace’s fourth, fifth, and sixth
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memoirs. The fourth and fifth memoirs contain the theory of the
attraction of spheroids, and the theory of Laplace’s functions, in the
form they assume in the Mécanique Céleste. The sixth memoir relates to
Saturn’s ring.

The twenty-fourth Chapter is devoted to Legendre’s third mem-
oir. The object of this memoir is to demonstrate Laplace’s theorem
respecting confocal ellipsoids by a more direct process than Laplace
himself had employed. Legendre does demonstrate the theorem, without
expanding his expressions in series, but the process is excessively long
and complicated.

The twenty-fifth Chapter analyses Legendre’s fourth memoir. Here
we have a great development of Clairaut’s process for the case of het-
erogeneous fluid. A general equation is obtained analogous to Clairaut’s
primary equation; and from this it is shewn that the strata must be el-
lipsoidal.

The twenty-sixth Chapter is devoted to Laplace’s seventh memoir.
This contains some numerical discussion of the lengths of degrees, and
of the lengths of the seconds pendulum; there is also a theory of the
heterogeneous figure of the Earth, which substantially agrees with that
in Legendre’s fourth memoir.

The twenty-seventh Chapter treats of miscellaneous investigations be-
tween the years 1781 and 1800. Among other matters we have here to
notice Cousin’s Introduction to the study of Physical Astronomy, a mem-
oir by Lagrange, and a memoir by Trembley; the last is of the same
unsatisfactory character as various memoirs by the same writer which I
have examined in my History of the Mathematical Theory of Probability.

The twenty-eighth Chapter gives an account of the first two volumes
of the Mécanique Céleste, so far as they relate to our subjects. Laplace in
effect reproduced with small change the last four of his seven memoirs;
and the result is a treatise not yet superseded.

The twenty-ninth Chapter traces the history of investigation with re-
spect to Laplace’s Theorem. Ivory, Legendre, Gauss and Rodrigues all
gave complete discussions of the attraction of ellipsoids; while Biot and
Plana also commented on parts of the theory. The method of Ivory is the
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simplest of all, and has obtained a permanent position in our elementary
works; insomuch that it is usual to speak of Ivory’s theorem, although the
more correct phrase would be Ivory’s demonstration of Laplace’s theorem.

The thirtieth Chapter treats on an equation which Laplace seems to
have regarded with peculiar favour, and which occurs often in his writ-
ings. The equation however did not satisfy Ivory, and he criticised it with
severity. The result of the discussion may be said to have established the
accuracy of Laplace’s equation when used, as he himself used it, with
due caution. But at the same time the objects which Laplace sought by
the aid of his equation are now generally obtained without it; so that
practically the equation is at present rarely employed.

The thirty-first Chapter elucidates the partial differential equation for
the symbol which denotes the potential function. Laplace had originally
assumed that a certain equation held both for an external particle, and
for a component particle of the body considered; but Poisson shewed that
the two cases required different forms of the equation.

The thirty-second Chapter discusses a method which Laplace gave
for solving Legendre’s problem, with the objection brought against it
by Liouville, and the treatment which Poisson substituted in place of
Laplace’s.

The thirty-third Chapter passes in review various memoirs which
Laplace published during the first quarter of the present century.

The thirty-fourth Chapter is devoted to that part of the fifth volume
of the Mécanique Céleste which relates to our subjects; it consists chiefly
of a republication of the memoirs noticed in the thirty-third Chapter.

Strictly speaking the period of history which I proposed to describe
closes here; but it seemed convenient to include within my range all the
writings of three mathematicians who had already been prominent in
my work, and who may be naturally associated with their predecessors,
especially with Laplace. These writers are Poisson, Ivory and Plana.

The thirty-fifth Chapter contains an account of all Poisson’s contri-
butions which had not been previously examined. The most important
of these are an elaborate memoir on the Attraction of Spheroids, and a
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memoir giving a new investigation of Laplace’s theorem respecting con-
focal ellipsoids.

The thirty-sixth Chapter gives a brief sketch of the numerous articles
and memoirs which Ivory produced, mainly in support of opinions of his
own which were both peculiar and erroneous. The great promise which
his early success held out was not followed by any corresponding merit
in the essays of his later years.

The thirty-seventh Chapter is devoted to Plana, who wrote several
papers chiefly in the form of comments on Lagrange, Legendre and
Laplace.

The last Chapter treats of various miscellaneous investigations during
the first quarter of the present century. It is by accident the history fin-
ishes with a paragraph relating to Bowditch; but on account of his moral
and intellectual eminence, and of his unselfish devotion to science, the
name of one of the most distinguished mathematicians beyond the At-
lantic may justly close a roll which commences with that of Newton.

The period of time which I have traversed will be found to corre-
spond with some accuracy to a distinct boundary line in the subject.
The labours of more recent date present to us many indications of what
may be more appropriately called new methods rather than mere devel-
opments of those already discussed. Among them we may mention the
investigations respecting the Potential by Green and Gauss, and the nu-
merous researches on the attraction of Ellipsoids by Chasles; all these
writers will occupy conspicuous places in any future record of the sub-
jects. Sir John Herschel spoke of my History of Probability as embracing
the series of the Pleiocene analysts in distinction from the Post-Pleiocene;
and the illustration might be similarly applied in the present case.

Such then is the outline of the history which the present volumes
contain. The principles on which I have executed my task are the same
as those adopted in my former works; and I may refer especially to the
preface to my History of Probability for an account of them. I will only
state here that I have not thought it necessary to preserve the exact no-
tation of the original authors; that notation frequently varies much in
various places, and it is really advantageous for the sake of brevity and



preface. xv

clearness to use the same symbols throughout. For example the ratio
of the centrifugal force at the equator to the gravity there is denoted in
some English books by the letter 𝑚; Clairaut uses 𝜙; D’Alembert in the
sixth volume of his Opuscules Mathématiques uses 𝜔; Laplace in the Mé-
canique Céleste, Vol. v. page 7, uses 𝜙, and in Vol. v. page 23 he uses
𝛼𝜙. For the ratio of the centrifugal force at the equator to the attraction
there, which is very approximately the same thing as the preceding ratio,
the letter 𝑗 is used throughout the present work.

I have been very sparing in the introduction of new terms, for this
practice seems carried to an embarrassing extent in some modern math-
ematical works. I have however found it necessary to have short desig-
nations for two things which occur perpetually in these investigations.
The body formed by the revolution of an ellipse round its minor axis
I call an oblatum, and the body formed by the revolution of an ellipse
round its major axis I call an oblongum. In English books the former has
usually been called an oblate spheroid; and the latter a prolate spheroid.
Something is gained in conciseness by using one word instead of two for
a name which is frequently required; but the chief reason of the change
arises from the fact that the word spheroid has been much used in a
different sense, namely to denote a body which differs but little from a
sphere. It would be very convenient if this sense of the word spheroid
could be so established as to render superfluous the formal enunciation
of the condition of resemblance to a sphere. Perhaps the use of a word
to express a form only approximately determined is felt to be somewhat
unlike the ordinary precision of mathematical language; and this may ac-
count for the frequent repetition of the condition even after it has been
explicitly adopted. Moreover the great French writers have often em-
ployed the word spheroid in a sense so wide as to render it practically
equivalent to body; an example will be found in the title of a memoir by
Poisson on page 388 of the second volume.

I have found it convenient to give a name to a certain ratio which is
of importance in our subject, namely the ratio of the difference of gravity
at the equator and at the pole to gravity at the equator. This ratio is one
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of the elements connected by Clairaut’s theorem, and I have accordingly
called it Clairaut’s fraction.

There is one term, perhaps the most objectionable of all that have
become permanent in mixed mathematics, which is used throughout the
work, namely centrifugal force. It is with great reluctance that I have
felt myself constrained to yield to universal authority and to employ lan-
guage which experience shews to be most perplexing and misleading.
The well-trained student will however have learned that the so-called
centrifugal force is a fiction; the simple fact is that a dynamical prob-
lem relating to a body which is rotating uniformly, can be reduced to a
statical problem by supposing the rotation to cease and a certain force to
be introduced.

This History assumes on the part of the reader some elementary ac-
quaintance with the subjects on which it treats. For the Theory of At-
tractions the Chapter in my work on Statics, to which I have occasion-
ally referred, will be sufficient. For the Figure of the Earth the student
may consult three well-known English treatises, namely one in Airy’s
Mathematical Tracts, one in O’Brien’s Mathematical Tracts, and Pratt’s
Chapter on the subject in his Mechanical Philosophy, afterwards enlarged
and published separately in a Treatise on Attractions, Laplace’s Functions
and the Figure of the Earth: Pratt’s Treatise is the most comprehensive of
these English treatises, and the easiest to procure. An interesting work
was published at Paris in 1865, entitled Traité Elémentaire de Mécanique
Céleste. Par H. Resal. About a third of this volume is devoted to our sub-
jects; and it gives a very instructive account of them: but the extreme
inaccuracy of the printing is a serious diminution of the value of the
work.

The mathematical expressions which are called Laplace’s coefficients
and Laplace’s functions play a very important part in the higher investi-
gations of our subjects. The treatises of O’Brien, Pratt, and Resal, which
have just been cited contain a sufficient account of these expressions for
elementary purposes. The student who wishes to become intimately ac-
quainted with them will have recourse to the work by Heine which is
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named on page 24 of the second volume; this is an admirable volume
enriched with numerous references to the original authorities.

It may be naturally expected that a person who has devoted
much time to the study of the history of science will feel disposed to
attribute considerable value to the pursuit. The interest which attaches
to the struggle of the human mind with serious difficulties, to its
gradual progress and final triumph, may be at least as great as that
which is excited by an account of the vicissitudes of civil history. An
acquaintance with the origin and the course of any science will often
give great assistance in the comprehension of its present state, and may
even point out the most promising direction for future efforts. Moreover
a familiarity with what has been already accomplished or attempted in
any subject is conducive to a wise economy of labour; for it may often
prevent a writer from investigating afresh what has been already settled,
or it may warn him by the failure of his predecessors, that he should
not too lightly undertake a labour of well-recognised difficulty. The
opinions of Laplace and Arago, which are quoted in my title-pages, are
justly entitled to great weight on these points.

That the subjects here treated historically are of no common impor-
tance and influence may be easily seen. A knowledge of the figure and
dimensions of the Earth is the basis of all the numerical results of As-
tronomy, and therefore of the greatest practical value. Moreover the re-
searches into the theories of Attraction and of the Figure of the Earth
have been fertile in yielding new resources for mathematicians; it will be
sufficient to point to the Transformation of Multiple Integrals, the the-
ory of the Potential, and the elaborate doctrine of Laplace’s functions,
which have all sprung up in the cultivation of this field of Physical As-
tronomy. Humboldt has drawn attention to this circumstance in his Cos-
mos; the following passage occurs on pages 156 and 157 of the fifth edi-
tion of Sabine’s translation of the first Volume: “Except the investigations
concerning the parallax of the fixed stars, which led to the discovery of
aberration and nutation, the history of science presents no problem in
which the object obtained,–the knowledge of the mean compression of
the Earth, and the certainty that its figure is not a regular one,–is so far
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surpassed in importance by the incidental gain which, in the course of
its long and arduous pursuit, has accrued in the general cultivation and
advancement of mathematical and astronomical knowledge.”

It may appear that some apology is due for the extent to which the
work has grown; this must be found in the extent and intricacy of the
materials which had to be analysed. Indeed Ivory, who devoted much
attention to the subject of the Figure of the Earth, asserts that it has
been attended with greater difficulty and has occasioned a greater num-
ber of memoirs than any other branch of the system of the world. I
have had some trouble in keeping within the limits of two volumes, and
have been compelled to omit many developments which I should gladly
have printed. I have also published separately various papers which have
grown out of my historical studies; to these I refer in the appropriate
places, but it may be convenient to give a list of them here. They are the
following:

On Jacobi’s Theorem respecting the relative equilibrium of a revolv-
ing ellipsoid of fluid, and on Ivory’s discussion of the Theorem. Proceed-
ings of the Royal Society, Vol. xix.

Note relating to the Attraction of Spheroids. Proceedings of the Royal
Society, Vol. xx.

Note on an erroneous extension of Jacobi’s Theorem. Proceedings of
the Royal Society, Vol. xxi.

On the Arc of the Meridian measured in Lapland. Transactions of the
Cambridge Philosophical Society, Vol. xii.

On the equation which determines the form of the strata in Legen-
dre’s and Laplace’s theory of the Figure of the Earth. Transactions of the
Cambridge Philosophical Society, Vol. xii.

On the Proposition 38 of the Third Book of Newton’s Principia.
Monthly Notices of the Royal Astronomical Society, Vol. xxxii.

On the Arc of the Meridian measured in South Africa. Monthly No-
tices of the Royal Astronomical Society, Vol. xxxiii.

The account which is given of the memoirs and treatises will be
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found ample enough in most cases to supply all that a student will
ever want to read of them; but this does not apply to the Mécanique
Céleste, which I desire to illustrate not to supersede. In other words all
that I say relative to that great work is intended as a commentary for
the use of those who are consulting the original. I have usually cited
it by sections, but in some cases, which occur almost exclusively in the
fifth volume, I have for greater distinctness cited it by pages. The pages
meant are those of Laplace’s own edition; but the student who uses the
national edition will be able to adjust the references by observing that in
the fifth volume the 85 pages with which we are concerned correspond
to 103 pages in the national edition.

It is well known that Laplace does not give any specific references
to the labours of his predecessors and contemporaries; in his great trea-
tises on Physical Astronomy and Probability he embodied with his own
results much that he derived from others, and as these treatises have be-
come the standards of authority for the subjects to which they relate, it
has followed that with uncritical readers Laplace has not unfrequently
obtained credit for what was not distinctively his own production. A
student of the course of science will often discover that important in-
vestigations which first came under his notice in the works of Laplace,
are really due to other mathematicians; and by a natural reaction the
conjecture will arise that further research will lead to the restitution of
much more to the rightful owners; and thus there may be a recoil from
an undue admiration to a suspicious depreciation. But a complete evolu-
tion of the history will restore the reputation of Laplace to its just emi-
nence. The advance of mathematical science is on the whole remarkably
gradual, for with the single exception of Newton there is very little ex-
hibition of great and sudden developments; but the possessions of one
generation are received, augmented, and transmitted by the next. It may
be confidently maintained that no single person has contributed more to
the general stock than Laplace.

In the life of Laplace in the English Cyclopædia, which we may safely
attribute to the late Professor De Morgan, there are some valuable re-
marks suggested by the want of specific information in the writings of
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Laplace as to what was done by himself and what was done by others;
and it is stated that no one has yet supplied the deficiency. With respect
to Laplace it is said: “Had he consulted his own glory, he would have
taken care always to note exactly that part of his own work in which he
had a forerunner; and it is not until this shall have been well and pre-
cisely done, that his labours will receive their proper appreciation.” In
the present history and in that of Probability I have gone over a third
part of the collected mathematical works of Laplace; and to that extent
the evidence of his great power and achievements is I hope fully and
fairly manifested.

I have not hesitated to criticise all that has come before me; and there
is scarcely any memoir or treatise of importance left without the sugges-
tion of corrections or additions. I cannot venture to hope that I have
uniformly escaped without any obscurity or error. My readers will I trust
excuse such blemishes, arising partly from the nature of the task and
partly from the circumstance that only such leisure could be found for
it as remained amidst continuous occupation in elementary teaching and
writing. The work has thus furnished ample employment for seven years
of labour, with the exception of a necessary digression in order to explain
and illustrate some peculiarities in the Calculus of Variations. It was per-
haps rash for a mere volunteer to undertake so extensive a task; but in
spite of the imperfections with which it may have been accomplished, I
am willing to hope that the result will be a permanent addition to the
literature of Physical Astronomy.

It is not from any desire to challenge comparisons with illustrious
men, but merely to justify my estimate of the labour involved, that I
venture to quote the following opinion expressed by the late Professor
James Forbes in his Review of the Progress of Mathematical and Physical
Science, and to extend its application from pure to mixed mathematics:
“Specimens of what a history of pure mathematics would be, and must
be, are to be found in the able ‘Reports’ of Dr Peacock and Mr Leslie El-
lis, in the Transactions of the British Association for 1833, and 1846. A
glance at these profound and very technical essays will shew the impos-
sibility of a popular mode of treatment, while the difficulty and labour
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of producing such summaries may be argued from their exceeding rarity
in this or any other language.”

I have to record my great obligations to the Rev. J. Sephton, Head
Master of the Liverpool Institute, formerly Fellow of St Johns College, for
his most valuable assistance in conducting the work through the Press.
To the Syndics of the University Press I am indebted for their liberality
in defraying the expenses of the printing.

I. TODHUNTER.

St John’s College, Cambridge,
July, 1873.
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CHAPTER I.

NEWTON.

1. Nearly two centuries have passed away since the publication of
the greatest work known in the history of science. Newton’s Philosophiæ
Naturalis Principia Mathematica appeared in 1687. The volume is in
quarto; it contains a title-leaf, a dedication to the Royal Society on an-
other leaf, a preface on two pages, some Latin verses by Halley on two
pages, then the text consisting apparently of 510 pages, followed by er-
rata on one leaf. I say the text consists apparently of 510 pages; there
are, however, no pages numbered from 384 to 399 inclusive: the third
Book begins on page 401, and so perhaps some of this was struck off
before the second Book was finished, and a gap was left in the number
of pages which proved too large.

The second edition of the Principia appeared in 1713, edited by Cotes;
the third in 1726, edited by Pemberton. Newton was born in 1642, and
died in 1727.

2. Newton’s researches on Attractions form Sections xii. and xiii. of
the first Book of the Principia. Section xii. contains Propositions 70…84;
it relates to the attraction of spherical bodies. Section xiii. contains
Propositions 85…93; it relates to the attraction of bodies which are not
spherical. These Sections remain unchanged in the other two editions
of the Principia.

3. In his Proposition 70, Newton shews that a particle will be in equi-
librium if placed at any point of the hollow part of an indefinitely thin
spherical shell, which attracts according to the law of the inverse square
of the distance. Newton’s demonstration is remarkable for its simplicity.
Let any indefinitely small double cone be described with the position of
the attracted particle as vertex; the areas of the indefinitely small surfaces
which the cone intercepts on the shell are ultimately as the squares of
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the distances of the elements from the vertex: thus the elements exert
equal attractions in opposite directions. Therefore the entire shell exerts
no action in any direction.

We assume here and in the other propositions that the attracting body
is homogeneous unless the contrary is stated.

4. In his Proposition 71, Newton shews that an indefinitely thin
spherical shell attracts an external particle towards the centre of the
shell, with a force which varies inversely as the square of the distance
of the particle from the centre of the shell. Newton’s demonstration is
geometrical; it can, however, be easily translated into an analytical form.

Let 𝑎 be the radius of the shell, 𝑐 the distance of the particle from
the centre of the shell, 𝑑𝑠 an element of the length of the circle which
by revolution round the straight line joining the particle to the centre
generates the surface of the shell, 𝑟 the distance of this element from
the particle, 𝑦 its distance from the axis of revolution. Then the element
of surface generated by the revolution of 𝑑𝑠 is 2𝜋𝑦𝑑𝑠; and the attraction

of this element along the axis is
2𝜋𝑘𝜌𝑦𝑑𝑠

𝑟2
cos 𝜃; where 𝑘 is the thickness

of the shell, 𝜌 is the density, and 𝜃 is the angle between the direction
of 𝑟 and the axis. Let 𝑝 denote the perpendicular from the centre of the
shell on the direction of 𝑟. We have

𝑝 = 𝑐 sin 𝜃, 𝑟2 − 2𝑟𝑐 cos 𝜃 + 𝑐2 = 𝑎2;

hence
𝑑𝑟
𝑑𝜃

= −
𝑟𝑐 sin 𝜃

𝑟 − 𝑐 cos 𝜃
,

𝑑𝑠
𝑑𝜃

=
𝑎𝑟

𝑟 − 𝑐 cos 𝜃
.

Thus

2𝜋𝑘𝜌𝑦𝑑𝑠
𝑟2

cos 𝜃 =
2𝜋𝑘𝜌𝑦 cos 𝜃

𝑟2
.

𝑎𝑟𝑑𝜃
𝑟 − 𝑐 cos 𝜃

=
2𝜋𝑘𝜌𝑦𝑎𝑑𝑝

𝑐𝑟(𝑟 − 𝑐 cos 𝜃)
=

2𝜋𝑘𝜌𝑎𝑝𝑑𝑝
𝑐2√(𝑎2 − 𝑝2)

.
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Hence the resultant attraction of the shell will be found by integrat-
ing this expression between appropriate limits. If we take 0 and 𝑎 as
the limits of 𝑝, we obtain the attraction of either of the two parts into
which the shell is divided by the curve of contact of straight lines drawn
from the particle to touch the shell; hence these two parts exert equal
attractions, and the attraction of the whole shell is

2 ×
2𝜋𝑘𝜌𝑎
𝑐2

∫
𝑎

0

𝑝𝑑𝑝
√(𝑎2 − 𝑝2)

,

which varies inversely as 𝑐2.
The value of the definite integral is 𝑎; and thus the attraction of the

whole shell is
4𝜋𝑘𝜌𝑎2

𝑐2
.

We see from this investigation that if any right cone be taken having
its vertex at the position of the particle, and its axis coincident with the
straight line drawn from the particle to the centre of the shell, we can
determine the attraction which is exerted by the portion of the shell cut
off by the cone: we have only to give an appropriate value to the upper
limit of 𝑝 in the integration. We may observe too that if any indefinitely
small cone be taken having its vertex at the position of the particle, the
two distinct portions of the shell which it intercepts exert equal attrac-
tions.

We may observe that Proposition 71 has been very well treated by
Professor Thomson: see Cambridge and Dublin Mathematical Journal,
Vol. iii. page 146.

5. Propositions 72…76 extend the conclusions obtained respecting in-
definitely thin spherical shells to spheres.

It appears that Newton arrived at his theorems respecting the attrac-
tion of spheres in 1685. See the Mécanique Céleste, Vol. v., page 87;
Rigaud’s Historical Essay on the first publication of the Principia, page 27
of the Appendix.
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6. Newton’s Propositions 77 and 78 relate to the case in which the
law of attraction is that of the direct distance.

Between Propositions 78 and 79 a Lemma occurs.
Let 𝑥 and 𝑦 be the co-ordinates of a point on a circle; 𝑟 the distance

of the point from any fixed origin. We have

𝑟2 = 𝑥2 + 𝑦2;
therefore

𝑟𝑑𝑟 = 𝑥𝑑𝑥 + 𝑦𝑑𝑦 = (𝑥 − 𝑐)𝑑𝑥 + 𝑦𝑑𝑦 + 𝑐𝑑𝑥.

Let 𝑐 be the distance of the centre of the circle from the origin, the
centre being on the axis of 𝑥. Then (𝑥 − 𝑐)𝑑𝑥 + 𝑦𝑑𝑦 = 0; therefore
𝑟𝑑𝑟 = 𝑐𝑑𝑥. This result constitutes the Lemma; it is of course demon-
strated geometrically by Newton. Throughout this Chapter we shall
translate Newton’s geometrical processes into modern mathematical
language.

7. In his Proposition 79, Newton finds the attraction of a zone of an
indefinitely thin spherical shell on a particle at the centre of the shell.

Take the axis of the zone for that of 𝑥, and a line at right angles
to this through the centre of the shell for the axis of 𝑦; let 𝑎 be the
radius of the sphere. Then 2𝜋𝑎𝑑𝑥 represents an element of the zone; and

the attraction of this element will be 𝑘𝑓 . 2𝜋𝑎 .
𝑥
𝑎
𝑑𝑥, where 𝑘 denotes the

thickness of the shell, and 𝑓 is a constant which denotes the attraction
of a unit of matter, condensed at a point, on a particle at the distance

𝑎. Hence the attraction of the zone = 𝑘𝑓 . 2𝜋∫𝑥𝑑𝑥, the integral being

taken between proper limits. If the zone be the segment cut off by the
plane 𝑥 = 𝑥1, we have to integrate between the limits 𝑥1 and 𝑎. Thus we
obtain 𝑘𝑓𝜋(𝑎2 − 𝑥12), that is 𝑘𝑓𝜋𝑦12, where 𝑦1 is the radius of the base
of the segment.
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8. Newton’s Proposition 80 investigates the attraction of a sphere on
an external particle, the law of attraction being expressed by any function
of the distance.

Divide the sphere into elements by describing spherical surfaces in-
definitely close to each other from the external particle as centre. Let 𝑟
be the radius of one of the surfaces of one of the segments of shells thus
obtained, and 𝑦 the radius of the base of the segment; let 𝜙(𝑟) denote the
law of attraction. Then by Art. 7 we have 𝜋𝑑𝑟𝜙(𝑟)𝑦2 for the attraction
of the segment. Let 𝑐 be the distance of the external particle from the

centre of the sphere; then by Art. 6 we have 𝑑𝑟 =
𝑐𝑑𝑥
𝑟
; thus the attrac-

tion becomes
𝑐𝜋
𝑟
𝜙(𝑟)𝑦2𝑑𝑥. Hence the resultant attraction of the sphere

is 𝑐𝜋∫
𝑐+𝑎

𝑐−𝑎

𝜙(𝑟)
𝑟
𝑦2𝑑𝑥, where 𝑎 is the radius of the sphere.

9. Newton’s Proposition 81 amounts to a transformation of the inte-
gral obtained in Art. 8.

We have 𝑦2 = 𝑎2 − (𝑐 − 𝑥)2, and also 𝑦2 = 𝑟2 − 𝑥2; therefore

𝑟2 = 𝑎2 − 𝑐2 + 2𝑐𝑥.

Put
𝑐2 − 𝑎2

2𝑐
= 𝑏, and 𝑥 − 𝑏 = 𝑥′; thus

𝑟2 = 2𝑐(𝑥 − 𝑏) = 2𝑐𝑥′, 𝑦2 = −2𝑏𝑐 + 2𝑐𝑥 − 𝑥2 = 2𝑐𝑥′ − (𝑥′ + 𝑏)2.

Hence the resultant attraction

= 𝑐𝜋∫
2(𝑐 − 𝑏)𝑥′ − 𝑥′2 − 𝑏2

𝑟
𝜙(𝑟)𝑑𝑥′,

the limits of 𝑥′ being 𝑐 − 𝑎 − 𝑏 and 𝑐 + 𝑎 − 𝑏.



newton. 6

As soon as 𝜙(𝑟) is known we can substitute for 𝑟 in terms of 𝑥′, and
effect the integration. Newton gives three examples:

(1) 𝜙(𝑟) =
𝜇
𝑟
, (2) 𝜙(𝑟) =

𝜇
𝑟3
, (3) 𝜙(𝑟) =

𝜇
𝑟4
,

where 𝜇 in each case is a constant.

10. Newton’s Proposition 82 shews that the calculation of the attrac-
tion of a sphere on an internal particle may be made to depend on the
calculation of the attraction on an external particle.

We have found in Art. 8 for the attraction of an element of the sphere
𝜋𝑑𝑟𝜙(𝑟)𝑦2, where 𝑟 is the distance of the particle from every point of the
element. In the same manner 𝜋𝑑𝑟′𝜙(𝑟′)𝑦2 will express the attraction of
the corresponding element on another particle which is at the distance
𝑟′ from every point of the element. The two particles and the centre of
the sphere are of course on the same straight line. Suppose the second
particle within the sphere; let 𝑐 be the distance of the first particle from
the centre of the sphere, 𝑐′ that of the second, 𝑎 the radius of the sphere.
Let 𝑐 and 𝑐′ be taken so that 𝑐𝑐′ = 𝑎2.

In the diagram let

𝑆𝑃 = 𝑐, 𝑆𝐼 = 𝑐′, 𝐸𝑃 = 𝑟, 𝐸𝐼 = 𝑟′.

As 𝑐𝑐′ = 𝑎2 the triangles 𝑃𝑆𝐸 and 𝐸𝑆𝐼 are similar; thus we have

𝑟′

𝑟
=
𝑐′

𝑎
.

In finding the attraction on the internal particle, we may if we please
suppose the matter to be removed which forms a sphere having its cen-
tre at the internal particle and radius equal to 𝑎 − 𝑐′: thus the limits of
integration become 𝑟′ = 𝑎 − 𝑐′ and 𝑟′ = 𝑎 + 𝑐′.
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Suppose 𝜙(𝑟) =
𝜇
𝑟𝑛
; the attraction on the internal particle

= 𝜋∫𝑦2𝜙(𝑟′)𝑑𝑟′ = 𝜋𝜇∫
𝑦2

𝑟′𝑛
𝑑𝑟′;

the limits being 𝑎 − 𝑐′ and 𝑎 + 𝑐′. Now put
𝑟𝑐′

𝑎
for 𝑟′; thus we get

𝜋𝜇 (
𝑎
𝑐′
)
𝑛−1

∫
𝑦2

𝑟𝑛
𝑑𝑟, and the limits of 𝑟 are

𝑎2

𝑐′
− 𝑎 and

𝑎2

𝑐′
+ 𝑎, that is,

𝑐 − 𝑎 and 𝑐 + 𝑎.
Hence the attraction on the internal particle at the distance 𝑐′ from

the centre is equal to the product of (
𝑎
𝑐′
)
𝑛−1

into the attraction on the

external particle at the distance 𝑐 from the centre.
And

(
𝑎
𝑐′
)
𝑛−1

=
(𝑐𝑐′)

𝑛−1
2

𝑐′𝑛−1
= (

𝑐′

𝑐
)
1
2
(
𝑐
𝑐′
)
𝑛
2 .

This is the result which Newton intended to give. He says that the
attraction on the particle at 𝐼 is to the attraction on the particle at 𝑃,
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in ratione composita ex subduplicatâ ratione distantiarum a centro 𝐼𝑆 et
𝑃𝑆, et subduplicatâ ratione virium centripetarum, in locis illis 𝑃 et 𝐼, ad
centrum tendentium. It seems to me that instead of 𝑃 et 𝐼 we ought to
read 𝐼 et 𝑃.

11. Newton’s Propositions 83 and 84 shew briefly that there would
be no difficulty in calculating the attraction of a homogeneous segment
of a sphere on a particle situated on the axis of the segment.

12. Newton’s Propositions 85, 86, and 87 involve simple general state-
ments, which need not be repeated here.

Propositions 88 and 89 shew that if the law of attraction is that of
the direct distance, the resultant attraction exerted by a body or a system
of bodies is the same as if the body or system were collected at its centre
of gravity.

13. Proposition 90 finds the attraction of a circular lamina on a parti-
cle which is situated on the straight line drawn through the centre of the
lamina at right angles to its plane. Then Proposition 91 shews how from
this we can deduce the attraction of a solid of revolution on a particle
situated at any point of the axis. Newton makes this depend on the prob-
lem of finding the area of a certain curve; that is, in modern language,
he leaves only a single integration to be effected. He takes the case of a
right cylinder for an example; and he also states the result for the case
of an ellipsoid of revolution, which he calls a spheroid. He shews by a
special investigation that a shell bounded by two concentric similar and
similarly situated ellipsoidal surfaces of revolution exerts no attraction
on a particle placed at any point within the hollow part; the demonstra-
tion is very striking and well known: see Statics, Chapter xiii. Of course
this result includes Newton’s Proposition 70 as a particular case; but the
demonstrations differ and should be carefully compared.

Hence follows the important result that along the same radius vector
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from the centre the attraction of an ellipsoid of revolution on an internal
particle varies as the distance from the centre.

Newton contented himself with considering ellipsoids of revolution;
but the processes and results of Proposition 91, as we now know, may
be easily extended to ellipsoids which are not solids of revolution.

14. Proposition 92 shews how we may find experimentally the law
of attraction of given matter. Form the given matter into such a shape
that the resultant attraction can be obtained when the law of attraction
is assumed; for example, the shape of a sphere. Then ascertain by ex-
periment what the resultant attraction really is at various distances; and
thus we shall be guided in assuming a law of attraction and verifying the
assumption.

15. Proposition 93 treats of the attraction of an infinite plane lamina,
deducing it from Proposition 90. A scholium to this Proposition gives
some interesting remarks relating to the motion of a particle acted on by
a force the direction of which is always parallel to a fixed straight line.

16. Newton’s Propositions on Attractions are illustrated by a good
commentary in the edition of the Principia which is known as the Je-
suits’ edition. They had been previously discussed by Maupertuis, as we
shall see in another Chapter. Notes by Plana on some of the Propositions
will be found in the Memorie della Reale Accademia … di Torino, second
series, Vol. xi., 1851.

17. We pass now to the investigations made by Newton with respect
to the Figure of the Earth; they are contained in Propositions XVIII.,
XIX., and XX. of the third Book of the Principia: these Propositions re-
main substantially the same in the second and third editions as in the
first, but modifications occur arising from additional information as to
the facts involved.

Before we consider these Propositions we ought to advert to Newton’s



newton. 10

remarkable conjecture which is contained in Proposition X. Newton here
suggests that the mean density of the Earth may be five or six times that
of water: … verisimile est quod copia materiæ totius in Terrâ quasi quin-
tuplo vel sextuplo major sit quàm si tota ex aqua constaret. We may now
consider it certain that the mean density is between five and six times
that of water. Laplace draws attention to Newton’s remarkable conjec-
ture in the Connaissance des Tems for 1823, page 328.

It will be convenient to give the enunciations of Newton’s Proposi-
tions XVIII., XIX. and XX.

XVIII. Axes Planetarum quæ ad eosdem axes normaliter ducuntur minores
esse.

XIX. Invenire proportionem axis Planetæ ad diametros eidem perpendicu-
lares.

XX. Invenire et inter se comparare pondera corporum in Terræ hujus re-
gionibus diversis.

18. Proposition XVIII. contains a general statement that the planets
are not accurately spherical. In the first edition Cassini and Flamsteed
are quoted as authorities for this statement with respect to Jupiter; in the
second edition instead of these names we are referred to astronomers in
general.

19. Proposition XIX. undertakes to determine the ratio of the axes of
a planet. This important process consists of various steps. In the first
edition Newton begins by saying briefly he finds from calculation that
the centrifugal force at the equator is to the force of attraction there as 1
to 29045 . In the second edition the details of the calculation are supplied,
and the ratio obtained is that of 1 to 289: this ratio is that which is now
usually given in our elementary books, and it will be convenient to adopt
it as we proceed with an account of Newton’s investigation.

Suppose two slender canals of homogeneous fluid, one along the po-
lar radius of the earth, and the other along an equatorial radius. The



newton. 11

resultant attraction on the equatorial canal must be greater than that on
the polar canal in the ratio of 289 to 288 in order that there may be
relative equilibrium. For in proceeding along any given radius inside the
earth the attraction varies as the distance, and the centrifugal force varies
as the distance; hence the ratio of the latter to the former is constant
along the equatorial radius; so that the effect of the centrifugal force may

be considered equivalent to removing
1
289

of the force of attraction.

20. Newton’s next step is to compare the attraction of an oblate ellip-
soid of revolution on a particle at its pole with the attraction of the same
body on a particle at its equator, the ellipticity being supposed very small.
He states his results without giving his process at full. It will be remem-
bered that he had found an expression for the attraction of an ellipsoid
of revolution at any point of its axis: see Art. 13.

I. Suppose an oblate ellipsoid of revolution formed from an ellipse,
such that the major semi-axis CA is to the minor semi-axis 𝐶𝑄 as 101 is
to 100. The reader can easily draw the diagram for himself. Newton says
that the attraction at 𝑄 would be to the attraction of a sphere having 𝐶
for centre and CQ for radius, as 126 is to 125. If 𝜖 denote the elliptic-

ity we know from our modern works that this ratio is that of 1 +
4𝜖
5
to

1; see Statics, Chapter xiii.; this agrees closely with Newton’s numerical
example.

II. Suppose a prolate ellipsoid of revolution formed from the same
ellipse. Newton says that the attraction at 𝐴 would be to the attraction
of a sphere having 𝐶 for centre and CA for radius, as 125 is to 126. If 𝜖
denote the ellipticity we know from our modern works that this ratio is

that of 1 −
4𝜖
5
to 1; see Statics, Chapter xiii.: this agrees with Newton’s

numerical example.
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In the first edition Newton put the fraction
2
15

after 126 and 125 in

I. and II. The fraction was removed by Cotes: see the Correspondence of
Newton and Cotes, page 69.

III. Now return to the oblate ellipsoid of revolution. Suppose a par-
ticle at 𝐴: Newton says that the attraction on it will be a mean propor-
tional between the attractions of the sphere and of the prolate ellipsoid
of revolution in II. We will develop his argument. Begin with the sphere
having CA for radius; if we change the radius which lies along CQ into
CQ we deduce the oblate ellipsoid of revolution; if in this we change the
radius which is at right angles to CA and CQ into a radius equal to CQ,
we deduce the prolate ellipsoid of revolution. Now each of these changes
may be assumed to have affected the attraction to the same amount; and
so the attraction of the oblate ellipsoid of revolution is approximately an
arithmetical mean between the attractions of the sphere and of the pro-
late ellipsoid of revolution. Moreover the arithmetical mean between two
nearly equal quantities is practically equivalent to the geometrical mean.
Hence, finally, the attraction of the sphere with centre 𝐶 and radius CA
is to the attraction of the oblate ellipsoid of revolution on the particle at
𝐴 as 126 is to 12512 .

IV. Thus we have
Attraction of oblate ellipsoid of revolution at the pole

=
126
125

× attraction of sphere of radius 100 at its surface;

attraction of sphere of radius 101 at its surface

=
126
12512

× attraction of oblate ellipsoid of revolution at its equator;

attraction of sphere of radius 100 at its surface

=
100
101

× attraction of sphere of radius 101 at its surface.
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Hence we find by multiplication that the ratio of the attraction of the
oblate spheroid of revolution at the pole to the attraction at the equator

is expressed by
126
125

×
126
12512

×
100
101

, that is, by
501
500

nearly.

21. In future I shall use the single word oblatum instead of oblate
ellipsoid of revolution, and the single word oblongum instead of prolate
ellipsoid of revolution.

22. I shall now make some remarks on the statement by Newton
which forms the paragraph III. of Art. 20.

If we cut the three solids by two adjacent planes at right angles to
𝐴𝐶 we obtain slices, two of which are circular and the other elliptical. It
is not difficult to believe that in passing from the larger circular slice to
the elliptical slice we diminish the attraction by the same amount as we
do in passing from the elliptical slice to the smaller circular slice. In fact,
the decrement of mass is about the same in the two cases, and the mass
lost is at about the same situation with respect to the attracted particle
in the two cases.

It is easy to test the statement by the aid of the modern formula; see
Statics, Chapter xiii.

First take an oblatum of density unity; let 𝑟 be its greatest radius and
𝑟√(1 − 𝑒2) its least radius. The attraction at the equator

= 2𝜋𝑟(1 − 𝑒2)∫
𝜋
2

0
sin3 𝜃(1 − 𝑒2 sin2 𝜃)−1 𝑑𝜃

=
4𝜋𝑟(1 − 𝑒2)

3
{1 +

4
5
𝑒2 +

4 . 6
5 . 7

𝑒4 +…} .

Next take an oblongum; let 𝑟 be its greatest radius and 𝑟√(1 − 𝑒2) its
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least radius. The attraction at the pole

= 4𝜋𝑟(1 − 𝑒2)∫
𝜋
2

0
sin 𝜃 cos2 𝜃(1 − 𝑒2 cos2 𝜃)−1 𝑑𝜃

=
4𝜋𝑟(1 − 𝑒2)

3
{1 +

3𝑒2

5
+
3𝑒4

7
+…} .

The attraction of a sphere of radius 𝑟 at its surface =
4𝜋𝑟
3
.

Suppose 𝑒 so small that we may reject 𝑒4 and higher powers of 𝑒;

then the first of these attractions reduces to
4𝜋𝑟
3

(1 −
𝑒2

5
), and the second

to
4𝜋𝑟
3

(1 −
2𝑒2

5
), so that the first is an arithmetical mean between the

second and the third. But this statement does not hold if we carry our
approximations as far as 𝑒4 inclusive; it will be found then that the first
of the attractions is rather better represented by the mean proportional
between the second and the third than by their arithmetical mean.

It will be convenient to quote Newton’s own words, premising that in
his diagram 𝑃𝐶𝑄 is the polar diameter and 𝐴𝐶𝐵 an equatorial diameter.

Est autem gravitas in loco 𝐴 in Terram, media proportionalis inter gravi-
tates in dictam Sphæroidem et Sphæram, propterea quod Sphæra, diminuendo
diametrum 𝑃𝑄 in ratione 101 ad 100, vertitur in figuram Terræ; et hæc figura
diminuendo in eadem ratione diametrum tertiam, quæ diametris duabus 𝐴𝐵,
𝑃𝑄 perpendicularis est, vertitur in dictam Sphæroidem, et gravitas in 𝐴, in casu
utroque, diminuitur in eadem ratione quam proximè.

The words in eadem ratione, which occur at the end of this extract,
seem to have been formerly misunderstood; it was supposed Newton in-
tended to affirm that the attractions of the three bodies were in the same
ratio as their volumes. But this is not the case. The volume of the obla-



newton. 15

tum is
4𝜋𝑟3

3
√(1 − 𝑒2); the volume of the oblongum is

4𝜋𝑟3

3
(1 − 𝑒2); and

the volume of the sphere is
4𝜋𝑟3

3
: these volumes are not in the ratio of

the attractions exactly nor approximately to the order of 𝑒2. Hence the
following passage, which occurs in a note in the Jesuits’ edition of the
Principia, is erroneous: “… attractiones sphæræ, sphæroidis compressæ,
et sphæroidis oblongatæ, sunt respectivè ut quantitates materiæ in illis
corporibus contentæ quam proximè.”

The words in eadem ratione, which occur at the end of the extract
from Newton, must be understood to mean only to the same amount;
and must not be taken in exactly the same sense as in the middle of the
passage.

It is obvious, however, that it would have been simpler and more nat-
ural to say, that the attraction of the oblatum is an arithmetical mean
between those of the sphere and the oblongum, than to say that it is a
mean proportional between them, to the order of accuracy which Newton
adopts.

23. Newton now compares the resultant attraction on the fluid in a
slender canal having 𝐴𝐶 for its axis, with that on the fluid in a slen-
der canal having 𝑄𝐶 for its axis. He finds that these resultants are in a
ratio compounded of the ratios of the lengths and of the ratios of the
attractions at the extremities 𝐴 and 𝑄: see Art. 33. Thus the resultant at-
traction on the fluid in the canal 𝐴𝐶 is to that on the fluid in the canal
𝑄𝐶, as 101× 500 is to 100× 501, that is, as 505 is to 501. Hence Newton
infers, that if the centrifugal force at any point of 𝐴𝐶 is to the attraction
at that point as 4 is to 505, the weights of the fluids in the two canals
will be equal, and the canals in relative equilibrium.

24. The last step in the preceding Article is more obvious to us, who
have the modern theory of the equilibrium of fluids, than it would have
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been before that theory was constructed. We see that in the state of rel-
ative equilibrium the pressure at 𝐶 must be the same in every direction
round 𝐶: the pressure on a given area at right angles to 𝐴𝐶 will be mea-
sured by the weight of a column of fluid having that area for its section;
and similarly for the pressure on an area at right angles to 𝑄𝐶.

The canals of fluid which Newton considered were rectilinear, meet-
ing at the centre. Other writers, especially Clairaut, considered canals of
various forms, curvilinear as well as rectilinear, meeting at any point of
the body. The more simple case to which Newton restricted himself may
be conveniently described as that of central columns; so that the word
canal may be in future used in Clairaut’s more general sense.

25. It is now necessary to explain carefully the sense in which the
words attraction, gravity and weight will be used in this history.

By the attraction of the Earth at any point, I understand that force
which the Earth would exert, supposing it did not rotate on its axis. By
gravity I denote the force which arises from the combination of the at-
traction and the so-called centrifugal force; and weight may be considered
as an effect produced by gravity as the cause. As we may measure the
cause by the effect, it will be found that it is often indifferent whether
we use the word gravity or the word weight: but it is convenient to have
both words at our service. The word weight is thus left in its ordinary
sense as denoting an effect which is actually produced in the existing
constitution of things, and actually observed.

It would be convenient if we had a word for the effect which cor-
responds to attraction as a cause; but such a word is not very often re-
quired, because practically we are not concerned with an Earth at rest,
but with one which rotates. For want of such a word I employ the phrase
resultant attraction in Arts. 19 and 23.

The distinctions which we have here drawn actually exist, and var-
ious modes have been adopted for preventing confusion. Some writers,
indeed, leave us to gather from the context the sense in which they use
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their terms. This is the case with Newton himself. Thus, for instance,
in the passage quoted in Art. 22, he uses gravitas for what I call attrac-
tion. In his Proposition XX. he uses gravitas for what I call gravity. In
his Proposition XIX. he uses pondus sometimes to express the effect pro-
duced by what I call attraction, and sometimes in the sense I give to
weight. To secure accuracy I have used not his words but my own.

Maupertuis used gravité for my attraction, and pesanteur for my
gravity; and Clairaut followed Maupertuis. See Maupertuis’s Figure de
la Terre, page 158, and Clairaut’s Figure de la Terre, page xiii. In the
Mécanique Céleste, Vol. v. page 2, we have the same use of gravité.

Maupertuis had previously used pesanteur réduite for my gravity: see
the Paris Mémoires for 1734, page 97.

Bouguer used pesanteur primitive for my attraction, and pesanteur
actuelle for my gravity: see the Paris Mémoires for 1734, page 22, and
Bouguer’s Figure de la Terre, page 169.

Maclaurin used gravitation as Maupertuis used pesanteur, and gravity
as Maupertuis used gravité: so also did Thomas Simpson. See Maclau-
rin’s Fluxions, page 551, and Simpson’s Mathematical Dissertations, page
22. The word gravitation has been employed by some eminent modern
writers in about the same sense as my attraction; as, for example, in
Airy’s article on Gravitation in the Penny Cyclopædia, and by Thomson
and Tait in their Natural Philosophy, Vol. i. page 167.

Boscovich used gravitas primitiva for my attraction, and gravitas
residua for my gravity: see his De Litteraria Expeditione, page 403. But
in the Bologna Commentarii, Vol. iv. page 382, he uses tota gravitas for
the gravitas residua of his book.

In the French translation of Boscovich’s book, we have gravité primi-
tive for his gravitas primitiva, and gravité absolue for his gravitas residua;
see the pages 8 and 384 of the translation.

The word pesanteur is used by Bailly in his Histoire de l’Astronomie
Moderne, Vol. iii. page 4, as equivalent to my attraction; but in general
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the sense assigned by Maupertuis and Clairaut to pesanteur has been
adopted by their successors. In French the word poids is almost equiva-
lent to my weight; see Maupertuis’s Figure de la Terre, page 155.

26. We now return to Art. 23. The result there obtained is, that if

the ellipticity be
1
101

, then for relative equilibrium the centrifugal force

at the equator must be
4
505

of the attraction there. Newton now forms a

proportion. He says:
Verum vis centrifuga partis cujusque est ad pondus ejusdem ut 1 et 289, hoc

est, vis centrifuga, quæ deberet esse ponderis pars
4
505

, est tantum pars
1
289

. Et

propterea dico, secundum Regulam auream, quod si vis centrifuga
4
505

faciat

ut altitudo aquæ in crure 𝐴𝐶𝑐𝑎 superet altitudinem aquæ in crure 𝑄𝐶𝑐𝑞 parte

centesimâ totius altitudinis: vis centrifuga
1
289

faciet ut excessus altitudinis in

crure 𝐴𝐶𝑐𝑎 sit altitudinis in crure altero 𝑄𝐶𝑐𝑞 pars tantum
1
229

.

These are the numbers of the second and third editions; in the first

edition Newton has
1
290

instead of
1
289

, and
3
689

instead of
1
229

. In his

diagram 𝑐𝑎 is parallel and adjacent to 𝐶𝐴 and 𝑐𝑞 is parallel and adjacent
to 𝐶𝑄.

27. If we put Newton’s investigation into a modern form it will stand
thus. Let 𝜖 be the ellipticity, supposed very small; then the attraction of
an oblatum at its pole is to the attraction of the oblatum at its equator as

1 +
𝜖
5
is to 1; see Statics, Chapter xiii. Hence, as in Art. 23, the ratio of

the resultant attraction on the fluid in 𝐴𝐶 to the resultant attraction on
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the fluid in 𝑄𝐶 is expressed by
1 + 𝜖

1 +
𝜖
5

, that is, by 1 +
4𝜖
5
approximately.

Therefore for relative equilibrium we must have the centrifugal force at

any point in 𝐴𝐶 equal to
4𝜖
5
of the attraction at that point.

Newton, in fact, sees that the fraction which we have found to be
4𝜖
5

must be proportional to 𝜖; hence it may be denoted by 𝑘𝜖, where 𝑘 is

some constant. Then, when 𝜖 =
1
101

, he finds that 𝑘𝜖 =
4
505

, so that

𝑘 =
404
505

=
4
5
.

28. The result obtained by Newton then is that if the Earth is homo-
geneous and its shape the same as if it were entirely fluid, the ellipticity

must be
1
230

, supposing it to be very small; that is, the ellipticity must

be
5
4
of the ratio of the centrifugal force to the attraction at the equator.

The result is very important in the theory of the subject; but we know

now that the ellipticity is about
1
300

, and we are confident that the Earth

is not homogeneous.

29. Newton proceeds to some remarks on the oblateness of Jupiter.
Let 𝑗 denote the ratio of the centrifugal force to the attraction at the

equator, and 𝜖 the ellipticity; then we have shewn that 𝑗 =
4𝜖
5
.

In his first edition Newton erroneously asserts that 𝑗 is independent
of the density. He says:
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Si Planeta vel major sit vel densior, minorve aut rarior quàm Terra, ma-
nente tempore periodico revolutionis diurnæ, manebit proportio vis centrifugæ
ad gravitatem, et propterea manebit etiam proportio diametri inter polos ad di-
ametrum secundum æquatorem.

Accordingly he considers 𝑗 to vary inversely as the square of the time

of rotation; so that the value of 𝑗 for Jupiter becomes
29
5
times its value

for the Earth: and hence Jupiter’s ellipticity is taken to be
29
5
times that

of the Earth, so that the ratio of the difference of the axes to the minor

axis is about
1
3935

.

In the second edition Newton corrects his error. He says:
Si Planeta major sit vel minor quàm Terra manente ejus densitate ac tem-

pore periodico revolutionis diurnæ, manebit proportio vis centrifugæ ad gravi-
tatem….

Accordingly he now rightly considers 𝑗 to vary inversely as the den-
sity as well as inversely as the square of the time of rotation; so that,

taking the density of Jupiter to be
1
5
of the density of the Earth, the ra-

tio of the difference of the axes to the minor axis becomes
29
5
×
5
1
×

1
229

,

that is, about
1
8
.

In the third edition, the density of Jupiter is taken as
9412
400

of the den-

sity of the Earth; and the ratio of the difference of the axes to the minor

axis becomes about
1
915
.
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30. In the first and second editions these words occur at the end of
Proposition XIX.:

Hæc ita se habent ex Hypothesi quod uniformis sit Planetarum materia.
Nam si materia densior sit ad centrum quàm ad circumferentiam, diameter, quæ
ab oriente in occidentem ducitur, erit adhuc major.

Thus Newton considered that if the Earth, instead of being of uni-
form density, were denser towards the centre than towards the surface,
the ellipticity would be increased; see also Art. 37. But Newton was
wrong. Assuming the original fluidity of the Earth, the ellipticity is di-
minished by increasing the density of the central part, supposed spheri-
cal, and making it solid. This was shewn by Clairaut, who pointed out
Newton’s error: see Clairaut’s Figure de la Terre, pages 157, 223, 224,
253…256. Clairaut, however, ought to have remarked that Newton omit-
ted the passage in his third edition.

In his third edition, as I have just said, Newton omitted the above
passage. He says instead:

Hoc ita se habet ex hypothesi quod corpus Jovis sit uniformiter densum. At
si corpus ejus sit densius versùs planum æquatoris quàm versùs polos, diametri
ejus possunt esse ad invicem ut 12 ad 11, vel 13 ad 12, vel forte 14 ad 13.

Then, after stating some observations as to the ratio of the axes of
Jupiter, Newton says:

Congruit igitur theoria cum phænomenis. Nam planetæ magis incalescunt
ad lucem Solis versùs æquatores suos, et propterea paulo magis ibi decoquuntur
quàm versùs polos.

It might then appear that in his third edition Newton had recognised
his error; but we shall find, when we discuss Proposition XX., that a
distinct trace of the error still remains: see Arts. 38 and 41.

31. I do not feel certain as to the meaning of the sentence “con-
gruit … polos,” which I have quoted in the preceding Article. Since heat
expands bodies it would appear that the equatorial parts ought by the
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Sun’s action to be rendered less dense than the polar parts. The same
difficulty presented itself to Boscovich: see page 475 of his De Litteraria
Expeditione, and pages 89 and 380 of Stay’s Philosophiæ Recentioris, Vol.
ii. Clairaut says in his Figure de la Terre, pages 223, 224:

De la même manière, on voit combien il était inutile à M. Newton, lorsque
sa théorie lui donnait pour Jupiter, une ellipticité moindre que celle qui ré-
sulte des observations, d’aller imaginer que l’équateur de cette planète étant con-
tinuellement exposé aux ardeurs du soleil, était plus dense que le reste de la
planète. Il n’avait qu’à supposer simplement que le noyau était plus dense que
le reste de la planète….

The word moindre in this passage is wrong; for Newton’s theoretical
value of Jupiter’s ellipticity in the third edition is greater than the value
in the observations he quotes.

32. I will now briefly indicate the changes which Newton’s Proposi-
tion XIX. underwent in the later editions with respect to the facts which
it involves.

In the first edition, Newton takes the mean semi-diameter of the
Earth to be 19615800 Paris feet, juxta nuperam Gallorum mensuram:
this alludes to Picard’s measurement of the length of an arc of the
meridian in France.

In the second edition, Newton refers to the measurements made by
Picard, by Norwood, and by Cassini; according to Cassini’s measurement,
the semi-diameter is 19695539 Paris feet, supposing the Earth spherical.
This Cassini is the first of the distinguished family; his name was Jean
Dominique Cassini, but he is often called simply Dominique Cassini.

In the third edition, Newton refers also to the measurement made by
the son of Dominique Cassini, who is known as Jacques Cassini. Picard
had obtained 57060 toises for the length of a degree; the arc measured by
D. and J. Cassini gave 57061 toises for the mean length of a degree. We
shall see as we proceed with the history that these measurements were
subsequently re-examined and corrected.
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33. We now come to Newton’s Proposition XX., the object of which is
to compare the weights of a given body at different places on the Earth’s
surface.

Newton begins with an important result, which is deduced from his
principle of balancing columns: see Art. 23. At any point of the Earth’s
surface, let 𝑓 denote the force of gravity, resolved along the radius; let 𝑟 be
the distance of this point from the centre; let 𝑥 be the distance from the
centre of any point on the same radius: then the force of gravity at this

point resolved along the radius will be
𝑓𝑥
𝑟
, because along the same radius

within the Earth both the resolved attraction and the resolved centrifugal
force vary as the distance. Hence the resolved weight of a column of

fluid extending from the surface to the centre, is measured by 𝑓∫
𝑟

0

𝑥
𝑟
𝑑𝑥,

that is, by
1
2
𝑓𝑟. And as the resolved weight of every column must be the

same, for relative equilibrium, we must have 𝑓𝑟 constant, and so 𝑓 must
vary inversely as 𝑟.

This is equivalent to an expansion of Newton’s brief outline: it be-
comes more obvious to modern readers by the aid of the theory of the
equilibrium of fluids. It is clear that the final result would be true if the
resolved force within the Earth varied as any direct power of the distance
instead of as the first power.

Thus we may say that the weight of a given body at any point of
the Earth’s surface when resolved along the radius varies inversely as the
radius. Newton, however, omits the words which I have printed in Ital-
ics. Since the Earth is very nearly a sphere, the omission will be of no
consequence practically, but theoretically it is important to be accurate.

34. Newton proceeds thus:
Unde tale confit Theorema, quod incrementum ponderis, pergendo ab
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Æquatore ad Polos, sit quam proximè ut Sinus versus latitudinis duplicatæ, vel
quod perinde est ut quadratum Sinus recti Latitudinis.

The result here stated may be thus investigated. Let 𝑔 denote the
weight of a given body at any point of the Earth’s surface; let 𝑟 denote
the radius at that point, and 𝜙 the angle which the normal at that point
makes with the radius. Then, assuming that the direction of gravity co-
incides with the normal, the resolved part of the weight along the radius

will be 𝑔 cos𝜙. Therefore, by Art. 33, we have 𝑔 cos𝜙 =
𝜆
𝑟
, where 𝜆 is

some constant, so that 𝑔 =
𝜆

𝑟 cos𝜙
. Let 𝐺 denote the weight of the given

body at the equator, 𝑎 the radius of the equator; then

𝑔 − 𝐺 = 𝜆 (
1

𝑟 cos𝜙
−
1
𝑎
) .

By neglecting powers of the ellipticity beyond the first, it is found

that
1

𝑟 cos𝜙
−
1
𝑎
varies as the square of the sine of the latitude.

The words printed in Italics in the above investigation involve a prin-
ciple which is familiar to us in the modern theory of fluids; as we shall
see hereafter, this principle was used by Huygens. Newton, however, tac-
itly assumes that the direction of gravity coincides with the radius. It is
true, that to the order of approximation which we adopt cos𝜙 may be
put equal to unity, and so there is no practical error involved in New-
ton’s assumption: but theoretically his investigation of the very impor-
tant proposition now before us is thus rendered obscure and imperfect.

35. In Newton’s second and third editions, we have after the pas-
sage last quoted these words: “Et in eadem circiter ratione augentur ar-
cus graduum Latitudinis in Meridiano.” This is a fact in the theory of
the Conic Sections with which we are now familiar. Let 𝑝 denote the
perpendicular from the centre of an ellipse on the tangent at any point;
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then the radius of curvature varies as
1
𝑝3
. Thus the increase of the ra-

dius of curvature in proceeding from the equator towards the pole varies

as
1
𝑝3

−
1
𝑎3
; and by neglecting powers of the ellipticity beyond the first

it is found that this varies as the square of the sine of the latitude.

36. In the first edition Newton calculated the relative weights of a
given body at Paris, Goree, Cayenne, and the Equator. As observations
of the length of a seconds pendulum had been made at Paris, Goree, and
Cayenne, the relative weights of a body at those places were known, and
thus a test of the accuracy of the theory was furnished.

37. The following sentences occur in the first edition; they are re-
peated substantially in the second edition, but are omitted in the third
edition.

Hæc omnia ita se habebunt, ex Hypothesi quod Terra ex uniformi materia
constat. Nam si materia ad centrum paulò densior sit quàm ad superficiem,
excessus illi erunt paulò majores; propterea quod, si materia ad centrum redun-
dans, qua densitas ibi major redditur, subducatur et seorsim spectetur, gravitas
in Terram reliquam uniformiter densam erit reciprocè ut distantia ponderis à
centro; in materiam verò redundantem reciprocè ut quadratum distantiæ à ma-
teria illa quam proximè. Gravitas igitur sub æquatore minor erit in materiam
illam redundantem quàm pro computo superiore, et propterea Terra ibi propter
defectum gravitatis paulò altius ascendet quàm in precedentibus definitum est.

The preceding sentences contain a portion of truth. Suppose that a
mass of rotatory homogeneous fluid has taken the form which Newton
assigns for relative equilibrium. Then gravity at the pole is to gravity
at the equator, inversely as the corresponding distances from the cen-
tre; and if we suppose the oblatum to become solid, this ratio is not
changed. Next suppose that the central part is made denser than the rest,
this central part being spherical in shape. Thus the gravity is increased
both at the pole and at the equator; but the additional gravity at the pole
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is to that at the equator inversely as the squares of the corresponding
distances. Therefore the whole gravity at the equator bears to the whole
gravity at the pole a less ratio than for the case of the homogeneous body.

But now Newton in some way returns, as it were, to the supposi-
tion of fluidity. It is not obvious whether the whole mass is supposed
to be fluid, or whether the central spherical part is still left solid. In
either case a new investigation would have to be supplied, in order to
determine the figure of the fluid part for relative equilibrium; and no
use could be made of a result obtained from the balancing at the centre
of homogeneous columns. As we have said in Art. 30, the investigations
of Clairaut bring out the ellipticity less than for the homogeneous case,
and not greater as Newton stated.

According to Clairaut, Newton’s error lay in thinking that gravity at
the ends of the columns must be inversely proportional to the lengths of
the columns for relative equilibrium, whether the fluid is homogeneous
or not. See Clairaut’s Figure de la Terre, pages 224 and 256, and Stay’s
Philosophiæ Recentioris, Vol. ii. page 370.

38. In the first edition, as we have stated, Newton referred to pendu-
lum observations at only three places, Paris, Goree, and Cayenne. These
observations indicated a rather greater variation in the length of the sec-
onds pendulum than the theory suggested. So Newton says:

… et propterea (si crassis hisce Observationibus satìs confidendum sit) Terra
aliquanto altior erit sub æquatore quàm pro superiore calculo, et densior ad cen-
trum quàm in fodinis prope superficiem.

He then points out the advantage which would be derived from a set
of experiments for determining the relative weights of a given body at
various places on the Earth’s surface.

39. In the second edition Newton gave a table of the lengths of a de-
gree of the meridian and of the lengths of the seconds pendulum in dif-
ferent latitudes. This table was computed by the aid of his theory, taking
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from observation the length of a degree of the meridian in the latitude
of Paris, and also the length of the seconds pendulum there. The table
is repeated in the third edition; but the lengths of the degrees are not
the same as in the second edition. The lengths are expressed in toises;
at the equator, at 45°, and at the pole, the lengths are respectively 56909,
57283, and 57657 in the second edition; while in the third edition they
are 56637, 57010, and 57382: the difference is, of course, owing to the
adoption of a fresh result from the measurement in France. After the
table in the second edition we have these words:

Constat autem per hanc Tabulam, quod graduum inæqualitas tam parva sit,
ut in rebus Geographicis figura Terræ pro Sphærica haberi possit, quodque in-
æqualitas diametrorum Terræ facilius et certius per experimenta pendulorum
deprehendi possit vel etiam per Eclipses Lunæ, quam per arcus Geographice
mensuratos in Meridiano.

I cannot understand how the ratio of the axes could be found by pen-
dulum experiments or by eclipses better than by measured arcs. In the
third edition the words which follow “haberi possit” are omitted, and
instead of them we have “præsertim si Terra paulò densior sit versùs
planum æquatoris quàm versùs polos.”

40. In the second and third editions Newton referred to many more
pendulum observations than in the first edition. We see from pages
69…89 of the Correspondence of Newton and Cotes, that the arrangement
of this part of the work for the second edition was a matter of some
trouble. The figures in the final draft of Newton were corrected by
Cotes: compare pages 85 and 92 of the Correspondence with the second
edition of the Principia. The facts are stated nearly in the same terms
in the second and third editions.

41. The more numerous observations to which Newton could now ap-
peal, concurred with the smaller number before used, in giving a greater
variation to the length of the seconds pendulum than theory suggested.
Accordingly, the sentence which we quoted in Art. 38, appears in the
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second and third editions, omitting the words si crassis … sit. Newton
adds, however, “nisi forte calores in Zona torrida longitudinem Pendulo-
rum aliquantulum auxerint.”

The supposition that the pendulum observations required a greater

ellipticity than
1
230

was shewn to be untenable by Clairaut: see his Figure

de la Terre, page 252.

42. In the second edition Newton seems to come to the conclusion
that we should correct the theory by observation, and thus take 31 7

12
miles as the excess of the equatorial semi-diameter over the polar semi-
diameter. In the third edition, however, he seems to consider that we
may hold to the value, 17 miles, furnished by theory.

43. In the second edition Proposition XX. ends with a paragraph
in which Newton adverts to the hypothesis, founded on some measure-
ments by Cassini, that the Earth is an oblongum: Newton deduces results
from this hypothesis which are contrary to observations. The paragraph
does not appear in the third edition, although the oblong form continued
to find advocates for some years after the death of Newton.

44. Newton’s investigations in the theories of Attraction and of the
Figure of the Earth may justly be considered worthy of his great name.
The propositions on Attraction are numerous, exact, and beautiful; they
reveal his ample mathematical power. The treatment of the Figure of the
Earth is, however, still more striking; inasmuch as the successful solution
of a difficult problem in natural philosophy is much rarer than profound
researches in abstract mathematics. Newton’s solution was not perfect;
but it was a bold outline, in the main correct, which succeeding investi-
gators have filled up but have not cancelled. Newton did not demonstrate
that an oblatum is a possible form of relative equilibrium; but, assuming
it to be such, he calculated the ratio of the axes. This assumption may
be called Newton’s postulate with respect to the Figure of the Earth: the
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defect thus existing in his process was supplied about fifty years later
by Stirling and Clairaut. The difficulty arose from the imperfect state
of the theory of fluid equilibrium, which undoubtedly must have pro-
duced many obstacles for the earliest investigators in mixed mathemat-
ics. Clairaut subsequently gave methods which are sound and satisfac-
tory to a reader who can translate them into modern language; but even
these may have appeared obscure to Clairaut’s contemporaries. Euler, in
the Berlin Mémoires for 1755, first rendered Hydrostatics easily intelligi-
ble by introducing a symbol 𝑝 to measure the pressure at any point of a
fluid.

45. Besides the defect in Newton’s theory which we have pointed out,
Laplace finds another, saying in the Mécanique Céleste, Vol. v. page 5,
“Il suppose encore, sans démonstration, que la pesanteur à la surface,
augmente de l’équateur aux pôles, comme le carré du sinus de la lati-
tude.” But Laplace is not right. Newton did not absolutely assume the
proposition; he gave a demonstration though it was imperfect; see Art.
34. Laplace’s language is inaccurate moreover; it is not gravity that in-
creases as the square of the sine of the latitude, but the variation in
gravity. Laplace proceeds to observe that Newton regarded the Earth as
homogeneous, while observations prove incontestably that the densities
of the strata increase from the surface to the centre. Laplace’s language
could scarcely be stronger if borings had actually been executed from
the surface to the centre, and had thus rendered the strata open to in-
spection. He means, of course, that by combining observations made at
various places on the surface of the Earth with the suggestions of the-
ory, we are led to infer that the density increases from the surface to the
centre. See the Mécanique Céleste, Vol. v. page 12.

Laplace truly says that, notwithstanding the imperfections, the first
step thus made by Newton in the theory must appear immense.

46. A notice of the Principia was given in the Philosophical Transac-
tions, Vol. xvi. 1687, I presume by Halley, who was then Secretary of the
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Society; the simple but expressive words we find on page 297 are still as
applicable as they were then:

… and it may be justly said, that so many and so Valuable Philosophical
Truths, as are herein discovered and put past dispute, were never yet owing to
the Capacity and Industry of any one Man.



CHAPTER II.

HUYGENS.

47. We have now to examine an essay by Huygens entitled Discours
de la Cause de la Pesanteur.

A small quarto volume was published at Leyden, in 1690, entitled
Traité de la Lumiere … Par C.H.D.Z. Avec un Discours de la Cause de la
Pesanteur. The letters C.H.D.Z. stand for Christian Huygens de Zulichem.

The volume consists of two parts. Pages 1…124 relate to Light; they
are preceded by a Preface, and a Table of Contents, on 6 pages, which
belong to this part of the volume. After page 124 is a Title-leaf for the
part relating to Weight; then a preface on pages 125…128; then a leaf
containing a Table of Contents; and then the text on pages 129…180.

48. We of course pass over the part relating to Light, merely remark-
ing that it is memorable as laying the foundation of the Undulatory The-
ory.

The part relating to Weight is said to appear in a Latin version in the
Opera Reliqua of Huygens: hence it is sometimes cited by a Latin title,
De causa gravitatis, or De vi gravitatis. My references will all be made to
the original edition in French, published during the author’s lifetime.

49. The last paragraph of the Preface gives information as to the date
of composition:

La plus grande partie de ce Discours a esté écrite du temps que je demeu-
rois à Paris, et elle est dans les Registres de l’Academie Royale des Sciences,
jusques à l’endroit où il est parlé de l’alteration des Pendules par le mouvement
de la Terre. Le reste a esté adjouté plusieurs années apres: et en suite encore
l’Addition, à l’occasion qu’on y trouvera indiquée au commencement.

The former part of the Discourse, which we are here told had been
written many years since, is of no value.
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50. The theory of Huygens to account for Weight is expounded on
pages 129…144 of the work; we may say briefly that this theory is utterly
worthless. Huygens assumes the existence of a very rare medium moving
about the Earth with great velocity, not always in the same direction.
This rare matter is surrounded by other bodies, and so prevented from
escaping; and it pushes towards the Earth any bodies which it meets.
This vortex has passed away, as well as those similar but more famous
delusions with which the name of Des Cartes is connected.

51. Two incidental matters of some interest may be noticed.
On his page 138, Huygens says that there is an invisible ponderable

matter present even in the space from which air has been exhausted: so
that it would appear he took the partial exhaustion produced by an air-
pump for complete exhaustion.

On his page 141, he starts a difficulty which we now know has been
removed by experiments:

… De plus, en portant un corps pesant au fond d’un puits, ou dans quelque
carriere ou mine profonde, il y devroit perdre beaucoup de sa pesanteur. Mais
on n’a pas trouvé, que je scache, par experience qu’il en perde quoy que ce soit.

52. The really valuable part of the Discourse commences on page 145.
Huygens says that at Cayenne the seconds pendulum had been found to
be shorter than at Paris. As soon as he heard this, he attributed it to the
rotation of the Earth. Accordingly he gives a very good explanation; as-
suming that there is at the surface of the Earth a force of constant mag-
nitude directed towards the centre, and that there is also a centrifugal
force. He shews by calculation, that the centrifugal force at the equator

is about
1
289

of the central force. He calculates that the seconds pendu-

lum at Cayenne should be
5
6
of a line shorter than at Paris; Richer made

it 1 14 lines shorter by observation.
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Huygens calculates that the plumb-line at Paris deviates nearly 6 min-
utes from the position it would take if there were no centrifugal force.

53. On his page 152, Huygens states a principle which has since gen-
erally been called by his name; he says the surface of the sea is such
that at every point the direction of the plumb-line is perpendicular to the
surface. The principle may be stated more generally thus: the direction
of the resultant force at any point of the free surface of a fluid in equi-
librium must be normal to the surface at that point.

54. On page 152, we arrive at the Addition to which Huygens referred
in his preface: see Art. 49. His attention was turned to the subject again
by examining an account of some more pendulum experiments, and by
reading Newton’s Principia. Huygens first calculates the ratio of the axes
of the Earth. He adopts Newton’s principle of the balancing of the polar
and equatorial columns; but retains his own hypothesis, that the attrac-
tive force is central and constant at all distances. Thus he makes the
ratio of the axes to be that of 577 to 578.

55. Huygens next finds the equation to the generating curve of the
Earth’s surface. He considers it difficult to use his own principle of the
plumb-line, stated in Art. 53; and so he uses the principle of balanc-
ing columns. He extends this principle beyond the application which
Newton made of it: see Art. 24. Huygens contemplates canals of various
forms, not necessarily passing through the centre. He says on his page
156: “et mesme, cela doit arriver de quelque maniere qu’on conçoive que
le canal soit fait, pourvû qu’il aboutisse de part et d’autre à la surface.”

Let the constant force be denoted by 𝜆, the angular velocity by 𝜔, and
the equatorial radius by 𝑎; take the axis of 𝑥 to coincide with the polar
diameter, and the axis of 𝑦 with an equatorial diameter. Then, by mod-
ern methods, we find for the equation to the curve which by revolution
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generates the surface of the Earth

𝜆√ (𝑥2 + 𝑦2) −
𝜔2𝑦2

2
= 𝜆𝑎 −

𝜔2𝑎2

2
. (1)

This coincides with Huygens’s result.
We may deduce the ratio of the axes from (1); we shall thus get the

same value as Huygens obtained before he investigated the equation to
the curve.

Put 𝑦 = 0 in (1), thus: 𝑥 = 𝑎 (1 −
𝜔2𝑎
2𝜆

); therefore the ratio of the

axes is that of 1 −
1

2 × 289
to 1, that is, the ratio of 577 to 578.

If 𝜖 and 𝑗 have the same meaning as in Art. 29, we see that Huygens’s

result may be expressed thus: 𝜖 =
𝑗
2
.

56. Huygens says on his page 159, that even if we do not suppose
the central force to be constant, his result remains almost unchanged. It
is important to demonstrate this: and we shall accordingly shew that the
result is approximately true, whatever may be the law of the force, which
is assumed to be central.

Let 𝜙(𝑟) denote the force at the distance 𝑟 from the centre. Then, by
modern methods, we find for the equation to the generating curve

∫𝜙(𝑟)𝑑𝑟 −
𝜔2𝑦2

2
= constant.

Let 𝑎 denote the equatorial radius, and 𝑏 the polar. By putting 𝑦 = 0,
we determine the value of the constant, and the equation becomes

∫
𝑟

0
𝜙(𝑟)𝑑𝑟 −

𝜔2𝑦2

2
= ∫

𝑏

0
𝜙(𝑟)𝑑𝑟.
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Now put 𝑦 = 𝑎; thus

∫
𝑎

0
𝜙(𝑟)𝑑𝑟 −

𝜔2𝑎2

2
= ∫

𝑏

0
𝜙(𝑟)𝑑𝑟:

this is an analytical expression of Newton’s principle of the balancing of
central columns. We may put the expression in the form

∫
𝑎

𝑏
𝜙(𝑟)𝑑𝑟 =

𝜔2𝑎2

2
.

If 𝑎 − 𝑏 is very small this gives approximately

(𝑎 − 𝑏)𝜙(𝑎) =
𝜔2𝑎2

2
,

thus
𝑎 − 𝑏
𝑎

=
1
2
𝑎𝜔2

𝜙(𝑎)
,

that is

𝜖 =
𝑗
2
.

Moreover, we can shew that the diminution of the radius in passing
from the equator to the pole will vary approximately as the square of the
sine of the latitude. For we have

∫
𝑟

0
𝜙(𝑟)𝑑𝑟 −

𝜔2𝑦2

2
= ∫

𝑏

0
𝜙(𝑟)𝑑𝑟,

that is

∫
𝑟

0
𝜙(𝑟)𝑑𝑟 −

𝜔2𝑦2

2
= ∫

𝑎

0
𝜙(𝑟)𝑑𝑟 −

𝜔2𝑎2

2
,

therefore

∫
𝑎

𝑟
𝜙(𝑟)𝑑𝑟 =

𝜔2

2
(𝑎2 − 𝑦2).
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Hence if 𝑎 − 𝑟 be small, we have approximately

(𝑎 − 𝑟)𝜙(𝑎) =
𝜔2

2
(𝑎2 − 𝑦2).

Thus 𝑎 − 𝑟 varies as 1 −
𝑦2

𝑎2
, that is, approximately as the square of

the sine of the latitude.

57. The particular case in which the central force varies inversely as
the square of the distance deserves to be noticed specially. In this case
instead of equation (1) of Art. 55 we obtain

𝜇
√(𝑥2 + 𝑦2)

+
𝜔2𝑦2

2
=
𝜇
𝑎
+
𝜔2𝑎2

2
, (2)

where
𝜇
𝑟2

represents the central force.

Put 𝑦 = 0, then 𝑥 =
𝑎

1 +
𝜔2𝑎3

2𝜇

.

Thus the ratio of the axes is that of 1 to 1+
𝜔2𝑎3

2𝜇
, and, taking

1
289

for

𝑎𝜔2÷
𝜇
𝑎2
, this ratio becomes that of 578 to 579, which is almost identical

with that obtained in Art. 54.

58. If 𝜔2𝑎 = 𝜆, the equation (1) of Art. 55 is equivalent to
𝑦2 − 𝑎2 = ±2𝑎𝑥, giving two parabolas, as Huygens observes. He seems
in consequence to accept without hesitation, for relative equilibrium, a
figure of revolution in which the two parts meet so as to produce an
abrupt change of direction: see his page 157.
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59. In his pages 159…168 Huygens makes some interesting remarks
on various points in Newton’s Principia. Huygens does not admit that all
particles of matter attract each other, but he does admit a resultant force
exerted by the Sun or by a Planet, and varying inversely as the square
of the distance from the centre of the body. He states that he himself
had not extended the action of pesanteur so far as from the Sun to the
Planets, nor had he thought of the law of the inverse square: he fully
recognises Newton’s merits as to these points.

60. We must notice the value he obtained for the increase of gravity
in proceeding from the equator to the pole. He adopts the ratio of the
axes which he had found for the case of a constant force, and assumes
that it will hold when the central force varies inversely as the square

of the distance. Hence since the polar radius is
1
578

part shorter than

the equatorial radius, gravity increases by
1
289

part in passing from the

equator to the pole. And by reason of the absence of centrifugal force at

the pole there is another increase of
1
289

part. Thus on the whole there

is an increase of
2
289

. He thinks that observation does not confirm this

large increase.
We know now that the increase is not so large as Huygens made it.

His error arises from his assuming that the Earth’s attraction is a sin-
gle central force varying inversely as the square of the distance from the
centre, instead of calculating the value of it from the form of the Earth.

61. Huygens expresses himself as much pleased with Newton’s
method of comparing the attraction at the surfaces of the Earth, the
Sun, Jupiter and Mars: see his page 167. Huygens alludes to the very
different estimates which had been made of the Sun’s distance from the
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Earth: Newton took this to be 5000 times the Earth’s diameter, Cassini
to be 10000 times; Huygens himself had taken it to be 12000 times.

62. Huygens also refers with pleasure to the researches of Newton
respecting the motion of projectiles in a resisting medium. Huygens says
he had himself formerly investigated this subject, assuming the resis-
tance to vary as the velocity; after he had finished his investigations he
learned from the experiments made by the Academy of Sciences at Paris
that the resistance in air and in water varied as the square of the velocity.

He here gives the results of his original investigations without the
demonstrations: see his pages 170…172. It will furnish a good exercise
for students to verify these results, which must have been obtained with
some difficulty in the early days of the Integral Calculus. The results
will be found to be all correct, except that on the middle of page 171 we
ought to read terminal velocity instead of velocity with which the ground
is reached. The phrase terminal velocity is due to Huygens; see his page
170. Huygens makes a few remarks on motion in a medium where the
resistance varies as the square of the velocity; but he considers only a
particular case of vertical motion, and a particular case of oblique mo-
tion. The general problem, he truly says, is very difficult if not impossi-
ble.

63. Huygens finishes with a statement of properties of the exponen-
tial or logarithmic curve; he does not give demonstrations, but they can
be easily supplied.

64. On the whole we may say that the chief contribution of Huygens
to our subject is the important principle of fluid equilibrium, which we
have noticed in Art. 53. He also first solved a problem in which the form
of the surface of a fluid in relative equilibrium under a given force was
accurately determined; see Art. 55. The result has become permanently
connected with our history for a reason which we will now explain.

The assumption that the attraction of the Earth varies inversely as
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the square of the distance from a fixed point is equivalent to the hy-
pothesis that the density of the Earth is infinite towards the centre. This
remark is in fact due to Clairaut; see the Philosophical Transactions, Vol.
xl. page 297. It is sometimes ascribed to Huygens himself; as in Barlow’s
Mathematical Dictionary, article Earth. But, as we have seen, Huygens
preferred to consider the attractive force as constant; and this is very dif-
ferent from the notion involved in Clairaut’s remark. Laplace is not quite
accurate in the Mécanique Céleste, Vol. v. page 5, where he omits all no-
tice of the constant force, and says that Huygens supposed the force to
vary inversely as the square of the distance from a point.

65. An important error has been sometimes made by representing
the researches of Huygens on the Figure of the Earth as preceding those
of Newton in the order of time: for example, this is asserted in Barlow’s
article just cited. Svanberg also has completely misrepresented the rela-
tive positions of Newton and Huygens: see his Exposition des opérations
faites en Lapponie … pages iii…v. The truth is that before the Addition
to Huygens’s Discourse the only remark on the subject is the suggestion
on page 152, that the Figure of the Earth is that of a sphere flattened at
the poles; and even this occurs in the part which treats on pendulums,
written, as Huygens himself states, long after the greater part of the Dis-
course. The researches on the Figure of the Earth are really contained in
the Addition, which as Huygens himself states was written after reading
the Principia.

There are two causes which might have led to this error in dates.
In the first place, as Huygens was senior to Newton, it was natural in
histories of science to give an account of the life and works of Huygens
before those of Newton; this, for example, is the course adopted by Bailly
in his Histoire de l’Astronomie Moderne. Then a hasty glance at his Vol.
iii. page 9 might mislead an incautious reader. In the second place, it
was natural to notice the partial and imperfect attempts of Huygens be-
fore proceeding to Newton’s nearly complete solution; this, for example,
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is the course adopted by Clairaut in the Introduction to his Figure de la
Terre.



CHAPTER III.

MISCELLANEOUS INVESTIGATIONS UP TO THE YEAR 1720.

66. The present Chapter will contain an account of various miscella-
neous investigations up to the year 1720.

It is my design to write the history of the Theories of Attraction and
of the Figure of the Earth; and I have endeavoured to include all the
memoirs and works which relate to these subjects. I do not profess to
discuss the measurements of arcs and the observations of pendulums;
but I shall briefly notice the more important of these operations in their
proper places.

67. There are many writers to whom the student may be referred for
accounts of the attempts made in ancient times, and in the early days
of modern science, to ascertain the figure and dimensions of the Earth.
Thus, for example, we may mention Cassini’s De la Grandeur et de la Fig-
ure de la Terre, and Stay’s Philosophiæ Recentioris Vol. ii. with the notes
by Boscovich. More recent works are the article by Professor Airy on the
Figure of the Earth in the Encyclopædia Metropolitana, and the article by
the late T. Galloway on Trigonometrical Survey in the Penny Cyclopædia.

68. Some interest attaches to the operations of Richard Norwood,
which he has recorded in his Seaman’s Practice, published in 1637. He
says on his page 4:

Upon the 11th of June, 1635, I made an Observation near the middle of the
City of York, of the Meridian Altitude of the Sun, by an Arch of a Sextant of
more than 5 Foot Semidiameter, and found the apparent Altitude of the Sun
that Day at Noon to be 59 deg. 33 min.

I had also formerly upon the 11th of June, Anno 1633, observed in the City
of London, near the Tower, the apparent Meridian Altitude of the Sun, and
found the same to be 62 deg. 1 min.

And seeing the Sun’s Declination upon the 11th day of June, 1635, and upon



miscellaneous investigations to 1720. 42

the 11th day of June, 1633, was one and the same, without any sensible differ-
ence; and because these Altitudes differ but little, we shall not need to make
any alteration or allowance, in respect of Declination, Refraction, or Parallax:
Wherefore subtracting the lesser apparent Altitude, namely 59 deg. 33 min. from
the greater 62 deg. 1 min. there remains 2 deg. 28 min. which is the difference
of Latitude of these two Cities, namely, of London and York.

It will be seen that Norwood does not expressly say with what instru-
ment he observed the Sun’s altitude at London; he lays stress on the fact
that the observations at London and at York were made on the same day
of the month. He determined the distance between York and London in
the manner which he explains on his page 6:

… Yet having made Observation at York, as aforesaid, I measured (for the
most part) the Way from thence to London; and where I measured not, I paced,
(wherein through Custom I usually come very near the Truth) observing all the
way as I came with a Circumferentor all the principal Angels of Position, or
Windings of the Way, (with convenient allowance for other lesser Windings,
Ascents and Descents)…; so that I may affirm the Experiment to be near the
Truth.

Norwood made the distance between York and London 9149 chains,
each of 99 feet. He deduced for the length of a degree of the merid-
ian 367196 feet. This is nearer to the truth than might have been ex-
pected from the rough mode of measurement: the modern result would
be somewhat less than 365000 feet.

It has been supposed that Norwood’s work had been forgotten before
Newton’s time; but Rigaud is strongly against this supposition: see his
Historical Essay … page 4. Newton does not refer in his first edition to
Norwood’s value of a degree; but he does in the second edition. Newton
quotes the 367196 feet, which he says is 57300 Paris toises. The number
of toises obtained will, of course, depend on the proportion of the En-
glish foot to the French foot. Cassini made the English foot to be 15

16 of
the French foot; see the De la Grandeur et de la Figure de la Terre, pages
154, 251, and 282: this would give 57374 toises. Bailly in his Histoire de
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l’Astronomie Moderne, Vol. ii. page 342, gives 57442 toises, and draws at-
tention in a note to Newton’s smaller value. The comparison of English
and French standards of length has, of course, been carried to minute
accuracy in modern times. See, for example, Airy, Figure of the Earth,
page 217.

69. Richer made observations of the length of the seconds pendulum
at Cayenne in 1672: Varin, Des Hayes, and Du Glos made similar ob-
servations at Goree and at Guadaloupe in 1682. These observations are
given in the Recueil d’Observations faites en Plusieurs Voyages … Folio,
Paris, 1693. Newton states the results in the third edition of the Prin-
cipia, omitting the name of Du Glos. It would seem from Newton’s words
that the same length was obtained at Martinique as at Guadaloupe: but
the original account does not mention pendulum observations at Mar-
tinique.

These observations had, however, been published before 1693; see La-
lande’s Bibliographie Astronomique, page 327: thus they were accessible
to Newton for his first edition, as we have mentioned in Art. 36.

Richer’s observations are also given in Vol. vii. of the ancient Mé-
moires of the Paris Academy.

70. In Number 112 of the Philosophical Transactions, which is dated
March 25, 1675, there is an account of Picard’s survey of an arc of the
meridian; the Number forms part of Volume x. of the Transactions; the
account occupies pages 261…272 of the volume; it begins thus:

A Breviate of Monsieur Picarts Account of the Measure of the Earth.

This Account hath been printed about two years since, in French; but very
few Copies of it being come abroad, (for what reasons is hard to divine;) it will
be no wonder, that all this while we have been silent of it. Having at length
met with an Extract thereof, and been often desired to impart it to the Curious;
we shall no longer resist those desires, but faithfully communicate in this Tract
what we have received upon this Argument from a good hand.
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The account notices an attempt made by the Arabians to measure an
arc of the meridian:

… a Station being chosen, and thence Troups of Horsemen let out, that went
in a straight line, till one of them had raised a degree of Latitude, and the other
had deprest it; at the end of both their marches, they who raised it, counted 5623
miles, and they who deprest it, reckon’d 56 miles just.

This is not quite faithful to a description given by Picard, from which
it may have been derived, which can be seen in Bailly’s Histoire de l’As-
tronomie Moderne, Vol. i. page 581. Picard does not mention Horsemen;
and he does not explicitly say which of the two parties obtained the
longer measure.

71. In Number 126 of the Philosophical Transactions, which is dated
June 20, 1676, and forms part of Volume xi., we have a notice of what
Norwood effected. The following is the beginning of the notice:

Advertisement concerning the Quantity of a Degree of a Great Circle, in English
measures.

Some while since an account was given concerning the Quantity of a Degree
of a great Circle, according to the tenour of a printed French Discourse, entituled
De la Mesure de la Terre. The Publisher not then knowing what had been done
of that nature here in England, but having been since directed to the perusal of
a Book, composed and published by that known Mathematician Richard Nor-
wood in the year 1636, entituled The Seaman’s Practice, wherein, among other
particulars, the compass of the Terraqueous Globe, and the Quantity of a Degree
in English measures are deliver’d, approaching very near to that, which hath
been lately observ’d in France; he thought, it would much conduce to mutual
confirmation, in a summary Narrative to take publick notice here of the method
used by the said English Mathematician, and of the result of the same; which,
in short, is as follows:

The “Publisher” here means H. Oldenburg who was Secretary to the
Royal Society.

An English translation of Picard’s account of his survey of an arc of
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the meridian was published in 1687. The bulk of the volume in which
it was included seems to have consisted of a translation of Memoirs on
the Natural History of Animals. The Natural History was translated by
Alexander Pitfield, and Picard’s account by Richard Waller. See Philo-
sophical Transactions, Number 189, page 371.

72. A Discourse concerning Gravity, and its Properties, wherein the De-
scent of Heavy Bodies, and the Motion of Projects is briefly, but fully han-
dled: Together with the Solution of a Problem of great Use in Gunnery. By
E. Halley.

This memoir is published in Number 179 of the Philosophical Trans-
actions; the Number is for January and February, 1686, and forms part
of Volume xvi.: the memoir occupies pages 3…21 of the number.

I notice this memoir for the sake of a fact to which Newton refers in
the second edition of the Principia, Book iii. Prop. XX. Halley says:

… ’Tis true at S. Helena in the Latitude of 16 Degrees South, I found that
the Pendulum of my Clock which vibrated seconds, needed to be made shorter
than it had been in England by a very sensible space, (but which at that time
I neglected to observe accurately) before it would keep time; and since the like
Observations has been made by the French Observers near the Equinoctial: Yet
I dare not affirm that in mine it proceeded from any other Cause, than the
great height of my place of Observation above the Surface of the Sea, whereby
the Gravity being diminished, the length of the Pendulum vibrating seconds, is
proportionably shortned.

The “Problem of great use in Gunnery,” which Halley solves, is one
which we now enunciate thus: To determine the direction in which a
body must be projected from a given point with a given velocity, so as to
hit a given point. Halley considers his solution superior to those which
had been previously given; he says the problem was “first Solved by
Mr Anderson, in his Book of the Genuine use and effects of the Gunn,
Printed in the year 1674.”
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Halley observes, that for a given horizontal range the velocity is least
when the angle of projection is 45°. He says:

This Rule may be of good use to all Bombardiers and Gunners, not only that
they may use no more Powder than is necessary, to cast their Bombs into the
place assigned, but that they may shoot with much more certainty, for that a
small Error committed in the Elevation of the Piece, will produce no sensible
difference in the fall of the Shot: For which Reasons the French Engineers in
their late Sieges have used Morter-pieces inclined constantly to the Elevation of
45, proportioning their Charge of Powder according to the distance of the Object
they intend to strike on the Horizon.

According to theory the horizontal ranges should be equal for two dif-
ferent angles of projection, one as much below 45° as the other is above
45°; and Halley states that experiments shew there is little difference in
the ranges, especially for large shot: see his page 20.

73. Thomas Burnet, master of the Charter-house, published towards
the end of the seventeenth century his Sacred Theory of the Earth, first
in Latin and afterwards in English. The work related to geology and the
Mosaic cosmogony, and naturally gave rise to much controversy. I shall,
however, not attempt to follow the details of this controversy, as it is but
slightly connected with our subject; but content myself with noticing the
contributions of one writer, Keill, whose name is not unknown in the
history of mathematical science.

The work of Keill now to be considered is entitled An Examination
of Dr Burnet’s Theory of the Earth. Together with some remarks on Mr.
Whiston’s New Theory of the Earth. By Jo. Keill, A.M. Coll. Ball. Ox.
1698. The book contains 224 pages in octavo, besides the title-page and
the dedication “to the Reverend Dr Mander, the worthy master of Balliol
College in Oxford.”

74. The part of the work which most concerns us is Chapter vi., Of
the Figure of the Earth, which occupies pages 101…143.



miscellaneous investigations to 1720. 47

Burnet maintained that the Earth was not oblate but oblong. Keill
says on his page 107:

I come now to examin the Theorists reasons by which he proves the Earth
to be of an Oblong Spheroidical figure. He tells us that the fluid under the
æquator being much more agitated than that which is towards the Poles which
describes in its diurnal motions lesser arches, and because it cannot get quite
off and fly away by reason of the Air which every way presses upon it, it could
no other wayes free it self than by flowing towards the sides, and consequently
form the Earth into an Oval figure.

Keill maintains, on the contrary, the oblateness of the Earth; he gives
substantially the two investigations of the ratios of the axes which were
then known, namely, that of Huygens, which assumed the resultant at-
traction to be constant, and that of Newton, which assumed the attrac-
tion between particles to vary inversely as the square of the distance.
Keill also gives, after Huygens, a very clear account of the effect of cen-
trifugal force on the position of a pendulum, and on the weight of a
body. Keill does not refer to the work of Huygens, from which he must
have obtained a large part of his Chapter vi., namely, the Discours … de
la Pesanteur; but other works by Huygens are cited.

75. There is nothing new on our subject in Keill’s work; he merely
reproduces what had been given by Newton and by Huygens. There are,
however, some incidental mistakes which we should scarcely have ex-
pected from a distinguished member of a distinguished college.

On his page 41 he says, “by calculation it will follow that a body
would run down four thousand miles in the space of twenty-three sec-
onds, abstracting from the resistance of the air.” He must mean twenty-
three minutes.

On his page 150 he says, “for the ninty ninth power of 2 is a number
which if written at length would consist of a hundred Figures.” We know
that 299 consists of 30 figures.
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On his page 156 he has an angle of which the tangent is
1
50
; he

makes the sine ·19594, which is ten times too great: by correcting the
error his own argument is much strengthened.

On his pages 160 and 161 he has some calculations, which he be-
gins by stating that a perch is 10 feet, and which he continues on the
supposition that a perch is 20 feet.

76. Keill’s most serious mistake is one which it is very natural to
make; but, unfortunately, he is extremely incautious in drawing attention
to it. He says on his pages 138 and 139:

Now tho’ I have already determined the Earths Figure from other Principles;
Yet to comply with the Theorist in this point, I will give him an account of a
Book whose extract I have seen in the Acta Eruditorum Lipsiæ publicata for the
year 1691. written by one Joh. Casp. Eisenschmidt, a German who calls himself
Doctor of Philosophy and Physick. The Title of the Book is, Diatribe de Figura
Telluris Elliptico-Sphæroide. And it is Printed at Strasburg in the year 1691….

Keill then proceeds to give some account of the book. According to
Eisenschmidt, the measurements hitherto made of the length of a degree
of the meridian in various latitudes shewed that the length decreased as
the latitude increased; granting this to be the case, Eisenschmidt inferred
quite correctly that the Earth was of an oblong form. But Keill says on
his pages 140 and 141:

None but a man of prodigious stupidity and carelessness could reason at
this rate! If he had asserted that the Earth was of an Oval Figure because Grass
grows or Houses stand upon it, it had been something excusable; for that Ar-
gument tho it did not infer the conclusion, yet it could never have proved the
contradictory to be true. But to bring an Argument which does evidently prove
that the Earth has a Figure directly contrary to that which he would prove it
has, is an intolerable and an unpardonable blunder….

Keill’s error consisted of course in misunderstanding what was meant
by a degree of the meridian. Keill supposed that the difference of lati-
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tude of two places on the same meridian is the angle between straight
lines drawn from these points to the centre of the Earth; whereas in this
subject, the difference of latitude means the angle between the vertical
directions at the two places.

77. Keill’s Chapter iv. is entitled, Of the Perpendicular position of the
Axis of the Earth to the plane of the Ecliptick. This Chapter contains some
interesting matter; though it is not connected with our subject.

Burnet held that in the primitive Earth, the axis of the Earth’s rota-
tion was perpendicular to the plane of the ecliptic. Keill is thus led to
consider the advantages resulting from the inclined position which we
know the axis actually has. He infers by calculation, that places whose
latitude exceeds 45° receive more heat from the Sun than they would
do if the axis of the Earth’s rotation were perpendicular to the ecliptic;
while other places receive less heat. Keill derives his method, and some
of his results, from a paper by Halley in the Philosophical Transactions,
Number 203.

On Keill’s page 75, the first and second entries with respect to the
Sun in Cancer ought to change places; Halley is correct.

78. Keill on his page 70 charges Dr. Bentley with error for saying
that “tho the axis had been perpendicular, yet take the whole year about
we should have had the same measure of heat we have now.” But it is
obvious that Bentley is right in a certain sense; namely, that the whole
heat received by the Earth is the same in the two cases. I am sorry to
see that Keill goes on to shew that Bentley is to be numbered among the
advocates of an error which has at all times been popular; according to
Keill, page 70,

… in the same Lecture, he confidently saies, that ’tis matter of fact and expe-
rience that the Moon alwaies shews the same Face to us, not once wheeling about her
own Centre, whereas ’tis evident to any one who thinks, that the Moon shews
the same face to us for this very reason, because she does turn once, in the time
of her period, about her own Centre.
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The Lecture to which Keill alludes is the “last Lecture for the Confu-
tation of Atheism.”

79. Keill published another work on the same subject as the former;
it is entitled An Examination of the Reflections on the Theory of the Earth.
Together with a Defence of the Remarks on Mr Whiston’s New Theory. The
book contains 208 pages in octavo, besides the title-page. It furnishes
nothing connected with our subject except another reference to Dr Eisen-
schmidt. Keill seems determined to remain unconvinced of his error; he
says on his page 100:

Our Defender tells us, that Dr. Eisenschmidt supposes the Vertical Lines or
Lines of Gravity, to be drawn at right Angles to the Tangent of each respective
Horizon. What Dr. Eisenschmidt does really suppose I know not, but I am sure
he cannot suppose a thing more absurd than what our Author makes him sup-
pose in this place. For that the Line of direction of heavy Bodies is at right
Angles with the Tangent of the Horizon, is to me such an incomprehensible
supposition, that I shall excuse my self from considering of it, till the Defender
(who I suppose would have us think he understands it) is at leisure to explain
it.

Keill was subsequently appointed Savilian Professor of Astronomy at
Oxford: let us hope that before that time he understood this simple mat-
ter which had perplexed him.

80. In the Paris Mémoires for 1700, published in 1703, we have two
articles bearing on our subject: both occur in the historical portion of
the volume.

On pages 114…116, there is a notice of some observations of the
length of the seconds pendulum made by Couplet in 1697 at Lisbon, and
in 1698 at Parayba in Brazil.

On pages 120…124, there is a brief account of the operations up to
the current date connected with the French arc of the meridian.
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81. In the Paris Mémoires for 1701, published in 1704, we have on
page 111 of the historical portion of the volume some pendulum obser-
vations made by Des Hayes in 1699 and 1700: Newton states the results
in the third edition of the Principia.

In the same volume, there is a memoir entitled De la Meridienne de
l’Observatoire Royal prolongée jusqu’aux Pyrenées. Par M. Cassini. The
memoir occupies pages 169…182 of the volume.

After noticing what had been done by the ancients as to the mea-
surement of the Earth, the memoir gives an account of the operations in
France. The substance of the memoir is reproduced in the first eighteen
pages of the work De la Grandeur et de la Figure de la Terre.

There is an account of the memoir in pages 96 and 97 of the histor-
ical portion of the volume. Here we have the error which Keill adopted,
as we saw in Art. 76:

Mais en supposant, comme il est fort vraisemblable, que cette diminution de
la valeur terrestre d’un degré, continue toûjours de l’Equateur vers le Pole, et en
conservant d’ailleurs les hypotheses communes, on voit d’abord qu’un Meridien
doit être plus petit que l’Equateur, et par consequent que la Terre est un Globe
aplati vers les Poles.

The passage was changed in another edition: see La Lande’s
Astronomie, third edition, Vol. iii. page 24.

82. In the Paris Mémoires for 1702, published in 1704, we have a
memoir entitled Reflexions sur la mesure de la Terre, rapportée par Snel-
lius dans son Livre intitulé, Eratosthenes Batavus. Par M. Cassini le fils.
The memoir occupies pages 61…66 of the volume: see also page 82 of
the historical portion of the volume. Cassini shews that Snell’s result
was quite unsatisfactory. The memoir is substantially reproduced with
additions in pages 287…296 of the work De la Grandeur et de la Figure
de la Terre.

83. In the Paris Mémoires for 1703, published in 1705, we have a
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memoir entitled Remarques sur les Inégalités du Mouvement des Horloges
à Pendule. Par M. De La Hire. The memoir occupies pages 285…299 of
the volume: there is an account of it on pages 130…135 of the historical
portion of the volume.

84. David Gregory, Savilian Professor of Astronomy at Oxford, pub-
lished there in 1702 his Astronomiæ Physicæ et Geometricæ Elementa: it
is a folio volume containing 494 pages, besides the Title, Dedication,
Preface, and Index. The work was reprinted in two quarto volumes at
Geneva in 1726, with some additions by an editor who signs himself C.
Huart, M. and P. S.

A section of the work is devoted to the Figure of the Sun and the
Planets: this section occurs on pages 268…272 of the original edition,
and on pages 408…414 of the reprint.

David Gregory contributes nothing new to our subject. He repeats
two mistakes from Newton, with rather increased emphasis. One mis-
take is the assertion that gravity at the surface varies inversely as the ra-
dius, instead of gravity resolved along the radius: see Art. 33. The other
mistake is the assertion that if instead of being homogeneous, the cen-
tral portion is denser than the rest, then the ellipticity is increased: see
Art. 30, and Clairaut’s Figure de la Terre, page 254.

On the hypotheses that the figure is an oblatum, and that gravity
varies inversely as the radius; David Gregory gives a good geometrical
demonstration of the theorem, that the increase of gravity in proceed-
ing from the equator to the pole varies as the square of the sine of the
latitude.

On page 37 of his own edition, David Gregory stated the oblateness
of the Earth as a fact. This is the only point at which the editor of the
reprint ventures to correct the original author; and on page 51 of the
reprint we have this unfortunate note:

Constat ex celeberrimorum Geometrarum observationibus, experimentis et
argumentis, Terram quidem Sphæroidem esse, sed oblongam non verò depres-
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sam versus Polos, contra quod affirmat Autor noster. Verùm circa hanc quæs-
tionem consulantur Historia et Commentarii Regiæ Scientiarum Academiæ anni
præsertim 1720.

Keill very naturally praised the work of his predecessor in the Sav-
ilian chair; though with some extravagance of language. The following
words occur in the Ricerche sopra diversi punti … of Gregory Fontana,
Pavia, 1793, pages 93 and 94:

Il famoso David Gregori nella sua elegantissima opera intitolata Astronomiæ
Physicæ et Geometricæ Elementa, che dal celebre Giovanni Keil nella Prefazione
della sua Introduzione alla vera Fisica ed Astronomia viene caratterizzata col
pomposo elogio di opus cum sole et luna duraturum….

85. A memoir by Keill is given on pages 97…110 of Number 315 of
the Philosophical Transactions. The Number is for the months of May
and June, 1708; it forms part of Volume xxvi. which is for the years
1708 and 1709, and is dated 1710.

The memoir is entitled Joannis Keill ex Æde Christi Oxon. A.M. Epis-
tola ad Cl. virum Gulielmum Cockburn, Medicinæ Doctorem. In qua Leges
Attractionis aliaque Physices Principia traduntur.

The memoir is reprinted at the end of the edition of Keill’s Introduc-
tiones ad veram Physicam … published at Leyden in 1739.

86. The memoir consists of thirty theorems; many of them are merely
enunciated; others are supported by a short commentary.

They are but little connected with our subject, being experimental
rather than mathematical, and bearing on what we should call molec-
ular attraction.

87. Keill speaks of Newton as
Vir ingenio pene supra humanam sortem admirabili, dignusque cujus fama

per omnes terras pervagata, cœli quos descripsit meatibus permaneat coæva.
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The immensity of space and of time with which Astronomy is
concerned may cause but can scarcely justify the exorbitant language
in which the achievements of those who cultivate the science are
sometimes described. The expressions of Keill with respect to Newton
may be compared with those which Arago uses when noticing Poisson’s
famous memoir on the permanence of the solar system:

Il aura établi qu’à ce point de vue, le seul dont Newton et Euler se fussent
préoccupés, les géomètres, ses successeurs, liront encore son beau Mémoire
dans plusieurs millions d’années. Œuvres complétes de François Arago, vol. ii.
page 654.

S’il en était besoin, le magnifique Mémoire sur l’invariabilité des grands
axes, prouverait que Poisson avait un intérêt personnel à porter ses regards, ses
pensées, sur des siècles si éloignés. The same volume, page 696.

88. Keill says that he had thought about applying a principle similar
to Newton’s attraction for the explanation of terrestrial phenomena; and
had tested the notion by experiments. He adds:

Meaque hac de re cogitata, abhinc quinquennio, Domino Newtono indicavi;
ex eo autem intellexi, eadem fere, quæ ipse investigaveram, sibi diu ante ani-
madversa fuisse.

89. Almost the only passage in the memoir which directly concerns
us presents a difficulty. Keill’s Theorem XV. asserts that the attractive
forces of perfectly solid particles depend much on their figures. He pro-
ceeds thus:

Nam si parva aliqua materiæ particula in laminam circularem indefinite ex-
iguæ crassitudinis formetur, et corpusculum in rectâ per centrum transeunte et
ad planum circuli Normali locetur; sitque distantia corpusculi æqualis decimæ
parti semidiametri circuli: vis qua urgetur corpusculum tricesies minor erit,
quam si materia attrahens coalesceret in Sphæram, et virtus totius particulæ ex
uno quasi puncto Physico diffunderetur.

Let 𝑀 denote the mass of the particle, 𝑐 the distance from the centre
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of the lamina of the attracted corpuscle, 𝑏 the radius of the lamina. Then
by the ordinary formula we have the attraction

=
2𝑀
𝑏2

{1 −
𝑐

√(𝑐2 + 𝑏2)
} .

In the case of the sphere the attraction =
𝑀
𝑐2
.

The ratio of the former to the latter is

2𝑐2

𝑏2
{1 −

𝑐
√(𝑐2 + 𝑏2)

} .

Since 𝑏 = 10𝑐, this ratio =
1
50

(1 −
1

√101
)

=
2

101 + √101
=

1
55

very nearly.

I presume tricesies is intended for thirty times, though it is not con-

tained in the dictionaries. Hence Keill has
1
30

instead of
1
55
.

The formulæ for the attraction of a circular lamina and of a sphere
are implicitly given by Newton; so that there is no reason for the error.

90. The Paris Mémoires for 1708, published in 1709, contain observa-
tions of the length of the seconds pendulum made by Feuillée in 1704
at Porto Bello and somewhat later at Martinique: see pages 8 and 16 of
the volume. The anomalous results obtained were noticed by Newton in
the second and third editions of the Principia.

91. We have next to advert to a paper published in pages 330…342 of
Number 331 of the Philosophical Transactions, which is for the months



miscellaneous investigations to 1720. 56

of July, August, and September, 1711. The number forms part of Volume
xxvii. which is for the years 1710…1712, and is dated 1712.

The title of the paper is Johannis Freind, M.D. Oxon. Prælectionum
Chymicarum Vindiciæ, in quibus Objectiones, in Actis Lipsiensibus Anno
1710. Mense Septembri, contra Vim materiæ Attractricem allatæ, diluun-
tur.

The paper is not mathematical. Freind had published a work on
Chemistry, and the editors of the Leipsic Acta found fault with the use
he made of the principle of Attraction, In this paper Freind maintains
the truth and the importance of the principle.

92. In the Paris Mémoires for 1713, published in 1716, there is a
memoir entitled De la Figure de la Terre. Par M. Cassini. The memoir
occupies pages 188…200 of the volume.

The arc of the meridian measured from Paris to the south of France,
compared with the arc measured northwards, seemed to indicate that the
length of a degree of the meridian decreased from the equator to the
pole. This result suggested that the Earth is an oblongum. Accordingly
Cassini so considers it; and assuming that the excentricity of the gener-

ating ellipse is about
1
11

he calculates a table of the length of a degree

of the meridian for every degree of latitude. The memoir is substantially
reproduced in pages 237…245 of the work De la Grandeur et de la Figure

de la Terre; but the table is there calculated for the excentricity
1
7
.

Some introductory matter given in the memoir is not reproduced
in the work just cited. This matter contains short accounts of the
opinions of Newton and of Huygens in favour of the oblate form of the
earth. Then a contrary opinion is noticed at greater length, beginning
thus: Tout au contraire, M. Einsenschmid célebre Mathématicien de
Strasbourg…. We have already learned the nature of this opinion: see
Art. 76.
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There is an account of the memoir on pages 62…66 of the historical
portion of the volume. It is there remarked that supposing the length
of a degree of the meridian to decrease from the equator to the pole,
it would not follow, as had been erroneously suggested in the historical
portion of the Mémoires for 1701, that the Earth is flattened at the poles:
see Art. 81.

93. James Hermann published at Amsterdam in 1716 a quarto vol-
ume, entitled Phoronomia, sive de Viribus et Motibus corporum et fluido-
rum libri duo.

We are concerned only with pages 361…371 of the work.

94. Hermann solves Huygens’s problem of the relative equilibrium of
rotating fluid under the action of a constant force directed to a point on
the axis of rotation. Hermann gives two solutions; one on Newton’s prin-
ciple of columns balancing at the centre, the other on Huygens’s princi-
ple of the plumb-line.

95. Hermann also solves by both principles the problem in which
the central force, instead of being constant, varies as the distance; in this
case he shews that the figure is an oblatum. This is the first appearance
of the problem and its solution. For the case of the Earth the ratio of
the axes would be nearly as √288 is to √289, that is, approximately as
577 is to 578.

Hermann’s investigations of both problems are correct and satisfac-
tory. There is, however, a curious circumstance connected with his sec-
ond problem. He notices that the result differs very much from that
which Newton had obtained for the ratio of the axes of the Earth; he
does not expressly say that Newton was wrong, but he seems to imply
that his own was the correct result. He observes that neither Newton
nor David Gregory had determined what the figure must be for equilib-
rium; and this is certainly true. See, however, Boscovich, De Litteraria
Expeditione, pages 442…446.
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96. In Newton’s fluid mass, assumed to be an oblatum, so long as we
keep to the same radius vector, the attraction varies as the distance from
the centre, and so also does the gravity. And at the surface the gravity
resolved along the radius vector varies inversely as the length of the ra-
dius vector. Now Hermann notices these results; though he seems to pay
no attention to the limiting clauses which I have printed in Italics. Both
results hold for Hermann’s own fluid mass. Moreover, Hermann demon-
strates a proposition which we may enunciate thus: Suppose a fluid mass
in relative equilibrium under a centrifugal force and a central force to
some point of the axis of rotation; then if at the surface the gravity re-
solved along the radius vector varies inversely as the length of the radius
vector, the attraction at the surface varies as the distance from the centre.

Perhaps, from seeing that his fluid mass and Newton’s had similar
properties, Hermann inferred that Newton’s figure and his own ought to
be identical. But it is sufficient to observe that Newton’s problem and
Hermann’s are essentially different. Newton does not assume attraction
to a fixed centre varying as the distance; he assumes that every parti-
cle attracts every other according to the law of the inverse square of the
distance. It should have been a caution to Hermann that his own prob-
lem and Huygens’s led to approximately the same result for the ratio of
the axes, though the laws of force were very different; thus from partial
agreement he ought not to have expected universal agreement.

97. Hermann seems to have been much surprised at the proposition
which, as we have said in the preceding Article, he demonstrates. He
observes on his page 369:

Hac verò proprietate posita, quod scilicet solicitationes gravitatis acceleratri-
ces … distantiis à centro … reciproce proportionales sunt, quis crediderit grav-
itates absolutas corporum in iisdem punctis … eorum distantiis … directe pro-
portionales esse?

Boscovich, nearly forty years later, expressed his surprise at the same
result: see his De Litteraria Expeditione … page 403, where he says:
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… gravitates residuæ erunt accuratè in superficie ejus solidi in ratione re-
ciproca distantiarum a centro, quod sane mirum videri possit, cum gravitates
primitivæ ibidem sint in ratione directa distantiarum earundem.

It will be observed that what I call attraction Hermann calls gravitas
absoluta, and Boscovich gravitas primitiva; what I call gravity Hermann
calls solicitatio gravitatis acceleratrix, and Boscovich gravitas residua. See
Art. 25.

98. On his page 372, Hermann discusses a problem about rotating
fluid, which does not concern our subject. Here he falls into an error,
which was pointed out by Clairaut in page 55 of his Figure de la Terre.

99. In the Paris Mémoires for 1718, published in 1719, we have a
memoir entitled De la Grandeur de la Terre et de sa Figure. Par M.
Cassini. It occupies pages 189…196 of the volume; there is an account
of it on pages 64…66 of the historical portion of the volume.

The memoir contains a notice of the labours of the ancients on the
subject, and of the recent operations in France. It is substantially re-
produced in the work De la Grandeur et de la Figure de la Terre, pages
12…18 and 189…196.

100. We have now to consider the account of the measurement of an
arc of the meridian through France, which is contained in the work De
la Grandeur et de la Figure de la Terre; the work has also the title Suite
des Mémoires de l’Academie Royale des Sciences, Année 1718. The date of
publication is 1720.

The volume is in quarto. It contains Title, Half-title and Table of Con-
tents on 6 pages, and 306 pages of text. There is a small map of France,
and 4 large maps shewing the meridian line of Paris traced through the
kingdom; there are also 15 plates. A list of the misprints in the work is
given in the Paris Mémoires for 1732, pages 512 and 513.

101. The volume is divided into two parts; in the first part the
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operations are described which relate to the arc extending from Paris
southwards to the Pyrenees, and in the second part the operations
are described which relate to the arc extending from Paris northwards
to Dunkirk. The author’s name is not given explicitly; but we learn
incidentally that it was J. Cassini: see pages 5, 10, 193, 302, 303, 304,
305.

The operations which the volume records are the most accurate and
important which had as yet been performed in connection with the Fig-
ure of the Earth; and the account given of them is interesting and sat-
isfactory. The instruments and the methods of using them are fully and
clearly described, and the calculations exhibited in such a manner that
they can be easily tested.

102. The determination of an arc of the meridian we are now consid-
ering is a continuation of the work commenced by Picard in 1669. Picard
measured a base of 5663 toises near Paris; then by a series of triangles
he found the distance between the parallels of Malvoisine and Amiens
to be 78850 toises, corresponding to a difference of 1° 22′ 55″ in latitude:
hence he adopted 57060 as the number of toises in a degree. See pages
273, 256, 281.

It was afterwards proposed to extend Picard’s arc through France; and
the work was committed to D. Cassini and others: but it was interrupted
in 1683. The work was resumed by D. Cassini, J. Cassini, and others in
1700, and the arc was extended southwards to the Pyrenees. In 1718 the
extension of the arc northwards to Dunkirk was commenced. See pages
4, 5, 191. In this extension many of Picard’s triangles were employed:
see pages 191, 255.

103. All the triangles were calculated in succession from Picard’s
original base, which was not re-measured. Two bases of verification were
measured, one near the Pyrenees, and the other near Dunkirk. The dif-
ference between the measured and the calculated length was three toises
in the former case; but this was reduced by some necessary corrections of
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the angles: the difference in the latter case was about a toise. See pages
104 and 221. Both bases of verification were measured by wooden rods.
In the former case four rods each of two toises in length were joined to-
gether, two and two, so as to make two rods each of four toises in length;
in the latter case three rods each of three toises in length were used: the
lengths of the wooden rods were determined in both cases by the aid of
the same iron rule, four feet long. See pages 99 and 219.

Picard’s original base had been measured by four rods each of two
toises in length, which were joined together two and two, so as to make
two rods each of four toises in length. See page 255.

104. The general result obtained is the following: from the southern
arc which extended over nearly 6° 19′, the length of a degree was found
to be 57097 toises; from the northern arc which extended over rather
more than 2° 12′, the length of a degree was found to be 56960 toises.
This was considered to make it sufficiently evident that the length of a
degree of the meridian must diminish from the equator to the pole. As-
suming then that the earth is an oblongum, the ellipticity is found to be
1
95
. See pages 148, 237, 243. A table is given of the length of a degree of

the meridian in different latitudes on the Cassinian hypothesis: see Arts.
39 and 92.

It is now well known that the length of a degree of the meridian in-
creases from the equator to the pole; the contrary opinion however, main-
tained by J. Cassini, found advocates for some years after the publication
of the work we are now considering. As we shall see, the erroneous de-
termination deduced from the French arc was finally corrected by fresh
operations.

105. Pages 255…287 of the volume are devoted to the subject of Pi-
card’s measure of the Earth. As Picard’s book was scarce, large extracts
are given from it; a few remarks are made which do not substantially
affect Picard’s accuracy.
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Pages 287…306 of the volume are devoted to the measure by Snell
and the measure by Riccioli; the value of both is quite demolished: see
Art. 82.

106. A few remarks may be made on some incidental points.
I offer with hesitation an opinion as to instruments; but from the de-

scriptions given it seems to me very unlikely that either the geodetical
or the astronomical angles could have been observed accurately to sec-
onds as is professed. The astronomical instruments used at the north
and south extremities of the arc were different; the former had an error
of 3 seconds in a degree from false centering. See pages 142, 223, 233.

On pages 225…230 we have an account and an explanation of a fact
stated to be then observed for the first time, which gave much trouble
until it was understood. The fact is this in modern language: any star
which is not an equatorial star does not strictly run along the horizontal
wire of a transit instrument as it crosses the meridian of the observer;
thus in determining the zenith distance from observations of the star
when it is not accurately on the meridian, it is necessary to allow for
the curvature of the path.

Speaking of the distinction of the regions of the Earth into East, West,
North and South, our author gives a paragraph which I quote for the
sake of its last example; see his pages 20, 21.

Cette même distinction des régions fut observée dans la construction du
Temple de Jérusalem. Nous voyons aussi qu’elle a été imitée dans la construc-
tion des premiers Temples Chrétiens, quand on l’a pû faire commodément, et
même dans la situation de la Maison de Notre-Dame de Lorette, comme nous
l’avons observé nous-mêmes après plusieurs autres Mathématiciens.

Much importance was attached to the precaution of taking the obser-
vations of stars at the same season of the year: see pages 144 and 231.
It seems to have been made out even then that the altitudes of the stars
varied at different seasons. We know now that the Aberration of Light
would certainly cause such variations.
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Speaking of the largest Egyptian pyramid our author says on his page
154:

Il y a lieu de s’étonner, que M. Graves Mathématicien Anglois, dans sa Pyra-
midographie, ait trouvé la base de cette Pyramide, mesurée par les Triangles, de
693 pieds de Londres….

The error is certainly large; for according to trustworthy statements
the base was originally 764 feet, and is now 746 feet: see Herschel’s Fa-
miliar Lectures on Scientific subjects, page 427. The inaccurate measurer
was John Greaves, Savilian Professor of Astronomy at Oxford.

107. We may state here, though a little out of chronological order,
that a German translation of the De la Grandeur et de la Figure de la
Terre was published in 1741 at Arnstadt and Leipzig. This is entitled
Mathematische und genaue Abhandlung von der Figur und Grösse der Er-
den. There is a preface by J. A. Klimmen, from which we learn that the
translator, whose name is not stated, did not live beyond the commence-
ment of the printing.

The translation is in a small octavo form; there are no maps, but the
other plates of the original are copied, on a diminished scale. The mis-
prints pointed out in the Paris Mémoires for 1732 are corrected.

It seems strange that a translation should have been published when
the original work was just about to be superseded. In 1739 astronom-
ical observations had been made by Maupertuis, Clairaut, Camus and
Le Monnier, in order to determine anew the length of a degree between
Paris and Amiens; and in 1740 Picard’s base was remeasured: in 1744
the work entitled La Meridienne de Paris verifiée appeared.

108. An account of the work De la Grandeur et de la Figure de la
Terre is given in the Paris Mémoires for 1721, published in 1723. The
account is on pages 66…77 of the historical portion of the volume: it
furnishes references to preceding volumes of the Mémoires in which the
subject had been noticed. There is nothing of importance in the account.



miscellaneous investigations to 1720. 64

The following sentence, so far as it is intelligible, suggests a proceed-
ing which may very naturally have been adopted; but I do not know what
authority there is for the statement.

En tirant d’un Lieu une perpendiculaire sur la Méridienne, pour avoir la
distance de ce Lieu par rapport à elle, on a considéré s’il en étoit proche, ou s’il
ne l’étoit pas. Dans le premier cas la perpendiculaire étoit la distance asses juste,
mais dans le second, cette perpendiculaire representoit un petit arc de Cercle,
et l’on avoit égard à la différence de l’arc et de la Corde, qui étoit la distance
cherchée.

Page 146 of the work seems to approach nearest to the latter part of
the above statement.

109. We have now to consider a memoir by Mairan, entitled
Recherches Géométriques sur la diminution des Degrés terrestres, en allant
de l’Equateur vers les Poles: Où l’on examine les conséquences qui en
résultent, tant à l’égard de la figure de la Terre, que de la pesanteur des
corps, et de l’accourcissement du Pendule.

This is contained in the Paris Mémoires for 1720, published in 1722.
The memoir occupies pages 231…277 of the volume.

The memoir may be described generally as consisting of misapplied
mathematics. Mairan was a Cartesian and a Cassinian; so that he upheld
the system of vortices, and the oblong form of the Earth. There is an
account of the memoir in pages 65…79 of the historical portion of the
volume; this is I presume by Fontenelle, who was then Secretary of the
Paris Academy of Sciences: Mairan’s opinions seem here to be accepted
without hesitation.

110. Mairan shews that if the length of a degree of the meridian
decreases from the equator to the pole, the polar diameter must be the
longest. He compares the effect produced by centrifugal force at a place
in the same latitude on the surface of a sphere, an oblong body, and
an oblate body; the latitude being determined in each case by the angle
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between the normal to the surface and the plane of the equator. Part of
his page 244 is unsatisfactory, but it can be easily corrected.

111. Mairan supposes that the Earth was originally of an elongated
form, and that the amount of elongation was diminished by the centrifu-
gal force, but not entirely destroyed. See Bailly’s Histoire de l’Astronomie
Moderne, Vol. ii., page 641.

Mairan’s Proposition VIII. on page 253 is a striking example of the
vagueness of the mechanical language of the period. He speaks about
the centre of the Earth sustaining a part of the effort of gravity: it is
difficult to attach any meaning to such an expression.

112. Mairan has a long discussion on the direction of gravity at dif-
ferent points of the interior of the Earth. Suppose that through any point
of the interior a surface is drawn, similar, similarly situated, and concen-
tric with the external surface; Mairan takes the normal to this surface at
the point for the direction of gravity. Then, to determine the lines of
direction of gravity, he solves what we call a problem of orthogonal tra-
jectories; the curves which are cut at right angles being ellipses, similar,
similarly situated, and concentric. Thus his result coincides with what
we should obtain in seeking the lines of force inside a homogeneous mass
of rotating fluid, supposing it in relative equilibrium. Mairan seems to
attach great importance to the matter; he thinks his lines of direction
may extend beyond the Earth to the boundary of the terrestrial vortex;
he admits however that there is little prospect of verifying his result by
observation: see his page 263.

113. But the most extraordinary part of the memoir is that which
treats of the variation of gravity at the surface of the Earth. Newtoni-
ans and Cassinians agreed in admitting, as a result of observation, the
diminution of gravity in passing from the pole to the equator. Huygens’s
notion that the resultant attraction is constant at all distances from the
Earth’s centre would not reconcile this fact with an oblong form of the
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Earth. Newton’s law of attraction according to the inverse square of the
distance directly contradicted the oblong form. Accordingly, Mairan had
to invent a law; he suggests and rejects various other absurdities before
he produces that which he adopts: we will describe this in modern lan-
guage.

Mairan holds that at every point of the surface of a body of revolu-
tion the force of attraction would vary inversely as the product of the
two principal radii of curvature at the point. His reason for this assump-
tion depends on the fact that adjacent normals to the surface, taken in
the plane of the meridian, intersect at one centre of curvature, while ad-
jacent normals to the surface, taken in the plane at right angles to the
meridian, intersect at the other centre of curvature.

With this arbitrary law, Mairan triumphantly shews that the oblong
form makes gravity decrease from the pole to the equator, which agrees
with observation; while the oblate form makes gravity increase from the
pole to the equator. He prudently abstains from numerical calculation
which would test the extent of his agreement with observation. If we
take an oblongum, we find that Mairan’s law makes the attraction at the
pole bear to the attraction at the equator the ratio of the fourth power of
the polar diameter to the fourth power of the equatorial diameter; thus,

assuming with J. Cassini and Mairan, the ellipticity to be about
1
95
, the

diminution of gravity in passing from the pole to the equator would be

about
1
24

of the gravity at the pole, besides that caused by the centrifugal

force: this is extravagantly greater than observation suggested.
It would be difficult to find a more striking example of misplaced

ingenuity than the pages 264…276 of the memoir, which are devoted to
Mairan’s arbitrary law.

114. With respect to the equation which Huygens obtained, as we
stated in Art. 55, Mairan says on his page 253:
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M. Huguens a donné l’Equation algébrique de la courbe génératrice du
sphéroide applati, par rapport à la Terre supposée primitivement sphérique;
et M. Hermann, qui avoit trouvé la même courbe par le calcul intégral,
dans sa réponse à M. Nieuwentiit, l’a encore donnée par synthèse, et avec la
construction, dans sa Phoronomie.

I have not seen the first production of Hermann, to which Mairan
refers: I have noticed the second in Arts. 93…98.

115. The writers who have appeared before us in the present Chap-
ter added nothing to Newton’s investigations on Attraction and on the
Figure of the Earth; while under the powerful influence of D. Cassini
and J. Cassini doubts had arisen as to the real shape of the Earth. But
the true theory ultimately gained the support of decisive researches and
measurements.

The next three Chapters will be devoted to three eminent mathemati-
cians who all contributed essentially to the advancement of our subject.
Maupertuis adopted and explained Newton’s propositions on Attraction
and on the Figure of the Earth; and he conducted an expedition to Lap-
land, for the measurement of an arc of the meridian, the result of which
was fatal to the Cassinian hypothesis. James Stirling enunciated without
demonstration approximate propositions respecting the magnitude and
the direction of the attraction of a homogeneous oblatum at its surface;
and he implicitly established Newton’s postulate: see Art. 44. Clairaut
produced several valuable memoirs; in particular, during his stay in Lap-
land, he found leisure to compose one on the same subject as Stirling’s:
another memoir led the way to the investigations of the Figure of the
Earth, supposed heterogeneous. These two memoirs were subsequently
embodied by Clairaut in a work of enduring interest and importance.



CHAPTER IV.

MAUPERTUIS.

116. We shall notice in this Chapter the various memoirs which Mau-
pertuis contributed to our subject.

117. A memoir is given on pages 240…256 of Number 422 of the
Philosophical Transactions. The Number is for the months of January,
February, and March, 1732; it forms part of Volume xxxvii. which is for
the years 1731 and 1732, and is dated 1733.

The memoir is entitled De Figuris quas Fluida rotata induere possunt,
Problemata duo; cum conjectura de Stellis quæ aliquando prodeunt vel
deficiunt; et de Annulo Saturni. Authore Petro Ludovico De Maupertuis,
Regiæ Societatis Londinensis, et Academiæ Scientiarum Parisiensis Socio.

118. In the first problem, fluid is supposed to rotate with uniform an-
gular velocity round a fixed axis, and to be attracted to a fixed point in
the axis by a force which varies as any power of the distance. Maupertuis
uses Newton’s principle of balancing columns, and investigates the equa-
tion which determines the form of the surface for relative equilibrium.
He restricts himself, as we should say, to space of two dimensions; but a
modern reader will have no difficulty in solving the problem generally,
and the result will coincide with that of Maupertuis.

119. The second problem is enunciated thus:
Posito quod materia fluens circa axem extra fluentum sumtum, attrahatur

versus centrum in hoc axe positum vi alicui distantiæ a centro dignitati pro-
portionali; dum interea propter fluenti partium attractionem mutuam, sit altera
attractio versus aliud centrum intra fluentum sumtum, quæ in quavis sectione
fluenti revolutionis perpendiculariter per centrum exterius facta, sit alicui dis-
tantiæ a centro interiori dignitati proportionalis: invenire figuram quam fluen-
tum induet.



maupertuis. 69

In the solution of this problem also, Maupertuis restricts himself to
space of two dimensions; but it may be shewn by a more general process
that his result is correct.

Take the axis of 𝑧 for that of rotation; let 𝜔 be the angular veloc-
ity; and (𝑥, 𝑦, 𝑧) any point of the fluid. Then in the usual way, we may
suppose the system reduced to rest, if we impress forces 𝜔2𝑥 and 𝜔2𝑦
parallel to the axes of 𝑥 and 𝑦 respectively.

Let there be a force directed to the origin, denoted by 𝜆𝑟𝑚, where
𝑟 = √(𝑥2 + 𝑦2 + 𝑧2). Besides this there is to be a force of a certain kind,
arising from the attraction of the mass itself. This mass is supposed to
form a symmetrical ring-shaped body. Hence it is obvious that its ac-
tion at any point (𝑥, 𝑦, 𝑧) will lie in the plane which passes through this
point and the axis of 𝑧. It is assumed that while we keep to the same
plane, this action will pass through a fixed point; so that, denoting the
co-ordinates of this point by 𝜉, 𝜂, 0, we have

𝜉
𝑥
=
𝜂
𝑦
=

𝑐
𝑟1
;

where 𝑐 is a constant quantity, and equal to √(𝜉2 + 𝜂2), and 𝑟1 stands for
√(𝑥2 + 𝑦2).

Put 𝑠 for √{(𝑥−𝜉)2+(𝑦−𝜂)2+𝑧2}, and denote the action of the mass
by 𝜇𝑠𝑛.

Then, with the usual notation,

𝑋 = 𝜔2𝑥 −
𝑥
𝑟
𝜆𝑟𝑚 −

𝑥 − 𝜉
𝑠

𝜇𝑠𝑛;

and 𝑌 and 𝑍 can be similarly expressed.
Now

𝑥 − 𝜉
𝑠

𝜇𝑠𝑛 = 𝜇(𝑥 −
𝑐𝑥
𝑟1
) 𝑠𝑛−1

= 𝜇(𝑥 −
𝑐𝑥
𝑟1
) {(𝑟1 − 𝑐)2 + 𝑧2}

𝑛−1
2 = 𝜇(𝑥 −

𝑐𝑥
𝑟1
) {𝑟2 − 2𝑟1𝑐 + 𝑐2}

𝑛−1
2 ;
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and
(𝑥 −

𝑐𝑥
𝑟1
) 𝑑𝑥 + (𝑦 −

𝑐𝑦
𝑟1
) 𝑑𝑦 + 𝑧𝑑𝑧 = 𝑟𝑑𝑟 − 𝑐𝑑𝑟1.

Thus, finally, the equation to the surface of relative equilibrium is

𝜔2

2
(𝑥2 + 𝑦2) −

𝜆𝑟𝑚+1

𝑚+ 1
−
𝜇(𝑟2 − 2𝑟1𝑐 + 𝑐2)

𝑛+1
2

𝑛 + 1
= constant,

that is,
𝜔2

2
(𝑥2 + 𝑦2) −

𝜆𝑟𝑚+1

𝑚+ 1
−
𝜇𝑠𝑛+1

𝑛 + 1
= constant.

120. Maupertuis himself gives two investigations, one for the part of
the mass which is between the axis of rotation and the point (𝜉, 𝜂, 0), and
the other for the part which is beyond this point; but this is unnecessary:
a single investigation with proper generality in the symbols applies to the
whole mass.

The second problem includes the first as a particular case; we have
only to suppose 𝜇 = 0. Maupertuis himself makes this remark: see his
page 253.

Maupertuis suggests, that the constants may happen to be so
adjusted, that what we may call the generating curve of the ring will
consist of two ovals; so that, in fact, there will be two rings. This is
conceivable, but he is wrong in implying that it is possible when 𝑚 = 1,
and 𝑛 = 1; for then the generating curve must consist of only a single
ellipse.

121. The solutions here given by Maupertuis are reproduced by him
in his Figure des Astres; and also, though with less detail, in his memoir,
which is published in the Paris Mémoires for 1734. The problems, though
rather theoretical than practical, were doubtless a valuable contribution
to the science of Hydrostatics of the period.
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As to the popular part of the memoir, we shall say a word hereafter:
see Art. 127.

122. We have next to consider the work published by Maupertuis,
under the title of Discours sur les différentes figures des Astres … Paris,
1732. I have seen only the copy in the library of the Royal Society, which
is marked Ex dono Auctoris. The volume is in octavo, and contains 83
pages, besides the Title and Table of Contents, on four pages.

The mathematical part of the volume consists of the same problems
in French as were given in Latin in the Philosophical Transactions, and
which we have already noticed. Besides this, we have Chapters of a
popular character, which contain general reflexions on the figure of the
Earth, a metaphysical discussion on attraction, and explanations of the
motions of the planets on the system of vortices, and on the system of
gravitation.

123. In his first Chapter, Maupertuis adverts to the researches of
Huygens on the figure of the Earth, and afterwards to those of New-
ton. By taking this order, a reader might be led to suppose that Huygens
preceded Newton in this subject; but, as we have already pointed out,
Newton was the first: see Art. 65.

124. There is a note on page 44 which presents a difficulty. Suppose a
sphere, the radius of which is one foot, and its density the mean density
of the Earth. The attraction which this sphere would exert on a particle
at its surface, is a very small fraction of the attraction which the Earth
would exert on a particle at the surface of the Earth; the numerator of
the fraction would be unity, and the denominator the number of feet
in the Earth’s radius. This substantially agrees with Maupertuis. Then
he proceeds thus: “Deux Spheres semblables, placées à la distance d’un
quart de pouce dans le vuide, employeroient un mois à se joindre.” I
suppose the spheres to be such as have been just mentioned, namely,
each of a foot radius and of the mean density of the Earth; and that
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they are to be placed so that their surfaces may be a quarter of an inch
apart. But then instead of a month the spheres would require only a few
minutes to arrive at contact. Thus I am quite at a loss as to his meaning.

125. A second edition of the Figure des Astres was published, which
I have not seen. Clairaut refers to it on pages 19 and 59 of his Figure
de la Terre; see also D’Alembert’s Opuscules Mathématiques, Vol. vi. page
358. The work seems to have been translated into English.

126. There is an account of Maupertuis’s Figure des Astres on pages
85…93 of the historical portion of the volume of the Paris Mémoires for
1732. Centrifugal Force has puzzled the writer of the account; he says on
page 86, “… les directions de la Force centrifuge sont à chaque instant
les Tangentes de chaque point….” Of course instead of tangents we ought
to read normals.

127. The popular part of the Figure des Astres is reproduced in the
collected edition of the works of Maupertuis, published in four volumes
at Lyons in 1756; it occupies pages 81…170 of the first volume. The
mathematical investigations are not reproduced.

Maupertuis suggests that the variable brightness of certain stars may
be explained by supposing that these stars are very much flattened, and
that, owing to different positions assumed by their axes of rotation, we
sometimes have a much larger disc turned towards us than at other
times. He considers that the nebulæ are really suns or planets, of figures
more or less deviating from spheres.

He suggests that the ring of Saturn may have been formed out of the
tail of a comet which Saturn by the aid of his attraction has appropriated.

128. A memoir by Maupertuis, entitled Sur les loix de l’Attraction, is
contained in the volume for 1732 of the Paris Mémoires, published in
1735. The memoir occupies pages 343…362 of the volume. There is an
account of the memoir on pages 112…117 of the historical portion of
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the volume; this account, like many other attempts to give a translation
of mathematical processes into ordinary language, is scarcely intelligible.

The memoir, according to Bailly, is the first example of the adoption
of the principle of attraction by French mathematicians: see Histoire de
l’Astronomie Moderne, Vol. iii. page 7.

The memoir may be described as an analytical investigation of most
of the results contained in Newton’s two sections on Attraction; adding,
however, nothing of importance to them. The methods employed are
simple and interesting.

129. We will notice the method by which Maupertuis finds the at-
traction of a spherical shell. Suppose the law of attraction that of the
inverse 𝑛th power of the distance. Proceeding as in Art. 4 we obtain

for the attraction of an element of the shell
2𝜋𝑘𝜌𝑦𝑑𝑠

𝑟𝑛
cos 𝜃. Now it will

be found that
𝑑𝑠
𝑑𝑟

=
𝑎

𝑐 sin 𝜃
, and 𝑦 = 𝑟 sin 𝜃. Thus the expression be-

comes
2𝜋𝑘𝜌𝑎𝑑𝑟
𝑐𝑟𝑛−1

cos 𝜃; and cos 𝜃 =
𝑟2 + 𝑐2 − 𝑎2

2𝑐𝑟
, so that finally we have

2𝜋𝑘𝜌𝑎𝑑𝑟
𝑟𝑛

𝑟2 + 𝑐2 − 𝑎2

2𝑐2
; which is immediately integrable.

This is substantially the method of Maupertuis; the chief part of it
consists in making 𝑟 the independent variable. The method is, in fact,
that which Laplace adopted for finding the attraction of a spherical shell;
and it has passed into the elementary text-books on the subject: see Stat-
ics, Chapter xiii.

It will be noticed that in this process Maupertuis made the easy ex-
tension which arises from taking the inverse 𝑛th power of the distance;
while Newton, in the corresponding place, used only the inverse square
of the distance.
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130. Some incidental statements made in the memoir may be noticed.
Maupertuis says on page 343, that a homogeneous fluid mass which

has no motion of rotation, but is left to the influence of its own attrac-
tion, will necessarily assume a spherical form: “car il est facile de voir
qu’il n’y a que cette figure dans laquelle toutes les parties puissent de-
meurer en équilibre.” The belief here expressed was doubtless held by
many of the earlier writers on the subject; but the belief was not founded
on evidence. It is observed by Poisson that it has not been demonstrated
that the sphere is the only figure which can be taken by a fluid at rest
under the mutual attractions of its particles, however natural that may
appear. Traité de Mécanique, Vol. ii. page 543. See also Résal, Traité élé-
mentaire de Mécanique Céleste, page 198.

Maupertuis says on page 346, that if a homogeneous fluid rotates
round an axis, and its particles are attracted towards a centre by a force
which varies as the distance, the form assumed is such that the merid-
ians are ellipses: this we know to be true, with the condition, however,
that the centre of force must be at some point of the axis of rotation.
He adds with respect to the fluid mass: “Et si elle circule autour d’un
axe pris au dehors d’elle, elle forme un anneau dont les sections sont en-
core des ellipses.” This passage taken alone would not be intelligible, but
from another memoir we know all that Maupertuis can have intended to
say; namely, that relative equilibrium will subsist under a certain pecu-
liar assumption: see Art. 119.

Maupertuis offers some remarks on his pages 347 and 348, commenc-
ing with the following sentence: “Supposé que Dieu eût voulu établir
dans la matiére quelque loi d’Attraction, toutes ces loix ne devoient pas
lui paroître égales.” Maupertuis holds that the ordinary law has, as it
were, a reason for preference, because it leads to the result that a sphere
will attract as if it were a particle collected in its own centre. To this
Stay alludes in his Philosophiæ Recentioris, Lib. iv. v. 1582…1584:

Scrutantes quidam; quid Mundi illexerit ipsum
Artificem, legem ut voluisset materiai
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Ponere, quam doceo;…

Boscovich in his note dissents from Maupertuis. See also Bailly, His-
toire de l’Astronomie Moderne, Vol. iii. page 7.

Maupertuis refers on page 361 to thirty propositions relating to at-
tractions, given at the end of Keill’s works; and on page 362 he says
that Keill and many English philosophers believed precipitations, coag-
ulations, crystallizations, and a multitude of other phenomena to arise
from an attraction very powerful at contact, but insensible at great dis-
tances. He adds: “Enfin M. Friend a donné une Chimie, toute déduite
de ce principe.”

131. In the Paris Mémoires for 1733, published in 1735, we have
a memoir by Maupertuis, entitled Sur la Figure de la Terre, et sur les
moyens que l’Astronomie et la Géographie fournissent pour la déterminer.
The memoir occupies pages 153…164 of the volume.

Maupertuis gives analytical investigations of the length of a degree of
longitude and of a degree of meridian on the Earth, supposed to be an
ellipsoid of revolution; and he shews how the axes of the ellipsoid may
be deduced from lengths of degrees determined by measurement.

Maupertuis refers to Huygens, Newton, Cassini, Mairan, and M. des
Aiguiliers; the last is usually written Desaguliers.

Maupertuis also quotes a passage from a letter written by Poleni: we
shall notice the letter in Chapter VIII.

132. In the Paris Mémoires for 1734, published in 1736, we have a
memoir by Maupertuis, entitled Sur les Figures des Corps Célestes. The
memoir occupies pages 55…109 of the volume; there is an account of it
on pages 88…94 of the historical portion of the volume.

The memoir may be regarded as a development of the Figure des As-
tres; for Maupertuis says on page 56:

Je reviens à examiner les figures que les loix de la Statique et de l’Hydro-
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statique doivent donner aux Corps célestes, et j’entrerai sur cette matiére dans
un plus grand détail que je n’ai fait dans le Discours sur la figure des Astres.

The memoir is divided into four parts.

133. The first part of the memoir treats on a subject which Bouguer
discussed in the same volume; and adds nothing fresh. Maupertuis
shews, as Bouguer did, that if the force on a fluid is always directed to
a fixed point, the principles of Newton and of Huygens lead to the same
form for equilibrium, provided the force be a function of the distance
from the fixed point; but they do not lead to the same form if the
expression for the force be the product of a function of the distance into
a function of the angle which determines the position of the distance.

134. Maupertuis gives an extract of a letter sent to Fermat by Pascal
and Roberval, in order to shew that the idea of attraction had occurred
to the writers before Newton proposed it. But we have here only a vague
idea, not any suggestion of the law of the inverse square; and of course
no pretence at demonstration.

135. In the second part of the memoir we have the problems already
given in the Philosophical Transactions; though they are here treated with
less detail: see Art. 121.

For a particular case of the second problem, Maupertuis supposes
that the force which is directed to a fixed point in the axis of rotation
varies inversely as the square of the distance, and that the other force
vanishes. His result then, expressed in modern notation, becomes
𝜇
𝑟
+
𝜔2

2
𝑟2 cos2 𝜃 = constant.

This is in fact the equation which is now obtained in investigating
the form of the atmosphere. Maupertuis does not discuss the equation;
but he implies that it would give him an oval curve about some point not
coinciding with the pole from which 𝑟 is measured. This, however, is not
the case; that is to say, the equation does not correspond to the diagram
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he supplies, and has no application to such an object as Saturn’s ring,
which he has in view.

136. In the third part of the memoir, Maupertuis refers to certain ce-
lestial phænomena which he considers support his theory; such as neb-
ulæ and variable stars.

137. The fourth part of the memoir relates to the figure of the Earth
supposed fluid, and taking the ordinary law of attraction.

This may be described as a commentary on Newton’s theory of the
Figure of the Earth. Newton’s process is developed clearly and correctly;
with the exception of one slight mistake. In Art. 20, we have stated
that the attraction of a certain oblatum is approximately a mean pro-
portional between the attractions of a certain sphere and a certain ob-
longum. Maupertuis incautiously says that the attractions of these bod-
ies are as their masses, and therefore the result which Newton affirms is
true. We have already drawn attention to this mistake: see Art. 22.

138. Maupertuis obtains, as Newton did, the value
1
915

for the ratio

of the difference of the axes to the minor axis in the case of Jupiter; see
Art. 29. Then Maupertuis says on his page 96:

Comme cette différence est beaucoup plus grande que celle qui résulte des
observations de M. Cassini, et que celle qui résulte des observations de M.
Pound, M. Newton conjecture que Jupiter est plus dense vers le plan de son
équateur que vers les poles. Cet excès de densité feroit que la colomne qui
est dans le plan de l’équateur, pour être en équilibre avec celle qui repond au
pole, doit être plus courte que cette Théorie ne la détermine, et par conséquent
le diametre de l’équateur différeroit moins de l’axe, et son rapport à l’axe
approcheroit plus du rapport observé.

This extract shews in what sense Maupertuis understood a rather ob-
scure passage in Newton; but of course the explanation is not very satis-
factory. If the fluid is not homogeneous, the whole investigation must be
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revised; and it will not be sufficient to consider merely the equilibrium
of the polar and the equatorial columns.

This passage in Newton seems to have been considered rather impor-
tant by Maupertuis, for he had previously noticed it, namely, on his page
73. But this reference was not very appropriate; because Maupertuis is
there using, not the law of attraction of nature, but the hypothesis of a
force directed to a fixed point.

139. On the whole, it does not seem to me that this long memoir by
Maupertuis added anything to the current knowledge of the subject; the
commentary on Newton was perhaps the most valuable part.

140. In the Paris Mémoires for 1735, published in 1738, we have a
memoir by Maupertuis, entitled Sur la Figure de la Terre. The memoir
occupies pages 98…105 of the volume.

Maupertuis investigates the expression for the radius of curvature of
an ellipse in terms of the inclination to the major axis; namely, in mod-

ern notation,
𝑎(1 − 𝑒2)

(1 − 𝑒2 sin2 𝜆) 32
. This furnishes a very approximate expres-

sion for the length of a degree of the meridian: see his page 99.
Maupertuis also solves a problem which we may thus enunciate: find

at what point the change in the length of a degree of the meridian is
most rapid.

Let 𝜎 be the measured length of a degree in the latitude 𝜙, and let

𝜌 be the radius of curvature; then we take
𝜎
𝜌
=

𝜋
180

, so that 𝜎 =
𝜋
180

𝜌.

Therefore
𝑑𝜎
𝑑𝜙

=
𝜋
180

𝑑𝜌
𝑑𝜙

. Hence
𝑑𝜌
𝑑𝜙

measures the rate of increase of the

length of a degree; and so we have to make
𝑑𝜌
𝑑𝜙

a maximum. This is
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substantially the process of Maupertuis; see his page 105. The result is
that 𝜙 must be found from the equation 3𝑒2 sin4 𝜙−(4𝑒2−2) sin2 𝜙−1 = 0.

If 𝑒 is very small, we have approximately 𝜙 =
𝜋
4
.

Maupertuis makes some simple remarks on the important subject of
comparing the measured lengths of degrees of the meridian in the most
advantageous manner, so as to render the gradual change in the length
decidedly obvious in spite of the unavoidable errors of observations. See
his pages 101…104.

141. In the Paris Mémoires for 1736, published in 1739, we have a
memoir by Maupertuis, entitled Sur la Figure de la Terre; the memoir
occupies pages 302…312 of the volume.

Maupertuis suggests the following operation. Take two stars which
have about the same right ascension and a difference of one degree in
declination. Find two places 𝐴 and 𝐵 on the Earth’s surface, such that
one of these stars passes over the zenith at 𝐴, and the other over the
zenith at 𝐵. Then determine by measurement the place 𝐶 on the Earth’s
surface, which is on the arc 𝐴𝐵, and equally distant from 𝐴 and 𝐵; and
observe at 𝐶 the zenith distances of the two stars. If the Earth is a sphere
these zenith distances ought to be equal; if the zenith distances are not
found to be equal, we have evidence that the form is not spherical, and
we have information as to whether it is oblate or oblong.

Maupertuis also considers an important point in connexion with a
trigonometrical survey; namely, the ultimate effect of a constant cause
of error by which each side of the triangles employed in succession to
produce the required result is rendered greater than it should be. Then,
combining this with the error which may be expected to arise from the
astronomical observations for finding the amplitude of the arc, he deter-
mines what he considers to be the most advantageous number of trian-
gles to be employed.

Maupertuis refers to this memoir in his account of the operations in
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Lapland; for there the conditions which, according to the memoir, are
most advantageous were reasonably satisfied. See his work La Figure de
la Terre déterminée, page 35.

142. The Paris Mémoires for 1737, published in 1740, contain on
pages 389…466 a memoir by Maupertuis, entitled La Figure de la Terre
déterminée…; the memoir describes the operations in Lapland which es-
tablished the oblate form. There is an account of the memoir on pages
90…96 of the historical portion of the volume.

The memoir is embodied in the book which Maupertuis published in
1738 under the same title: we shall notice this hereafter.

143. A book was published in 1738, entitled Examen désintéressé des
différens ouvrages qui ont été faits pour déterminer la figure de la terre.
See La Lande’s Bibliographie Astronomique, page 406.

La Lande says that this book is marked Oldenbourg, but was printed
at Paris: he adds, that owing to the censorship of the press a book was
often marked with the name of some supposed place where the press
was free, as London or Amsterdam.

I have not seen this edition.
La Lande on his next page gives the title of another work published

in 1738 and also marked Oldenbourg, namely, Examen des trois disser-
tations que M. Desaguliers a publiées sur la figure de la terre, dans les
Transactions Philosophiques, Nos. 386, 387 et 388.

I have not seen this edition.

144. The two works appear together in one volume which is dated
1741, and marked Amsterdam; this volume I will now describe.

The volume is in octavo; there are forty-six unnumbered pages, fol-
lowed by 160 which are numbered. The Examen désintéressé extends to
page 104, and the rest of the volume is devoted to the Examen des trois
dissertations.
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145. I begin with the Examen désintéressé. The title-page says that it
is the second edition, augmented by the history of the book. The title-
page has the motto, “Et mundum tradidit disputationi eorum. Eccles.
cap. iii. v. 11.”

146. The work is anonymous; but La Lande says that it was writ-
ten by Maupertuis. This is also clear from other sources. See Bouguer’s
Figure de la Terre, pages 174 and 175, and his Lettre … Astronomique
Pratique, pages 6, 7, 9, and 10; also La Condamine’s Réponse … page 5.
It affects to be very impartial, and is certainly very clever and amusing;
but it contributes nothing new to the knowledge of the subject. The work
seems to have attracted great attention at the time; and, as we learn from
the Introduction, it was attributed to Mairan and to Fontenelle, although
they were opposed to the opinion of Maupertuis. In fact, as La Lande
remarks, the smart bantering tone of the work might easily deceive a
reader and leave him doubtful whether the author was in favour of the
oblate or oblong form.

147. Thirty-six of the unnumbered pages are devoted to the Histoire
du Livre; these pages constitute an outline of the contents of the work.
But one matter here considered is not included in the work; it had, I
presume, happened since the publication of the first edition. A distin-
guished Danish astronomer, named P. Horrebow, had written a work on
the Theory of the Earth, and well-feigned surprise is expressed at his
rashness in declaring for the oblate form. See Petri Horrebowii Opera,
1740, Vol. i. page 381.

148. In the first part of the work the writer speaks of the important
measurements which had been made, namely, that at the polar circle
which favoured the oblate form, and five operations by Cassini which
favoured the oblong form. The measurement at the polar circle will be
discussed in Chapter VII.

In noticing the operations at the polar circle the writer puts the am-
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plitude of the arc at 57′ 25″, omitting the correction for Aberration which
he says is not yet allowed by all the world. By omitting the Aberration
the two determinations of the amplitude, by two different stars, agree to
a second. The length of the degree is first stated as 57437 toises; but this
is the length which Maupertuis really obtained by allowing for Aberra-
tion, and is, I presume, a misprint. Afterwards, the number is given as
57497; and this is what it should be if we neglect Aberration.

The five operations by Cassini are those which are described in the
Paris Mémoires for 1701, 1713, 1718, 1733 and 1734. The writer says in
his usual jesting manner that since all these operations were in favour of
the oblong form he is astonished that any more should be sought; and
he often recalled the saying of an ancient, that if ignorance is the pun-
ishment of too little study, uncertainty is often the reward of too much.

149. In the second part of the work, we have notices of the authors
who had discussed the theory of the Figure of the Earth. For the oblate
form Huygens, Newton, David Gregory, and Hermann are brought for-
ward. For the oblong form the far less eminent names of Childrey, Bur-
net, Eisenschmidt and Mairan are brought forward. Childrey seems to
have been the author of a description of England; the others we have
already mentioned.

150. Let us now turn to that part of the volume which is devoted to
the consideration of the dissertations published by Desaguliers.

The title-page has the motto:
Magnus sine viribus ignis

Incassum furit.
Virg. Georg. Lib. iii. v. 99, 100.

There is no statement that this is a second edition; it is dated 1741.
After the title, we have a notice by the bookseller; he ascribes the

work to a learned friend to whom he had shewn the former work. La
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Lande does not say by whom it was written, but I presume that the
whole volume is really by the same author, that is, by Maupertuis.

The work shews that some of the objections which Desaguliers had
brought against Cassini were really unfounded; especially those in the
first of the three dissertations. It will be made clear hereafter, that De-
saguliers was not judicious in his criticisms: see Chapter VIII.



CHAPTER V.

STIRLING.

151. Stirling was the first person who turned his attention to the
important point which had been assumed by Newton in his theory of the
Figure of the Earth; see Art. 44. The memoir which we shall now notice
is entitled, Of the Figure of the Earth, and the Variation of Gravity on the
Surface. By Mr. James Stirling, F.R.S.

The memoir occupies pages 98…105 of Number 438 of the Philosoph-
ical Transactions, which is for the months July, August and September,
1735. The Number forms part of Vol. xxxix. which is for the years 1735,
1736, and is dated 1738.

152. Stirling begins thus:
The Centrifugal Force, arising from the Diurnal Rotation of the Earth, de-

presseth it at the Poles, and renders it protuberant at the Equator; as has been
lately advanced by Sir Isaac Newton, and long ago by Polybius, according to
Strabo in the Second Book of his Geography. But although it be of an oblate
spheriodical Shape, yet the kind of that Spheroid is not yet discovered; and
therefore I shall suppose it to be the common Spheroid generated by the Ro-
tation of an Ellipsis about its lesser Axis; although I find by Computation, that
it is only nearly, and not accurately such. I shall also suppose the Density to be
every where the same, from the Center to the Surface, and the mutual Gravita-
tion of the Particles towards one another to decrease in the duplicate Ratio of
their Distances.

The late Sir J. W. Lubbock says in the Preface to his Account of the
“Traité sur le Flux et Réflux de la Mer” of Daniel Bernoulli:

I have searched in Strabo in vain for the remarkable passage alluded to by
Stirling; but at all events the glory of the discovery of the true figure of the
Earth belongs to Newton.

Perhaps Sir J. W. Lubbock expected too much. Strabo certainly says
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that Polybius supposed the equatorial regions to be elevated. See page 97,
near the bottom, of Casaubon’s edition of Strabo, the paging of which is
given in the margins of other editions. See also a note on page 254 of
Vol. i. of the French translation of Strabo by De la Porte du Theil and
Coray.

153. Stirling states without demonstration approximate results
respecting a homogeneous oblatum. He gives the direction and the
magnitude of the action which the oblatum exerts on a particle at its
surface, both when the oblatum does not revolve, and when it does. The
approximations are true to the order of the square of the excentricity of
the generating ellipse.

Let 𝑃 denote any point on the generating ellipse; let 𝐶𝐴 and 𝐶𝐵 be
the semi-axes. Let 𝑃𝐺 be the normal at 𝑃, meeting the greater axis at 𝐺.

Take 𝐶𝐻 =
3
5
𝐶𝐺.

Then Stirling says, when there is no rotation 𝑃𝐻 is the direction of
gravity and proportional to the value of it.

Draw 𝑃𝑀 perpendicular to 𝐶𝐴; let 𝐶𝑀 = 𝑥, and 𝑃𝑀 = 𝑦; let 𝑋 and 𝑌
denote the attractions at 𝑃 parallel to 𝐶𝐴 and 𝐶𝐵 respectively. Then if 𝜌
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denote the density, and 𝑒 the excentricity, we have by the modern theory

𝑋 = 2𝜋𝜌(1 − 𝑒2)𝑥∫
𝜋
2

0
sin3 𝜃(1 − 𝑒2 sin2 𝜃)−1𝑑𝜃,

𝑌 = 4𝜋𝜌𝑦∫
𝜋
2

0
cos2 𝜃 sin 𝜃(1 − 𝑒2 sin2 𝜃)−1𝑑𝜃;

see Statics, Chapter xiii.
If we neglect 𝑒4 and higher powers of 𝑒 we shall obtain

𝑋 =
4𝜋𝜌
3
𝑥 (1 −

𝑒2

5
) , 𝑌 =

4𝜋𝜌
3
𝑦 (1 +

2𝑒2

5
) ;

thus

𝑌
𝑋
=
𝑦 (1 +

2𝑒2

5
)

𝑥 (1 −
𝑒2

5
)
=

𝑦

𝑥 (1 −
3𝑒2

5
)

approximately.
But by the nature of the ellipse 𝐶𝐺 = 𝑒2𝑥, so that

𝐶𝐻 =
3𝑒2𝑥
5

, and 𝐻𝑀 = 𝑥(1 −
3𝑒2

5
) .

Thus the component attractions may be represented by 𝑃𝑀 and 𝑀𝐻
in magnitude and direction; and therefore the resultant may be repre-
sented by 𝑃𝐻 in magnitude and direction.

When there is rotation and relative equilibrium 𝑃𝐺 represents the re-
sultant action in magnitude and direction. Stirling does not make any
distinction in language corresponding to the fact that this statement is
exact while the former is approximate. We know that for the equilib-
rium of a fluid, the resultant action must be normal to the surface, so
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that 𝑃𝐺 is exactly the direction of this action. Now take the expressions
given for 𝑋 and 𝑌, and introduce the centrifugal force; then the actions
at 𝑃 parallel to the axis of 𝑦 and 𝑥 respectively will be 𝜇𝑦 and 𝜆𝑥, where
𝜇 and 𝜆 are constants: so that these actions are proportional to 𝑦 and
𝜆
𝜇
𝑥 respectively. But as we know that 𝑃𝐺 is the direction of the resul-

tant, the components must be proportional to 𝑃𝑀 and 𝑀𝐺, respectively;

hence 𝑀𝐺 must be equal to
𝜆
𝜇
𝑥, and 𝑃𝐺 will represent the resultant in

magnitude and direction.
This simple process does not occur very often in works on the subject:

it is given on page 113 of Laplace’s Théorie … de la Figure elliptique des
Planetes, at least substantially.

154. Let 𝜆 denote the latitude of 𝑃, that is, the angle 𝑃𝐺𝑀: this will
of course be very nearly equal to the angle 𝑃𝐶𝑀. We can express 𝑃𝐻
and 𝑃𝐺 in terms of 𝜆 and the elements of the ellipse; thus we obtain the
following approximate results which in effect Stirling gives: first suppose
no rotation, then if 𝐹 denote the attraction at the pole, the attraction at

𝑃 is 𝐹 (1 −
𝑒2

10
cos2 𝜆); next suppose rotation, then if 𝐺 denote the gravity

at the pole, the gravity at 𝑃 is 𝐺(1 −
𝑒2

2
cos2 𝜆).

In the diagram of Art. 153, the attraction at 𝑃 is denoted by 𝑃𝐻, and
the gravity at 𝑃 by 𝑃𝐺: thus, as Stirling remarks, 𝐻𝐺 represents the cen-
trifugal force at 𝑃.

It is easy to give exact statements of the nature of Stirling’s approxi-
mations; this, as we shall see hereafter, was done by Thomas Simpson.

155. Stirling applies the expression for the value of gravity at any
point of the surface to some observations respecting the relative number
of vibrations of the seconds pendulum at London and at Jamaica; he
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deduces from these observations
1
191

as the ellipticity: but he goes on to

shew that this value is inadmissible.
Stirling makes the following remark respecting pendulum observa-

tions:
From all the Experiments made with Pendulums, it appears that the Theory

makes them longer in Islands, than they are found in fact…. This Defect of
Gravity in Islands is very probably occasioned by the Vicinity of a great Quantity
of Water, which being specifically lighter than Land, attracts less in Proportion
to its Bulk.

Modern writers however appear to suggest that gravity may be greater
on islands than on continents: see Airy’s Figure of the Earth in the En-
cyclopædia Metropolitana, page 230, and Stokes’s Variation of Gravity at
the Surface of the Earth in the Cambridge Philosophical Transactions, Vol.
viii.

156. We have seen in Art. 44, that Newton assumed without demon-
stration an oblatum as a possible form of relative equilibrium for a mass
of revolving fluid. Laplace asserts that the defect was first supplied by
Clairaut in the Philosophical Transactions for 1737; see the Mécanique
Céleste, Vol. v. page 6. But perhaps we may consider that Stirling had
already obtained this result. The main thing to be proved was that the
resultant action at any point of the surface would be normal to the sur-
face, when a proper relation was established between the ellipticity and
the ratio of the centrifugal force to the attraction. The relation, in the

notation we have used, is that
𝜆
𝜇
=

𝐺𝑀
𝐶𝑀

; that is,
𝜆
𝜇
= 1 − 𝑒2. I do not

say that Stirling gives this relation explicitly; but it seems to me implied
in his remarks. Such too appears to have been the opinion formed at the
time; as we may infer from a passage in the Philosophical Transactions,
Vol. xl. page 278, which will be quoted in Art. 168. See also Lubbock,
Account of the Traité…, page vi. However, Stirling’s results were given
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without demonstration; moreover, we find from the passage in the Philo-
sophical Transactions, to which reference has just been made, that they
could not have been known to Clairaut when he wrote his first paper on
the subject; so that Clairaut’s merits remain undiminished.

157. I find it difficult to ascertain what opinion Stirling held as to
the agreement of the theory with facts. He says, as we have seen, in
his commencement referring to the Earth’s elliptic figure, “that it is only
nearly, and not accurately such.” But further on he says very positively:

And whereas the Earth could not be of an oblate spheroidical Figure, unless
it turned round its Axis; nor could it turn round its Axis, without putting on
that Figure….

Moreover he compares his theory with observation in the case of
Jupiter, and finds them to agree nicely; then he says:

And if this Theory agrees so well with Observations in Jupiter, there is no
doubt but it will be more exact in the Earth, whose Diameters are much nearer
to Equality.

After he has made the suggestions respecting pendulum observations
on islands, which we have quoted, he gives the following statements:

And I find by Computation, that the Odds in the Pendulums betwixt Theory
and Practice is not greater than what may be accounted for on that Supposition.
I shall also observe, that although the Matter of the Earth were entirely uniform,
yet the Hypothesis of its being a true Spheroid is not near enough the Truth to
give the Number of Vibrations which a Pendulum makes in twenty-four Hours.

He concludes thus:
But after the French Gentlemen who are now about measuring a Degree,

and making Experiments with Pendulums in the North and South, shall have
finished their Design, we may expect new Light in this Matter.

158. Stirling’s mathematical powers were highly esteemed by his
contemporaries. Clairaut calls him “one of the greatest Geometricians
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I know in Europe.” Philosophical Transactions, Vol. xl. page 278. See
also Maclaurin’s Fluxions, page 691; Todhunter’s History of the Theory of
Probability, pages 188, 190.

Stirling’s name seems to be omitted in the ordinary biographical dic-
tionaries. The Abridgement of the Philosophical Transactions by Hutton,
Shaw, and Pearson, contains some notices entitled Biography; or, Account
of Authors. All that is there recorded of Stirling is in Vol. vi. page 428,
where we read: “This very respectable mathematician was agent for the
Scotch Mine Company, Leadhills. He died the 5th of December, 1770.”
Sir John Leslie gives an interesting notice of Stirling in the Dissertation
on the Progress of Mathematical and Physical Science, which forms part
of the Encyclopædia Britannica: see page 711 in the eighth edition of the
Encyclopædia.



CHAPTER VI.

CLAIRAUT.

159. In this Chapter we shall give an account of certain memoirs
by Clairaut; these exhibit the high mathematical power of their author,
and form the origin of the researches afterwards embodied by him in his
great work entitled Théorie de la Figure de la Terre.

160. In the Paris Mémoires for 1733, published in 1735, we have a
memoir by Clairaut, entitled Détermination géométrique de la Perpendic-
ulaire à la Méridienne tracée par M. Cassini; avec plusieurs Méthodes d’en
tirer la grandeur et la figure de la Terre. The memoir occupies pages
406…416 of the volume.

Clairaut shews that by such a process as Cassini adopted, the curve of
minimum length between its extreme points on the surface of the Earth
is obtained; and this curve is not in general a plane curve, unless the
Earth is a sphere.

Clairaut then proceeds to investigations respecting curves of mini-
mum length. For a surface of revolution he obtains the property, now
well known, that the sine of the angle made by the curve at any point
with the meridian varies inversely as the length of the perpendicular
from the point on the axis of revolution. He gives special attention to
the case in which the surface is an ellipsoid of revolution.

A mistake occurs on page 414, which also influences page 416.

Clairaut says that if 𝑚 is greater than unity 𝑢2 − 1 +
𝑢2

𝑝2
is obviously

greater than
𝑢2 − 1
𝑚2 +

𝑢2

𝑝2
; but 𝑢2 − 1 is a negative quantity, and so his

statement is wrong.

161. In the Paris Mémoires for 1735, published in 1738, we have a
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memoir by Clairaut entitled Sur la nouvelle Méthode de M. Cassini, pour
connoître la Figure de la Terre. The memoir occupies pages 117…122 of
the volume.

This memoir consists of simple and interesting investigations of the
geometrical theorems involved in the application of Cassini’s method.

An important proposition in solid geometry occurs here, perhaps for
the first time. At any point, 𝑀, of a surface of revolution, let a normal
section be made at right angles to the plane of the meridian; then the ra-
dius of curvature of this section at 𝑀 is the length of the normal between
𝑀 and the axis of revolution. Clairaut’s demonstration is sound; but he
leaves to his readers the trouble of constructing a diagram without any
directions.

162. In the Paris Mémoires for 1736, published in 1739, we have
a memoir by Clairaut, entitled Sur la Mesure de la Terre par plusieurs
Arcs de Méridien pris à différentes Latitudes. The memoir occupies pages
111…120 of the volume.

Let 𝑥 be the abscissa and 𝑦 the ordinate of any point on a curve; and
suppose that the radius of curvature is equal to 𝑎+ 𝑏𝐴+ 𝑐𝐴2 +…, where

𝐴 is the angle whose tangent is
𝑑𝑥
𝑑𝑦

, and 𝑎, 𝑏, 𝑐, … are constants. Then

Clairaut shews how we may express 𝑥 and 𝑦 in terms of 𝑧, which denotes
the sine of 𝐴.

He practically confines himself to the case in which the above series
contains only the three terms explicitly given; and for this case he cal-
culates some numerical results which might be useful for application to
the arcs about to be measured in Lapland and Peru, compared with that
measured in France.

Let 𝑚 denote the excess of the radius of curvature at the equa-
tor above that at latitude 45°, and let 𝑝 denote the excess of the
radius of curvature at latitude 45∘ above that at 67∘; then Clairaut
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finds 𝑎 −
2551𝑚 + 2904𝑝

3283
for the equatorial semi-diameter, and

𝑎 +
200𝑚 − 2263𝑝

3283
for the polar semi-diameter. I have corrected a sign

in the former value. On the Cassinian hypothesis 𝑚 and 𝑝 will both be
positive, on the Newtonian hypothesis they will both be negative.

163. We have next to consider a memoir by Clairaut entitled Inves-
tigationes aliquot, ex quibus probetur Terræ figuram secundum Leges at-
tractionis in ratione inversâ quadrati distantiarum maximè ad Ellipsin ac-
cedere debere, per Dn. Alexin Clairaut, Reg. Societ. Lond. et Reg. Scient.
Acad. Paris. Soc.

This memoir occupies pages 19…25 of Number 445 of the Philosoph-
ical Transactions; which is for the months January… June, 1737. The
Number forms part of Vol. xl. which is for the years 1737, 1738, and
is dated 1741.

The object of the memoir is to demonstrate Newton’s postulate; see
Art. 44. Clairaut obtains an approximate expression for the attraction of
an oblatum at any point of its surface; and thus shews, that with a suit-
able value of the ellipticity the resultant of the attraction and centrifugal
force at any point of the surface will be normal to the surface at that
point.

164. In Clairaut’s work on the Figure of the Earth he did not repro-
duce this approximate solution of the problem of the homogeneous obla-
tum; for Maclaurin had in the meantime given an exact determination
of the attraction of such a body, and so Clairaut followed him and ex-
hibited an exact solution: see Clairaut’s Figure de la Terre, page 157. But
the method used in this memoir for the homogeneous oblatum is used
in the work for the heterogeneous oblatum: pages 233…243 of the work
reproduce the essence of this very ingenious method.

165. In this memoir we have for the first time the approximate
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method of determining the attraction of an oblatum on a particle at its
pole, which still retains a place in elementary works: see Statics, Art.
217. The method occurs in the Figure de la Terre, pages 239…243, where
it is used for a particle situated at any point of the polar axis produced.

166. We may observe that Clairaut’s memoir begins rather inauspi-
ciously by apparently adopting the error we have noticed in Newton and
David Gregory: see Arts. 33 and 84. However, as we proceed we find that
Clairaut really understood the theorem correctly: see especially page 24
of the memoir, and also pages 188…190 of the Figure de la Terre.

167. The next memoir is entitled, An Inquiry concerning the Figure of
such Planets as revolve about an Axis, supposing the Density continually to
vary, from the Centre towards the Surface; by Mr. Alexis Clairaut, F.R.S.
and Member of the Royal Academy of Sciences at Paris. Translated from
the French by the Rev. John Colson, Lucas. Prof. Math. Cantab. and F.R.S.

This memoir occupies pages 277…306 of Number 449 of the Philo-
sophical Transactions, which is for the months August and September,
1738. The Number forms part of Vol. xl.

168. Clairaut begins by adverting to Newton’s researches on the Fig-
ure of the Earth, and especially to his important postulate; see Art. 44.
Clairaut says:

What at first seem’d to me worth examining, when I apply’d myself to this
Subject, was to know why Sir Isaac assumed the Conical Ellipsis for the Figure
of the Earth, when he was to determine its Axis….

I began then with convincing myself by Calculation, that the Meridian of
the Earth, and of the other Planets, is a Curve very nearly approaching to an
Ellipsis; so that no sensible Error could ensue by supposing it really such. I
had the Honour of communicating my Demonstration of this to the Royal So-
ciety, at the Beginning of the last Year; and I have since been inform’d, that
Mr Stirling, one of the greatest Geometricians I know in Europe, had inserted a
Discourse in the Philosophical Transactions, No. 438. wherein he had found the
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same thing before me, but without giving his Demonstration. When I sent that
Paper to London, I was in Lapland, within the frigid Zone, where I could have
no Recourse to Mr Stirling’s Discourse, so that I could not take any Notice of
it.

Of course Clairaut did not demonstrate, as he says, that the meridian
is nearly an ellipse, but only that an ellipse is an approximate solution.
As we have stated in Art. 130, the earlier writers often assumed that a
fluid mass, if acted on by no external force, would necessarily assume a
spherical form. In like manner, when Newton’s postulate had been estab-
lished, it was often assumed, as here implicitly by Clairaut, that a fluid
mass rotating with uniform angular velocity, and in relative equilibrium,
would necessarily assume the form of an oblatum.

169. The first part of the present memoir determines the attraction
at any point of an ellipsoid of revolution, supposing it to be composed of
similar strata varying in density. The investigations are only approximate,
extending to the first power of the ellipticity.

All that this part of the memoir contains is included in Clairaut’s Fig-
ure de la Terre; but in the work there is a gain both as to simplicity and to
generality. Problem I. of the memoir corresponds to Section 45 on pages
239…243 of the work. Problem II. and Problem III. of the memoir are
included in Section 46 on pages 243…247 of the work. The Theorem on
page 282 of the memoir corresponds to Section 44 on pages 236…239 of
the work. Problem IV. of the memoir corresponds to Sections 24 and 25
on pages 200…202 of the work. Problem V. of the memoir corresponds
to Section 26 on pages 203…208 of the work; the investigation is given
at full in the work, but only the result in the memoir. Problem VI. and
Problem VII. of the memoir are included in Section 29 on pages 209…218
of the work.

The work is more general than the memoir. In the memoir it is as-
sumed that the strata are similar, so that the ellipticity is the same for
all the strata; in the work this is not assumed. In the work the formulæ
contain a general symbol to represent the density; in the memoir a law
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of density is assumed, the density being denoted by 𝑓𝑟𝑝 + 𝑔𝑟𝑞, where 𝑓,
𝑔, 𝑝, 𝑞 are constants, and 𝑟 is the variable polar semi-axis of the strata:
the integrations are effected in the memoir, but the formulæ are thus
rendered less simple in appearance than they are in the work.

170. The second part of the memoir contains the application of the
first part, to find the figure of a nearly spherical fluid mass which rotates
about an axis.

This part is unsatisfactory, because the only condition of equilibrium
which Clairaut regards is, that the resultant action at every point of the
free surface shall be normal to the surface at the point. This is not suf-
ficient for the equilibrium of a heterogeneous fluid mass. Clairaut dis-
covered his error, and acknowledged it; see page 155 of his Figure de la
Terre: here he allows that his investigations in the memoir are unten-
able, except on the supposition that the interior parts of the Earth had
been originally solid. In the Sections 37 and 39, on pages 225, 226, 228,
and 229 of the work, we have an equivalent for pages 288…294 of the
memoir, but expressed more accurately.

171. On page 294 of the memoir, we have the first appearance of
the theorem which is now known as Clairaut’s Theorem: see Section 49,
on pages 249, 250 of the Figure de la Terre. We will state the theorem.
From the value of gravity at the pole subtract the value of gravity at the
equator, and divide the remainder by the value of gravity at the equator;
this fraction we shall call Clairaut’s fraction. Then Clairaut’s Theorem
asserts that the sum of the ellipticity of the surface and Clairaut’s fraction
is equal to twice the ellipticity of the Earth considered as a homogeneous
fluid. We shall defer the demonstration of the theorem until we give an
account of Clairaut’s Figure de la Terre.

172. Clairaut deduces from his theorem a result contrary to a state-
ment made by Newton; see Art. 30.

Clairaut, speaking of Newton, says:



clairaut. 97

He affirms, that the Earth is denser towards the Centre than at the Superfi-
cies, and more depress’d than his Spheroid requires. But by the foregoing The-
ory we may easily perceive, that if the Density of the Earth diminishes from
the Centre towards the Superficies, the Diminution of Gravity from the Pole to-
wards the Equator will be greater than according to Sir Isaac’s Table; but at the
same time the Earth will not be so much depress’d as his Spheroid requires,
instead of being more so, as he affirms.

The two statements made by Clairaut are connected by his Theorem,
so that one will follow from the other. In the Section 38, on pages 226,
227 of his work, he shews that if the density diminishes from the centre
to the surface, the ellipticity is in general less than for the homogeneous
body: the condition which prevents the statement from being universally
true is there given.

Clairaut proceeds to say:
Yet I would not by any means be understood to decide against Sir Isaac’s De-

termination, because I cannot be assured of his Meaning, when he tells us, that
the Density of the Earth diminishes from the Centre towards the Circumference.
He does not explain this, and perhaps instead of the Earth’s being compos’d of
parallel Beds or Strata, its Parts may be conceived to be otherwise arranged and
disposed, so as that the Proposition of Sir Isaac shall be agreeable to the Truth.

In his Figure de la Terre, however, Clairaut does not hesitate to decide
against Newton: see Art. 30.

173. As an example, Clairaut takes the following case:
Setting aside all Attraction of the Parts of Matter, if the Action of Gravity

is directed towards a Centre, and is in the reciprocal Ratio of the Squares of
the Distances, the Ratio of the Axes of the Spheroid will then be that of 576 to

577: And the Gravity at the Pole is greater than at the Equator by
1
144

th Part, or

thereabouts. Which may be a Confirmation of what is here advanced, especially
to such as will not be at the Pains of going through the foregoing Calculations.
For we may consider the Spheroid now mention’d, in which Gravity acts in a
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reciprocal Ratio of the Squares of the Distances, as composed of Matter of such
Rarity, in respect of that at the Centre, that the Gravity is produced only by the
Attraction of the Centre or Nucleus.

This is the first appearance of a problem which may be described as
a companion to that discussed by Huygens; and which has sometimes
been erroneously ascribed to Huygens: see Art. 64.

174. Clairaut makes some remarks on the two principles which were
then in use for determining the form of a fluid in equilibrium, namely,
Newton’s principle of balancing columns and Huygens’s principle of the
plumb-line: he states the reasons which induced him to adopt the lat-
ter principle. He proceeds to examine whether the solution which he
has obtained does make the polar and equatorial columns balance; he
finds that, in order to secure this, a certain relation must hold among
the constants which enter into the expression for the density. In fact, as
we have already stated, Clairaut’s solution in the memoir did not satisfy
all the necessary conditions: see Art. 170.

175. Clairaut demonstrates a result on pages 302…304 of the memoir,
which though quite obvious on the modern theory of fluid equilibrium
must have appeared remarkable at the time. We will state the general
proposition of which his result is a particular case. Suppose a solid, not
necessarily homogeneous, covered with a stratum of homogeneous fluid
which is in equilibrium; then if a fine channel be made in the body from
one point of the fluid to another, and be filled with the fluid, the fluid
in the channel will remain in equilibrium. In fact, the pressure 𝑝 at any
point of the channel of fluid can theoretically be found so as to satisfy
the necessary conditions.

176. The memoir closes with some reference to the results obtained
by observations. Clairaut admits that those furnished by the expedition
to Lapland do not agree well with the theory; for, according to these,
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each of the two fractions which occurs in Clairaut’s Theorem is greater

than
1
230

. However he will wait for the observations made in Peru.

177. In the Paris Mémoires for 1739, published in 1741, there is a
memoir by Clairaut, entitled Suite d’un Mémoire donné en 1733, qui a
pour titre: Détermination Géométrique de la Perpendiculaire à la Méridi-
enne, &c. The memoir occupies pages 83…96 of the volume.

In modern language we should say that this memoir relates to
geodesic curves on the surface of an ellipsoid of revolution. The
investigations are approximate, extending to the first power of the
ellipticity.

It may be interesting to give a specimen of Clairaut’s investigations.

Let the polar semi-diameter be taken for unity, and let
1
𝑚

denote the

equatorial semi-diameter. Let 𝑥 denote the longitude of any point in a
geodesic curve, measured from the meridian which the geodesic curve
crosses at right angles; let 𝑡 denote the cotangent of the latitude of this
point; let 𝑝 denote the value of 𝑡 when 𝑥 = 0; then

𝑑𝑥
𝑑𝑡

=
𝑝𝑚√(1 + 𝑡2)

𝑡√(𝑡2 +𝑚2)√(𝑡2 − 𝑝2)
.

Clairaut established this formula in his memoir of 1733; and it may
be easily obtained from well-known works on solid geometry.

Now put 𝑚 = 1 − 𝛼, and suppose 𝛼 so small that its square may be
neglected; thus we get

𝑑𝑥
𝑑𝑡

=
𝑝

𝑡√(𝑡2 − 𝑝2)
−

𝛼𝑝𝑡
(1 + 𝑡2)√(𝑡2 − 𝑝2)

:

hence
𝑥 = sin−1

√(𝑡2 − 𝑝2)
𝑡

−
𝛼𝑝

√(1 + 𝑝2)
sin−1

√(𝑡2 − 𝑝2)
√(1 + 𝑡2)

. (1)
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Clairaut does not use the symbol sin−1; but he proposes the symbol
𝐴𝑠 to denote what we denote by sin−1 𝑠.

The equation (1) determines 𝑥 when 𝑡 is known. Now Clairaut pro-
ceeds to determine 𝑡 from it when 𝑥 is known; and for this he employs
a special process, which we will now explain.

Suppose that 𝑡 = 𝜏+Δ𝜏, where 𝜏 is the value of 𝑡 which would corre-
spond to the known value of 𝑥 when 𝛼 is zero, and so Δ𝜏 is very small.
Hence from (1) we get

𝑥 = sin−1
√(𝜏2 − 𝑝2)

𝜏
+

𝑝
𝜏√(𝜏2 − 𝑝2)

Δ𝜏 −
𝛼𝑝

√(1 + 𝑝2)
sin−1

√(𝜏2 − 𝑝2)
√(1 + 𝜏2)

−
𝛼𝑝𝜏Δ𝜏

(1 + 𝜏2)√(𝜏2 − 𝑝2)
. (2)

But by supposition 𝑥 = sin−1
√(𝜏2 − 𝑝2)

𝜏
.

Hence, neglecting the term which involves the product of 𝛼 and Δ𝜏,
we have from (2)

𝑝
𝜏√(𝜏2 − 𝑝2)

Δ𝜏 =
𝛼𝑝

√(1 + 𝑝2)
sin−1

√(𝜏2 − 𝑝2)
√(1 + 𝜏2)

.

This furnishes the correction Δ𝜏, which will be required in the cotan-
gent of the latitude when calculated for a sphere, in order to obtain the
value for the ellipsoid of revolution.

Clairaut himself uses 𝑡 for our 𝜏, and 𝑑𝑡 for our Δ𝜏.
Clairaut’s memoir consists of the solution of four problems; the other

three resemble that which we have taken as a specimen. They are illus-

trated by numerical application to an oblatum in which 𝛼 =
1
100

; this

value Clairaut says does not differ much from that obtained by means of
the degree of the meridian measured at the polar circle.
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This memoir is the last of the series of Clairaut’s contributions to our
subject before the publication of his work entitled Théorie de la Figure de
la Terre, which we shall examine in Chapter XI.: we now proceed to give
an account of the measurement in Lapland, to which allusion has just
been made.



CHAPTER VII.

ARC OF THE MERIDIAN MEASURED IN LAPLAND.

178. The Academy of Sciences at Paris seems to have selected the
problem of the Figure of the Earth as peculiarly its own. But the success
hitherto attained scarcely corresponded to the labour which had been ex-
pended; partly perhaps owing to the fact that the able observers, trained
by the astronomers who bore the justly celebrated name of Cassini, had
adopted the oblong form and maintained it firmly.

In order to settle the question in dispute between the Cassinians and
the Newtonians, the scheme was seriously proposed in 1733 of measur-
ing an arc of the meridian near the equator, in order to compare the cor-
responding length of a degree with that which had been obtained from
the French arc by Picard and by J. Cassini. The task was entrusted to
three members of the Academy, Bouguer, La Condamine, and Godin,
who started in May, 1735. Two Spanish naval officers, Juan and Ulloa,
assisted in the work.

179. After this expedition had started for Peru it was resolved to mea-
sure also an arc as near as possible to the pole: see La Condamine, Jour-
nal du Voyage … page 1. This task was entrusted to four members of
the Academy, Maupertuis, Clairaut, Camus, and Le Monnier; moreover
l’Abbé Outhier, who was a correspondent of the Academy, and Celsius,
who was professor of Astronomy at Upsal, were associated with the Aca-
demicians.

180. The Arctic expedition seems to me to have been stronger
than the Equatorial. The genius of Clairaut outshone that of the
whole Academy, which was not yet adorned by the rising splendour of
D’Alembert. But even if we leave out of consideration this transcendant
name the superiority remains, I think, still with the Arctic party. I
should place Maupertuis, Camus, and Le Monnier, above Bouguer,
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La Condamine, and Godin; while the priest and the professor who
accompanied the former are at least equal to the two sailors who
assisted the latter.

The two operations were conducted on different principles. The
members of the Arctic expedition worked in harmony under the general
direction of Maupertuis. La Condamine calls Maupertuis, the senior
(l’ancien) of the party, Journal du Voyage … page iii.; and Maupertuis is
called Chef de l’entreprise du Nord in the Histoire de l’Académie … for
1737, page 96. There was but little cordiality in the Equatorial party;
and the three Academicians performed much of their work separately.
Thus in the former case we find friendship and subordination; and
in the latter case isolation and independence. On a purely scientific
estimate it may be maintained that there are advantages in each course
which the other does not secure.

We are here concerned only with the Arctic party which left Paris on
the 20th of April, 1736. Two narratives of the proceedings were printed;
we will now describe these works.

181. Maupertuis published La Figure de la Terre déterminée par les
observations … au cercle polaire. Paris, 1738. This is an octavo volume;
the Title, Preface, and Table of Contents, occupy xxviii. pages; the text
occupies 184 pages; there are 9 plates besides a map.

In the historical portion of the Paris Mémoires for 1737, pages 90…96
relate to the Arctic expedition: the date of publication is 1740. More-
over, in this volume, pages 1…130 of Maupertuis’s work are reprinted;
they occupy pages 389…465 of the volume. Maupertuis here says there
have been too many editions of his book in various languages to render
it necessary to repeat the other observations made in the North: he con-
tents himself with referring to the observations on the force of gravity,
and reproduces the Table which occurs on page 181 of his book.

It is stated by La Condamine that Maupertuis’s work was translated
into all the languages of Europe: Journal du Voyage … page iii. I have
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seen a German translation and a Latin translation. The German trans-
lation was published at Zurich in 1741; it contains also a dedication to
Frederic III. of Prussia, by Samuel König, an introduction by the trans-
lator, and a memoir by Celsius on Cassini’s work De la Grandeur et de
la Figure de la Terre. The Latin translation was published at Leipsic in
1742; it contains also an introduction by the translator, Alaricus Zeller:
he says on the third page of his introduction that he has preserved the
paging of the Amsterdam edition in his margin. This translator’s intro-
duction contains some criticisms which are not devoid of interest; they
do not however practically affect the determination of the length of the
degree of the meridian, but relate to incidental matters, such as refrac-
tion. There are also a few notes to the translation, which supply correc-
tions of slight misprints or mistakes.

There is an English translation which I have not seen.

182. Outhier published Journal d’un Voyage au Nord…, Paris, 1744.
This is a quarto volume; the Half-title, Title, Dedication, and Preface,
are on eight pages; the text occupies 238 pages, followed by two pages
which contain an Extrait des Registres de l’Académie…, and the Privilege
du Roi. According to the Table des Figures on page 238, there ought to
be 18 plates. But in the single copy which I have seen there are only 16
plates. The plate which is marked 15 in the list does not occur; there
is only one plate corresponding to the two which are marked 9, 10 on
the list; and there are only two plates corresponding to the three which
are marked 6, 7, 8 on the list. On the other hand, there is a Veüe de la
Montagne de Niemi, du côté du Midy, which is not named in the list.

Outhier’s work seems never to have attracted much attention and to
be now scarce.

183. The calculations and the theoretical deductions are given most
fully by Maupertuis; the details of the daily occupations of the party, and
the peculiarities of the country and of the inhabitants, are given most
fully by Outhier. I shall refer to the pages of Maupertuis in the origi-
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nal French edition, and distinguish them by the letter M. I shall refer to
Outhier’s work by the letter O.

184. Maupertuis was for a long time in doubt whether he should go
to Iceland, to Norway, or to the Gulf of Bothnia; he decided for the last,
intending to carry on his operations among the islands along the shores
of the Gulf. O. 3. But on examination these islands were found to be
too low, and too near the shore, to form advantageous stations; and af-
ter some consideration Maupertuis resolved to proceed to the mountains
north of Tornea, which is at the head of the Gulf. M. 11; O. 52.

Finally Tornea was taken as the most Southern station, and Kittis
as the most Northern; both are on the river Tornea, and nearly on the
same meridian. The other stations were mountains not far from the river.
The base which was to be measured was chosen about midway between
Tornea and Kittis, and the extremities denoted by signals. M. 29; O. 86.

All the geodetical angles were observed in the space of about two
months, between the beginning of July and the beginning of September,
1736. The observations were made with a quadrant of two feet radius.
M. 33, 79; O. 204…219.

185. The next step was to determine the difference of latitude of the
extreme points of the arc. The star 𝛿 Draconis was selected which passed
the meridian very near to the zenith; observations of this star were made
at Kittis on the 4th, 5th, 6th, 8th, and 10th of October; and at Tornea on
the first five days of November. The difference of zenith-distance was
found to be 57′ 25″. 55. M. 104.

The instrument used for determining this difference of zenith-
distance was a zenith-sector made by Graham at London; the
instrument resembled that used by Bradley in the observations which
established the aberration of light. M. 38. A copper telescope-tube of
nine feet long formed one radius of the sector; the extent of the arc of
the sector was 5°12 , graduated at every 7

′ 1
2 . At the focus of the telescope

were fixed two wires at right angles. The telescope and the arc formed
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one instrument. A large pyramid of wood 12 feet high served as the
support of the instrument. M. 38, 94. The instrument could turn freely
round a horizontal axis; it was moved by a micrometer screw acting in
opposition to a weight. A plumb-line was suspended from the centre of
motion, and marked on the graduated arc the angle through which the
instrument had been turned. The absolute zenith-distance of a star at a
given place was not determined by the French observers, but only the
difference of zenith-distance at two given places.

186. The base was measured on the frozen surface of the river
Tornea, very nearly in the direction of the stream; the extremities of
the base were on the land. The measurement was begun on December
21st, and occupied a week. Eight rods of fir were employed, each five
toises long; the correct length of these rods was determined by the aid
of an iron toise which had been carefully adjusted to the length of the
standard toise at Paris. O. 137. This iron toise is known henceforth in
the history of the subject as the Toise du Nord. A similar iron toise had
been taken by the Equatorial expedition, which is known as the Toise
du Pérou. Neither Maupertuis nor Outhier records the fact that these
two toises were made at the same time and by the same artist, Langlois;
this we learn from La Condamine: see the Paris Mémoires for 1772, Part
ii. pages 482…501.

187. The measurers of the base divided themselves into two bands;
each band had four of the fir rods, and measured independently: the
length of the base was found to be 7406 toises 5 feet 4 inches by one
band, and 7406 toises 5 feet by the other band. After the measurement
was finished three of the party verified that no error could have arisen
in counting the hundreds, by using a cord 50 toises long over the whole
base. O. 144.

The sun scarcely rose above the horizon, but the twilight, the white
snow, and the Aurora Borealis supplied enough light for four or five
hours work daily. M. 51.
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188. It followed from the length of the base that the length of the arc
of the meridian intercepted between the parallels of Tornea and Kittis
was 5502312 toises; and that the length of a degree of the meridian at the
Arctic circle was nearly 1000 toises greater than the length calculated
according to the Cassinian theory in the book De la Grandeur et de la
Figure de la Terre. M. 58.

The party then went to Tornea and remained shut up in their cham-
bers in a kind of inaction until March. The difference between their
result and that of the Cassinian theory was so great that it astonished
them; and although they considered their operations to be incontestable,
yet they resolved to execute some rigorous verifications. M. 63. We read
in the Paris Mémoires for 1737, page 94 of the historical portion:

On la tint fort secrette, tant pour se donner le loisir de la réflexion sur une
chose peu attendue, que pour avoir le plaisir d’en apporter à Paris la premiére
nouvelle.

189. The angles of the triangles were supposed to admit of no doubt;
these angles had been observed many times by various persons; and the
three angles of every triangle had been observed. The calculations were
verified by combining the triangles in a different series; and also by as-
suming that errors had arisen in measuring the angles, which all tended
to make the length greater than it should have been. But the length of
the arc of the meridian still remained without any very decided diminu-
tion. M. 63…65.

The measurement of the base was considered to be also above sus-
picion; thus there remained only the very important point of the differ-
ence in latitude of the extreme stations; and accordingly this was redeter-
mined. The star 𝛼 Draconis was now selected; observations of this star
on the meridian were made with the zenith-sector at Tornea on the 17th,
18th, and 19th of March, 1737, and at Kittis on the 4th, 5th, and 6th of
April: the difference of zenith-distance was found to be 57′ 25″. 85. M.
115.
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The reason given in the Paris Mémoires for 1737, on page 95 of the
historical portion, for going over the astronomical part of the work again
is that it could be done much more easily than the other parts.

190. The observations for determining the difference of latitude re-
quired corrections for aberration, for precession, and for a third inequal-
ity which had been recently discovered by Bradley, and which is called
nutation. No correction was applied for refraction. M. 125. See Bouguer’s
Figure de la Terre, page 290.

Thus, finally, the amplitude of the arc of the meridian was 57′ 26″. 93
by the star 𝛿 Draconis, and 57′ 30″. 42 by the star 𝛼 Draconis; the dif-
ference is 3″. 49. Maupertuis considered that 0″. 95 of this difference was
owing to an inequality in the graduation of the sector, which was discov-
ered by careful scrutiny. M. 124.

Maupertuis took the mean of the two results, 57′ 28″. 67 for the am-
plitude; and from this he deduced that the length of the degree of the
meridian which is bisected by the Arctic circle is 57437.9 toises.

191. Important pendulum experiments were made at Pello, which is
close to Kittis. The result is that a pendulum which oscillates in a second
at Paris will make 59 more oscillations in 24 hours at Pello than at Paris.
M. 172.

192. The Academicians endured great hardships during their oper-
ations. The severe cold of the winter months must have been antici-
pated; and the precautions which the natives had learned from experi-
ence would afford some mitigation of this evil. But the most painful
period of the survey seems to have been that which was spent among
the mountains in observing the geodetical angles: in one instance they
remained for ten days on a mountain. M. 21. The exposure to extremes
of heat and of cold, the excessive rains, and the want of proper food, all
contributed to the sufferings of the party. But the worst torment seems
to have been that inflicted by insects. Maupertuis calls them flies, and
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says they were of different kinds. M. 14, 16, 22. Outhier calls them by
various names; flies, gnats, midges: thus cousins 55, 57, 58, 59, 63, 64,
74, 82; moucherons 64, 65, 75, 79, 82; mouches 57, 58, 64. Le Monnier
fell very ill. M. 24; O. 75, 79, 81. According to Hutton’s Mathematical
Dictionary the health of Maupertuis was permanently impaired by the
hardships he underwent.

The Academicians left Tornea in June, 1737, and reached Paris in Au-
gust.

193. The measurement of the arc of the meridian by the French in
Lapland is historically the most important of all such operations. The
question as to the oblate or oblong form of the Earth was decisively set-
tled.

Two generations of the best astronomical observers formed in the
school of the Cassinis had struggled in vain against the authority and
the reasoning of Newton.

194. Some incidental matters may now be noticed which present
themselves in studying the narratives.

Maupertuis says on his page xii.:
Sur des routes de 100 degrés en Longitude, on commettroit des erreurs de

plus de 2 degrés, si naviguant sur le Sphéroïde de M. Newton, on se croyoit sur
celui du Livre de la Grandeur et Figure de la Terre.

I cannot understand this. Nothing is said about the latitude; but the
amount of error in a course of 100 degrees of longitude will depend
mainly on the latitude.

In the life of Maupertuis in the Biographie Universelle, which is partly
by Delambre, reference is made to the exaggerations of Maupertuis on
this point.

Clairaut is the mode of spelling which the bearer of this distinguished
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name himself adopted: Outhier, however, generally uses Clairaux; once
he has Clairault. O. 25.

Maupertuis, in returning to France, was shipwrecked in the Gulf of
Bothnia; he merely alludes to this misfortune himself: but we find from
Outhier that the instruments were immersed, and were cleaned rather
more than a month after the accident. M. 78; O. 169, 189.

195. The success of the Arctic expedition may be fairly ascribed in
great measure to the skill and energy of Maupertuis: and his fame was
widely celebrated. The engravings of the period represent him in the cos-
tume of a Lapland Hercules, having a fur cap over his eyes; with one
hand he holds a club, and with the other he compresses a terrestrial
globe. Voltaire, then his friend, congratulated him warmly for having
“aplati les pôles et les Cassini.” See articles entitled Histoire des Sciences
in the Revue des deux Mondes, Jan. and Nov., 1869. Readers of Carlyle’s
History of Frederick the Great will remember the allusions to the Earth-
flattener.

196. Although the measurement of the Lapland arc settled the ques-
tion as to the oblate or oblong form of the Earth, yet it introduced a
great difficulty; for by comparing the result with that obtained from the

French arc the ellipticity of the Earth appeared to be about
1
178

. This

was greater than had been expected, and greater than subsequent opera-
tions, such as that in Peru, furnished. From our present knowledge it is
certain that this value of the ellipticity is far too large.

We have seen indeed, in Art. 177, that Clairaut assigned
1
100

as the

ellipticity furnished by the Lapland arc; this must have been obtained by
using for the French arc a certain value obtained by Maupertuis in his
Figure de la Terre, page 126; but this value of the French arc was soon
afterwards found to be too small.
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197. According to La Lande, Maupertuis himself was not satisfied
with his operations. We read in the Bibliographie Astronomique:

… je sais que Maupertuis n’en était pas lui-même très-content. Page 407.

… Au reste, on m’écrit de Suède que Maupertuis s’était proposé de recom-
mencer la mesure à ses dépens; ce qui prouve qu’il n’en était pas très-content.
Page 811.

It is well known that the Lapland arc was remeasured at the begin-
ning of the present century by Svanberg and others under the direction
of the Stockholm Academy of Sciences. La Lande alludes to the early
stages of this operation; see the Bibliographie Astronomique, pages 811,
837, 857. Svanberg obtained a decidedly shorter length for a degree of
the meridian than that of Maupertuis, namely, 57196.159 toises instead
of 57437.9 toises; but the middle points of the two degrees are not quite
identical.

198. We may just notice the memoir by Celsius, which is contained
in the German translation of Maupertuis’s Figure de la Terre: see Art.
181. This is probably a translation of one which was originally published
at Upsal in 1738 under the title of De observationibus pro figurâ telluris
determinandâ in Galliâ habitis disquisitio, according to La Lande’s Bibli-
ographie Astronomique, page 406.

In the translation Celsius first defends the astronomical operations
in Lapland from an objection which had been urged against them by J.
Cassini before the Paris Academy, because the sector had not been re-
versed at each place of observation. Celsius maintains that this was un-
necessary for the purpose of the observers, especially considering the ex-
cellence of Graham’s sector. Then Celsius proceeds to criticise the French
operations recorded in the work De la Grandeur et de la Figure de la
Terre; and he considers that he shews both the astronomical and geodeti-
cal parts to be untrustworthy. These operations indeed were just about to
be given up and replaced by the more accurate determinations recorded
in the work La Meridienne de Paris verifiée.
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199. For further information respecting the Lapland arc of the merid-
ian, I may refer to my memoir on the subject published in the Cambridge
Philosophical Transactions, Vol. xii.; I have there corrected the numerous
and serious errors which have been made by distinguished astronomers
in their account of this remarkable measurement.



CHAPTER VIII.

MISCELLANEOUS INVESTIGATIONS BETWEEN THE YEARS 1721
AND 1740.

200. We have first to consider a production to which allusion has
been made in Arts. 143 and 150. It is entitled A Dissertation concern-
ing the Figure of the Earth, by the Reverend John Theophilus Desaguliers,
L.L.D. F.R.S. This is contained in Vol. xxxiii. of the Philosophical Trans-
actions: the volume is for 1724, 1725; and is dated 1726.

The dissertation consists of four parts.

201. The first part occupies pages 201…222 of the volume. This part
criticises the conclusions at which J. Cassini had arrived as to the form
of the Earth in his De la Grandeur et de la Figure de la Terre, of which
we have given an account in Arts. 100…108.

Desaguliers endeavours to shew that the Cassinian figure is impos-
sible, because it would lead to a deviation of the plumb-line, from the
direction which is at right angles to the surface of water, to the amount
of five minutes: but the process is unsound. We know now that under
certain hypotheses as to the form of the solid nucleus, the outer surface
of the fluid might be an oblongum: see Clairaut’s Figure de la Terre, page
224.

Desaguliers maintains that the latitudes in the French survey of the
meridian cannot be relied on as sufficiently accurate to establish the ob-
long figure of the Earth; and he is not satisfied that the heights of the
mountains were properly determined. Desagulier’s criticisms have per-
haps some foundation; but like many controversialists he seems disposed
to be unfair. For instance, he considers that the height of one moun-
tain was over-estimated, and the height of another under-estimated; and
thus, he says, we must add 20 toises to the length of the 44th degree of
latitude, and take away 30 toises from the length of the 45th degree of
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latitude. But even admitting these corrections to be necessary, they tend
to balance each other; and they produce no perceptible effect on the defi-
nite result obtained by Cassini, namely, that the whole southern arc from
Paris to the Pyrenees gives a longer average length of a degree than the
whole northern arc from Paris to Dunkirk.

Strictly speaking, what Desaguliers calls the 44th degree of latitude
should be the 45th; and what he calls the 45th should be the 46th.

Desaguliers assigns one reason which may have induced Cassini to
make the Earth oblong, in these words: “especially because in this Hy-
pothesis, the Degrees differ most in Length from one another about the
45th Degree.” But this is quite unsatisfactory. For if we suppose the
Earth to be nearly spherical, then whether it be oblate or oblong the de-
grees will differ most in length at about the 45th degree: see Art. 140.

202. The second part of the dissertation occupies pages 239…255 of
the volume. The object of this part is to shew “How the Figure of the
Earth is deduc’d from the Laws of Gravity and Centrifugal Force.” In-
stead of giving anything of his own, Desaguliers transcribes a long ex-
tract from Keill’s book against Burnet; the extract consists of that matter
which Keill took substantially from Huygens: see Art. 74.

Desaguliers says:
I own indeed that he has made a Mistake in that Book concerning the Mea-

sure of the Degrees of an Ellipse; but I find that all that relates to the oblate
Spheroidical Figure of the Earth is right….

The mistake of course is that which we have noticed in Art. 76. De-
saguliers would probably have thought it unnecessary to warrant the ac-
curacy of the matter which he transcribed, if he had known that it was
substantially all due to Huygens.

203. The third part of the dissertation occupies pages 277…304 of the
volume. This part is chiefly a criticism of the memoir by Mairan which
we have examined in Arts. 109…114. Much of what Desaguliers says,
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though quite true, would have failed to produce any effect on Mairan.
For instance, according to Mairan, Paris is more distant from the cen-
tre of the Earth than a place at the equator is; hence the attraction at
Paris will be less than it is at the equator; hence, although the centrifu-
gal force at the equator is greater than at Paris, we may have gravity at
Paris less than gravity at the equator: and this is contrary to observation.
But Mairan would have declined to admit the statement in Italics; he
had invented a law of attraction for himself which made the attraction
greater at Paris than at the equator.

Of course the assailable part of Mairan’s memoir was the arbitrary
law of attraction which he had invented; and against this Desaguliers di-
rects a decisive argument. He finds that, taking Mairan’s law, and allow-
ing for centrifugal force, the Paris seconds pendulum would have to be
shortened at the equator nearly an inch. He says: “But this being about
five Times more than agrees with Observation; what proves too much,
proves nothing at all.” See Art. 52.

Desaguliers finds, that on Mairan’s law the polar and equatorial
columns of fluid would not balance; but Mairan might have replied
that the Earth was solid, and for this reason he might have declined to
admit the principle of balancing columns.

204. Desaguliers in the third part of his dissertation returns to the
subject of the French arc. He arranges a table which gives the observed
latitudes of successive stations on the meridian, and also the distance
from Paris in toises. He shews that there is not a constant decrease in
the length of a degree in passing from the southern extremity of the arc
to the northern. But the objection is of no value; because the French
observers did not require, and did not attempt to find, the latitudes of
intermediate stations with the same accuracy as the latitudes of Paris
and of the two extremities of the arc.

Desaguliers says on page 303:
To conclude, I will propose a Method of observing the Figure of the Shadow
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of the Earth in Lunar Eclipses, whereby the Difference between the Diameters
in the oblong spheroidical Figure, if there be such an one as Mons. Cassini af-
firms (viz. of 96 to 95), may be discover’d.

But the method has, I believe, no practical value.

205. The fourth part of the dissertation occupies pages 344, 345 of the
volume. It consists of an account of an experiment to “illustrate” what
had been said in the preceding parts. The essence of the experiment may
be thus described. Take a hoop of thin elastic steel; let it revolve round
a diameter as axis, the axis passing freely through the steel: then the
greater the angular velocity the more will the hoop bulge out into an
oblate form. The toy with which Desaguliers amused himself of course
proved nothing to the point; however, he boldly asserts that from this
experiment, compared with what had been said, “it will appear that the
Earth cannot preserve its Figure, unless it be an oblate Spheroid.”

206. There are some incidental matters of interest in the dissertation
which may be noticed.

Desaguliers suggests on page 209, that
… a Degree of Latitude shou’d be measur’d at the Æquator, and a Degree of

Longitude likewise measur’d there; and a Degree very northerly, as for Example,
a whole Degree might be actually measur’d upon the Baltick Sea, when frozen,
in the Latitude of sixty Degrees.

We read on pages 219, 220:
… when once an Hypothesis is set on Foot, we are too apt to draw in Cir-

cumstances to confirm it; tho’, perhaps, when examin’d impartially, they may
rather weaken, than strengthen our Hypothesis; otherwise, the Author of the
History of the Royal Academy, for the Year 1713, wou’d not have alledg’d, that
the late Mons. Cassini observ’d Jupiter to be oval, as a Proof of young Mons.
Cassini’s Hypothesis; because Jupiter is oval the other Way, that is, an oblate
Spheroid flatted at the Poles….
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But I cannot find anything in the volume which justifies this remark
by Desaguliers.

The only reference to Jupiter occurs after a notice of the fact that the
Earth deviates but little from a sphere; then we read:

Si Jupiter est ovale, comme il l’a paru quelquefois à feu M. Cassini, il faut
qu’il le soit bien davantage pour le parôitre de si loin.

It is obvious that these words do not bear any such meaning as De-
saguliers suggests.

Desaguliers refers to the opinion of Dr Burnet, which we have no-
ticed in Art. 74. Desaguliers says on his page 221: “But Dr. Burnet, af-
terwards, alter’d his Opinion, as I am credibly inform’d.”

Desaguliers asserts “That a fluid Substance, of any Figure, will by
the Gravity of its Parts become spherical,…” He gives what he calls a
demonstration of this on his pages 278, 279; but, as might be expected,
his demonstration is quite inconclusive. See Art. 130.

Desaguliers adopts on his page 280 the erroneous notion that by in-
creasing the density of the central part of the Earth, the ellipticity is also
increased; see Arts. 30, 84 and 172. Newton and David Gregory do not
state whether they suppose the central part still to remain fluid or to
become solid. Desaguliers, however, says distinctly, “Then if, when the
Central Parts are fix’d, and the superficial Strata are still fluid,…”

To shew that Desaguliers is wrong, we have only to put 𝛼 = 0 on
page 219 of Clairaut’s Figure de la Terre; then we find that 𝛿 is less than
5𝜙
4
. Or see Simpson’s Mathematical Dissertations, page 30.

A paragraph which occurs on pages 280 and 281 is to be cancelled,
according to an Advertisement by Desaguliers at the end of Number 399
of the Philosophical Transactions.

207. Desaguliers, on his page 285, deviates from accuracy in saying
that “on different Parts of the Surface of the Earth (in the Condition it
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is now) the Gravity on Bodies is reciprocally as their Distance from the
Centre of the Earth.” I have already stated that this proposition should be
enunciated thus: Gravity resolved along the radius-vector varies inversely
as the radius; see Art. 33. Desaguliers omits the resolution along the
radius-vector. Moreover, I think from his context, and from a calculation
on his page 287, that he made another mistake, and supposed that the
attraction along the radius-vector varied inversely as the radius; that is, I
think, he neglected the distinction between attraction and gravity. On his
pages 286 and 287 he assumes that for an oblongum the gravity will vary
inversely as the radius-vector; and by gravity he means here attraction
alone, for he proceeds to allow separately for the centrifugal force. The
assumption is unjustifiable, and seems to have arisen from the confusion
of gravity with attraction in the case of the oblatum.

208. Desaguliers obtained from a friend a “Philosophical Argument”
against Mairan; it is thus stated on his page 298:

If the Earth was of an oblong spheroidical Figure, higher at the Poles than
the Æquator; the Axis of its Revolution, wou’d either go thro’ one of its short
Diameters, or be continually changing unless the said Axis did exactly coincide
with the Axis of the Figure.

These words themselves are true; they are, however, applicable to the
oblatum if we change short into long. The so-called demonstration which
follows shews that Desaguliers and his friend were wrong in their no-
tions on the subject. In modern language these notions amount to con-
sidering that the rotation of an oblongum round its axis of figure is un-
stable. The mechanical knowledge of the period was inadequate to the
discussion of a difficult problem in Rigid Dynamics.

209. A work was published at Padua in 1728, entitled Joannis Poleni
… Epistolarum Mathematicarum Fasciculus. The work is in quarto; the
pages are not numbered.

One of the letters relates to the Figure of the Earth; it is addressed
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“Viro celeberrimo Abbati Gui. Grando.” This letter occupies eleven
pages; it is of little importance.

Since some persons maintained that the Earth was oblate, and oth-
ers that it was oblong, Poleni considers it safer to adopt the spherical
form as a compromise between the two extremes. He suggests, however,
that by measuring an arc of longitude, say in latitude 48°, a test might
be obtained as to the two extreme hypotheses. For, assuming the same
perimeter of the meridian in the two cases, the arc of longitude would
be much shorter if the figure be an oblongum than if it be an oblatum.
Poleni states that for an arc of one degree of longitude, the difference
would be about 777 toises. See Art. 215.

He considers that the spherical form may be reconciled with the ex-
istence of centrifugal force, by supposing the Earth not to be homoge-
neous.

210. Some pendulum observations were made at Archangel in 1728
by L. Delisle de la Croyere. They are recorded in the Commentarii
Academiæ … Petropolitanæ, Vol. iv. which is for 1729, and was published
in 1735: see pages 322…328 of the volume.

211. In the Paris Mémoires for 1732, published in 1735, there is a
memoir entitled Réponse aux Remarques qui ont été faites dans le Journal
Historique de la République des Lettres sur le Traité De la Grandeur et
de la Figure de la Terre. Par M. Cassini. The memoir occupies pages
497…513 of the volume.

In the Journal Historique de la République des Lettres for January and
February, 1733, some extracts were given from several printed letters of
the Marquis Poleni; among these letters one related to the Figure of the
Earth: see Art. 209. The editor of the Journal added some remarks im-
pugning the accuracy of the observations and the soundness of the re-
sults given in the work De la Grandeur et de la Figure de la Terre. J.
Cassini replies to the remarks.
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The chief point urged in the remarks seems to be that some of the
observations of latitudes recorded in the work differ considerably from
the latitudes finally adopted; the chief point urged in the reply seems
to be that observations made with less care and with small instruments
were rejected in favour of observations made with more care and with
larger instruments.

The reply seems to me temperate and able.
There is on pages 512, 513 a list of the misprints which had been

detected in the work De la Grandeur et de la Figure de la Terre.
The following succinct account of the French survey of the meridian

is given on page 498:
Cet ouvrage fut proposé par mon Pere, et prolongé en 1684 jusqu’au delà de

Bourges vers le Midi, pendant que M. de la Hire y travailloit du côté du Nord.
Je l’ai continué avec mon Pere et M. Maraldi, depuis Bourges jusqu’ à Collioure
en 1700 et 1701, et après l’avoir achevé entierement en 1718 avec Mrs. de la
Hire le fils et Maraldi, en le prolongeant jusqu’à l’extrémité septentrionale du
Royaume, j’en ai donné le résultat au Public; ainsi c’est à moi à en prendre la
défense.

212. In the Paris Mémoires for 1733, published in 1735, there are five
memoirs which are connected more or less closely with our subject. A
connected account of them is given in pages 46…63 of the historical por-
tion of the volume.

The first memoir is by Maupertuis; we have noticed it in Art. 131.

213. The next memoir is entitled Méthode pratique de tracer sur Terre
un Parallele par un degré de latitude donné; et du rapport du même Paral-
lele dans le Sphéroïde oblong, et dans le Sphéroïde applati. Par M. Godin.
The memoir occupies pages 223…232 of the volume.

The memoir shews that for various reasons the accurate determina-
tion of the latitude of a place is not an easy problem in practical astron-
omy. Nevertheless it is maintained that an arc of longitude may be traced
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without much difficulty; and the best way of conducting the operation is
explained.

Some numerical results are given as to the length of a degree of lon-
gitude; and remarks are made on the letter of Poleni which we have no-
ticed in Art. 209.

Godin finishes with determining the arcs common to an oblatum and
an oblongum which have the same centre, and their axes in the same
straight line. The matter is very simple, but the account which is given
of it in page 53 of the historical portion of the volume is not altogether
intelligible.

214. The next of these memoirs is entitled Description d’un Instru-
ment qui peut servir à déterminer, sur la surface de la Terre, tous les points
d’un Cercle parallele à l’Equateur. Par M. De La Condamine. The memoir
occupies pages 294…301 of the volume.

The instrument is intended to facilitate the operation described in
Godin’s memoir; but it does not seem to me that it would be of any
practical value.

An extract of a letter written from Quito by La Condamine is given
in the volume of Mémoires for 1734, which shews that he had himself
discovered grave faults in the memoir, and requested that it might not
be printed.

215. The next of these memoirs is entitled De la Carte de la France,
et de la Perpendiculaire à la Méridienne de Paris. Par M. Cassini. The
memoir occupies pages 389…405 of the volume.

The memoir gives an interesting account of the operations in tracing
a line perpendicular to the meridian of Paris westwards to the coast of
Normandy.

Cassini finds that the length of a degree of longitude in the parallel
of St Malo is 36670 toises; and he says that on the supposition of the
spherical form of the Earth it should be 37707 toises. Hence he infers
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that the Earth must be of an oblong form. It will be observed that the
discrepancy here is very wide; and a less extravagant result was obtained
by Cassini in the Mémoires for 1734: see Art. 220. Results much more
moderate than this were obtained by Cassini de Thury in the Mémoires
for 1735 and 1736: see Arts. 224 and 226.

It will be convenient to place here the formulæ relating to this matter.
Let 𝜆 denote the latitude, 𝜌 the corresponding radius of curvature of

the meridian, 𝑟 the radius of the section parallel to the equator. If the
earth were spherical, we should have 𝑟 = 𝜌 cos 𝜆.

If the earth is an oblatum, 𝑎 denoting the semi-axis major, and 𝑒 the
excentricity of the generating ellipse, we have

𝜌 =
𝑎(1 − 𝑒2)

(1 − 𝑒2 sin2 𝜆) 32

and
𝑟 =

𝑎 cos 𝜆
(1 − 𝑒2 sin2 𝜆) 12

.

Thus it is obvious that 𝑟 is now greater than 𝜌 cos 𝜆.
If therefore it appeared by observation and measurement that 𝑟 is less

than 𝜌 cos 𝜆, it would follow that the Earth could not be an oblatum.
The values of 𝜌 and 𝑟 in the case of the oblatum are often required

in our subject.

216. It was found that the distances between places determined by
the trigonometrical operations in France were in many cases less than
had been previously supposed; and Cassini makes the following obvious
remark:

… ce qui vient apparemment des grands détours que l’on est obligé de faire
pour chercher des routes praticables, joint à ce que les mauvais chemins parois-
sent toûjours plus longs qu’ils ne le sont réellement.
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The operations terminated at Bayeux; Cassini says, after speaking of
St Malo:

Nous allâmes de-là à Bayeux où nous fîmes diverses observations de hau-
teurs du Soleil, d’Etoiles fixes, et principalement de l’Etoile polaire, dans le
Palais épiscopal qui joint à la Cathédrale, et où M. l’Evêque de Bayeux a fait
tracer dans sa bibliotheque une grande Méridienne, avec des lignes qui mar-
quent les heures avant et après midi, de cinq en cinq minutes, par M. l’Abbé
Outhier qui a travaillé avec nous à la description de la Perpendiculaire depuis
Caen jusqu’à St Malo.

The last of the five memoirs is by Clairaut; we have noticed it in Art.
160.

217. We have a memoir on pendulum observations in pages 302…314
of Number 432 of the Philosophical Transactions. The Number is for the
months of April, May, and June, 1734, and forms part of Vol. xxxviii.
which is for the years 1733, 1734, and is dated 1735. The memoir is en-
titled An Account of some Observations made in London, by Mr. George
Graham, F.R.S. and at Black-River in Jamaica, by Colin Campbell, Esq.;
F.R.S. concerning the Going of a Clock; in order to determine the Difference
between the Lengths of Isochronal Pendulums in those Places. Communi-
cated by J. Bradley, M.A. Astr. Prof Savill. Oxon. F.R.S.

The observations were made during 10 days in England, and during
26 days in Jamaica. Bradley deduced from them that the seconds pendu-
lum of London lost 1 minute 58 seconds in a day at Jamaica; and from

this he obtained for the ellipticity of the Earth the value
1
190

.

Bradley gives the reasons which led him to “esteem Mr. Campbell’s
Experiment to be the most accurate of all that have hitherto been
made….”

This memoir is referred to by Stirling in the Philosophical Transac-
tions, Vol. xxxix. page 103; by Clairaut in the Philosophical Transactions,
Vol. xl. page 291; and by Maclaurin in his Fluxions, Art. 664.
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218. In the Paris Mémoires for 1734, published in 1736, there are four
memoirs which are connected more or less closely with our subject.

The first of these memoirs is entitled Méthode de vérifier la Figure
de la Terre par Parallaxes de la Lune. Par M. Manfredi. The memoir
occupies pages 1…20 of the volume; there is an account of it on pages
59…63 of the historical portion of the volume.

Supposing the Earth not to be spherical, the parallax of the Moon
will be different at different places on the Earth’s surface, even when all
other circumstances are alike. Manfredi suggests that observations of the
Moon taken at two distant places, nearly on the same meridian, would
therefore supply information as to the figure of the Earth. In spite of the
errors to which such observations might be liable, he maintains that it
would be possible to decide in this way the question as to the oblate or
oblong form of the Earth.

219. The next of these memoirs is entitled Comparaison des deux Loix
que la Terre et les autres Planetes doivent observer dans la figure que la
pesanteur leur fait prendre. Par M. Bouguer. The memoir occupies pages
21…40 of the volume; there is an account of it on pages 83…87 of the
historical portion of the volume.

This memoir is important in the history of Hydrostatics. The two
principles to which it refers, are Newton’s principle of balancing columns
and Huygens’s principle of the plumb-line. Bouguer’s object is to shew
that under certain conceivable laws of force either principle might be sat-
isfied, while the other was not; and then there could not be equilibrium.
The whole matter is now well understood; and it is admitted that for
equilibrium the forces acting must satisfy a certain condition, namely, in
ordinary notation, supposing the fluid homogeneous, 𝑋𝑑𝑥 + 𝑌𝑑𝑦 + 𝑍𝑑𝑧
must be a perfect differential; and it is known that this condition is sat-
isfied for such forces as occur in nature.

Bouguer says on his first page:
… Entre plusieurs Mathématiciens d’un grand nom qui ont tourné leur vûë
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vers cette matiére, M. Huguens et M. Herman sont les seuls qui ont appliqué
en même temps les deux loix; ils ont trouvé qu’elles s’accordoient à donner à
la Terre une même figure dans les suppositions particuliéres d’une pesanteur
originairement constante, et d’une pesanteur proportionnelle aux distances au
centre.

This statement is correct with respect to Hermann; but there seems
no authority for it with respect to Huygens. Hermann did consider both
principles and both the laws of attraction: see Arts. 94 and 95. Huygens
confined himself to the use of Newton’s principle, and to the supposition
of a constant attraction: see Arts. 54 and 55.

In his investigations, Bouguer, as we should now say, considered only
forces in one plane. He supposes the direction of the force to be always
perpendicular to a given curve. This hypothesis was afterwards discussed
by Clairaut in pages 63…77 of his Figure de la Terre. Clairaut shews that,
in order to render this hypothesis reasonable, we must suppose a solid
nucleus to the fluid: see his pages 64 and 74.

Although Bouguer’s own examples are not of great value, because
they depend on laws of force which can hardly be considered natural,
yet the memoir must have been very useful at the time, as it called at-
tention to an important subject, and probably suggested to Clairaut the
occasion of his own investigations.

220. The next of these memoirs is by Maupertuis; we have noticed it
in Arts. 132…139.

The last of these memoirs is entitled De la Perpendiculaire à la Méri-
dienne de Paris, prolongée vers l’Orient. Par M. Cassini. It occupies pages
434…452 of the volume; there is an account of it on pages 74…77 of the
historical portion of the volume.

This memoir contains an account of the operations in tracing a line
perpendicular to the meridian of Paris, eastwards to Strasbourg; the op-
erations and the memoir are in continuation of those which we have
already noticed: see Art. 215.
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Cassini finds that the length of a degree of longitude in the latitude
of Strasbourg is 37066 toises; and he says that on the supposition of the
spherical form of the Earth the length would be 37745 toises. Hence
he infers, as before, that the form of the Earth must be oblong. The
result differs very considerably from that given in the Mémoires for 1733:
see Art. 215. The present result depends of course on the longitude of
Strasbourg; and this is determined by the aid of observations formerly
made by Eisenschmidt. Cassini assumes credit to himself for taking a
mean between three determinations, though less favourable to his theory
of an oblong form than the value which Eisenschmidt himself adopted.
Thus we read at the close of the account in the historical portion of the
volume, with respect to these observations:

… mais enfin ces observations se sont trouvées si favorables au Sphéroïde
allongé, que M. Cassini a eu la modération de n’en pas vouloir tirer tout l’avan-
tage qu’il eût pû à la rigueur, et de s’en retrancher une partie.

221. A double prize was offered by the Paris Academy for the year
1734; the subject related to the inclination of the planes of the orbits of
the planets to the plane of the Sun’s equator. The prize was divided be-
tween John Bernoulli and his son Daniel. The essay by Daniel Bernoulli
is memorable in the history of the Mathematical Theory of Probability:
see my History, page 223.

The essay by John Bernoulli is reprinted in his Opera Omnia, Vol. iii.
pages 261…364, under the title Essai d’une nouvelle Physique Céleste….
Pages 345…355 relate to the Figure of the Earth; but it would be a waste
of time to discuss them. The essay uses a system of vortices; and as those
who invented such visionary machinery were guided by no principle and
restrained by no law, they could easily arrive at any result they pleased.
John Bernoulli disliked and depreciated Newton, and he was now com-
peting for a prize from the Paris Academy; he had, therefore, a double
reason for taking the side of error. This he does much to his own satis-
faction, and concludes thus in the language of premature triumph:

Après cette heureuse conformité de nôtre théorie, avec les observations
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célestes, peut-on plus long-temps refuser à la Terre la figure de sphéroïde ob-
long, fondé d’ailleurs sur la dimension des degrés de la méridienne, entreprise
et exécutée par le même M. Cassini, avec une exactitude inconcevable?

222. In the Paris Mémoires for 1735, published in 1738, we have some
memoirs which bear, though slightly, on our subject. An account of them
is given on pages 47…65 of the historical portion of the volume; but the
last six pages of this account refer to some memoir attributed to Clairaut,
which does not seem to have been published. According to this account,
an arc of longitude, if measured in a very high latitude, might be ex-
pected to yield as good a result as an arc of meridian. Bouguer, how-
ever, in an able memoir published in the volume for 1736, shewed that
this expectation was quite unfounded.

The first memoir is entitled Méthode de déterminer si la Terre
est Sphérique ou non, et le rapport de ses degrés entr’eux, tant sur les
Méridiens que sur l’Equateur et ses Paralleles. Par M. Cassini. The
memoir occupies pages 71…86.

The idea of the memoir can be easily stated. Select a mountain, from
which the sea is visible in various directions, and observe the dip of the
horizon. If the Earth is spherical, the dip will be the same in all direc-
tions. If the Earth is not spherical, the dip will be different in different
directions. By observing the dip in the directions of the meridian and of
the prime vertical, Cassini shews that a sensible difference ought to be
obtained on the two current hypotheses as to the form of the Earth; and
that thus the question between the two hypotheses might be settled.

I presume, however, that the method has never been found of any
use in practice.

The next memoir is by Maupertuis; we have noticed it in Art. 140.
The next to this is by Clairaut; we have noticed it in Art. 161.

223. The next memoir is entitled Seconde Méthode de déterminer
si la Terre est Sphérique ou non, indépendamment des Observations
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Astronomiques. Par M. Cassini. The memoir occupies pages 255…261 of
the volume.

The idea of the memoir can be easily stated. Take two points 𝐴 and 𝐵
on the same meridian; say the summits of two mountains. At 𝐴 observe
the angle which 𝐴𝐵 makes with the vertical at 𝐴; at 𝐵 observe the angle
which 𝐵𝐴 makes with the vertical at 𝐵. Let the verticals at 𝐴 and 𝐵,
when produced, meet at 𝑂. Let the distance 𝐴𝐵 be measured. Then by
solving the triangle 𝐴𝐵𝑂 we can find 𝐴𝑂, which may be considered as
the radius of curvature at 𝐴 of the arc 𝐴𝐵. Take a third point 𝐶, which is
due East or due West of 𝐴. Then in the same way we may determine the
radius of curvature at 𝐴 of the arc 𝐴𝐶. If the Earth is a sphere, we ought
to obtain the same value of the radius of curvature in the two cases; if
the values obtained are different, we have information which may serve
to settle whether the form is oblate or oblong.

The method is substantially the same as was used by Riccioli in at-
tempting to find the size of the Earth towards the middle of the seven-
teenth century. See De la Grandeur et de la Figure … pages 296…306. I
believe the method is of no practical value.

224. The next memoir is entitled De la Perpendiculaire à la Méridi-
enne de Paris, décrite à la distance de 60000 Toises de l’Observatoire vers
le Midi. Par M. De Thury. The memoir occupies pages 403…413 of the
volume.

M. De Thury was a son of Jacques Cassini, and is usually called
Cassini de Thury. The perpendicular was traced from the meridian of
Paris to the western coast of France. Cassini de Thury finds that the
length of a degree of longitude in the parallel of Brest is nearly 300
toises shorter than it should be on the supposition of the spherical form
of the Earth. Hence he infers that the Earth must be oblong.

It must however be observed that for Nantes, which has nearly the
same latitude, Cassini de Thury obtained a difference of 781 toises. It
is surprising that such discordant results were considered to be worth
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preserving. It is plain that the observations were not good enough to
furnish trustworthy inferences.

Cassini de Thury assigns 47° 13′ 8″ for the latitude of Nantes, which
agrees with the modern value. But he assigns 47° 13′ 2″ for the latitude
of Brest; and the modern value is 48° 23′ 22″. See the table published in
the Connaissance des Temps. There must of course be some error in his
figures.

225. The volume for 1735 contains also some important memoirs on
the length of the seconds pendulum.

A memoir by Mairan on pages 153…220 relates to the length at Paris;
there is an account of this on pages 81…92 of the historical portion of
the volume.

A memoir by Godin relates to the lengths at Paris and at St Domingo.
A memoir by Bouguer relates to the length at St Domingo.
A memoir by La Condamine relates to the length at St Domingo.
These three memoirs will be found on pages 505…544 of the volume.
There is some notice of the memoirs by Godin, Bouguer, and La Con-

damine on pages 115…117 of the historical portion of the volume for
1736. We are told that these investigators did not arrive in Peru so soon
as they had hoped; and it is added: “Mais quoiqu’ils ne pussent pas en-
core s’occuper du principal objet de leur Voyage, la Nature est par-tout,
et ils trouvoient par-tout à observer.”

226. In the Paris Mémoires for 1736, published in 1739, we have four
memoirs bearing on our subject.

The first memoir is by Clairaut; we have noticed it in Art. 162. The
next memoir is by Maupertuis; we have noticed it in Art. 141.

The third memoir is entitled Sur la Perpendiculaire à la Méridienne
de l’Observatoire à la distance de 60000 toises vers le Nord. Par M. Cassini
De Thury. The memoir occupies pages 329…341 of the volume. There is
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an account of the memoir in pages 103 and 104 of the historical portion
of the volume.

The perpendicular was traced from the meridian of Paris to the west-
ern coast of France. According to these operations the length of a degree
of longitude in the parallel of Brest is 310 toises shorter than it should
have been on the supposition of the spherical form of the Earth. Hence,
as before, it is inferred that the Earth must be oblong.

It seems, from what is stated on pages 332 and 333, that in the oper-
ations before the present, the angle subtended between two objects had
not been distinguished from the projection of the angle on the plane of
the horizon.

It was sometimes found necessary to construct scaffolds on the tops
of lofty trees; one tree so used was above 100 feet high. Then we read
on page 104 of the historical portion of the volume: “Ces édifices hardis
demandoient que ceux qui s’en servoient, le fussent aussi.”

227. The last memoir is entitled De la maniere de déterminer la Figure
de la Terre par la mesure des degrés de Latitude et de Longitude. Par M.
Bouguer. The memoir occupies pages 443…468 of the volume.

Bouguer obtains expressions for the length of a degree of the merid-
ian and for the length of a degree of longitude, assuming the Earth to be
an ellipsoid of revolution. Then from the lengths of two different degrees
he deduces the ratio of the axes of the Earth. By the aid of the Differen-
tial Calculus he finds the change in this ratio produced by a given small
change in one of the elements on which it depends.

Bouguer makes some interesting remarks on what he calls “la dif-
férente délicatesse de la vûë des Observateurs,” or as we now call it the
personal equation of observers, see his page 457. He says that if two as-
tronomers have observed several times together and know what we call
their personal equation, yet this may be altered by the fatigues of a voy-
age, by the changes in the body, or by a greater or less density of the
atmosphere.
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Bouguer’s main conclusion is that attention should be given almost
exclusively to the measurement of arcs of meridian, since practically arcs
of longitude could not be determined with sufficient accuracy to settle
the question of the Earth’s form.

228. We have next to notice A Proposal for the Measurement of the
Earth in Russia, read at a Meeting of the Academy of Sciences of St Peters-
bourg, Jan. 21. 1737. by Mr Jos. Nic. de L’isle, first Professor of Astronomy,
and F.R.S. Translated from the French printed at St Petersbourg, 1737. 4to.
By T. S. M.D. F.R.S.

This paper occupies pages 27…49 of Number 449 of the Philosophical
Transactions. The Number is for the months January… June, 1737, and
forms part of Vol. xl. which is for the years 1737, 1738, and is dated
1738.

The paper is very interesting; it gives an account of the history of
opinion on the Figure of the Earth. The work of Eisenschmidt is cited,
and its full title reproduced, which agrees with that in La Lande’s Bibli-
ographie Astronomique, page 324: but here it is added pag. 54. cum fig.

The paper was written after the French expeditions had gone to
Peru and to Lapland, but before the results of their measurements
were known; however, some pendulum observations reported by both
expeditions favoured the oblate form.

An Extract of a Letter from Delisle is given on pages 50, 51 of Vol. xl.
of the Philosophical Transactions; from this it appears that he measured
on the ice a base of 74250 English feet, as the commencement of the
proposed operations in Russia.

In the work by F. G. W. Struve, entitled Arc du Méridien de 25° 20′
entre le Danube et la Mer Glaciale … there is a slight notice of Delisle’s
project: see Vol. i. page viii. The title of the original document is given
thus; Projet de la mesure de la Terre en Russie. Saint-Pétersbourg, 1737,
4to. It is stated that Delisle himself published no account of the mea-
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surement of the base or the angles. His manuscripts were preserved in
the Observatory of Paris, and examined in 1844 by M. O. Struve.

Delisle was brother to the person who made the pendulum observa-
tions at Archangel in 1728: see Art. 210.

229. We have next to consider a memoir by Euler, entitled De attrac-
tione corporum sphaeroidico-ellipticorum.

This memoir is contained in the Commentarii Academiæ … Petropoli-
tanæ, Vol. x. which is for 1738; the date of publication is 1747. The
memoir occupies pages 102…115 of the volume.

The memoir finds expressions in the form of infinite series for the
attraction of an oblatum on a particle at the pole, and on a particle at the
equator. In the former case the series is not complicated, and converges
rapidly; as Euler says vehementer convergit. In the latter case the series
is very complicated, and this case of the problem cannot be considered
to be really solved.

We are not told at what date the memoir was read to the Academy;
so that there may have been merit and value in it at the time; but before
the volume was published the solution of the problem by Maclaurin and
by Simpson had appeared, in which the results were expressed in exact
finite forms, so that Euler’s memoir was completely superseded.

I have not verified all the work in this memoir. I will give some in-
dication of Euler’s method.

Required the attraction of an elliptic lamina on a point directly over
the centre of the lamina.

Let 𝑐 denote the distance of the point, 𝛿𝑐 the thickness of the lamina.
Then the attraction is

𝛿𝑐∬
𝑐𝑑𝑥𝑑𝑦

(𝑐2 + 𝑥2 + 𝑦2) 32
,
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where the integration is to extend over the whole area of the ellipse

𝑥2

𝑎2
+
𝑦2

𝑏2
= 1.

Integrate first for 𝑦; thus we find that the attraction is equal to

4𝑏𝑐𝛿𝑐∫
𝑎

0

(𝑎2 − 𝑥2) 12𝑑𝑥
(𝑐2 + 𝑥2){𝑎2(𝑏2 + 𝑐2) + 𝑥2(𝑎2 − 𝑏2)} 12

.

By expanding, this becomes

4𝑏𝑐𝛿𝑐
𝑎(𝑏2 + 𝑐2) 12

∫
𝑎

0

(𝑎2 − 𝑥2) 12
𝑐2 + 𝑥2

{1 −
1
2
𝑧2 +

1 . 3
2 . 4

𝑧4 −
1 . 3 . 5
2 . 4 . 6

𝑧6 +…}𝑑𝑥,

where 𝑧2 stands for
𝑥2(𝑎2 − 𝑏2)
𝑎2(𝑏2 + 𝑐2)

.

This expansion will not give a convergent series throughout the range
of integration unless 𝑎2 − 𝑏2 is less than 𝑏2 + 𝑐2. Euler, however, does

not pay any attention to this point. Moreover, he also expands
1

𝑐2 + 𝑥2

in ascending powers of 𝑥2 before the integration, so that this expansion
is really not permissible if 𝑎 is greater than 𝑐.

However, Euler evaluates in this way the expression

∫
𝑎

0

(𝑎2 − 𝑥2) 12
𝑐2 + 𝑥2

𝑑𝑥,

namely, by expanding the denominator, integrating each term separately,
and then summing the infinite series which arises. We should now of
course avoid the expansion. By putting 𝑎 sin 𝜃 for 𝑥, the expression be-
comes

∫
𝜋
2

0

𝑎2 cos2 𝜃𝑑𝜃
𝑐2 + 𝑎2 sin2 𝜃

, that is ∫
𝜋
2

0

𝑐2 + 𝑎2

𝑐2 + 𝑎2 sin2 𝜃
𝑑𝜃 −∫

𝜋
2

0

𝑐2 + 𝑎2 sin2 𝜃
𝑐2 + 𝑎2 sin2 𝜃

𝑑𝜃,
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that is
𝜋
2
{
√(𝑎2 + 𝑐2)

𝑐
− 1} .

Hence in the required attraction we have the terms

2𝜋𝑏√(𝑎2 + 𝑐2)
𝑎√(𝑏2 + 𝑐2)

𝛿𝑐 −
2𝜋𝑏𝑐

𝑎√(𝑏2 + 𝑐2)
𝛿𝑐.

Next consider the term which arises from 𝑧2. We may proceed thus
without expansion:

∫
(𝑎2 − 𝑥2) 12𝑥2𝑑𝑥

𝑐2 + 𝑥2
= ∫{

𝑐2 + 𝑥2

𝑐2 + 𝑥2
−

𝑐2

𝑐2 + 𝑥2
} (𝑎2 − 𝑥2) 12𝑑𝑥.

Then taking the integrals between the limits 0 and 𝑎, we obtain

𝜋𝑎2

4
−
𝜋𝑐2

2
{
√(𝑎2 + 𝑐2)

𝑐
− 1} .

Hence in the required attraction we have the terms

−
1
2

𝑎2 − 𝑏2

𝑎2(𝑏2 + 𝑐2)
4𝑏𝑐𝛿𝑐

𝑎√(𝑏2 + 𝑐2)
{
𝜋𝑎2

4
−
𝜋𝑐2

2
(
√(𝑎2 + 𝑐2)

𝑐
− 1)} ,

or

𝜋𝑏𝑐2(𝑎2 − 𝑏2)√(𝑎2 + 𝑐2)𝛿𝑐
𝑎3(𝑏2 + 𝑐2) 32

−
𝜋𝑏𝑐3(𝑎2 − 𝑏2)𝛿𝑐
𝑎3(𝑏2 + 𝑐2) 32

−
𝜋𝑏𝑐(𝑎2 − 𝑏2)𝛿𝑐
2𝑎(𝑏2 + 𝑐2) 32

.

Similarly we might proceed with the term which arises from 𝑧4,
which will introduce (𝑎2 − 𝑏2)2; and so on.

The result of course will be very complicated. Euler seems to me to
increase the complication by putting

√(𝑎2 + 𝑐2) = √(𝑏2 + 𝑐2 + 𝑎2 − 𝑏2),
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and expanding the latter in powers of 𝑎2−𝑏2. He offers a reason for this
which I do not quite comprehend. “Vel cum ad applicationem ad compu-
tum expediat ipsas series retinere, quo singulorum terminorum integralia
algebraice exhiberi queant….”

Euler’s approximate values for the attraction at the pole and at the

equator are respectively 4𝜋𝑏 (
1
3
+
4𝜖
15

−
2𝜖2

21
), and 4𝜋𝑏 (

1
3
+
𝜖
5
−
3𝜖2

35
),

where 𝑏 is the polar semi-axis, and 𝑏(1 + 𝜖) is the equatorial semi-axis.
It will be found on examination that these are correct: see Art. 153.

Euler applies his results to determine the ratio of the axes in order
that a rotating fluid oblatum may be in relative equilibrium; he obtains
a value for the ellipticity, which is sensibly the same as Newton’s in the
case of the Earth.

230. A few words may be given to the treatise published by Daniel
Bernoulli at Strasbourg in 1738 under the title of Hydrodynamica, al-
though it is rather beyond our subject.

On pages 244 and 245 Daniel Bernoulli solves the problem of deter-
mining the form for relative equilibrium of the free surface when fluid
in a cylinder rotates round a vertical axis; the angular velocity is not as-
sumed to be the same throughout the mass. The solution is correct, and
is recognised as such by Clairaut in his Figure de la Terre, page 55.

Daniel Bernoulli however proceeds on page 246 to make some un-
satisfactory remarks on vortices. He begins by saying that he thinks the
fluid cannot continue permanently in its state if the centrifugal force in-
creases from the axis to the circumference: the context seems to shew
that instead of increases he meant decreases. But it is plain from his re-
marks that the subject was not understood at the time.

Daniel Bernoulli criticises implicitly Propositions 51 and 52 of Book
ii. of the Principia, which he considers do not both correspond to possi-
ble cases.
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231. The volume of the Paris Mémoires for 1739 was published in
1741. On page 30 of the historical portion there is a short notice of
a memoir communicated to the Academy by D’Alembert. The memoir
does not bear on our subject, but it is interesting to observe the early
appearance of a writer with whom we shall be much occupied hereafter.
We are told that: “On a trouvé dans M. d’Alembert beaucoup de capacité
et d’exactitude.” The later writings of D’Alembert do not in general seem
to me to deserve the praise of exactness.

A memoir by Clairaut occurs in the volume; of this we have given an
account in Art. 177.

There is a memoir entitled Sur les Opérations Géométriques faites en
France dans les années 1737 et 1738. Par M. Cassini De Thury. The mem-
oir occupies pages 119…134 of the volume.

The operations were chiefly directed to surveying parts of the coast
of France, with the view of rectifying the maps. Some observations as to
the velocity of sound are recorded.

232. The Academy of Sciences at Paris proposed The Tides as the sub-
ject for a prize essay in 1740. Four essays were published in consequence
at Paris. One essay was by a Jesuit named Cavallieri; this adopted the
Cartesian system of vortices. The other essays were by Daniel Bernoulli,
Maclaurin, and Euler; these are reprinted in the Jesuits’ edition of the
Principia, and it is stated that many errors in the original impression
have been corrected. I have used the reprint in consulting these Essays.

It will be convenient to postpone an account of Maclaurin’s essay un-
til we have examined the part of his Treatise of Fluxions which relates to
our subject; for this contains all that was in the essay with great addi-
tions and improvements.

233. The second chapter of Daniel Bernoulli’s essay contains some
lemmas relating to the Attraction of Bodies. The result may be summed
up thus: he determines the attraction at any superficial or internal point
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of an ellipsoid of revolution which is nearly spherical, neglecting powers
of the ellipticity beyond the first. The method used consists in finding ac-
curately the attraction of a sphere, and then approximately the attraction
of the difference between the sphere and the ellipsoid on a particle at the
pole or at the equator; as we have stated in Art. 165 this method had
been previously used by Clairaut. But Daniel Bernoulli seems to claim
the method as his own; he says at the end of his second Chapter:

Ceux qui voudront employer l’analyse pure pour la solution de nos deux
derniers Problêmes, se plongeront dans des calculs extrêmement pénibles, et
verront par là l’avantage de notre méthode.

Although Daniel Bernoulli employed attraction for the purpose of his
essay, yet he seems to have had but a weak faith in the principle: see his
Chap. i., Art. 6, and his Chap. ii., Art. 1.

Daniel Bernoulli added nothing to our subject; all his results respect-
ing Attraction are included in the formulæ given by Clairaut in 1737. But
his theory of the Tides is very important in the history of that subject,
though it would be out of place for us to discuss it here.

An account of Daniel Bernoulli’s essay was published in 1830 by the
late Sir J. W. Lubbock; it is in octavo, entitled Account of the “Traité sur
le Flux et Réflux de la Mer” of Daniel Bernoulli; and a Treatise on the
Attraction of Ellipsoids, pages vii. + 47.

234. Euler’s essay on the Tides contains scarcely anything that con-
cerns us. He finds the attraction of a spherical shell on an internal par-
ticle in his Art. 20. The results in his Art. 30 are interesting as examples:
we will state them. The attraction of the Sun, or of the Moon, at the sur-
face of the Earth, is of course not strictly the same as the attraction at
the centre; hence arises a disturbing attraction as it may be called, which
at a given place will depend on the zenith-distance of the attracting body.
Euler finds that the number of oscillations made by a pendulum when
the Sun and the Moon are together in the zenith is to the number made
in the same time by the same pendulum when the Sun and the Moon
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are together in the horizon as 4666666 is to 4666667. Also if the Sun
and the Moon are together at 45° from the zenith, first on one side and
then on the other side, in the same great circle, the plumb-line on the

whole experiences a deviation of less than
1
12

of a second. These results

are obtained of course by using the values then adopted for the masses
and the distances of the Sun and the Moon.

The following passage occurs at the beginning of Euler’s Article 12:
Explosis hoc saltem tempore qualitatibus occultis missâque Anglorum quo-

rumdam renovatâ attractione….

At first sight this looks as if Euler intended to reject the principle
of attraction; but we find on examination that he practically adopts the
principle, after assuming the existence of a subtle fluid in order to ac-
count for it to his own satisfaction.

235. A work entitled Degré du Méridien entre Paris et Amiens … was
published in 1740. I have not seen the original but only a German trans-
lation published at Zurich in 1742: I must assume therefore that the
translation corresponds to the original. Maupertuis and his companions
in the polar expedition were charged with the business of verifying the
length of a degree of the meridian assigned by Picard. They assumed the
accuracy of Picard’s terrestrial measurement, but determined the ampli-
tude of the arc afresh. The observations were made in the latter half of
the year 1739; the instrument employed was the same zenith-sector as
had been employed in Lapland.

The book contains a description of the sector and an account of the
observations made with it. More than half the volume however is a
reprint of Picard’s account of his own operations. Some observations are
also given relating to Aberration.

236. In the Paris Mémoires for 1740, published in 1742, we have a
Memoir entitled De la Méridienne de Paris, prolongée vers le Nord, et des
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Observations qui ont été faites pour décrire les frontieres du Royaume. Par
M. Cassini De Thury. The memoir occupies pages 276…292 of the vol-
ume. There is an account of it on pages 69…75 of the historical portion
of the volume. The memoir is very important in the history of the sub-
ject. Hitherto the accuracy of Picard’s base had not been questioned; but
now it was resolved to examine this point. A base not quite coincident
with Picard’s, but very near to it, was measured five times; by the aid of
a certain length deduced from this it was found that Picard had ascribed
to his base a length nearly 6 toises greater than it should have had. In
order to leave no doubt on the point, the last measurement was made
in the presence of Commissioners from the Academy, at the request of
Cassini de Thury himself. These Commissioners were Clairaut, Camus,
and Le Monnier. See La Meridienne de Paris verifiée, page 36.

Bailly implies that Picard’s actual base was remeasured, which as we
see was not the case. Moreover, he erroneously states that all the five
measurements were made in the presence of the Commissioners from
the Academy. Histoire de l’Astronomie Moderne, Vol. iii. page 35.

It will be convenient to bring together the various lengths assigned to
the degree of the meridian between Paris and Amiens.

Picard himself in 1671 adopted 57060 toises; see De la Grandeur et de
la Figure de la Terre, page 281.

Maupertuis in 1738 by correcting Picard’s observations for aberration
arrived at 56926 toises. Figure de la Terre, page 126.

Maupertuis and his companions in 1740 by new astronomical obser-
vations obtained 57183 toises. Degré du Méridien … First Part, Chapter
viii.

Cassini de Thury, after the remeasurement of Picard’s base, using the
amplitude determined by Maupertuis and his companions, gave 57074
toises. Paris Mémoires for 1740, page 289. The errors made by Picard in
his astronomical and geodetical work had by accident almost balanced
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each other. The subject is discussed by La Condamine in his Mesure des
trois premiers degrés, pages 239…258.

237. We return to the memoir by Cassini de Thury. The memoir is
remarkable for being, I presume, the first since the discussion had arisen
as to the form of the Earth in which a member of the family of Cassini
recognised the oblateness. We learn from page 288 of the memoir that
at the north of France the length of a degree of the meridian was found
to be 5708112 toises, and at the south of France 57048 toises.

Then Cassini de Thury adds:
… ainsi, suivant ces observations, les degrés vont en diminuant en s’ap-

prochant de l’Equateur, ce qui est favorable à l’hypothese de l’applatissement
de la Terre vers les Poles.

It may be interesting to compare results given in the present memoir
with some given in the earlier work.

According to the De la Grandeur et de la Figure de la Terre, page 148,
the distance between the parallels of Paris and Collioure is 360614 toises,
the amplitude 6° 18′ 57″, and the mean length of a degree 57097 toises.
According to the present memoir, the distance between the parallels of
Paris and Perpignan is 350142 toises, the amplitude 6° 8′ 17″, and the
mean length of a degree 57045 toises.

Again, according to the De la Grandeur et de la Figure de la Terre,
page 236, the distance between the parallels of Paris and Dunkirk is
125454 toises, the amplitude 2° 12′ 9″.5, and the mean length of a de-
gree 56960 toises. According to the present memoir, for the same arc the
corresponding numbers are 125508 toises, 2° 11′ 55″.5, and 57081.5 toises.

238. It must be observed that the error in Picard’s base does not ac-
count for the apparent diminution in the length of a degree of the merid-
ian in passing from the equator to the pole which the school of Cassini
had deduced and maintained. For in the De la Grandeur et de la Figure
de la Terre, which was the main support of this hypothesis, the lengths
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are all deduced from that of Picard’s base; and so the proportions would
not be affected by any error in the base. This remark is necessary be-
cause the contrary has been asserted, or obviously implied. Thus Bailly
says, “l’erreur de cette mesure étoit le nœud de la difficulté:” Histoire de
l’Astronomie Moderne, Vol. iii. page 38. And on page 169 of the article
Figure of the Earth in the Encyclopædia Metropolitana we read “On mea-
suring new bases and making new observations of every kind, the cause
of the original difficulty was soon discovered. The measure of Picard’s base

was erroneous by about
1

1000
th part of the whole, and this error had af-

fected one part only of the arc.” The statements which I have here put in
Italics do not seem to me supported by the evidence. It is true that in
1739 and 1740 anomalies were revealed which cast suspicion on Picard’s
measurement, and which were explained when that measurement was
corrected; but these were quite distinct from the original difficulty. See
La Meridienne de Paris verifiée, page 19.

We perceive from this memoir that in 1740 the oblate form of the
Earth was fully established and admitted.

239. An edition of Newton’s Principia appeared at Geneva in
1739…1742, edited by Thomas Le Seur and Francis Jacquier. The editors
are usually styled Jesuits, and the edition is called the Jesuits’ edition. I
have already referred to this edition: see Arts. 16, 22, and 232.

The commentary on Propositions XVIII., XIX. and XX. of Newton’s
third Book does not seem to me very successful; there are some seri-
ous mistakes in it, which occur chiefly in notes marked with an asterisk.
It appears from the Monitum and the Editoris monitum, prefixed to the
third Book, that these are due to J. L. Calandrinus, to whom Le Seur and
Jacquier acknowledge great obligations.

I will point out these mistakes.
A curious note is given on the words which I have quoted in Art. 26:

“Et propterea dico….” The note in effect states that Newton must have
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had better reason than appears at once obvious for applying the rule of
proportion. The note then proceeds to justify the proportion which New-
ton uses; but the investigation is unsatisfactory for the reason which of-
ten applies to approximations, namely, that the calculations are not car-
ried to the same degree of accuracy throughout. Using the letters as in
Art. 20 the note asserts that the ratio of the attraction at 𝑄 to the at-
traction of a sphere having 𝐶 for centre and 𝐶𝑄 for radius, is equal to
3 . 𝐶𝐴 − 2 . 𝐶𝑄

𝐶𝐴
; if the ellipticity 𝜖 be very small, this reduces to 3−2(1−𝜖),

that is, to 1+2𝜖: but, as we have stated in Art. 20, the true value is 1+
4𝜖
5
.

A long note is given on Newton’s Proposition XIX., which involves
some singular errors; indeed it seems to me quite extraordinary that such
a note should have been printed towards the middle of the eighteenth
century. The note proposes to investigate the resultant attraction of a
homogeneous solid of revolution at the surface; and it begins correctly
by observing that if we take a pyramid with an infinitesimal solid angle,
the attraction exerted by a segment of the pyramid on a particle at the
vertex varies as the height of the pyramid.

Let 𝐴𝐵 be the axis of the solid of revolution, 𝑃 any point at its sur-
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face, 𝑀𝐶𝑁 any double ordinate at right angles to 𝐴𝐵. The note supposes
𝑃 to be the vertex of a system of infinitesimal pyramids, the axes of the
pyramids all passing through the circle generated by the revolution of
𝐶𝑀 round 𝐶𝐴. The note concludes that the resultant attraction of these
pyramids will be in the direction 𝑃𝐶: this conclusion is obtained by tak-
ing the pyramids in pairs, so that the bases of a pair may be at the oppo-
site ends of a diameter of the circle; for example, the pyramid which has
𝑃𝑀 for its axis is combined with that which has 𝑃𝑁 for its axis. Now it
is quite true that such a pair of pyramids will exert a resultant attraction
along 𝑃𝐶, provided the two pyramids have equal infinitesimal solid angles:
but this important condition is practically forgotten in the note. A labo-
rious calculation is given for determining the resultant attraction of all
the pyramids which have their axes passing through the circle formed by
the revolution of 𝐶𝑀 round 𝐶𝐴; but this is of no use, because the bases
of all these pyramids will not form a strip of the surface contained be-
tween this circle and an adjacent circle in a parallel plane, though the
note implicitly assumes that they will.

Again, the language of the note seems to suggest that we are to ob-
tain the attractions exerted on 𝑃 by all the circular elements like that
considered, and add them together. This would however be useless; for
as these attractions are not all in the same direction they would have to
be resolved according to fixed directions, and the resolved parts in the
same direction added.

Again, we are in effect told to obtain the direction of the resultant
attraction of the solid in the following manner: Suppose 𝑌 a point in 𝐴𝐵
such that the attractions on 𝑃 of the two segments into which the solid
is divided by a plane through 𝑌 at right angles to 𝐴𝐵 are equal; then 𝑃𝑌
is the direction of the resultant. This statement is certainly untrue. For
instance, if the solid is a sphere, the resultant attraction passes through
the centre; but the two halves formed by cutting the sphere by a plane
do not in general exert equal attractions on a particle at the surface.
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It is incidentally stated, that in the triangle 𝑃𝑀𝑁 we have
(𝑃𝑀 + 𝑃𝑁) 𝑃𝑁 greater than 𝑀𝑁2; but this is not necessarily true.

The following extraordinary principle is offered for obtaining the con-
dition of equilibrium of a mass of fluid in the form of a solid of revo-
lution. Let 𝑡 denote the distance at any point 𝑃 between the bounding
surface and a similar surface indefinitely near, 𝑓 the attraction at 𝑃, 𝑦
the distance of 𝑃 from the axis, 𝑑𝑠 an element of the generating curve
at 𝑃; then 𝑡𝑓𝑦𝑑𝑠 is to be constant. It is sufficient to observe that in the
simplest possible case, that of a sphere, this condition does not hold; for
then 𝑡 and 𝑓 are constant, but 𝑦𝑑𝑠 is not constant, except by an arbitrary
hypothesis.

The commentators notice the inaccuracy of Newton, on which I have
remarked in Art. 33; they assert that gravity at different places varies in-
versely as the radius of curvature: “… gravitates in singulis punctis forent
reciproce ut radii osculatores curvæ.” This is untrue; it would make the
gravity greatest at the equator and least at the poles. The fact is that
gravity would vary as the length of the normal between the point and
the major-axis.

The commentators having obtained an expression substantially equiv-

alent to the
𝑎3 − 𝑝3

𝑎3𝑝3
, which I have given in Art. 35, immediately proceed

to take 𝑎3 − 𝑟3 for the numerator; but this approximation is not exact to
the order which has been retained. I should add, however, that in their
next note there is a correct analytical investigation of the matter.

240. We may next advert to a memoir entitled Determinatio exactior
Graduum Parallelorum Æquatoris et Meridiani … Auctore C. N. de Win-
sheim. This is contained in the Commentarii Academiæ … Petropolitanæ,
Vol. xii. which is for 1740; the date of publication is 1750. The memoir
occupies pages 222…240 of the volume. Here we have Tables giving the
lengths of a degree of the meridian and of a degree of longitude in var-
ious latitudes, for a sphere, and for an oblatum in which the ellipticity
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is
1
183

. This ellipticity is found from the Lapland degree of 57438 toises,

and Picard’s taken at 57183 toises: see Art. 236. Winsheim ascribes to
Euler the rule which he uses for calculating the Tables with respect to
the oblatum.



CHAPTER IX.

MACLAURIN.

241. Maclaurin’s researches on Attractions first appeared in his Es-
say on the subject of the Tides, which gained a prize from the French
Academy in 1740; see Art. 232. These researches are reproduced in an
enlarged and improved form, in Maclaurin’s work entitled A Treatise of
Fluxions, Edinburgh, 1742. The work is in two quarto volumes; it con-
tains Title Pages, a Dedication to His Grace the Duke of Argyle and
Greenwich on two pages, a Preface on six pages; then the text on 763
pages, and a page of Errata: there are xl Plates.

The Treatise of Fluxions embodies much of the analysis and mechan-
ics of the period. Maclaurin touches on the equilibrium of fluids in his
pages 409, 410. We may infer that he had a correct idea of what we now
call the differential equation to the surface of a homogeneous fluid in
equilibrium under given forces.

242. The part of the Treatise of Fluxions with which we are con-
cerned, occupies pages 522…566, which are in the second volume.

Maclaurin shews that the attraction of a homogeneous cone with a
given infinitesimal solid angle on a particle at the vertex varies as the
length of the cone; and that the same result holds for a frustum of the
cone; the particle being still supposed at the vertex of the cone. See his
Article 628. Then his Article 629 draws an important inference, which
Newton had given in the first corollary to his Proposition 87. Maclaurin
says:

The forces with which particles similarly situated with respect to similar ho-
mogeneous solids gravitate towards these solids are as their Distances from any
points similarly situated in the solids, or as any of their homologous sides. For
such solids may be conceived to be resolved into similar cones, or frustums of
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cones, that have always their vertex in the particles, and the gravitation towards
these cones, or frustums, will be always in the same ratio.

In future, if nothing is said about the density of the attracting body
it is to be understood to be a homogeneous body.

243. Maclaurin shews in his Article 630, that a particle will be in
equilibrium if it is placed at any point within the hollow part of a shell,
the surfaces of which are concentric, similar, and similarly situated ellip-
soids of revolution; the demonstration is the same as Newton’s: see Art.
13.

244. Let the attraction of an ellipsoid of revolution on any constituent
particle be resolved into two components, one perpendicular to the axis,
and the other parallel to the axis; then the former component varies as
the distance of the particle from the axis, and the latter component varies
as the distance from the plane of the equator. Maclaurin demonstrates
these theorems, first formally stated by himself, by a beautiful geometri-
cal process: see his Articles 631…634.

Clairaut preserves the essence of Maclaurin’s demonstration: he says,
“Cette méthode m’a paru si belle et si savante…”: see Figure de la Terre,
pages 157…170.

Suppose that 𝜆 denotes the constant coefficient for the component at-
traction parallel to the axis, and 𝜇 the constant coefficient for the compo-
nent perpendicular to the axis; then, by some general reasoning, Maclau-
rin arrives at the result that the product of 𝜆 into the square of the polar
axis is less or greater than the product of 𝜇 into the square of the equa-
torial axis according as the ellipsoid of revolution is oblate or oblong: see
his Article 635.

245. Let there be an ellipsoid of revolution; let 2𝑎 be the equatorial
diameter, and 2𝑏 the polar diameter. Suppose the ellipsoid to be fluid;
and besides the mutual attractions let there be at every point any other
force perpendicular to the axis varying as the distance from the axis, and
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any other force parallel to the axis varying as the distance from the plane
of the equator: the necessary and sufficient condition for equilibrium is
that 𝑎 must be to 𝑏, as the resultant force at the pole is to the resul-
tant force at the equator. This theorem can be demonstrated immedi-
ately by the aid of the well-known equations for the equilibrium of a
fluid. Maclaurin, however, was not in possession of these equations; so
that he adopted a different method. He says in his Article 636:

To demonstrate this proposition fully, we shall shew, 1. That the force which
results from the attraction of the spheroid and those extraneous powers com-
pounded together acts always in a right line perpendicular to the surface of the
spheroid. 2. That the columns of the fluid sustain or ballance each other at the
center of the spheroid. And 3. That any particle in the spheroid is impelled
equally in all directions.

He gives his demonstrations in his Articles 637, 638, 639.
Maclaurin then was in this position: there was as yet no theory of

fluid equilibrium which indicated what conditions were sufficient, so he
shews that all the conditions which had then been recognised as neces-
sary for equilibrium would be satisfied in the case supposed. He easily
demonstrates the first condition, which, as we know, was given by Huy-
gens: see Art. 53. Maclaurin’s second condition is a particular case of
his third, and was given by Newton: see Art. 23. The meaning which
Maclaurin attaches to his third condition is the following: Take any def-
inite point within the mass; draw from this point a straight line to the
surface in any direction; let this straight line be the axis of a column of
given infinitesimal section: then the attraction on the column resolved
along the column, is independent of the direction. Maclaurin, however,
only demonstrates this for the case in which the direction is in the merid-
ian plane of the definite point; he says that “in like manner, it is shewn”
that the result is true for columns not in the meridian plane: but it is
not obvious how he would have proceeded. The result can be obtained
very easily by modern methods.

Maclaurin’s third condition is thus an extension of Newton’s princi-
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ple of balancing columns, any point being taken instead of the centre,
at which the balancing is to hold. Huygens had briefly alluded to this
extension: see Art. 55.

246. This extension of Newton’s principle of balancing columns
seems to have been considered important at the time. D’Alembert says
on page 14 of his Essai … de la Résistance des Fluides:

Quoique le Principe de l’équilibre des Canaux rectilignes, soit comme l’on
voit, une conséquence très-naturelle de la pression des Fluides en tout sens;
cependant je dois reconnoître ici, que feu M. Maclaurin est le premier qui ait
fait usage de ce Principe, et qui l’ait appliqué à la recherche importante de la
Figure de la Terre. Voyez son Traité des Fluxions, art. 639, et son Traité de Causa
Fluxûs et Refluxûs maris, Paris, 1740.

See also D’Alembert’s Traité … des Fluides, second edition, page 49.

247. In Maclaurin’s Article 637, we have the important result which
we have noticed in our account of Stirling; namely, that when rotating
fluid in the form of an oblatum is in relative equilibrium the gravity
at any point of the surface varies exactly as the length of the normal
between the point and the plane of the equator; see Art. 153. This re-
sult had however been communicated to the Royal Society by Simpson,
in 1741, before the publication of Maclaurin’s Fluxions: see the preface
to Simpson’s Mathematical Dissertations. Simpson seems to claim prior-
ity for himself; but he overlooks the fact that Maclaurin had previously
given the result in his prize essay on the Tides: it is the Theorema Fun-
damentale of the essay.

It follows immediately from conic sections that instead of the gravity
varying as the length of the normal between the point and the plane of
the equator, we may take the length of the normal between the point
and the axis of revolution.

248. Maclaurin, in his Article 640, states the conclusions which he
had thus demonstrated respecting the problem of Art. 245. Among them
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we may observe that he says, surfaces similar, similarly situated, and con-
centric with the bounding surface “will be level surfaces at all depths.”

This is the first mention I find of level surfaces; the essential property
of a level surface is that the resultant force at any point of the surface is
in the direction of the normal to the surface at that point.

D’Alembert in his Essai … de la Résistance des Fluides, page 202, says:
… M. Maclaurin, le premier qui ait parlé de ces couches … auxquelles

la pesanteur est perpendiculaire, et qu’il appelle surfaces de niveau….

249. Maclaurin now applies the results obtained for the general prob-
lem of Art. 245 to the particular case of the relative equilibrium of a
revolving fluid.

He says in his Article 641:
It appears therefore that if the earth, or any other planet, was fluid and

of an uniform density, the figure which it would assume in consequence of its
diurnal rotation, would be accurately that of an oblate spheroid generated by
an ellipsis revolving about its second axis, as Sir Isaac Newton supposed.

Here, Maclaurin says more than he was justified in saying; he had
not proved that the planet would assume the form of an oblatum, but
only that this form is a form of relative equilibrium. See Art. 168.

The proposition really investigated was first established exactly
by Maclaurin; as we have stated, Stirling and Clairaut had given
approximate investigations of it: see Arts. 156 and 163.

250. Maclaurin now proposes to calculate the attraction of an ellip-
soid of revolution at the pole or at the equator. He begins with a lemma
which forms his Article 642. Let a slice of an attracting body be formed
by two planes, both containing the attracted particle, and inclined to
each other at an infinitesimal angle: then the lemma shews how to cal-
culate the attraction of the slice resolved along a given direction in one
of the planes.
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251. Before discussing the attraction of an ellipsoid of revolution,
Maclaurin considers that of a sphere in his Article 643. The following
general result is obtained: Let 𝐶 be the centre of a circle, 𝑃 any external
point in the plane of the circle. From 𝑃 draw any straight line cutting
the circumference of the circle at 𝐿 and 𝑀; and let a solid be formed by
the revolution round 𝑃𝐶 of the smaller segment of the circle cut off by

𝐿𝑀. Then the attraction of this solid on a particle at 𝑃 varies as
(𝐿𝑀)3

(𝑃𝐶)2
.

This may be easily verified by the aid of the general expression given
in Art. 4. The formula is very remarkable; it does not involve the radius
of the sphere; that is, if 𝐿𝑀 is constant, we get the attraction constant
whatever may be the value of the radius. The result was generalised by
Legendre, as we shall see, in his third memoir.

252. Maclaurin then in his Articles 644…647 investigates accurate ex-
pressions for the attraction of any ellipsoid of revolution on a particle
at the pole or at the equator. The investigations are conducted in the
manner of the time by representing the attractions by the areas of cer-
tain curves, and finding the areas by the method of fluents. The results
agree with those obtained by analysis, and presented in modern works
on Statics. Maclaurin’s processes are remarkable specimens of ingenu-
ity, considering the date of their publication; but they will not be very
interesting to a modern reader.

253. Maclaurin says in his Article 647:
… What has been shown concerning the gravity at the pole … agrees with

what was advanced long ago by Sir Isaac Newton and Mr. Cotes, who con-
tented themselves with an approximation in determining the gravity at the equa-
tor, which is exact enough when the spheroid differs very little from a sphere.
The approximations proposed lately for this purpose, Phil. Trans. N. 438 and
445, are more accurate; and Mr. Stirling after determining the gravity at the
equator by a converging series, since found that the sum of the series could be
assigned from the quadrature of the circle.
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I do not know what is intended by the reference to Mr Cotes. Of
course Cotes, as editor of the Principia, may be supposed to have ac-
cepted some of the responsibility which would otherwise have fallen on
Newton alone: but Maclaurin’s words seem to imply that Cotes had made
some investigations of his own. The paper in the Philosophical Transac-
tions, Number 438, is that by Stirling, of which we gave an account in
Chapter V.; and the paper in the Philosophical Transactions, Number 445,
is that by Clairaut, of which we gave an account in Arts. 163…166. I do
not know what Maclaurin means by the words “and Mr Stirling … cir-
cle.”

This passage from Maclaurin was quoted, and the difficulty as to its
meaning noticed, by the late Sir J. W. Lubbock: see page 24 of his work
cited in Art. 233.

I do not know whether the conjecture may be considered plausible
that Maclaurin wrote Stirling by mistake for Simpson. It appears from
the preface to Simpson’s Mathematical Dissertations that his researches
on the Figure of the Earth were read to the Royal Society in March or
April, 1741; and what Maclaurin says with respect to Mr Stirling is not
unsuitable to the investigation we find in Simpson’s work, except that
Simpson does not restrict himself to a point at the equator, but takes
any point on the surface.

254. Maclaurin proceeds in his Articles 648…652 to one of the most
important of his investigations, remarkable as forming a large part of
the theorem which now usually bears the name of Ivory, though it was
substantially first demonstrated by Laplace. Maclaurin’s theorem is as
follows in modern language: Let there be two confocal ellipses, and let
them both revolve round their major-axes, or round their minor-axes, so
as to generate two ellipsoids of revolution: then the attractions of the two
ellipsoids on the same particle external to both will be as the volumes,
provided the particle be on the prolongation of the axis of revolution, or
in the plane of the equator. Two such ellipsoids may be called confocal
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ellipsoids of revolution. Legendre shewed that the theorem was true for
any position of the external particle.

The general theorem demonstrated by Laplace is as follows: If there
be two confocal ellipsoids, that is, ellipsoids which have the same foci
for their principal sections, their attractions on any particle external to
both will be as their volumes, that is, will be the same in direction, and
in amount will be as their volumes. The simplest statement in modern
language is this: The potentials of confocal ellipsoids on a given external
particle are as their volumes.

Maclaurin in a later Article, namely 653, gave so much of this gen-
eral theorem as consists with the limitation that the particle must be on
the prolongation of an axis of the ellipsoids. Ivory merely supplied an
improved form of demonstration to Laplace’s theorem; and combined it
with the fact that inside an ellipsoid, along any radius-vector, the attrac-
tion varies as the distance from the centre.

Maclaurin’s Articles 648 and 649 contain his demonstration for the
case in which the external particle is on the prolongation of the axis
of revolution. These Articles may be read without difficulty, apart from
Maclaurin’s other investigations, by those who are desirous of seeing a
specimen of his own processes.

255. It is easy to translate into modern language the essence of
Maclaurin’s demonstration.

Let 2𝑎 and 2𝑏 be the axes of an ellipse; let the ellipse revolve about
the axis of length 2𝑎, and thus generate an ellipsoid of revolution: re-
quired the attraction of the ellipsoid on a particle which is on the pro-
longation of the axis of revolution at a distance 𝑐 from the centre.

Let 𝑟 be the distance of the attracted particle from any point of the
ellipsoid; let 𝜃 be the angle between 𝑟 and the axis of revolution. We see
in the usual way that the attraction is found by integrating with respect
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to 𝑟 and 𝜃 the expression

2𝜋𝑟𝑑𝑟 𝑟 sin 𝜃 cos 𝜃𝑑𝜃
𝑟2

.

Integrate with respect to 𝑟 and we obtain

2𝜋(𝑟2 − 𝑟1) sin 𝜃 cos 𝜃 𝑑𝜃,

where 𝑟2 and 𝑟1 are respectively the greatest and the least values of the
radius-vector drawn from the attracted particle to the ellipsoid at the in-
clination 𝜃 to the axis of revolution.

Hence 𝑟2 and 𝑟1 are the roots of the quadratic equation

(𝑟 cos 𝜃 − 𝑐)2

𝑎2
+
𝑟2 sin2 𝜃
𝑏2

= 1,

and thus we shall find that

𝑟2 − 𝑟1 =
2𝑎𝑏√(𝑏2 cos2 𝜃 + 𝑎2 sin2 𝜃 − 𝑐2 sin2 𝜃)

𝑏2 cos2 𝜃 + 𝑎2 sin2 𝜃

=
2𝑎𝑏√{𝑏2 + (𝑎2 − 𝑏2 − 𝑐2) sin2 𝜃}

𝑏2 + (𝑎2 − 𝑏2) sin2 𝜃
.

Now let there be a second ellipsoid of revolution, having the foci of
its generating ellipse in the same position as before; and let accented
letters be used to denote the analogous quantities; so that

𝑟2′ − 𝑟1′ =
2𝑎′𝑏′√{𝑏′2 + (𝑎′2 − 𝑏′2 − 𝑐2) sin2 𝜃′}

𝑏′2 + (𝑎′2 − 𝑏′2) sin2 𝜃′
.

Since the foci of the generating ellipses are coincident, we have
𝑎2 − 𝑏2 = 𝑎′2 − 𝑏′2, whether the ellipsoids are oblate or oblong. Assume

sin 𝜃′ =
𝑏′

𝑏
sin 𝜃; then we see that

𝑟2′ − 𝑟1′

𝑟2 − 𝑟1
=
𝑎′

𝑎
;
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and therefore
(𝑟2′ − 𝑟1′) sin 𝜃′ cos 𝜃′𝑑𝜃′

(𝑟2 − 𝑟1) sin 𝜃 cos 𝜃𝑑𝜃
=
𝑎′𝑏′2

𝑎𝑏2
.

Thus the attractions of the corresponding elements of the two ellip-
soids resolved along the direction of the axis of revolution are in the
same proportion as the volumes of the ellipsoids; and so the resultant
attractions of the whole ellipsoids will be in that proportion.

It will be observed that on our assumption 𝑟2′ − 𝑟1′ and 𝑟2 − 𝑟1 vanish
together; so that our elements always correspond. If the density of one
ellipsoid is not the same as the density of the other, then the attractions
will of course be in the ratio of the masses instead of the ratio of the
volumes. This remark will be obviously applicable in some subsequent
Articles.

Maclaurin’s own investigation in his Art. 648 applies to his figure 292,
which is drawn for an oblatum; but the figure may be drawn for an ob-
longum, and it will be found that the investigation is equally applicable.
In Maclaurin’s investigation the point 𝑃 is on the larger ellipsoid; but still
this involves the result in as general a form as we have stated it.

256. Maclaurin’s Article 650 consists of three sentences; it would
have been advantageous, for the sake of clearness, if they had been
printed as three distinct paragraphs: the last sentence most certainly
should have been separated from the others.

In the first sentence Maclaurin gives an expression for the attraction
of an oblatum on an external particle which is situated on the axis of
revolution: this follows from his former results, which we have noticed
in Arts. 252 and 255.

In the second sentence Maclaurin gives the corresponding expression
for the attraction of an oblongum.

The third sentence is very remarkable. It has been shewn that the at-
traction of a homogeneous ellipsoid of revolution on an external particle
which is situated on the axis of revolution, varies as the mass, so long
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as the generating ellipse keeps its foci fixed; now suppose an ellipsoid
of revolution, not homogeneous, but made up of shells, each shell be-
ing bounded by confocal ellipsoids of revolution, and the density being
uniform throughout each shell, but varying in any manner from shell to
shell: then the attraction of this heterogeneous ellipsoid on an external
particle situated on the axis of revolution is to the attraction of a homo-
geneous ellipsoid of the same size as the mass of the former is to the
mass of the latter. This is the first appearance of these confocal shells,
which play an important part in modern works on Attraction.

257. Maclaurin now proceeds in his Articles 651, 652 to the case in
which the attracted external particle is in the plane of the equator of the
attracting ellipsoid of revolution. He uses a most ingenious artifice by
which this case is made to depend on that already considered, in which
the attracted particle is on the prolongation of the axis of revolution. We
will translate his process into modern language.

Let the equation to one ellipsoid of revolution be
𝑥2

𝑎2
+
𝑦2 + 𝑧2

𝑐2
= 1,

and the equation to another
𝑥2

𝑎′2
+
𝑦2 + 𝑧2

𝑐′2
= 1. Suppose the generating

ellipses to have the same foci; then, whether the ellipsoids are oblate or
oblong, 𝑎2 − 𝑐2 = 𝑎′2 − 𝑐′2.

Suppose the second ellipsoid to be the larger. We propose to compare
the attractions of these ellipsoids on a particle which is on the equator of
the larger ellipsoid; the co-ordinates of the particle may be taken to be
0, 0, 𝑐′. We shall shew that the attractions of the ellipsoids are as their
volumes.

Let 𝐶 denote the centre of the ellipsoids, and 𝑃 the position of the
attracted particle.

Let two planes pass through 𝐶𝑃, and make with the axis of 𝑦 the
angles 𝜃 and 𝜃 + 𝛿𝜃, respectively: we will call these planes the first pair
of planes. Let two other planes pass through 𝐶𝑃, and make with the axis
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of 𝑦 the angles 𝜃′ and 𝜃′ +𝛿𝜃′ respectively: we will call these planes the
second pair of planes. The volume comprised between the first pair of
planes and the first ellipsoid we will call the element of the first ellipsoid;
the volume comprised between the second pair of planes and the second
ellipsoid we will call the element of the second ellipsoid: each element
then consists of two wedge-shaped slices. We shall shew that when a
suitable relation is made to hold between 𝜃 and 𝜃′, the attractions of
these elements on the particle at 𝑃 are as their volumes.

The relation between 𝜃 and 𝜃′ is found by assuming that the ellipses
which form the boundaries of the elements shall be confocal. Thus we
have 𝑟2 − 𝑐2 = 𝑟′2 − 𝑐′2, where

𝑟2 =
𝑎2𝑐2

𝑎2 cos2 𝜃 + 𝑐2 sin2 𝜃
, and 𝑟′2 =

𝑎′2𝑐′2

𝑎′2 cos2 𝜃′ + 𝑐′2 sin2 𝜃′
.

Since 𝑎2 − 𝑐2 = 𝑎′2 − 𝑐′2, we obtain
𝑐2 sin2 𝜃

𝑎2 cos2 𝜃 + 𝑐2 sin2 𝜃
=

𝑐′2 sin2 𝜃′

𝑎2 cos2 𝜃′ + 𝑐′2 sin2 𝜃′
:

this is the relation between 𝜃 and 𝜃′. It is obvious that to the limits 0

and
𝜋
2
for 𝜃 correspond the same limits for 𝜃′.

Suppose now that a solid were formed by the revolution round 𝐶𝑃 of
an ellipse having 𝐶 for centre, 2𝑐 for the axis of revolution, and 2𝑟 for
the other axis. Let 𝐹 denote the attraction of this solid on the particle at
𝑃. Then it is obvious that ultimately the attraction of the element of the

first ellipsoid on the particle is
𝛿𝜃
𝜋
𝐹.

Also suppose that a solid were formed by the revolution round 𝐶𝑃 of
an ellipse having 𝐶 for centre, 2𝑐′ for the axis of revolution, and 2𝑟′ for
the other axis. Let 𝐹′ denote the attraction of this solid on the particle
at 𝑃. Then it is obvious that ultimately the attraction of the element of

the second ellipsoid on the particle is
𝛿𝜃′

𝜋
𝐹′.
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Therefore if 𝑓 and 𝑓′ denote the attractions of the elements, we have

𝑓
𝑓′

=
𝐹 . 𝛿𝜃
𝐹′ . 𝛿𝜃′

.

Now, as we have seen in Art. 255, Maclaurin had shewn that

𝐹
𝐹′

=
𝑟2𝑐
𝑟′2𝑐′

;

therefore
𝑓
𝑓′

=
𝑟2𝑐𝛿𝜃
𝑟′2𝑐′𝛿𝜃′

.

But 𝑟2𝛿𝜃 represents the area intercepted by the first pair of planes from

the ellipse
𝑥2

𝑎2
+
𝑦2

𝑐2
= 1; and 𝑟′2𝛿𝜃′ represents the area intercepted by the

second pair of planes from the ellipse
𝑥2

𝑎′2
+
𝑦2

𝑐′2
= 1. Thus we see that 𝑓 is

to 𝑓′ as the volume of the element of the first ellipsoid is to the volume
of the element of the second ellipsoid. And as this proportion holds for
every corresponding pair of elements it holds for the entire ellipsoids;
which is what we had to demonstrate.

258. The process may be easily extended to the case in which the el-
lipsoids are not of revolution, as Maclaurin himself indicates in his Ar-
ticle 653.

Let the equations to the ellipsoids be

𝑥2

𝑎2
+
𝑦2

𝑏2
+
𝑧2

𝑐2
= 1,

𝑥2

𝑎′2
+
𝑦2

𝑏′2
+
𝑧2

𝑐′2
= 1;

and let the principal sections of the ellipsoids be confocal, so that

𝑐2 − 𝑎2 = 𝑐′2 − 𝑎′2, and 𝑐2 − 𝑏2 = 𝑐′2 − 𝑏′2.
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The relation between 𝜃 and 𝜃′ will then be found from the condition

𝑟2 − 𝑐2 = 𝑟′2 − 𝑐′2,

where

𝑟2 =
𝑎2𝑏2

𝑎2 cos2 𝜃 + 𝑏2 sin2 𝜃
, and 𝑟′2 =

𝑎′2𝑏′2

𝑎′2 cos2 𝜃′ + 𝑏′2 sin2 𝜃′
.

As before, we shall find that to the limits 0 and
𝜋
2
for 𝜃 correspond

the same limits for 𝜃′. Then the investigation and the result will be as
in the preceding Article.

259. Thus in the attraction of homogeneous ellipsoids Maclaurin’s po-
sition was as follows: he solved completely the problem of the attraction
of an ellipsoid of revolution on any internal particle; and with respect to
an external particle, he obtained for ellipsoids, not necessarily of revolu-
tion, the theorem of Laplace, so far as relates to a particle on the pro-
longation of an axis of the ellipsoids. All this was exactly demonstrated.

Maclaurin states also something more as approximately true in his
Article 654. The statement amounts to this, that the theorem of Art. 254
is true “either accurately or nearly when the spheroids differ little from
spheres,” when the attracted particle has any position. He gives no detail
as to the investigation of this result; but merely says it may be deduced
from his Article 653. We know now that the theorem is exact and not
merely an approximation; and, as we have stated, the demonstration was
first given by Legendre, and the theorem is a part of Laplace’s general
theorem.

260. The extent to which Maclaurin carried his investigations was
underestimated by many of the succeeding writers. He was supposed to
have merely enunciated the result which we have noticed in Art. 258,
whereas he really demonstrates it: he says “it will appear in the same
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manner…” and it is clear from an examination of his context that this is
the case. The erroneous account will be found in the following places:
D’Alembert, Opuscules Mathématiques, Vol. vi. 1773, page 243; Lagrange,
Berlin Mémoires for 1775, page 279; Laplace, Théorie … de la Figure el-
liptique des Planetes, 1784, page 96; Legendre, Mémoires … par divers Sa-
vans, Vol. x. 1785, page 412. Laplace, Mécanique Céleste, Vol. v. page 9.
Plana in Crelle’s Journal für … Mathematik, Vol. xx. page 190. Accord-
ing to the catalogues of booksellers, it appears that Maclaurin’s Fluxions
was translated into French, so that there is less excuse for the error. I
suppose that D’Alembert went astray, and the others followed in succes-
sion without examination. Chasles is correct; he says that Maclaurin did
demonstrate his theorem, and he points out the error in this matter made
by D’Alembert, Lagrange, Legendre, and others: see the Mémoires … par
divers Savants, Vol. ix. 1846, page 632. The error is also noticed by Dr F.
Grube in a paper in the Zeitschrift für Mathematik und Physik, Vol. xiv.
Leipsic, 1869, page 272.

On the other hand, some recent English writers have gone to the op-
posite extreme, and given to Maclaurin more than his due, by ascrib-
ing to him in effect the entire theorem called Ivory’s, but more strictly
Laplace’s; see Natural Philosophy, by Thomson and Tait, Vol. i. page 392,
and Routh’s Rigid Dynamics, 2nd edition, page 421.

261. It will be convenient to give the results obtained by Maclaurin
as to the attraction of an oblatum on an external particle which is in the
plane of the equator, or on the prolongation of the axis of revolution.

Let 𝑃 be the position of an external particle which is in the plane
of the equator. Let 𝐹 be the focus of the section of the oblatum made
by the plane which contains 𝑃 and the axis of revolution. Let 𝐶 be the
centre, 𝐶𝐴 and 𝐶𝐵 the semi-axes of the section. With 𝐹 as centre, and a
radius equal to 𝐶𝑃, describe a circle cutting 𝐶𝐵 produced at 𝐷. With 𝐷
as centre, and 𝐷𝐹 as radius, describe the arc 𝐹𝑂, and with 𝐷 as centre
and 𝐷𝐶 as radius, describe the arc 𝐶𝑆.

Then Maclaurin obtains for the attraction on a particle at 𝑃 the ex-
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pression
2 . 𝐶𝐵 . 𝐶𝐴2

𝐶𝐹3
×
area 𝐹𝐶𝑂

𝐶𝑃
.

And for the attraction on a particle at the point 𝐷 on the prolongation
of the axis of revolution, he obtains the expression

2 . 𝐶𝐵 . 𝐶𝐴2

𝐶𝐹3
× (𝐶𝐹 − 𝐶𝑆).

If we multiply these expressions by 2𝜋𝜌, where 𝜌 denotes the den-
sity, they will be found to agree with those given in modern works on
Statics when we suppose 𝑃 to be on the surface; and the case where 𝑃 is
not on the surface may be deduced from that where 𝑃 is on the surface,
by Maclaurin’s theorem of Art. 254. The presence or absence of such a
factor as 2𝜋 merely depends on the choice we have made of the unit of
attraction.

Put 𝑎 for 𝐶𝐴, and 𝑎𝑒 for 𝐶𝐹; also put 𝑟 for 𝐶𝑃 in the first expres-
sion, and 𝑟 for 𝐶𝐷 in the second; then, introducing the factor 2𝜋𝜌, our
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expressions become:

2𝜋𝜌√(1 − 𝑒2)
𝑒3

{𝑟 sin−1
𝑒𝑎
𝑟
−
𝑎𝑒√(𝑟2 − 𝑒2𝑎2)

𝑟
} , (1)

and
4𝜋𝜌√(1 − 𝑒2)

𝑒3
{𝑒𝑎 − 𝑟 tan−1

𝑒𝑎
𝑟
} , (2)

so that (1) applies to the particle in the plane of the equator, and (2) to
the particle on the prolongation of the axis of revolution.

It will be useful for us to collect here some obvious deductions from
(1) and (2).

The attraction at the equator is obtained by putting 𝑎 for 𝑟 in (1); and
the attraction at the pole is obtained by putting 𝑎√(1 − 𝑒2) for 𝑟 in (2).

Let 𝑥 and 𝑦 be the co-ordinates of any point on the surface of the
oblatum, measured from the origin 𝐶 parallel to 𝐶𝐴 and 𝐶𝐵 respectively.
Then, by Art. 244, combined with the values of the attraction at the
equator and at the pole, to which we have just alluded, we obtain for
the attractions at the point (𝑥, 𝑦), resolved parallel to 𝐶𝐴 and 𝐶𝐵 respec-
tively,

2𝜋𝜌√(1 − 𝑒2)
𝑒3

{sin−1 𝑒 − 𝑒√(1 − 𝑒2)} 𝑥,

and
4𝜋𝜌
𝑒3

{𝑒 − √(1 − 𝑒2) sin−1 𝑒} 𝑦.

If we expand these and neglect 𝑒4 and higher powers of 𝑒 we obtain
respectively

4𝜋𝜌
3

(1 −
𝑒2

5
) 𝑥 and

4𝜋𝜌
3

(1 +
2𝑒2

5
) 𝑦.

By expanding their second factors in powers of 𝑒, the expressions (1)
and (2) become respectively

4𝜋𝜌
3

√(1 − 𝑒2) {
𝑎3

𝑟2
+
3𝑒2

10
𝑎5

𝑟4
+
9𝑒4

56
𝑎7

𝑟6
+…} ,
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and
4𝜋𝜌
3

√(1 − 𝑒2) {
𝑎3

𝑟2
−
3𝑒2

5
𝑎5

𝑟4
+
3𝑒4

7
𝑎7

𝑟6
+…} .

In the expressions (1) and (2) change 𝑎 into 𝑎 + 𝛿𝑎, and subtract the
original values; thus we obtain the attraction of a shell bounded by sim-
ilar, similarly situated, and concentric oblata, on an external particle in
the plane of the equator or on the prolongation of the axis: supposing
𝛿𝑎 so small that all powers beyond the first may be neglected, the results
are respectively

4𝜋𝜌√(1 − 𝑒2)
𝑒3

𝑒2𝑎2

𝑟√(𝑟2 − 𝑒2𝑎2)
𝑒𝛿𝑎,

and
4𝜋𝜌√(1 − 𝑒2)

𝑒3
𝑒2𝑎2

𝑟2 + 𝑒2𝑎2
𝑒𝛿𝑎.

Maclaurin, subsequently, in his Articles 668 and 669, gives without
demonstration, in a geometrical form, results which are equivalent to
these.

262. Maclaurin, in his Article 655, applies his results to find the con-
dition for the relative equilibrium of an oblatum of fluid rotating round
the minor axis. Let 𝑎 be the semi-axis major, and 𝑒 the excentricity. Let
𝑋 denote the attraction at the equator, and 𝑌 the attraction at the pole.
Then we obtain 𝑋 by putting 𝑎 for 𝑟 in the expression (1) of Art. 261,
and we obtain 𝑌 by putting 𝑎√(1 − 𝑒2) for 𝑟 in the expression (2). Thus
we find

𝑌
𝑋
=
2{𝑒 − √(1 − 𝑒2) sin−1 𝑒}
sin−1 𝑒 − 𝑒√(1 − 𝑒2)

.

Suppose that 𝑗𝑋 denotes the value of the centrifugal force at the equa-
tor; then for relative equilibrium we must have, by Art. 245,

𝑋 − 𝑗𝑋
𝑌

= √(1 − 𝑒2);
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therefore
𝑗 =

𝑋 − 𝑌√(1 − 𝑒2)
𝑋

.

Put for
𝑌
𝑋
its value, and this becomes

𝑗 =
3{sin−1 𝑒 − 𝑒√(1 − 𝑒2)} − 2𝑒2 sin−1 𝑒

sin−1 𝑒 − 𝑒√(1 − 𝑒2)
.

These expressions are exact. By approximation we obtain

𝑌
𝑋
=
1 +

2
5
𝑒2 +

8
35
𝑒4 +

16
105

𝑒6 +…

1 +
3
10
𝑒2 +

9
56
𝑒4 +

5
48
𝑒6 +…

,

𝑗 =

2
5
𝑒2 +

9
35
𝑒4 +

5
28
𝑒6 +…

1 +
3
10
𝑒2 +

9
56
𝑒4 +

5
48
𝑒6 +…

.

Maclaurin gives these approximations as far as 𝑒4 inclusive.
By reversion of series we obtain

𝑒2 =
5𝑗
2
−
15𝑗2

7
+… ;

so that when the oblatum differs very little from a sphere we may take

𝑒2 =

5𝑗
2

1 +
6𝑗
7

.

Maclaurin then says, “in this case the excess of the semi-diameter of
the equator above the semiaxis is to the mean semi-diameter nearly as”
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5𝑗 is to 4 −
11𝑗
7
. By the mean semi-diameter he intends half the sum

of the polar and equatorial radii. Taking 1 for the equatorial radius, we
have √(1−𝑒2) for the polar radius; then the ratio of the difference to the

half-sum is expressed exactly by
2 {1 − √(1 − 𝑒2)}
1 + √(1 − 𝑒2)

.

If we wish to be correct only to the first power of 𝑒2 this becomes
𝑒2

2
.

If we wish to be correct to the second power of 𝑒2 this becomes

𝑒2 (1 +
𝑒2

4
)

2 −
𝑒2

2

. We might use other forms which would coincide with this

as far as the second power of 𝑒2. For instance, we have the ratio exactly

equal to
2𝑒2

{1 + √(1 − 𝑒2)}2
, and thus to the order of 𝑒4 we get

2𝑒2

4 − 2𝑒2
;

and then we may put this to the same order in the form
𝑒2

2
(1 +

𝑒2

2
).

Taking the form
2𝑒2

4 − 2𝑒2
and putting

5𝑗
2

1 +
6𝑗
7

for 𝑒2, we obtain with

Maclaurin
5𝑗

4 −
11𝑗
7

.

263. Maclaurin shews how the value of 𝑒2 for the Earth, supposed
homogeneous, may be deduced from the measured length of a degree of
the meridian in any latitude, and the measured length of the pendulum
which vibrates in a given time in that latitude: see his Articles 656…658.
He shews in his Article 657 that the radius of curvature in the ellipse
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varies as the cube of the length of the normal terminated by the major
axis; he was, probably, the first to demonstrate this: see the Mécanique
Céleste, Vol. v. page 6.

Maclaurin also shews how the value of 𝑒2 may be deduced from the
distance and the periodic time of a satellite revolving in the plane of the
equator: see his Articles 659 and 660.

Maclaurin in his Articles 661…665 obtains numerical results with
respect to the Earth, supposed homogeneous. He does not determine

strictly the value of the quantity we denote by 𝑗; but he finds
1

289.3
as

the value of the ratio of the centrifugal force at the equator to the force

of gravity at Paris, and
1

287.8
as the value of the ratio of the centrifugal

force at the equator to the force of gravity at the Polar circle. For the
ratio of the axes of the Earth he obtains a result practically equivalent
to Newton’s value of 230 to 229.

Maclaurin shews, however, that this result is not consistent with that
obtained by means of the observations of pendulums in various latitudes;
nor with that obtained from the measured lengths of a degree of the
meridian in France and in Lapland: both these methods gave for the

ellipticity a larger value than
1
230

. We have now more accurate obser-

vations and measurements than those accessible to Maclaurin; and we

know that the true value of the ellipticity is about
1
300

.

264. Maclaurin then proposes to treat the Earth as not uniform in
density. In his Article 666 he supposes that there is more matter at the
centre than is consistent with the hypothesis of uniform density; and in
his Article 667 he supposes that there is less matter at the centre. He
concludes that both these suppositions are inadmissible, as not agreeing
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with facts; for, relying on the French and Lapland arcs, he considered

that the ellipticity must be greater than
1
229

.

In his investigations he does not shew that there will be relative equi-
librium in the supposed fluid mass; but he shews that if there be relative
equilibrium, certain relations will exist between the lengths of the polar
and the equatorial diameters.

Maclaurin’s investigations do not appear quite satisfactory; let us take
his Article 667. With the notation of Art. 262 we have 𝑋 − 𝑗𝑋 for the
gravity at the equator, and 𝑌 for the gravity at the pole. The ratio of the
difference to the half-sum is

2
𝑌 − 𝑋 + 𝑗𝑋
𝑌 + 𝑋 − 𝑗𝑋

.

Now for relative equilibrium we must have

𝑌√(1 − 𝑒2) = 𝑋(1 − 𝑗);

substitute, and we find that the above ratio becomes

2{1 − √(1 − 𝑒2)}
1 + √(1 − 𝑒2)

.

As we have seen in Art. 262, this result can be put in various approx-
imate forms.

Now Maclaurin supposes that matter is removed from the centre of
the oblatum, so as to diminish the attraction at the equator by a certain
fraction of the mean attraction; we shall denote this fraction by 𝜆, and
the mean attraction by 𝐺. The attraction at the pole will be diminished

by
𝜆𝐺

1 − 𝑒2
. The ratio of the centrifugal force to the attraction at the equa-

tor is supposed to remained unchanged.
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Thus the gravity at the equator is (𝑋 − 𝜆𝐺)(1 − 𝑗), and at the pole is

𝑌 −
1

1 − 𝑒2
𝜆𝐺. The ratio of the difference to the half-sum is

2
𝑌 − 𝑋(1 − 𝑗) − 𝜆𝐺 {

1
1 − 𝑒2

− (1 − 𝑗)}

𝑌 + 𝑋(1 − 𝑗) − 𝜆𝐺 {
1

1 − 𝑒2
+ 1 − 𝑗}

.

Maclaurin considers that this is approximately equal to
5𝑗 − 14𝑗𝜆

4 − 4𝜆 + 2𝑗𝜆
;

and this is less than
5𝑗
4
which he takes for the approximate value of the

ratio before the matter was removed from the centre.
But these statements are liable to the objection which is fatal to so

many approximate calculations; the investigation is not true to the or-

der of the small quantities which are retained. Put
1
2
(𝑌 + 𝑋) for 𝐺; and

observe that 𝑌√(1 − 𝑒2) = 𝑋(1 − 𝑗). Then the ratio after the matter is
removed from the centre is accurately

2
√(1 − 𝑒2)

− 2 − 𝜆 {
1

√(1 − 𝑒2)
+

1
1 − 𝑗

} {
1

1 − 𝑒2
− (1 − 𝑗)}

1
√(1 − 𝑒2)

+ 1 −
𝜆
2
{

1
√(1 − 𝑒2)

+
1

1 − 𝑗
} {

1
1 − 𝑒2

+ 1 − 𝑗}
.

If we neglect powers of 𝑒2 and 𝑗 above the first the numerator of
this fraction becomes 𝑒2 − 2𝜆(𝑒2 + 𝑗); and the denominator becomes

2 +
𝑒2

2
−
𝜆
2
(2 +

𝑒2

2
+ 𝑗) (2 + 𝑒2 − 𝑗), that is, to our order of approxima-
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tion 2 +
𝑒2

2
− 𝜆 (2 +

3𝑒2

2
). If we now put

5𝑗
2

for 𝑒2, we obtain for the

ratio
5𝑗 − 14𝑗𝜆

4 +
5𝑗
2
− 4𝜆 −

15
2
𝑗𝜆
.

Thus we see that Maclaurin is wrong in his denominator.
There is, however, a very serious objection to the process just given.

If Maclaurin retained the term in 𝑗𝜆 in the denominator, he ought to
have carried on the approximations in the numerator to a higher order;
for instance, 𝑒4 ought to have been retained: and then when the value
of 𝑒2 in terms of 𝑗 is substituted in the numerator the square of 𝑗 must
be retained. But, in order to determine in a satisfactory manner how far
the approximations are to be carried, we must make some hypothesis as

to the value of 𝜆. Suppose, for instance, that 𝜆 is
1
3
or

1
4
; then 𝑗𝜆 will

be of the same order as 𝑗; and in the numerator of the ratio we shall
have to retain the squares of 𝑒2 and 𝑗, and the product 𝑒2𝑗. But if we
suppose that 𝜆 is of the same order as 𝑗, and retain the term 𝑗𝜆 in the
denominator, then we must make our numerator accurate to the third
order of small quantities, and our denominator accurate to the second
order, considering 𝑒2 or 𝑗 as of the first order.

I have taken 𝐺 =
1
2
(𝑌 +𝑋) as Maclaurin’s words certainly imply. I do

not retain his notation nor his language; but use what I find most conve-
nient. Maclaurin himself, in his Art. 666, explains that in what follows
he uses gravitation for the excess of gravity above centrifugal force: so
that his gravity corresponds to my attraction, and his gravitation to my
gravity.

It is possible however that, with Maclaurin, 𝐺 =
1
2
(𝑌 + 𝑋 − 𝑗𝑋).
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This meaning of 𝐺 makes 𝑌 − 𝑋(1 − 𝑗) = 2𝐺
1 − √(1 − 𝑒2)
1 + √(1 − 𝑒2)

; and the

ratio of the difference of the polar gravity and the equatorial gravity to
the half-sum becomes accurately

2
1 − √(1 − 𝑒2)
1 + √(1 − 𝑒2)

− 𝜆 {
1

1 − 𝑒2
− (1 − 𝑗)}

1 −
1
2
𝜆 {

1
1 − 𝑒2

+ 1 − 𝑗}
.

Instead of the expression 4+
5𝑗
2
−4𝜆−

15
2
𝑗𝜆, which we obtained before

for the denominator by approximation we should now have 4−4𝜆−3𝑗𝜆,
which is still different from Maclaurin’s result.

However, though Maclaurin’s process is very unsatisfactory, his con-
clusion is true that the ratio of the difference to the half-sum of the grav-
ities is diminished by removing matter from the centre. The best way

of shewing this, is to start from the algebraical fact that
𝑝 − 𝑝′

𝑞 − 𝑞′
is less

than
𝑝
𝑞
if
𝑝′

𝑞′
is greater than

𝑝
𝑞
. Accordingly we have only to shew that

1
1 − 𝑒2

− (1 − 𝑗)
1

1 − 𝑒2
+ 1 − 𝑗

is greater than
1 − √(1 − 𝑒2)
1 + √(1 − 𝑒2)

; this reduces to shewing

that 1 − 𝑗 is less than
1

√(1 − 𝑒2)
, which is obviously true.

There would, however, be little interest in ascertaining that the ratio
is diminished without any estimate of the amount of diminution; but,
in order to form such an estimate, it would be necessary to make an
hypothesis as to the value of 𝜆, and then to approximate to a suitable
degree of accuracy.
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Hitherto in this Article we have not paid any regard to the suppo-
sition that the oblatum is fluid; but let us now adopt that supposition.
Maclaurin finds by Newton’s method of balancing columns that when
matter is removed from the centre, the polar diameter will be dimin-
ished, and the equatorial diameter increased, and so the excentricity in-
creased. The process is not satisfactory; for Maclaurin does not shew
that the fluid can remain in equilibrium when matter is removed from
the centre: and in fact we now know that it will be necessary to make
some fresh hypothesis. We may suppose that there is a solid spherical
nucleus, surrounded by a fluid of greater density. In this case it will be
found that relative equilibrium will subsist, when the bounding surface
is an oblatum of certain excentricity; and this excentricity is greater than
when the body is entirely fluid and homogeneous. But the value of 𝜆

cannot be taken quite arbitrarily: it must fall below
2
5
. The problem in

fact was solved by Clairaut in the more general form of a central nucleus
which is not a sphere but an ellipsoid of revolution, having for its axis
of revolution the axis of rotation. See his Figure de la Terre, page 219.

We will briefly solve the problem, when the nucleus is spherical, in
the modern way. Let 𝑀 denote the mass of the body, supposed entirely
fluid and homogeneous; then 𝜆𝑀 is the mass which is supposed to be
removed, so as to make the central nucleus less dense than the fluid.
We may consider that the attraction at any point of the fluid is produced
by the action of the whole oblatum of fluid, diminished by the action of
the sphere of mass 𝜆𝑀.

Take the axis of 𝑧 for that of revolution. Let 𝜔 be the angular veloc-
ity. The attraction of the oblatum at the point (𝑥, 𝑦, 𝑧) parallel to the
axes will be 𝐴𝑥, 𝐴𝑦, 𝐶𝑧, respectively, where 𝐴 and 𝐶 are constants. The

attraction of the sphere will be
𝜆𝑥𝑀
𝑟3

,
𝜆𝑦𝑀
𝑟3

, and
𝜆𝑧𝑀
𝑟3

respectively, where

𝑟2 = 𝑥2 + 𝑦2 + 𝑧2.
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Hence the equation to the surface of the fluid must be

𝐴(𝑥2 + 𝑦2)
2

−
𝜔2(𝑥2 + 𝑦2)

2
+
𝐶𝑧2

2
+
𝜆𝑀
𝑟

= constant.

Suppose 2𝑎 and 2𝑐, the equatorial and polar diameters; then we get

𝐴𝑎2

2
−
𝜔2𝑎2

2
+
𝜆𝑀
𝑎

= constant,

and
𝐶𝑐2

2
+
𝜆𝑀
𝑐

= constant;

therefore by subtraction

𝐴𝑎2 − 𝐶𝑐2 − 𝜔2𝑎2 + 2𝜆𝑀(
1
𝑎
−
1
𝑐
) = 0.

Now by hypothesis we have

𝑎𝜔2 = 𝑗 (𝐴𝑎 −
𝜆𝑀
𝑎2

) ,

so that
𝐴𝑎2 − 𝐶𝑐2 − 𝑗 (𝐴𝑎2 −

𝜆𝑀
𝑎
) + 2𝜆𝑀(

1
𝑎
−
1
𝑐
) = 0.

If we suppose that 𝑒 is very small, we find by Article 262 that approx-
imately

𝐴𝑎2 =
𝑀
𝑎
(1 +

3
10
𝑒2) , 𝐶𝑐2 =

𝑀
𝑎
(1 −

1
10
𝑒2) ;

and
1
𝑎
−
1
𝑐
= −

𝑒2

2𝑎
;

so that

𝑒2 =
𝑗(1 − 𝜆)
2
5
− 𝜆

=

5𝑗
2
(1 − 𝜆)

1 −
5𝜆
2

.
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It is obvious that if we suppose 𝑒2 and 𝑗 to be of the same order
of magnitude, this process is not satisfactory for every value of 𝜆: for

instance, 𝜆 must not be nearly equal to
2
5
. And if 𝜆 is itself of the same

order as 𝑒2 and 𝑗, the result is not admissible, for then we ought to have
retained 𝑒4 and 𝑒2𝑗 as well as 𝑗𝜆 and 𝑒2𝜆.

We may accept the investigation as sufficiently accurate for such cases

as 𝜆 =
1
5
, or 𝜆 =

1
10
; and we see that the excentricity is greater than for

the case of the oblatum entirely fluid and homogeneous: so far then we
agree with Maclaurin.

Maclaurin, however, asserts, that in consequence of this increase of
the excentricity, the ratio of the difference of the gravities to their half-
sum is rendered still less than it was before we adopted the supposition
of fluidity. This is a mere assertion unsupported by evidence. So far as
the influence of the removal of central matter is concerned, we may ad-
mit that the increase of the excentricity tends to bring the polar gravity
and the equatorial nearer to equality; but, on the other hand, consider-
ing all the other matter as forming a homogeneous oblatum, we see that
the increase of the excentricity tends to bring the polar gravity and the
equatorial further from equality. Thus, to obtain the actual result, we
must strike a balance between opposing influences; and this Maclaurin
has not done.

We can easily submit the question to calculation. Before the hypothe-

sis of fluidity was adopted, taking 𝜆 less than
2
5
but not so small as 𝑗, we

have for the approximate value of this ratio

5𝑗
4
(1 −

14𝜆
5
)

1 − 𝜆
to the order of

accuracy necessary: to this order, in fact, Maclaurin’s result agrees with
that which we obtained.
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Now with the hypothesis of fluidity we may find the ratio by the aid
of Clairaut’s theorem; for the ratio of the difference of the gravities to
the half-sum is the same as the ratio of the difference of the gravities to
the equatorial gravity, to our order of accuracy. Thus, by Art. 171, the
ratio is

5𝑗
2
−
𝑒2

2
, that is

5𝑗
2
−

5𝑗
4
(1 − 𝜆)

1 −
5𝜆
2

, that is

5𝑗
4
(1 − 4𝜆)

1 −
5
2
𝜆

.

Now this is not necessarily less than the former value; it is in fact greater

if 𝜆 is less than
1
10
.

265. Maclaurin considers in his Articles 668…671 the attraction of
an ellipsoid of revolution made up of similar and concentric shells of
varying density. He shews theoretically how to determine the attraction
on a particle on the axis, or in the plane of the equator, either external or
internal. In modern language we should say that he reduces the general
problem to depend on a single integration: see Art. 261. Maclaurin then
takes special cases; he treats briefly the case in which the density varies
inversely as the diameter of the shell, and the case in which it varies
inversely as the square of the diameter; and more fully the case in which
it varies as the diameter.

Jacobi has made an important remark on the subject of the similar
concentric shells when the ellipsoid is not of revolution: see Poggen-
dorff’s Annalen, Vol. xxxiii. 1834, page 233. Pontécoulant, Théorie Ana-
lytique, Supplément au Livre v. page 22.

266. It will be interesting to discuss analytically some cases of similar
concentric shells with varying density.

I. Suppose the density to vary inversely as the diameter. Put 𝑥 for
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𝑒𝑎; then the density varies inversely as 𝑥; say that the density =
𝜇
𝑥
. Take

the formulæ of Art. 261, omitting the common factor
4𝜋𝜇√(1 − 𝑒2)

𝑒3
; thus

we find that the attractions for an external particle in the plane of the
equator and on the axis respectively are

∫
𝑥𝑑𝑥

𝑟√(𝑟2 − 𝑥2)
and ∫

𝑥𝑑𝑥
𝑟2 + 𝑥2

,

𝑟 being the distance of the particle from the common centre of the shells.
The limits of integration are 0 and 𝑐𝑒, where 𝑐 is the semi-axis major of
the bounding shell of the solid. Thus we obtain respectively

𝑟 − √(𝑟2 − 𝑐2𝑒2)
𝑟

, and 1
2 log

𝑟2 + 𝑐2𝑒2

𝑟2
.

Suppose now that we take the external particle to be on the surface
of the oblatum; then in the former expression we put 𝑟 = 𝑐, and in the
latter we put 𝑟2 = 𝑐2(1−𝑒2). In both cases we obtain a result independent
of 𝑐. Thus the attractions at the equator and at the pole are independent
of the size of the oblatum. Maclaurin gives this result so far as relates
to the attraction at the equator.

It is also true that for a particle situated at any point of the surface,
the attraction will be independent of 𝑐; this may be shewn by reasoning
of the kind given in Art. 242.

II. Suppose the density to vary inversely as the square of the diame-
ter.

In this case we find, omitting the same common factor as before, that
the attractions for a particle in the plane of the equator and on the axis
are respectively

∫
𝑑𝑥

𝑟√(𝑟2 − 𝑥2)
and ∫

𝑑𝑥
𝑟2 + 𝑥2

,
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that is,
1
𝑟
sin−1

𝑐𝑒
𝑟

and
1
𝑟
tan−1

𝑐𝑒
𝑟
.

Suppose now we take the external particle to be on the surface of the
oblatum; then in the former expression we put 𝑟 = 𝑐, and in the latter
𝑟 = 𝑐√(1−𝑒2). Hence we see, that for oblata similar in form but different
in size, each result varies inversely as 𝑐. Maclaurin gives this result so far
as relates to the attraction at the equator.

It is also true that for a particle situated at any point of the surface
the attraction will vary inversely as 𝑐; this may be shewn by reasoning of
the kind given in Art. 242.

Also, since sin−1 𝑒 = tan−1
𝑒

√(1 − 𝑒2)
, we see that for the same ellip-

soid, the equatorial and polar attractions for a particle on the surface are
inversely as the equatorial and polar diameters. Maclaurin does not men-
tion this. I add, that the law of density under consideration is the only
law which gives the result just obtained; the density being assumed to be
a function of the diameter of the shell. To prove this: assume the law of

density to be represented by
𝜙(𝑥)
𝑥2

. Then we require that ∫
𝑐𝑒

0

𝜙(𝑥)𝑑𝑥
𝑐√(𝑐2 − 𝑥2)

should be to ∫
𝑐𝑒

0

𝜙(𝑥)𝑑𝑥
𝑐2 − 𝑐2𝑒2 + 𝑥2

as 𝑐√(1 − 𝑒2) is to 𝑐.

Assume in the first integral 𝑥 = 𝑐 sin 𝜃, and in the second
𝑥 = 𝑐√(1 − 𝑒2) tan 𝜃: then we arrive at

∫
sin−1 𝑒

0
[𝜙(𝑐 sin 𝜃) − 𝜙{𝑐√(1 − 𝑒2) tan 𝜃}]𝑑𝜃 = 0.

Differentiate with respect to 𝑐 and to 𝑒; thus

0 = ∫
sin−1 𝑒

0
[sin 𝜃𝜙′(𝑐 sin 𝜃) − √(1 − 𝑒2) tan 𝜃𝜙′{𝑐√(1 − 𝑒2) tan 𝜃}]𝑑𝜃,
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and

0 = ∫
sin−1 𝑒

0

𝑐𝑒
√(1 − 𝑒2)

tan 𝜃𝜙′{𝑐√(1 − 𝑒2) tan 𝜃}𝑑𝜃.

Multiply the latter by
1 − 𝑒2

𝑐𝑒
, and add to the former; thus we obtain

∫
sin−1 𝑒

0
sin 𝜃𝜙′(𝑐 sin 𝜃)𝑑𝜃 = 0;

and by differentiating with respect to 𝑒 we see that 𝜙′(𝑐𝑒) = 0. This shews
that 𝜙(𝑥) must be a constant.

III. Suppose the density to vary as the diameter.
In this case, omitting the same common factor as before, the attrac-

tions for a particle in the plane of the equator and on the axis are re-
spectively

∫
𝑥3𝑑𝑥

𝑟√(𝑟2 − 𝑥2)
and ∫

𝑥3𝑑𝑥
𝑟2 + 𝑥2

.

Thus we shall obtain when the external particle is on the surface

𝑐2

3
{2 − 3√(1 − 𝑒2) + (1 − 𝑒2) 32 } and

𝑐2

2
{𝑒2 + (1 − 𝑒2) log(1 − 𝑒2)}.

Each varies directly as the square of 𝑐. And, as before, for a particle
situated at any point of the surface the attraction will vary as the square
of 𝑐. In this case the ratio of the equatorial attraction to the polar is

2
3
2 − 3√(1 − 𝑒2) + (1 − 𝑒2) 32
𝑒2 + (1 − 𝑒2) log(1 − 𝑒2)

.
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Expanding in powers of 𝑒2 we shall find that this becomes

1 +
𝑒2

3
+
3𝑒4

16
+…

1 +
𝑒2

3
+
𝑒4

6
+…

,

thus if we neglect the square and higher powers of 𝑒2, the two attractions
are equal. This agrees with a statement in Maclaurin’s Article 673.

IV. Suppose the density to vary as the cube of the diameter.
In this case, omitting the same common factor as before, the attrac-

tions for a particle in the plane of the equator and on the axis are re-
spectively

∫
𝑥5𝑑𝑥

𝑟√(𝑟2 − 𝑥2)
and ∫

𝑥5𝑑𝑥
𝑟2 + 𝑥2

.

Thus we obtain when the external particle is on the surface

𝑐4

15
{8 − 15(1 − 𝑒2) 12 + 10(1 − 𝑒2) 32 − 3(1 − 𝑒2) 52 },

and
𝑐4

4
{𝑒4 − 2𝑒2(1 − 𝑒2) − 2(1 − 𝑒2)2 log(1 − 𝑒2)}.

Each varies as the fourth power of 𝑐. And, as before, the same result will
hold for a particle situated at any point of the surface.

The ratio of the former to the latter when we neglect the square and

higher powers of 𝑒2 is
1 +

3𝑒2

8

1 +
𝑒2

4

.

267. Maclaurin in his Articles 672 and 673 supposes that his shells
are fluid, and that the density varies as the diameter. He comes to the
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conclusion that the ellipticity is rather greater than it is for the case of
uniform density; but that the increase of gravity in passing from the
equator to the pole is less than for the case of uniform density. He also
briefly states the results for the case in which the density varies as the
cube of the diameter.

The results are of no value, for Maclaurin merely assumes Newton’s
principle of columns of fluid balancing at the centre, and does not shew
that the whole fluid will be in equilibrium. In fact it is known that the
whole fluid will not be in equilibrium. If the density of the shells varies
the excentricity can not be constant. The objection to Maclaurin’s in-
vestigations was noticed by Clairaut: see his Figure de la Terre, pages
229…232.

For an example we will give the investigation, on Maclaurin’s princi-
ples, of the case in which the density varies as the cube of the diameter.

Denote the attraction for a particle on the surface at the equator by
𝐸, and at the pole by 𝑃, the density at the surface by 𝜌, and the centrifu-
gal force at the equator by 𝑉: let 2𝑎 and 2𝑏 be the equatorial and polar
diameters.

For the equatorial column, at a distance 𝑥 from the centre, the attrac-

tion is 𝐸
𝑥4

𝑎4
, the centrifugal force is 𝑉

𝑥
𝑎
, and the density is 𝜌

𝑥3

𝑎3
: hence

the weight of the column

= ∫
𝑎

0
(𝐸

𝑥4

𝑎4
− 𝑉

𝑥
𝑎
) 𝜌

𝑥3

𝑎3
𝑑𝑥 = (

𝐸
8
−
𝑉
5
) 𝜌𝑎.

Similarly the weight of the polar column =
𝑃
8
𝜌𝑏.

Therefore
(
𝐸
8
−
𝑉
5
) 𝜌𝑎 =

𝑃
8
𝜌𝑏.
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We take from observation
𝑉
𝐸
=

1
289

, so that 𝑃𝑏 = 𝐸 (1 −
8

5 × 289
) 𝑎.

Therefore

𝐸
𝑃
=

√(1 − 𝑒2)

1 −
8

5 × 289

=
1 −

𝑒2

2
1 −

8
5 × 289

approximately.

But we saw in Art. 266 that
𝐸
𝑃
= 1 +

𝑒2

8
nearly; therefore

1 −
𝑒2

2
= (1 −

8
5 × 289

) (1 +
𝑒2

8
) ;

so that
𝑒2

2
=
4
5
×
8
5
×

1
289

=
1
226

.

The ratio of the polar gravity to the equatorial

=
𝑃

𝐸 − 𝑉
=

1

(1 +
𝑒2

8
) (1 −

1
289

)
= 1 +

1
289

−
𝑒2

8
= 1 +

13
25

×
1
289

nearly.

Thus we obtain an excentricity slightly greater than for the case of

uniform density, where
𝑒2

2
=

1
230

; but the increase of gravity in passing

from the equator to the pole is much less than for the case of uniform

density, where it is
1
230

of the whole.

268. Maclaurin devotes his Articles 674…678 to the discussion of the
case in which the density involves two terms, one constant, and the other
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varying as the diameter of the shells. Let 𝑥 represent the diameter of
any shell, 𝑎 the diameter of the outside shell; then he takes the density

to vary as
𝑛𝑎
𝑛 − 1

−𝑥. This obviously amounts to supposing the density to

vary as the distance from some point beyond the outside shell. Maclau-
rin’s discussion of the attractions at the equator and at the pole is very
clear and satisfactory.

Assuming as before that the body is fluid, and using Newton’s princi-
ple of columns balancing at the centre, Maclaurin arrives at the following
results:

If 𝑒 and 𝑗 have their usual meanings

𝑒2

4
=
5𝑗(𝑛 + 2)(𝑛 + 3)
17𝑛2 + 34𝑛 + 45

=
5𝑗
8
{1 −

3(3𝑛 + 1)(𝑛 − 1)
17𝑛2 + 34𝑛 + 45

} .

The ratio of the difference of polar and equatorial gravities to their
half-sum is

5𝑗
4
{1 +

3(𝑛 + 3)(𝑛 − 1)
17𝑛2 + 34𝑛 + 45

} .

Maclaurin says in his Art. 678,
… no supposition of this kind can account for a greater variation from the

spherical figure, and at the same time for a greater increase of gravitation from
the equator to the poles….

If we put 𝑛 = 0 in the above value of 𝑒2 we get 𝑒2 =
8𝑗
3
; the density

now varies as the diameter: the result coincides with that obtained by
Maclaurin in his Art. 673.

Maclaurin in his Article 679 states the results obtained by substituting
for 𝑛 in the above general formulæ the values 2, 3 and infinity.

269. Problems of the kind considered by Maclaurin in his Articles
672…679 had previously engaged the attention of Clairaut: see Chapter
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VI. Both Clairaut and Maclaurin however failed, from not knowing that
the equilibrium of the whole fluid was impossible on their hypotheses.
Considered merely with respect to attractions both supplied interesting
results: Clairaut gave approximate values of the attraction at any point of
the surface, and Maclaurin gave exact values of the polar and equatorial
attractions. The failure as regards the hydrostatical part of the problems
was recognised by Clairaut himself: see his Figure de la Terre, pages 155
and 259.

270. Maclaurin in his Article 680 takes the case of an oblatum which
is composed of shells of finite thickness; each shell is of uniform density,
but the density varies from shell to shell, increasing towards the centre:
the bounding surfaces of the shells are supposed to be all similar and
concentric. He gives, in fact, an approximate expression for the excen-
tricity in the case of one shell surrounding a central portion, from which
it appears that the excentricity is less than for the case of a homogeneous
fluid; and he states that a similar result will hold when there are more
shells.

Let us investigate the general result which is briefly indicated in
Maclaurin’s Article 680.

First, let there be one shell surrounding a central part. Denote the
density of the shell by 1, and that of the central part by 1 + 𝜎. Let the

equatorial diameter of the central part be
2𝑎
𝑛
, where 2𝑎 is the outer equa-

torial diameter of the shell.
We proceed with Maclaurin to equate the weights of the equatorial

and polar columns.
We begin with finding the weight of the equatorial column. Let 𝑥 de-

note a distance from the centre, 𝛾 the density at this point, 𝜙(𝑥) the at-
traction at this point. Then the weight of the column will be denoted by



maclaurin. 183

∫
𝑎

0
𝛾𝜙(𝑥)𝑑𝑥; and we must observe that 𝛾 and 𝜙(𝑥) have different forms

at different points.

Put 𝑘 for
4𝜋
3
√(1− 𝑒2). Then, from 𝑥 = 0 to 𝑥 =

𝑎
𝑛
we have 𝛾 = 1+𝜎,

and 𝜙(𝑥) = 𝑘(1+𝜎) (1 +
3𝑒2

10
) 𝑥; and from 𝑥 =

𝑎
𝑛
to 𝑥 = 𝑎 we have 𝛾 = 1,

and 𝜙(𝑥) = 𝑘 (1 +
3𝑒2

10
) 𝑥+𝑘𝜎 (

𝑎3

𝑛3𝑥2
+

3𝑎5𝑒2

10𝑛5𝑥4
). Here we only retain the

first power of 𝑒2; and this we shall do throughout the investigation. See

Art. 261.

Hence we shall find that ∫
𝑎

0
𝛾𝜙(𝑥)𝑑𝑥 becomes

𝑘(1 + 𝜎)2 (1 +
3𝑒2

10
)
𝑎2

2𝑛2
+ 𝑘(1 +

3𝑒2

10
) (1 −

1
𝑛2
)
𝑎2

2

+ 𝑘𝜎 {
𝑛 − 1
𝑛3

+
𝑒2(𝑛3 − 1)
10𝑛5

} 𝑎2.

If 𝑉 denote the centrifugal force at the equator, the effect of the

centrifugal force on the column is 𝑉 (1 +
𝜎
𝑛2
)
𝑎
2
. We put as usual

𝑉

(𝑘 +
𝑘𝜎
𝑛3
) 𝑎

= 𝑗; for the denominator on the left-hand side expresses

the attraction at the equator to the order which we are here con-
sidering. Thus the effect of the centrifugal force on the column is

𝑗𝑘 (1 +
𝜎
𝑛2
) (1 +

𝜎
𝑛3
)
𝑎2

2
.
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In a similar manner we find that if 2𝑏 be the outer polar diameter of
the shell the weight of the polar column is denoted by

𝑘(1 + 𝜎)2 (1 −
𝑒2

10
)
𝑎2

2𝑛2
+ 𝑘(1 −

𝑒2

10
) (1 −

1
𝑛2
)
𝑎2

2

+ 𝑘𝜎 {
𝑛 − 1
𝑛3

.
𝑎
𝑏
−
𝑒2(𝑛3 − 1)

5𝑛5
.
𝑎3

𝑏3
} 𝑎2.

The factor (1 −
𝑒2

10
)
𝑎2

2
may be obtained thus: the attraction at

the pole of an oblatum of density unity is 𝑘 (
𝑎3

𝑏2
−
3𝑒2

5
.
𝑎5

𝑏4
), that is,

𝑘𝑏 (1 +
9𝑒2

10
) nearly; thus the weight of the polar column, if the density

were unity throughout, would be 𝑘
𝑏2

2
(1 +

9𝑒2

10
), that is, 𝑘 (1 −

𝑒2

10
)
𝑎2

2
.

Equate the weights of the columns; thus we get

(1 + 𝜎)2
2𝑒2

5𝑛2
+
2𝑒2

5
(1 −

1
𝑛2
) − 𝜎𝑒2

𝑛 − 1
𝑛3

+
3𝜎𝑒2

5
𝑛3 − 1
𝑛5

= 𝑗 (1 +
𝜎
𝑛2
) (1 +

𝜎
𝑛3
) ;

therefore

𝑒2 =

5𝑗
2
(𝑛2 + 𝜎) (𝑛3 + 𝜎)

𝑛5 + 𝑛3𝜎2 + 𝑛3𝜎 + 𝑛2𝜎 +
3
2
(𝑛2 − 1) 𝜎

:

this is less than
5𝑗
2
, since 𝜎 is positive and 𝑛 greater than unity. Maclau-

rin gives this result.
Let us now suppose that there are three portions of fluid, an outer

shell of density 1, a second shell of density 1 + 𝜌, and an inner part of
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density 1+𝜌+𝜎. Let the equatorial diameter of the inner part be
2𝑎
𝑛
; and

let the outer equatorial diameter of the second shell be
2𝑎
𝑚
. It is easy to

see that the value of 𝑒2 will now be determined by an equation of the
form

𝑒2 =

5𝑗
2
(1 +

𝜌
𝑚2 +

𝜎
𝑛2
) (1 +

𝜌
𝑚3 +

𝜎
𝑛3
)

1 + terms of the first and second degree in 𝜌 and 𝜎
.

Now with respect to the denominator on the right-hand side, we
know that if 𝜌 = 0 it reduces to

1 +
𝜎2

𝑛2
+ (

1
𝑛2

+
1
𝑛3
) 𝜎 +

3
2
𝑛2 − 1
𝑛5

𝜎;

and if 𝜎 = 0 it will reduce to a similar expression in 𝜌 and 𝑚. Hence, in
fact, we have only the term in 𝜌𝜎 to find. Proceed as before: we see that
in estimating the weight of the equatorial column we have a term

2𝑘𝜌𝜎 (1 +
3𝑒2

10
)
𝑎2

2𝑛2
+ 𝑘𝜌𝜎 {

𝑛 − 𝑚
𝑛3

+
𝑒2(𝑛3 −𝑚3)

10𝑛5
} 𝑎2,

and in estimating the weight of the polar column we have a term

2𝑘𝜌𝜎 (1 −
𝑒2

10
)
𝑎2

2𝑛2
+ 𝑘𝜌𝜎 {

𝑛 − 𝑚
𝑛3

.
𝑎
𝑏
−
𝑒2(𝑛3 −𝑚3)

5𝑛5
.
𝑎3

𝑏3
} 𝑎2.

This shews that the term we are seeking is

𝜌𝜎 (
2
𝑛2

−
5
2
.
𝑛 − 𝑚
𝑛3

+
3
2
.
𝑛3 −𝑚3

𝑛5
) ,

that is

𝜌𝜎 {
1
𝑛2

+
𝑚
𝑛3

+
3𝑚(𝑛2 −𝑚2)

2𝑛5
} .
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The term which involves 𝜌𝜎 in the numerator is
1

𝑚3𝑛2
+

1
𝑚2𝑛3

, which

is certainly less than the term which involves 𝜌𝜎 in the denominator.
There will be no difficulty in extending this. Suppose that there are

four portions of fluid, and that their densities are 1, 1 + 𝜛, 1 + 𝜛 + 𝜌,

1+𝜛+𝜌+𝜎; and the corresponding equatorial semi-diameters 𝑎,
𝑎
𝑙
,
𝑎
𝑚
,

𝑎
𝑛
. Then the numerator of 𝑒2 will now be

5𝑗
2
(1 +

𝜛
𝑙2
+

𝜌
𝑚2 +

𝜎
𝑛2
) (1 +

𝜛
𝑙3
+

𝜌
𝑚3 +

𝜎
𝑛3
) .

The terms in the denominator can easily be written down;
that in 𝜌𝜎 is the same as before; that in 𝜛𝜌 will in like man-

ner be 𝜛𝜌{
1
𝑚2 +

𝑙
𝑚3 +

3𝑙(𝑚2 − 𝑙2)
2𝑚5 }; and that in 𝜛𝜎 will be

𝜛𝜎{
1
𝑛2

+
𝑙
𝑛3

+
3𝑙(𝑛2 − 𝑙2)

2𝑛5
}.

The problem is of no importance; for, as we have said, the whole
fluid mass will not be in equilibrium: but still there is something curi-
ous in the simplicity of the solution when considered with regard to the
complexity of the hypothesis.

271. Maclaurin in his Article 681 takes the following hypothesis: let
there be a shell of fluid, the bounding surfaces of which are concentric
and similar oblata; and within the inner surface let there be a solid con-
centric sphere. He again equates the weights of the equatorial and polar
columns of fluid. It is obvious that the hypothesis is not consistent with
the known conditions for fluid equilibrium, unless he supposes the inner
surface of the fluid to become rigid; and if this is supposed, the weights
of the columns will not be equal. Clairaut pointed out that the hypoth-
esis is untenable: see his Figure de la Terre, page 256.
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We will state the results which will be obtained on Maclaurin’s prin-
ciples. Take the density of the solid and of the fluid to be the same, and

uniform; let 2𝑎 and
2𝑎
𝑛

be the external and internal equatorial diameters

of the shell. Suppose the volume of the sphere to be
1
𝑁

of the volume

of the oblatum if complete; then we shall obtain

𝑒2 =

5𝑗
2
(𝑛 + 1) (𝑛3 − 1 +

𝑛3

𝑁
)

𝑛4 + 𝑛3 + 𝑛2 −
3𝑛 + 3
2

−
5𝑛5

2𝑁

.

Maclaurin’s result agrees with this; but he uses the word area for vol-
ume.

The ratio of the difference of the polar and equatorial gravity to the
semi-sum will be found to be

𝑗 +
𝑗(𝑛 + 1)(𝑛5 − 10𝑛2 + 9) +

10𝑗𝑛3

𝑁

2𝑛2 (2𝑛4 + 2𝑛3 + 2𝑛2 − 3𝑛 − 3 −
5𝑛5

𝑁
)
.

Maclaurin has 𝑛5𝑁 where we have
𝑛5

𝑁
, and he has −30𝑛2 where we

have −10𝑛2. We may verify by putting 𝑁 infinite and 𝑛 = 1; then we
have only an indefinitely thin shell, and we get 𝑒2 = 2𝑗: and the excess of
polar over equatorial gravity becomes zero by our formula, as it should.
If we put 𝑛 = 2, we find that Maclaurin’s result would in general be
negative, supposing we make the correction for 𝑁.

Maclaurin next supposes that the central part instead of being a
sphere is an ellipsoid of revolution; he gives the correct result on his
principles, supposing the ellipticity of the central part to be small: he
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has not formally stated this condition, though he has certainly used it.
The following is his result: let the distance from the centre to a focus of

the inner part be
𝑎
𝑟
; then the rest of the notation being as before,

𝑒2 =

5𝑗
2
(𝑛 + 1) (𝑛3 − 1 +

𝑛3

𝑁
) −

3𝑛5

2𝑟2𝑁
(𝑛2 + 𝑛 + 1)

𝑛4 + 𝑛3 + 𝑛2 −
3𝑛 + 3
2

−
5𝑛5

2𝑁

.

Suppose, for example, that the surface of the solid part coincides with

the inner surface of the fluid, so that
1
𝑟
=
𝑒
𝑛
, and 𝑁 = 𝑛3: then we obtain

𝑒2 =
5𝑗
2
, as it should be.

Maclaurin goes on to say that other suppositions might be made, but
implies that it is not desirable to dwell on them. He makes the following
very judicious remark:

When more degrees shall be measured accurately on the meridian, and the
increase of gravitation from the equator towards the poles determined by a se-
ries of many exact observations, the various hypotheses, that may be imagined
concerning the internal constitution of the earth, may be examined with more
certainty.

272. Maclaurin gives in his Articles 682…685 some remarks on the
shape of the planet Jupiter.

Suppose a satellite to describe round its primary in the plane of the
primary’s equator, a circle of radius 𝑟 in time 𝑇; let the primary revolve
on its axis in time 𝑡; let 𝑎 and 𝑎√(1−𝑒2) be the semi-axes of the primary.

Maclaurin puts 𝑁 for
𝑟3

𝑎3
×

𝑡2

𝑇2 .

To connect 𝑁 with 𝑗 and 𝑒 we have the following equations: see Art.
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261:

𝑗 =
(
2𝜋
𝑡
)
2

4𝜋𝜌
3

√(1 − 𝑒2) {1 +
3𝑒2

10
+
9𝑒4

56
+…}

,

𝑟 (
2𝜋
𝑇
)
2
=
4𝜋𝜌√(1 − 𝑒2)

3
{
𝑎3

𝑟2
+
3𝑒2

10
𝑎5

𝑟4
+
9𝑒4

56
𝑎7

𝑟6
+…} ;

therefore

𝑁𝑗 =
1 +

3𝑒2

10𝑀2 +
9𝑒4

56𝑀4 +…

1 +
3𝑒2

10
+
9𝑒4

56
+…

,

where 𝑀 stands for
𝑟
𝑎
.

Put for 𝑗 its value from Art. 262; thus

𝑁(
2
5
𝑒2 +

9
35
𝑒4 +

5
28
𝑒6 +…) = 1 +

3𝑒2

10𝑀2 +
9𝑒4

56𝑀4 +…

Now Maclaurin says in his Article 660, that “the excess of the semidi-
ameter of the equator above the semiaxis is to the mean semidiameter as

5 to 4𝑁 +
10
7
−

3
𝑀𝑀

nearly;” and in his Article 682 he says, “By continu-

ing the series in art. 660 one step further, the excess of the semidiameter
of the equator above the semiaxis is to the mean semidiameter as 5 is to

4𝑁 +
10
7
−

3
𝑀𝑀

+
4825
336𝑁

, …” Let us examine the last statement.

We have just seen that

𝑒2 =

5
2𝑁

(1 +
3𝑒2

10𝑀2 +
9𝑒4

56𝑀4 +…)

1 +
9𝑒2

14
+
25
56
𝑒4 +…

. (1)
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We can infer from Maclaurin’s result that he rejects the squares of
𝑒2

𝑀2 ; and, indeed, if we look at his numerical values, it will appear that

to the order he considers, he might have rejected
𝑒2

𝑀2 also. However,

retaining
𝑒2

𝑀2 , we have from (1),

𝑒2 =

5
2𝑁

1 + (
9
14

−
3

10𝑀2 ) 𝑒
2 +

25
56
𝑒4 +…

. (2)

For a first approximation we have from (2)

𝑒2 =
5
2𝑁

.

Substitute this value in the denominator of (2), neglecting 𝑒4, then
for a second approximation

𝑒2 =

5
2𝑁

1 + (
9
14

−
3

10𝑀2 )
5
2𝑁

=

5
2𝑁

1 +
45
28𝑁

−
3

4𝑁𝑀2

:

this agrees with what Maclaurin gives at the beginning of his Article 660.
For a third approximation we substitute for 𝑒2 in the denominator of
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(2) the value
5
2𝑁

(1 −
45
28𝑁

); and so we get

𝑒2 =

5
2𝑁

1 +
45
28𝑁

−
3

4𝑁𝑀2 + (
5
2𝑁

)
2
(
25
56

−
81
196

)

=

5
2𝑁

1 +
45
28𝑁

−
3

4𝑁𝑀2 +
25 × 13
8 × 196𝑁2

.

Now we require the value of

𝑒2

2

1 −
𝑒2

2

; and this is

5
4𝑁

1 +
45
28𝑁

−
3

4𝑁𝑀2 +
25 × 13
8 × 196𝑁2 −

5
4𝑁

,

that is,
5

4𝑁 +
10
7
−

3
𝑀2 +

25 × 13
2 × 196𝑁

.

Thus instead of Maclaurin’s large coefficient
4825
336

we get only
325
392

.

273. Maclaurin finds that his calculation brings out too great an el-
lipticity for Jupiter, making the longer diameter to be the shorter, about
as 10·3 to 9·3; whereas, according to Cassini, the difference of the di-

ameters was about
1
15

of the longer diameter, and according to Pound
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between
1
12

and
1
15
. Maclaurin then makes the supposition which we

have noticed in Art. 268, that the density varies as
𝑛𝑎
𝑛 − 1

− 𝑥; he gives

the general result, and putting 𝑛 = 4 in this, he finds a tolerable agree-
ment with observation.

But I am unable to verify his general result. By the aid of the expres-
sion given in Art. 261 for the attraction of a shell on a particle in the
plane of the equator, I obtain with the notation of Art. 272,

1
𝑁𝑗

=
𝑛 + 3 +

𝑒2

5
(𝑛 + 5)

𝑛 + 3 +
𝑒2(𝑛 + 5)
5𝑀2

.

Maclaurin’s result in this notation is

1
𝑁𝑗

=
𝑛 + 3 +

7𝑛𝑒2

10
+
5𝑒2

2

(1 +
𝑒2

2
) (𝑛 + 3) +

6𝑛𝑒2

5𝑀2

;

if we multiply both numerator and denominator of the last fraction by

1 −
𝑒2

2
, and neglect 𝑒4, we get

𝑛 + 3 +
𝑒2

5
(𝑛 + 5)

𝑛 + 3 +
6𝑛𝑒4

5𝑀2

.

Maclaurin cannot be correct; for it is certain that if 𝑀 = 1 we ought
to have 𝑁𝑗 = 1.
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274. Some other investigations respecting attractions are contained in
Articles 900…905 of Maclaurin’s Fluxions.

Here he supposes the law of attraction to be that of the 𝑛th power
of the distance; he says that 𝑛 is to be less than 3: it will be found on
examination that he means 𝑛 to be algebraically less than 3, and does
not assume 𝑛 to be necessarily an integer, so that in fact 3 − 𝑛 must be
positive. Maclaurin considers the attraction of an ellipsoid of revolution
on a particle at the equator or at the pole; as we should say in modern
language he reduces the problem to a single integration. He says in his
Article 904 as his general conclusion, “Hence, therefore, the gravity at
the equator, as well as the gravity at the poles, is measured by circular
arks or logarithms when 𝑛 is any integer number less than +3.”

Maclaurin refers in his Article 905 to “a late ingenious essay, Phil.
Trans. N. 449. by Mr Clairaut:” see Art. 167.

275. We will now notice the bearing on our subject of Maclaurin’s
Prize Essay on the Tides, which was mentioned in Art. 232.

Maclaurin in Lemma III. of his Essay gives matter equivalent to Ar-
ticles 628…630 of the Fluxions: see Arts. 242 and 243. In Lemma IV.
he gives matter equivalent to Articles 631…634 of the Fluxions: see Art.
244. The Propositio I. Theorema Fundamentale of the Essay contains the
important results enunciated in Article 636 and demonstrated in the fol-
lowing three Articles of the Fluxions; see Art. 245. Maclaurin briefly in-
dicates the application of this fundamental theorem to the Figure of the
Earth, supposing that the Earth is a fluid of uniform density; the theo-
rem gives the ratio of the axes, and the direction of gravity at any point.
He says: “Hæc omnia accuratè demonstrantur ex hac Propositione; quæ
quamvis in disquisitione de figura Terræ eximii usûs sint, hic obiter tan-
tum monere convenit.”

Lemma V. of the Essay corresponds to Article 642 of the Fluxions;
though it is rather less general: see Art. 250. By means of this Lemma



maclaurin. 194

the calculation of the attraction of a solid of revolution on a particle at
its pole is made to depend on finding the area of a certain curve.

Propositio II. of the Essay determines the attraction of an oblongum
on a particle at its pole; the method is substantially the same as that in
Article 647 of the Fluxions, but in the Essay the notation is that of the
Differential and Integral Calculus, not that of Fluxions and Fluents: see
Art. 252. At the end of the proposition Maclaurin briefly indicates the
result for the case of an oblatum; this case is worked out in Article 646 of
the Fluxions. For the subject of the Tides the oblongum is the important
figure, while for the subject of the Figure of the Earth the oblatum is the
important figure.

In Lemma VI. and Proposition III. of the Essay, Maclaurin estimates
the attraction of an oblongum on a particle at the equator, and briefly
indicates the result for an oblatum; the method is substantially the same
as in Articles 646 and 647 of the Fluxions.

Thus we see that at the date of the Essay on the Tides Maclaurin had
completely solved the problem of the attraction of a homogeneous el-
lipsoid of revolution on an internal particle. The Treatise of Fluxions
contains in addition the theorem respecting the attraction on an exter-
nal particle which we have noticed in Art. 259; and also the propositions
respecting ellipsoids of revolution, not homogeneous, which we have no-
ticed in Arts. 256, 264 and 265.

276. Maclaurin died in 1746, so that he survived the publication of
Clairaut’s Figure de la Terre. It does not however appear that he pub-
lished anything on our subject after his Fluxions. In the last year of his
life he was obliged to leave his home in consequence of the rebellion in
favour of the Stuarts; and the hardships he thus encountered seem to
have laid the foundation of his mortal illness: in the premature death of
the most famous of her sons Scotland paid a heavy price for the tempo-
rary success of the Pretender’s enterprise.

The importance of Maclaurin’s investigations may be seen by observ-
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ing how great has been his influence on succeeding writers. Clairaut,
D’Alembert, Lagrange, Legendre, Laplace, Gauss, Ivory and Chasles shew
by reference explicit or implicit their obligations to the creator of the
theory of the attraction of ellipsoids. Maclaurin well deserves the mem-
orable association of his name with that of the great master in the in-
scription which records that he was appointed professor of mathematics
at Edinburgh, ipso Newtono suadente.

In the application of the theory of Attraction to the Figure of the
Earth Maclaurin was impeded by the imperfect state at that time of the
knowledge of the conditions of fluid equilibrium, and also by the want
of accurate measurements; the latter circumstance led him to suppose
that the ellipticity was greater than it really is. Nevertheless he was the
first to demonstrate exactly the possibility of the relative equilibrium of
an oblatum of rotating fluid. See Art. 249.



CHAPTER X.

THOMAS SIMPSON.

277. Thomas Simpson published in 1743 a volume entitled Mathe-
matical Dissertations on a variety of Physical and Analytical Subjects. The
volume is in quarto; the Title, Dedication, and Preface occupy viii pages,
and the text occupies 168 pages.

278. The first essay extends over 30 pages; it is entitled A Mathemati-
cal Dissertation on the Figure of the Earth. In the preface Simpson speaks
of this as “one of the most considerable Papers in the whole Work,…”;
and after referring to the contents of the essay he says:

… I must own that, since my first drawing up this Paper, the World has been
obliged with something very curious on this Head, by that celebrated Mathe-
matician Mr. Mac-Laurin, in which many of the same Things are demonstrated.
But what I here offer was read before the Royal Society, and the greater Part of
this Work printed off, many Months before the Publication of that Gentleman’s
Book; for which Reason I shall think myself secure from any Imputations of
Plagiarism, especially as there is not the least Likeness between our two Meth-
ods.

In a foot-note he says
It was read before the Royal-Society in March or April, 1741, and had been

printed in the Philosophical Transactions, had not I desired the contrary.

The preceding extract might seem to establish for Simpson the prior-
ity over Maclaurin in the first enunciation of some of the most important
results in our subjects; but Simpson makes no reference to Maclaurin’s
prize Essay on the Tides which belongs to an earlier date than March,
1741, and contains the essence of much that was expanded in the Trea-
tise of Fluxions: see Art. 275. Thus Maclaurin’s claims remain indis-
putable; but as we shall shew there are some very important points in
which Simpson had no predecessor.
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Simpson’s essay is very remarkable, as we shall see by an analysis of
its contents.

279. The first fourteen pages bring out exact expressions for the at-
traction of an oblatum on a particle at the surface; Maclaurin as we have
seen had previously effected as much. The following is the essential part
of Simpson’s method: suppose an ellipse to revolve round a tangent at
one end of an axis, through an indefinitely small angle; a wedge-shaped
element is thus produced, and Simpson calculates the attraction which
this element exerts on a particle placed at the point of tangency. The
whole oblatum is cut up into such wedge-shaped elements, and so the
resultant attraction is determined. Instead of the elegant geometry of
Maclaurin, Simpson employs analysis, the style of which for its rude
strength reminds the reader of that of Laplace.

280. In the course of his investigation on his page 3, Simpson has

in effect to determine the value of
1

√(1 + 𝑔)
∫

1

0

√𝑥𝑑𝑥
√(1 + 𝑔𝑥)

, in the form

of a series proceeding according to ascending powers of 𝑔. He expands
the expression under the integral sign in powers of 𝑔, and effects the

integration; then he multiplies this by the expansion of
1

√(1 + 𝑔)
, and

arranges the product. He does not however demonstrate the form of the
general term, but seems to assume it from observation of a few simple
cases. As all his subsequent investigations rest on this, it seems strange
that he did not proceed here with rigid exactness.

We may of course obtain the required result easily in another way.

Assume 𝑥 =
sin2 𝜃

1 + 𝑔 cos2 𝜃
; thus we find that the integral is transformed

into 2∫
1
2𝜋

0

sin2 𝜃 cos 𝜃𝑑𝜃
(1 + 𝑔 cos2 𝜃)2

.
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Then, expanding in powers of 𝑔, we see that the general term

= 2(𝑛 + 1)(−1)𝑛𝑔𝑛∫
1
2𝜋

0
(1 − cos2 𝜃) cos2𝑛+1 𝜃𝑑𝜃

= 2(𝑛 + 1)(−1)𝑛𝑔𝑛 (1 −
2𝑛 + 2
2𝑛 + 3

)∫
1
2𝜋

0
cos2𝑛+1 𝜃𝑑𝜃

= (−1)𝑛𝑔𝑛
2 . 4 . 6… (2𝑛 + 2)
3 . 5 . 7… (2𝑛 + 3)

.

This agrees with Simpson’s result.

281. The preceding Article furnishes the only instance of an imper-
fect investigation which I have noticed in Simpson’s essay: there are how-
ever, as might be expected, cases in which his processes may be sim-
plified. Perhaps the most important part of his analysis consists of the
evaluation, on his page 10, of the following definite integrals:

∫
1
2𝜋

0
{(𝑎 cos 𝜃 + 𝐴 sin 𝜃)2𝑛 − (𝑎 cos 𝜃 − 𝐴 sin 𝜃)2𝑛} sin 𝜃 cos 𝜃𝑑𝜃,

and

∫
1
2𝜋

0
{(𝑎 cos 𝜃 + 𝐴 sin 𝜃)2𝑛 + (𝑎 cos 𝜃 − 𝐴 sin 𝜃)2𝑛} sin2 𝜃𝑑𝜃.

We will consider the second of these; our remarks will be easily ap-
plicable to the first.

Simpson expands (𝑎 cos 𝜃 + 𝐴 sin 𝜃)2𝑛 and (𝑎 cos 𝜃 − 𝐴 sin 𝜃)2𝑛, and
then integrates each term separately; the following is a simpler method.

It is obvious that if we were to expand, our final expression would
involve only even powers of sin 𝜃 and cos 𝜃; and thus we may use 0 and
2𝜋 as the limits of integration, and take one fourth of the result.
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Assume 𝑎 = 𝑘 cos 𝛽, and 𝐴 = 𝑘 sin 𝛽; so that 𝑘2 = 𝑎2 + 𝐴2; then the
definite integral becomes

1
4
(𝑎2 + 𝐴2)𝑛∫

2𝜋

0
{cos2𝑛(𝜃 − 𝛽) + cos2𝑛(𝜃 + 𝛽)} sin2 𝜃𝑑𝜃.

Consider ∫
2𝜋

0
cos2𝑛(𝜃 − 𝛽) sin2 𝜃𝑑𝜃.

Put sin 𝜃 = sin(𝛽 + 𝜃 − 𝛽) = sin 𝛽 cos(𝜃 − 𝛽) + cos 𝛽 sin(𝜃 − 𝛽).
Thus we get

∫
2𝜋

0
cos2𝑛(𝜃 − 𝛽) {sin 𝛽 cos(𝜃 − 𝛽) + cos 𝛽 sin(𝜃 − 𝛽)}2𝑑𝜃.

Put 𝜙 for 𝜃 − 𝛽; then the limits of the integration for 𝜙 are −𝛽 and

2𝜋 − 𝛽. The integral ∫ cos2𝑛+1 𝜙 sin𝜙𝑑𝜙 is zero between these limits; so

that we are left with

∫
2𝜋−𝛽

−𝛽
(sin2 𝛽 cos2𝑛+2 𝜙 + cos2 𝛽 sin2 𝜙 cos2𝑛 𝜙)𝑑𝜙.

The limits may be changed to 0 and 2𝜋, because the expression to be
integrated has the same value when 𝜙 = 2𝜋 − 𝛼 as when 𝜙 = −𝛼.

Transform ∫
2𝜋

0
cos2𝑛(𝜃 + 𝛽) sin2 𝜃𝑑𝜃 in a similar manner.

Thus finally we obtain

∫
2𝜋

0
{cos2𝑛(𝜃 − 𝛽) + cos2𝑛(𝜃 + 𝛽)} sin2 𝜃𝑑𝜃

= 2 cos2 𝛽∫
2𝜋

0
cos2𝑛 𝜙𝑑𝜙 + 2(sin2 𝛽 − cos2 𝛽)∫

2𝜋

0
cos2𝑛+2 𝜙𝑑𝜙;
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we have now a well-known definite integral form.

282. It should however be observed that Simpson’s series are not al-
ways convergent. For example, on his page 13 he has the series which
results from expanding tan−1 √𝐵 in powers of √𝐵, and 𝐵 is not necessar-
ily less than unity.

283. Having obtained accurate expressions for the attraction of an
oblatum on a particle at the surface, Simpson considers the relative equi-
librium of a mass of rotating fluid. He says on his page 16, “the Form
which that Fluid must be under, to preserve this Equilibrium of its Parts,
is that of an oblate Spheroid.” It is almost needless to remark that Simp-
son does not demonstrate this; he demonstrates that the figure which he
assigns is a possible figure of relative equilibrium, and not that it is the
only figure: see Art. 168.

Simpson contents himself with shewing that Huygens’s condition for
fluid equilibrium is satisfied.

Laplace gives, in the Mécanique Céleste, Livre iii. § 20, the following
equation which connects the excentricity of the oblatum, supposed small,
with the angular velocity

𝜆2 =
5
2
𝑞 +

75
14
𝑞2 +…

Simpson gives this on his page 19 in his own notation, and supplies

the third term of the series, namely
125 × 37
8 × 49

𝑞3 in Laplace’s notation:

Simpson remarks that this is very nearly the same as

𝜆2 =
35𝑞

14 − 30𝑞
;

and the approximation will be found extremely close as far as 𝑞3.
Simpson on his pages 15 and 20 demonstrates the truth of some ap-

proximations given by Stirling; see Chapter V.
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284. We now arrive at the most important part of the Essay. Simpson
shews, to use modern language, that if the angular velocity of rotation
exceeds a certain limit, the oblatum is no longer a possible form of equi-
librium. This proposition has since been incorporated in the Mécanique
Céleste, without any reference to Simpson: see Livre iii. § 20.

Laplace uses √(1 + 𝜆2) to express the ratio of the major axis to the
minor axis in the oblatum, and Simpson uses √(1 + 𝑥2); for the extreme
case in which equilibrium is possible, Simpson gives 𝑥 = 2·5293, while
Laplace gives 𝜆 = 2·5292.

Pontécoulant agrees with Laplace; see his Théorie Analytique…, Vol.
ii. page 399. Poisson agrees with Simpson; see his Mécanique, Vol. ii.
page 542: so also does Résal; see his Traité Elémentaire de Mécanique
Céleste, page 196.

Simpson’s investigation, though less elaborate than Laplace’s, is ade-
quate and satisfactory.

285. For any angular velocity less than the limit to which we have
alluded in the preceding Article, there are two and only two possible
oblata; this has been shewn by Laplace in the section already cited. Ac-
cording to Laplace, D’Alembert first observed that more than one figure
of equilibrium might correspond to the same angular velocity without
however determining the number of such figures: see Laplace’s Figure
des Planetes, page 124, and the Mécanique Céleste, Livre xi. § 1. Ivory
makes a similar remark in the Philosophical Transactions, 1834, page 513.
But it should be observed that although D’Alembert may have first explic-
itly published the statement, yet Simpson gives a Table which distinctly
implies the fact.

The Table in substance is the following:
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1 to 1·01 11·236 ·08925
1 to 1·05 5·137 ·1978
1 to 1·5 2·056 ·5568
1 to 2 1·814 ·6944
1 to 2·7198 1·7226 ·8105
1 to 4 1·810 ·8774
1 to 7·57 2·118 ·92705
1 to 10 2·338 ·9216
1 to 20 3·110 ·8728
1 to 40 4·275 ·8000
1 to 100 6·600 ·7033
1 to 1000 20·640 ·4845

This Table is given on Simpson’s page 24, with the exception of two
lines which I have supplied from other parts of the essay. The first col-
umn expresses the ratio of the minor axis to the major axis of the revolv-

ing oblatum; in Laplace’s notation it is
1

√(1 + 𝜆2)
. The second column

is Laplace’s
1
√𝑞

; thus it is inversely proportional to the angular velocity,

and so directly proportional to the time of rotation; it may be consid-
ered to express the time of rotation if we take a certain unit of time, the
unit being the time in which a satellite would revolve round a sphere
equal in volume and density to the oblatum, moving close to the surface:
this is Simpson’s own interpretation. The third column we will speak of
presently.

An inspection of this Table shews that in the second column the fig-
ures decrease down to some minimum, and then increase again: thus it
is obvious that corresponding to an assigned angular velocity there are
in general two values of √(1 + 𝜆2).

286. Let us now explain the third column of the Table.
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Simpson uses the term momentum of rotation for the sum of the
products of the mass of every particle into its velocity. Let 𝜔 be the
angular velocity, 2𝑎 the major axis, 2𝑏 the minor axis, 𝜌 the density;
then it is easy to shew that the momentum of rotation of the oblatum

is
𝜋2

4
𝜌𝜔𝑎3𝑏. Now suppose a sphere, equal in density and volume

to the oblatum, rotating in the unit of time specified in Art. 285.

The momentum of rotation for the sphere would be
𝜋2

4
𝜌𝜔1𝑅4, where

𝑅3 = 𝑎2𝑏; so that it would be
𝜋2

4
𝜌𝜔1(𝑎2𝑏)

4
3 . The ratio of the former

value to the latter is therefore
𝜔
𝜔1

(
𝑎
𝑏
)
1
3
, that is (

𝑞
𝑞1
)
1
2
(1 + 𝜆2) 16 . But

Simpson has taken the unit of time so that 𝑞1 = 1; hence the ratio
becomes 𝑞 1

2 (1 + 𝜆2) 16 . Thus the third column can be obtained from the
first and the second; we must divide the cube root of (1 + 𝜆2) 12 which is

given in the first column by
1
√𝑞

which is given in the second column.

Simpson’s third column has not any physical interpretation, though
he himself by mistake supposed that it had. For he uses the term quan-
tity of motion on his page 21 in the same sense as angular momentum;
and he erroneously says that it “will be no ways affected by the Action
of the Particles upon one another while the Figure of the Fluid is chang-
ing.” Then on his page 22 he gives a discussion as to the greatest possible
value of the quantity of motion for a given mass.

What he must have intended to employ is the principle which in
modern language we call the Conservation of Areas. This is plain from
what he says in a note on page 135 of his Miscellaneous Tracts, 1757;
here he admits the mistake in the present work. Instead of the sum of
the products of the mass of every particle into its velocity, he should
have considered the sum of the products of the mass of every particle
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into what we may call its areal velocity. Laplace uses this sum in the
Mécanique Céleste, Livre iii. § 21. He there has an equation 𝜙 = 0, which
agrees substantially with one given by Simpson on page 136 of his Miscel-
laneous Tracts. Simpson however does not discuss the equation; Laplace
shews that it has only one solution.

287. In the Table of Art. 285, the fifth line and the seventh line are
not inserted by Simpson, though he has supplied the materials for them
in the course of his essay.

In the fifth line the entry in the second column gives the minimum
value of that column; it really occurs in page 20 of Simpson’s essay in

the form
1

·58053
, so that ·58053 is the value of √𝑞 which corresponds to

Laplace’s value of ·337007 for 𝑞. The corresponding number in the third
column by Art. 286 is therefore (2·7198) 13 × ·58053.

In the seventh line the entry in the third column gives the maximum
value of that column; Simpson finds on his page 22 that for this case
𝜆 = 7·5 nearly. The corresponding number in the second column by Art.
286 is therefore (7·57) 13 ÷ ·92705.

288. Simpson shews on his page 22 that the gravity at any point of
the surface of the oblatum varies as the length of the normal between
the point and the axis of revolution. See Arts. 153 and 247.

289. Simpson having thus discussed the case of a homogeneous obla-
tum, proceeds to the case in which the oblatum is not homogeneous. He
supposes that the oblatum consists of a central portion which is spher-
ical and denser than the rest, and of an outer portion; each portion is
supposed homogeneous.

If we change the sign of 𝜆 in a result which was obtained in Art. 264,
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page 156, we have

𝑒2 =

5𝑗′

2
(1 + 𝜆)

1 +
5𝜆
2

;

and Simpson’s result agrees with this.
Simpson does not shew that his fluid mass will remain in equilib-

rium; he contents himself with making the resultant force at the surface
normal to the surface: if we suppose his central portion to be solid, the
conditions of equilibrium will be satisfied. With the exception of this
defect, Simpson’s investigation of the value of the ellipticity and of the
variation of gravity along the surface is quite satisfactory. In finding a
definite value for the ellipticity, Simpson gives a better treatment of the
problem than Maclaurin did in his Articles 666 and 667.

Simpson briefly applies his result to the case of the planet Jupiter. He
concludes thus:

… but as no Hypothesis, for the Law of Variation of Density, can (from the
Nature of the Thing) be verified either by Experiments, made on Pendulums in
different Latitudes, or an actual Mensuration of the Degrees of the Meridian,
I shall insist no further on this Matter, but content myself with having proved
in general, that the greater the Density is towards the Centre, the less will the
Planet differ from a Sphere, and the greater will be the Variation of Gravitation
at its Surface.

290. The second essay in Simpson’s Mathematical Dissertations is con-
tained in pages 31…37; it is entitled A General Investigation of the Attrac-
tion at the Surfaces of Bodies nearly spherical.

The essay begins with investigating the attraction of a wedge-shaped
element like that in Art. 279 on a particle in a certain position; the
boundary however is now not an ellipse but any curve which is nearly
circular. Take for the equation to this boundary

𝑦2 = 𝑐𝑥 − 𝑥2 + 𝑏2𝑥2 + 𝑏3𝑥3 + 𝑏4𝑥4 +… (1)
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where 𝑏2, 𝑏3, 𝑏4, … are supposed to be so small that their squares and
products may be neglected; the boundary passes through the origin: sup-
pose that it cuts the axis of 𝑥 again at the point for which 𝑥 = 𝑎. Let
the figure revolve round the axis of 𝑦 through an infinitesimal angle 𝛿𝜙;
then the attraction of the element generated by the revolution of the
area 2𝑦𝛿𝑥 on a particle at the origin, resolved along the axis of 𝑥 is

𝑥𝛿𝜙
2𝑦𝛿𝑥

𝑥√(𝑥2 + 𝑦2)
. Hence the attraction of the whole wedge-shaped ele-

ment is 2𝛿𝜙∫
𝑎

0

𝑦𝑑𝑥
√(𝑥2 + 𝑦2)

.

As in Art. 280, Simpson gives the correct value of this integral; but
he does not strictly demonstrate his result.

We will supply the demonstration

∫
𝑎

0

𝑦𝑑𝑥
√(𝑥2 + 𝑦2)

= ∫
𝑎

0

√(𝑐𝑥 − 𝑥2 + 𝑏2𝑥2 + 𝑏3𝑥3 + 𝑏4𝑥4 +…)
√(𝑐𝑥 + 𝑏2𝑥2 + 𝑏3𝑥3 + 𝑏4𝑥4 +…)

𝑑𝑥.

Now by supposition 𝑐 = 𝑎−𝑏2𝑎−𝑏3𝑎2−𝑏4𝑎3−…; substitute this value
of 𝑐 in the expression under the integral sign, divide both numerator and
denominator by √𝑥, and expand. Hence we find that the above integral
becomes

∫
𝑎

0
√

𝑎− 𝑥
𝑎

{1 −… −
𝑏𝑛

2(𝑎 − 𝑥)
(𝑎𝑛−1 − 𝑥𝑛−1) +

𝑏𝑛
2𝑎
(𝑎𝑛−1 − 𝑥𝑛−1) − …}𝑑𝑥,

where 𝑛 is to have all positive integral values beginning with 2.
To effect the integration put 𝑥 = 𝑎 sin2 𝜃; thus we get

2𝑎∫
1
2𝜋

0
sin 𝜃 cos2 𝜃 {1 −…

−
𝑏𝑛𝑎𝑛−2

2 cos2 𝜃
(1 − sin2𝑛−2 𝜃) +

𝑏𝑛𝑎𝑛−2

2
(1 − sin2𝑛−2 𝜃) − …}𝑑𝜃,
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that is,

∫
1
2𝜋

0
sin 𝜃 {2𝑎 cos2 𝜃 −… − 𝑏𝑛𝑎𝑛−1(1 − sin2𝑛−2 𝜃) sin2 𝜃 −…} 𝑑𝜃.

Thus finally we obtain for the attraction required

∫
1
2𝜋

0
sin 𝜃 {2𝑎 cos2 𝜃 − (𝑏2𝑎 + 𝑏3𝑎2 + 𝑏4𝑎3 +…) sin2 𝜃} 𝑑𝜃

+ a series whose general term is ∫
1
2𝜋

0
𝑏𝑛𝑎𝑛−1 sin

2𝑛+1 𝜃𝑑𝜃.

Then making use of the value of 𝑐, we find that this becomes

2
3
𝑐 + a series whose general term is 𝑏𝑛𝑎𝑛−1

2 . 4…2𝑛
3 . 5… (2𝑛 + 1)

.

In the small terms we may put 𝑐 for 𝑎, so that our result is

2
3
𝑐 +

2 . 4
3 . 5

𝑏2𝑐 +
2 . 4 . 6
3 . 5 . 7

𝑏3𝑐2 +
2 . 4 . 6 . 8
3 . 5 . 7 . 9

𝑏4𝑐3 +…

This agrees with Simpson’s result.

291. Having thus obtained the attraction of the wedge-shaped
element, Simpson proceeds to the attraction of any solid of revolution
which is nearly spherical: his final result on his page 37 gives the
expressions for the resolved attractions, along the normal and along
the meridian tangent, which such a body produces on a particle at its
surface.

292. The pages 41…45 of Simpson’s Mathematical Dissertations con-
tain an essay entitled To determine the Length of a Degree of the Meridian,
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and the meridional Parts answering to any given Latitude, according to the
true spherodical Figure of the Earth.

This essay gives an approximate expression for the length of a degree
of the meridian, on the hypothesis that the earth is an oblatum; a small
Table is supplied of the length of a degree of the meridian in various
latitudes, calculated on the hypothesis that the ratio of the axes of the
earth is that of 231 to 230.

293. The subject of attraction is discussed by Simpson in his work,
entitled, The Doctrine and Application of Fluxions. I have not seen the
first edition of this work, which appears to have been published in 1750.
The second edition is dated 1776, which is subsequent to the author’s
death: I presume that this is a reprint of the first edition. This contains
576 octavo pages, besides the Title, Dedication, and Preface on xi pages
in the first volume, and the Title of the second volume.

Section ix. on pages 445…479 is entitled, The Use of Fluxions in de-
termining the Attraction of Bodies under different Forms.

We have investigations, on the ordinary law, of the attractions of a
straight line, of a circular lamina on an external particle which is per-
pendicularly over the centre, of a cone on a particle at the vertex, of a
cylinder on a particle on the axis, and of a sphere on an external parti-
cle. With respect to the circular lamina and the sphere, the investigation
is also given for the case in which the attraction varies as the 𝑛th power
of the distance. The processes are all satisfactory, though some of them
are rather artificial.

The attraction of an oblatum on a particle at the surface is deter-
mined in essentially the same manner as in the Mathematical Disserta-
tions; but the analysis is a little simplified in some parts. In the Disser-
tations Simpson resolves the attraction in the directions of the tangent
and the normal; in the Fluxions he resolves it parallel to the axes of the
generating ellipse.

Simpson remarks on his page 455 that the integral which we have
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considered in Art. 280 might be expressed in finite terms instead of an
infinite series; and this is obviously true.

On his page 463 Simpson demonstrates exact results corresponding to
the approximate results enunciated by Stirling: see the diagram to Art.
153. Simpson shews that if 𝑃𝐻 be the direction of the attraction at 𝑃,
then 𝐻 divides 𝐶𝐺 in a constant ratio, and the attraction varies as 𝑃𝐻.
These results may be established immediately by the aid of the modern
formulæ which are given in Art. 261.

On his page 466 Simpson determines the attraction of an oblatum on
any internal particle. This enables him to give a more elaborate investi-
gation than that in his Dissertations of Newton’s postulate.

On his page 474 Simpson gives 2 hours 26 minutes as the least time
in which the Earth, supposed a homogeneous fluid, could rotate: this
however might have been stated in the Dissertations, as the necessary
elements for the result are there supplied. It corresponds to Laplace’s
·1009 of a day: see the Mécanique Céleste, Livre iii. § 20.

The Table which we have given, from the Dissertations, in Art. 285 is
not reproduced in the Fluxions.

294. Thus we see that the contributions of Thomas Simpson to our
subject are of eminent importance. In the homogeneous Figure of the
Earth he first determined the existence of a limiting angular velocity, for
which the relative equilibrium is possible; and he implicitly shewed that
different oblata might correspond to the same angular velocity. In Attrac-
tion he gave an accurate investigation for the case of an oblatum when
the attracted particle is at the surface; and also an approximate investi-
gation for the case of any nearly spherical body of revolution, and the
analysis which he employed would not have been unworthy of Laplace
himself.

Thomas Simpson was a mathematician of the highest order; and his
merit is increased by reason of the great difficulties which impeded him.
He has been pronounced “an analyst of first-rate genius,” by one who
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like himself had risen to distinction in spite of adverse circumstances,
and whose life like his closed prematurely in gloom and trouble. He has
been placed at the head of the non-academical body of English math-
ematicians by a member of that body, whose ability and learning well
qualified him for forming an opinion. It may be doubted whether the
eighteenth century, after the death of Newton, supplies any mathemati-
cian in England more illustrious than the weaver whose genius raised
him to the professorship of mathematics at Woolwich.

See the life prefixed to Hutton’s edition of Simpson’s Select Exercises;
Murphy’s Theory of Equations, page 54; Philosophical Magazine, Septem-
ber, 1850, page 209.



CHAPTER XI.

CLAIRAUT.

295. We now arrive at the great work of Clairaut, which is entitled
Théorie de la Figure de la Terre, tirée des Principes de l’Hydrostatique; par
Clairaut, de l’Académie royale des Sciences, et de la Société royale de Lon-
dres.

The work was published in 1743, and was reprinted in 1808. A note
to the reprint states that the subject has been much considered by math-
ematicians, and that the actual state of the theory will be found in the
third book of the Mécanique Céleste; but on account of its historical in-
terest the treatise of Clairaut may be studied with advantage, and so it
has been reproduced without change or addition: the reprint in fact cor-
responds nearly page for page with the original. It is stated that nothing
has been neglected in order to remove the old errors of the press, and to
avoid fresh errors: there is however an adequate supply of errors in the
reprint.

A reason for adding no notes is assigned in these words: “Elles au-
raient dénaturé un ouvrage original, sans le rendre plus utile au pub-
lic.” The principle involved in these words is known to have been held
by Laplace; and the conjecture has occurred to me that the reprint of
Clairaut’s work might have been suggested or encouraged by Laplace.
The reprint is said to have been edited by Poisson: see the Catalogue des
ouvrages … de Siméon-Denis Poisson, 1851.

I proceed to give an account of Clairaut’s work; I use the edition of
1808: both editions are in octavo. The preliminary note to which I have
just referred is of course peculiar to the edition of 1808; it occupies two
pages; a Dedication to the Comte de Maurepas occupies two pages; then
an Introduction follows on pages vii…xl; and the text, including a Table
of Chapters, occupies pages 1…308.
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296. The introduction gives a general notion of the subject of the
work. Let us briefly consider what was the state of knowledge in 1743.
With respect to fluid equilibrium Newton’s principle of columns balanc-
ing at the centre, and Huygens’s principle of the plumb-line were al-
lowed to be necessary, but it was not known what principles were suf-
ficient. Maclaurin had advanced far in the theory of the attractions of
ellipsoids of revolution; and had well discussed the homogeneous figure
of the Earth; and from the fact that his researches appeared originally
in Latin they obtained a currency which the important additions made
to the theory by Thomas Simpson, published only in English, probably
never enjoyed. The measurement of a degree of the meridian in Lapland
had been made, and from a comparison of this with the measurements
made in France, it had been inferred that the ratio of the axes of the
earth was that of 177 to 178; but the return of the expedition which had
been sent to Peru was anxiously expected, in order to obtain more infor-
mation on this point: see Clairaut’s pages 299, 304. The diminution of
gravity in proceeding from the equator to the pole was well established;
and it was plain that the whole diminution of gravity must be greater

than
1
230

of the gravity at the pole: see Clairaut’s page 297.

297. The Cartesians, according to Clairaut, enlightened by Newton
held that all bodies were attracted to the centre of the Earth by a force
which varied inversely as the square of the distance; from this Clairaut
infers that the ratio of the axes of the Earth would be that of 576 to 577;
see Clairaut’s pages xiv, xvii, 143: in fact Clairaut shews on his page 143
that this is true whatever be the law of attraction provided the direction
always passes through the centre: see also Art. 56.

But if we admit with Newton that every particle of matter attracts
every other particle with a force varying inversely as the square of the
distance, bodies will no longer necessarily be attracted exactly towards
the centre of the earth; the direction of the resultant attraction on any
particle will depend on the form of the earth, and on the position of the
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particle. Clairaut states the result which is demonstrated in the work,
that considering the earth a homogeneous fluid in relative equilibrium
the ratio of the axes will be that of 230 to 231: see Clairaut’s pages xxiii
and 195.

Clairaut remarks that the Newtonians may consistently with their
fundamental principle obtain other results besides that just given; for
they have only to suppose that the earth is not homogeneous. Clairaut
considers that the result already given is that which the Cartesians ought
to hold as following from their principles; but he suggests for them
various expedients by which they might escape from the conclusion: see
Clairaut’s pages xxiv, xxv.

298. Clairaut draws attention to his own methods for discussing the
equilibrium of fluids. He says Bouguer first remarked that there are hy-
potheses as to the nature of attraction under which a fluid could not be
in equilibrium: see Clairaut’s page xxxi, and our Art. 219. Clairaut says
on his page xxxiii:

J’ai bientôt reconnu qu’il était vrai, ainsi que je l’avais soupçonné, que l’ac-
cord des deux principes ordinaires, c’est-à-dire l’équilibre des colonnes et de la
tendance perpendiculaire à la surface, n’assurait pas l’équilibre d’une masse flu-
ide; car j’ai trouvé qu’il y avait une infinité d’hypothèses de pesanteur où ces
deux principes donneraient la même courbe, sans que pour cela les efforts de
toutes les parties du fluide se contrebalançassent mutuellement. J’ai trouvé en-
suite deux méthodes générales et sûres, pour reconnaître les hypothèses de pe-
santeur dans lesquelles les fluides peuvent être en équilibre, et pour déterminer
la figure que les planètes doivent avoir dans ces hypothèses.

The two general and sure methods to which Clairaut alludes in the
preceding extract may be called the Principle of Canals, and the Principle
of Level Surfaces: we shall give an account of them in our analysis of the
work. It would appear from Clairaut’s words on his page xxxiv, that he
intended to furnish some explanation of these methods in his Introduc-
tion; but the intention is not carried out, and the Introduction terminates
somewhat abruptly.
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299. The following points of interest in the Introduction may be no-
ticed.

On page xiii. Clairaut says in a note:
Je fais ici la même distinction que M. de Maupertuis (la Figure de la Terre

déterminée, etc.) entre la pesanteur et la gravité; j’entends par pesanteur, la
force naturelle avec laquelle tout corps tombe, et j’appelle gravité la force avec
laquelle ce corps tomberait, si la rotation de la Terre n’altérait pas son effort et
sa direction.

I have already drawn attention to the distinction here explained: see
Art. 25. It must however be observed that Clairaut does not adhere
strictly to the language which he here professes to adopt. Thus on his
page 28 he uses pesanteur, and on his page 30 he uses gravité, meaning
the same thing in both cases, namely my attraction; and on his page
144 he uses gravité where he ought to use pesanteur.

On his page xxix. he enunciates the theorem which we call Clairaut’s
Theorem: see Art. 171.

On his page xxxviii. Clairaut is treating of rotation. He has supposed
that an atom has described in an infinitesimal time a straight line 𝑀𝑚,
so that if left to itself it would describe in the next equal infinitesimal
time a straight line 𝑚𝑛 in the prolongation of 𝑀𝑚 and equal to 𝑀𝑚.
Then he says: … au lieu de la force qu’il aurait pour parcourir 𝑚𝑛, on
peut lui en substituer deux autres…. Thus he uses the word force where
we should now use velocity. In reading Clairaut’s work, we are struck
with the fact that although his conclusions are correct, his language is
sometimes extremely inaccurate according to our modern notions.

300. Clairaut’s work is divided into two parts. The first part treats
of the general principles of fluid equilibrium; the second part treats of
the Figure of the Earth and the other planets, assuming the ordinary
law of attraction. The first part consists of twelve Chapters, and occu-
pies pages 1…151; the second part consists of five Chapters, and occupies
pages 152…304.
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301. Clairaut’s treatment of the theory of fluid equilibrium is a great
advance beyond what his predecessors had given; but it is not free from
obscurity. Clairaut never uses, as we now do, a symbol 𝑝 to denote the
pressure at any point of the fluid; this important step was first taken by
Euler in the Berlin Mémoires for 1755. I am little likely to undervalue
any improvement in the Calculus of Variations, but I attach less impor-
tance to the well-known introduction of the symbol 𝛿 into that subject by
Lagrange, than to the introduction of the symbol 𝑝 into Hydrostatics by
Euler. Before Euler thus illustrated the subject, there had been demon-
strations in Hydrostatics, but I cannot consider that these demonstrations
were altogether intelligible.

302. Clairaut’s first Chapter occupies pages 1…16; it expounds what
may be called the Principle of Canals. Let there be a mass of fluid in
equilibrium; we may imagine any portion of it to become solid, and the
remainder will still be in equilibrium. Thus we may solidify all the fluid
except that contained in an infinitesimal canal; and so the fluid in such a
canal will remain in equilibrium. This canal may be of any form, straight
or curved; it may pass completely through the mass, or it may be alto-
gether within the mass returning to itself.

The principle of canals had already in effect been used by Newton,
Huygens, and Maclaurin; though in general straight canals, which for
distinction I call columns, had sufficed for their purposes; see Arts. 24,
55, and 245.

Although the Principle of Canals as stated in the preceding Article
will be admitted to be obvious, yet Clairaut’s method in applying the
principle is not always clear. Thus, for example, on his page 2, he has a
canal 𝑂𝑅𝑆 passing entirely through a mass of fluid, which is in equilib-
rium; he says: “or cela ne peut arriver que les efforts de 𝑂𝑅 pour sortir
vers 𝑆, ne soient égaux à ceux de 𝑆𝑅 pour sortir vers 𝑂.” But how are we
to measure the efforts which 𝑂𝑅 makes to escape towards 𝑆; or in fact
what distinct idea can we form of these efforts?

Again take an example from his page 12. He has two canals of fluid
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𝐻𝐼 and 𝐾𝐿 under certain circumstances; and he says that the weights
of these two canals will be the same. But it is not immediately obvious
how these weights are to be measured: the fact in modern language is
that the pressure at 𝐻 is equal to the pressure at 𝐾, and the pressure at
𝐼 is equal to the pressure at 𝐿.

303. Clairaut’s second Chapter occupies pages 16…28; it consists
of general reasoning to shew that under certain attractive forces a
fluid mass will remain in equilibrium. The Chapter seems superfluous,
for in the sixth Chapter we have substantially a more satisfactory
treatment of the subject. In reading the second Chapter it may assist
the understanding if we conceive the fluid to be all enclosed within a
rigid envelope; and then the sixth Chapter will in fact shew that we
may dispense with this envelope.

304. Clairaut’s third Chapter occupies pages 28…33; it considers a
law of attraction under which a fluid mass could not be in equilibrium.
The law is that in which the attraction towards a fixed centre is not a
function of the length of the radius vector alone, but also of the position
of the radius vector. The following is the demonstration, translated into
modern language, of the impossibility of fluid equilibrium under such
a law of force. Let 𝑀𝑁 be an arc of a circle having the centre of force
𝐶 for centre; let 𝑃𝑄 be an arc of a concentric circle, such that 𝑀𝑃𝐶 is
a straight line, and also 𝑁𝑄𝐶 a straight line. Conceive the fluid in an
infinitesimal canal 𝑀𝑁 to become solid; take the moments round 𝐶 of
the forces which act on it: thus we see that for equilibrium the pressure
at 𝑀 must be equal to the pressure at 𝑁. Similarly the pressure at 𝑃
must be equal to the pressure at 𝑄. But since the attraction along 𝑃𝑀 is
not the same at equal distances from 𝐶 as the attraction along 𝑄𝑁, the
change of pressure in passing from 𝑃 to 𝑀 is not equal to the change of
pressure in passing from 𝑄 to 𝑁. This contradicts the former result.

305. Clairaut infers that there are innumerable cases in which a fluid
mass will not be in equilibrium even although the conditions of Newton
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and Huygens are both satisfied. Clairaut is brief; we may expand his re-
marks. Let there be a curve 𝑟 = 𝜙(𝜃) which revolves round the initial
line; suppose we want to have a mass of fluid in relative equilibrium
when rotating with a given angular velocity round the initial line under
an attractive force to the pole, and taking the form of the solid of revo-
lution just generated. Since the angular velocity is given, the centrifugal
force is known at every point of the boundary; hence the amount of the
attractive force can be determined which must act at any point of the
boundary, along the radius vector, so as to satisfy Huygens’s principle of
the plumb line: let 𝜓(𝜃) denote the amount of this attractive force at the
point for which 𝜃 is the angular coordinate. Assume for the formula of
attractive force 𝑓(𝜃){𝜙(𝜃) − 𝑟}𝑛 + 𝜓(𝜃), a function of 𝑟 and 𝜃, in which
𝑓(𝜃) is at present undetermined; then it is obvious that Huygens’s prin-
ciple is satisfied. To satisfy Newton’s principle we require that the ex-

pression ∫
𝜙(𝜃)

0
[𝑓(𝜃){𝜙(𝜃) − 𝑟}𝑛 + 𝜓(𝜃)]𝑑𝑟, which measures the weight of

a column, should be constant, the integration being taken with respect

to 𝑟. This gives
𝑓(𝜃){𝜙(𝜃)}𝑛+1

𝑛 + 1
+𝜙(𝜃)𝜓(𝜃) equal to a constant; and so 𝑓(𝜃)

is determined. Thus Newton’s principle is also satisfied. But by Art. 304
the fluid cannot be in equilibrium under the law of force which we have
assigned.

306. Clairaut’s fourth Chapter occupies pages 33…39; it determines
the form of a mass of fluid in relative equilibrium acted on by certain
forces. Suppose fluid to rotate round the axis of 𝑥, with angular velocity
𝜔, under forces of which the acceleration parallel to the axis of 𝑥 is 𝑋,

that parallel to the axis of 𝑦 is
𝑅𝑦
𝑟
, and that parallel to the axis of 𝑧 is

𝑅𝑧
𝑟
; where 𝑟2 = 𝑦2+𝑧2: then the equation to the free surface when there
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is relative equilibrium is

∫(𝑋𝑑𝑥 + 𝑅𝑑𝑟) +
𝜔2𝑟2

2
= constant,

and the condition
𝑑𝑋
𝑑𝑟

=
𝑑𝑅
𝑑𝑥

must hold.

This is not quite Clairaut’s notation, but the difference is unimpor-
tant.

The demonstration of these results will be found in our ordinary trea-
tises on Hydrostatics. I do not regard Clairaut’s process as quite satisfac-
tory until it is translated into our modern language.

Clairaut, after giving the equation of condition which we express as
𝑑𝑋
𝑑𝑟

=
𝑑𝑅
𝑑𝑥

, says briefly and authoritatively: “Toutes les fois que cette

équation aura lieu, on sera sûr qu’il y aura équilibre dans le fluide.” To
me there appears some difficulty at this point in the theory of the equi-
librium of fluids. We can shew clearly that certain conditions must hold
for equilibrium; but it is not quite obvious that if these conditions are sat-
isfied there will be equilibrium. Our modern writers seem to shrink from
making the positive assertion of Clairaut, though perhaps sometimes it is
implicitly adopted. But it is obvious that Clairaut asserts too much. Sup-
pose for simplicity we restrict ourselves to one plane, and put 𝑋 and 𝑌

as usual for the forces: it is not sufficient for equilibrium that
𝑑𝑋
𝑑𝑦

=
𝑑𝑌
𝑑𝑥

.

For example take 𝑋 =
𝑦

𝑥2 + 𝑦2
, and 𝑌 = −

𝑥
𝑥2 + 𝑦2

; let 𝑝 denote the pres-

sure, and 𝜌 the density as usual. Then we get 𝑑𝑝 = 𝜌
𝑦𝑑𝑥 − 𝑥𝑑𝑦
𝑥2 + 𝑦2

; and

therefore 𝑝 = −𝜌 tan−1
𝑦
𝑥
+ constant. But this value of 𝑝 is not admis-

sible, for it would involve discontinuity, that is more than one value of
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𝑝 at the same point. See D’Alembert’s Opuscules Mathématiques, Vol. v.
page 10. In fact Clairaut’s own pages 83…90 are sufficient to shew that
his language is too positive.

307. The condition
𝑑𝑋
𝑑𝑟

=
𝑑𝑅
𝑑𝑥

ensures that 𝑋𝑑𝑥 + 𝑅𝑑𝑟 is a complete

differential. The notion of a complete differential, and the appropriate
condition, seem to have been first introduced by Clairaut himself: he
refers to his memoir on the Integral Calculus in the Paris Mémoires for
1740.

Clairaut explains thus, in a note on his page 38, one of the symbols

which he uses: “On entend par
𝑑𝑃
𝑑𝑥

la différentielle de la fonction 𝑃, prise

en supposant 𝑥 seulement variable, et dont on a ôté les 𝑑𝑥.” It seems
more natural to take the differential coefficient as the prior and simpler
conception, and not the differential, as Clairaut here does.

308. Clairaut’s fifth Chapter occupies pages 40…52; it introduces the
use of Level Surfaces; these were first considered by Maclaurin; see Art.
248. Clairaut calls a level surface a surface courbe de niveau; and the
space comprised between two level surfaces he calls a couche de niveau.

Clairaut gives the following proposition: suppose a mass of fluid di-
vided into an infinite number of infinitesimal shells; if at any point of ev-
ery shell the thickness of the shell is inversely proportional to the resul-
tant accelerating force, the fluid will be in equilibrium. I cannot say that
Clairaut’s reasoning satisfies me. Indeed even with the modern meth-
ods, although it is easy to shew that when fluid is in equilibrium the
thickness of the infinitesimal shells must follow the law assigned, yet
to shew decisively that when this law of thickness holds the fluid must
be in equilibrium seems far from easy: see Art. 306. Some remarks on
Clairaut’s reasoning will be found in the Cambridge Mathematical Jour-
nal, Vol. ii. pages 18…22.



clairaut. 220

However, granting the proposition, Clairaut very ingeniously deduces
the same equation as before for the free surface of a mass of fluid in
relative equilibrium; and also the same condition as before connecting
the forces: see Art. 306.

Another example of the strange mode of expression which we find in
the book occurs on Clairaut’s page 51. If we take an infinitesimal canal
within an infinitesimal level shell we say in modern language that the
pressure is constant throughout the canal; Clairaut speaks of la liqueur
…, ne pesant point.

309. Clairaut’s sixth Chapter occupies pages 52…63; it supplies exam-
ples in which the equation to the free surface of fluid in relative equilib-
rium is found when given forces act. In one example fluid is supposed
to rotate round a vertical axis, the velocity of rotation being a function
of the distance from the axis. Clairaut refers to two solutions which had
already been proposed for this problem; namely, a correct solution by
Daniel Bernoulli on pages 244, 245 of his Hydrodynamica, and an incor-
rect solution by Hermann on page 372 of his Phoronomia: see Arts. 98
and 230.

In another example Clairaut supposes the fluid to be attracted to any
number of fixed centres.

In another example Clairaut supposes the particles of fluid to attract
each other with a force varying as the distance; and the fluid to rotate
round an axis: in this case the free surface is that of an oblatum. Clairaut
uses the known theorem that under such a law of attraction the resultant
attraction varies as the distance from the centre of gravity of the whole
attracting body: see Art. 12.

310. Clairaut’s seventh Chapter occupies pages 63…77; it discusses
a problem in fluid equilibrium proposed by Bouguer. We will give an
account of the substance of the problem by the modern method.

Let 𝑥, 𝑦, 𝑧 be the coordinates of any point of a fluid; let the short-
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est straight line be drawn from this point to a given surface; let 𝑟 be
the length of this straight line, and 𝑥′, 𝑦′, 𝑧′ the coordinates of the point
where it meets the given surface. Let the force acting on the fluid at
(𝑥, 𝑦, 𝑧) be along the line of 𝑟, and be denoted by 𝑓. It is required to
determine the pressure at any point, and the form of the free surface.

In modern notation we have

1
𝜌
𝑑𝑝
𝑑𝑥

=
𝑥′ − 𝑥
𝑟

𝑓,
1
𝜌
𝑑𝑝
𝑑𝑦

=
𝑦′ − 𝑦
𝑟

𝑓,
1
𝜌
𝑑𝑝
𝑑𝑧

=
𝑧′ − 𝑧
𝑟

𝑓.

Now

𝑟𝑑𝑟 = (𝑥′ − 𝑥)(𝑑𝑥′ − 𝑑𝑥) + (𝑦′ − 𝑦)(𝑑𝑦′ − 𝑑𝑦) + (𝑧′ − 𝑧)(𝑑𝑧′ − 𝑑𝑧);

and
(𝑥′ − 𝑥)𝑑𝑥′ + (𝑦′ − 𝑦)𝑑𝑦′ + (𝑧′ − 𝑧)𝑑𝑧′ = 0,

because 𝑟 is the shortest distance between (𝑥, 𝑦, 𝑧) and the given surface;
hence

𝑟𝑑𝑟 = −(𝑥′ − 𝑥)𝑑𝑥 − (𝑦′ − 𝑦)𝑑𝑦 − (𝑧′ − 𝑧)𝑑𝑧;

therefore
1
𝜌
𝑑𝑝 = −𝑓𝑑𝑟.

Hence 𝑓 must be a constant, or a function of 𝑟; say 𝑓 = 𝜙(𝑟), and

𝑝
𝜌
= −𝜓(𝑟) + constant,

where 𝜓(𝑟) is the integral of 𝜙(𝑟).
Thus the pressure at any point of the fluid mass is determined, and

the form of the free surface is found by making the pressure constant.
Of course this is not Clairaut’s method, as we have already remarked

that he does not use a symbol for the pressure. He restricts himself to
the case in which the given surface is a surface of revolution.
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Clairaut considers that in order to render the hypothesis natural we
must suppose there to be a central solid mass; for otherwise we should
have some particles of fluid indefinitely close to each other, and yet acted
on by forces the directions of which include a finite angle, ce qui est
choquant.

311. Clairaut gives a second solution of the problem by a kind of gen-
eral reasoning; see his page 69. He restricts himself to the case in which
the given surface is a surface of revolution; and so, instead of consider-
ing normals to a surface as we did in the preceding Article, he considers
normals to a given curve. Take a second curve, the points of which have
a constant shortest distance from the given curve; that is, take a second
curve which has the same evolute as the given curve: then it follows from
the preceding Article that the pressure is constant throughout the second
curve. Clairaut arrives, in his own way, at a result which corresponds to
this; he expresses it, however, by saying that le poids de 𝑂𝑇 doit être nul;
where 𝑂𝑇 denotes an infinitesimal canal in the form of our second curve.

312. Clairaut’s eighth Chapter occupies pages 78…93; in modern lan-
guage, we may say, that it is a modification of the sixth Chapter, by using
polar coordinates instead of rectangular: thus confining ourselves to one
plane, instead of 𝑋𝑑𝑥 + 𝑌𝑑𝑦 we now get 𝑅𝑑𝑟 + 𝑇𝑟𝑑𝜃.

The most interesting part of the Chapter is what Clairaut calls
the explanation of a species of paradox. The general equation to the

free surface of the fluid is ∫𝑅𝑑𝑟 +∫𝑇𝑟𝑑𝜃 = constant; the paradox

consists in this, that Newton’s principle of balancing columns gives

∫
𝑟

0
𝑅𝑑𝑟 = constant for the equation to the free surface, which may in

some cases differ from the former result.
We will omit all reference to the rotation of the fluid. Suppose, for

example, that 𝑅 = 𝑟𝜃2, and 𝑇 = 𝑟𝜃; then the two results agree: so
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also they agree if 𝑅 =
𝜃

√(𝑎2 + 𝑟𝜃)
, and 𝑇 =

1
√(𝑎2 + 𝑟𝜃)

. But suppose that

𝑅 =
𝑟

√(𝑟2 + 𝜃2)
, and 𝑇 =

𝜃
𝑟√(𝑟2 + 𝜃2)

; then according to Newton’s prin-

ciple of balancing columns we get √(𝑟2 + 𝜃2) − 𝜃 = constant; while the
other result is √(𝑟2 + 𝜃2) = constant.

Clairaut’s explanation consists of reasoning to shew that the latter re-
sult is correct; but it does not appear to me that he is happy in his ex-

planation. Such a force as
𝜃

𝑟√(𝑟2 + 𝜃2)
is inconceivable when 𝑟 = 0; and

thus to render his problem reasonable, a portion of the fluid round the
origin must be supposed to become solid; and then Newton’s principle
of columns balancing at the centre is no longer applicable. D’Alembert
objects, with justice, to Clairaut’s explanation: see the Opuscules Mathé-
matiques, Vol. v. pages 11 and 15.

Similar remarks to those in Art. 306 are applicable here. It is not
sufficient for equilibrium that 𝑅𝑑𝑟+𝑇𝑟𝑑𝜃 should be a perfect differential.
Suppose, for instance, that this is the differential of a function 𝑓(𝑟, 𝜃);
then if, when 𝑟 = 0, the value of 𝑓(𝑟, 𝜃) still involves 𝜃, the pressure is
not the same in all directions round the origin.

Not one of Clairaut’s three examples could correspond to the equilib-
rium of a free surface. Suppose, for instance, that 𝑇 = 𝑟𝜃; then when
𝜃 increases by 2𝜋, we get a different value of 𝑇 at the same point. But
there might be equilibrium in a portion of the fluid confined, when nec-
essary, by fixed planes.

313. Clairaut’s ninth Chapter occupies pages 94…105; in this Chapter
the results are extended to space of three dimensions, which in the pre-
vious Chapters had practically been applied only to space of two dimen-
sions. Thus with the modern usual notation Clairaut finds that the free
surface of the fluid in equilibrium must be such as to make the integral
of 𝑋𝑑𝑥 + 𝑌𝑑𝑦 + 𝑍𝑑𝑧 a constant; and, moreover, the following conditions
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must hold:
𝑑𝑋
𝑑𝑦

=
𝑑𝑌
𝑑𝑥

,
𝑑𝑋
𝑑𝑧

=
𝑑𝑍
𝑑𝑥

,
𝑑𝑌
𝑑𝑧

=
𝑑𝑍
𝑑𝑦

.

These conditions are satisfied for such forces as occur in nature; so
that Clairaut arrives substantially at this result: a mass of homogeneous
fluid, under the influence of such forces as occur in nature, will be in
equilibrium if Huygens’s principle of the plumb-line holds at the free
surface.

314. Clairaut’s tenth Chapter occupies pages 105…128; it is on capil-
lary attraction. Clairaut gives only extreme generalities. He may be said
to shew that it is not impossible, and even not improbable, that the phe-
nomena may be explained by supposing particles of fluid and particles
of a solid tube to attract an adjacent particle of fluid with forces which
are sensible only at a very small distance. But the Chapter is too remote
from my subject to warrant me in examining it closely. Laplace devotes
a paragraph to Clairaut’s theory of capillary attraction in the Mécanique
Céleste, Livre xi. §1; Laplace’s opinion is not favourable, he says: “cette
théorie me paraît insignifiante….”

315. Clairaut’s eleventh Chapter occupies pages 128…138; it treats of
the equilibrium of fluid which is not homogeneous. In modern language,
Clairaut undertakes to shew that level surfaces must be surfaces of equal
density: we now know that this proposition is not necessarily true, unless
𝑋𝑑𝑥 + 𝑌𝑑𝑦 + 𝑍𝑑𝑧 is a perfect differential. To this D’Alembert seems to
refer in his Traité … des Fluides, second edition, page 50.

When a mass of fluid, like a planet, is not homogeneous, but yet is
in equilibrium, Clairaut considers that the denser shells must be below
the rarer; see his pages 134, 138, 280, 292. He does not demonstrate this
condition, which is theoretically not necessary for equilibrium, though it
may be essential for stable equilibrium.

316. Clairaut’s twelfth Chapter occupies pages 139…151; it shews
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how we may determine the law of attraction at the surface of the Earth,
from the results given by observation. By pendulum experiments we de-
termine the force of gravity at any point on the Earth’s surface; by mea-
suring various lengths of degrees of the meridian we ascertain the form
of the Earth’s surface, and thus we can deduce the effect of the cen-
trifugal force at any point: then knowing the values of gravity and of
centrifugal force at any point, we can obtain the attraction at that point.
But this does not determine the law of attraction within the surface of
the Earth; so that on this point we must endeavour to make some natural
hypothesis by the aid of the theory of fluid equilibrium.

Assuming that the Earth is a homogeneous fluid, and that the direc-
tion of attraction always passes through the centre, Clairaut gives a sim-
ple proof that the ratio of the axes must be very approximately that of
576 to 577, whatever be the law of attraction; see Art. 56. Hence, assum-
ing that the ratio of the axes as determined by the French and Lapland
arcs is really that of 177 to 178, it follows that the direction of attraction
cannot always pass through the centre.

As an example Clairaut takes the ratio of the axes of the Earth to
be that of 177 to 178; and he assumes that the diminution of gravity in
passing from the pole to the equator varies as the square of the cosine of

the latitude, the total diminution being
10
2025

of the polar gravity: these

facts depend on observations in France and Lapland. Then he shews that
these data are consistent with an hypothesis of the law of force belonging
to Bouguer’s class: see Art. 310. This example is worked out in detail
by Clairaut; but though not destitute of interest theoretically, it is of no
practical value.

317. We now arrive at Clairaut’s second part, which is that with
which we are specially concerned. It consists of some introductory obser-
vations, followed by five Chapters. The introductory observations occupy
pages 152…158.
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Clairaut refers to his own former memoirs in the Philosophical Trans-
actions, which we have noticed in our Chapter VI. Clairaut’s researches
on the figure of the Earth, considered homogeneous, arose from his de-
sire to demonstrate Newton’s postulate: see Art. 44. Clairaut’s researches
on the figure of the Earth, considered heterogeneous, arose from his de-
sire to test and correct a remark made by Newton, namely, that the Earth
if denser towards the centre would be more flattened than if it were ho-
mogeneous: see Art. 30.

Although the case of the homogeneous figure of the Earth could be
deduced by a single substitution from the formulæ given by Clairaut for
the heterogeneous figure, yet he judged it convenient to treat separately
the homogeneous figure; and for this purpose to abandon his own
method and follow that given in Maclaurin’s Fluxions.

318. Clairaut’s first Chapter occupies pages 158…198; it contains the
theory of the homogeneous figure of the Earth or a planet. This is es-
sentially the same theory as Maclaurin gave; but it is more easy to follow
by being broken up into short sections, and printed in a more pleasing
manner.

The exact values of the components of the attraction of an oblatum
on a particle at its surface are given; the components being estimated
parallel and perpendicular to the axis of revolution.

Clairaut holds that a rotating mass of fluid in relative equilibrium
must assume the form of an oblatum; see his page 171. We have already
observed that Maclaurin and Thomas Simpson in like manner asserted
more than they were able to demonstrate: see Articles 249 and 283.

On his pages 188…190 Clairaut shews that the gravity varies as 𝑃𝐺,
to use our notation in Art. 153; but instead of the simple method which
we adopt there, Clairaut first demonstrates the proposition of Art. 33,
and then deduces the required result.

The relation which connects the ellipticity of the Earth with the
value of the ratio of the centrifugal force to the attraction can be
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expressed exactly, or approximately in various forms, according to the
notation adopted: see Arts. 262 and 283.

The following is the approximate result in Clairaut’s notation: he
takes the ratio of the equatorial axis to the polar axis to be that of 1 + 𝛿
to 1; and he uses 𝜙 to express the ratio of the centrifugal force at the
equator to the gravity there, not to the attraction: then

𝜙 =
4
5
𝛿 −

2
175

𝛿2 −
8
875

𝛿3…

from which
𝛿 =

5
4
𝜙 +

5
224

𝜙2 +
135
6272

𝜙3…

His 𝛿 is our
1

√(1 − 𝑒2)
− 1; and his 𝜙 is our

𝑗
(1 − 𝑗)

.

He finds
100
28752

for the value of 𝜙; see his page 194, from which he

gets 𝛿 =
1000
230002

.

319. On his pages 195…198, Clairaut applies his formula to determine
the ellipticity of Jupiter; he arrives at the conclusion that the ratio of the
axes is that of 10012 to 9012 . This differs very little from Newton’s final
value: see Art. 29.

Modern observation gives a much smaller value to Jupiter’s ellipticity
than that which Newton and Clairaut derived from theory. Sir J. Her-
schel in his Outlines of Astronomy, 1849, Art. 512, states the ratio of the
axes as that of 107 to 100; he adds:

And to confirm, in the strongest manner, the truth of those principles on
which our former conclusions have been founded, and fully to authorize their
extension to this remote system, it appears, on calculation, that this is really the
degree of oblateness which corresponds, on those principles, to the dimensions
of Jupiter, and to the time of his rotation.
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In the edition of 1869 the ratio is changed to that of 106 to 100; but
the passage just quoted remains unchanged. It is obvious that the re-
mark cannot be accepted. For in the first place, if we consider Jupiter
to be homogeneous, theory and observation are by no means in corre-
spondence; secondly, if we suppose Jupiter not to be homogeneous, we
shall be compelled to make some arbitrary hypothesis respecting the in-
ternal constitution of the planet, and cannot therefore appeal to the re-
sult as confirming in the strongest manner the truth of our principles;

and thirdly, if a calculation once gave
7
100

as the ratio of the difference

of the axes to the minor axis, we cannot afterwards assert that the cal-

culation gives
6
100

as the ratio.

320. Clairaut’s second Chapter occupies pages 198…232; it treats of
the relative equilibrium of rotating homogeneous fluid which surrounds
a spheroid composed of strata of varying density.

We have first a theorem respecting the attraction of a circular lamina
on an external particle which is so situated that its projection on the
lamina is very near the centre. Take the centre of the circle as the origin;
let the axis of 𝑥 pass through the projection of the attracted particle, and
let ℎ denote the distance of this projection from the centre, and 𝑘 the
distance of the particle from its projection; let 𝑟 denote the radius of the
circle, 𝜏 the thickness of the lamina, and 𝜌 the density.

Then the attraction resolved parallel to the axis of 𝑥, estimated to-
wards the origin,

= −𝜌𝜏∬
(𝑥 − ℎ)𝑑𝑥𝑑𝑦

{(𝑥 − ℎ)2 + 𝑦2 + 𝑘2}
3
2
,

the integration being taken over the area of the circle.
Integrate first with respect to 𝑥; the limits may be denoted by −𝜉 and
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𝜉: thus we get

𝜌𝜏∫𝑑𝑦 [
1

{𝑦2 + 𝑘2 + (𝜉 − ℎ)2}
1
2
−

1

{𝑦2 + 𝑘2 + (𝜉 + ℎ)2}
1
2
] .

The process is exact up to this point. If we suppose ℎ very small,
we may expand the expression under the integral sign in powers of ℎ;

and thus we get 2𝜌𝜏ℎ∫
𝜉𝑑𝑦

(𝑦2 + 𝑘2 + 𝜉2) 32
, that is

2𝜌𝜏ℎ
(𝑟2 + 𝑘2) 32

∫𝜉𝑑𝑦. But

2∫𝜉𝑑𝑦 is equal to the area of the circle; thus we obtain finally

𝜌𝜏ℎ
(𝑟2 + 𝑘2) 32

× the area of the circle.

The investigation would apply to a lamina which is nearly though not
exactly circular, and leads to the same result.

Clairaut’s own process is given in a geometrical form, but it is sub-
stantially equivalent to ours. We proceed to make use of the result.

321. Clairaut requires the approximate value of the attraction of a
nearly spherical oblatum on an external particle. Let 𝐶 denote the cen-
tre of the oblatum, and 𝑀 the external particle. The attraction may be
resolved into components along 𝑀𝐶, and at right angles to 𝑀𝐶. It is suf-
ficient for Clairaut’s purpose to consider the attraction along 𝑀𝐶 to be
the same as if the mass of the oblatum were collected at 𝐶. To find the
attraction at right angles to 𝑀𝐶, he calculates the aggregate effect by the
aid of the result in Art. 320.

Let the diagram represent the ellipse which is obtained by a meridian
section of the oblatum passing through 𝑀. Through any point 𝐻 in 𝐶𝑀
draw a chord at right angles to 𝐶𝑀; the middle points of all such chords
will be on a diameter. Let 𝐶𝐾 be the direction of this diameter, so that
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𝐻𝐾 is the ℎ of Art. 320, the chord itself being the intersection of a lamina
at right angles to 𝐶𝐻 with the meridian plane.

Let 𝐶𝐻 = 𝑥, and the angle 𝐻𝐶𝐾 = 𝛽, so that ℎ = 𝑥 tan 𝛽. Let 𝐶𝑁 = 𝑐,
and 𝐶𝑀 = 𝛾. Now ℎ is very small, because tan 𝛽 is very small; and thus,
without introducing any error to the order of accuracy which we adopt,
we can use certain approximate values of the 𝑟2+𝑘2, and the area, which
occur in Art. 320. We take 𝜋(𝑐2 −𝑥2) for the area, and (𝛾 − 𝑥)2 + 𝑐2 −𝑥2
for the 𝑟2+𝑘2. These approximations amount to neglecting the ellipticity
of the oblatum; and as we have the common factor tan 𝛽, our error is of
the order of the product of tan 𝛽 into the ellipticity.

Hence by Art. 320 we have for the attraction of the whole oblatum
at 𝑀 in the direction at right angles to 𝑀𝐶 and towards 𝐶𝐾,

𝜋𝜌 tan 𝛽∫
𝑐

−𝑐

𝑥(𝑐2 − 𝑥2)𝑑𝑥

{(𝛾 − 𝑥)2 + 𝑐2 − 𝑥2}
3
2
.

The value of the definite integral which occurs here is
4𝑐5

5𝛾4
; Clairaut
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himself obtains it by a peculiar artifice. By modern methods we may
proceed thus:

Put 𝛾2 + 𝑐2 − 2𝛾𝑥 = 𝑧2, and let 𝑎 = 𝛾 − 𝑐, and 𝑏 = 𝛾 + 𝑐; then we find
that

∫
𝑐

−𝑐

𝑥(𝑐2 − 𝑥2)𝑑𝑥
(𝛾2 + 𝑐2 − 2𝛾𝑥) 32

= −
1
8𝛾4

∫
𝑏

𝑎
(𝛾2 + 𝑐2 − 𝑧2)(𝑏2 − 𝑧2)(𝑎2 − 𝑧2)

𝑑𝑧
𝑧2

=
1
8𝛾4

∫
𝑏

𝑎
(1 −

𝑎2 + 𝑏2

2𝑧2
) (𝑏2 − 𝑧2)(𝑎2 − 𝑧2)𝑑𝑧.

Integrate by parts, observing that

∫(1 −
𝑎2 + 𝑏2

2𝑧2
)𝑑𝑧 = 𝑧 +

𝑎2 + 𝑏2

2𝑧
;

thus we find that the integral

=
1
8𝛾4

∫
𝑏

𝑎
(𝑧 +

𝑎2 + 𝑏2

2𝑧
) (𝑎2 + 𝑏2 − 2𝑧2)2𝑧 𝑑𝑧

=
1
8𝛾4

∫
𝑏

𝑎
{(𝑎2 + 𝑏2)2 − 4𝑧2} 𝑑𝑧

=
1
8𝛾4

{(𝑏 − 𝑎)(𝑎2 + 𝑏2)2 −
4
5
(𝑏5 − 𝑎5)}

=
𝑐
𝛾4

{(𝛾2 + 𝑐2)2 −
1
5
(5𝛾4 + 10𝛾2𝑐2 + 𝑐4)}

=
4𝑐5

5𝛾4
.

Thus the required attraction is
4𝜋𝜌 tan 𝛽𝑐5

5𝛾4
. The angle 𝛽 is exactly

the same as the angle between the diameter 𝐶𝐾 and the normal at its
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extremity, and is therefore very approximately equal to the angle between
𝐶𝑁 and the normal at 𝑁.

322. Clairaut introduces and defines the term ellipticity of a spheroid
on his page 209; with him it denotes the ratio of the difference of the
equatorial and polar diameters to the polar diameter: so that taking 2𝑎
for the equatorial diameter and 2𝑏 for the polar diameter the ellipticity

is
𝑎 − 𝑏
𝑏

. To the order however which is sufficient for our subject we

might also define the ellipticity as
𝑎 − 𝑏
𝑎

, and this is the sense in which

we prefer to use the term.

323. We can now give an outline of Clairaut’s investigations; we shall
however change his notation for a more modern one.

Suppose the central part of the Earth solid, consisting of strata nearly
spherical; and outside this let there be homogeneous fluid. Let 𝑟 denote
strictly the polar semiaxis of a stratum, but with sufficient approximation
in many cases the radius drawn from the centre in any direction to the
stratum. Let 𝜌 denote the density and 𝜖 the ellipticity of this stratum; let
𝜖′ denote the ellipticity of the stratum which forms the boundary of the
solid part. Let 𝜌1 denote the density of the fluid, and 𝜖1 the ellipticity
of the surface of the fluid. Let 𝑟′ be the value of 𝑟 at the boundary of
the solid part, and 𝑟1 the value of 𝑟 at the surface of the fluid. Let 𝜙1
be the angle at the point corresponding to 𝑟1 between the normal to the
stratum and 𝑟1. Thus the subscript 1 always indicates a value relative to
the surface of the fluid.

Since the fluid is homogeneous Huygens’s principle furnishes us with
the necessary and sufficient condition for equilibrium. At any point of
the surface of the fluid we have a central force which we will call 𝐹, and
a force in the meridian plane at right angles to the radius vector towards
the equator which we will call 𝑇; there is also the centrifugal force which
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at the equator would be 𝑗𝐹 in our usual notation, and which will be
𝑗𝐹 sin 𝜆 at the place considered, if 𝜆 denote the angle between the radius
vector and the polar semiaxis. Hence resolving all the forces along the
tangent to the meridian we have as the condition of equilibrium

𝐹 sin𝜙1 − 𝑇 − 𝑗𝐹 sin 𝜆 cos 𝜆 = 0. (1)

We must now develope this equation. With regard to 𝐹 it will be
sufficient to consider the whole mass as made up of spherical strata of
varying density; and thus

𝐹 =
4𝜋
𝑟12

∫
𝑟1

0
𝜌𝑟2𝑑𝑟.

Next consider 𝑇. If there were a homogeneous oblatum of density

𝜌 this force, by Art. 321, would be
4𝜋𝜌 tan 𝛽𝑟5

5𝑟14
, where 𝑟 denotes

the radius vector of the oblatum in the direction of 𝑟1. For such
an oblatum in which the radius vector is 𝑟 + 𝑑𝑟 the force would be
4𝜋𝜌
5𝑟14

{tan 𝛽𝑟5 +
𝑑
𝑑𝑟
(tan 𝛽𝑟5)𝑑𝑟}. Hence the force arising from a shell of

which 𝜌 is the density and 𝑑𝑟 the thickness in the direction of 𝑟1 is
4𝜋𝜌
5𝑟14

𝑑
𝑑𝑟
(tan 𝛽𝑟5)𝑑𝑟.

Thus we obtain

𝑇 =
4𝜋
5𝑟14

∫
𝑟1

0
𝜌
𝑑
𝑑𝑟
(tan 𝛽𝑟5)𝑑𝑟,

where 𝜌, now supposed variable, indicates the density of the stratum cor-
responding to 𝑟.

This method of treating strata of varying density occurs very
frequently in our subject and should be carefully noticed.
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Now by the nature of an ellipse it follows that to the order of approx-
imation which we here retain tan 𝛽 or sin 𝛽 is equal to 2𝜖 sin 𝜆 cos 𝜆; and
to that order 𝜙1 has the same meaning as 𝛽1. Hence by simplifying we
get from (1)

(2𝜖1 − 𝑗)∫
𝑟1

0
𝜌𝑟2𝑑𝑟 =

2
5𝑟12

∫
𝑟1

0
𝜌
𝑑
𝑑𝑟
(𝜖𝑟5)𝑑𝑟. (2)

The form of (2) may be modified by separating the integral into two
parts, one extending from 0 to 𝑟′, and the other from 𝑟′ to 𝑟1; in the
second interval the density is constant and is denoted by 𝜌1. Thus

∫
𝑟1

0
𝜌𝑟2𝑑𝑟 = ∫

𝑟′

0
𝜌𝑟2𝑑𝑟 +

𝜌1(𝑟13 − 𝑟′3)
3

,

∫
𝑟1

0
𝜌
𝑑
𝑑𝑟
(𝜖𝑟5)𝑑𝑟 = ∫

𝑟′

0
𝜌
𝑑
𝑑𝑟
(𝜖𝑟5)𝑑𝑟 + 𝜌1(𝜖1𝑟15 − 𝜖′𝑟′5).

If we employ the second of these modifications, (2) becomes

2𝜖1 {∫
𝑟1

0
𝜌𝑟2𝑑𝑟 −

𝜌1𝑟13

5
} = 𝑗∫

𝑟1

0
𝜌𝑟2𝑑𝑟 +

2
5𝑟12

∫
𝑟′

0
𝜌
𝑑
𝑑𝑟
(𝜖𝑟5)𝑑𝑟 −

2𝜌1𝜖′𝑟′5

5𝑟12
.

If we put 𝐴 for ∫
𝑟′

0
𝜌𝑟2𝑑𝑟, and 𝐷 for ∫

𝑟′

0
𝜌
𝑑
𝑑𝑟
(𝜖𝑟5)𝑑𝑟 we get, by em-

ploying also the first modification,

𝜖1 =

1
𝑟12
(6𝐷 − 6𝜌1𝜖′𝑟′5) + 𝑗(15𝐴 + 5𝜌1𝑟13 − 5𝜌1𝑟′3)

30𝐴 + 4𝜌1𝑟13 − 10𝜌1𝑟′3
. (3)

This is a very important formula in our subject; it agrees with that
given by Clairaut on his page 217, allowing for a misprint with him: the
investigation is substantially like his though in form rather different.
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324. The general result (3) of the preceding Article is applied by
Clairaut on his pages 218…222 to some special cases.

I. Suppose the whole mass homogeneous; then

𝐴 =
𝜌1𝑟′3

3
, 𝐷 = 𝜌1𝜖′𝑟′5;

and we obtain
𝜖1 =

5𝑗
4
:

this as far as it goes agrees with Art. 318.
II. Suppose the solid part homogeneous as well as the fluid part, but

the densities of the two parts different. Let the density of the solid part
be denoted by 𝜌1(1 + 𝜅); then

𝐴 =
𝜌1𝑟′3

3
(1 + 𝜅), 𝐷 = 𝜌1𝜖′𝑟′5(1 + 𝜅);

and we obtain

𝜖1 =

6𝜅𝜖′𝑟′5

𝑟12
+ 5𝑗(𝜅𝑟′3 + 𝑟13)

10𝜅𝑟′3 + 4𝑟13
.

We shall find hereafter that this result reappears in the Mécanique
Céleste, Vol. v. page 30.

Clairaut remarks that if we consider 𝜖1 to be known by observation,
this formula will guide us in making suitable hypotheses as to the ra-
dius, the ellipticity, and the density of the assumed solid central part.
He warns us that if we suppose 𝜅 to be negative we must remember that
it is to be numerically less than unity; but the result shews us that this
is an inadequate restriction: for if 𝜅 be negative it must not be numeri-

cally nearly equal to
4𝑟13

10𝑟′3
, and this might be much less than unity if 𝑟′

were nearly equal to 𝑟1. The truth is that if 𝜅 be positive the above result
may be accepted without scruple; but if 𝜅 be negative we must carefully



clairaut. 236

examine whether the value of 𝜖1 obtained from the formula is a small
quantity.

If in the above formula for 𝜖1 we suppose 𝜖′ = 0, and 𝜅 negative, and

put
𝜅𝑟′3

𝑟13
= −𝜆, the result agrees with that obtained on page 156.

III. Suppose as a particular case of II. that the solid part is to be
similar to the whole mass, and that we require the ellipticity to be
greater than it is when the whole mass is homogeneous. Then put

𝜖1 = 𝜖′ =
5𝑗
4
(1 + 𝑝), where 𝑝 is some positive quantity; thus we deduce

𝜅 = −
𝑝𝑟13

3
2
(𝑟′3 −

𝑟′5

𝑟12
) + 𝑝 (

5
2
𝑟′3 −

3
2
𝑟5

𝑟12
)
,

so that 𝜅 is necessarily negative.
IV. In the preceding result, suppose that the difference between 𝑟′

and 𝑟1 is infinitesimal; put 𝑟′ = 𝑟1(1 − 𝜆), where 𝜆 is infinitesimal: then

𝜅 = −
𝑝

3𝜆 + 𝑝
,

so that 𝜅 differs only infinitesimally from unity. Thus we have the case
of a film of fluid which surrounds a solid body of infinitesimal density;
the outer and inner surfaces of the film are similar, similarly situated,
and concentric oblata.

V. Instead of being a film as in IV. let us suppose the planet to be a
shell of finite thickness; and let the internal part, though hard, be sup-
posed of no density or of no attracting power: then we must solve the
equation

3
2
(𝑟′3 −

𝑟′5

𝑟12
) + 𝑝 (

5
2
𝑟′3 −

3
2
𝑟′5

𝑟12
) = −𝑝𝑟13,
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and take for
𝑟′

𝑟1
a positive value less than unity, if such a value should

occur among the roots of the equation.
VI. Now return to the suppositions in II. If the density of the central

part is to be greater than the density of the fluid, and 𝜖1 to be greater

than
5𝑗
4
, then 𝜖′ must be greater than

𝑟12𝜖1
𝑟′2

.

For put 𝜖′ = (𝜖1 + 𝛾)
𝑟12

𝑟′2
, and substitute in the result given in II.; thus

we get

𝜖1 =
5𝑗
4
+

3𝛾𝜅𝑟′3

2𝜅𝑟′3 + 2𝑟13
;

and the second term will not be positive unless 𝛾 is positive.

325. Clairaut applies the last result of the preceding Article to two
criticisms on Newton.

In the case of the Earth, if we wish to have 𝜖1 greater than
5𝑗
4
, it

is not sufficient merely to suppose a solid nucleus of greater density
than the fluid; it is necessary to have the ellipticity of this solid nucleus

greater than
𝑟12𝜖1
𝑟′2

: see Art. 37.

In the case of Jupiter, if we wish to have 𝜖1 less than
5𝑗
4
, it is not

necessary to suppose that the equatorial parts have been scorched by the
Sun into a greater density than the other parts; it is sufficient to sup-
pose that the solid nucleus is denser than the fluid, and that it has an

ellipticity less than
𝑟12𝜖1
𝑟′2

: see Art. 31.



clairaut. 238

326. Clairaut shews in his pages 224 and 225, that an oblongum may
be a form of relative equilibrium.

For in case II. of Art. 324, if 𝜖′ is negative and numerically greater

than
5𝑗(𝜅𝑟′3 + 𝑟13)𝑟12

6𝜅𝑟′5
, then 𝜖1 is negative.

But even if 𝜖′ is positive, it will be possible to have 𝜖1 negative if 𝜅
be negative; Clairaut does not make this remark, to which D’Alembert
seems to attach great importance; see the Opuscules Mathématiques, Vol.
vi. page 77. The fact simply is that Clairaut’s general formula contains
somewhat more than he himself verbally drew from it.

327. Suppose the depth of the sea to be not greater than the height
of the mountains; then Clairaut considers that we may without sensible
error regard the earth as an oblatum covered with a film of water; see his
page 225. In this case he takes 𝜖1 = 𝜖′, and 𝑟1 = 𝑟′; and so the equation
(3) of Art. 323 becomes

10𝐴𝜖1 −
2𝐷
𝑟12

= 5𝐴𝑗.

328. It had been objected that Clairaut ought not to have supposed
𝜖1 = 𝜖′: see D’Alembert’s Opuscules Mathématiques Vol vi. page 75, and
Cousin’s Astronomie Physique, page 164. If then we put 𝑟1 = 𝑟′, but do
not put 𝜖1 = 𝜖′, the equation (3) of Art. 323 becomes

(10𝐴 − 2𝜌1𝑟13)𝜖1 =
2
𝑟12
(𝐷 − 𝜌1𝜖′𝑟15) + 5𝐴𝑗.

As before then we may say that Clairaut’s general formula contains
more than he was contented to draw from it. But we must observe that if
we suppose the stratum of fluid to be very thin, but do not take 𝜖1 = 𝜖′,
the fluid will not necessarily cover all the solid: either the polar parts or
the equatorial parts may be left without fluid.
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329. Clairaut applies his result which we have given in Art. 327 to

shew that if 𝜖 = 𝜖1 (
𝑟12

𝑟2
− 𝑢), where 𝑢 is positive, and the density dimin-

ishes continually from the centre, the ellipticity will be less than when
the mass is homogeneous.

For, using this expression for 𝜖, we have

𝐷 = ∫
𝑟1

0
𝜌
𝑑
𝑑𝑟
(𝜖𝑟5)𝑑𝑟 = 3𝜖1𝑟12∫

𝑟1

0
𝜌𝑟2𝑑𝑟 − 𝜖1∫

𝑟1

0
𝜌
𝑑
𝑑𝑟
(𝑟5𝑢)𝑑𝑟

= 3𝜖1𝑟12𝐴 − 𝜖1(𝜌𝑟5𝑢)1 + 𝜖1∫
𝑟1

0
𝑟5𝑢

𝑑𝜌
𝑑𝑟
𝑑𝑟

= 3𝜖1𝑟12𝐴 − 𝜖1𝐺 say,

where 𝐺 is some positive quantity, since by supposition
𝑑𝜌
𝑑𝑟

is negative.

Thus we obtain,

10𝐴𝜖1 − 6𝐴𝜖1 +
2
𝑟12
𝜖1𝐺 = 5𝐴𝑗,

so that
𝜖1 =

5𝑗
4

1

1 +
𝐺

2𝑟12𝐴

,

which is less than
5𝑗
4
.

Clairaut expresses his result very awkwardly in words; he says that
the spheroid will be less flattened than in the homogeneous case, unless
the ellipticity of the strata diminishes from the centre to the circumfer-
ence, and in a greater ratio than the squares of the distances. The lan-
guage would imply that the squares of the distances diminish from the
centre to the circumference. He should have said, provided the product
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of the ellipticity into the square of the distance is never greater than at the
surface.

Clairaut on his pages 228…232 gives some special cases of the gen-
eral result in Art. 328, by assuming special laws of density; his results
are accurate, and he points out the objection to some corresponding in-
vestigations of Maclaurin: see Art. 267.

330. Clairaut’s third Chapter occupies pages 233…262; it discusses the
law of the variation of gravity at the surface of a spheroid of revolution
composed of strata of varying density and ellipticity. Clairaut shews that
the diminution of gravity in passing from the pole to the equator varies
as the square of the cosine of the latitude; and he establishes the theorem
which we now call Clairaut’s Theorem. We will proceed to give some
details.

331. Suppose a particle placed outside a circular lamina; when the
projection of the particle on the lamina is very near the centre of the
circle, the resultant attraction on the particle is very nearly the same as
if the particle were at the same distance from the centre of the circle, but
had its projection coincident with the centre: Clairaut shews this briefly
by general reasoning. If we proceed analytically as in Art. 320, we shall
find that when the particle is displaced so that its projection moves from
the centre to a distance ℎ from the centre, the attraction perpendicular
to the lamina is not changed to the order ℎ, while there is a transverse
attraction produced of the order ℎ; so that the change in the resultant
attraction is of the order ℎ2.

The result holds also for an ellipse or any other central curve.

332. If a circular lamina, and an oval lamina which is nearly circular,
have the same centre and the same plane and equal areas, they exert
approximately the same attraction on a particle, the projection of which
would coincide with the common centre: Clairaut shews this briefly by
general reasoning.
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333. The propositions of the two preceding Articles lead Clairaut to
the following general result.

Let 𝐶 be the centre of an ellipsoid of revolution nearly spherical, and
𝑀 an external particle; let 𝑀𝐶 cut the solid at 𝑁, and let 𝑀𝐶 produced
cut the solid at 𝑛; the attraction of the solid on a particle at 𝑀 is approx-
imately the same as that of an ellipsoid of revolution of equal volume
having 𝑁𝑛 for its axis of revolution.

The original solid may be an oblatum or an oblongum; whichever it
be the derived solid will be sometimes an oblatum and sometimes an
oblongum, according to the position of the straight line 𝐶𝑀.

It must be observed that the approximation holds as far as the first
power of the ellipticity inclusive; in fact the errors in Arts. 331 and 332
are of the order of the square of the ellipticity.

334. Clairaut then finds the attraction of an ellipsoid of revolution
which is nearly spherical on a particle which is on the prolongation of
the axis of revolution. I have already adverted to the method which he
uses: see Art. 165. The result is correct to the first power of the ellipticity
inclusive.

335. The pages 233…243 of Clairaut’s work which we have just
considered were, in substance, originally published in the Philosophical
Transactions; see Art. 164: these pages well deserve perusal as a good
specimen of the ingenuity and simplicity of Clairaut’s investigations.

A modern student will probably like to verify by analysis the impor-
tant result in Art. 333. The simplest way perhaps is to find the potential
of the original ellipsoid of revolution on the particle at 𝑀, and shew that
it is equal to the potential of the derived ellipsoid of revolution, so far as
terms of the first order inclusive.

Take 𝐶 for the origin, 𝐶𝑁 for the axis of 𝑧; let the axis of 𝑦 be the
diameter which is conjugate to 𝑁𝑛 in the meridian plane of the given
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ellipsoid which contains 𝐶𝑀; let the axis of 𝑥 be at right angles to those
of 𝑦 and 𝑧.

Let 𝐶𝑀 = 𝛾; let 𝜒 denote the angle between the axes of 𝑦 and 𝑧.
Then the potential of the given ellipsoid is

∭
sin𝜒𝑑𝑥𝑑𝑦𝑑𝑧

{𝑥2 + 𝑦2 + 2𝑦(𝑧 − 𝛾) cos𝜒 + (𝑧 − 𝛾)2} 12
;

the limits of the integration are determined by the equation to the given
ellipsoid, which we may take as

𝑥2

𝑎2
+
𝑦2

𝑏2
+
𝑧2

𝑐2
= 1.

Put 𝑟2 for 𝑥2 +𝑦2 + (𝑧−𝛾)2; then we may expand the term under the
integral signs in the form

1
𝑟
−
𝑦(𝑧 − 𝛾) cos𝜒

𝑟3
+
3
2
𝑦2(𝑧 − 𝛾)2 cos2 𝜒

𝑟5
+…

The second of these terms gives zero as the result when integrated,
because 𝑦 is as often negative as positive. Thus if we reject the squares
and the higher powers of the small quantity cos𝜒, the potential becomes

sin𝜒∭
𝑑𝑥𝑑𝑦𝑑𝑧

{𝑥2 + 𝑦2 + (𝑧 − 𝛾)2} 12
.

Assume 𝑥 = 𝑎𝜉, 𝑦 = 𝑏𝜂, 𝑧 = 𝑐𝜁; then the potential can be transformed
to

𝑉∭
𝑑𝜉𝑑𝜂𝑑𝜁

{𝑎2𝜉2 + 𝑏2𝜂2 + (𝑐𝜁 − 𝛾)2} 12
, (1)

where 𝑉 stands for 𝑎𝑏𝑐 sin𝜒, and the limits of integration are determined
by

𝜉2 + 𝜂2 + 𝜁2 = 1.
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Now when we form the potential of the derived ellipsoid we obtain,
if ℎ denote the two equal semiaxes,

ℎ2𝑐∭
𝑑𝜉𝑑𝜂𝑑𝜁

{ℎ2𝜉2 + ℎ2𝜂2 + (𝑐𝜁 − 𝛾)2} 12
, (2)

the limits being the same as before. And by the condition of equal vol-
umes we have

𝑎𝑏𝑐 sin𝜒 = ℎ2𝑐. (3)

Since the original ellipsoid is nearly spherical we have

𝑎 = 𝑐(1 + 𝜆) and 𝑏 = 𝑐(1 + 𝜇)

where 𝜆 and 𝜇 are small, being of the order of the ellipticities.
Thus from (3) we have

ℎ2 = 𝑐2(1 + 𝜆 + 𝜇) sin𝜒,

but sin𝜒 being the sine of an angle, nearly a right angle, we shall find
that it differs from unity by a quantity which is of the order of the
squares of the ellipticities. Thus to our order

ℎ2 = 𝑐2(1 + 𝜆 + 𝜇),

and so we have to our order

ℎ2 =
𝑎2 + 𝑏2

2
.

Hence since 𝑎2 =
𝑎2 + 𝑏2

2
+
𝑎2 − 𝑏2

2
, and 𝑏2 =

𝑎2 + 𝑏2

2
−
𝑎2 − 𝑏2

2
, we

see that to our order (1) becomes

𝑉∭
𝑑𝜉𝑑𝜂𝑑𝜁

{ℎ2𝜉2 + ℎ2𝜂2 +
𝑎2 − 𝑏2

2
(𝜉2 − 𝜂2) + (𝑐𝜁 − 𝛾)2}

1
2
.
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Expand the denominator under the integral sign in powers of
𝑎2 − 𝑏2

2
(𝜉2 − 𝜂2); then the term under the integral sign which involves

the first power of this small quantity obviously vanishes by symmetry:
so if we neglect the square of 𝑎2 − 𝑏2, the expression (1) reduces to the
form (2). This is the required result.

336. We are now prepared to find the value of gravity at any point of
the surface of our hypothetical Earth.

Suppose 𝑟 the polar radius, 𝑟(1 + 𝜖) the equatorial radius of an obla-
tum, where 𝜖 is small; let 𝜌 be the density. We shall first determine the
attraction on a particle at the distance 𝑅 from the centre, the direction
of 𝑅 making with the polar axis an angle whose sine is 𝑠.

By Clairaut’s proposition in Art. 333, we substitute instead of the
oblatum, a certain ellipsoid of revolution of equal mass. Let 𝑐 denote
the polar semiaxis, and 𝜆 the ellipticity of this derived ellipsoid. The at-
traction which it exerts

=
mass of oblatum

𝑅2
(1 −

6𝜆𝑐2

5𝑅2
) :

this may be deduced from Art. 261, supposing 𝜆 positive; or it may be
obtained in Clairaut’s manner, to which we have referred in Art. 334,
and then it will be found to hold whether 𝜆 be positive or negative.

Now to our order of approximation

𝑐 = 𝑟(1 + 𝜖𝑠2);

and the condition of equal masses gives

𝑟3(1 + 2𝜖) = 𝑐3(1 + 2𝜆) = 𝑟3(1 + 3𝜖𝑠2)(1 + 2𝜆);

so that
𝜆 = (1 −

3𝑠2

2
) 𝜖.
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Also, supposing the attracted particle to be on a concentric and sim-
ilarly situated oblatum, the dimensions of which are given by 𝑟1 and 𝜖1,
we have

𝑅 = 𝑟1(1 + 𝜖1𝑠2).

The mass of the oblatum =
4𝜋𝑟3

3
(1 + 2𝜖)𝜌.

Hence the attraction of the oblatum

=
4𝜋𝑟3

3𝑟12
(1 + 2𝜖)(1 − 2𝜖1𝑠2)𝜌 {1 −

6𝑟2

5𝑟12
(1 −

3
2
𝑠2)𝜖}

=
4𝜋𝑟3𝜌
3𝑟12

{1 + 2𝜖 − 2𝜖1𝑠2 −
6𝜖𝑟2

5𝑟12
+
9𝜖𝑠2𝑟2

5𝑟12
} .

Let us denote this for a moment by 𝜌𝑓(𝑟); then for the attraction of
the shell of density 𝜌, comprised between the surfaces which correspond

to 𝑟 and 𝑟 + 𝑑𝑟, we have 𝜌
𝑑𝑓(𝑟)
𝑑𝑟

𝑑𝑟.

Hence, if we suppose the density of each shell to be uniform, but the
density to vary from shell to shell, we have for the whole attraction

∫
𝑟1

0
𝜌
𝑑𝑓(𝑟)
𝑑𝑟

𝑑𝑟.

Let 𝐴 = ∫
𝑟1

0
𝜌𝑟2𝑑𝑟, 𝐵 = ∫

𝑟1

0
𝜌
𝑑(𝑟3𝜖)
𝑑𝑟

𝑑𝑟, 𝐷 = ∫
𝑟1

0
𝜌
𝑑(𝑟5𝜖)
𝑑𝑟

𝑑𝑟, then

the attraction is
4𝜋
𝑟12
(1 − 2𝜖1𝑠2)𝐴 +

8𝜋𝐵
3𝑟12

−
4𝜋
5𝑟14

(2 − 3𝑠2)𝐷.

We must now introduce the centrifugal force. The centrifugal force at

the equator is approximately
4𝜋𝑗𝐴
𝑟12

; and therefore it is
4𝜋𝑠𝑗𝐴
𝑟12

at the point
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under consideration: the resolved part of this along the radius is
4𝜋𝑠2𝑗𝐴
𝑟12

,

which must be subtracted from the attraction to obtain the gravity.
Hence the gravity at the point under consideration

=
4𝜋
𝑟12
(1 − 2𝜖1𝑠2)𝐴 +

8𝜋𝐵
3𝑟12

−
4𝜋
5𝑟14

(2 − 3𝑠2)𝐷 −
4𝜋𝑠2𝑗𝐴
𝑟12

.

Let 𝑃 denote the gravity at the pole, 𝑔 the gravity at the point under
consideration; then

𝑃 − 𝑔 =
4𝜋
𝑟12

{(𝑗 + 2𝜖1)𝐴 −
3𝐷
5𝑟12

} 𝑠2.

Thus 𝑃 − 𝑔 varies as 𝑠2; that is, the diminution of gravity in passing
from the pole to the equator varies as the square of the cosine of the
latitude.

Let 𝐸 denote the gravity at the equator; then

𝑃 − 𝐸 =
4𝜋
𝑟12

{(𝑗 + 2𝜖1)𝐴 −
3𝐷
5𝑟12

} .

Divide this by 𝐸; then on the right-hand side it will be sufficient to

use
4𝜋𝐴
𝑟12

for 𝐸, so that

𝑃 − 𝐸
𝐸

= 𝑗 + 2𝜖1 −
3𝐷
5𝐴𝑟12

.

Substitute for
𝐷
𝐴
from Art. 327, and we have

𝑃 − 𝐸
𝐸

=
5
2
𝑗 − 𝜖1.



clairaut. 247

This remarkable result is called Clairaut’s Theorem. The fraction
𝑃 − 𝐸
𝐸

we shall call Clairaut’s fraction, as in Art. 171, and shall denote

it by 𝑣; so that we have
𝑣 + 𝜖1 =

5
2
𝑗.

We know by Art. 28 that
5
2
𝑗 is twice the ellipticity of the earth, sup-

posed homogeneous; and this is the form in which Clairaut himself ex-
presses this term.

337. The assumptions on which Clairaut’s demonstration of his fa-
mous theorem rests should be carefully noticed. The strata are supposed
to be ellipsoidal, and of revolution round a common axis, and nearly
spherical. Each stratum is homogeneous, but there is no limitation on
the law by which the density varies from stratum to stratum: the den-
sity may change discontinuously if we please. It is not assumed that the
strata were originally fluid; but it is assumed that the superficial stratum
has the same form as if it were fluid and in relative equilibrium when
rotating with uniform angular velocity. There is no limitation on the law
by which the ellipticity varies from stratum to stratum, except that the
ellipticity must be continuous, and at the surface must be such as would
correspond to the relative equilibrium of a film of rotating fluid.

We shall find that D’Alembert in 1756 mistook the range of Clairaut’s
demonstration: see the Recherches sur … Systême du Monde, Vol. iii. page
187.

In some modern works there has been a want of strict accuracy as
to the Theorem, owing perhaps to an undue regard to brevity. Thus we
read in one that Clairaut established his Theorem on “the hypothesis of
the Earth being a fluid mass”; and we read in another that Clairaut dis-
covered his Theorem for “the case of a rotating fluid mass, or solid with
density distributed as if fluid.”
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338. Clairaut on his pages 251…259 uses his theorem to support cer-
tain criticisms on Newton, David Gregory, and Maclaurin. We have al-
ready noticed these criticisms: see Arts. 30, 84, and 271.

On his pages 260…262 Clairaut in like manner uses his theorem in
relation to Cassini’s hypothesis that the earth was an oblongum with an

ellipticity of
1
93
. In Art. 336 put 𝜖1 = −

1
93
, and 𝑗 =

1
289

; then we get

approximately 𝑣 =
1
93

+
1
115

=
1
51
. But, as Clairaut observes, this is

a far greater value of 𝑣 than pendulum observations warrant. Cassini’s
number however seems to have been 95 not 93: see Art. 104.

339. Clairaut’s fourth Chapter occupies pages 262…296; it considers
the figure of the Earth, supposed to have been originally fluid, and com-
posed of strata of varying densities. In fact Clairaut now proposes to
investigate the connection between the density and the ellipticity in or-
der that strata of the kind considered in the preceding Chapter may be
in relative equilibrium if they are fluid. A process like that of Art. 323
must now be applied to each stratum.

340. Suppose a shell of density 𝜌 bounded by two concentric and sim-
ilarly situated oblata; let 𝜁1 be the ellipticity of the inner surface, and 𝜁2
the ellipticity of the outer surface. Suppose a particle situated on the in-
ner surface of the shell; we shall determine the attraction which the shell
exerts on this particle in the direction at right angles to the radius vector
from the centre of the shell to the particle. This problem is solved by
Clairaut on his pages 262…265. Our solution is substantially the same.

The attraction of the shell is of course equal to the difference of the
attractions of the oblatum which is bounded by the outer surface, and
the oblatum which is bounded by the inner surface. We will consider
these bodies separately, beginning with the larger.

The larger oblatum produces the same effect as would be produced by
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a similar, similarly situated, and concentric oblatum, having the particle
on its surface; for the difference of these two similar, similarly situated,
and concentric oblata produces no effect by Art. 13.

Hence the attraction of the larger oblatum in the assigned direction

is
4𝜋𝜌𝑐 tan 𝛽

5
in the notation of Art. 321; for now 𝛾 = 𝑐. And, as in

Art. 323, we have tan 𝛽 = 2𝜁2 sin 𝜆 cos 𝜆, so that the attraction becomes
8𝜋𝜌𝑐𝜁2 sin 𝜆 cos 𝜆

5
.

In like manner the attraction of the smaller oblatum in the assigned

direction is
8𝜋𝜌𝑐𝜁1 sin 𝜆 cos 𝜆

5
.

Thus it follows that the required attraction of the shell in the assigned

direction is
8𝜋𝜌𝑐(𝜁2 − 𝜁1) sin 𝜆 cos 𝜆

5
.

Now suppose that there is an infinitesimally thin shell of the density
𝜌; let 𝑟 be the polar semiaxis of the inner surface, and 𝜖 the elliptic-

ity of this surface; then 𝜖 +
𝑑𝜖
𝑑𝑟
𝑑𝑟 will denote the ellipticity of the outer

surface. Therefore the attraction, in the direction at right angles to the

radius vector, of this shell on the inside particle is
8𝜋𝜌
5
𝑐 sin 𝜆 cos 𝜆

𝑑𝜖
𝑑𝑟
𝑑𝑟;

this is obvious from the preceding investigation.

341. We now proceed to apply a process like that of Art. 323 to any
stratum.

Let there be a particle of fluid in any stratum at the distance 𝑟′ from
the centre; let 𝜆 be the angle between the radius vector to the particle
and the polar semiaxis.
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The central attraction on the particle is
4𝜋
𝑟′2

∫
𝑟′

0
𝜌𝑟2𝑑𝑟, approximately;

for the strata beyond the particle produce no central effect to the order of
accuracy which we have to consider. This central attraction gives rise to
a component in the meridian plane, at right angles to the radius vector,

towards the pole equal to 2𝜖′ sin 𝜆 cos 𝜆 ×
4𝜋
𝑟′2

∫
𝑟′

0
𝜌𝑟2𝑑𝑟. We will call this

a transverse attraction.
The transverse attraction on the particle from the strata below the

particle towards the equator, is
8𝜋𝑟′ sin 𝜆 cos 𝜆

5𝑟′5
∫

𝑟′

0
𝜌
𝑑
𝑑𝑟
(𝑟5𝜖)𝑑𝑟, by Art.

323.
The transverse attraction on the particle from the strata beyond the

particle towards the equator is
8𝜋𝑟′ sin 𝜆 cos 𝜆

5
∫

𝑟1

𝑟′
𝜌
𝑑𝜖
𝑑𝑟
𝑑𝑟, by Art 340.

Let 𝜔 denote the angular velocity; then the transverse component of
the centrifugal force is 𝜔2𝑟′ sin 𝜆 cos 𝜆.

Hence, as in Art. 323, equating to zero the whole transverse force,
and dividing by 4𝜋 sin 𝜆 cos 𝜆 we obtain

2𝜖′

𝑟′2
∫

𝑟′

0
𝜌𝑟2𝑑𝑟 −

2
5𝑟4

∫
𝑟′

0
𝜌
𝑑
𝑑𝑟
(𝜖𝑟5)𝑑𝑟 −

2𝑟′

5
∫

𝑟1

𝑟′
𝜌
𝑑𝜖
𝑑𝑟
𝑑𝑟 −

𝑟′𝜔2

4𝜋
= 0.

If as usual we denote by 𝑗 the ratio of the centrifugal force at the
equator at the surface of the fluid to the attraction there, we have to the
order of accuracy which we require

𝑟1𝜔2 = 𝑗
4𝜋
𝑟12

∫
𝑟1

0
𝜌𝑟2𝑑𝑟.
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Substituting this value of 𝜔2 our equation becomes

2𝜖′

𝑟′2
∫

𝑟′

0
𝜌𝑟2𝑑𝑟−

2
5𝑟′4

∫
𝑟′

0
𝜌
𝑑
𝑑𝑟
(𝜖𝑟5)𝑑𝑟−

2𝑟′

5
∫

𝑟1

𝑟′
𝜌
𝑑𝜖
𝑑𝑟
𝑑𝑟−

𝑗𝑟′

𝑟13
∫

𝑟1

0
𝜌𝑟2𝑑𝑟 = 0.

This important equation occurs for the first time in Clairaut’s page
273; it has ever since been permanently associated with the subject: I
shall call it Clairaut’s primary equation. Whether we leave 𝜔2 in the
equation, or substitute for it in the manner just explained, is of no con-
sequence.

342. If 𝜖 and 𝜌 are taken so as to satisfy Clairaut’s primary equa-
tion we have a possible constitution for the earth. Clairaut however as-
serts more than this on his page 265, namely that if 𝑗 be very small the
strata will be elliptical spheroids. Even Laplace has scarcely arrived at
this point; he has only shewn that if the strata are assumed to be nearly
spherical they must be elliptical spheroids.

343. Clairaut transforms his primary equation. It will not lead to any
confusion if we now drop the accent from 𝑟′ and from 𝜖′: we may then
write the equation thus:

10𝜖𝑟2∫
𝑟

0
𝜌𝑟2𝑑𝑟 − 2∫

𝑟

0
𝜌
𝑑
𝑑𝑟
(𝜖𝑟5)𝑑𝑟 − 2𝑟5∫

𝑟1

𝑟
𝜌
𝑑𝜖
𝑑𝑟
𝑑𝑟 −

5𝑟5𝜔2

4𝜋
= 0.

Differentiate with respect to 𝑟; thus

(20𝜖𝑟 + 10𝑟2
𝑑𝜖
𝑑𝑟
)∫

𝑟

0
𝜌𝑟2𝑑𝑟 + 10𝜌𝑟4𝜖 − 2𝜌

𝑑
𝑑𝑟
(𝜖𝑟5)

− 10𝑟4∫
𝑟1

𝑟
𝜌
𝑑𝜖
𝑑𝑟
𝑑𝑟 + 2𝑟5𝜌

𝑑𝜖
𝑑𝑟

−
25𝑟4𝜔2

4𝜋
= 0.

Simplify, and divide by 10𝑟4; thus

(
1
𝑟2
𝑑𝜖
𝑑𝑟

+
2𝜖
𝑟3
)∫

𝑟

0
𝜌𝑟2𝑑𝑟 = ∫

𝑟1

𝑟
𝜌
𝑑𝜖
𝑑𝑟
𝑑𝑟 +

5𝜔2

8𝜋
.
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Differentiate again with respect to 𝑟; thus

(
1
𝑟2
𝑑2𝜖
𝑑𝑟3

−
6𝜖
𝑟4
)∫

𝑟

0
𝜌𝑟2𝑑𝑟 + 𝜌 (

𝑑𝜖
𝑑𝑟

+
2𝜖
𝑟
) = −𝜌

𝑑𝜖
𝑑𝑟
,

so that

𝑑2𝜖
𝑑𝑟2

+
2𝜌𝑟2

𝑑𝜖
𝑑𝑟

∫
𝑟

0
𝜌𝑟2𝑑𝑟

=
⎛
⎜
⎜
⎜
⎝

6
𝑟2
−

2𝜌𝑟

∫
𝑟

0
𝜌𝑟2𝑑𝑟

⎞
⎟
⎟
⎟
⎠

𝜖.

This I shall call Clairaut’s derived equation.

344. Clairaut puts his derived equation in another form.

Let
1
𝜖
𝑑𝜖
𝑑𝑟

be denoted by 𝑢; so that
𝑑𝜖
𝑑𝑟

= 𝜖𝑢.

Then
𝑑2𝜖
𝑑𝑟2

= 𝜖𝑢2 + 𝜖
𝑑𝑢
𝑑𝑟
.

Thus
𝑑𝑢
𝑑𝑟

+ 𝑢2 = −
2𝑢𝜌𝑟2

∫
𝑟

0
𝜌𝑟2𝑑𝑟

+
6
𝑟2
−

2𝜌𝑟

∫
𝑟

0
𝜌𝑟2𝑑𝑟

.

Put 𝑢 +
𝜌𝑟2

∫
𝑟

0
𝜌𝑟2𝑑𝑟

= 𝑡; and then we obtain

𝑑𝑡
𝑑𝑟

+ 𝑡2 =
𝑟2
𝑑𝜌
𝑑𝑟

∫
𝑟

0
𝜌𝑟2𝑑𝑟

+
6
𝑟2
.
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Clairaut observes that this equation falls under the case of
𝑑𝑦 + 𝑦𝑛𝑑𝑥 = 𝑋𝑑𝑥, where 𝑋 is a function of 𝑥; and that what we now
call the separation of the variables had not yet been effected in general.
Accordingly he does not propose to seek for the ellipticities which
correspond to a given law of density, except in the case in which 𝜌
varies as 𝑟𝑛. See his page 276.

345. Suppose then that 𝜌 varies as 𝑟𝑛. We have by the preceding
Article

𝑑𝑡
𝑑𝑟

+ 𝑡2 =
𝑛2 + 3𝑛 + 6

𝑟2
.

This becomes homogeneous and easily integrable by putting a new
variable instead of

1
𝑟
; and thus we obtain

𝑡 =

1
2
+ 𝑞

𝑟
−
2𝑞𝑎𝑟−2𝑞−1

𝑎𝑟−2𝑞 + 1
,

where 𝑞 = √(𝑛2 + 3𝑛 +
25
4
), and 𝑎 is an arbitrary constant.

With this value of 𝑡 we find

𝜖 = 𝑏𝑎𝑟−𝑛− 5
2−𝑞 + 𝑏𝑟−𝑛− 5

2+𝑞,

where 𝑏 is another arbitrary constant.
This value of 𝜖 then satisfies Clairaut’s derived equation; we must

examine if it also satisfies the primary equation. Substitute the value of
𝜖, and we find after simplification that the primary equation is satisfied
provided the following relation holds between the constants:

(𝑞 −
1
2
− 𝑛) 𝑏𝑟1

1
2+𝑞 − 𝑏𝑎 (𝑞 +

1
2
+ 𝑛) 𝑟1

1
2−𝑞 =

5𝑗
2
𝑟1𝑛+3.

Thus there is only one relation between two constants, and so it
would appear that the solution is not determinate. Clairaut offers an
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explanation on this point. It has been assumed throughout that the
ellipticity of the strata is small; moreover he considers that 𝑛 must be
negative in order that the density may diminish from the centre to the
circumference, which he says the laws of hydrostatics require: see Art.
315. Hence we must have 𝑎 = 0; for otherwise 𝜖 would be infinite at
the centre.

Also even if 𝑛 be considered positive we must have 𝑎 = 0; in this
case 𝜖 would be finite at the centre, but 𝑟𝜖 would be infinitesimal: see
Clairaut’s page 281.

For a particular case suppose 𝑛 = 0, then 𝑞 =
5
2
; and after putting

𝑎 = 0 we obtain 𝑏 =
5𝑗
4
: and then 𝜖 = 𝑏 =

5𝑗
4
as it should be.

346. Clairaut’s derived equation may be put in the form

6𝜖 − 𝑟2
𝑑2𝜖
𝑑𝑟2

2𝑟𝜖 + 2𝑟2
𝑑𝜖
𝑑𝑟

=
𝜌𝑟2

∫
𝑟

0
𝜌𝑟2𝑑𝑟

.

Then if 𝜖 be given as a function of 𝑟, the left-hand member of the
equation becomes a known function of 𝑟; denote it by 𝑃; from this we
deduce 𝜌𝑟2 = 𝑃𝑒∫𝑃𝑑𝑟 which gives 𝜌. See Clairaut’s page 283.

347. The formulæ which have been investigated for the case of an
infinite number of indefinitely thin strata may be applied to the case of
a finite number of shells surrounding a central part, the density changing
abruptly from the central part to the adjacent shell, and then from shell
to shell. Clairaut considers this on his pages 286…293; taking the density
constant throughout the central part, and throughout each shell.

He shews that the ellipticities increase from the centre to the surface,
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assuming that the densities diminish from the centre to the surface: see
his page 292.

Clairaut takes for an example the case in which the whole mass is
supposed to consist of two parts throughout each of which the density is
constant. Let 𝜌1 be the density of the outer part, 𝜖1 the ellipticity of the
outer surface, 𝑟1 the polar semiaxis; let 𝜌2, 𝜖2, and 𝑟2 be corresponding
quantities for the inner part. Then in the integrations which occur in
Clairaut’s primary equation we have to make 𝜌 = 𝜌2 from 𝑟 = 0 to 𝑟 = 𝑟2,

and 𝜌 = 𝜌1 from 𝑟 = 𝑟2 to 𝑟 = 𝑟1. Put 𝜆 for
𝑟2
𝑟1
, and suppose 𝜌2 = 𝜌1 + 𝜎.

Then apply Clairaut’s primary equation first to the extreme stratum of
the inner part, and next to the extreme stratum of the outer part: thus
we obtain after reductions

𝜖2(10𝜌1 + 4𝜎) − 6𝜖1𝜌1 = 5𝑗(𝜌1 + 𝜎𝜆3),

𝜖1(4𝜌1 + 10𝜎𝜆3) − 6𝜖2𝜎𝜆5 = 5𝑗(𝜌1 + 𝜎𝜆3).

From these equations we deduce

𝜖1(𝜌1 + 𝜎𝜆3) = 𝜖2 (𝜌1 +
2
5
𝜎 +

3
5
𝜎𝜆5) ,

𝜖2 =
25𝑗(𝜌1 + 𝜎𝜆3)2

(10𝜌1 + 4𝜎)(2𝜌1 + 5𝜎𝜆3) − 18𝜌1𝜎𝜆5
.

348. In his pages 294 and 295, Clairaut points out two limits for the
ellipticity of a planet, assuming that the planet was originally fluid, and
that the denser strata are the nearer to the centre. One limit is the ellip-
ticity which corresponds to the case of a homogeneous mass. The other
limit is that in which the attraction at any point is directed towards the
centre, and varies inversely as the square of the distance from the centre,
for this may be regarded as equivalent to having the density infinite at
the centre: see Arts. 64 and 173.
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Clairaut states on his page 296 that the theorem which we now call
Clairaut’s Theorem, holds for the case in which the earth is supposed to
have been originally a fluid of the nature which he has considered. This
is obvious from the demonstration already given: see Art. 336.

349. Clairaut’s fifth Chapter occupies pages 296…304; it is on the
comparison of the theory with observation.

Clairaut considers that the observations of the diminution of gravity
in passing from the pole to the equator agree sufficiently well with his
theory. But the comparison of the French and Lapland arcs gave the

ellipticity apparently greater than
1
230

, whereas his theory required the

ellipticity to be less than
1
230

. But, as he justly says, the comparison of

these arcs was sufficient to establish the oblateness of the earth, but not
to determine accurately the ratio of the axes; for the latter purpose the
measurement of more distant degrees was required. He alludes to the
operations in Peru, the result of which was now expected; this became
known soon after the publication of Clairaut’s work. The comparison of
the French and Peruvian arcs would have given a smaller ellipticity, and
therefore more favourable to Clairaut’s Theory: see Boscovich De Litter-
aria Expeditione, page 501.

Some years later Clairaut made an attempt to explain the conflict be-
tween theory and observation as to the Figure of the Earth in an Essay
which received a prize from the Academy of Toulouse; but this Essay
seems never to have attracted any attention: I shall give some notice of
it in Chapter XV.

350. Clairaut’s work is one of the most interesting and remarkable
in the literature of mixed mathematics. Laplace says in the Mécanique
Céleste, Vol. v. page 7, after an analysis of the work:
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L’importance de tous ces résultats et l’élégance avec laquelle ils sont présen-
tés, placent cet ouvrage au rang des plus belles productions mathématiques.

In the Figure of the Earth no other person has accomplished so much
as Clairaut; and the subject remains at present substantially as he left
it, though the form is different. The splendid analysis which Laplace
supplied adorned, but did not really alter, the theory which started from
the creative hands of Clairaut.

Physical astronomy began with Newton in England; the memoirs
which Maupertuis and Clairaut contributed to the Philosophical Trans-
actions may be regarded as a graceful tribute to the country which gave
birth to the greatest of scientific men. Newton, according to Bailly,
reigned alone; but at his death, his empire, like that of Alexander,
was divided: and Clairaut, D’Alembert and Euler succeeded. Histoire
de l’Astronomie Moderne, Vol. iii. page 154. Perhaps the names of
Maclaurin and of Thomas Simpson ought to be recorded among the
successors of Newton, but I fear it cannot be denied that on the whole
his countrymen have left to foreigners the glory of continuing and
extending his empire. England has produced numerous patient and
able observers, but for the modern theory of physical astronomy we
must chiefly study the great French writers, including among them
two Italians, Lagrange and Plana, who in language have associated
themselves with Laplace.



CHAPTER XII.

ARC OF THE MERIDIAN MEASURED IN PERU.

351. We have seen in Chapter VII. that the expedition for measuring
an arc of the meridian in Lapland started from Paris after that which
went to Peru; nevertheless, the question as to the oblate or oblong form
of the Earth was settled by the Arctic company before any result had
been obtained at the Equator. In accordance with the plan of the present
work, we might, therefore, leave the operations in Peru without further
notice; but their extent and importance will justify us in devoting some
space to a brief sketch of their course and conclusion.

352. It will be convenient to collect together the titles of the original
works, accompanied with an indication of the nature of their contents.
They will be arranged in the order of publication, and distinguished by
Roman numerals, for the sake of easy reference.

I. La Condamine. Relation abrégée d’un Voyage fait dans l’intérieur de
l’Amérique Méridionale. 8vo. Paris, 1745.

This gives an account of the voyage which La Condamine made down
the river Amazon on his return home; it is a very interesting volume, but
does not relate to our subject.

II. A Spanish translation of I., or of part of I., with some additions,
seems to have been published at Amsterdam in 1745: see a note on page
x. of XIII.; and also the life of La Condamine, by Biot, in the Biographie
Universelle, republished in Biot’s Mélanges Scientifiques et Littéraires, Vol.
iii.

III. La Condamine. Lettre … sur l’Emeute populaire excitée en la Ville
de Cuença….

This seems to have been published at Paris in 1746 in octavo. It con-
tains an account of a tumult at Cuença in 1739, which led to the death of
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Seniergues the surgeon of the French expedition. La Condamine encoun-
tered great trouble in carrying on the prosecution of the guilty persons.

IV. An English translation of I. was published at London in 1747.
According to Biot, cited under II., there was also a Dutch translation.

V. Bouguer. In the Paris Mémoires for 1744, published in 1748, there
is a memoir entitled Relation abrégée du Voyage fait au Pérou…. The
memoir occupies pages 249…297 of the volume; it was read on the 14th
of November, 1744. There is an account of the memoir on pages 35…40
of the historical portion of the volume.

The memoir consists of two parts. The first part relates to the voyage;
and this is an abridgement of the introductory portion of IX. The second
part is an outline of the operations described at full in the body of IX.

Bouguer is rather rash on his page 296; he made some observations
with a common quadrant in 1738, and says: “je vis assez clairement que
l’aplatissement alloit aussi loin que l’a prétendu ce grand homme [New-
ton]”…. Thus he saw clearly what we now know did not exist. The pas-
sage does not appear to be reproduced in IX.

La Condamine was more cautious than Bouguer as to this matter.
XIII. 63, XVIII. 64.

VI. Juan and Ulloa. Relacion Historica del Viage a la America
Meridional … 4 vols. 4to. Madrid, 1748. The first volume contains
pages 1…404, besides Half-title, Frontispiece, Title, Preface, and Table
of Contents. The second volume contains pages 405…682, besides
Half-title and Title. The third volume contains pages 1…379, besides
Half-title, Frontispiece, Title, Table of Contents, and Errata. The fourth
volume contains pages 380…603 and i…cxcv, besides Half-title and
Title. In the first and second volumes there are plates and maps, which
are numbered from i. to xxi. continuously. In the third and fourth
volumes there are plates and maps, which are numbered from i. to xii.
continuously; and also a sheet containing the portraits of twenty-two
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emperors of Peru, beginning with Manco-Capac, the fabled child of the
sun, and ending with Ferdinand the Sixth of Spain.

These four volumes give the account of the occupations of the two
Spanish officers, and a description of the countries of Peru and Chili and
of their inhabitants; they were drawn up by Ulloa. They form an inter-
esting work, which, however, is very slightly connected with our subject.

VII. Juan and Ulloa. Observaciones Astronomicas, y Phisicas … 4to.
Madrid, 1748. Pp. xxviii + 396, besides Half-title, Frontispiece, Title,
Preface, Table of Contents and Index. There are plates numbered contin-
uously from i. to viii.; besides a map of the moon. This volume contains
the detail of the geodetical and astronomical work, drawn up by Juan; it
is an essential adjunct to VI., though copies of VI. are sometimes found
without VII.

We will return to this volume: see Art. 362.

VIII. La Condamine. In the Paris Mémoires for 1745, published in
1749, there is a memoir entitled Relation abrégée d’un voyage fait dans
l’intérieur de l’Amérique Méridionale…. The memoir occupies pages
391…492 of the volume: it was read on the 28th of April, 1745. There
is an account of the memoir on pages 63…73 of the historical portion
of the volume.

This memoir agrees substantially with I.; but the two are not identi-
cal. A few passages occur in the memoir which are not in the book. Per-
haps the book, which was published first, coincides with the discourse
actually read to the Academy; and then the memoir received the slight
additions before the volume for 1745 appeared. The memoir contains a
plate which is not given in the book. This consists of a chart and a view
of a remarkable part of the Amazon, where the river runs in a narrow
channel between high rocks.

IX. Bouguer. La Figure de la Terre … 4to. Paris, 1749. Pp. cx + 394,
besides Title, Avertissement, Table, and Errata.
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This is the most elaborate work for our purpose to which the expedi-
tion gave rise; we will return to it: see Art. 363.

X. Bouguer. In the Paris Mémoires for 1746, published in 1751, there
is a memoir entitled Suite de la Relation abrégée, donnée en 1744,… The
memoir occupies pages 569…606 of the volume: it was read on the 18th
of February, 1750.

This contains the geodetical measurements and the astronomical ob-
servations: it is an abridgement of the corresponding part of IX. to which
Bouguer refers for full information.

XI. La Condamine. In the Paris Mémoires for 1746, published in
1751, there is a memoir entitled Extrait des opérations Trigonométriques,
et des observations Astronomiques…. The memoir occupies pages
618…688 of the volume: it was read on the 27th of May, 1750.

This is an abridgement of XII., which was just about to be published.
La Condamine says: “J’ai usé du droit d’auteur en faisant mon extrait, et
on y trouvera quelques particularités omises dans le livre même.” These
additions to XII., however, are small and not important.

XII. La Condamine. Mesure des trois premiers degrés du Méridien …
4to. Paris, 1751. Pp. 266 + x, besides Title, Avertissement, and Table.

This is La Condamine’s account of the scientific operations. It is di-
vided into two parts; the first part relates to the geodetical measurements,
and the second to the astronomical observations. The pages 239…258
contain an important discussion of Picard’s operations.

XIII. La Condamine. Journal du Voyage fait par ordre du Roi … 4to.
Paris, 1751. Pp. xxxvi + 280 + xv, besides Title.

This is La Condamine’s account of the voyage and the residence in
Peru.

XIV. A French translation of VI. and VII. was published at Amster-
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dam and Leipsic in 1752, 2 vols. 4to. The first volume contains Fron-
tispiece, Title, Dedication, Publisher’s Advertisement, Preface, Table of
Contents, and Errata, and then 554 pages of text. The second volume
contains Frontispiece, Title, and Table, and then 316 pages of text, with
an index for the history of Peru. This brings us to the end of the trans-
lation of VI.; and the remainder of the volume is devoted to VII.: this
consists of Title, Preface, Table of Contents, 309 pages of text, and an
Index. The translation has the same plates and maps as the original, ex-
cept the sheet with the portraits of the emperors of Peru. The translation
has in addition plans of Cape François and of Louisbourg; and also eight
plates which are intended to illustrate the early history of Peru.

We learn from the Publisher’s Advertisement that this translation was
not allowed to be published at Paris.

The translation of VII. is very unsatisfactory; many passages are here
perverted into absolute nonsense, which are quite intelligible in the
Spanish original.

XV. There is an English translation of VI. I have not seen any edition
except the third, which is dated 1772, and was published at London. This
is in two octavo volumes. The first contains xxiv + 479 pages; the second
contains 419 pages, besides the Title, Contents, and Index. There are
plates and maps which are numbered from i. to vii. continuously; these
reproduce on a small scale most of the illustrations of the original work.

The English translation omits the following portions of the original:
the explanation of the construction and use of the sextant, Vol. i. pages
196…213; the description of the map of the western coast of South Amer-
ica, Vol. iv. pages 469…485; and the sketch of Peruvian history, Vol. iv.
pages i…cxcv. Moreover, Ulloa in returning to Spain was taken prisoner
by the English; and he complains of the barbarous treatment he received
from those who captured him, Vol. iv. pages 447 and 517: these com-
plaints are omitted in the English translation.

XVI. Bouguer. Justification de plusieurs faits … 4to. Paris, 1752. Pp.
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viii + 54, besides a double Title, and a leaf containing the Approbation,
Privilége du Roi, and Errata.

This is an attack on La Condamine; it is of no scientific value, for
it does not bear on any of the results obtained by the expedition, but
only on trifling personal matters. For example, Bouguer’s first twenty-
one pages are spent on maintaining that the other Academicians were
disposed to begin by measuring an arc of the Equator, before the orders
from France were received which required them to confine themselves
to an arc of the meridian. Even if Bouguer established this point, which
is not certain, there cannot be any importance attached to it.

XVII. La Condamine. Supplément au Journal Historique … Première
Partie. 4to. Paris, 1752. Pp. viii + 52, besides the Title and Approbation.

XVIII. La Condamine. Supplément au Journal Historique … Seconde
Partie. 4to. Paris, 1754. Pp. 222 + xxviii, besides the Title, Avertissement
and Approbation. There are also two pages containing supplements to
the Errata for XII. and XIII.

In XVII. and XVIII. we have the reply of La Condamine to XVI.

XIX Bouguer. Lettre … divers points d’Astronomie pratique … 4to.
Paris, 1754. Pp. 51 besides the Title and Approbation. This is a rejoinder
to XVII. and XVIII.

XX. Réponse de Monsieur *** à la Lettre de M. Bouguer, sur divers
points…. Pp. 11.

I have seen only one copy of this publication; and that had no indica-
tion of date or place. It contains a page by an anonymous writer, which
introduces a letter from La Condamine, constituting a rejoinder to XIX.

XXI. La Condamine. Relation abrégée … 8vo. Maestricht, 1778. Pp.
xvi + 379, besides Title and Approbation.

This consists of a reprint of I. and II., augmented by two letters. One
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letter is from La Condamine, and contains a sketch of the fortunes of the
members of the arctic and equatorial expeditions up to about 1773. The
other letter is from one of the subordinate members of the equatorial ex-
pedition, Godin des Odonais; it gives an account of the calamities which
befell his wife on her return to Europe down the Amazon. In the Quar-
terly Review, Vol. 57, 1836, will be found a description of two modern
voyages down the Amazon by English explorers, and also some notice of
the sufferings of Madame Godin des Odonais.

XXII. There is a reprint of XVI. also in 4to. Paris, 1809. This is in
rather smaller type than the original, and contains vi + 44 pages, besides
the Title. I am at a loss to imagine what could have been the motive
for reprinting this controversial piece so many years after all the persons
concerned had passed away.

353. We will now give a brief account of the operations of the expe-
dition, and the results obtained; we shall cite the pages of the original
works from which our statements are derived.

The French expedition left Rochelle on the 16th of May, 1735, and
arrived at Carthagena on the 16th of November; the two Spanish officers
had already been waiting there for several months. The party reached
Panama on the 29th of December. XIII. 3, 5, 8.

A base was measured during October, 1736, near Quito; the whole
party was divided into two bands: one band measured from the north
end to the south, and the other from the south end to the north. The
difference between the two measurements was less than three inches in
6273 toises. XII. 5.

The geodetical angles were observed with quadrants. La Condamine’s
quadrant had a radius of three feet, Bouguer’s about two feet and a
half, Godin’s not quite two feet; the Spanish officers, after their arrival
in Peru, received from Paris a quadrant intermediate in size between
Godin’s and Bouguer’s. IX. 60, XII. 13. There were two series of trian-
gles; one was measured by Godin and Juan; the other was measured
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by Bouguer and Ulloa, and also by La Condamine. The two series had
about half their triangles common; differing only towards the extremities
of the arc. Thus three separate Trigonometrical measurements were
obtained, each of which may be considered complete and independent.
Every angle was observed; each person observing at least two angles of
every triangle. XII. 12…15.

354. The geodetical work was carried on with great difficulty owing
to the nature of the country. There was a narrow valley running nearly
in the direction of the meridian, between two lofty chains of mountains.
On the elevated points, which were chosen for stations, the observers
suffered much from the inclemency of the weather; and they were often
compelled to remain for several days or even weeks, to obtain a glimpse
of the points for which they were looking, as these points were usually
enveloped in mist. XIII. 52. More than once a report was current that
the observers had perished. On the occasion of one very severe storm, to
which they were exposed, public prayers were offered for them; or as La
Condamine cautiously adds, “du moins on nous l’assura.” VI. first Vol.
314, XIII. 81. The Indians caused much trouble by deserting in critical
circumstances, and by incurable dishonesty. XIII. 50, 52, 72. The upper
classes, who were of course Spaniards, at least by descent, seem to have
received the expedition in general with politeness and kindness. XIII. 65,
75. But on the other hand we must place the tumult excited at Cuença,
by which the French surgeon lost his life. Moreover, a frivolous charge
of acting contrary to the orders of the king of Spain, was on one oc-
casion brought against La Condamine; and on another occasion he was
disturbed by a nocturnal visit of a police official. XIII. 26…30, 101. La
Condamine seems to have had great trouble and anxiety respecting mat-
ters which ought not to have been thrown on a person fully occupied
with his proper scientific work. He had at the commencement of the
operations to undertake a voyage to Lima, in order to procure money
for the expenses. XIII. 19…25. He had to engage in tedious proceedings
at law in order to prosecute the persons who had caused the death of
the surgeon. XIII. 86. He was also involved in a vexatious business con-



arc of the meridian measured in peru. 266

nected with the erection of two pyramids to mark the extremities of the
measured base, and with the inscriptions to be placed on them: these
pyramids were finally destroyed by orders from Spain. La Condamine
devotes a large space to the history of the pyramids, prefixing the motto
“Etiam periêre ruinæ” XIII. 219…280. According to the Avertissement to
XIV. Ulloa was about to issue a history of the transactions relative to the
pyramids: I do not know whether this ever appeared.

355. Near the South end of the arc a base of verification was mea-
sured. Bouguer and Ulloa measured it from South to North; La Con-
damine and Verguin, the draughtsman to the expedition, measured it
from North to South. The two measures agreed within two inches in
5259 toises. Part of this base was measured across a shallow pool; the
measuring rods floated on the surface. The calculated length of the base
of verification differed from the measured length by about a toise. XII.
72, 85; XIII. 83. Godin and Juan also measured a base of verification,
near the South end of the arc, but not the same as that just noticed. VII.
165; XIII. 83.

356. The astronomical part of the operations was naturally the most
difficult and the most important: we must now for a time fix our atten-
tion on Bouguer and La Condamine. Any sketch will give but a faint
idea of the obstacles which had to be overcome, and of the assiduity of
the observers; and, indeed, there is danger lest a sketch should contain
or suggest some erroneous notions.

The star 𝜖 of Orion was selected for observation at both ends of the
arc. At the North end this star crossed the meridian to the South of the
zenith, and at the South end it crossed the meridian to the North of the
zenith. Thus the two zenith distances had to be found, and their sum
gave the amplitude of the arc.

A sector of 12 feet radius, with an arc of 30°, had been brought from
France; this was used in some observations for determining the obliquity
of the ecliptic at the early part of the residence in Peru. But the arc
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was far longer than was necessary for the zenith distance of the selected
star; and so Bouguer and La Condamine substituted a new arc. The most
remarkable circumstance connected with the new arc is, that it was not
graduated. The zenith distance of the star was known approximately; an
arc was taken nearly equal to this known value, and having its chord a
certain submultiple of the radius: this arc was set off on the limb of the
instrument. Then the difference between this arc and the actual zenith
distance of the star was determined by the aid of a micrometer. XII.
108. Some dispute arose afterwards as to the person to whom the credit
of this contrivance was due. XII. 120; XVI. 36; XVIII. 111.

357. Observations were made by Bouguer and La Condamine at Tar-
qui, the southern station, in December, 1739, and January, 1740; and at
Cotchesqui, the northern station, in February, March, and April, 1740.
They appear to have been at the time contented with their results, and
to have considered the object of the expedition fulfilled. XII. 165.

I do not perceive any distinct statement of the causes which led
Bouguer and La Condamine to suspect the accuracy of the astronomical
observations of 1739 and 1740, and in consequence to postpone their
return to Europe. Perhaps La Condamine was detained by the affairs of
the death of the French surgeon, and of the pyramids. They naturally
wished before they left Peru to compare their result with Godin’s; and
Godin had not yet arrived at his conclusions. XIII. 105. However,
Bouguer made more observations at Tarqui; and towards the end of 1741
he announced to La Condamine that the work which they had imagined
to have been finished more than a year since must still be continued
for several months: the old observations at Tarqui were to be rejected
because they differed so much from the more recent observations. XIII.
128.

The untrustworthiness of the early observations seems to have been
due mainly to a want of rigidity in the whole instrument, composed of
radius, limb, and telescope. One unfortunate circumstance, for exam-
ple, was that the radius had been constructed in two pieces for facility
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of transport from France; and when the instrument was to be used, the
screws could not be found which were to fasten the two parts firmly to-
gether. XVIII. 42. The necessary rigidity was finally secured by the aid
of strengthening bars and wire. But even after his return to France La
Condamine considered that the matter was not fully explained. XVIII.
73.

It is obvious also that the optical defects of the telescope gave great
trouble. The single object-glass could not bring all the different coloured
rays to the same focus; and thus in the use of the micrometer there was
an opening for serious error. Both Bouguer and La Condamine treat at
length on this matter, but not with perfect clearness. IX. 202…214; XII.
196…215.

358. Finally, simultaneous observations of the star were made by La
Condamine at Tarqui and by Bouguer at Cotchesqui, towards the end of
1742 and the beginning of 1743. Those by Bouguer were made with a
new sector of 8 feet radius, constructed under his own direction and in-
spection. Those by La Condamine were made with the 12 feet sector,
improved successively by Bouguer and himself. XII. 185, 190. By tak-
ing simultaneous observations, the corrections for precession, nutation,
and aberration, were rendered unnecessary. The aberration of light was
known, but not the laws of the correction which it involved for observa-
tions of the stars. XII. 139, 220.

The amplitude of the arc was found to be about 3° 7′ 1″. La
Condamine obtains 56749 toises for the length of the first degree of
the meridian reduced to the level of the sea. XII. 229. Bouguer gives
56753 toises. IX. 275. Delambre recalculated the astronomical work
of Bouguer and La Condamine; and fixed the amplitude at 3° 7′ 3″.
He took a mean between the lengths assigned by Bouguer and La
Condamine, and thus obtained, for the length of the arc reduced to the
level of the sea, 176877 toises. See Base du Système Métrique, … Vol. iii.
page 133. The corresponding length of a degree is about 56737 toises.
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359. We stated at the commencement of Article 356 that we confined
ourselves to the proceedings of Bouguer and La Condamine. Let us now
advert to the other members of the party.

Godin himself published no account of his operations; nor have I
ever seen any reference to manuscripts which he may have left. Much of
his work, however, was executed in association with Juan; and there is
good reason to conclude that his results must have agreed substantially
with those of Bouguer and La Condamine. XII. 231; XIII. 140.

The arc on which the Spanish result depends fell rather short of the
arc of Bouguer and La Condamine at the southern end, but went beyond
it at the northern end. The extension of the arc northwards introduced
five new triangles; Juan and Ulloa were both concerned in this extension,
and I presume that Godin also was with them. VII. 167, 224; XII. 231.
The details connected with the triangles as observed and calculated both
by Juan and Ulloa are recorded. VII. 144, 214.

For the astronomical work Godin constructed a very large sector; this
is said in various places to have had a radius of 20 feet: but La Con-
damine correcting his former statements put it ultimately at 18 feet. VII.
272; IX. 273; XIII. 85, 99; XVI. 38; XVIII. 77.

Observations of three stars, 𝜂 of Orion, 𝜃 of Antinous, and 𝛼 of
Aquarius were made at Cuença, the southern station, in August and
September, 1740, by Godin, Juan, and Ulloa. The Spanish observers
were then withdrawn from their scientific occupations, and employed in
the naval service, to assist in defending the country against the expected
attacks of the English. Hence the observations at Pueblo Viejo, the
northern station, were not made by them until April and May, 1744;
Godin did not assist at these. VII. 283. The amplitude of the arc was
finally settled at 3° 26′ 52 34

″.
We do not see in the Spanish account anything corresponding to

the excessive trouble which Bouguer and La Condamine experienced in
their astronomical observations; we learn little more than this, that the
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first large sector which was made was unsatisfactory, and so another
was made. VII. 271.

The Spanish result gave 56768 toises for the length of the degree of
the meridian. VII. 295; XII. 234.

360. Bouguer arrived in Paris towards the end of June, 1744, about
eight months before La Condamine. XIII. 215. A violent controversy
subsequently arose between them; and this leads us to enquire on what
terms the Academicians had been during their operations. Godin sep-
arated himself from the other two in Peru. XVIII. 43. Bouguer seems
to have been displeased at this, but La Condamine does not record any
disapprobation. IX. 228; XII. 106: see also XVIII. 6.

La Condamine asserts that he had been on good terms with Bouguer
during the ten years of the expedition, and for three years afterwards.
XVII. iii: see also XVII. 28, 30; XVIII. 180, 203, 206. But on the other
hand there are statements which imply that there must have been a want
of perfect cordiality between these two, even in Peru. XVIII. 6, 62, 64,
143, 175, 182; XIX. 18, 49. Each of them claims to have been on good
terms with Godin. XVI. 39; XVIII. 43; XIX. 38. The date of the public
explosion is November 1748; the cause was the charge made by Bouguer,
that his colleagues were inclined to measure a degree of the equator, in-
stead of a degree of the meridian, until arrested by orders from France.
XVIII. 67, 212. The strife extends over the series of works XVI…XX.;
but even these seem to have formed but a small portion of the state-
ments, verbal and written, which were brought before the Paris Academy.
There was scarcely any exaggeration in La Condamine’s complaint, that
ten years of labour in the new world were followed by as many of con-
troversy in the old. XVIII. iii, 190. The quarrel seems to me remark-
able, alike for its fierceness and for the triviality of the matters in dis-
pute. Thus, besides the measuring of an arc of the equator, to which
we have already alluded, there is much contention as to the origin and
value of certain suggestions in optics and practical astronomy. A sketch
of the history of the quarrel, followed by a summary of the main points,
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is given in XVIII. 205…221. My own sympathy is on the side of La Con-
damine, although I consider Bouguer to have been by far the superior as
a mathematician and an astronomer.

361. We may give a cursory notice to some miscellaneous points.
The equatorial expedition was suggested by Godin; see IX. iv, and

Bailly’s Histoire de l’Astronomie Moderne, Vol. iii. page 11, note. Godin
seems to have proposed it to the Paris Academy in 1734; but even in
1733 La Condamine had offered to measure degrees near the equator at
Cayenne. IX. iv; XVII. 28; XVIII. 190. When La Condamine, on his re-
turn home, arrived at Guyana, he came to the conclusion that the coun-
try was well adapted for trigonometrical operations. XXI. 188; XIII. 194,
201. And at a later period he bitterly regretted that his original design
had not been carried out, and then he would not have lost the ten most
precious years of his life in preparing vexations for ten more. XVIII. 190.

Spherical trigonometry was now employed, apparently for the first
time, in geodetical calculations; this improvement is claimed by Bouguer.
IX. 131; X. 584; VII. 255.

To Bouguer is also due the idea of making observations with the
view of determining the attraction of the mountain Chimborazo; La
Condamine contributed a valuable suggestion in the practical operation.
XVIII. 146.

We shall now give more details respecting the works VII. and IX.

362. The Spanish volume of observations and experiments begins
with a Preliminary Discourse, which consists of a history of opinions and
investigations with respect to the Figure of the Earth.

After having explained the views of Newton and Huygens, which in-
volved the hypothesis of the rotation of the Earth, Juan says:

Assi discurrìan estos grandes ingenios en la Hypotesis del movimiento di-
urno de la Tierra; pero aunque esta Hypothesis sea falsa,…
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The French translation supplies the following significant note:
On doit se souvenir que l’Auteur de cet Ouvrage, ne parle pas en Mathé-

maticien quand il suppose faux le sentiment de ceux qui affirment que la Terre
tourne, mais en Homme qui écrit en Espagne, c’est-à-dire dans un Pays où il y
a une Inquisition.

The volume is divided into nine books, which treat on the follow-
ing subjects: the obliquity of the ecliptic, observations of latitude, obser-
vations of longitude, expansion and contraction of metals, barometrical
experiments, the velocity of sound, the length of the degree of the merid-
ian, pendulum experiments, navigation on the surface of the oblatum.

Juan holds that the Earth is an oblatum, and that the anomalies
which seem to occur may fairly be attributed to errors of observation.

In order to obtain the ellipticity of the Earth, Juan assumes that in
passing from the Pole to the Equator the seconds pendulum increases

2·16 lines. Hence by using Clairaut’s theorem he obtains
1
265

for the

ellipticity. See his page 334. The 2·16 lines is, I presume, an arbitrary
value; for although it would appear from his page 344, that this is in
exact conformity with the observations of Maupertuis in Lapland, yet this
must be a misprint, as we see by page 331.

An investigation is given on pages 337…345 for the rectification of
the ellipse. Two infinite series are obtained, one for the length of an arc
measured from the end of the minor axis, and the other for the length
of an arc measured from the end of the major axis; the former is nearly
correct, the latter very much less so. The mathematical process is rather

clumsy; for to expand
1

(1 − 𝑥2) 12
in powers of 𝑥, Juan in effect expands

(1−𝑥2) 12 , and then divides unity by the series; instead of simply expand-
ing (1 − 𝑥2)− 1

2 . To ensure tolerably rapid convergency, Juan proposes to
calculate the arc from the end of the minor axis up to a certain point by
his first formula, and the arc from this point to end of the major axis by
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his second formula. However he finally in his numerical work retains
only what we should call the square of the excentricity, and it is easy to
see that to this order of accuracy he might have avoided infinite series
altogether, and expressed his required result in a simple finite form.

In treating on navigation Juan refers to a work by Murdoch, of which
we shall give some account hereafter. Juan supplies tables of Meridional
Parts, like Murdoch’s, but much more copious, as they are calculated to

every minute instead of to every degree. Juan adopts in his Tables
1
266

for the ellipticity.

363. Let us now turn to Bouguer’s Figure de la Terre.
The cx. preliminary pages give an account of the voyage and a de-

scription of the physical peculiarities of Peru, and the character of the
inhabitants.

The 394 pages of text are divided into seven sections.
The first section is mainly devoted to shewing that it was advisable to

determine the length of a degree of the meridian rather than the length
of a degree of the equator.

The second section gives an account of the triangles, including the
measurement of the base.

The third section treats of the reduction of the triangles to the plane
of the horizon, and the determination of the situation of the sides with
respect to the meridian.

The fourth section relates to the precautions taken with respect to the
astronomical observations.

The fifth section contains the astronomical observations. The pages
227…258, however, do not belong to our subject; they relate to the ob-
servations for determining the obliquity of the ecliptic which were made
during the early part of the residence in Peru.
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The sixth section is thus entitled: Qui contient diverses recherches sur
la Figure de la Terre et sur les proprietés de cette Figure.

The investigations of this section are interesting, though rather spec-
ulative than practical.

Bouguer considers the curve which represents the meridian of the
Earth as unknown; but from this curve he supposes another deduced by
the perpetual intersection of the normals, and he calls the deduced curve
the gravicentrique: it is the evolute of the meridian curve in the language
of modern mathematics.

Bouguer investigates properties of the gravicentrique on the supposi-
tion that the length of it measured from the equator varies as the 𝑚th

power of the sine of the latitude. He specially considers the cases in
which 𝑚 = 2, 𝑚 = 3, and 𝑚 = 4: see his pages 284…289. The law for
the length of the gravicentrique is also the law for the increase of the
radius of curvature of the meridian in passing from the equator to the
pole.

The results of observation which had to be satisfied were the lengths
of a degree of the meridian in Peru, France, and Lapland. Bouguer at

first adopted the usual hypothesis of 𝑚 = 2, and obtained
1
223

for the

ellipticity: see his page 297. But after the French degree had been cor-
rected, this hypothesis did not seem to him to agree with the observa-

tions; accordingly he supposed 𝑚 = 4, and obtained
1
179

for the ellip-

ticity; see his page 303. Besides the three degrees of the meridian, he
also pays attention to the degree of longitude which had been measured
towards the South of France.

Bouguer’s hypothesis of 𝑚 = 4 is quite arbitrary. It had, however, suf-
ficient vitality to experience the adverse criticism of Laplace, who shews
that it is inconsistent with pendulum observations. Mécanique Céleste,
Livre iii. § 33.
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Bouguer in his pages 319…326 explains the nature of the changes
which must be made in certain tables constructed for navigation, on the
hypothesis that the Earth is spherical, in order to adjust them to the ac-
tual fact.

Bouguer’s seventh section is entitled Détail des Expériences ou Obser-
vations sur la gravitation, avec des remarques sur les causes de la Figure
de la Terre.

This section contains some very interesting matter, although there is
nothing as to what we usually understand by the theory of the Figure of
the Earth. Bouguer says on his page 327:

Nous n’entreprendrons point de nous élever jusqu’à une Théorie complette
de la Figure de la Terre; parce que nous ne voulons rien donner s’il est possible
à nos conjectures.

Bouguer describes the way in which he made his pendulum experi-
ments; and then considers what reductions must be applied to the im-
mediate results. He allows for the diminution of the weight of the pen-
dulum caused by the air which it displaces; he says that this correction
is now made for the first time: see his page 340. He adverts to the effect
of the resistance of the air; and he states as a result which could be ob-
tained by investigation, that the time occupied in the ascending part of
an oscillation will be diminished as much as the time occupied in the de-
scending part is increased. This we find established in the modern works
on Dynamics: see Poisson’s Traité de Mécanique, Vol. i. pages 348…361.

Bouguer treats on the diminution of attraction at different heights
above the level of the sea. He finds that on a mountain at the
height ℎ above the level of the sea, the attraction is proportional to

(𝑟 − 2ℎ)Δ +
3
2
ℎ𝛿, where 𝑟 is the Earth’s radius, Δ the Earth’s mean

density, and 𝛿 the density of the mountain. This is the first appearance
of the formula, which has now passed into elementary books; see
Statics, Art. 219.
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On pages 364…394 we have an account of the observations made by
Bouguer and La Condamine to determine the attraction of the mountain
Chimborazo. A deviation of about 712

″ in the situation of the plumb-line
seemed to be produced; but this was much less than might have been ex-
pected. The mountain therefore must contain great cavities, or be com-
posed of materials of comparatively small density. It is plain, however,
from the account that the observations were scarcely adequate to settle
the matter; nor does Bouguer himself appear to lay much stress on them.

The work of Bouguer exhibits some tendency towards unnecessary
speculative refinements, and will require careful attention in order to
master its complexity; but nevertheless, both on practical and theoretical
grounds, it may be justly considered the most important of all which the
Peruvian expedition occasioned, and as that which should be selected by
a student who desires to confine himself to one of the original accounts.

364. If we consider the whole transaction we shall have abundant
reason to commend the patience and devotion which the history of the
expedition clearly manifests. Ten years of exile from Paris, for a French-
man and an Academician, formed a costly sacrifice to science; and in
this case the exile was aggravated by incessant labour, anxiety, and suf-
fering. The result remains to this day one of the principal elements in
the numerical facts of the subject; and while we must be grateful to the
two who mainly obtained it, we may pardon them if by contests which
harassed only themselves they shewed how easy it is for human infirmity
to tarnish the noblest names and the brightest deeds.



CHAPTER XIII.

D’ALEMBERT.

365. The subjects of Attraction and the Figure of the Earth engaged
much of the attention of D’Alembert: in the present Chapter and a sub-
sequent Chapter we shall consider his researches in order.

We begin with his Traité de l’équilibre et du mouvement des fluides.
The first edition was published in 1744; the second in 1770: both are in
quarto. The first edition has a Preface which occupies xxxii pages, in-
cluding the Title-leaf; then a Table des Titres; then the text of 458 pages,
followed by a page of Corrections. The second edition has an Avertisse-
ment which occupies a page, followed by a reprint of the preface to the
first edition, and a Table des Titres; then the text of 476 pages. The text
of the second edition is a reprint of that of the first, with some addi-
tions which furnish references to researches made by D’Alembert since
the publication of the first edition of the work.

366. The only part of the edition of 1744 which directly concerns
us is a section on pages 47…51, entitled De l’équilibre des Fluides, dont
la surface supérieure est Courbe. D’Alembert says that this matter is im-
portant on account of its connexion with the question of the Figure of
the Earth. Huygens had taken for the principle of equilibrium the per-
pendicularity of gravity at the surface. Newton used the principle of the
equilibrium of central columns. Bouguer and Maupertuis shewed that
both principles must hold for equilibrium. Clairaut had used the princi-
ple of canals; and had also shewn that the thickness of a level film must
be inversely proportional to the resultant force at the point.

It will be seen that in this brief sketch D’Alembert names Huygens
before Newton: see Art. 65.

367. After his brief sketch of the history of the theory of fluid equi-
librium D’Alembert says on his page 48:
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Les différentes Loix d’équilibre, découvertes par les Savans Geométres que
nous venons de citer, paroissent être les seules auxquelles nous devions nous
arrêter pour le présent, jusqu’à ce que l’Expérience, ou une connoissance plus
parfaite de la nature des Fluides nous ait persuadé qu’il n’y en a point d’autres,
ou peut-être nous en fasse découvrir d’autres.

It will be seen from this extract that D’Alembert knew that certain
conditions were necessary for fluid equilibrium, but did not know what
conditions were sufficient. He proceeds to offer certain conjectures which
we now know to be inadmissible. He seems half inclined to believe
that when fluid is in equilibrium the bounding surface must be plane
or spherical, and the resultant force constant at all points of the surface.

D’Alembert says that one of the best methods of deciding the ques-
tion, at least in part, would be to shew that the Figure of the Earth found
by theory agrees with that found by actual measurement. He adds on his
page 51:

… Car on ne sauroit douter que la Terre ne soit applatie vers les Pôles, après
les opérations si exactes qui ont été faites au Nord, opérations confirmées par
celle qu’a faite M. Cassini deThury en 1740, et de laquelle il a conclu l’applatisse-
ment de la Terre, sans égard pour plusieurs mesures précedentes, d’où résultoit
le contraire, et qu’apparemment il n’a pas cru assez exactes.

368. It will be convenient to notice here the additional remarks on
our subject which occur in the edition of 1770; although we thus disturb
the order of chronology.

On his page 36, D’Alembert objects to Clairaut’s apparent belief that
the laws of Hydrostatics required the denser strata of the Earth to be the
nearer to the centre; D’Alembert refers to page 280 of Clairaut’s work,
and he might also have referred to other pages. See Art. 315.

The section which we have cited in Art. 366 is enlarged in the second
edition. The names of Maclaurin and Daniel Bernoulli are mentioned as
having in effect before Clairaut given the principle, that the fluid in any
canal with its ends at the surface of the fluid must be in equilibrium.
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But D’Alembert allows that Clairaut was the first to develop the use of
the principle. D’Alembert adds, with reference to Clairaut, on his page
50:

Je crois au reste, que ce Savant s’est trompé, quand il a avancé que dans
un Fluide hétérogène, les couches de différente densité devoient toutes être de
niveau. Voyez à ce sujet l’art. 86 de mes Recherches sur la cause des vents, et mon
Essai sur la Résistance des Fluides, art. 165, 166 et 167. Il est vrai que je me
suis aussi trompé moi-même, en croyant que dans le systême de l’Attraction,
les couches de la Terre pourroient n’être pas de niveau. C’est ce que le célèbre
M. de la Grange a remarqué dans le second volume des Mémoires de la Société
Royale des Sciences de Turin, et ce que je prouverai moi-même ailleurs plus en
détail. Mais il n’en est pas moins vrai, que dans un grand nombre d’hypothèses,
un Fluide peut être en équilibre, sans que les particules d’une même densité se
trouvent nécessairement placées dans une couche de niveau. Quoi qu’il en soit,
il est constant, suivant le Principe général dont on vient de parler [the principle
of canals], que chaque couche de niveau doit être également pressée en tous
ses points; et qu’ainsi l’épaisseur en chaque point doit être en raison inverse du
produit de la densité par la pesanteur.

See Art. 315. D’Alembert in fact admitted his error in 1768: see his
Opuscules Mathématiques, Vol. v. page 2. I have not found where he
returns to the subject after 1770, as we might expect he would from his
words above, “je prouverai moi-même….” Perhaps it really refers to what
he gave in the fifth volume of the Opuscules Mathématiques, and was
written before, though published after, that volume. There is another
memoir on Fluids in the eighth volume of the Opuscules Mathématiques,
but it does not seem to bear on this point.

369. I will notice some matters of interest which have presented
themselves in reading the Articles 1…58 of D’Alembert’s Traité … des
Fluides.

In his Article 2 he criticises, and I think justly, a demonstration given
by Newton, namely, the second case of Proposition 19 in the second Book
of the Principia.
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In his Article 13 there are some remarks to shew the insufficiency of
two common demonstrations of the proposition that the resultant force
at any point of the surface of a fluid in equilibrium must be perpendic-
ular to the surface at that point.

The first demonstration stands thus: if the force be not perpendicular
the tangential component will tend to move the particle on which it acts,
and the fluid will, as it were, descend an inclined plane. D’Alembert
objects that a set of equal balls might be placed, one above the other, and
be in equilibrium on an inclined plane; so that if a fluid be composed
of such particles it would appear that the fluid might be in equilibrium
with its upper surface inclined to the horizon instead of being horizontal.

The second demonstration rests on the assumption that for equi-
librium the centre of gravity should be as low as possible. D’Alembert
brings forward two exceptions; in one the centre of gravity is at a
maximum height, and in the other some forces act besides gravity. Thus
in fact D’Alembert’s objections hold against the improper extension of a
certain theorem, and not against the proper enunciation of the theorem.
See Statics, Chapter xiv.

A remark made by D’Alembert in his Article 18 deserves, I think,
the attention of modern elementary writers. Suppose we have a conical
vessel and a cylindrical vessel with equal bases; let them be filled with
water to the same height: then the pressures on the bases will be equal.
A popular mode of establishing this proposition amounts to taking the
cylindrical vessel with its water, and then supposing a certain part to
become solid, so as to leave a conical interior of fluid. D’Alembert says in
substance that we ought not to assume that the pressure is unaltered by
this solidification of part of the fluid: for suppose we solidify a complete
horizontal lamina of the fluid, we can thus in effect remove from the
base the pressure of all the fluid above this lamina.

I observe some modern writers adopt the reverse order; they begin
with the conical vessel and afterwards dissolve the sides, instead of be-
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ginning with the cylindrical vessel and solidifying: but it may be fairly
doubted if the process is more satisfactory in this way.

D’Alembert’s Article 26 calls for some observations. We will give an
account of his investigation in modern language.

Let a mass of fluid be acted on by a force the direction of which is
constant, but not necessarily the intensity. Take the axis of 𝑥 parallel
to this fixed direction; let 𝑋 denote the force at the distance 𝑥 from the
origin, 𝑝 the pressure there, and 𝜌 the density. We have then, as is well
known,

𝑑𝑝
𝑑𝑥

= 𝜌𝑋;

therefore
𝑝 = ∫𝜌𝑋𝑑𝑥 = 𝜓(𝑥) say.

Suppose the fluid to be enclosed in a vessel of any shape, the ends
being plane figures at right angles to the axis of 𝑥. Take 𝜓(𝑥) such that
it vanishes at one end. If 𝜓(𝑥) is such that it vanishes also at the other
end, and is never negative, the ends may be removed without destroying
the equilibrium: this is obvious. But if 𝜓(𝑥) can become negative, equi-
librium will not hold when the ends are removed: this is also obvious.
Suppose then the ends to remain.

D’Alembert says that the pressure at the end for which 𝜓(𝑥) vanishes
will be numerically equal to the greatest negative value of 𝜓(𝑥). This is
inaccurate. The pressure cannot indeed be less than this, but may be as
much greater as we please. In fact we may take 𝑝 = 𝐶 + 𝜓(𝑥), where 𝐶
is an arbitrary constant: and provided 𝐶 be large enough to ensure that
𝑝 is always positive, equilibrium will subsist.

The value of the pressure at the other end will then be determined by
ascribing the proper value to 𝑥 in the expression 𝐶+𝜓(𝑥): but D’Alembert
seems to say that the pressure will be 𝜓(𝑥).

370. The next work by D’Alembert which we have to examine is his
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Réflexions sur la Cause générale des Vents. This work was published in
1747; it gained the prize proposed by the Berlin Academy for 1746. The
work is in quarto. There is a Title-page, a Dedication, and an Avertisse-
ment; an Introduction of xxviii pages; then 194 pages which contain a
French translation of the original essay with some additions; and lastly,
138 pages which contain the original essay in Latin. In our remarks we
shall confine ourselves to the French translation.

371. The dedication is to Frederic, called the Great; and is in the
usual adulatory strain of these objectionable compositions.

The introduction gives a general account of the contents of the essay,
intended for the use of readers with little mathematical knowledge. Two
sentences are of sufficient interest to be reproduced.

One sentence offers a curious reason for referring the winds to the ac-
tion of the Sun and the Moon; it occurs on page ii. After stating that the
ebb and flow of the tide are admitted to be due to this action, D’Alembert
says:

… Quel que soit le principe de cette action, il est incontestable que pour se
transmettre jusqu’à l’Ocean, elle doit traverser auparavant la masse d’air dont il
est environné, et que par conséquent elle doit mouvoir les parties qui composent
cette masse.

The other sentence relates to the difficulty which the Cartesians
found in admitting that the attraction of the Sun or of the Moon
could produce high water simultaneously on the meridian under the
attracting body, and on the opposite meridian. D’Alembert says, with
zeal amounting to anger, on his page x:

… La preuve simple et facile que je viens de donner du contraire, sans fig-
ure et sans calcul, anéantira peut-être enfin pour toujours une objection aussi
frivole, qui est pourtant une des principales de cette Secte contre la Théorie de
la gravitation universelle.

372. In the work itself we first notice pages 11…17. These contain
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an approximate solution of what we may call a companion to Huygens’s
problem. D’Alembert enunciates it in the most general form, namely,
where the attractive force is any function of the distance from a fixed
point; but in his solution he finds it sufficient to take the force con-
stant. See Arts. 55, 56, and 173. Let 𝜔 denote the angular velocity, 𝑓
the constant central force, 𝑐 the radius of the sphere which the fluid
would form if there were no rotation; then assuming that 𝜔2𝑐 is small
compared with 𝑓, the surface will be a spheroid, and the equation to the
generating curve will be

𝑟 = 𝑐 −
𝜔2𝑐2

3𝑓
+
𝜔2𝑐2

2𝑓
sin2 𝜃,

where 𝑟 is the radius vector from the centre of force, and 𝜃 is the angle
which 𝑟 makes with the axis of revolution. This result may be easily de-
duced from that given in Art. 55. D’Alembert himself solves the problem
by what we should now call a method of Virtual Velocities.

D’Alembert finds the volume of the solid bounded by the spheroid,
the sphere of radius 𝑐, and the double cone having its vertex at the com-
mon centre, and having the semi-vertical angle 𝜃: see his page 15. The

result in our notation is
2𝜋𝜔2𝑐4 cos 𝜃 sin2 𝜃

3𝑓
; this may be easily verified.

In this expression some of the volume is estimated negative if 𝜃 be so
great that we get beyond the value for which the sphere and the spheroid
intersect.

373. We have no concern with the discussions on the motion of a
fluid, to which D’Alembert now proceeds, so that we pass on to pages
33…45 of his work.

D’Alembert determines the form of relative equilibrium of a thin
layer of fluid spread over a solid spherical mass; taking the action of
the fluid itself into account, and supposing uniform rotation.

D’Alembert requires the attraction of a homogeneous oblatum, which
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is nearly spherical, on a particle situated at any point of its surface. This
he obtains by three steps.

(1) He quotes a theorem given by Maclaurin in his Essay on the Tides,
by which the attraction on a particle at any point is known, when it is
known for a particle at the pole and for a particle at the equator. See
Art. 244.

(2) He has an approximate investigation for finding the attraction on
a particle at the pole. This was originally given by Clairaut, but D’Alem-
bert does not refer to him. See Art. 233.

(3) He has an approximate investigation for finding the attraction on
a particle at the equator. He mentions Daniel Bernoulli in connexion
with this; but the principle is the same as in the investigation for the
particle at the pole, first given by Clairaut.

374. We will now furnish in modern language, and in our own no-
tation, an equivalent to D’Alembert’s process. Suppose 𝑠 the radius, and
𝜎 the density of the central sphere, and 𝜌 the density of the fluid. We
may consider that there is an oblatum of density 𝜌, and also a sphere of
density 𝜎 − 𝜌.

Let the ellipticity of the oblatum be 𝜖, which is supposed small; let 𝑥
and 𝑧 be the coordinates of a point parallel respectively to the major and
minor axes of the generating ellipse; then the attractions of the oblatum
in these directions will be, by Art 261, respectively

4𝜋𝜌
3

(1 −
2𝜖
5
) 𝑥 and

4𝜋𝜌
3

(1 +
4𝜖
5
) 𝑧.

Put the first in the form
4𝜋𝜌
3

(1 +
4𝜖
5
) 𝑥−

8𝜋𝜌𝜖
5

𝑥. Then on the whole

we have a force towards the centre, the value of which is the product of

the distance into
4𝜋𝜌
3

(1 +
4𝜖
5
); together with the force

8𝜋𝜌𝜖
5

𝑥 parallel to

the major axis outwards from the minor axis.
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Thus we see that we can avail ourselves of the solution of the com-

panion to Huygens’s problem, provided we add
8𝜋𝜌𝜖
5

to the 𝜔2, and use

the proper value of the central force. This central force at the distance 𝑟

will be
4𝜋𝜌
3

(1 +
4𝜖
5
) 𝑟 +

4𝜋
3
(𝜎 − 𝜌)

𝑠3

𝑟2
.

Hence, as by Art. 55 we have 𝜖 =
𝑗
2
, we now obtain

𝜖 =

𝑟
2
(
8𝜋𝜌𝜖
5

+ 𝜔2)

4𝜋𝜌
3

(1 +
4𝜖
5
) 𝑟 +

4𝜋
3
(𝜎 − 𝜌)

𝑠3

𝑟2

;

therefore

𝜖 =

𝑟𝜔2

2
4𝜋𝜌
3

(1 +
4𝜖
5
) 𝑟 +

4𝜋
3
(𝜎 − 𝜌)

𝑠3

𝑟2
−
4𝜋𝜌𝑟
5

.

For an approximation we reject
4𝜖
5
in comparison with unity in the

denominator; and indeed our investigation is not accurate enough to jus-
tify us in retaining this term: thus

𝜖 =

𝜔2

2
8𝜋
15
𝜌 +

4𝜋
3
(𝜎 − 𝜌)

𝑠3

𝑟3

.

D’Alembert’s own process is ruder and he has
𝑠
𝑟
instead of our

𝑠3

𝑟3
in

our notation.
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As yet we have not introduced the condition that the layer of fluid is
thin; suppose it so thin that 𝑠 may be taken equal to 𝑟 in the denomina-
tor: thus

𝜖 =

𝜔2

2
4𝜋𝜎
3

(1 −
3𝜌
5𝜎
)
=

𝜂

1 −
3𝜌
5𝜎

,

where 𝜂 is what would be the ellipticity if the attraction of the fluid itself
were entirely neglected.

375. On his page 40 D’Alembert proceeds to some remarks on the
Figure of the Earth; for these he had prepared us on his page 10, saying,
“… où je démontre plusieurs vérités fort paradoxes sur cette matiere.”
The remarks amount in substance to the two obvious statements that
the value just found for 𝜖 is very large if 3𝜌 is nearly equal to 5𝜎, and
will be negative if 3𝜌 is greater than 5𝜎. If 𝜖 is not numerically small,
our approximations do not hold. If 𝜖 is negative and numerically small
our supposed oblatum is really an oblongum.

D’Alembert seems to consider it rather singular that an oblongum
should be a possible form for the surface. See his page 41.

376. D’Alembert next considers the case in which the nucleus is not
a sphere but an oblatum; the process is less satisfactory than that in Art.
374, because we have now to deal with the attraction of an oblatum on
an external particle. Suppose, however, that the layer of fluid is very
thin; let the ellipticity of the solid oblatum be small, and denote it by
𝜖′. Then we see that we shall obtain an approximation to the required

result by adding
8𝜋
5
(𝜎 − 𝜌)𝜖′ to 𝜔2; so that

𝜖 =

𝜔2

2
+
4𝜋
5
(𝜎 − 𝜌)𝜖′

4𝜋𝜎
3

(1 −
3𝜌
5𝜎
)

=
𝜂 +

3
5
(1 −

𝜌
𝜎
) 𝜖′

1 −
3𝜌
5𝜎

.
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377. The result just obtained is one to which D’Alembert seems to
have attached great importance. It must be observed, however, that it is
only a particular case of a general formula given by Clairaut. Take the
final result of Art. 323: in the integrals represented by 𝐴 and 𝐷 let the
density be constant, and denote it by 𝜎. Thus

𝐴 =
𝜎𝑟′3

3
, 𝐷 = 𝜎𝜖′𝑟′5;

therefore,

𝜖1(10𝜎𝑟′3 + 4𝜌1𝑟13 − 10𝜌1𝑟′2) =
6
𝑟12
(𝜎 − 𝜌1)𝜖′𝑟′5 + 5𝑗(𝜎𝑟′3 + 𝜌1𝑟13 − 𝜌1𝑟′3);

this is in fact given in Case II. of Art. 324. We have here then the more
accurate form: if we now suppose that the difference between 𝑟′ and 𝑟1
may be neglected, we obtain

𝜖1(10𝜎 − 6𝜌1) = 6𝜖′(𝜎 − 𝜌1) + 5𝑗𝜎,

which agrees with D’Alembert’s result; it is more simple but less accu-
rate than the immediately preceding form. D’Alembert himself subse-
quently obtained the more accurate form: see his Recherches … Systême
du Monde, Vol. iii. page 225. Clairaut was content with somewhat less
than he might have deduced from his own formula; see Art. 328.

378. The value of 𝜖 obtained in Art. 376 may be negative; it will

be negative if the numerator is positive and
3𝜌
5𝜎

is greater than unity.

D’Alembert says on his page 42,
… Donc si la Terre étoit un Sphéroide allongé, il ne seroit pas absolument

nécessaire d’avoir recours pour expliquer ce Phenoméne, à un noyau intérieur
allongé. Car il pourroit se faire que ce noyau fût applati, et que la Terre fût
allongée vers les Pôles.

This remark is probably aimed at Clairaut; see Boscovich De Litter-
aria Expeditione … page 464: we have, however, shewn in Art. 326, that
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Clairaut might have drawn the same inference if he pleased. But Clairaut
had a conviction of the propriety of assuming the Earth to be densest at
the centre; and thus he would naturally neglect any hypothesis which
was inconsistent with this conviction.

With respect to the formula of Art. 376, D’Alembert remarks that if

5𝜎−3𝜌 = 0, and also 𝜂+
3
5
(1 −

𝜌
𝜎
) 𝜖′ = 0, then 𝜖 may have any value we

please, provided only it be small: he repeats this remark in his Recherches
… Systême du Monde, Vol. iii., page 190.

379. D’Alembert makes a statement at the top of his page 44 which I
do not verify. He proposes to estimate the force on the fluid in the direc-
tion of a tangent at any point of the meridian of the nucleus. Let 𝑓 de-
note the force to the centre, 𝜃 the angle between the axis and the radius
vector to the point, then the required force is the product of sin 𝜃 cos 𝜃
into

𝑟 {𝜔2 +
8𝜋𝜌
5
𝜖 +

8𝜋(𝜎 − 𝜌)
5

𝜖′} − 2𝑓𝜖′,

that is
2𝑓(𝜖 − 𝜖′) sin 𝜃 cos 𝜃,

that is

2𝑓 sin 𝜃 cos 𝜃
⎧⎪
⎨⎪
⎩

𝑟𝜔2

2𝑓
+
3
5
(1 −

𝜌
𝜎
) 𝜖′

1 −
3𝜌
5𝜎

− 𝜖′
⎫⎪
⎬⎪
⎭

,

that is
𝑟𝜔2

2
−
2𝑓𝜖′

5
1 −

3𝜌
5𝜎

2 sin 𝜃 cos 𝜃.

D’Alembert omits the term
2𝑓𝜖′

5
. In fact the force along the tangent



d’alembert. 289

must vanish if 𝜖′ = 𝜖; but D’Alembert’s expression would never allow it
to vanish.

380. We proceed to pages 151…158 of the Réflexions sur … Vents,
which contain some new and interesting matter relating to attractions.
D’Alembert obtains, in effect, formulæ for determining the attraction at
any point of the surface of an ellipsoid which is nearly spherical. He
first states what the results are for points at the ends of the three axes;
he does not give his investigation, which was probably of the kind which
he attributed to Daniel Bernoulli: see Art. 373. Let the three semi-axes
be 𝑟, 𝑟 − 𝛽, 𝑟 − 𝛾, where 𝛽 and 𝛾 are small: it is easy to shew by this

method that the attraction at the end of the first axis is
4𝜋𝑟
3

−
8𝜋
15
(𝛽+𝛾).

If, for greater symmetry, we denote the semi-axes by 𝑟 − 𝛼, 𝑟 − 𝛽, 𝑟 − 𝛾,
where 𝛼, 𝛽, 𝛾 are small, the attraction at the end of the first axis is
4𝜋
3
(𝑟 − 𝛼) −

8𝜋
15
(𝛽 − 𝛼 + 𝛾 − 𝛼), that is

4𝜋
3
(𝑟 −

𝛼 + 2𝛽 + 2𝛾
5

). In order to

express the attraction at any point of the surface, D’Alembert uses, in ef-
fect, the property that the attraction perpendicular to a principal plane of
the ellipsoid varies as the distance from that plane. This, he says, follows
from the principles given in Maclaurin’s Essay on the Tides. Maclaurin
himself did not explicitly go beyond the case of ellipsoids of revolution;
but D’Alembert’s extension was very obvious.

Let 𝑥, 𝑦, 𝑧 be the coordinates of any point on the surface of the el-
lipsoid referred to the axes as axes of coordinates; let 𝑋, 𝑌, 𝑍 be the at-
tractions parallel to these axes: then

𝑋 =
𝑥

𝑟 − 𝛼
4𝜋
3
(𝑟 −

𝛼 + 2𝛽 + 2𝛾
5

) =
4𝜋𝑥
3

(1 +
4𝛼 − 2𝛽 − 2𝛾

5𝑟
) ,

and similar expressions hold for 𝑌 and 𝑍.

381. Then D’Alembert shews that an ellipsoid of homogeneous fluid,
differing very little from a sphere, cannot be in equilibrium under its
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own attraction; in fact, the resultant force will not be at right angles to
the free surface. D’Alembert’s demonstration is laborious, but sound, if
we use the correction of a mistake furnished by himself in his Opuscules
Mathématiques, Vol. i. page 252. The modern method would be to form
the condition which involves the direction cosines of the resultant force
and of the normal to the surface. This condition is

𝑋 ÷
𝑥

(𝑟 − 𝛼)2
= 𝑌 ÷

𝑦
(𝑟 − 𝛽)2

= 𝑍 ÷
𝑧

(𝑟 − 𝛾)2
,

that is, approximately,

𝑋
𝑥
(1 −

2𝛼
𝑟
) =

𝑌
𝑦
(1 −

2𝛽
𝑟
) =

𝑍
𝑧
(1 −

2𝛾
𝑟
) .

This condition is not fulfilled.
D’Alembert some years later supposed that he had demonstrated the

relative equilibrium of a rotating ellipsoid of fluid to be impossible; see
his Recherches … Systême du Monde, Vol. iii. page 256: but he forgot that
the so-called centrifugal force must also be considered. We know now by
Jacobi’s Theorem that such relative equilibrium is possible.

Further, D’Alembert’s demonstration shews that a fluid ellipsoid
which is nearly spherical cannot be in equilibrium under its own
attraction; but it does not shew that this result holds for every ellipsoid.
This is however the case; for in the demonstration of Jacobi’s Theorem
we shall find that the angular velocity has a value which cannot vanish.

382. On his page 156, D’Alembert proceeds to the case in which a
solid homogeneous ellipsoid is surrounded by a thin stratum of fluid
of different density in equilibrium. The mistake already referred to in-
fluences this investigation; and moreover D’Alembert misinterprets his
results, and infers that if the solid part is a solid of revolution it must

be a sphere, and that the density of the solid part must be exactly
3
5
of

the density of the fluid. This contradicts his own investigation in pages
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40…44 of the work: see Art. 375. However, in his Opuscules Mathéma-
tiques, Vol. i. pages 253…255, he corrects his errors, and is more success-
ful.

Let 𝜎 be the density of the solid, 𝜌 the density of the fluid; let 𝜖1,
and 𝜖2 be the ellipticities of the two principal sections of the solid, 𝜁1
and 𝜁2 the corresponding ellipticities of the two sections of the external
fluid surface. D’Alembert obtains an approximate result which we may
thus express

𝜖1
𝜁1
=
𝜖2
𝜁2
=

𝜎 − 𝜌
5
3
𝜎 − 𝜌

.

So far he is correct, but he adds that the solid figure and the external
figure are semblables, which is not admissible: to make the figures like

we should require
𝜖1
𝜁1

and
𝜖2
𝜁2

both to be equal to unity.

383. It will be instructive to notice the principle involved in D’Alem-
bert’s treatment of this problem: I will give it in substance though not
in his form.

I use as before 𝑟 − 𝛼, 𝑟 − 𝛽, 𝑟 − 𝛾 for the semi-axes of the external
figure; and 𝑟 − 𝛼′, 𝑟 − 𝛽′, 𝑟 − 𝛾′ for those of the solid part. We may then
consider that we have a body with the former semi-axes, of the density
𝜌, and also a body with the latter semi-axes of the density 𝜎 − 𝜌.

For the former body we may take as before

𝑋 =
4𝜋𝜌𝑥
3

(1 +
4𝛼 − 2𝛽 − 2𝛾

5𝑟
) ,

and similar expressions for 𝑌 and 𝑍.
For the latter body we take

4𝜋(𝜎 − 𝜌)𝑥
3

(1 +
4𝛼′ − 2𝛽′ − 2𝛾′

5𝑟
) ,
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and two similar expressions. This amounts to supposing the second body
enlarged in size until it just passes through the attracted point; that is in
fact we introduce a thin ellipsoidal shell of density 𝜎−𝜌. But no sensible
error is thus produced; for the action of this shell is in amount only of
the first order; and is in direction, as we now know, accurately along the
normal to its outer surface. Hence the shell would supply a force along
the tangent plane to the fluid surface which would be only of the second
order; and so for our purpose may be neglected. D’Alembert leaves his
readers to think this point out for themselves, but in a later work he
supplied a hint: see his Opuscules Mathématiques, Vol. vi. page 226.

Thus we take for the whole attraction parallel to the axis of 𝑥

4𝜋𝑥
3

{𝜌 (1 +
4𝛼 − 2𝛽 − 2𝛾

5𝑟
) + (𝜎 − 𝜌) (1 +

4𝛼′ − 2𝛽′ − 2𝛾′

5𝑟
)} .

Call this 𝑋1; and let 𝑌1 and 𝑍1 have similar meanings.
We know that for equilibrium we must have

𝑋1
𝑥
(1 −

2𝛼
𝑟
) =

𝑌1
𝑦
(1 −

2𝛽
𝑟
) =

𝑍1
𝑧
(1 −

2𝛾
𝑟
) .

This leads by easy reduction to

𝛼 − 𝛽
𝛼′ − 𝛽′

=
𝛼 − 𝛾
𝛼′ − 𝛾′

=
𝜎 − 𝜌
5
3
𝜎 − 𝜌

.

D’Alembert then shews that if the whole mass revolve round one of
the axes with uniform angular velocity relative equilibrium may subsist.

Take the axis of 𝑥 as that of revolution; let 𝜔 be the angular velocity:
then we must put −𝜔2𝑦 to what we called 𝑌1, and −𝜔2𝑧 to what we
called 𝑍1. This will be found to lead to

(𝛼′ − 𝛽′)(𝜎 − 𝜌) = (
5
3
𝜎 − 𝜌) (𝛼 − 𝛽) −

5𝜔2

8𝜋
,
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and
(𝛼′ − 𝛾′)(𝜎 − 𝜌) = (

5
3
𝜎 − 𝜌) (𝛼 − 𝛾) −

5𝜔2

8𝜋
.

384. The next work by D’Alembert which we have to examine is his
Recherches sur la Précession des Equinoxes….

This work was published in 1749; it is in quarto. The Title, Dedica-
tion and Introduction occupy xxxviii pages; then follows a table of Con-
tents, and then the text of 184 pages.

There is a German translation of this work in octavo, by Dr G. K.
Seuffert, published at Nürnberg, 1857.

385. We are concerned only with Chapter ix. of the work, which is
entitled Conséquences qui résultent de la Théorie précedente par rapport à
la figure de la Terre; this occupies pages 95…105.

By comparing his theory of Precession with observation, D’Alembert
obtained the following numerical relation

∫
1

0
𝜌
𝑑(𝑟5𝜖)
𝑑𝑟

𝑑𝑟

∫
1

0
𝜌
𝑑𝑟5

𝑑𝑟
𝑑𝑟

=
1
324

.

The notation will be understood from what has been said before: see
Art. 323.

This very important result remains almost unchanged in the mod-

ern theory; the fraction
1
324

being replaced by ·00326, which differs little

from it: see Résal, Traité Elémentaire de Mécanique Céleste, page 226.

386. D’Alembert combines his own result with one given by Clairaut
on his page 226: it is that which occurs in our Art. 327; denoting 𝑟1 by
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unity, we may write it thus:

10𝜖1∫
1

0
𝜌
𝑑𝑟3

𝑑𝑟
𝑑𝑟 − 6∫

1

0
𝜌
𝑑(𝑟5𝜖)
𝑑𝑟

𝑑𝑟 = 5𝑗∫
1

0
𝜌
𝑑𝑟3

𝑑𝑟
𝑑𝑟. (1)

Now D’Alembert, relying on the measures in Lapland and Peru, takes

𝜖1 =
1
174

; and so the result in Art. 385 may be written thus:

∫
1

0
𝜌
𝑑(𝑟5𝜖)
𝑑𝑟

𝑑𝑟 = 𝜖1
174
324

∫
1

0
𝜌
𝑑𝑟5

𝑑𝑟
𝑑𝑟. (2)

Assume

∫
1

0
𝜌
𝑑𝑟5

𝑑𝑟
𝑑𝑟 = 𝑘∫

1

0
𝜌
𝑑𝑟3

𝑑𝑟
𝑑𝑟. (3)

Then from (1), (2), and (3) we obtain 𝜖1 =
5𝑗

10 −
174 × 6𝑘
324

.

Now we shall shew presently that 𝑘 is less than
5
3
; so that 𝜖1 is less

than
5𝑗

10 −
1740
324

, that is less than

5
289

10 −
1740
324

. This he says makes 𝜖1 less

than
1
256

, which is inconsistent with the value 𝜖1 =
1
174

, given by obser-

vation.
Instead of 256 we might put 267.
Thus D’Alembert infers that the Earth cannot be composed of solid

elliptic strata, which is the hypothesis on which the result quoted from
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Clairaut was obtained. We know now that 𝜖1 cannot be so great as
1
174

;

and thus the contradiction which D’Alembert points out no longer exists.

387. We shall now shew, as we have stated, that 𝑘 is less than
5
3
. We

have to shew that

3∫
1

0
𝜌
𝑑𝑟5

𝑑𝑟
𝑑𝑟 is less than 5∫

1

0
𝜌
𝑑𝑟3

𝑑𝑟
𝑑𝑟,

where the symbols denote positive quantities. D’Alembert spreads the
demonstration over six pages. He makes three cases; that in which 𝜌
always decreases as 𝑟 increases from 0 to 1, that in which 𝜌 always in-
creases, and that in which 𝜌 sometimes decreases and sometimes in-
creases. But the required result can be obtained instantaneously. We
have to shew that

∫
1

0
𝜌𝑟4𝑑𝑟 is less than ∫

1

0
𝜌𝑟2𝑑𝑟,

or that

∫
1

0
𝜌𝑟2(𝑟2 − 1)𝑑𝑟 is negative;

and this is obvious, for every element of the last integral is negative.

388. We may also shew that if 𝜌 always decreases as 𝑟 increases from
0 to 1, then

∫
1

0
𝜌
𝑑𝑟5

𝑑𝑟
𝑑𝑟 is less than ∫

1

0
𝜌
𝑑𝑟3

𝑑𝑟
𝑑𝑟.

Integrate by parts: let 𝜌1 be the value of 𝜌 at the surface. Then we
have to shew that

𝜌1 −∫
1

0

𝑑𝜌
𝑑𝑟
𝑟5𝑑𝑟 is less than 𝜌1 −∫

1

0

𝑑𝜌
𝑑𝑟
𝑟3𝑑𝑟,
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or that

∫
1

0

𝑑𝜌
𝑑𝑟
𝑟3(1 − 𝑟2)𝑑𝑟 is negative;

and this is obvious, for
𝑑𝜌
𝑑𝑟

is negative by supposition, so that every ele-

ment of the last integral is negative.

389. D’Alembert’s page 101 is not intelligible to me. I imagine
he means to say that perhaps some person will be able to shew that

if 𝜌 increases constantly from the centre ∫
1

0
𝜌
𝑑𝑟5

𝑑𝑟
𝑑𝑟 is less than

(
5
3
− 𝛽)∫

1

0
𝜌
𝑑𝑟3

𝑑𝑟
𝑑𝑟, where 𝛽 is some positive quantity. This we have

shewn in Art. 388, where
5
3
− 𝛽 is equal to unity, so that 𝛽 =

2
3
.

390. D’Alembert then considers on his pages 103…105, whether the
facts and the theory will agree on the supposition that the Earth con-
sists of a solid elliptic mass covered with a thin layer of fluid. We must
observe that the layer here is to be of finite thickness though thin; the
case of an infinitesimal layer was in fact that which was dismissed as
untenable in Art. 386.

D’Alembert assumes without any adequate investigation that the ac-
tion of the fluid on the solid will not affect the Precession. See on this
point Résal, Traité Elémentaire de Mécanique Céleste, pages 353…356.

As in Art. 376, we have

𝜖 (1 −
3𝜌
5𝜎
) = 𝜂 +

3
5
(1 −

𝜌
𝜎
) 𝜖′;

here 𝜖 is the ellipticity of the exterior surface of the fluid, and 𝜖′ the
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ellipticity of the solid nucleus. Thus

1
174

(1 −
3𝜌
5𝜎
) =

1
578

+
3
5
(1 −

𝜌
𝜎
) 𝜖′;

therefore

𝜌
𝜎
=

5
3
(
1
174

−
1
578

−
3
5
𝜖′)

1
174

− 𝜖′
.

If we take 𝜖′ less than
1
256

we find
𝜌
𝜎
to be positive; the number

1
256

is that which presented itself in Art. 386; but it appears to me quite

arbitrary to introduce it here. D’Alembert, however, has no misgiving:
see his page 105.

391. D’Alembert gives the following inequality on his page 99:
If 𝑥 is a proper fraction, 2 is greater than 𝑥3(5 − 3𝑥2). He establishes

it easily by taking the differential coefficient of 𝑥3(5 − 3𝑥2).
We can establish it by common Algebra. For

2 − 𝑥3(5 − 3𝑥2) = 2(1 − 𝑥5) − 5𝑥3(1 − 𝑥2)
= (1 − 𝑥){2(1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4) − 5𝑥3(1 + 𝑥)}
= (1 − 𝑥){2(1 + 𝑥)(1 − 𝑥3) + 𝑥2(2 − 𝑥 − 𝑥2)};

this is necessarily positive.
The last expression may be put also as

(1 − 𝑥)2{2(1 + 𝑥)(1 + 𝑥 + 𝑥2) + 𝑥2(2 + 𝑥)},

that is as
(1 − 𝑥)2{2 + 4𝑥 + 6𝑥2 + 3𝑥3}.
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392. The next work by D’Alembert which we have to examine is his
Essai d’une Nouvelle Théorie de la Résistance des Fluides.

This work was published in 1752; it is in quarto. The Title, Dedi-
cation, Introduction, and Title of Contents occupy xlvi pages; the text
occupies 212 pages.

The work was composed in competition for a prize proposed by
the Academy of Berlin. The Academy instead of awarding the prize
requested the candidates to give supplements shewing the agreement
of their theories with experiments. D’Alembert seems to have been not
quite satisfied with this proceeding; he resolved to abstain from a new
competition, and to publish his essay at once. He adds, on his page xl:

Je souhaite par l’intérêt que je prends à l’avancement des Sciences, que les
Juges nommés par cette illustre Compagnie, et qui n’ont pas sans doute proposé
cette question sans s’assurer si la solution en étoit possible, trouvent pleine-
ment de quoi se satisfaire dans les Ouvrages qui leur seront envoyés pour le
concours.

393. The second Chapter of the book is entitled Principes généraux
de l’équilibre des Fluides; it occupies pages 13…18.

D’Alembert first adverts to the principle of Canals; he deduces
Clairaut’s condition with respect to curved canals from Maclaurin’s
with respect to straight canals. To a modern reader the principle seems
sufficiently evident without any remark.

394. D’Alembert establishes an important result which can be best
explained by the aid of the modern equations for fluid equilibrium. Con-
fining ourselves for simplicity to the case of forces in one plane we have

𝑑𝑝
𝑑𝑥

= 𝜌𝑋,
𝑑𝑝
𝑑𝑦

= 𝜌𝑌;

from these it follows that
𝑑
𝑑𝑥

(𝜌𝑌) =
𝑑
𝑑𝑦
(𝜌𝑋):
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D’Alembert demonstrates this condition; for the particular case in which
𝜌 is constant it was already known, as we have seen in Art. 306. D’Alem-
bert considers his own demonstration simpler than any which had yet
been given.

D’Alembert himself does not use the symbol 𝑝 or speak of the pres-
sure of the fluid. It will however be interesting and instructive to give
the essence of his investigation in modern language.

Let the coordinates of any point 𝑃 be 𝑥 and 𝑦; let the coordinates of
an adjacent point 𝑅 be 𝑥 + ℎ and 𝑦 + 𝑘. Complete the rectangle 𝑃𝑄𝑅𝑆,
having its sides parallel to the axes.

Let 𝜌 be the density at 𝑃, let 𝜌1 be the mean density along 𝑃𝑄, and
𝜌2 the mean density along 𝑃𝑆.

Let 𝑝 be the pressure at 𝑃; then the pressure at 𝑄 will ultimately be
𝑝 + 𝜌1𝑌𝑘, and the pressure at 𝑆 will ultimately be 𝑝 + 𝜌2𝑋ℎ. Now we
may form two expressions for the pressure at 𝑅, one obtained by passing
from 𝑄 to 𝑅, and the other obtained by passing from 𝑆 to 𝑅. The former
expression is ultimately

𝑝 + 𝜌1𝑌𝑘 + 𝜌2𝑋ℎ +
𝑑
𝑑𝑦
(𝜌2𝑋ℎ)𝑘,
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and the latter is

𝑝 + 𝜌2𝑋ℎ + 𝜌1𝑌𝑘 +
𝑑
𝑑𝑥

(𝜌1𝑌𝑘)ℎ;

equate these and we obtain ultimately

𝑑
𝑑𝑥

(𝜌1𝑌) =
𝑑
𝑑𝑦
(𝜌2𝑋),

that is
𝑑
𝑑𝑥

(𝜌𝑌) =
𝑑
𝑑𝑦
(𝜌𝑋).

This mode of giving as it were a physical interpretation to the con-
dition just obtained might be called D’Alembert’s hydrostatical principle;
though it is not very clearly put by himself. We may say verbally that
the principle amounts to this: the change of pressure in passing from
one given point of a fluid in equilibrium to another is independent of
the path by which we proceed.

395. An Appendix entitled Réflexions sur les loix de l’Equilibre des
Fluides occupies pages 190…212 of the work.

D’Alembert gives on his pages 190…194 another demonstration of the

equation
𝑑
𝑑𝑥

(𝜌𝑌) =
𝑑
𝑑𝑦
(𝜌𝑋); this demonstration is sound but complex:

he gives it, he says, because it will supply the opportunity for some im-
portant remarks on the laws of the equilibrium of fluids. The remarks do
not seem to me of great importance; but the reader can judge for himself
from the account which will now be given of them.

396. D’Alembert says on his page 195, in effect, that if with previous
writers on this subject we suppose the density to be constant throughout

every level surface we arrive at the equation
𝑑𝑌
𝑑𝑥

=
𝑑𝑋
𝑑𝑦

instead of that in

Art. 394: this appears to him to require explanation. Along a surface of
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equal density we have
𝑑𝜌
𝑑𝑥

𝑑𝑥 +
𝑑𝜌
𝑑𝑦
𝑑𝑦 = 0; if this surface is also a level

surface we have 𝑋𝑑𝑥+𝑌𝑑𝑦 = 0; hence 𝑌
𝑑𝜌
𝑑𝑥

= 𝑋
𝑑𝜌
𝑑𝑦
, and the equation of

Art. 394 reduces to
𝑑𝑌
𝑑𝑥

=
𝑑𝑋
𝑑𝑦

. So far he is right, but he adds a remark

which is quite erroneous; changing his notation to that which we have
used, his words are:

Mais il faut remarquer que l’équation
𝑑𝑋
𝑑𝑦

=
𝑑𝑌
𝑑𝑥

n’a lieu dans ce cas que

pour les couches … auxquelles la direction de la pesanteur est perpendiculaire,

au lieu que l’équation
𝑑
𝑑𝑥

(𝜌𝑌) =
𝑑
𝑑𝑦
(𝜌𝑋) a lieu généralement pour telle couche

qu’on voudra….

This is a strange error: from the nature of the equation
𝑑𝑌
𝑑𝑥

=
𝑑𝑋
𝑑𝑦

it

is quite independent of direction.

397. D’Alembert says on his page 197, that the equation of Art. 394
supposes 𝜌, 𝑋, and 𝑌 to be functions of 𝑥 and 𝑦: but he does not see
why we should be restricted to this hypothesis. He proceeds to some-
thing which he considers more general, but which is really not so; in
fact he supposes that 𝑋 and 𝑌 are functions of 𝑥, 𝑦, and 𝜁 where 𝜁 is
itself a definite function of 𝑥 and 𝑦: but it is obvious that this is practi-
cally identical with the usual hypothesis. I found after I had written this
that Lagrange had made an equivalent remark in the Miscellanea Tauri-
nensia, Vol. ii. page 282. D’Alembert himself also subsequently admitted
that this introduction of 𝜁 was superfluous: see his Opuscules Mathéma-
tiques, Vol. viii. page 16.

398. D’Alembert makes an erroneous statement on his page 199,
namely, that if the pressure be equal at all points of the bounding
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surface the force must be equal at all points: we know that this is not
necessarily the case. Indeed D’Alembert himself says on his page 201:

… A l’égard du principe de l’égalité des forces, il est évident que s’il étoit
admis, toutes les Théories qu’on a données de la Figure de la Terre, en la con-
sidérant comme un Fluide, et en ayant égard à l’attraction des parties, et à la
rotation de l’Axe, devroient être regardées comme fausses.

399. D’Alembert returns to the matter which we noticed in Art. 367;
and seems still half persuaded of the truth of the absurd opinion stated
there. However he converts himself from his error by the aid of an im-
portant principle which he had formerly given. The following is the sub-
stance of his argument: it is obvious that a fluid may be in motion with-
out having its surface plane or spherical; and it follows from what we
now call D’Alembert’s Principle that if any motion is known we know also
the forces which would maintain the system in equilibrium in the con-
figuration which it has at any instant; thus forces do exist which would
maintain a fluid in equilibrium and give to the surface a form which is
neither plane nor spherical.

400. D’Alembert seems to attach great importance to the fact that
if a fluid be in equilibrium the surfaces of equal density are not nec-
essarily level surfaces. We know now, with the usual notation, that if
𝑋𝑑𝑥 + 𝑌𝑑𝑦 + 𝑍𝑑𝑧 is a perfect differential, the surfaces of equal density
will be level surfaces; moreover for such forces as occur in nature this
condition is satisfied: hence for such cases as occur in nature it is true
that the surfaces of equal density are level surfaces. But D’Alembert’s
statement is correct, that surfaces of equal density are not necessarily
level surfaces. See Arts. 315 and 368.

401. We will give briefly the example which D’Alembert discusses,
translating his process into modern language.

Suppose 𝑠 the distance of a point from the origin, and 𝜃 the angle
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which 𝑠 makes with a fixed straight line. Let 𝑆 denote the force along 𝑠,
and 𝑇 that at right angles to 𝑠; and let 𝜎 denote the density.

Then the usual equations for the equilibrium of a fluid are

𝑑𝑝
𝑑𝑠

= 𝜎𝑆,
𝑑𝑝
𝑠𝑑𝜃

= 𝜎𝑇,

where 𝑝 denotes the pressure. Therefore

𝑑
𝑑𝜃
(𝜎𝑆) =

𝑑
𝑑𝑠
(𝜎𝑠𝑇). (1)

This condition in fact agrees with what D’Alembert himself deduces
from the principle of canals.

Now let us assume that the fluid is arranged in strata of equal den-
sity; let the curve of equal density be determined by the equation

𝑠 = 𝑟 + 𝛼𝜌𝑍, (2)

where 𝑟 is a parameter which particularises the curve we consider, 𝜌 is a
function of 𝑟, and 𝑍 a function of 𝜃; and 𝛼 is a very small quantity, the
square of which will be neglected.

Also suppose that

−𝑆 = 𝜌′ + 𝛼𝜌″𝑍′, and 𝑇 = 𝛼𝜌‴𝑍″, (3)

where 𝜌′, 𝜌″, and 𝜌‴ are functions of 𝑟; and 𝑍′ and 𝑍″ are functions of
𝜃. The notation is kept very close to D’Alembert’s, though not exactly the
same.

Now (1) may be written

𝑆
𝑑𝜎
𝑑𝜃

+ 𝜎
𝑑𝑆
𝑑𝜃

= 𝜎𝑇 + 𝑠𝑇
𝑑𝜎
𝑑𝑠

+ 𝜎𝑠
𝑑𝑇
𝑑𝑠
. (4)

The condition that 𝜎 is constant along the curves determined by (2)
gives

𝑑𝜎
𝑑𝜃

+
𝑑𝜎
𝑑𝑠

𝑑𝑠
𝑑𝜃

= 0,
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that is,
𝑑𝜎
𝑑𝜃

+ 𝛼𝜌
𝑑𝑍
𝑑𝜃

𝑑𝜎
𝑑𝑠

= 0.

Then (4) becomes

−(𝑆𝛼𝜌
𝑑𝑍
𝑑𝜃

+ 𝑠𝑇)
𝑑𝜎
𝑑𝑠

= 𝜎𝑇 − 𝜎
𝑑𝑆
𝑑𝜃

+ 𝜎𝑠
𝑑𝑇
𝑑𝑠
.

Substitute from (3), and neglect the square of 𝛼; thus

𝛼 (𝜌𝜌′
𝑑𝑍
𝑑𝜃

− 𝑠𝜌‴𝑍″)
𝑑𝜎
𝑑𝑠

= 𝛼𝜎𝜌‴𝑍″ − 𝜎
𝑑𝑆
𝑑𝜃

+ 𝛼𝜎𝑠𝑍″
𝑑𝜌‴

𝑑𝑟
. (5)

Here
𝑑𝑆
𝑑𝜃

means the differential coefficient of 𝑆 with respect to 𝜃, sup-

posing 𝑠 constant; and so it is found by combining

−
𝑑𝑆
𝑑𝜃

= (
𝑑𝜌′

𝑑𝑟
+ 𝛼𝑍′

𝑑𝜌″

𝑑𝑟
)
𝑑𝑟
𝑑𝜃

+ 𝛼𝜌″
𝑑𝑍′

𝑑𝜃
,

and

0 =
𝑑𝑠
𝑑𝜃

= (1 + 𝛼𝑍
𝑑𝜌
𝑑𝑟
)
𝑑𝑟
𝑑𝜃

+ 𝛼𝜌
𝑑𝑍
𝑑𝜃

.

Hence, neglecting the square of 𝛼,

−
𝑑𝑆
𝑑𝜃

= −𝛼𝜌
𝑑𝜌′

𝑑𝑟
𝑑𝑍
𝑑𝜃

+ 𝛼𝜌″
𝑑𝑍′

𝑑𝜃
;

also if we neglect the square of 𝛼 we may put
𝑑𝜎
𝑑𝑟

for
𝑑𝜎
𝑑𝑠

in (5). Then,

dividing by 𝛼, we obtain

(𝜌𝜌′
𝑑𝑍
𝑑𝜃

− 𝑟𝜌‴𝑍″)
𝑑𝜎
𝑑𝑟

= 𝜎𝜌‴𝑍″ − 𝜎𝜌
𝑑𝜌′

𝑑𝑟
𝑑𝑍
𝑑𝜃

+ 𝜎𝜌″
𝑑𝑍′

𝑑𝜃
+ 𝜎𝑟𝑍″

𝑑𝜌‴

𝑑𝑟
. (6)
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402. We will make some remarks on the equation (6). D’Alembert
himself by transposition puts it in this form:

𝑑𝑍
𝑑𝜃

𝑑
𝑑𝑟
(𝜎𝜌𝜌′) − 𝑍″

𝑑
𝑑𝑟
(𝜎𝑟𝜌‴) = 𝜎𝜌″

𝑑𝑍′

𝑑𝜃
+ 𝜎𝜌′

𝑑𝜌
𝑑𝑟

𝑑𝑍
𝑑𝜃

.

D’Alembert obtains this result by the method which we have exem-
plified in Art. 394. In modern language we may say that he passes from
one point of the fluid to another by two different routes; and thus he ob-
tains two expressions for the change of pressure, which can be equated.
But as he does not use the word pressure, or the symbol 𝑝, his method
is somewhat obscure. In the diagram of Art. 394, we see that

the increase of pressure from 𝑃 to 𝑄 + increase from 𝑄 to 𝑅
= increase from 𝑃 to 𝑆 + increase from 𝑆 to 𝑅.

With D’Alembert the equivalent statement takes the less natural form,

the increase of pressure from 𝑄 to 𝑅 - increase from 𝑃 to 𝑆
= increase from 𝑆 to 𝑅 - increase from 𝑃 to 𝑄.

Instead of the words increase of pressure from 𝑃 to 𝑄, D’Alembert uses
such words as force of the column 𝑃𝑄 along 𝑃𝑄; and these seem scarcely
intelligible. D’Alembert attempts to enunciate this case of his hydrostat-
ical principle in words in his Recherches … Systême du Monde, Vol. iii.
page 226, where he says:

… il faut supposer la différence de pesanteur de deux couches de niveau
infiniment proches, égale à la différence de pesanteur de deux couches verticales
infiniment proches,…

An enunciation, partly in words and partly by symbols, is also given
by Lagrange; see the Miscellanea Taurinensia, Vol. ii. page 285.

We may remark that D’Alembert’s notation might be rendered at once
simpler and more general. Instead of 𝜌𝑍, where 𝜌 is a function of 𝑟 and
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𝑍 a function of 𝜃, put 𝑉, where 𝑉 is a function of both 𝑟 and 𝜃; also put
𝑉 ′ instead of 𝜌″𝑍′, and 𝑉″ instead of 𝜌‴𝑍″. Then the equation at the
beginning of this Article may be written

𝑑𝑉
𝑑𝜃

𝑑
𝑑𝑟
(𝜎𝜌′) −

𝑑
𝑑𝑟
(𝜎𝑟𝑉″) = 𝜎

𝑑𝑉 ′

𝑑𝜃
.

In his Opuscules Mathématiques, Vol. v. page 6, D’Alembert returns to
the example of Art. 401. There he takes 𝜌′ to be a function of 𝑠 instead
of 𝑟; or, which comes to the same thing to his order of approximation,
he puts instead of the first of equations (3)

−𝑆 = 𝜌′ +
𝑑𝜌′

𝑑𝑟
𝛼𝜌𝑍 + 𝛼𝜌″𝑍′;

hence we have an additional term 𝛼
𝑑𝜌′

𝑑𝑟
𝜌
𝑑𝑍
𝑑𝜃

𝜎 on the right-hand side of

(5): and finally, instead of (6), we obtain

𝜌𝜌′
𝑑𝑍
𝑑𝜃

𝑑𝜎
𝑑𝑟

− 𝑍″
𝑑
𝑑𝑟
(𝜎𝑟𝜌‴) = 𝜎𝜌″

𝑑𝑍′

𝑑𝜃
.

403. I am not sure that I understand D’Alembert’s continuation after
the point which we reached at the end of Art 401; but I think that it is
substantially equivalent to the following.

Assume that the surfaces of equal density are level surfaces; then the
force along the tangent to the curve considered must vanish. Thus we
obtain to our order of approximation

𝜌𝜌′

𝑟
𝑑𝑍
𝑑𝜃

= 𝜌‴𝑍″.

Now 𝜌′ and 𝜌 are functions of 𝑟 only, and 𝑍 and 𝑍′ are functions of
𝜃 only; so we must have

𝜌𝜌′

𝑟
= 𝐶𝜌‴, 𝑍″ = 𝐶

𝑑𝑍
𝑑𝜃

, (7)
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where 𝐶 is some constant.
Substituting in (6) we obtain

{𝐶 (𝜌‴ + 𝑟
𝑑𝜌‴

𝑑𝑟
) − 𝜌

𝑑𝜌′

𝑑𝑟
}
𝑑𝑍
𝑑𝜃

+ 𝜌″
𝑑𝑍′

𝑑𝜃
= 0;

which, as before, leads to

𝑑𝑍′

𝑑𝜃
= 𝐵

𝑑𝑍
𝑑𝜃

, 𝐶 (𝜌‴ + 𝑟
𝑑𝜌‴

𝑑𝑟
) − 𝜌

𝑑𝜌′

𝑑𝑟
= −𝐵𝜌″, (8)

where 𝐵 is some constant.
Thus we have the four equations (7) and (8) holding in place of the

single equation (4).
From the first of (8) we have

𝑍′ = 𝐵𝑍 + 𝐵′,

where 𝐵′ is some constant.
From the first of (7) and the second of (8) we get

𝑑(𝜌′𝜌)
𝑑𝑟

− 𝜌
𝑑𝜌′

𝑑𝑟
= −𝐵𝜌″,

so that
−𝐵𝜌″ = 𝜌′

𝑑𝜌
𝑑𝑟
.

Thus, finally,

𝑠 = 𝑟 + 𝛼𝜌𝑍, −𝑆 = 𝜌′ −
𝛼
𝐵
𝜌′
𝑑𝜌
𝑑𝑟
(𝐵𝑍 + 𝐵′), 𝑇 =

𝛼𝜌𝜌′

𝑟𝐶
𝐶
𝑑𝑍
𝑑𝜃

,

that is,

𝑠 = 𝑟 + 𝛼𝜌𝑍, −𝑆 = 𝜌′ − 𝛼𝜌′
𝑑𝜌
𝑑𝑟
(𝑍 + 𝐵1), 𝑇 =

𝛼𝜌𝜌′

𝑟
𝑑𝑍
𝑑𝜃

,
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where 𝐵1 is some constant.
These results are of course less general than the single equation (4).

404. D’Alembert finishes the Appendix with some matter which is
very closely connected with our subject. He says on his pages 208 and
209:

Je remarquerai à cette occasion, qu’il me semble qu’on n’a point encore ré-
solu d’une maniére assez générale le Problême de la figure de la Terre, dans
l’hypothese que l’attraction soit en raison inverse du quarré des distances, et
que la Terre soit composée d’un amas de Fluides de différentes densités.

Accordingly, D’Alembert proposes his more general solution of the
problem of the Figure of the Earth. It would not be advisable to devote
much space to shew that D’Alembert’s additions to Clairaut’s investiga-
tions are worthless; but as we have already given the principal formulæ
which are necessary, we shall be able with brevity to justify this opinion.
D’Alembert himself refers, as we shall do, to Clairaut, for some formulæ
which are necessary.

We adopt Clairaut’s hypothesis that the Earth consists of ellipsoidal
fluid strata of varying density and ellipticity. Let 𝜌 denote the density;
take the known equation of Art. 401,

𝑑
𝑑𝜃
[𝜌𝑆] =

𝑑
𝑑𝑠
[𝜌𝑠𝑇]. (1)

Here the quantities are supposed to be expressed in terms of 𝜃 and
𝑠; and we use the square brackets to indicate this. But suppose that 𝑠 is
changed into 𝑟(1 + 𝜖 sin2 𝜃); then we have to transform (1) suitably.

𝑑
𝑑𝜃
[𝜌𝑆] =

𝑑
𝑑𝜃
(𝜌𝑆) +

𝑑
𝑑𝑟
(𝜌𝑆)

𝑑𝑟
𝑑𝜃
,

and
𝑑𝑟
𝑑𝜃

is to be found on the supposition that 𝑠 is constant, so that to

our order of approximation it is equal to −2𝑟𝜖 sin 𝜃 cos 𝜃.
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Thus rejecting the square of 𝜖 we have from (1)

𝑑
𝑑𝜃
(𝜌𝑆) −

𝑑
𝑑𝑟
(𝜌𝑆)2𝑟𝜖 sin 𝜃 cos 𝜃 =

𝑑
𝑑𝑟
(𝜌𝑟𝑇).

Let 𝜙 denote the angle between the radius vector and the tan-
gent to the ellipse at the point considered; so that to our order
cos𝜙 = 2𝜖 sin 𝜃 cos 𝜃. Hence

𝑑
𝑑𝜃
(𝜌𝑆) =

𝑑
𝑑𝑟
(𝜌𝑟𝑇) + 𝑟 cos𝜙

𝑑
𝑑𝑟
(𝜌𝑆)

=
𝑑
𝑑𝑟
𝜌(𝑟𝑇 + 𝑟 cos𝜙𝑆) − 2 sin 𝜃 cos 𝜃𝜌𝑆

𝑑(𝑟𝜖)
𝑑𝑟

.

Thus
𝑑
𝑑𝜃
(𝜌𝑆) + 2𝜌 sin 𝜃 cos 𝜃𝑆

𝑑(𝑟𝜖)
𝑑𝑟

=
𝑑
𝑑𝑟
(𝜌𝑟𝑄),

where 𝑄 stands for 𝑇 + cos𝜙𝑆, that is, for the whole force along the

tangent; and the first term may be written 𝜌
𝑑𝑆
𝑑𝜃
. Hence finally

𝜌
𝑑𝑆
𝑑𝜃

+ 2𝜌 sin 𝜃 cos 𝜃𝑆
𝑑(𝑟𝜖)
𝑑𝑟

=
𝑑
𝑑𝑟
(𝜌𝑟𝑄). (2)

This equation substantially coincides with that which D’Alembert
uses; but he does not sufficiently explain his process.

405. We have now to give the values of 𝑄 and 𝑆. I shall use the
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following notation:

Υ(𝑟) for ∫
𝑟

0
𝜌𝑟2𝑑𝑟,

Ω0(𝑟) for ∫
𝑟

0
𝜌
𝑑𝜖
𝑑𝑟
𝑑𝑟,

Ω3(𝑟) for ∫
𝑟

0
𝜌
𝑑(𝑟3𝜖)
𝑑𝑟

𝑑𝑟,

Ω5(𝑟) for ∫
𝑟

0
𝜌
𝑑(𝑟5𝜖)
𝑑𝑟

𝑑𝑟.

Let 𝑏 be the extreme value of 𝑟, that is the value of 𝑟 at the surface;
and let 𝜔 be the angular velocity. Then it will be found that

𝑄 = sin 𝜃 cos 𝜃 {−
8𝜋𝜖Υ(𝑟)

𝑟2
+
8𝜋Ω5(𝑟)
5𝑟4

+
8𝜋𝑟
5
[Ω0(𝑏) − Ω0(𝑟)] + 𝜔2𝑟}

− 𝑆 =
4𝜋(1 − 2𝜖 sin2 𝜃)

𝑟2
Υ(𝑟) + 8𝜋

3𝑟2
Ω3(𝑟)

+ 4𝜋(3 sin2 𝜃 − 2) {
Ω5(𝑟)
5𝑟4

−
Ω0(𝑏) − Ω0(𝑟)

15
2𝑟} − 𝜔2𝑟 sin2 𝜃.

The value of 𝑄 is found as in Art. 341, or Clairaut’s page 273. The
value of −𝑆 is found as in Art. 336, or Clairaut’s page 247: it is only
necessary to add to what is there given the central attraction which arises
from the matter which may be said to be external to the attracted point,
and thus we obtain the term which involves Ω0 in the manner the term
involving Ω5 was obtained.

Hence −
𝑑𝑆
𝑑𝜃

= sin 𝜃 cos 𝜃 {−
16𝜋𝜖Υ(𝑟)

𝑟2
+
24𝜋Ω5(𝑟)

5𝑟4
−
16𝜋𝑟
5

[Ω0(𝑏) − Ω0(𝑟)] − 2𝜔2𝑟} .
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Thus (2) becomes to our order of approximation

𝜌 {
Υ(𝑟)
𝑟2

𝑑(𝑟𝜖)
𝑑𝑟

−
2𝜖
𝑟2

Υ(𝑟) + 3Ω5(𝑟)
5𝑟4

−
2𝑟
5
[Ω0(𝑏) − Ω0(𝑟)] −

𝜔2𝑟
4𝜋

}

=
𝑑
𝑑𝑟
𝜌 {

𝜖Υ(𝑟)
𝑟

−
Ω5(𝑟)
5𝑟3

−
𝑟2

5
[Ω0(𝑏) − Ω0(𝑟)] −

𝜔2𝑟2

8𝜋
} . (3)

Let 𝐾 =
𝜖
𝑟2

Υ(𝑟) − Ω5(𝑟)
5𝑟4

−
𝑟
5
[Ω0(𝑏) − Ω0(𝑟)] −

𝜔2𝑟
8𝜋

; then multiply by

𝑟4 and differentiate; then divide by 𝑟4 and differentiate again. Thus we
obtain

𝑑2𝜖
𝑑𝑟2

+
2𝜌𝑟2

Υ(𝑟)
𝑑𝜖
𝑑𝑟

− {
6
𝑟2
−

2𝜌𝑟
Υ(𝑟)}

𝜖 =
𝑟2

Υ(𝑟)
𝑑
𝑑𝑟

{
1
𝑟4

𝑑
𝑑𝑟
(𝐾𝑟4)} . (4)

Moreover (3) may be written

𝑑
𝑑𝑟
(𝐾𝑟𝜌) = 𝜌 {

𝑑(𝑟𝜖)
𝑑𝑟

Υ(𝑟)
𝑟2

−
4𝜖Υ(𝑟)
𝑟2

+
Ω5(𝑟)
𝑟4

+ 2𝐾} ;

multiply by
𝑟4

𝜌
and differentiate: then we obtain

𝑑2𝜖
𝑑𝑟2

+
2𝜌𝑟2

Υ(𝑟)
𝑑𝜖
𝑑𝑟

− {
6
𝑟2
−

2𝜌𝑟
Υ(𝑟)}

𝜖 =
1

𝑟3Υ(𝑟) [
𝑑
𝑑𝑟

{
𝑟4

𝜌
𝑑(𝐾𝑟𝜌)
𝑑𝑟

− 2𝐾𝑟4}] . (5)

Comparing (4) and (5) we obtain
𝑑
𝑑𝑟

(
𝐾𝑟5

𝜌
𝑑𝜌
𝑑𝑟
) = 0; therefore

𝐾𝑟5

𝜌
𝑑𝜌
𝑑𝑟

= 𝑀 a constant; and so the right-hand side of (4) becomes

𝑟2

Υ(𝑟)
𝑑
𝑑𝑟

{
1
𝑟4

𝑑
𝑑𝑟

(
𝑀𝜌
𝑟
𝑑𝑟
𝑑𝜌

)} .
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Thus D’Alembert considers he has found a more general result than
had hitherto been given; for we know that Clairaut’s derived equation
agrees with (4) when the right-hand side is changed to zero: see Art.
343.

But D’Alembert himself admits, that at the external surface there can
be no tangential force, and so 𝐾 must vanish there; see the last line of
his page 211. This would suggest 𝑀 = 0; but D’Alembert wishes to avoid

this, and so he says it will be sufficient to have
𝑑𝜌
𝑑𝑟

infinite at the external

surface.
The error involved is very serious even for D’Alembert: such a strange

result should have led him to review his process. If we develope the

right-hand side of (3) we have one term involving
𝑑𝜌
𝑑𝑟
, and another in-

volving 𝜌; the latter term is exactly the same as we have on the left-
hand side of (3). Thus (3) becomes simply, in D’Alembert’s notation,

𝐾𝑟
𝑑𝜌
𝑑𝑟

= 0; thus either 𝐾 = 0, or
𝑑𝜌
𝑑𝑟

= 0; in the latter case the density is

constant: in both cases the level surfaces are surfaces of equal density.
In fact, as we stated in Art. 400, we know that for such forces as oc-

cur in nature the level surfaces must be surfaces of equal density; this
was pointed out by Lagrange in some observations on D’Alembert’s mis-
conception: see the Miscellanea Taurinensia, Vol. ii. page 285.

406. D’Alembert himself briefly admitted and corrected his error in
his Opuscules, Vol. v. page 4: my remarks were written before I had ar-
rived at this admission; and I have ventured to retain them. It is cu-
rious to notice the complacent satisfaction with which D’Alembert, up
to the period of the admission of his error, regarded his efforts to im-
prove the important result which I call Clairaut’s derived equation: see
the Recherches … Systême du Monde, Vol. ii. page 290, and Vol iii. pages
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xxxvi and xxxvii; and also the article Figure de la Terre in the original
Encyclopédie.

407. We might have deduced equation (3) of Art. 405 from equation
(6) of Art. 401. Return to the notation of Art. 401, using 𝜎 for the density.
We have

𝑑𝑍
𝑑𝜃

=
𝑑𝑍′

𝑑𝜃
= 𝑍″ = 2 sin 𝜃 cos 𝜃;

and thus equation (6) becomes

𝑑
𝑑𝑟
𝜎(𝜌𝜌′ − 𝑟𝜌‴) = 𝜎𝜌″ + 𝜎𝜌′

𝑑𝜌
𝑑𝑟
;

and
𝛼𝜌 = 𝑟𝜖, 𝜌′ = 4𝜋 {

Υ(𝑟)
𝑟2

+ small terms} ,

𝛼𝜌″ = 4𝜋 {−
2𝜖Υ(𝑟)
𝑟2

+
3Ω5(𝑟)
5𝑟4

−
2𝑟
5
[Ω0(𝑏) − Ω0(𝑟)] −

𝜔2𝑟
4𝜋

} ,

𝛼𝜌‴ = 4𝜋 {
Ω5(𝑟)
5𝑟4

+
𝑟
5
[Ω0(𝑏) − Ω0(𝑟)] +

𝜔2𝑟
8𝜋

} .

Substitute these values in the above equation, and it will be found to
agree with (3) of Art. 405.

408. In considering the writings of D’Alembert on our subject up to
the present point, we find but little of importance. Not only do they
fail to add anything to what Clairaut had given, but they do not even
reach the same level. It seems to me that D’Alembert had not taken the
trouble to study a work which far surpassed all his own efforts in the
same direction.

409. The next work by D’Alembert is entitled Recherches sur différens
points importans du Systême du Monde. This work forms three parts or
volumes in quarto. The first and the second parts were published in
1754; and the third part in 1756.
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The first part contains the Title, Preliminary Essay, Table of Contents,
and Corrections in lxviii pages; then the text of 260 pages: there is one
plate.

The second part contains the Title and Table of Contents in vi pages;
then the text of 290 pages: there are three plates.

The third part contains the Title, Preface, Table of Contents, and
the Privilege du Roi in xlviii pages; then the text and Corrections of 263
pages: there are two plates.

410. There is nothing in the first part with which we are concerned.
In the second part we have on pages 201…209, Remarques sur la fig-

ure de la Terre, qui résulte de la Précession des Equinoxes; and on pages
265…290, we have a Chapter entitled De la Figure de la Terre.

411. D’Alembert, on his pages 201…209, returns to the subject of the
information which the theory of the Precession of the Equinoxes gives
with respect to the theory of the Figure of the Earth. He first substan-
tially repeats the matter of which we have given an account in Arts. 385
and 386. He then says, on his page 204:

Je dois cependant avouer qu’un grand Geométre a cru pouvoir concilier tout,
en supposant que la Terre soit un solide Elliptique, dont la différence des Axes

soit =
1
200

, et qui renferme au-dedans de lui un noyau sphérique dont la densité

soit à celle du Sphéroide comme 10 est à 1, et dont le rayon soit au rayon de
l’Equateur comme 3 à 5.

D’Alembert here alludes to a memoir by Euler on the Precession of
the Equinoxes, published in the Berlin Mémoires for 1749; see page 315
of the memoir: Euler does not support his suggestion by any theory con-
nected with our subject.

D’Alembert shews that the above supposition is inadmissible. Take a
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formula obtained in Art. 374, namely

𝜖 =

𝑟𝜔2

2
4𝜋𝜌𝑟
3

+
4𝜋(𝜎 − 𝜌)𝑠3

3𝑟2
−
4𝜋𝜌𝑟
5

;

let 𝑗 denote, as usual, the ratio of the centrifugal force at the equator to
the attraction there, so that

𝑟𝜔2 = 𝑗 {
4𝜋𝜌𝑟
3

+
4𝜋(𝜎 − 𝜌)𝑠3

3𝑟2
} ;

therefore

𝜖 =

𝑗
2
{𝜌 + (𝜎 − 𝜌)

𝑠3

𝑟3
}

𝜌 + (𝜎 − 𝜌)
𝑠3

𝑟3
−
3𝜌
5

.

Now let us suppose 𝜎 = 10𝜌, and 𝑠 =
3
5
𝑟, so that

(𝜎 − 𝜌)𝑠3

𝜌𝑟3
= 2 very

nearly. Thus

𝜖 =
𝑗
2

1 + 2

1 + 2 −
3
5

=
5𝑗
8
;

this value of 𝜖 is smaller than observation will allow. It will be observed
that D’Alembert assumes that the ellipticity of the external surface is the
same as if the outer part were fluid: it is not obvious whether Euler
contemplated this in his hypothesis that the Earth consisted of two solid
parts.

412. We now pass to pages 265…290 of the volume. On pages
265…274, D’Alembert considers how the figure of the Earth may
be found by geographical operations. He suggests in fact that we
should assume for the radius vector a series with unknown coefficients
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involving cosines of multiples of the colatitude. Then by measuring
the lengths of degrees of the meridian in various latitudes we find the
corresponding values of the radius of curvature: and thus we obtain
equations for determining the unknown coefficients in the assumed
expression for the radius vector.

413. D’Alembert also suggests that observations of the Moon’s paral-
lax may be employed for information as to the figure of the Earth: but
he admits that practically this method would be of little value.

414. In pages 275…290, D’Alembert indicates a method for calculat-
ing the attraction of a spheroid on a particle at the surface. Suppose 𝑄 a
point of the surface, 𝐶 the point which may be called the centre of the
spheroid. D’Alembert proposes to consider the spheroid as composed of
two parts; one part being the sphere on 𝐶𝑄 as radius, and the other part
the difference between the sphere and the spheroid. He shews how the
approximate value of the attraction of the second part may be conve-
niently calculated.

It is obvious that the principle of this method is the same as that
which has since been developed by Laplace. D’Alembert gives only an
outline of his method here; he works it out in detail in the third volume
of the Recherches … Systême du Monde. We shall recur to it in our Article
424.

415. We now arrive at the third volume of the Recherches … Systême
du Monde. Here pages xix…xlii and 107…260 are devoted to the Figure
of the Earth.

416. In pages xix…xlii D’Alembert gives some introductory remarks
on the subject, the purport of which is to shew the uncertainty as to the
actual facts. It was possible to doubt whether the Earth was a figure of
revolution; granting it to be such, it was possible to doubt whether the
northern and the southern hemispheres were exactly alike; and granting
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that they were exactly alike, it was possible to doubt whether the figure
was that of an ellipsoid of revolution.

D’Alembert refers to six measured lengths which had to be considered
in testing any theory; five of these were arcs of meridians, namely, those
in Lapland, Peru, France, the Cape of Good Hope, and Italy: one was
an arc of longitude, in latitude 43° 32′. As to a degree of the meridian
in France, three lengths had been proposed; Picard gave 57060 toises; the
Academicians of the North corrected it to 57183 toises; and subsequently
it was put at 57074 toises: see Art. 236.

D’Alembert found it impossible to assign such a value of the elliptic-
ity as would harmonise the six measured lengths.

417. The following points of interest may be noticed in the introduc-
tory remarks by D’Alembert.

On page xxxii he says that a hemispherical mountain a league high
ought to make a pendulum deviate more than 1′ from the vertical; but
the high mountains in Peru scarcely produced a variation of 7″. It is easy
to verify his calculation, supposing the density of the mountain equal to
the mean density of the Earth. For the facts as to the mountains in Peru
see Bouguer’s Figure de la Terre, pages 364…394.

D’Alembert in a note on his page xl suggests, that in such a moun-
tainous country as Italy, the direction of the plumb-line may have been
disturbed, and thus an error produced in the measured length of a de-
gree.

D’Alembert refers to the figure of Jupiter as suggesting by analogy
what the figure of the Earth may be; but I do not understand all that
is said on this matter. The following passage occurs on pages xxxv and
xxxvi.

Car les observations nous prouvent que la surface de Jupiter est sujette à
des altérations sans comparaison plus considérables et plus fréquentes que celle
de la Terre; or si ces altérations n’influoient en rien sur la figure de l’équateur
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de Jupiter, pourquoi la figure de l’équateur de la Terre seroit-elle altérée par des
mouvemens beaucoup moindres?

I do not know what changes in Jupiter he refers to here.
Again he suggests that we should determine by observation whether

the figure of Jupiter is precisely that which theory would assign; but I
cannot see any practical value in the method which he proposes. He
states it thus on his page xli:

Pour cela il suffiroit de mesurer le parallele à l’équateur de Jupiter, qui en
seroit éloigné de 60 degrés; si ce parallele se trouvoit sensiblement égal ou inégal
à la moitié de l’équateur, le méridien de Jupiter seroit elliptique ou ne le seroit
pas.

It seems to me that supposing the observation could be made with
great accuracy it would afford but little information; if the parallel were
not exactly half of the equator, we should know that the meridian could
not be circular: but we could not in any case pronounce what the figure
must be from merely knowing the value of this parallel.

418. We now proceed to the text on pages 107…260.
A brief introduction commences the discussion. D’Alembert proposes

to examine the figure of the Earth, first astronomically, so far as obser-
vations make it known, and then physically by theory.

419. In the first three Chapters D’Alembert considers whether we can
by direct observations determine if certain hypotheses which are usu-
ally made are strictly true. Thus, for example, we usually assume that
the plane which contains the axis of the Earth and any given place will
also contain the vertical line at that place: this amounts practically to as-
suming that the Earth is a figure of revolution. D’Alembert shews that,
strictly speaking, this hypothesis may be untrue; for observations made
at any given place would not enable us to decide that the vertical did
or did not lie exactly in the plane containing the place and the axis of
the Earth. Again, we define the vertical direction at any place as that of
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falling bodies; and we know that this direction is perpendicular to the
surface of fluid at rest at the place: but this direction will not be neces-
sarily perpendicular to the surface of the solid Earth at the place. Now
D’Alembert shews that if the angle between these two directions is very
small we shall not be able to detect it by observations.

I do not give any detailed account of these Chapters, since the propo-
sitions are of such a kind that they readily commend themselves as rea-
sonable. The processes of D’Alembert require attention to understand
them; but they will be found to present no very serious difficulty.

420. D’Alembert’s fourth Chapter is entitled De la Figure de la Terre
dans les hypothèses ordinaires. This is of the same character as the por-
tion of the second volume of the Recherches which we described in Art.
412.

421. D’Alembert’s fifth Chapter is entitled Des parallaxes en tant
qu’elles dépendent de la figure de la Terre. The Earth being not a
sphere the parallax of the Moon will vary with the place of obser-
vation; D’Alembert investigates formulæ for the parallax: but these
investigations belong rather to Plane Astronomy than to Physical
Astronomy.

422. We now pass to D’Alembert’s second Section, which is entitled
De la figure de la Terre considérée physiquement.

423. The first Chapter, on pages 166…177, contains the investigation
of certain integrals which will be used in the sequel.

Thus, to take the first, required

∫
𝑑𝑡

√(1 − 𝑡2)
.

(1 − 𝑡2)𝑛

(𝑘2 + 𝑡2 − 𝑘2𝑡2)𝑛+1
,

𝑛 being a positive integer.
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D’Alembert assumes 𝑘2 + 𝑡2 − 𝑘2𝑡2 =
1

𝑠 + 1
; and then the integral

becomes
−

1
2(1 − 𝑘2)𝑛

∫
𝑠𝑛𝑑𝑠

√(𝑠 − 𝑘2𝑠 − 𝑘2𝑠2)
.

D’Alembert requires the integral between the limits 0 and 1 of 𝑡; to

these limits correspond
1 − 𝑘2

𝑘2
and 0 for 𝑠. He easily obtains the required

result by ordinary methods: we will verify by assuming sin2 𝜃 =
𝑘2𝑠

1 − 𝑘2
,

which reduces the integral to

1
𝑘2𝑛+1

∫
𝜋
2

0
sin2𝑛 𝜃𝑑𝜃,

and the value is
1

𝑘2𝑛+1
.
(2𝑛 − 1)(2𝑛 − 3)…1
2𝑛(2𝑛 − 2)…2

.
𝜋
2
.

D’Alembert arrives at the same result on his page 170; he apparently
gives twice this value, but he has really taken the integral twice over.

On his page 171, he professes, I think, to investigate the integral

∫
𝑑𝑡

√(1 − 𝑡2)
.

(1 − 𝑡2)
𝑛
2

(𝑘2 + 𝑡2 − 𝑘2𝑡2)
𝑛
2 +1

,

where 𝑛 is an odd positive integer; but his printing is not very distinct.
This integral transforms as before into

−
1

2(1 − 𝑘2)
𝑛
2
∫

𝑠
𝑛
2 𝑑𝑠

√(𝑠 − 𝑘2𝑠 − 𝑘2𝑠2)
.

It is unnecessary for his purpose to take any notice of the numerical fac-
tor which is here outside the integral sign; and so he omits it.
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He gives three times, namely on his pages 174, 176, and 177, the fol-
lowing result:

∫
2𝑟

0

𝑥(2𝑟𝑥 − 𝑥2)2

(2𝑟𝑥) 32
𝑑𝑥 =

16 × 8𝑟3

5 × 7 × 9
.

424. D’Alembert’s second Chapter, on pages 178…199, is entitled De
l’attraction d’un sphéroïde sur les corpuscules placés à sa surface; et de la
figure qui en résulte pour ce sphéroïde.

We begin with a general formula for the attraction of a spheroid on a
particle at the surface, resolved tangentially; we shall follow D’Alembert
as to principle, but we shall simplify the mere analytical work.

Let there be a point 𝑄 on the surface of a spheroid, let 𝑠 be the
distance of 𝑄 from a fixed point which we may call the centre of the
spheroid; let 𝜃 be the angular distance of 𝑄 from the pole. It is required
to find the attraction of the spheroid at 𝑄, resolved tangentially.

We assume that the spheroid is a figure of revolution. We may sup-
pose that the spheroid consists of a sphere of radius 𝑠, and an additional
shell: see Art. 414. We assume that the shell is at every point so thin that
it may be treated as if it were condensed on the surface of the sphere of
radius 𝑠. It is obvious that we need only consider the shell when we seek
the tangential attraction.
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Let 𝑅 be any other point on the surface of the spheroid; and let its
polar co-ordinates be 𝑠′ and 𝜃′. Let 𝑃 be the pole; put 𝜇 for the angle
which 𝑄𝑅 subtends at the centre, and 𝜓 for the angle 𝑃𝑄𝑅.

The element of spherical surface at 𝑅 may be denoted by
𝑠2 sin𝜇𝑑𝜇𝑑𝜓; and thus the element of mass of the shell may be denoted
by (𝑠′ − 𝑠)𝑠2 sin𝜇𝑑𝜇𝑑𝜓, taking the density as unity. The distance from

𝑄 is 2𝑠 sin
𝜇
2
. We first take the resolved part of the attraction along the

tangent to 𝑄𝑅 at 𝑄; and then we resolve this along the tangent to 𝑄𝑃 at
𝑄.

Thus we obtain

(𝑠′ − 𝑠)𝑠2 sin𝜇𝑑𝜇𝑑𝜓
cos

𝜇
2

(2𝑠 sin
𝜇
2
)
2 cos𝜓,

that is
(𝑠′ − 𝑠) cos2

𝜇
2
cos𝜓

2 sin
𝜇
2

𝑑𝜇𝑑𝜓.

If we integrate this expression between the limits 0 and 𝜋 for 𝜇, and
0 and 2𝜋 for 𝜓, we obtain the tangential attraction at 𝑄 towards the pole.

425. Now suppose, with D’Alembert, that

𝑠′ = 𝑟 + 𝑟𝛼(𝐴 + 𝐵 cos 𝜃′ + 𝐶 cos2 𝜃′ + 𝐷 cos3 𝜃′),

where 𝛼 is a very small constant, and 𝑟, 𝐴, 𝐵, 𝐶, 𝐷 are any constants: we
might suppose these constants connected by the relation 𝐴+𝐵+𝐶+𝐷 = 0,
and then 𝑟 would be the polar semi-axis of the spheroid. However we
will not use this supposition. Substitute this value of 𝑠′ in the expres-
sion of the preceding Article: then we see that the tangential attraction
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reduces to

𝛼𝑟
2
∫

𝜋

0
∫

2𝜋

0

cos2
𝜇
2
cos𝜓

sin
𝜇
2

(𝐵 cos 𝜃′ + 𝐶 cos2 𝜃′ + 𝐷 cos3 𝜃′) 𝑑𝜇 𝑑𝜓;

and
cos 𝜃′ = cos 𝜃 cos𝜇 + sin 𝜃 sin𝜇 cos𝜓.

We shall determine separately the values of the three parts of which
the integral is composed.

The term involving 𝐵 reduces to

𝛼𝑟𝐵
2

∫
𝜋

0
∫

2𝜋

0

cos2
𝜇
2
cos𝜓

sin
𝜇
2

sin 𝜃 sin𝜇 cos𝜓𝑑𝜇𝑑𝜓;

this
= 𝛼𝑟𝐵 sin 𝜃𝜋∫

𝜋

0
cos2

𝜇
2
𝑑𝜇 =

4𝜋
3
𝛼𝑟𝐵 sin 𝜃.

The term involving 𝐶 reduces to

𝛼𝑟𝐶∫
𝜋

0
∫

2𝜋

0

cos2
𝜇
2
cos𝜓

sin
𝜇
2

cos 𝜃 cos𝜇 sin 𝜃 sin𝜇 cos𝜓𝑑𝜇𝑑𝜓;

this

= 2𝛼𝑟𝐶 sin 𝜃 cos 𝜃𝜋∫
𝜋

0
cos3

𝜇
2
cos𝜇𝑑𝜇 =

8𝜋
5
𝛼𝑟𝐶 sin 𝜃 cos 𝜃.

The term involving 𝐷 reduces to

𝛼𝑟𝐷
2

∫
𝜋

0
∫

2𝜋

0

cos2
𝜇
2
cos𝜓

sin
𝜇
2

(3 cos2 𝜃 cos2 𝜇 sin 𝜃 sin𝜇 cos𝜓

+ sin3 𝜃 sin3 𝜇 cos3 𝜓) 𝑑𝜇 𝑑𝜓;
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this

= 𝛼𝑟𝐷 sin 𝜃 cos2 𝜃3𝜋∫
𝜋

0
cos3

𝜇
2
cos2 𝜇𝑑𝜇+𝛼𝑟𝐷 sin3 𝜃

3𝜋
4
∫

𝜋

0
cos3

𝜇
2
sin2 𝜇𝑑𝜇

=
76𝜋
35

𝛼𝑟𝐷 sin 𝜃 cos3 𝜃 +
16𝜋
35

𝛼𝑟𝐷 sin3 𝜃.

Thus the whole tangential attraction towards the pole is

4𝜋𝛼𝑟 (
𝐵
3
sin 𝜃 +

2𝐶
5
sin 𝜃 cos 𝜃 +

19𝐷
35

sin 𝜃 cos2 𝜃 +
4𝐷
35

sin3 𝜃) .

426. Let there be a solid sphere of radius 𝑟 and density 𝜎, surrounded
by a thin fluid stratum of density 𝜎′; and let the radius of the external
surface of this stratum be the 𝑠′ of Art. 425. We propose to enquire if
this fluid will remain in a state of relative equilibrium when rotating
with uniform angular velocity.

The attraction towards the centre may be taken as
4𝜋𝑟𝜎
3

; the resolved

part of this tangentially towards the pole is found to the order we require

by multiplying by
𝑑𝑠′

𝑠′𝑑𝜃′
, using 𝜃 instead of 𝜃′ in the result. Let 𝑗 denote

the ratio of the centrifugal force at the equator to the attraction there;

then
4𝜋𝑟𝜎
3

𝑗 sin 𝜃 cos 𝜃 from the pole is the tangential action of the cen-

trifugal force. Thus equating to zero the whole tangential force we get

4𝜋𝛼𝑟 (
𝐵
3
sin 𝜃 +

2𝐶
5
sin 𝜃 cos 𝜃 +

19𝐷
35

sin 𝜃 cos2 𝜃 +
4𝐷
35

sin3 𝜃) 𝜎′

−
4𝜋𝑟𝜎
3

𝑗 sin 𝜃 cos 𝜃−
4𝜋𝛼𝑟
3

(𝐵 sin 𝜃+2𝐶 sin 𝜃 cos 𝜃+3𝐷 sin 𝜃 cos2 𝜃)𝜎 = 0.
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Divide by sin 𝜃; then equate to zero the coefficients of the various
powers of cos 𝜃. Thus we obtain

𝐵𝜎′

3
+
4𝐷𝜎′

35
−
𝐵𝜎
3

= 0. (1)

2𝛼𝐶𝜎′

5
−
𝑗𝜎
3
−
2𝛼𝐶𝜎
3

= 0. (2)

15𝐷𝜎′

35
− 𝐷𝜎 = 0. (3)

From (3) we get 𝜎 =
3
7
𝜎′; then from (2) we get 𝛼𝐶 =

5𝑗
4
; and then

from (1) we get 𝐵 = −
3𝐷
5
.

D’Alembert has a wrong equation instead of (1), and so his value of
𝐵 is wrong; he corrects the error in his Opuscules Mathématiques, Vol.
vi. page 230.

It is remarkable, as D’Alembert says on his page 181, that the value
of 𝐶 is independent of 𝐵 and 𝐷, and is numerically the same as it would
be if we made 𝜎′ = 𝜎, and therefore 𝐵 and 𝐷 zero, but with the opposite
sign.

427. D’Alembert shews that the equation 𝑠′ = 𝑟 + 𝛼𝑟(𝐴 + 𝐵 cos 𝜃′)
represents a circle; supposing 𝛼 so small that its square may be
neglected. He states that on the same supposition the equation
𝑠′ = 𝑟 + 𝛼𝑟(𝐴 + 𝐵 cos 𝜃′ + 𝐶 cos2 𝜃′) represents an ellipse. See his pages
181…183. It is easy to verify these propositions.

428. D’Alembert proceeds to another case of relative equilibrium on
his page 183. He first states the value of the attraction towards its cen-
tre, produced by an oblatum of small excentricity on an external particle.
Suppose the polar semiaxis to be 𝑟, and the equatorial semiaxis 𝑟(1 + 𝛼)
where 𝛼 is very small; let 𝛿 be the distance of the attracted particle from
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the centre of the oblatum, 𝜃 the angle between the polar semiaxis and
the direction of 𝛿. Then he says that the value of the attraction towards
the centre is

4𝜋𝑟3

3𝛿2
+
8𝜋𝑟3𝛼
3𝛿2

+
4𝜋𝑟5𝛼
5𝛿4

−
12𝜋𝑟5𝛼 cos2 𝜃

5𝛿4
;

he says that this can be obtained by methods given further on, or by
other means.

We may easily verify this statement. If if 𝑀 be the mass of an obla-
tum, 𝑅 the polar semiaxis, 𝑒 the excentricity; then the attraction on a
particle at the distance 𝛿 from the centre on the polar axis produced, is
by Art. 261, approximately

𝑀
𝛿2

(1 −
3𝑒2𝑅2

5𝛿2
) .

Then use the theorem given by Clairaut, Art. 333; we have conse-
quently 𝑅 = 𝑟(1 + 𝛼 sin2 𝜃), and also 𝑅3(1 − 𝑒2)−1 = 𝑟3(1 + 𝛼)2; so that
𝑒2 = 2𝛼−3𝛼 sin2 𝜃. With these values of 𝑅 and 𝑒 we shall verify D’Alem-
bert’s statement.

429. Now suppose the Earth to consist of a solid oblatum of density
𝜎, surrounded by a thin layer of fluid of density 𝜎′; as an equivalent sup-
position we may take two coexistent oblata, the lesser of density 𝜎 − 𝜎′,
and the larger of density 𝜎′.

Let the polar and equatorial radii of the lesser oblatum be 𝑟(1 − 𝛽)
and 𝑟(1 − 𝛽)(1 + 𝛼′) respectively; and let those of the larger be 𝑟 and
𝑟(1 + 𝛼): we suppose 𝛼, 𝛼′, and 𝛽 so small that squares and products
may be neglected.

Let 𝑃 denote the gravity of a particle at the pole, and 𝜛 the gravity of
a particle at the equator; the particle being supposed to be on the outer
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surface. We shall find, by Art. 428, that

𝑃 =
4𝜋𝑟𝜎
3

− 4𝜋𝑟𝛽(𝜎 − 𝜎′) +
16𝜋𝑟(𝛼 − 𝛼′)𝜎′

15
+
16𝜋𝑟𝛼′𝜎

15
,

𝜛 =
4𝜋𝑟𝜎
3

− 4𝜋𝑟𝛽(𝜎 − 𝜎′) −
8𝜋𝑟𝛼𝜎
3

+
52𝜋𝑟(𝛼 − 𝛼′)𝜎′

15

+
52𝜋𝑟𝛼′𝜎

15
−
4𝜋𝑟𝜎𝑗
3

;

therefore,
𝑃 −𝜛
𝜛

= 2𝛼 + 𝑗 −
9(𝛼 − 𝛼′)𝜎′

5𝜎
−
9𝛼′

5
. (1)

But, by Art. 376, we have

𝛼 =
6𝛼′(𝜎 − 𝜎′) + 5𝑗𝜎

10𝜎 − 6𝜎′
. (2)

Substitute in (1) the value of 𝛼′ found from (2): thus we get

𝑃 −𝜛
𝜛

=
5𝑗
2
− 𝛼. (3)

Substitute in (3) for 𝛼 from (2); thus

𝑃 −𝜛
𝜛

=
5𝑗
4
+
3(𝜎 − 𝜎′)(5𝑗 − 4𝛼′)

2(10𝜎 − 6𝜎′)
. (4)

These results agree with D’Alembert’s on his page 186, but the nota-
tion is different.

It is obvious from (4) that if 𝜎−𝜎′ and 5𝑗−4𝛼′ are both positive, then
𝑃 −𝜛
𝜛

is greater than
5𝑗
4
; also if 𝜎 − 𝜎′ and 5𝑗 − 4𝛼′ are both negative,

and 10𝜎 − 6𝜎′ is positive, then
𝑃 −𝜛
𝜛

is greater than
5𝑗
4
. Also if 𝜎 − 𝜎′
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and 5𝑗 − 4𝛼′ are of contrary signs, and 10𝜎− 6𝜎′ is positive, then
𝑃 −𝜛
𝜛

is less than
5𝑗
4
.

430. It will be observed that the preceding investigation depends on
that which we have noticed in Art. 376, and which is not altogether sat-
isfactory, although D’Alembert seems to have been very fond of it. We
may also remark that if the layer of fluid is to surround the body com-
pletely, there must be a certain condition satisfied, namely, 1 − 𝛽 + 𝛼′
must be less than 1+𝛼: D’Alembert does not advert to this, but it is not
of much importance.

431. D’Alembert on his pages 187 and 188 makes some remarks on
Clairaut. D’Alembert here admits that Clairaut had already obtained the
result (3) of Art. 429; but D’Alembert says that Clairaut’s demonstration

was limited to the case in which 𝛼 is greater than
5𝑗
4
. D’Alembert also

states that Clairaut supposed the strata nearer to the centre to be the
denser, and also supposed that 𝛼 and 𝛼′ could only differ by a quantity
infinitesimal compared with 𝛼 or 𝛼′.

But these remarks are quite inapplicable. Clairaut believed the strata
nearer to the centre to be the denser; but he did not introduce this belief
in such a manner as to restrict his investigations. Clairaut does not limit

himself to the case in which 𝛼 is greater than
5𝑗
4
: D’Alembert seems to

have assumed that the quantity denoted by 𝐷 in Art. 327 is necessarily
positive, which it is not. Finally, Clairaut does not assume that the dif-
ference between 𝛼 and 𝛼′ is infinitesimal compared with 𝛼 and 𝛼′, when
the fluid is of finite thickness, but only when this thickness is infinites-
imal: see Art. 328.

D’Alembert certainly added nothing to the investigations given by
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Clairaut of the theorem which bears his name: in fact, D’Alembert
criticised these investigations before he had taken the trouble to
understand them.

432. It is curious to see D’Alembert devote a whole paragraph on his
pages 188 and 189 to a very elementary piece of Algebra. If we have
given that 12𝛼′(Δ−1) is greater than 15𝑁(Δ−1), we must not infer that
12𝛼′ is greater than 15𝑁, unless we know that Δ − 1 is positive.

D’Alembert repeats on his page 190 a remark which he had made at
an earlier date: see Art. 378.

433. D’Alembert investigates on his pages 191…197 the values of
some definite integrals which are useful in the sequel, namely, various

cases of ∫
2𝑟

0

𝑥𝑝𝑑𝑥
(𝑛2 + 2𝑛𝑥 + 2𝑟𝑥) 32

and ∫
2𝑟

0

𝑥𝑝𝑑𝑥
(𝑛2 − 2𝑛𝑥 + 2𝑟𝑥) 32

, obtained by

ascribing to 𝑝 various positive integral values. For example

∫
2𝑟

0

𝑑𝑥
(𝑛2 + 2𝑛𝑥 + 2𝑟𝑥) 32

=
2𝑟

𝑛(𝑟 + 𝑛)(2𝑟 + 𝑛)
,

and

∫
2𝑟

0

𝑑𝑥
(𝑛2 − 2𝑛𝑥 + 2𝑟𝑥) 32

=
2

𝑛(2𝑟 − 𝑛)
.

We suppose that 2𝑟 is greater than 𝑛. We observe that the second of
these two examples cannot be deduced from the first by changing the
sign of 𝑛.

434. D’Alembert makes some remarks on his pages 198 and 199 on
the attraction of a spherical shell. He takes 𝑟 for the radius of the shell,

and
4𝜋𝑟2

𝛿2
for the attraction on a particle outside the shell at a distance 𝛿

from the centre: thus he does not introduce any factor to represent the
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thickness of the shell. When the particle is inside the shell the attraction
is zero. He adds:

De-là il me semble qu’on peut conclure que l’attraction d’une surface
sphérique sur un point placé sur cette surface même, n’est pas 4𝜋, comme il
paroît qu’on l’a crû jusqu’ à présent, mais seulement 2𝜋.

If it be necessary to put the idea into words, it would be better to say
that the attraction of a spherical film on a particle which forms part of
the film is 2𝜋.

D’Alembert recurs to the subject of the attraction of a spherical film
in the article Gravitation of the original Encyclopédie and in the first vol-
ume of his Opuscules Mathématiques.

435. D’Alembert illustrates his remarks on the attraction of a spheri-
cal film by the following statement on his page 199:

Les Géometres ne sont pas tout-à-fait étrangers à ces sortes de paradoxes,
d’une quantité qui s’évanouit tout d’un coup sans disparoître par degrés. Ainsi
la courbe 𝑦 = √𝑎𝑥 + 4√𝑎3(𝑏 + 𝑥) qui est du 8e degré tant que 𝑏 n’est pas = 0,
perd subitement plusieurs branches lorsque 𝑏 = 0, parce que l’équation du 8e

degré se réduit alors au 4e. Voyez les Mémoires de l’Académie de Berlin 1749, page
146. Dans le premier cas, cette courbe a un diametre; dans le cas de 𝑏 = 0, elle
n’en a plus.

This illustration does not seem to me very good: it may justly be
maintained that the above equation when properly understood is of the
8th degree, even when 𝑏 = 0.

436. D’Alembert’s third Chapter, on pages 200…213 is entitled Prob-
lêmes nécessaires pour généraliser les recherches précédentes. This Chapter
consists of various definite integrals which are required by D’Alembert in
his process for calculating the attraction of a spheroid. These definite in-

tegrals depend mainly on the values of ∫
−𝑟

𝑟

𝑢𝑝𝑑𝑢
(𝛿2 + 𝑟2 − 2𝛿𝑢) 32

, when for
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𝑝 we put in succession 0, 1, 2, 3, 4, 5, 6. Here 𝛿 and 𝑟 are constants: the
integrals present different values according as 𝛿 is greater or less than 𝑟.

D’Alembert puzzles his readers by taking 1 and −1 as the limits of
𝑢 on his pages 201, 202, and 208; but except on these pages the limits
are those which I have stated, namely 𝑟 and −𝑟. His results are correct,
allowing for a few obvious misprints.

437. D’Alembert’s fourth Chapter, on pages 214…246 is entitled Us-
ages des Problêmes précédens, pour déterminer l’attraction du sphéroïde sur
un corpuscule quelconque.

He determines the attraction which a certain spheroid of revolution
exerts on a particle, external or internal, at right angles to the radius vec-
tor, and along the radius vector; these he calls respectively the horizontal
and vertical attractions.

He states the results, having previously given the values of certain
definite integrals which are required.

We will explain how these results may be verified; the method we
shall adopt is that which we have already used in Art. 424.

Let 𝐶 denote the centre of the spheroid, 𝐶𝑃 the semi-axis of revolu-
tion, 𝑄 any point on the surface having for its polar coordinates 𝑠 and 𝜃.
Produce 𝐶𝑄 to any point 𝑞. It is required to find the horizontal attraction
on a particle at 𝑞. Let 𝐶𝑞 = 𝛿.
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Let 𝑅 be any point on the surface having for its polar coordinates 𝑠′
and 𝜃′. We suppose that the spheroid consists of a sphere of radius 𝑠
and an additional shell.

Let the angle 𝑃𝑄𝑅 be denoted by 𝜓, and the angle 𝑄𝐶𝑅 by 𝜇.
The element of the shell at 𝑅 = 𝑠2(𝑠′ − 𝑠) sin𝜇𝑑𝜇𝑑𝜓.

The distance 𝑅𝑞 = (𝑠′2 + 𝛿2 − 2𝑠′𝛿 cos𝜇) 12 .
The resolved attraction of the element in the plane 𝑅𝐶𝑞 at right an-

gles to 𝐶𝑞 is therefore

𝑠′ sin𝜇𝑠2(𝑠′ − 𝑠) sin𝜇𝑑𝜇𝑑𝜓
(𝑠′2 + 𝛿2 − 2𝑠′𝛿 cos𝜇) 32

and resolving along the plane 𝑃𝐶𝑞 we get

𝑠′ sin𝜇 cos𝜓𝑠2(𝑠′ − 𝑠) sin𝜇𝑑𝜇𝑑𝜓
(𝑠′2 + 𝛿2 − 2𝑠′𝛿 cos𝜇) 32

We have to integrate this between the limits 0 and 𝜋 for 𝜇, and 0 and
2𝜋 for 𝜓; then we obtain the horizontal attraction at 𝑞 towards 𝑃.

We suppose with D’Alembert that 𝑠′ has the value given in Art. 425.
We shall obtain by effecting the integrations, neglecting the square of

𝛼,

𝜋𝛼 sin 𝜃 {
4𝐵𝑟4

3𝛿3
+
8𝐶𝑟5

5𝛿4
cos 𝜃 +

4𝐷𝑟4

5𝛿3
−
12𝐷𝑟6

35𝛿5
+
12𝐷𝑟6

7𝛿5
cos2 𝜃} .

In like manner if 𝑞 be between 𝐶 and 𝑄 instead of on 𝐶𝑄 produced,
and 𝐶𝑞 be called 𝛿 as before, we obtain for the horizontal attraction

𝜋𝛼 sin 𝜃 {
4𝐵𝑟4

3
+
8𝐶𝛿
5

cos 𝜃 +
4𝐷𝑟
5

−
12𝐷𝛿2

35𝑟
+
12𝐷𝛿2

7𝑟
cos2 𝜃} .

These expressions must be multiplied by a factor to represent the den-
sity, if the density is not unity.



d’alembert. 333

When 𝛿 = 𝑟 these expressions both coincide, as they should do, with
that given in Art. 425.

438. The attraction at 𝑞 in the direction at right angles to the merid-
ian plane of 𝑞 will be zero, since the spheroid is supposed a figure of
revolution. D’Alembert himself makes the remark on his page 216. He
adds however that this can also be seen by calculation; and he gives some
calculations, which I do not find to be intelligible.

439. In Art. 437 we have investigated expressions for the horizontal
attraction of the spheroid supposed homogeneous. D’Alembert deduces
on his page 218 the attraction of such a spheroid on an included parti-
cle when the spheroid is composed of indefinitely thin shells of varying
density: the process is the same as we have already found was used by
Clairaut. See Arts. 323 and 336.

440. In order to obtain the whole action along the tangent to the
meridian curve at any point, we must as in Art. 426 add to the horizontal
attraction the resolved part of the vertical attraction along the tangent,
and also the resolved part of the centrifugal force.

441. Next we proceed to find the vertical attraction on the particle at
𝑞.

Suppose the particle outside the spheroid. The vertical action of the
sphere of radius 𝑠

=
4𝜋𝑠3

3𝛿2
=
4𝜋𝑟3

3𝛿2
(1 + 3𝛼𝐴 + 3𝛼𝐵 cos 𝜃 + 3𝛼𝐶 cos2 𝜃 + 3𝛼𝐷 cos3 𝜃).

We must now determine the vertical action of the shell. As in Art.
437 we find that this is

∫
𝜋

0
∫

2𝜋

0

(𝛿 − 𝑠′ cos𝜇)𝑠2(𝑠′ − 𝑠) sin𝜇𝑑𝜇𝑑𝜓
(𝑠′2 + 𝛿2 − 2𝑠′𝛿 cos𝜇) 32

.
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By effecting the integrations we obtain for the whole vertical attrac-
tion

4𝜋𝑟3

3𝛿2
(1 + 3𝛼𝐴 + 𝛼𝐶) −

4𝜋𝑟5𝛼𝐶
5𝛿4

+ 𝜋𝛼 cos 𝜃 {(
𝐵
3
+
𝐷
5
)
8𝑟4

𝛿3
−
48𝐷𝑟6

35𝛿5
}

+𝜋𝛼 cos2 𝜃
12𝐶𝑟5

5𝛿4
+ 𝜋𝛼 cos3 𝜃

16𝐷𝑟6

7𝛿5
.

In like manner if the attracted particle be inside the spheroid, the
whole vertical attraction is

4𝜋𝛿
3

+
8𝜋𝛼𝐶𝛿
15

+ 𝜋𝛼 cos 𝜃 {−
4𝐵𝑟
3

−
4𝐷𝑟
5

+
36𝐷𝛿2

35𝑟
}

−𝜋𝛼 cos2 𝜃
8𝐶𝛿
5

− 𝜋𝛼 cos3 𝜃
12𝐷𝛿2

7𝑟
.

For a point on the surface we must put in either of these results
𝛿 = 𝑟(1 + 𝛼𝐴 + 𝛼𝐵 cos 𝜃 + 𝛼𝐶 cos2 𝜃 + 𝛼𝐷 cos3 𝜃): it will be found that
each of them becomes then

4𝜋𝑟
3

(1 + 𝛼𝐴 +
2𝛼𝐶
5

) + 𝜋𝛼 cos 𝜃
8𝐷𝑟
35

− 𝜋𝛼 cos2 𝜃
4𝐶𝑟
15

− 𝜋𝛼 cos3 𝜃
8𝐷𝑟
21

.

These expressions must be multiplied by a factor to represent the den-
sity, if the density is not unity. Then as in Art. 439 we can obtain the
vertical attraction for a spheroid composed of indefinitely thin strata of
varying density.

442. D’Alembert now discusses the relative equilibrium of homoge-
neous fluid surrounding a solid nucleus composed of strata of varying
density: see his page 222. The problem is thus an extension of that in
Art. 426, and it is solved in the same manner. There is no difficulty in
the hydrostatical part of the problem; for since the fluid is homogeneous
it is sufficient for equilibrium that the tangential action at every point of
the surface should be zero.
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If we equate to zero this tangential action, we obtain a result of the
form

sin 𝜃(𝑀0 +𝑀1 cos 𝜃 +𝑀2 cos2 𝜃) = 0,

where 𝑀0, 𝑀1, and 𝑀2 are independent of 𝜃. This leads, as in Art. 426,
to three equations

𝑀0 = 0, 𝑀1 = 0, 𝑀2 = 0.

D’Alembert gives these three equations on his pages 222…225.

443. We must be careful as to the notation, since many symbols are
required. D’Alembert leaves his notation to explain itself, and it is not
very inviting. I shall use the subscript 1 to denote values relating to the
external boundary of the fluid; and I shall use 𝜌 as a general symbol for
the density. Then the three equations are

0 =
4𝜋𝛼
3𝛿3

∫
𝑟1

0
𝜌
𝑑
𝑑𝑟
(𝐵𝑟4)𝑑𝑟 +

4𝜋𝛼
35𝛿5

∫
𝑟1

0
𝜌
𝑑
𝑑𝑟
𝐷(7𝑟4𝛿2 − 3𝑟6)𝑑𝑟

−
4𝜋𝛼𝐵1
𝛿2

∫
𝑟1

0
𝜌𝑟2𝑑𝑟,

0 =
8𝜋𝛼
5𝛿4

∫
𝑟1

0
𝜌
𝑑
𝑑𝑟
(𝐶𝑟5)𝑑𝑟 −

8𝜋𝛼𝐶1
𝛿2

∫
𝑟1

0
𝜌𝑟2𝑑𝑟 − 𝜔2𝑟1

0 =
12𝜋𝛼
7𝛿5

∫
𝑟1

0
𝜌
𝑑
𝑑𝑟
(𝐷𝑟6)𝑑𝑟 −

12𝜋𝛼𝐷1
𝛿2

∫
𝑟1

0
𝜌𝑟2𝑑𝑟.

These equations may be developed. I shall use the subscript 0 to de-
note values relating to the internal boundary of the fluid. Then between
the limits 𝑟0 and 𝑟1 the density is constant, by hypothesis; I shall denote
it by 𝜎. Also for 𝛿 we must put 𝑟1 to the order which we wish to retain.

I will now express the second of the three equations in the modified
form which arises from the use of the notation just explained; the other
two equations may be similarly expressed.
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In this equation 𝜔 denotes the angular velocity; and I shall put as

usual 𝑗 for
𝜔2𝑟1

4𝜋
𝑟12

∫
𝑟1

0
𝜌𝑟2𝑑𝑟

. Thus we have

2𝛼𝜎
5𝑟14

(𝑟15𝐶1 − 𝑟50𝐶0) +
2𝛼
5𝑟14

∫
𝑟0

0
𝜌
𝑑
𝑑𝑟
(𝐶𝑟5)𝑑𝑟

=
2𝐶1𝛼 + 𝑗

𝑟12
{
𝜎
3
(𝑟13 − 𝑟30 ) +∫

𝑟1

0
𝜌𝑟2𝑑𝑟} .

This equation corresponds with D’Alembert’s on page 225; he puts it
so as to express 𝛼 in terms of the other quantities. He takes 𝑟1 = 1 and
𝐶1 = 1, which he may do; but then by mistake or misprint he also takes
𝐶0 = 1, which he ought not to do. This equation also exactly corresponds
with equation (3) in Art. 324; the 𝛼𝐶 of the present Article is the −𝜖 of
that Article.

444. D’Alembert passes on his page 225 to the problem in which the
entire spheroid is fluid, and is composed of indefinitely thin strata of
varying densities. He treats this problem according to his own peculiar
views of hydrostatical principles. He arrives at three general equations,
each of which presents itself in a primary and in a derived form, like
Clairaut’s equation of Arts. 341 and 343.

D’Alembert’s peculiar views lead him astray, and the consequence is
what we have already seen in Art. 405, namely, that the results which he
obtains are much more complicated than they should have been.

For instance the third equation, with the notation of Art. 405, is pre-
sented thus in its derived form by D’Alembert:

𝑑2𝐷
𝑑𝑟2

+
2𝜌𝑟2

Υ(𝑟)
𝑑𝐷
𝑑𝑟

− {
12
𝑟2

−
2𝜌𝑟
Υ(𝑟)}

𝐷 =
𝑟3𝑁
Υ(𝑟)

𝑑
𝑑𝑟

{
1
𝑟6

𝑑
𝑑𝑟

(
𝜌
𝑟
𝑑𝑟
𝑑𝜌

)} ,

where 𝑁 is a constant. But the correct form is that in which the right-
hand member is zero.
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His second equation is precisely the same as (5) of Art. 405, with 𝐶
instead of 𝜖; the error and the correction are the same as we have already
indicated in that Article.

In like manner the derived form of D’Alembert’s first equation is sim-
ilarly embarrassed with a superfluous term. The 𝐾 which occurs on his
page 231 should be zero. D’Alembert admitted his errors in the fifth vol-
ume of his Opuscules Mathématiques, page 5.

445. These differential equations for 𝐶 and 𝐷, when written correctly
with zero on the right-hand side, are cases of the general equation, which
Laplace’s functions must satisfy, in Laplace’s Theory of the Figure of the
Earth. This general equation is

𝑑2𝑌𝑖
𝑑𝑟2

Υ(𝑟)
𝑟𝑖

+
2𝜌
𝑟𝑖−2

𝑑𝑌𝑖
𝑑𝑟

+ 𝑌𝑖 {
2𝜌
𝑟𝑖−1

−
𝑖(𝑖 + 1)Υ(𝑟)

𝑟𝑖+2
} = 0.

If we put 2 for 𝑖 we arrive at the same differential equation for 𝑌2 as
for D’Alembert’s symbol 𝐶; and if we put 3 for 𝑖 we arrive at the same
differential equation for 𝑌3 as for D’Alembert’s symbol 𝐷.

Laplace shews that 𝑌3 must be zero. If we put 𝐷 = 0 in the differen-
tial equation for D’Alembert’s symbol 𝐵, we find that this is the same as
the above when 1 is put for 𝑖.

446. D’Alembert makes some remarks on the integration of the dif-
ferential equations which have been obtained; see his pages 231…234.
By transformation he arrives at an equation which he says is integrable
in several cases; he gives three cases: they are however unintelligible to
me.

447. On his pages 234…244 D’Alembert extends the calculation of
the horizontal and vertical attractions which we have noticed in Arts.
437…441: he introduces two new terms into the expression for the radius
vector of the attracting body, namely, 𝛼𝑟(𝐸 cos4 𝜃′ + 𝐹 cos5 𝜃′).
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I have found on going over the calculation that there are numerous
misprints or errors in his results.

448. On his page 245 D’Alembert takes the case of a spheroid com-
posed of two fluids of different densities; he says that the figures of the
upper and lower strata must be determined by the law of the perpendic-
ularity of the action to each of the strata. He adds:

Car dans le cas où les couches voisines different entr’elles sensiblement par
la densité, et ont une épaisseur finie, la pesanteur doit être perpendiculaire à
chacune. Voyez l’Appendice de mon Essai sur la résistance des fluides.

The statement he makes here about the conditions of equilibrium is
true; but the reference to the Essai sur la résistance des Fluides is very
remarkable: for the doctrine maintained in the Essai is precisely the re-
verse of that which is here affirmed in the Recherches. We read in the
Essai on page 206:

Supposons maintenant que le Fluide soit composé de plusieurs couches dif-
féremment denses, et dont la différence de densités soit finie; je dis que le Flu-
ide pourra encore être en équilibre, quoique les surfaces qui séparent ces dif-
férentes couches ne soient point de niveau….

Suppose 𝑝 the pressure at any point of the surface bounding fluids of
different densities. Let 𝑆 be the force, if any, resolved along a tangent to
the surface. Then proceeding along an element of this tangent we should
have in one fluid 𝑑𝑝 = 𝜌𝑆𝑑𝑠, and in the other fluid 𝑑𝑝 = 𝜌′𝑆𝑑𝑠, where
𝜌 and 𝜌′ are unequal. But these values of 𝑑𝑝 must be equal; therefore 𝑆
must = 0.

This assumes that there is no discontinuity in the forces acting at the
common surface. In the remarks on page 206, D’Alembert’s Essai, which
follow and support the words we have quoted, he allows a discontinuity
to occur in the forces.

449. D’Alembert’s fifth Chapter, on pages 247…260 is entitled De l’at-
traction d’un sphéroïde qui n’est pas un solide de révolution. This Chapter
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is not important; it merely indicates how we ought to proceed, and shews
that in some cases the integrations could be effected.

450. On his page 256 he makes a mistake to which I have drawn
attention in Art. 381. He says:

J’ai fait voir, par exemple, dans mes Recherches sur la cause des vents art.
84. no. 10. qu’un sphéroïde elliptique, homogene et fluide, tournant autour de
son axe, ne pouvoit subsister, si les méridiens n’étoient pas tous égaux et sem-
blables;…

451. On his page 258 he alludes to the case in which we require
the attraction, not of a whole spheroid, but of a segment of a spheroid.
Then on his page 259 he takes for special consideration the case of a
semi-spheroid; but his first paragraph is unintelligible to me: in his sec-
ond paragraph he asserts that the attraction along the radius of a semi-
spheroid is half the attraction of the whole spheroid, which, however, is
not necessarily true of any semi-spheroid, though it would be true if the
whole spheroid were cut symmetrically into two halves.

452. Let us now appreciate the contributions to our subject which
D’Alembert made in his Recherches … Systême du Monde.

The method of estimating the attraction of a spheroid by resolving
the body into a sphere and a thin additional shell, which is here system-
atically employed, is very valuable.

Assuming that the radius vector of a spheroid is

𝑟 + 𝛼𝑟(𝐴 + 𝐵 cos 𝜃′ + 𝐶 cos2 𝜃′ + 𝐷 cos3 𝜃′ + 𝐸 cos4 𝜃′ + 𝐹 cos5 𝜃′)

where 𝛼 is very small, he gives expressions for the resolved attractions on
any particle, external or internal, the spheroid being either homogeneous
or composed of indefinitely thin strata of varying density. The calcula-
tions are laborious; and though D’Alembert’s results are not free from
error, yet they furnish useful information.
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Retaining the terms in the radius vector as far as 𝐷 cos3 𝜃′ inclusive,
D’Alembert gave the equations which must be satisfied by 𝐵, 𝐶, 𝐷, sup-
posed variable, to ensure the relative equilibrium of a fluid mass. His
equations are encumbered with terms which are really non-existent; but
still in their derived forms the remarkable similarity between them to
which we have drawn attention in Art. 445 is made apparent. I consider
it to be quite possible that this similarity may have struck the attention
of Legendre and Laplace, and thus contributed to the construction of the
general equation.

As I have already hinted, D’Alembert himself over estimated the
value of the conclusions that he drew from his peculiar views of
Hydrostatics. In the preface to the third volume of these Recherches
… Systême du Monde, page xxxvi, he states that hitherto the Theory of
the Figure of the Earth had been restricted to verifying the agreement
of the elliptic figure with the laws of Hydrostatics; and then adds, “j’ai
trouvé de plus, et je le démontre dans cet Ouvrage, qu’il y a une infinité
d’autres figures qui s’accordent avec ces loix, surtout si on ne suppose
pas la Terre entierement homogene.” This, however, as we now know is
unsatisfactory. For instance, D’Alembert indeed arrives at an equation
which his symbol 𝐷 must satisfy, as we saw in Art. 444; but he does
not solve the equation, and so shew that 𝐷 is a real quantity: on the
contrary, Laplace, in fact, shews that 𝐷 must be zero.



CHAPTER XIV.

BOSCOVICH AND STAY.

453. The present Chapter will contain an account of the contribu-
tions made by Boscovich to our subject, together with a notice of the
poem by Stay to which Boscovich added copious explanations.

454. In 1750 two Jesuits, Maire and Boscovich, began to measure
an arc of the meridian in the Papal States. The account of the survey
appeared at Rome in 1755, under the title De Litteraria Expeditione per
Pontificiam Ditionem. The volume is in quarto; it consists of Title, Dedi-
cation, Preface, and Index in xxii pages, and the text in 516 pages: there
are three pages of Errata, and four Plates. A French translation was pub-
lished at Paris in 1770.

The dedication is to Benedict XIV., by whose command the survey
was executed: behind the cloud of incense raised by the authors, we may
discern the figure of a sagacious and enlightened Pontiff.

455. The book is divided into five parts. The first gives the history of
the proceedings, the second the calculations for the determination of the
length of a degree of the meridian, the third the correction of the map
of the district, the fourth an account of the instruments employed, the
fifth a treatise on the Figure of the Earth. The second and third parts
are by Maire; the others are by Boscovich.

I shall not enter into any examination of the practical operations
recorded in the volume; they have been criticised by De Zach in his
Correspondance Astronomique, Vol. vl: see however, Airy’s Article on
the Figure of the Earth, in the Encyclopædia Metropolitana, page 207.

456. The fifth part of the book is that which we have to examine, This
occupies pages 385…516, and is entitled De Figura Telluris determinanda
ex æquilibrio, et ex mensura graduum. After a few introductory sentences,
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the treatise is divided into two Chapters: the first, extending to page 481,
relates to the Figure of the Earth, as deduced from the theory of fluid
equilibrium; the second relates to the Figure of the Earth as determined
by the measure of degrees.

457. It must be observed that before the publication of the book,
Boscovich had issued various dissertations, bearing more or less on our
subject: these seem to have been academical exercises which he delivered
in his character of professor at the Roman College. I have not seen any
of these dissertations. Boscovich refers to them generally on pages xviii
and 386 of the book: from the latter page it appears that few copies of
the exercises were printed, and of these the larger part perished. Proba-
bly the treatise reproduces all that was valuable with respect to our sub-
ject in the previous publications. The dates and titles of some of these
dissertations are given in the pages of the work which I have recorded
after them:

1738. De Telluris figura, 23.
1739. De figura Telluris, 395, 399, 445, 447, 487. Perhaps we may

infer from the last three lines on page 445, that this was reprinted in a
subsequent year.

1741. De Inæqualitate Gravitatis, 23.
1742. De Observationibus Astronomicis, 23, 475.
1748. De Maris Æstu, 390.
De Lege virium in natura existentium, 416. The date is not stated,

but it is said exposui nuper.
I give the titles as I find them: it is possible however, that there may

be only one dissertation instead of the two which appear dated 1738 and
1739.

458. The work of Boscovich, to which we now proceed, may be
described in general as out of date, even when first published: it
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is chiefly written in an antiquated geometrical fashion, which one
would have thought little likely to be adopted for this subject after the
appearance of Clairaut’s treatise. The Latin seems to me much more
elaborate than is usual in the scientific literature of the period: this
might perhaps have been expected from an Italian and a Jesuit.

459. Up to his page 417, Boscovich considers the case of homoge-
neous fluid attracted to a fixed point by a force which is any function of
the distance, and rotating with uniform angular velocity round an axis
through the fixed point: the analytical solution of this problem is very
short and simple, as we have seen in Art. 56. Boscovich gives correct
but tedious geometrical constructions, and devotes special attention to
two cases, namely, that in which the force is constant, and that in which
it varies as the distance: in this way he contrives to fill thirty pages.

Boscovich gives on his page 399 a good elementary investigation like
that on Clairaut’s page 143: see Art. 297.

460. A strange mistake occurs on pages 411 and 412. Boscovich has
assumed a value for the radius of the equator, and has found as usual
that the ratio of the centrifugal force at the equator to the attraction
there, is that of 1 to 289. He adds:

… Si gradus æquatoris fuerit major, vel minor, in eadem ratione duplicata
major, vel minor erit sinus versus arcus similis, adeoque et vis centrifuga, et
proinde in eadem ratione duplicata minuendus erit posterior proportionis nu-
merus.

But the word duplicata ought to be omitted: moreover, corresponding
to the words vel minor, the words vel augendus should be inserted after
minuendus.

461. On his page 417, Boscovich says that he will investigate the Fig-
ure of the Earth on the Newtonian hypothesis of gravity, and will illus-
trate in the first place Maclaurin’s solution: Boscovich refers to Maclau-
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rin’s Prize Essay on the Tides, and not to the more complete investigations
contained in the Fluxions.

Thus from page 417 to page 448, Boscovich may be said to reproduce
in substance Maclaurin’s discussion of the relative equilibrium of a mass
of homogeneous rotating fluid. We shall only have to notice a few mat-
ters which present some novelty.

462. Boscovich begins with a demonstration of a theorem in Conic
Sections which forms the fourth Corollary to the first Lemma in Maclau-
rin’s Essay. Boscovich considers his own demonstration, which is geo-
metrical, more simple and more elegant than an analytical demonstra-
tion, which he ascribes to Calandrinus, printed in what we call the Je-
suits’ edition of the Principia. Boscovich does not remark that Clairaut
had already given a very good demonstration by the method of projec-
tions: see Clairaut’s page 159.

463. On his page 424, Boscovich enunciates the following theorem:
Si in massa quadam fluida particulæ omnes ejusmodi viribus animatæ sint,

ut assumpto intra eam puncto quocumque, bini quicumque canales rectilinei
ducti inde ad superficiem extimam in æquilibrio sint, ea massa erit in æquilib-
rio.

In his demonstration he shews that if at every point rectilinear
columns are in equilibrium, so also are curvilinear canals of every form,
and that a particle at the surface has no tendency to move. The part
relating to curvilinear canals is the most interesting: this, however,
had already been formally treated by D’Alembert in his Essai sur la
Résistance des Fluides, page 15.

On his page 432, Boscovich supplies in fact a demonstration of what
Maclaurin contented himself with affirming in the words “in like manner
it is shewn”: see Art. 245.

464. Boscovich has to compare the attractions of an oblatum on a
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particle at the pole and at the equator respectively. After remarking on
page 435, that Newton had shewn how to calculate the attraction at the
pole, Boscovich adds:

… sed pro puncto posito in æquatore rem nequaquam perfecit, verum crassa
quadam æstimatione invenit utcumque pro ellipsoide data, et parum abludente
a sphæra. Mac-Lavrinus multo sane elegantius accuratissime, et felicissime rem
perfecit tam pro puncto posito in polo, quam pro puncto posito in æquatore;…

However, Boscovich says that he will himself adopt a method which
is nearly the same as Bernoulli’s; it is the method, really due to Clairaut,
which we have noticed in Arts. 165 and 233. Boscovich professes to
use Geometry alone: but the Geometry consists chiefly in denoting the
length of every straight line by two capital letters instead of a single
small letter: this strange notion of Geometry has survived to our own
times in the University of Cambridge.

465. Boscovich arrives at the usual result for the attraction of the
excess of an oblatum over the inscribed sphere, on a particle at the pole;
and with some enthusiasm he says on his page 438, Et ea quidem est
elegantissima, et simplicissima expressio ejus vis.

From this result he deduces very briefly and easily the attraction of
the excess of a sphere over the inscribed oblatum on a particle at the
equator: see his page 439.

Hence finally he arrives at the equation which we have frequently

given in our notation; namely 𝜖 =
5𝑗
4
: see his page 441.

466. A digression on pages 442…447 is devoted by Boscovich to Her-
mann. I have already noticed Hermann’s Phoronomia, and I presume
this is the work Boscovich has in view; but it does not seem so obvious
to me as to Boscovich, that Hermann held Newton and David Gregory
to be wrong: see Art. 95. Boscovich says on his page 442:

Et quidem Hermannus censuit, hanc ipsam suam Ellipsim esse illam, quæ



boscovich. 346

in Newtoniana gravitatis theoria debeat obvenire, ac Gregorium, et Newtonum
ipsum culpandos existimavit, quod ii id ipsum non viderint, et plusquam duplo
majorem justo compressionem Telluri tribuerint, quam ipsa illorum principia
postularent. At Hermannus ipse in eo erravit sane quamplurimum,…

The ipsum after Newtonum marks Boscovich’s opinion of Hermann’s
audacity.

The digression is interesting because Boscovich allows that he was
himself for a time to some extent misled by Hermann. Boscovich in
1739 was thus induced to suspect that the oblatum, which Newton had
assumed without demonstration, was not a possible form for relative
equilibrium; but in the following year Maclaurin’s demonstration settled
the matter, and then Boscovich was led to investigate the cause of
Hermann’s error: accordingly he points out what he considers to be the
erroris primus fons, and the alter ejusdem erroris fons.

It may be doubted whether Boscovich himself was quite clear on the
subject; he appears to fall into the mistake which has been pointed out in
Art. 33, for he does not introduce the important condition involved in the
words resolved along the radius: see his page 443. But in his commentary
on Stay’s poem, at a rather later date, he is quite correct: see his Article
244 on pages 371 and 372 of Vol. ii.

467. On his page 448, Boscovich gives an elegant investigation of the
diminution of gravity in passing from the pole to the equator. But by
gravity he really means gravity resolved along the radius, which is not
strictly the same as the gravity which is measured by observations: see
Art. 34.

468. Boscovich now proceeds to consider the Figure of the Earth
when it is not supposed to be homogeneous. He assumes that there
is a spherical homogeneous nucleus surrounded by fluid which is also
homogeneous, but not of the same density as the nucleus: to this dis-
cussion he devotes his pages 448…457. The investigation is tedious, but
was probably considered by the author to be a choice specimen of his
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geometrical methods. Although the whole discussion was quite super-
fluous after the publication of Clairaut’s treatise, yet there is one matter
of principle in which Boscovich is rather superior to Maclaurin. As we
have already stated, when Maclaurin supposed the earth to be fluid, but
not homogeneous, he did not demonstrate that the whole mass would be
in equilibrium; see Arts. 264, 267, 269. Boscovich shews by his language
that he saw this difficulty; he says on his page 458:

… Idcirco ego, ut methodum canalium tuto adhiberem, massam solidam
prius ad homogeneitatem adduxi, amandata in centrum redundante materia,
tum dissolvi.

We will give a notion of Boscovich’s method. Suppose we have to
consider the case in which there is a homogeneous fluid surrounding a
solid spherical nucleus; and let the density in the nucleus be a function
of the distance from the centre. Reduce the density of the nucleus to
that of the fluid, and put a force at the centre, producing an attraction
equal to that of the excess of the solid nucleus above an equal volume
of fluid. Then suppose the nucleus to become fluid. If the additional
force at the centre attracted as the distance from the centre, we should
thus obtain a problem which has been fully discussed by Maclaurin; for
he has considered forces varying as the distance from the axis and from
the plane of the equator, besides the attraction of the fluid: see Art. 245.
Boscovich then by a supplementary investigation has to allow for the dif-
ference between his supposed force at the centre which attracts as the
distance, and the real force which would attract inversely as the square
of the distance.

469. Boscovich obtains a result which, as he says, had previously
been given by D’Alembert and Clairaut: see Art. 377.

Boscovich points out that the result differs from one which Daniel
Bernoulli had given in his Essay on the Tides, and which had been crit-
icised by D’Alembert. I do not stay to discuss the point, as it does not
strictly belong to our subject but to that of the Tides. See D’Alembert’s
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Réflexions sur … des Vents, page 56; Laplace’s Mécanique Céleste, Vol. v.
page 150; and page 8 of Lubbock’s work mentioned in Art. 233.

It may however be observed that Boscovich seems to have supposed
that D. Bernoulli’s result ought to have coincided with his own, although
the circumstances of the problems differ in a very important respect. In
D. Bernoulli’s problem the fluid is exposed to the attraction of a distant
body, and this attraction, does not reduce to a single force tending to
the centre and varying as the distance, which is the case that Boscovich
considers.

470. In his pages 459…465 Boscovich discusses the result which, as
we have stated in Art. 469, he had obtained in agreement with D’Alem-
bert and Clairaut. Boscovich shews that in certain cases the external sur-
face is an oblongum, not an oblatum; it appears however from his page
463, that he held the oblongum to be in modern language an unstable
form. See Art. 378.

471. In his pages 466…468, Boscovich demonstrates Clairaut’s Theo-
rem, on the same hypotheses as to the constitution of the Earth which
had been used to obtain the result of Art. 469. He draws some inferences
from the theorem in his pages 469…471.

472. Boscovich now proceeds to the subject of the variation of gravity
as tested by experiments with the pendulum. He suggests local inequal-
ities as the cause of the observed irregularities. He calculates the effect
which would be produced on the plumb-line by the attraction of a sphere
of the mean density of the Earth, of a geographical mile in radius, for
various positions of the sphere; see his pages 472…474.

One of his results is that such a sphere as we have mentioned, if
placed just beneath the surface of the Earth in addition to the matter
already there, would increase the length of the pendulum by one-eighth
of a line. Then he says that if for the depth of eight geographical miles
the density at the pole is twice that at the equator the length of the pen-
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dulum at the pole will be a line longer. This, he says, follows from what
has been demonstrated: but there seems to be some mistake. If 𝑟 be
the radius, and 𝜌 the density, of a sphere, the attraction at the surface is
4𝜋𝜌𝑟
3

. Now if the density at the pole is changed from 𝜌 to 2𝜌 throughout

the depth ℎ, the additional result is approximately the same as would be
produced by the attraction of an infinite plate of thickness ℎ: and so it
is 2𝜋𝜌ℎ. Suppose ℎ = 8𝑟; then the result becomes 16𝜋𝜌𝑟: this is twelve

times the former result
4𝜋𝜌𝑟
3

. Accordingly instead of an increase of one

line in the length of the pendulum we obtain an increase of
12
8
of a line,

that is, of a line and a half.

473. Boscovich refers to the curious opinion expressed by Newton to
which we drew attention in Art. 31; Boscovich says on his page 475:

Newtonus censuit prope æquatorem debere densitatem esse potius majorem
in partibus nimirum a Sole quodammodo veluti tostis. Ego contra, cum tam
multa corpora dilatentur caloris vi, et vi frigoris adstringantur, opinor debere
potius rariora ibi esse corpora ob id ipsum. Sed externi caloris, et frigoris vis ad
tantam altitudinem infra superficiem non pertingit, ut effectum sensibilem edat
in partem utramlibet.

474. Boscovich notices the fact that according to observations made
by Bouguer and La Condamine, the attraction of a large mountain in
Peru was much less than it ought to have been, supposing its density
equal to the mean density of the Earth: see Art. 363. Boscovich offers a
conjecture in explanation of this fact; he says on his page 475:

… Verum montes quidem plerique, ut ego arbitror, effecti sunt intumescen-
tibus interni caloris vi stratis superficiei proximis; quod quidem si ita contigit,
nihil ibi materiæ accedit, et vacuus inter viscera hiatus compensat omnem illam
apparentem materiæ in montem assurgentis congeriem.
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475. Boscovich observes that a greater effect might be produced on
the pendulum by a large tract of raised land than by a single mountain.
He refers to a problem on this point which he had given in his disser-
tation De Observationibus Astronomicis, 1742. The problem is the follow-
ing: cut a slice from a sphere by two parallel planes, one passing through
the centre; bisect the slice by a plane perpendicular to the circular ends:
then find the attraction, resolved parallel to the planes of the circular
ends, of one of the halves on a particle situated at that point of the half
which was originally the centre of the sphere. Boscovich states, without
investigation, an approximate result for the case in which the thickness
of the slice is very small compared with the radius of the sphere: but
this result is incorrect. In his commentary on Stay’s poem, Vol. ii., page
382, he gives a correct investigation. If we wish to confine ourselves to
the order of approximation which is sufficient for his numerical applica-
tion, we may replace the slice of a sphere by the slice of a cylinder. Let
𝑎 be the radius of the slice of the cylinder, ℎ the thickness, 𝜌 the density.
Then the required result is easily found to be

2𝜌ℎ∫
𝑎

0

𝑑𝑟
√(𝑟2 + ℎ2)

,

that is
2𝜌ℎ log

𝑎 + √(𝑎2 + ℎ2)
ℎ

.

If we suppose ℎ very small compared with 𝑎, we get approximately

2𝜌ℎ log
2𝑎
ℎ
, that is 𝜌ℎ (2 log

𝑎
ℎ
+ 2 log 2); this agrees closely with

𝜌ℎ (2𝑙𝑜𝑔
𝑎
ℎ
+ 1·389), which is Boscovich’s result in his Commentary on

Stay’s poem.

476. Boscovich makes a curious suggestion on his page 477. He pro-
poses to have a pendulum in a tower by the sea shore, at some place in
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England or the opposite continent, where the water may be raised by the
high tide 50 feet above the level of the low tide. He considers that if the
density of the sea is equal to the mean density of the Earth, a deviation
of about 2″ will be produced in the direction of the pendulum. By hav-
ing a long pendulum and using a microscope, he thinks the deviation
might be observed, and thus some notion obtained of the mean density
of the Earth. See some remarks on this suggestion in De Zach’s work,
L’attraction des montagnes, page 17.

477. In his pages 477…481, Boscovich cites some observations of pen-
dulums, and draws inferences from them: he had recently made some
observations at Rome, in conjunction with La Condamine, with the pen-
dulum which had been used in America and at the Cape of Good Hope.

478. We now reach the second Chapter of Boscovich’s treatise; this
relates to the Figure of the Earth, as determined by the measure of de-
grees.

He begins with some general explanation as to what is meant by a
degree, and an osculating circle; see his pages 481…486: these present
nothing of interest except a curious mistake. Let 𝑠 denote an arc of a
curve measured from some fixed point, 𝜌 the radius of curvature at the
variable extremity of the arc, and 𝜙 the inclination of 𝜌 to a fixed straight

line: then we know that
𝑑𝑠
𝑑𝜙

= 𝜌. By the length of a degree, we mean

the value of ∫𝜌𝑑𝜙 taken between limits which differ by the circular

measure of a degree. Thus the length must be equal to 𝜌1
𝜋
180

, where 𝜌1

is some value of 𝜌 which lies between the least and the greatest of the
values which occur within the range of integration, 𝜌 being supposed
always finite. This statement follows from the first principles of the In-
tegral Calculus; Boscovich, however, denies the universal truth of it, for
he says on his page 484:
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… Fieri itidem potest, ut arcus unius gradus plurimum differat a gradu cir-
culi osculantis curvam ubique intra cum arcum, quod quidem tum accidere
potest, cum curvatura pergendo ab altero ejus extremo ad alterum primo qui-
dem perpetuo crescit, tum perpetuo decrescit, vel vice versa.

479. On his page 487, Boscovich seems to adopt a definition which
has not been used by others. If 2𝑎 and 2𝑏 are the major and minor axes

respectively of an ellipse, we call
2𝑏2

𝑎
the latus rectum: Boscovich seems

to call
2𝑏2

𝑎
the latus rectum with respect to the major axis, and

2𝑎2

𝑏
the

latus rectum with respect to the minor axis.
In his pages 487…493, Boscovich gives various geometrical construc-

tions relating to the ellipse and its radius of curvature; he says on page
488:

Exhibebo autem solutiones diversas ab iis, quas simplicissimas sane, et ad-
modum elegantes, ac geometricas itidem exhibui in mea dissertatione illa de
Figura Telluris.

Thus he seems to have been very well pleased with some of his own
work; for I presume we are to consider the demonstrations in the book
at least as good as those which had appeared in the dissertation.

A property of the ellipse may be noticed which he demonstrates on
his page 489. The normal at any point 𝑃 of an ellipse meets the minor
axis at 𝐺; from 𝑃 a perpendicular 𝑃𝑀 is drawn to the minor axis meeting
at 𝑄 the circle which is described on the minor axis as diameter; from 𝐺
a straight line is drawn parallel to 𝐶𝑄, meeting 𝑀𝑃 produced at 𝑁; then
𝐺𝑁 is equal to half the latus rectum with respect to the minor axis, and
𝑀𝑃 is a mean proportional between 𝑀𝑄 and 𝑀𝑁.

480. Boscovich obtains on his page 494 an approximate formula,
which determines the ellipticity of the Earth from the lengths of a
degree of the meridian at the pole and the equator; Boscovich refers to
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Maupertuis, who had previously obtained the formula: see Maupertuis’s
Figure de la Terre … page 130.

Boscovich however considers that the exact theorem is more elegant,
namely, that the lengths of a degree of the meridian at the equator and
the pole are respectively as the inverse cubes of the corresponding diam-
eters.

Boscovich shews on his pages 495 and 496 that the diminution of the
length of a degree of the meridian from the pole to the equator varies
as the square of the cosine of the latitude: hence the ellipticity may be
found by measuring arcs of the meridian.

481. Boscovich now proceeds to consider the actual measures of a
degree of the meridian in various places. He says that there are only
five measures which are accurate; namely, those in France, in Lapland,
in Peru, at the Cape of Good Hope, and his own in the Papal States: see
his page 497.

He holds that the value of Picard’s degree may now be considered
perfectly settled post mutationes quatuor. It is not certain what is meant
by four changes; in Art. 236, four different values are given, and these are
also recorded by Boscovich himself in his commentary on Stay’s poem,
Vol. ii., page 392. But if there were four changes, there must have been
five different values: perhaps then we are to include a result obtained by
J. Cassini, which was between 30 and 50 toises less than Picard’s own:
see De la Grandeur et de la Figure de la Terre, page 286.

Boscovich alludes to Norwood’s measure, and gives a few lines to
Snell’s measure; he considers them both unsatisfactory: see Arts. 68 and
105.

482. Boscovich on his pages 499…503 deduces the ellipticity of the
Earth by ten different binary combinations of the five arcs; but he finds
that the results are very discordant. One combination actually brings out
a negative ellipticity; namely, the combination of the Roman arc with the
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African. The other combinations give various values of the ellipticity,

the greatest being
1
128

, and the least about one-tenth of this. The mean

ellipticity is
1
255

; but if the two combinations be rejected which differ

very much from the rest, the mean ellipticity is
1
195

.

Boscovich has some troublesome misprints on his page 501; the ellip-
ticities deduced from his sixth and tenth combinations are quite wrong:
and the numbers which he gives in his following Article to denote the
mean excesses of the polar degree above the equatorial are a third of the
true values.

483. Boscovich says on his page 501 that some persons had tried to
conciliate the results by forcing the observations:

Nonnulli, ut nuperrime Eulerus in schediasmate, cujus summam quandam
mihi humanissimè communicavit hìc Romæ præsens, dum hæc scribo,
Condaminius, observationibus vim inferunt, ut omnia concilient. Et is
quidem gradum Lapponiensem, Africanum, Quitensem, mutatione adhibita
hexapedarum 19 in singulis, conciliat cum ellipsi Newtoniana, sed Gallicus
Piccardi gradus corrigendus illi est hexapedis 169, quem idcirco sibi maximè
suspectum esse profitetur, et novas in Gallia mensuras desiderat. At id quidem
errorem exposcit intolerabilem sane in gradu cum ingenti cura definito a
peritissimis viris.

It seems absurd to suppose that an error extravagantly the greatest
should occur in the arc which must have been the best determined of
all at the epoch. We shall recur to Euler’s speculations in Chapter XV.

484. On his pages 502…506, Boscovich discusses Bouguer’s hypothe-
sis that the increment of the length of a degree of the meridian in pro-
ceeding from the equator to the pole varies as the fourth power of the
sine of the latitude: see Art. 363. Boscovich considers that the African
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arc overturned this hypothesis. But then it should be observed that the
African arc presented much difficulty when compared with the others.

Boscovich observes in a despairing tone: “Quocumque te vertas, nihil
certum, sibi constans, et regulare occurrit.”

He gives on his pages 507…510 reflections on the state of knowledge
of the subject: he sums up his opinions vigorously on his page 508 as to
what had been established. Instead of the inquiry respecting the Figure
of the Earth from the measures of degrees being finished, he considers
that it had scarcely been commenced. Still some valuable results had
been obtained: the hypothesis of an attraction directed to a fixed point
was excluded, and the compression at the poles was extremely probable,
though the amount of this compression was uncertain.

485. On his page 510, Boscovich says that the observations were
not inconsistent with the hypothesis of a nucleus in which the density,
in modern language, is a function of the distance from the centre. He
makes two statements, as to what Clairaut had established, which seem
not strictly accurate.

One statement is this: assuming that Clairaut’s fraction is greater

than
5𝑗
4
, then the density of the nucleus must be greater than the mean

density of the Earth, but the ellipticity less than
5𝑗
4
. If Clairaut’s fraction

is greater than
5𝑗
4
, the ellipticity must be less than

5𝑗
4
, by Art. 336.

But the statement that the density of the nucleus must be greater than
the mean density of the Earth does not seem justified by anything in
Clairaut: the nearest approach to it is in the second criticism of Art.
325, but this obviously falls short of the statement.

Again Boscovich proceeds thus:
… Invenit autem ejusmodi fractionem majorem revera esse, et affirmavit el-
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lipticitatem minorem erui e graduum mensura; unde intulit, ea duo conciliari
non posse, nisi assumatur certa nuclei ipsius ellipticitas.

The word minorem, which I have put in Italics, must be a misprint
for majorem; see Art. 349. Then for all that follows intulit there seems
not sufficient authority; the criticism in the first paragraph of Art. 325 is
somewhat short of this.

486. Boscovich considers that more observations of pendulums and
more measurements of degrees are required; he admits that this would
involve great labour and expense, but he adds, “at nihil est, quod As-
tronomorum patientia, et munificentia Regum superare non possit:” see
his pages 511 and 512. Since his time the endurance of Astronomers and
the liberality of Sovereigns have been largely exercised in the subject.

He repeats on his page 513 that the fact of the compression at the
poles might be admitted; but the amount of the compression, and the
true Figure of the Earth, were still quite uncertain.

He finishes by giving on his pages 514…516 approximate solutions
of the problem to determine the Figure of the Earth, assumed to be an
oblatum, from two measured degrees, one or both of which might be of
longitude.

487. In forming an estimate of the treatise we must remember
that the author had prescribed to himself the condition of supplying
geometrical investigations; so the Differential Calculus was not to be
introduced. We must consider the treatise rather as the work of a
professor for the purposes of instruction, than of an investigator for the
advancement of science; and then we may award the praise that the
task proposed is fairly accomplished. It would have been more desirable
to study Clairaut’s work than to be confined to Boscovich’s geometrical
methods: but the experience of our own university shews us that it is
possible to find the methods used for teaching occasionally some years
in arrear of those used for investigation.
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Although the mathematical processes seem a little out of date, yet
Boscovich’s treatise reveals, I think, great knowledge and judgment in
Natural Philosophy.

488. Boscovich has an unpleasant habit of giving hints as to mat-
ters which will be found in other parts of his book, without supplying
exact references; I have observed many passages of this kind, and have
not always been able to determine with certainty to what he is pointing.
Thus we have on page 392, “de qua fortasse aliquid alibi infra;” on page
413, “videbimus;” on page 448, “porro videbimus;” on page 455, “ut infra
patebit;” on page 466, “ut infra videbimus;” on page 506, “ut vidimus;”
on page 507, “ut innui etiam;” on page 508, “supra innui.” None of these
allusions, however, are to matters of great importance; but there is a pas-
sage of more interest on page 386:

… Expediam autem, quod ad eam gravitatis legem pertinet, sive Tellus ho-
mogenea sit, in quo argumento felicissime sane Mac Laurinus se gessit, sive
diversam in diversis distantiis densitatem habeat, de quo casu multo aliter ego
quidem sentio, quam summi etiam nostræ ætatis viri senserint, quorum calculos
laborare omnino censeo, cum Geometria duce ad conclusiones delabar prorsus
contrarias eorum conclusionibus.

I cannot see anything in the treatise which corresponds to “de quo
… conclusionibus.” Boscovich seems to dissent from only one person,
namely Daniel Bernoulli, and D’Alembert had previously objected to the
same thing: see Art. 469.

489. Boscovich himself gave an abstract of his treatise in the Bologna
Commentarii, Vol. iv. 1757, pages 353…396. This supplies nothing of im-
portance to our subject except three separate sentences, which I quote,
because I do not understand them.

With reference to the arc in Lapland, Boscovich says on page 389:
… et in Lapponia, adhibita huic postremo illa correctione, quæ adhibita est
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etiam a Bouguerio, et præter quam alias adhibendas non esse, ut ut ab alio nu-
per adhibitas, demonstrari facile potest.

Bouguer’s correction is that for refraction; I do not know what the
other corrections are, nor by whom they were proposed.

After drawing an inference from Clairaut’s theorem, Boscovich says
on page 392:

… quod ipsum cum ego in eo opusculo diserte affirmaverim, et Clerautii
theorema ipsum ex mea theoria deduxerim, ipso Clerautio nominato, miratus
sane sum in opusculo nuper in Hetruria edito, me contra Clerautium hac ipsa in
re adduci testem pro homogeneitate, et hoc ipsum meum indigitari opusculum.

I do not know to what book Boscovich here alludes.
Boscovich, as we shall see in our account of his commentary on

Stay’s poem, devised a curious method of treating discordant observa-
tions, so as to obtain the best result from them. It appears that he was
now in possession of the method, and he makes a numerical application
of it, though he does not give any explanation. He says on his page 392:

Invenio illud, quod in memorato volumine nequaquam quæsiveram….

I do not feel certain as to the meaning of these words, but I suppose
the memoratum volumen to be his own treatise, of which he is giving an
abstract: and then he seems to say that he had now solved the problem
of the advantageous combination of observations which had not been
considered by him at the time of the publication of his treatise.

The two serious misprints relating to the ellipticity, which occur on
page 501 of the treatise, are reproduced on page 391 of the memoir: see
Art. 482.

490. We now proceed to Stay’s poem, to which Boscovich supplied a
commentary. The title of the poem is, Philosophiæ Recentioris a Benedicto
Stay … versibus traditæ Libri X. cum adnotationibus, et supplementis P.
Rogerii Josephi Boscovich….

This work consists of three octavo volumes, published at Rome, the
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first volume in 1755, the second in 1760, and the third in 1792. We have
here a treatise on Natural Philosophy in Latin hexameters, extending to
more than twenty-four thousand lines. Each volume contains copious
notes; and to the first and second volumes elaborate supplementary dis-
sertations are added: these are all by Boscovich. The long interval be-
tween the publication of the second and third volumes was caused by
the journeyings and incessant occupations of Boscovich, which hindered
him from completing his share of the work; and he died before he had
drawn up the intended supplementary dissertations for the third volume.

The number of students interested both in Natural Philosophy and in
Latin Verse could scarcely ever have been large; and is probably less now
than formerly. Cambridge, I hope, has never been destitute of men of
such tastes, but it is curious that the University Library does not possess
a complete copy of the famous work by Stay and Boscovich.

491. Dugald Stewart, in his well-known Dissertation, after speaking
in the highest terms of Boscovich, says:

Italy is certainly the only part of Europe where mathematicians and meta-
physicians of the highest rank have produced such poetry as has proceeded from
the pens of Boscovich and Stay. It is in this rare balance of imagination, and of
the reasoning powers, that the perfection of the human intellect will be allowed
to consist; and of this balance a far greater number of instances may be quoted
from Italy, (reckoning from Galileo downwards,) than in any other corner of the
learned world. Works edited by Hamilton, Vol. i. page 424.

If I might venture to give an opinion, founded on such portions of
Stay’s work as I have read, I should say that it is rather versification
than poetry, displaying technical skill rather than imagination. The sub-
ject, however, was not very favourable to his genius; and sometimes his
lines contrast unfavourably with the simple but elegant notes of his com-
mentator. Boscovich, however, had a high opinion of the text which he
explained, for he speaks of it as operis sane immortalis; see the De Litter-
aria Expeditione, page 390: the French translation reduces this to ouvrage
digne de l’immortalité.
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492. The work is furnished with a preface by Boscovich, and with a
letter to Benedict Stay from his brother Christopher Stay. The letter refers
to Bacon and to Newton; see page xxix. While Newton’s devout character
is praised, the wish is gently expressed that he had known religion in its
purity as well as its power.

The part of the poem which concerns us consists of the latter half of
the fourth Book and the former half of the fifth Book. We may say in
general terms that we have an account of the results obtained by theory
as to Attractions and the Figure of the Earth, and also of the operations
carried on for measuring the dimensions of the Earth.

493. It may be satisfactory to the reader to have some specimens of
Stay’s verses.

A passage in Book iv. beginning with line 1638 is interesting. Stay
illustrates the fact that although attraction is exerted by every particle
of matter, yet the disturbing effect of mountains or great buildings on
a falling body vanishes in comparison with the downward action of the
whole earth; he finishes thus:

Inter saxa quidem, glebasque, herbasque virentes
Mutua vis hæc est, et ligna, et dura metalla;
Tellus tota tamen longe, longeque trahendo
Prævalet, absorbetque leves has undique vires
Ingens, atque illos conatus præpedit omnes,
Ut Sol, cum radios Cælo jaculatur ab alto,
Non extincta licet stellarum lumina velat.

I will take next a passage beginning at line 1941 of Book iv.; Stay
has explained Newton’s method of determining the Figure of the Earth,
and then he proceeds to shew where it was defective, and to state that
Maclaurin supplied the defect.

At reperire suo num motu Terra diurno
Illam debuerit, quam coni segmina prima
Proscissi dant, induere, et circumdare formam,
Æque etiam si densa, fluensque fuisset, ut unda,
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Inclite Vir, porro non hoc accepimus a te
Inter munera magna, quibus nos undique ditas;
Fors voluisti, alii ut quid tantis addere possent;
Sic alios Rex sæpe suis ditescere gaudet
Thesauris, atque in vulgus diffundere dona,
Postquam ipse immensam fuerit largitus opum vim.
Hoc donum, Laurine, tuum est; stupuere docentem
Multa Caledoniis Mortales te quoque in oris.
Inter multa tamen longe hoc præstantius unum est:
Illam nempe doces formam a Tellure fuisse,
Gyros agglomerat dum circa se, subeundam,
Si liquida, et molem foret æque densa per omnem,
Atque, polos inter, medias attollier oras
Mensura circum, dixi qua nuper, eadem
Propterea debere, atque hinc quoque crescere eodem
Ordine, quo dixi, paulatim pondera rerum,
Inque polos illas gravitati accedere vires.

As another specimen I will take a passage beginning at line 712 of
Book v.; it is part of the description of the operations of Maupertuis and
his friends in Lapland:

Postquam flumineo mensura est cognita dorso
Illa prior; montes tum qua ratione adeundi?
Undique præruptis silvæ stant montibus altæ
Verbera ventorum tantùm frangentia ramos
Perpessæ, nunquam flammas, diramque bipennem,
Obstructæ nivibus, mortali fors pede nunquam
Tentatæ; jam sunt nudanda cacumina, Cæloque
Illæ ostentandæ rupes, jam montis ad imam
Radicem aerii, Kittim dixere Coloni,
Hærendum est; illic fabricanda patentia sursum
Pastorum de more mapalia, suspicerentur
Unde faces Cæli, et sublimes verticis ulnæ,
Et sunt multa locis aptanda, movendaque multis
Instrumenta gravi molimine, Dædalus ille
Præsertim multa quæ fecerat arte Britannus,
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Uranie cujus tantùm est munita labore;
Ipse gradus, graduumque dedit cognosse per arcum
Particulas senas decies in quolibet uno,
Atque harum totidem quoque fragmina particularum,
Quæ non, convexis nisi vitris, cernere, tantùm est.
Nimirum, genus hoc, arcte conclusa supellex,
Ne quid in offensu vario, compage soluta,
Turbaretur, eos montes, præruptaque curru,
Sive levi potius scandebat culmina cimba,
Consimilis cervo quam bellua juncta trahebat,
Ocyor at multo, multoque ferocior illo,
Perque nives, glaciemque, per horrida saxa volabat.
Indigenæ, rude vulgus, iners, nullisque juvare
Consiliis, operisque potens, cum sæpe viderent
Circum alienigenas fundi, atque, ut sacra ferentes,
Lente onus id vectare Viros, intus latitare
Numina credebant, Divum et procedere magnam
Matrem inter Gallos; namque illos stulta premebat
Relligio, exanimesque Deos, et inania signa
Thure coli, votisque jubens, et sanguine fuso.

494. The supplementary dissertations with which we are concerned
extend from page 359 to page 426 of the second volume.

495. The first dissertation is entitled De inæqualitate gravitatis per
superficiem telluris, et figura ipsius telluris ex æquilibrio: it occupies pages
359…380.

This may be described as an abridgement of the matter on the same
topics given by Boscovich in the treatise we have already examined.
Boscovich says on his page 361, referring to the former treatise:

… Ego rem totam ad solius finitæ Geometriæ vires redegi in memorato opus-
culo,… Singula fuse persequi, et accurate demonstrare non sinit ipsa horum
supplementorum brevitas; quamobrem indicabo tantummodo metliodum, quam
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adhibui, et theoremata præcipua, ac formulas inde erutas; ubi tamen occurrent
quædam et perpolita magis, et promota ulterius, quam ibi.

I shall notice some miscellaneous matters of interest which present
themselves.

496. In his Article 203, on page 359, Boscovich asserts more positively
than in the former treatise, that a mass of fluid in equilibrium under no
external forces must take a spherical form.

497. In his Article 209, on page 361, he is speaking about the deduc-
tion of the Figure of the Earth from the theory of gravity, and he says,
“in qua perquisitione Newtonus incassum laboravit, … feliciter autem
rem confecit Mac-Laurinus.” This seems scarcely just to Newton, whose
investigation was satisfactory as far as it went; and this is admitted by
Boscovich himself elsewhere; while we do not know that Newton tried
to do more and failed, as is suggested by the words incassum laboravit.
See Art. 501.

498. In his Articles 228 and 229, on pages 366 and 367, we have a
more elaborate investigation than in the corresponding part of the former
treatise, which we have noticed in Art. 468. He is discussing the case
in which there is a spherical nucleus surrounded by fluid; and in the
present investigation, the radius of the nucleus is not assumed at first to
be approximately equal to the radius of the outer surface of the fluid.

In his Article 232, on page 368, he proposes the name fractio gravi-
tatis, for what we have called Clairaut’s fraction: see Art. 336.

By the aid of what he had given in his Articles 228 and 229,
Boscovich is now able to supply an investigation of Clairaut’s theorem,
which is rather more general than that in the former treatise: see his
Article 237, on page 369.

499. His Article 238, on page 370, is important. He quotes the words
from the second edition of Newton’s Principia to which we have drawn
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attention in Art. 30, namely, “Hæc ita … adhuc major.” It would how-
ever have been right to remark that the words were omitted in the third
edition of the Principia. Boscovich adopts the same opinion as Clairaut,
with respect to the origin of Newton’s error; but states it I think more
clearly; see Art. 37. Boscovich says:

… et hunc quidem Newtoni errorem Clerautius deprehendit, ac protulit.
Censuit fortasse Newtonus conjectura quadam usus, et re ad geometricam truti-
nam nequaquam redacta, in quavis hypothesi, ut in casu homogeneitatis, vires
in æquatore, et in polo, esse reciprocal distantiis, quas vidit magis augeri in polo,
si massa nuclei fiat major, ob excessum gravitatis in illam massam adjectam pro
loco viciniore ipsi in polo.

500. His Article 244, on pages 371 and 372, is important. He is cor-
rect as to a matter in which there is at least the appearance of error in
the former treatise: see Art. 466. At the end of his Article, Boscovich in-
dicates that he is about to investigate a certain theorem more generally
than in his former treatise: the theorem is that the increase of gravity in
proceeding from the equator to the poles varies as the square of the sine
of the latitude.

On his pages 375 and 376, he gives tabular results as to the value of
gravity at different places which are fuller than in the corresponding part
of the former treatise, namely pages 479 and 480.

501. On his page 378, Boscovich expounds Newton’s method of de-
termining the Figure of the Earth; he says in his Article 264:

Clerautius in opere de figura Telluris miratur, Newtonum vidisse figuram
Telluri debitam hac methodo, velut trans nebulam quandam; at mihi quidem
videntur prona omnia in hac ejus methodo…. Nihil in toto hoc progressu mihi
videtur alienum a sagaci quidem, sed et solida, et usitata Newtoni perquirendi
ratione.

But I do not find any such remark made by Clairaut as is here
attributed to him; perhaps Boscovich was really thinking of a sentence
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with respect to Newton, which occurs in the Essay on the Tides, by
Daniel Bernoulli, Chapter II., Article viii.:

Quant à son raisonnement, il n’y a peut-être que lui, qui pût y voir clair;
car ce grand homme voyoit à travers d’un voile, ce qu’un autre ne distingue
qu’à peine avec un microscope.

502. The next dissertation is entitled “De deviationibus pendulorum
ex asperitate superficiei terrestris, et methodo definiendi massam terræ: it
occupies pages 380…384.

503. On his page 381, Boscovich refers to a figure which is not to be
found in the book; so the reader must draw it for himself.

In the section we are now considering, Boscovich advocates the plan
for determining the mass of the Earth which he had proposed in the
former treatise: see Art. 476. He also suggests a modification of it. He
would have constructed at royal expense in certain valleys immense
reservoirs, so that they could be filled with water by the mountain
streams, and again emptied at pleasure; then the position of an adjacent
pendulum is to be observed before and after the reservoir was filled
with water. As the form and dimensions of the reservoir would be
exactly known the deviation which the mass of water would produce
in the pendulum could be calculated, assuming the ratio of the density
of the water to the mean density of the Earth: and then by comparison
with observation this ratio would be determined.

Boscovich manifestly held very decided opinions as to the duty of
governments in encouraging science.

504. The next dissertation is entitled De veterum conatibus pro mag-
nitudine terræ determinanda: it occupies pages 385…389.

Boscovich refers to a separate dissertation which he had published
entitled, De Veterum argumentis pro Telluris sphæricitate: this I have not
seen.
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The principal matter to notice here, is the detail of an investigation
to which we alluded in Art. 475; he admits that there was a slight error
in the result he formerly gave: his method is sound but laborious.

By comparing his result with that which I obtained in Art. 475, the
following formula is deduced.
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−… = 2 log 2,
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from which the definite integral follows.
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Integrate with respect to 𝑟 first; thus we obtain
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that is
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Thus the required formula is established.

505. The next dissertation is entitled De primis recentiorum conatibus
pro determinanda magnitudine telluris: it occupies pages 390…393.

In his Article 304 on page 391, after showing that a certain process
which seems theoretically advantageous fails by reason of practical diffi-
culties, he concludes with this reflection:

… ut quæ methodi directæ videntur primo fonte omnium aptissimæ ob the-
oriæ simplicitatem, plerumque fato quodam conditionis humanæ fiant maxime
omnium ineptæ, et per ambages sæpe indirectas ægrè demum eo, quo tenditur,
liceat evadere.

In his Article 307 on page 392, he points out the changes succes-
sively made in the French degree of the meridian originally measured
by Picard, and concludes with this reflection:

Inde autem vel in hoc solo Piccarti gradu facile constat, per quas ambages,
et inter quos errorum scopulos ad veritatem emergat humana mens.

506. The next dissertation is entitled De dimensione graduum meridi-
ani, et paralleli: it occupies pages 393…400. This gives a good sketch of
the process of measuring an arc of meridian or of longitude.

507. The next dissertation is entitled De figura, et magnitudine terræ
ex plurium graduum comparatione: it occupies pages 400…405.
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In his Article 337 on page 402, Boscovich works out one case to
which he had only alluded on page 490 of his former treatise; namely
having given the length of a degree of meridian at one latitude and the
length of a degree of longitude at another, to determine the axes of the
Earth.

But he seems to attach the greatest importance to some approximate
formulæ for the length of a degree of meridian or of longitude to which
he had drawn attention in the last two pages of his former treatise. These
formulæ all depend on the following approximate expression for the ra-

dius of curvature at any point of an ellipse,
𝑎2

𝑏
−
3𝑎𝑒2

2
cos2 𝜆, where 𝜆

is the latitude, and 𝑎, 𝑏, 𝑒 have their usual meaning. He says as to his
formulæ in his Article 344, on page 403:

Ego quidem vix crediderim posse simpliciore, et magis uniformi methodo
solvi hæc quatuor problemata….

508. The next dissertation is entitled De recentissimis graduum dimen-
sionibus, et figura, ac magnitudine terræ inde derivanda: it occupies pages
406…426.

Boscovich takes the same five arcs as in his former treatise; see Art.
481. These furnish as before ten binary combinations, and therefore ten
values of the ellipticity: see Art. 482. He gives the result in a Table on
page 408, which may be compared with that on page 501 of the former
work. He has used a slightly different formula for computing the ellip-
ticity, so that in the later Table each denominator should exceed by 2
the corresponding denominator in the former Table. The ellipticities de-
duced from the ninth and tenth combinations are however quite wrong
in the later Table.

509. Boscovich lays great stress on the discrepancies between the var-
ious measures of degrees; he attributes them mainly to deviations of the
pendulum, produced by inequalities in the surface and the crust of the
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Earth. He in fact holds, as in his former treatise, that very little was re-
ally known as to the true figure of the Earth: see Art. 484. He expresses
his opinions with some emphasis, and indeed it seems to me that he has
allowed his feelings to disturb his attention or his judgment, for there
are various misprints and some difficulties in the dissertation.

In his Article 360, on pages 409 and 410, he alludes to Bouguer’s hy-
pothesis, that the increment of the length of a degree of the meridian
in passing from the equator to the pole varies as the fourth power of
the sine of the latitude; but he has omitted Bouguer’s name, so that the
hypothesis seems to be ascribed to Clairaut or Maupertuis.

In his Article 365, on page 411, he refers to an objection he had for-
merly expressed when Maupertuis was supposed to have settled the exact
Figure of the Earth; and for this he says, “tanquam audacissimus, et in-
eptus traductus sum.” He goes on to speak of “illam ipsam tantam com-
pressionem, quam in eo opusculo Maupertuisius vulgaverat,” …; but this
is not accurate, for Maupertuis did not explicitly assign any value to the
compression in his book, though he gave the length of his own degree,
and also what he then considered to be the correct length of Picard’s de-
gree: see Maupertuis’s Figure de la Terre … page 126. But we have seen
in Art. 177, that Clairaut once suggested incidentally a very large value
of the ellipticity as obtained from the operations at the polar circle.

In his Article 371, on page 413, Boscovich says:
Multo est major utique hæc ipsa Telluris asperitas, utut tam exigua respectu

totius diametri, et multis partibus major, quam, quæ totam etiam possit quadrin-
gentarum hexapedarum inæqualitatem parere, quam inter Quitensem, et Lapon-
icum gradum observationes exhibent;…

This is not intelligible. The difference between the lengths of a de-
gree of the meridian in Lapland and Peru is according to Boscovich’s
own Table 671 toises, not 400. But perhaps by inæqualitas he means not
the difference of the two lengths, but the deviation from some theoreti-
cal standard: if so, he should have explained what the standard was, and
how the deviation was estimated.
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510. On his page 414, Boscovich criticises some statements made by
Maupertuis in a work on Geography; and on his page 416 he animadverts
on the Article relating to the Figure of the Earth in the Encyclopédie: the
objections amount to this, that sufficient attention was not paid to the
irregularity of the Earth’s surface and crust.

Boscovich gives us on his page 416 the following depressing view of
the course of human investigations:

At et hìc quidem notare, et admirari licet humanæ gentis conditionem
ubique uniformem, quæ per crebras positiones falsas, erroresque atque errorum
correctiones multiplices, post erroneas observationes, erroneas etiam ratio-
cinationes multas ægre demum per longam observationum, et contrariarum
opinionum seriem enitatur ad veritatem.

511. The most important part of this dissertation is that contained in
pages 420…425. Boscovich here explains a method of his own invention
for combining discordant observations so as to evolve an advantageous
result. As applied to the present subject it may be stated thus: to de-
termine the generating ellipse of the Earth’s surface from the measured
lengths of degrees of the meridian, under the two conditions that the
sum of the negative errors shall be numerically equal to the sum of the
positive errors, and that each sum shall have the least possible value.
Boscovich’s exposition of his method takes a geometrical form: it is sim-
ple, clear, and instructive. Laplace gave Boscovich’s method, divested of
its geometrical form, in the Paris Mémoires for 1789; and subsequently in
the Mécanique Céleste, Livre iii. § 40. Boscovich exemplifies his method
by applying it to the five arcs he had adopted; see Arts. 481 and 508:

these furnish
1
248

for the ellipticity. The residual errors for the length of

a degree in toises for the Equator, Cape of Good Hope, Italy, France, and
Lapland, are respectively 0, −79·2, 93·8, 75·9, and −90·5. In the French
translation of Boscovich’s former treatise, besides this example another
is given, which involves nine measured arcs.
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512. The poem of Stay, with the commentary of Boscovich, constitute
a good elementary exposition of the principal results which had been ob-
tained relative to our subject. It may be doubted whether the system on
which the book is constructed is the most economical of the student’s
attention; for in fact various points are often treated three times, first in
the verses, next in the notes, and finally in the supplementary disserta-
tions. But probably some readers, for whom the dissertations would be
too elaborate, might find the more popular parts of the work entertaining
and instructive.

513. It will be convenient to notice here, though a little out of
date, the French translation of the De Litteraria Expeditione of Maire
and Boscovich: this was published at Paris in 1770 under the title of
Voyage Astronomique et Géographique, dans l’Etat de l’Eglise…. This
is in quarto, containing a Title and Introductory matter on xvi pages,
and the text on 526 pages; there are also four Plates and a Map. Some
notes are added to the translation, and also a copious Index: the map,
notes, and index render the translation more useful than the original.
The name of the translator is not given; but in the life of Boscovich in
the Biographie Universelle, the De Litteraria Expeditione … is said to be
“traduit en français, sous le nom de l’abbé Chatelain, par le P. Hugon,
jesuite.” See also La Lande’s Bibliographie Astronomique, page 515.

514. In the part of the translation with which we are concerned there
are some matters which may be briefly noticed.

On pages 449…453 there is a long note of a controversial character
relating to D’Alembert; we shall mention it hereafter in connexion with
D’Alembert’s Opuscules Mathématiques, Vol. vi.

On pages 478…483 there are notes giving the results obtained by mea-
surements in Hungary, Piedmont, and North America, which had been
executed since the publication of the original work.

On pages 501…512 we have an important note. This gives us first an
account of Boscovich’s method of treating discordant observations, which
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is a translation of the exposition by Boscovich himself, published in his
commentary on Stay’s poem: see Art. 511. Then the method is also ap-
plied to the case of nine measured arcs, namely, the five formerly taken
by Boscovich, together with four others. Also some remarks are made as
to the density of a supposed spherical nucleus in the Earth.

A curious note occurs on Article 11 of Boscovich’s treatise. Boscovich
is speaking of relative motion, and he says that if the space in which the
Earth is situated has a motion equal and opposite to that of the Earth,
then the Earth itself is at rest; the note then adds:

Voici de quoi rassurer ceux qui appréhendent que le double mouvement de
la terre, dans les systêmes de Copernic et de Newton, ne soit opposé au sens
littéral de l’Ecriture sainte. Rien ne les empêche de supposer la terre immobile,
sans rien dêranger à l’économie de ces systêmes.

A note on pages 36 and 37 of the translation informs us that
various measurements of degrees were undertaken at the suggestion of
Boscovich; namely, those in Austria and Hungary by Liesganig, that in
Piedmont by Beccaria, and that in North America by Mason and Dixon.
The connexion of Boscovich with the last is thus stated:

Enfin dans son voyage en Angleterre, il a représenté à la Société Royale
l’avantage qu’il y auroit de faire mesurer un dégré en Amérique, avec d’autant
plus à raison, que depuis que l’Astronomie est perfectionnée, l’Angleterre n’avoit
rien fait pour connoître la figure de la Terre.

The operations in England, in India, and at the Cape of Good Hope,
since the time of Boscovich, have removed the reproach which is here
cast on us. Perhaps we may hereafter have measurements made in
Canada, Australia, and New Zealand.
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A note on page 15 records the name of a person who corrected the
error of Keill and Cassini; see Arts. 76 and 81:

M. des Roubais, Ingénieur chargé de poser les signaux, donna dans un
Journal de Hollande, la démonstration, que les dégrés décroissans vers le pôle,
faisoient la terre allongée.

See La Lande’s Bibliographie Astronomique, page 372.



CHAPTER XV.

MISCELLANEOUS INVESTIGATIONS BETWEEN THE YEARS 1741
AND 1760.

515. The present Chapter will contain an account of various miscel-
laneous investigations between the years 1741 and 1760.

I shall not in future record the titles of memoirs relating to observa-
tions of pendulums; as those which present themselves after the period
at which we have arrived are given in well-known works. See La Lande’s
Astronomie, third edition, Vol. iii. pages 43 and 44; Reuss’s Repertorium
… Vol. v. pages 79 and 80; and the Article on the Figure of the Earth, in
the Encyclopædia Metropolitana.

516. A work was published at London, in 1741, entitled Mercator’s
sailing, applied to the true figure of the Earth. With an introduction con-
cerning the discovery and determination of that figure. By Patrick Mur-
doch, M.A., Rector of Stradishall, in Suffolk.

This is a quarto volume, containing xxxii + 38 pages, and three plates
of figures.

The title points out that the work consists of two parts; we are princi-
pally concerned with the first part: on this a few remarks may be made:

517. The most distinctive part of the book is the treatment of the hy-
pothesis that the Earth is not homogeneous, but has a central nucleus
denser than the surrounding fluid. Murdoch maintains that if this cen-
tral nucleus is spherical, the ellipticity of the external fluid surface will
be less than on the homogeneous hypothesis; but if the central nucleus
is an oblatum similar to the external fluid surface the ellipticity will be
greater than on the homogeneous hypothesis. To shew this, he first gives
some general reasoning on his page xxi; then he briefly sketches a math-
ematical investigation, and states the formulæ to which it leads on his
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pages xxii and xxiii; and from his formulæ he deduces numerical results
on his page xxiv.

But this distinctive part of the book is unsatisfactory. In the first
place, no attempt is made to shew that the mass is in relative equilib-
rium; but assuming it to be in that state, an equation is obtained by
considering equatorial and polar columns. In the next place, since there
is supposed to be a hard nucleus the columns cannot be produced to
meet at the centre, and so Murdoch has to make an arbitrary supposi-
tion. This supposition expressed in modern language is that the pressure
of the fluid on the nucleus is the same at the points where the equato-
rial and polar columns meet the nucleus. Since his results are based on
these unsatisfactory principles, they cannot be accepted.

I have, however, verified his formulæ, and find that on his assump-
tions they are correct. I have not gone over the calculations by which
his numerical results on his page xxiv are obtained.

518. Let us take one example of his numerical results from another
place, namely his page xxvi. He says:

… For in one of these Examples, where the redundant Matter was a Sphere

with the Radius
1
4
of the Semidiameter of the Equator, if we compute its ac-

celerating Force at the Pole, we shall find it about
38
100

of the whole; and con-

sequently the whole Density of the concentric Sphere would be to that of the
ambient Matter as 42 to 1. Proportions which will not, I presume, be thought
very natural; whereas, if the redundant Mass is a Spheroid similar to the Earth,
their like Diameters being as 1 and 4, its accelerating Force at the Pole will be

only
48
1000

, and the whole Density of the Spheroid to that of the ambient Matter,

in little more than the Ratio of 1307 to 1000.

On this passage, I remark that the great discrepancy between the two
results, when so slight a change is made in the hypothesis as the transi-
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tion from a spherical nucleus to an oblate nucleus, should have shaken
Murdoch’s faith in his whole process.

But at the same time I do not see how his numerical results are ob-
tained.

Let 𝜎 denote the density of the redundant matter, and 𝜌 the density
of the ambient matter. Let 𝑎 denote the major semiaxis of the Earth, 𝑏
the minor semiaxis, and 𝜖 the ellipticity. Then assuming the correctness

of his fraction
38
100

, which depends on his preceding formulæ, we have

(
𝑎
4
)
3 𝜎
𝑏2

=
38
100

{(
𝑎
4
)
3 𝜎
𝑏2

+ 𝑏 (1 +
4
5
𝜖) 𝜌} ,

so that
𝑎3

𝑏2
62
64
𝜎 = 38𝑏 (1 +

4
5
𝜖) 𝜌,

and

𝜎
𝜌
=
38 × 64
62

1 +
4
5
𝜖

1 + 3𝜖
=
38 × 64
62

(1 −
11
5
𝜖) .

If we put 𝜖 = 0, we get
𝜎
𝜌
less than 40; if we put, as Murdoch does

elsewhere implicitly 𝜖 =
1
91
, we get

𝜎
𝜌
less than 39. I presume that he

means to say we get
𝜎 + 𝜌
𝜌

= 42.

In the second example proceeding in a similar way, I find approxi-
mately

𝜎
𝜌
=
48 × 64
952

1 +
4
5
𝜖

1 + 2𝜖
=
48 × 64
952

(1 −
6
5
𝜖) ,
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so that
𝜎
𝜌
is about 3, and

𝜎 + 𝜌
𝜌

about 4: this differs altogether from Mur-

doch’s result.

519. On page xxvi. the passage is quoted from the second edition
of Newton’s Principia which corresponds to that from the first edition
which we have quoted in Art. 37.

Murdoch considers Newton’s language to indicate that he intended
his nucleus to be not spherical, but oblate; and Murdoch thinks that D.
Gregory in his Prop. 52, Lib. iii. overlooked this. But I do not believe
that Newton really intended to discriminate between these two forms for
a nucleus.

On page xxvii. there is a reference to the Principia, Lib. i. Prop. 91,
Cor. 2; but this passage has no bearing on the matter which Murdoch is
discussing.

On page xxix. there is a note on the erroneous notion which Cassini
held as to the figure of the Earth, in these words: “He has, I am told, of
late ingenuously owned his Mistake.”

On his page xxxi. Murdoch is speaking of the operations of Mauper-
tuis, and exhibits that inaccuracy which by some fatality seems to cling
to all the derived accounts of this measurement: see Art. 199.

Murdoch says “… after proper Allowances for the Refraction of Light,
the Precession of the Equinoxes and Mr Bradley’s Equation…”. But in
fact no allowance was made for refraction, as Murdoch himself admits
on his page xxx. By Mr. Bradley’s equation is meant what we call Aber-
ration. Besides Precession and Aberration there was a correction for Nu-
tation.

520. The part of Murdoch’s work which is called Mercator’s sailing
applied to the true figure of the Earth, does not really fall within our
scope; and so we shall not give any great attention to it. We may say
generally, that the object is to construct maps of the Earth’s surface, as-



miscellaneous investigations between 1741 and 1760. 378

suming the form to be an oblatum, like the maps on what is called Mer-
cator’s projection for a spherical form: or it is practically equivalent to
this.

Murdoch is unfortunate in the value he adopts for the ellipticity; in

modern notation he takes 𝑒2 = ·022, so that
𝑒2

2
which is approximately

the ellipticity, is about
1
91
. I presume that he deduced this value from

the degree in Lapland, combined with Picard’s degree, taking the latter
at the amount assigned to it by Maupertuis in his Figure de la Terre …
page 126. This amount for Picard’s degree was soon afterwards found
to be too small. In consequence of the very large value assigned to the
ellipticity, maps constructed according to Murdoch’s tables would in gen-
eral be more erroneous than maps constructed on the hypothesis of the
spherical form of the Earth.

521. Murdoch’s work was translated into French under the title Nou-
velles Tables Loxodromiques … par M. Murdoch. Traduit de l’Anglois. Par
M. De Bre’mond … Paris, 1742.

This is an octavo volume consisting of xvi + 158 pages, besides the
Privilege du Roy on four pages. There are four plates of figures.

The translator dedicates the book to Le Comte de Maurepas, the
French minister who was very much concerned with the expeditions
sent to Peru and to Lapland.

The following sentence from page vii. is of interest:
Malgré ce qu’un autre Auteur Anglois prétend qu’a pensé Strabon sur l’ap-

platissement de la Terre, celui-ci a l’équité d’avouer que tous les Philosophes
et les Géographes n’attribuoient point à la Terre d’autre Figure que celle d’un
Globe parfait, avant la fameuse Expérience faite à Cayenne en 1672. par M.
Richer Astronome François.

On page 19, there is a note on the passage of Strabo; and it is main-
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tained that the passage does not shew Polybius to have been acquainted
with the true figure of the Earth.

It ought to have been stated that this note is due to the translator,
and not to Murdoch himself.

I have noticed the passage in Strabo already: see Art. 152.

522. The pages 27…46 consist of an important addition sent by the
author to the translator. The essence of this addition is to be found on
page 43, namely formulæ which give the attraction at the pole and at
the equator, both for an oblatum, and an oblongum. These formulæ are
not demonstrated, but differential expressions are investigated which will
lead to the formulæ by integration. The formulæ are correct.

Let 𝑀 denote the ratio of the attraction at the equator of an ellipsoid
of revolution to the attraction of a concentric sphere touching the ellip-
soid at that point; let 𝑁 denote the ratio of the attraction at the pole of
the ellipsoid of revolution to the attraction of a concentric sphere touch-
ing the ellipsoid at that point. Then whether the ellipsoid of revolution
be an oblatum or an oblongum, we shall have

𝑁
2
+𝑀 =

3
2
.

This formula is given, though not quite with this notation, on page
44: by attending to the formula we can discover the meaning of the first
seven lines of page 45, to which the printer has not done justice.

523. The addition which Murdoch sent to his translator appeared in
the same year as Maclaurin’s Fluxions: but, as we have seen, Maclaurin
had been substantially in possession of the results respecting the attrac-
tion of an ellipsoid of revolution at the time he wrote his Prize Essay on
the Tides. Thus Maclaurin’s claim to be the first who completely solved
the problem of the attraction of an ellipsoid of revolution on a particle
within the body, or on its surface, remains untouched.
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524. Another addition sent by the author to the translator is given
on pages 104…108. This relates to the part of the work which treats on
the construction of maps. The addition is due to a suggestion made by
Maclaurin to Murdoch, and it effects a great improvement in the math-
ematical investigation. See Maclaurin’s Fluxions, Arts. 895…899.

525. The translation is not very well executed. Some passages are
unintelligible, where the original is quite clear; as an example may be
mentioned a passage about Antipodes, on page 129 of the translation and
page 18 of the original.

The following is a curious specimen of a misprint. On page 142 of
the translation, we have bEl. 4. By turning to the original, page 29, we
find it should be 6 El. 4; here El. stands for Elements, and so what is
meant is, Euclid, vi. 4.

526. In the Paris Mémoires for 1742, published in 1745, there is an
article, entitled Sur la Figure de la Terre, which occupies pages 86…104
of the historical part of the volume: the article is by Mairan, as appears
from page 92.

We have here a notice of Clairaut’s Figure de la Terre, preceded by a
sketch of the history of the subject; there is, however, nothing of impor-
tance for us.

It is remarked that even before the observations made by Richer at
Cayenne, on the length of the seconds pendulum, it had been suspected
at the Academy that the length ought to become shorter as the equator
is approached; to support this remark the fourth Article of Picard’s work
is cited.

Mairan uses the word Pesanteur, not in the sense adopted by Mauper-
tuis and Clairaut, but for the Earth’s action apart from centrifugal force:
see Art. 299. Mairan also uses the words gravitation, gravité, attraction;
but without any apparent aim at precision: see his pages 98 and 103.
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527. The results obtained in the geodetical operations which had
been carried on during some years in France, were published at
Paris in 1744, by Cassini de Thury under the title of La Meridienne de
l’Observatoire Royal de Paris, vérifiée dans toute l’étendue du Royaume par
de nouvelles observations. The volume is in quarto: it contains Half-title,
Title, Table, then pages 292 + ccxxxv; followed by an alphabetical list of
places, and the Privilege du Roy: there are xiv Plates.

On pages 42…51 of the historical part of the Paris Mémoires for 1744,
published in 1748, we have an account of this work. On pages 237…244
of the Paris Mémoires for 1758, published in 1763, we have some correc-
tions by La Caille of the results obtained in the work.

The Discours Preliminaire with which the volume commences gives
a brief account of the operations. The formal admission is made by
Cassini, that the length of a degree of the meridian increases from the
equator; and that the Earth is therefore oblate: see his page 25. Thus
the error which he had maintained after his father and grandfather is
abandoned.

The present work supersedes the De la Grandeur et de la Figure de
la Terre, and has in its turn been superseded by the Base du Système
Métrique….

528. The volume of the Paris Mémoires for 1745, which was published
in 1749, contains a controversy between Clairaut and Buffon, which we
must notice.

Clairaut, in investigating the Lunar Theory, obtained for the motion
of the apse line a result about half as great as that assigned by obser-
vation. In order to explain the difficulty, he proposed to change the law
of attraction, by adding another term to the ordinary expression, which
varies inversely as the square of the distance. But he soon discovered and
admitted his error as to the Lunar Theory: see page 577 of the volume.

In the controversy, Buffon attempted to shew that it was necessarily
impossible for the law of gravity to be expressed by the aggregate of two
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terms, one varying inversely as the square of the distance, and the other
varying inversely as the fourth power of the distance: but his reasons are
quite inconclusive. Clairaut maintained justly that there was nothing ab-
surd in such a supposition. The controversy consists of six papers, three
by each disputant; but it does not seem that all which was spoken or
written, was printed.

Clairaut refers to the discrepancy between theory and observation rel-
ative to the figure of the Earth, as throwing suspicion on the ordinary
law of attraction; but he admits that he had not attempted to discuss the
problem on his hypothetical law: see his pages 531 and 547.

529. We have next to notice a memoir entitled Eustachii Zanotti De
figura Telluris. This memoir was published in the De Bononiensi Scien-
tiarum et Artium Instituto atque Academia Commentarii, Vol. ii. Part 2,
Bononiæ, 1746. The memoir occupies pages 210…227 of the volume.

Assuming that the Earth is an ellipsoid of revolution, Zanottus
shews how the dimensions of the ellipse may be found from the
measured lengths of two arcs, either of the meridian, or of a normal
section at right angles to the meridian. There is nothing remarkable
about the geometrical processes. Zanottus employs the theorem which
had been demonstrated by Clairaut respecting the radius of curvature of
the section at right angles to the meridian, and he refers to Clairaut’s
memoir: see Art. 161.

There is an account of the memoir on pages 442…451 of Part 1, of
Vol. ii. of these Bologna Transactions, which is dated 1745. This is a
very lively and interesting notice. The liberality of the French king is
commended for undertaking the expense of the Arctic and Equatorial
expeditions. Zanottus thought that it would be an honour to the Ital-
ians, if they contributed something towards the solution of the problem,
before Godin returned from America, and finally settled the question.
Accordingly, Zanottus proposed to execute a measure of an arc at right
angles to the meridian of Bologna; he explained and enforced his plan
in a meeting of the Academy, but without success. We read
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… Invitavit; rogavit; obsecravit. Multos etiam commovit; laboris socios sibi
adjunxit; sed Ludovicus Magnus in corona non adfuit. Tamen, etsi rem non
perfecit, spem retinuit, et voluisse non pœnituit. Quod dicimus, ut qui italorum
ingenio nihil tribuunt, voluntati certe, si quid voluntas apud ipsos mereri potest,
dent aliquid. Quamquam et ingenio tribuent fortasse non nihil, si Cassinum
meminerint fuisse nostrum.

530. The volume of the Paris Mémoires for 1747, published in 1752,
contains a memoir by La Condamine on an invariable measure of length.
An abstract of this memoir in viii pages is found in some copies of the
work XII of Art. 352.

The volume of the Paris Mémoires for 1748, published in 1752, con-
tains a memoir by Cassini de Thury on the junction of the Meridian of
Paris with that which had been traced by Snell in Holland: see Art. 105.

531. A problem occurs connected with our subject on pages 175,
176 of the Mémoires de Mathématique … par divers Sçavans … Vol. i.
Paris, 1750. The problem is entitled Supposant la loi d’attraction en rai-
son inverse du quarré de la distance, trouver la nature du solide de la plus
grande attraction. Par M. de Saint-Jacques.

The author’s name is elsewhere increased by the addition of the
words de Silvabelle.

The problem is well solved in two ways. In one solution, the early
method of treating problems in the Calculus of Variations is used. In the
other solution, a simpler method is adopted. Both ways of solution have
been since reproduced. See my History … of the Calculus of Variations,
pages 361 and 484.

For some account of Saint-Jacques de Silvabelle, see De Zach’s work,
L’attraction des montagnes … page 588.

532. The Philosophical Transactions, Vol. xlviii. part i. for the year
1753, published in 1754, contains an article on our subject under the fol-
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lowing title: An account of a Book intitled, P. D. Pauli Frisii Mediolanen-
sis, &c. Disquisitio mathematica in causam physicam figuræ et magnitu-
dinis Telluris nostræ; printed at Milan, in 1752. Inscribed to the Count de
Sylva, and consisting of Ten Sheets and a half in Quarto: By Mr. J. Short,
F.R.S.

This article occupies pages 5…17, of the volume.
I have never seen this dissertation by Frisi; but I presume, it was

incorporated by Frisi in his Cosmographiæ … Pars altera … which was
published in 1775, of which we shall give an account hereafter.

Short speaks in high terms of Frisi, thus:
This does not, however, in the least detract from the merit of F. Frisi; who

discovers throughout this work much acuteness and skill, joined with all the
candour and ingenuity, that become a philosopher. And as he has not yet ex-
ceeded his 23d year, it may be expected, that the sciences will one day be greatly
indebted to him; especially as we find him actually engaged in composing a
complete body of physico-mathematical learning.

533. The most important part of the article consists of the defence of
a passage in Newton, which Frisi had misunderstood and asserted to be
erroneous. The passage is that of which we give an account in Art. 22.
Newton uses twice in the sentence the phrase in eadem ratione. Then as
Short says: “In which the expression eadem ratione occurring a second
time has misled F. Frisi and others, to think this last ratio to be like-
wise that of the axes, or of 101 to 100.” In fact, however, in the second
case, the ratio is not that of 101 to 100; but that of 126 to 12512 . The
context shews clearly, that Newton is quite correct in what he means to
say. Frisi, however, was not convinced that the error lay with himself,
instead of with Newton: see page 123 of the book cited in Art. 532. As
we have seen in Art. 137, Maupertuis also appears to have been misled
by Newton’s words.
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534. The defence of Newton seems to have been supplied by Mur-
doch, as appears from the following passage in Short’s article:

I sent F. Frisi’s book to my ingenious and learned friend the reverend Mr.
Murdock, Fellow of this Society, who has fully consider’d the question con-
cerning the figure of the earth; and who, after having perused the book, and
discover’d the above mistake of F. Frisi, sent me the above theorem, and its
demonstration. He likewise sent me the following theorems, which, he says, he
had communicated to M. de Bremond, in the year 1740, when he was trans-
lating his treatise on sailing: But M. de Bremond dying soon after, those, who
had the care of publishing the translation, printed it incorrect in several places;
particularly the theorems for the prolate spheroid: On which account, he says,
if they are thought worth preserving, they may be inserted in the Philosophical
Transactions.

Accordingly expressions follow, which amount to giving the values of
the attraction of an oblatum or an oblongum, at the pole or at the equa-
tor. But it was unnecessary to publish them now, because Maclaurin had
completely solved the problem of the attraction of an ellipsoid of revo-
lution on a particle at the surface. Moreover all that is here given is also
in my copy of Bremond’s translation, pages 43 and 44, and printed quite
correctly: so that the above statement seems unjustifiable: it is however
possible that the original page was cancelled, and a reprint substituted.

I may say that I do not understand how a numerical result is ob-
tained, which is ascribed to Frisi on the fourth line of page 10. And on
page 17, after “whose tangent is √(𝑚2 − 1)” some words follow which I
do not understand, but which seem to me unnecessary. Murdoch spells
his name so himself; but others sometimes spell it Murdock.

535. We pass to another article which is connected with Short’s, and
is published in the same volume of the Philosophical Transactions. This
is entitled A Translation and Explanation of some Articles of the Book
intitled, Theorie de la Figure de la Terre; by Mons. Clairaut, of the Royal
Academy of Sciences at Paris, and F.R.S.
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This article occupies pages 73…85 of the volume. I am not certain,
but presume, that the paper is by Clairaut himself; it is written in the
first person throughout, but it is not ascribed to Clairaut in Maty’s Gen-
eral Index to the Philosophical Transactions.

536. Frisi considered that as to the Figure of the Earth, Boscovich un-
derestimated the observations, while Clairaut, Bouguer, and others, un-
derestimated the theory of Newton. Short, in his account of Frisi’s dis-
sertation, quoted the opinions. The present paper begins thus:

Mr. Short, in his account of Father Frisius’s Disquisitio mathematica in
causam physicam figurae et magnitudinis telluris nostrae, having reported that
philosopher’s sentiments on my reflections upon the same matter, without
taking the trouble to examine whether they were founded upon the truth or
not, I find myself under the necessity of laying before the Royal Society the
passages of my book, which, having been misunderstood by F. Frisius, have
occasioned the misconstruction, which he has made of my sentiments, either
upon the trust I give to the actual operation made for discovering the figure of
the earth, or Sir Isaac Newton’s theoretical inquiries about the same subject.

The expressions of Father Frisius, referr’d to by Mr. Short, are as fol-
low:

Quia tamen plerique omnes hucusque, aut nihil pro figura telluris deter-
minanda ex iis observationibus deduci posse cum geometra celeberrimo Rug-
gero Boscovik autumârunt, aut exinde cum Ill. Clairaut, Bouguer, aliisque, con-
tra incomparabilem virum ac prope divinum Isaacum Newton insurgentes, ad-
mirabilem ipsius theoriam facto minus respondentem dixerunt, assignatamque
in prop. 19. lib. 3. Princip. Mathem. terrestrium axium proportionem à vera ab-
sonam omnino esse, alios mihi observationibus parum, alios nimis tribuere vi-
sum est, omnes ferme oppositis erroribus peccâsse, ubi res neque aurificis lance,
neque molitoris, ut aiunt, statera librandæ sunt.

537. Clairaut makes various conjectures as to what was the precise
meaning of the charge brought against him by Frisi. Clairaut shews quite
clearly that he had not given undue importance to observations, and had
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not undervalued Newton. The paper contains translations of the sections
51, 68, 69, and a portion of 70, from the second part of Clairaut’s treatise.

With respect to the matter we discussed in Art. 533, Clairaut says:
After F. Frisius has examined himself the 19 problem of the third book of

the Principia, … the truth of which is incontestable, he finds, by his own mis-
take, a disagreement with the result of that proposition, and charges that illus-
trious author, without the least apology, with an error, which, says he, (quite
from the purpose) is the sixth, that has been found in the same work, and also
gives an enumeration of the five others, altho’ they are not at all concerned in
the question.

538. The volume of the Paris Mémoires for 1751, published in 1755,
contains a memoir by Bouguer, entitled Remarques sur les observations de
la parallaxe de la Lune, qu’on pourroit faire en même temps en plusieurs
endroits, avec la méthode d’évaluer les changemens que cause à ces par-
allaxes la Figure de la Terre. The memoir occupies pages 64…86 of the
volume. There is an account of it on pages 152…158 of the historical
part of the volume.

The memoir contains some interesting mathematical results, con-
nected with the curve which Bouguer called the gravicentrique in his
Figure de la Terre: see Art. 363.

Bouguer maintains very sound opinions on the subject he discusses.
If we were uncertain as to whether the figure of the Earth is oblate or
oblong, then observations of the Moon’s parallax might remove the un-
certainty. But at the actual epoch this point was settled; the only ques-
tion was to fix the amount of the ellipticity of the oblate figure, and the
observations could not, practically, be of sufficient accuracy for this pur-
pose. But if we assume a value of the ellipticity, the corrections which
have to be made to the observations of the parallax in consequence of the
figure of the Earth may be calculated: and the results will be important
and useful.
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539. La Caille was sent from France in 1750 to the Cape of Good
Hope for the purpose of making astronomical observations. He proposed
to determine the positions of the southern stars; the parallax of the
Moon, of Mars, and of Venus; and the latitude and longitude of the
Cape.

La Caille resided in the country from April 1751 until March 1753.
Besides the duties which he had specially undertaken, he found time to
measure an arc of the meridian. The amplitude was rather more than
1° 13′; and he obtained 57037 toises for the length of the degree of the
meridian which has its middle point in latitude 33° 18′ 12 S. La Caille also
determined the length of the seconds pendulum.

The details of the operations connected with our subject are given in
the Paris Mémoires for 1751, published in 1755. The volume contains two
memoirs embodying observations made by La Caille: the pages 425…438
are devoted to the lengths of the degree and of the pendulum.

There is also a short account of the voyage on pages 519…536 of the
volume. La Caille touched at Rio Janeiro on his outward passage, and
there he met Godin who was returning from his long sojourn in South
America. La Caille states on his page 524, that the southern hemisphere
has more stars than the northern; this statement is confirmed by actual
enumeration: see Monthly Notices of the Royal Astronomical Society, Vol.
xxxi. page 30.

There is a notice of La Caille’s voyage and work on pages 158…169
of the historical portion of the Paris Mémoires for 1751. In one point this
contradicts La Caille; for it says that he determined the position of Rio
Janeiro, while he says himself that it was unnecessary for him to do this
as he had been anticipated by Godin.

The positions of the stars in the southern hemisphere, between the
Pole and the Tropic of Capricorn, as determined by La Caille, are given
in pages 539…592 of the Paris Mémoires for 1752. La Caille found it
expedient to construct fourteen new constellations; but at the same time
he suppressed the constellation of Charles’s Oak, which he considers that
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Halley had fabricated by pillaging fine stars from the neighbourhood. He
says on his page 591:

On n’y trouvera pas la constellation nouvelle que M. Halley a insérée dans
son Planisphère en 1677, sous le nom de Robur Carolinum, parce que j’ai rendu
au Navire les belles étoiles que cet Astronome, âgé alors de vingt-un ans, en a
détachées pour faire sa cour au roi d’Angleterre. Quelque louable qu’ait été ce
motif, je ne puis approuver la façon dont M. Halley s’y est pris pour faire passer
sa constellation;…

540. A volume was published in Paris in 1763, entitled Journal his-
torique du Voyage fait au Cap de Bonne-Espérance … 12mo., pages xxxvi
+ 380, besides the Approbation on four pages. There is a planisphere of
the stars between the South Pole and the Tropic of Capricorn, which is
reduced from that published in the Paris Mémoires for 1752; and a map
of the country in the vicinity of the Cape, which is reduced from that
published in the Paris Mémoires for 1751: the triangles of the survey are
marked on the map. As to the authorship of the book see La Lande’s
Bibliographie Astronomique, page 482.

On page 25 of this book we find the work La Meridienne de Paris
vérifiée, ascribed to La Caille, though his name is not on the title-page.
Delambre also considers that the entire operation belonged to La Caille:
see the Base du Système Métrique … Vol. iii. Avertissement, page 13.

Among the memoirs ascribed to La Caille in the Journal historique…,
on pages 71 and 72, we have one sur la précision de la mesure de M.
Picard, and one sur la base de Ville-Juive: the titles, however, do not seem
given with great accuracy. The former we identify by aid of a note on
page 102, with the memoir published in the Berlin Mémoires for 1754;
the latter is probably the memoir published in the Paris Mémoires for
1758: we shall notice these memoirs in Arts. 546 and 553.

The earliest entry in La Caille’s journal which suggests the measure-
ment of an arc of the meridian is dated September, 1751: see page 144
of the book.
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541. The length of a degree of the meridian assigned by La Caille
was always perplexing to theoretical investigators, being apparently
much greater than it should have been; at the same time, the reputation
of La Caille for accuracy ensured respect for his result: see for example,
Delambre’s opinion, Base du Système Métrique … Vol. iii. page 544; and
Airy’s in the article on the Figure of the Earth, in the Encyclopædia
Metropolitana, page 207. Consult also pages 463…465 of De Zach’s
work, L’Attraction des montagnes…. I do not know whether De Zach
ever published his promised memoir on this arc.

542. A very extensive geodetical operation has been executed in South
Africa in recent times, and the results published in two quarto volumes
entitled Verification and extension of La Caille’s Arc of Meridian at the
Cape of Good Hope, by Sir Thomas Maclear, Astronomer Royal at the Cape
of Good Hope, 1866. See also the Proceedings of the Royal Society, Vol.
xviii. page 109.

These volumes have no Index, and no general summary of contents
to guide the reader; so that it is difficult to ensure perfect accuracy in
noticing their contents.

The amplitude of Sir T. Maclear’s arc exceeds 412°, and the length
agrees closely with the value which it should have in order to correspond
with the average of the arcs measured in the Northern hemisphere: see
Vol. i. page 609.

The amplitude of La Caille’s arc was redetermined; the result does
not differ from La Caille’s by so much as half a second. Sir T. Maclear’s
observations were made with the zenith sector, which Bradley had used
in his discovery of Aberration and Nutation; the object glass however
was not the same: see Vol. i. page 80. We read in Vol. i. page 111 with
respect to the redetermination of La Caille’s amplitude:

Although this work does not clear up the anomaly of La Caille’s arc, yet
it redounds to the credit of that justly distinguished astronomer, that with his
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means, and in his day, his result from 16 stars is almost identical with that from
1133 observations on 40 stars made with a powerful and celebrated instrument.

The remarkable accuracy of La Caille’s amplitude would seem nat-
urally to have suggested a recomputation of the length of his arc; this
will not be found in the volumes, and so we are left uncertain whether
La Caille made some mistakes in his geodetical work, or whether the
amplitude owing to deviations of the pendulum really was greater than
corresponds to the terrestrial arc. There are indications that some in-
vestigation on this point was contemplated; see Vol. i. pages 232, 403,
452, 456: it is much to be regretted that this interesting question was not
settled. We learn the nature of La Caille’s northern station from Vol. i.
pages 39, and 403; we are told of a mountain about half a mile distant
which is not less than 2500 feet high.

Reference is made to the attraction of Table Mountain, Vol. i. pages
3 and 83; but the subject does not seem to have been followed up after-
wards.

A letter however from Sir T. Maclear will be found in the Astronomis-
che Nachrichten, Number 574, September 3rd, 1846, in which he does
give some comparison between La Caille’s geodetical work, and his own:
the opinion is there expressed that “The chief cause of the failure of
the measurement of 1752 rests with the circumstances of the terminal
points.”

543. In the Paris Mémoires for 1752, published in 1756, there is a
memoir entitled Premier Mémoire sur la Parallaxe de la Lune … Par M. Le
François de la Lande. The memoir occupies pages 78…114 of the volume.

The memoir discusses the observations of the Moon made simultane-
ously, by La Lande at Berlin, and La Caille, at the Cape of Good Hope.
It touches on our subject in pages 100…114; here we find some theory as
to the evolute of the meridian, which is borrowed from Bouguer’s Figure
de la Terre: see Art. 363.
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La Lande notices three hypotheses as to the form and dimensions of
the Earth.

First, he supposes the Earth to be an oblatum in which the excentric-

ity is
1
179

.

Secondly, he takes Bouguer’s hypothesis, that the increment of the
length of a degree of the meridian varies as the fourth power of the sine
of the latitude.

Thirdly, he returns to the oblatum, but applies arbitrary corrections
to the three measured degrees of meridian then received; namely he adds
77 toises to the length of the degree as found from the arc between Paris
and Amiens, and subtracts 77 toises from the Lapland degree, and he
adds 26 toises to the Peruvian degree. All that he says in justification of
this process is on his page 110:

Il me paroit d’abord naturel de supposer dans les mesures faites au Pérou,
une erreur qui ne soit que le tiers de celle que je supposerai dans le degré de
Lapponie et dans celui de Paris à Amiens, puisque dans ces deux derniers on
n’a mesuré qu’une amplitude d’un degré, tandis qu’au Pérou l’arc se trouve de
trois degrés, et mesuré avec différens instrumens.

By these changes, La Lande obtains for the ratio of the axes of his

ellipse
1

1·043
, which he says is nearly

232
233

, and so does not differ much

from Newton’s value, namely
229
230

. La Lande’s fraction should be
1

1·0043
.

There is an account of the memoir on pages 103…110 of the histori-
cal portion of the volume of Mémoires. We have only to notice an impor-
tant error on page 108; here it is stated that La Lande had to apply some
rather large corrections to the lengths of the degrees of the meridian to
make them fit Bouguer’s hypothesis; whereas it really was to make them
fit with the figure of an oblatum.



miscellaneous investigations between 1741 and 1760. 393

La Lande seems to have viewed his arbitrary corrections with
some satisfaction, for he refers to them about 40 years later: see his
Astronomie, 1792, Vol. iii. page 32.

544. La Lande’s second memoir on the Parallax of the Moon, is in the
Paris Mémoires for 1753, published in 1757. Here, La Lande continues
to use Bouguer’s hypothesis; and he also takes another modification of
the elliptic hypothesis founded on the arcs in Lapland and Peru, from

which he gets
1
185

for the ellipticity. There is an account of this memoir

on pages 225…228 of the historical portion of the volume; reference is
again made to the first memoir, without the error which occurs in the
historical portion of the volume for 1752.

545. A memoir by Euler appears in the Berlin Mémoires for 1753,
published in 1755, entitled Élémens de la Trigonométrie sphéroïdique tirés
de la Méthode des plus grands et plus petits. The memoir occupies pages
258…293 of the volume.

The memoir may be said to consist of two parts.
In the first part, Euler takes the lengths of a degree of the meridian as

determined in Peru, South Africa, France, and Lapland. He assumes that
there are errors in all the measures, and by means of arbitrary correc-

tions he adjusts the lengths to coincide with the ellipticity
1
230

obtained

by Newton from theory. Euler’s corrections increase the Peruvian degree
by 15 toises, and the French degree by 125; they diminish the African
degree by 43 toises, and the Lapland degree by the same amount, sup-
posing here no allowance to be made for refraction. I presume that this
is the memoir which Boscovich had in view, though the numbers are
rather less extravagant than Boscovich stated: see Art. 483.

In the second part of the memoir, Euler gives approximate investiga-
tions respecting the shortest line between two points on the surface of
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an ellipsoid of revolution. He suggests a method of using such a line
for determining the Figure of the Earth: the angles which the line at its
extreme points makes with the meridians are to be observed. But at the
end of the memoir, Euler admits that the method could not practically
be applied.

546. In the Berlin Mémoires for 1754, published in 1756, we have a
memoir by La Caille, entitled Eclaircissemens sur les erreurs qu’on peut at-
tribuer à la mesure du degré en France, entre Paris et Amiens. The memoir
occupies pages 337…346 of the volume.

La Caille strenuously defends the French measurement from the
charge of serious error which Euler had in fact brought against it in the
Berlin Mémoires for 1753: see Art. 545. La Caille is willing to stake his
reputation on the statement that there cannot be an error of from 12 to
15 toises in the distance which had been determined between Paris and
Amiens.

A few explanatory sentences by Euler are given on the last page of
the memoir. There is an allusion to the memoir in the Base du Système
Métrique, Vol. iii. page 543.

547. In the fourth volume of the Commentarii Soc. Reg. Gottingensis
1754, we have a memoir entitled Succinctam attractionis historiam, cum
epicrisi, recitavit Sam. Christ. Hollmannus. The memoir occupies pages
215…244 of the volume.

This memoir is not mathematical, and so does not fall within our
range. The author holds that the word attraction is ambiguous, that New-
ton himself did not always use it in the same sense, and that it ought to
be abandoned. He says on his last page:

… illi, qui hac attractionis voce illudantur, intelligere et explicare sibi posse
videantur, quæ neque ipsi intelligant, neque explicare aliis valeant;…

548. I have alluded in Art. 301, to the memoir by Euler on the equi-
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librium of fluids, which appeared in the volume of the Berlin Mémoires
for 1755, published in 1757. This memoir is of essential importance in
the history of Hydrostatics; but it is not necessary in connexion with our
subject to give an account of it.

549. In the Paris Mémoires for 1755, published in 1761, we have a
memoir by La Caille, entitled Sur la précision des Mesures géodésiques
faites en 1740, pour déterminer la distance de Paris à Amiens; à l’occasion
d’un Mémoire de M. Euler inséré dans le neuvième tome de l’Académie de
Berlin. The memoir occupies pages 53…59 of the volume.

This memoir resembles that which we have noticed in Art. 546, but
is not identical with it. La Caille strenuously defends the accuracy of
the operations which had been mainly performed by himself. He is con-
vinced that there is no distance on the Earth more correctly determined
than that between Paris and Amiens, in which there could not be 10
toises of error.

La Caille’s confidence has been justified since: see Base du Système
Métrique … Vol. iii. page 162.

550. In the Philosophical Transactions, Vol. 49, Part ii. which is for
1756, published in 1757, we have an Extract of a Letter of Mons. la Con-
damine, F.R.S. to Dr. Maty, F.R.S. translated from the French. It occurs
on pages 622…624.

This is a fragment of no great importance; among other matters, it
touches on our subject. La Condamine says that La Caille’s measure,
and that of Maire and Boscovich, do not agree with the elliptical curve
of the meridian, or with the circularity of the parallels. He thinks that
the Earth has immense cavities, and that it is of very unequal density;
consequently its figure is a little irregular.

551. We have stated that a base near that of Picard was measured five
times in 1740, and that the conclusion was drawn that there had been an
error in Picard’s original measure: see Art. 236. The subject was however
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again brought into discussion, apparently owing to an opinion expressed
by Le Monnier in favour of Picard’s result. The Paris Academy accord-
ingly appointed two companies, each of four members, to test the op-
erations. One company consisted of Bouguer, Camus, Cassini de Thury,
and Pingré; the other company consisted of Godin, Clairaut, Le Mon-
nier, and La Caille. Each company worked independently; and the pro-
ceedings were reported in two volumes published in 1757. I have not
seen these volumes. The report of the first named company is however
reprinted in the Paris Mémoires for 1754, published in 1759: it occupies
pages 172…186 of the volume, and there is an account of it on pages
103…107 of the historical portion of the volume.

The result was a decisive confirmation of the accuracy of the opera-
tions of 1740, and consequently of the error of those originally made by
Picard. See La Lande’s Bibliographie Astronomique, page 462.

We may observe that the Toise of the North and the Toise of Peru
were both employed in the course of the operations; the former appeared
to be very slightly shorter than the latter.

552. In the Philosophical Transactions, Vol. 50, Part II., which is for
the year 1758, and was published in 1759, there is a memoir by Charles
Walmesley entitled Of the Irregularities in the motion of a Satellite arising
from the spheroidical Figure of its Primary Planet. The memoir occupies
pages 809…835 of the volume.

All that we have to notice in this memoir is the investigation of the
attraction of an ellipsoid of revolution on a distant particle. The ellipsoid
is supposed to differ but little from a sphere, and the investigation is ap-
proximate. The attraction of a sphere is known, so that we have only to
find the attraction of the difference between the ellipsoid and the sphere
described on its axis as diameter. By cutting this sphere by planes at right
angles to the axis, we divide it into circular rings. Accordingly Walmes-
ley first finds the approximate value of the attraction of the perimeter of
a circle on a distant particle, and then applies his result to each element
of the sphere.
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Let 𝑎 be the equatorial radius, and 𝑏 the polar radius; let 𝜉 and 𝜁
denote the corresponding coordinates of the distant particle: put 𝑅2 =
𝜉2 + 𝜁2. Then Walmesley obtains the following expressions for the com-
ponent attractions of the shell parallel to the directions of 𝜁 and 𝜉 re-
spectively:

2𝜋𝑎(𝑎 − 𝑏)𝑏𝜁
𝑅3

{
4
3
−
4
5
𝑏2

𝑅2
+
2𝜉2𝑏2

𝑅4
} ,

and
2𝜋𝑎(𝑎 − 𝑏)𝑏𝜉

𝑅3
{
4
3
+
2
5
𝑏2

𝑅2
−
2𝜁2𝑏2

𝑅4
} .

Walmesley adds a corollary on his page 815 which deserves to be no-
ticed. I adapt his words to my own notation. He says then that the for-
mer force is to the latter as

𝜁 {
4
3
−
4
5
𝑏2

𝑅2
+
2𝜉2𝑏2

𝑅4
} is to 𝜉 {

4
3
+
2
5
𝑏2

𝑅2
−
2𝜁2𝑏2

𝑅4
} ;

He adds that if the former is represented by 𝜁 the latter must be repre-

sented by 𝜉−
3𝜉𝑏2

5𝑅2
; and so the resultant of the two does not pass through

the centre of the ellipsoid, but crosses the plane of the equator at a point

distant
3𝜉𝑏2

5𝑅2
towards the attracted particle.

To obtain this result we must find the value of

𝜉 {
4
3
+
2
5
𝑏2

𝑅2
−
2𝜁2𝑏2

𝑅4
}

4
3
−
4
5
𝑏2

𝑅2
+
2𝜉2𝑏2

𝑅4

;

this is

𝜉 {1 +
3
10

𝑏2

𝑅2
−
3𝜁2𝑏2

2𝑅4
} {1 −

3
5
𝑏2

𝑅2
+
3𝜉2𝑏2

2𝑅4
}
−1

,
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that is approximately

𝜉 {1 +
3
10

𝑏2

𝑅2
+
3
5
𝑏2

𝑅2
−
3(𝜉2 + 𝜁2)𝑏2

2𝑅4
} ,

that is
𝜉 {1 +

9
10

𝑏2

𝑅2
−
3
2
𝑏2

𝑅2
} , that is 𝜉 {1 −

3𝑏2

5𝑅2
} .

553. In the volume of the Paris Mémoires for 1758, published in 1763,
there is a memoir by La Caille, entitled Mémoire sur la vraie longueur des
Degrés du Méridien en France. The memoir occupies pages 237…244 of
the volume.

The astronomical observations in the work entitled La Méridienne de
Paris vérifiée, 1744, had not been corrected for what we now call Nuta-
tion. This irregularity had been discovered before that work appeared,
but the theory had not been published; and it was supposed that the er-
ror produced during the interval of sixteen months, over which the op-
erations extended, might be neglected. La Caille now applies the proper
corrections to the amplitudes, and to the deduced lengths of degrees of
the meridian.

554. The volume of the Paris Mémoires for 1758, published in 1763,
contains a memoir entitled Mémoire sur les Degrés de l’ellipticité des
Sphéroïdes, par rapport à l’intensité de l’attraction. Par M. le Chevalier
D’Arcy. The memoir occupies pages 318…320 of the volume.

We may say, in modern language, that this short memoir draws atten-
tion to the principle of the conservation of areas, as holding in the case
of a mass set in rotation, and acted on by no forces except the mutual
attractions of its particles. The writer calls the principle the conservation
of action, and claims it for his own. See Walton’s Mechanical Problems,
1855, page 479.

Laplace gives an application of the principle in the Mécanique Céleste,
Livre iii. § 21: see Art. 286.
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555. The Academy of Toulouse proposed the Figure of the Earth as
the subject of an Essay, with a double prize, for the year 1750. The prize
was obtained by Clairaut. The volume containing the Essay appears to
have been published at Toulouse in 1759. I have not seen this volume.

There is an account of the Essay in the Journal des Sçavans for Octo-
ber 1759; this account occupies pages 281…301 of the Amsterdam edition
of the volume of the Journal. The account is obscure and uninteresting,
like most of the attempts to translate mathematical investigations into
ordinary language. Hence I do not submit with much confidence the
following brief notice of what Clairaut’s Essay seems to have contained.

Clairaut considered that both the ellipticity of the Earth, and
Clairaut’s fraction, were found by observation to be greater than they
would have been for a homogeneous fluid. Hence Clairaut’s theorem
does not hold for the Earth; and so it becomes necessary to devise some
hypothesis which differs from those on which that theorem may be
established.

Clairaut first examines an hypothesis which he attributes to Bouguer;
namely, that the parts of the Earth in the vicinity of the axis of rotation
are denser than the rest of the Earth. Clairaut comes to the conclusion
that this is inadmissible. He finds that if the density in the vicinity of
the axis differs from the density of the rest of the earth, it will not be
possible to obtain an ellipticity and a Clairaut’s fraction which shall both
be greater than for a homogeneous fluid. We are not referred to the place
where Bouguer has maintained this hypothesis.

Then Clairaut proposes his own new hypothesis. He assumes a solid
nucleus. The generating curve is to differ slightly from an ellipse; every
ordinate exceeding the corresponding ordinate of the ellipse by a small
quantity which varies as the cube of the cosine of the latitude. Thus, in
addition to the attraction of an ellipsoid of revolution, he has to consider
the attraction of a certain shell which is also a figure of revolution.

By investigating the problem, and following the hints which may be
extracted from the Journal des Sçavans, it will be seen that Clairaut’s pro-
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cesses, though tedious, would not have involved any very serious diffi-
culty.

556. La Lande mentions this Essay: see his Bibliographie As-
tronomique, page 464. He ascribes the account in the Journal des
Sçavans to Clairaut himself, “… où Clairaut en donna lui-même
l’extrait.”

But from the commendation bestowed on the Essay in the account of
it, I think that La Lande must be wrong. It is difficult, for example, to
believe that Clairaut could have praised himself in these words:

Toutes ces transformations que nous indiquons, et que M. Clairaut emploie
avec tant d’art et de succès, doivent être regardées comme le sceau du Géometre
supérieur qu’il imprime à tous ses Ouvrages.

The Essay can be regarded only as a mathematical exercise; and it
does not seem ever to have attracted attention. It is not mentioned in
the translation of Newton’s Principia, which was prepared by Madame
du Chastellet under the guidance of Clairaut; nor in Poisson’s reprint of
Clairaut’s Figure de la Terre: in this reprint some account of the Essay
might with advantage have been given.

557. A problem in the Integral Calculus is mentioned with approba-
tion as the foundation of many of Clairaut’s investigations: see page 296
of the account in the Journal des Sçavans. I will endeavour to reconstruct
this problem from the obscure traces which are given.

The equation to the generating curve of the nucleus which Clairaut
adopts will be of the form

𝑦 =
𝑏
𝑎
√(𝑎2 − 𝑥2) + 𝜆(𝑎2 − 𝑥2) 32 . (1)

Let this curve revolve round the axis of 𝑥, so that the equation to the
nucleus is

√(𝑦2 + 𝑧2) =
𝑏
𝑎
√(𝑎2 − 𝑥2) + 𝜆(𝑎2 − 𝑥2) 32 . (2)
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We suppose 𝜆 so small that its square may be neglected.
The area of a section of the solid made by a plane at right angles to

the axis of 𝑥, and at the distance 𝑥 from the origin, will be 𝜋𝑦2, that is
by (1) approximately

𝜋
𝑏2

𝑎2
(𝑎2 − 𝑥2) + 2𝜋𝜆

𝑏
𝑎
(𝑎2 − 𝑥2)2.

It is required to shew that the area of a section made by a plane at
right angles to the axis of 𝑦, and at the distance 𝑦 from the origin, can
be put in an analogous form.

We have from (2)

𝑧2 =
𝑏2

𝑎2
(𝑎2 − 𝑥2) − 𝑦2 +

2𝜆𝑏
𝑎
(𝑎2 − 𝑥2)2

= 𝑏2 + 2𝜆𝑏𝑎3 − 𝑦2 − (
𝑏2

𝑎2
+ 4𝜆𝑏𝑎) 𝑥2 +

2𝜆𝑏
𝑎
𝑥4

= 𝐵2 − 𝑦2 −
𝐵2

𝐴2
𝑥2 +

2𝜆𝑏
𝑎
𝑥4, say.

Thus

𝑧 = √(𝐵2 − 𝑦2 −
𝐵2

𝐴2
𝑥2) +

𝜆𝑏
𝑎
𝑥4

√(𝐵2 − 𝑦2 −
𝐵2

𝐴2
𝑥2)

.

The area of the section to our order of approximation will be

4∫
𝑐

0
𝑧𝑑𝑥, where 𝑐 stands for

𝐴
𝐵
√(𝐵2 − 𝑦2).

Hence by assuming 𝑥 =
𝐴
𝐵
√(𝐵2−𝑦2) sin 𝜃 we easily find that the area

is
𝜋
𝐴
𝐵
(𝐵2 − 𝑦2) +

3𝜋
4
𝜆𝑏
𝑎
. (
𝐴
𝐵
)
5
(𝐵2 − 𝑦2)2.
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This expression is of the required form.
The use of the problem to Clairaut consists in this: as the formulæ

for the attraction of an ellipsoid of revolution may be considered known,
as soon as he has determined the attraction of the nucleus for a point on
the axis of 𝑥, he can readily infer the attraction for a point on the axis
of 𝑦.

558. A celebrated French lady translated Newton’s Principia and
added a commentary; the work was published after her death under
the title of Principes Mathématiques de la Philosophie Naturelle, par feue
Madame la Marquise du Chastellet. 2 vols. 4to. Paris, 1759.

Besides Chastellet we have the variations Chastelet and Châtelet: see
pages iv and v of the first volume of the work. The work has an Aver-
tissement de l’Editeur, and a Préface Historique by Voltaire.

From these it appears that Madame du Chastellet was a pupil of
Clairaut’s; and the commentary was constructed out of the materials
which she obtained from him. The translation occupies the first volume
and part of the second; the commentary occupies the remainder of the
second volume. We will notice those pages of the commentary which
bear on our subject.

559. Pages 56…67 give an analysis of Newton’s method of treating
the Figure of the Earth.

On page 62 the cause of a mistake made by Newton is assigned as
in Clairaut’s Figure de la Terre, page 256; though here apparently with
more confidence: see Art. 37.

On page 66 the criticism on Newton’s conjecture with respect to
Jupiter is given as in Clairaut’s Figure de la Terre, page 224; though here
apparently with more confidence: see Art. 31.

The pages 155…183 constitute an analytical treatise on Attractions
in three sections. First we have spherical bodies, then bodies of other
forms, and lastly an ellipsoid of revolution with the attracted particle on
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the prolongation of the axis. The investigations are simple and satisfac-
tory.

One of these investigations relates to the attraction of a sphere on an
internal particle, when the force varies inversely as the fourth power of
the distance. To avoid the infinite expressions which might occur, it is
assumed that if the particle be at the centre of such a sphere, the resul-
tant attraction must be zero.

The pages 193…259 form a section entitled De la Figure de la Terre,
in two parts. The first part on pages 193…221 is an abridgement of the
theory of Hydrostatics which constitutes the first half of Clairaut’s vol-
ume. The second part, on pages 221…259, is on the Figure of the Earth;
this is almost a reproduction of Chapters ii. and iii. of the second half
of Clairaut’s volume.

Two simple examples constitute all the novelty which the commen-
tary furnishes; we will mention these.

On page 238 the general formula for the value of attraction given by
Clairaut on his page 247 is applied to the case in which the strata are all
similar, so that the ellipticity is constant, and the density varies as the
distance from the centre: see Art. 336. The result is found then to be
independent of 𝑠, so that the attraction is approximately constant at all
points of the surface: see Case iii. of Art. 266. The result in our notation

will be found to be 𝜋𝑟12𝜆(1 +
2
3
𝜖1), where 𝜆 is the density at the unit of

distance from the centre.
The other example is discussed on pages 238, 239 and 246. Using the

notation of Art. 336, suppose that the density and the ellipticity are given
by these formulæ

𝜌 = 𝜆𝑟1 − 𝑝𝑟, 𝜖 = 𝜖1
𝑟
𝑟1
,

where 𝜆 and 𝑝 are constants. Then the commentary finds the expression
for gravity and the value of 𝜖1. See Arts. 336 and 327.
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560. According to the Préface Historique, page ix, great care was
bestowed on the Commentary. When the lady had written a chapter,
Clairaut examined and corrected it; and subsequently the fair copy
was revised by a third party. Nevertheless there are numerous errors
or misprints, some of which are very serious. Thus, for example,
the formulæ which occur in the investigation of the attraction of an
oblongum on pages 182 and 183 are much disfigured; the former part of
page 197 is unintelligible, owing to the omission of important matter;
the binomial expressions on pages 218 and 219 are extremely inaccurate;
the reference to a supposed property of the ellipse on page 242 is
absurd; and the numerical application of Clairaut’s Theorem on page
257 is quite wrong.

Playfair mentions Madame du Chastellet in his Dissertation … of the
Progress of Mathematical and Physical Science…; see page 655 of the En-
cyclopædia Britannica, eighth edition, Vol. i. In reference to her writings
on the dispute as to the measure of force, he says:

… from the fluctuation of her opinions, it seems as if she had not yet en-
tirely exchanged the caprice of fashion for the austerity of science….

Voltaire however finds merit in a similar fluctuation. He says in the
Préface Historique, page vi.:

… Ainsi, après avoir eu le courage d’embellir Léibnitz, elle eut celui de
l’abandonner:…

Playfair speaks highly of the translation of Newton and the Com-
mentary. I do not agree with his estimate of the Commentary. The
title is really inappropriate. Instead of any explanation of Newton, we
have merely other investigations drawn from well known works exhibit-
ing more recent solutions of the problems which Newton discussed.

561. The first volume of the series published by the Turin Academy
which is usually called the Miscellanea Taurinensia is dated 1759. On
pages 142…145 Lagrange supplies a note to a memoir by another person.
The note relates to the attraction of an indefinitely thin spherical shell,
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and undertakes to explain the paradox which had disturbed D’Alembert:
see Art. 434.

Lagrange’s explanation is rather a hint than a strict mathematical in-
vestigation; but the idea is sound and valuable. When the attracted par-
ticle is very near the shell, an infinitesimal part of the shell close to the
particle produces a finite portion of the whole attraction, in fact a half.
When the attracted particle forms an element of the shell, this part of the
attraction vanishes; and when the attracted particle is inside the shell it
becomes negative.

Lagrange’s idea for the spherical shell is really the same as Coulomb
afterwards used for a shell of any form in the Paris Mémoires for 1788;
Laplace developed it in an investigation which occurs in Poisson’s mem-
oir on the distribution of electricity, in the Paris Mémoires for 1811.

562. The second volume of the Miscellanea Taurinensia, is for 1760
and 1761; the date of publication is not recorded.

This volume contains the memoir by Lagrange on Maxima and Min-
ima, which is famous in the early history of the Calculus of Variations.
In a memoir immediately following, and connected with this, Lagrange
treats of various problems in Dynamics; and among others, he considers
the motion of fluids.

Lagrange, on his page 282, makes a remark respecting a passage in
D’Alembert’s … Résistance des Fluides to which I have already alluded:
see Art. 397.

Lagrange makes a remark that surfaces of equal density will be level
surfaces provided a certain condition holds. He says on his page 284:

Cependant un grand Géométre a crû que il n’étoit pas toujours nécessaire
que les surfaces des différentes couches fussent de niveau, et il a donné un autre
Principe pour connôitre la figure de ces surfaces.

Lagrange commences a mathematical investigation; and in effect he
says that if we proceed according to D’Alembert’s manner, as given in
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Art. 401, we shall find that the surfaces of equal density are level sur-
faces. D’Alembert as we have stated, subsequently admitted his error:
see Arts. 368 and 400.

Lagrange criticises other opinions of D’Alembert on pages 275 and
323 of the second volume of the Miscellanea Taurinensia: but these do
not belong to our subject.



CHAPTER XVI.

D’ALEMBERT.

563. We shall now resume our examination of the labours of
D’Alembert in our subject. With a few unimportant exceptions, the
present Chapter will be devoted to memoirs published by D’Alembert in
various volumes of his Opuscules Mathématiques.

564. The article entitled Figure de la Terre in the Encyclopédie, was
by D’Alembert; the date of the volume in which it was published is 1756.

The article occupies pages 749…761 of the volume; it gives an inter-
esting account of the measurements and of the theoretical investigations
on the subject up to the date of publication.

D’Alembert awards high praise to Maclaurin, and to Clairaut; and
refers with obvious satisfaction to his own researches. He notices
especially the Articles 166…169 of his Essai sur la Résistance des
Fluides; these he appreciates at a value far beyond their worth: see Arts.
404…406. He also refers to his Recherches … Systême du Monde, and it
may be admitted that these volumes are not without merit as regards
our subject.

D’Alembert discusses at some length in a popular manner the ques-
tion as to whether the Earth can be assumed to be a figure of revolution.

In the Encyclopédie Méthodique the account which D’Alembert gave
of the theory of the subject is reproduced; but his account of the mea-
surements is omitted, and a shorter article respecting them by La Lande
is supplied.

In the Encyclopédie Méthodique there is a reference to the fifth vol-
ume of the Opuscules Mathématiques which of course was not in the
original Encyclopédie.

The following sentence of the original article is worth notice:
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… ceux qui les premiers mesurerent les degrés dans l’étendue de la France,
préoccupés peut-être de cette idée, que la Terre applatie donnoit les degrés vers
le nord plus petits que ceux du midi, trouverent en effet que dans toute l’éten-
due de la France en latitude, les degrés alloient en diminuant vers le nord.

In the original article speaking of what his Recherches … contained
D’Alembert says: il pourroit trés-bien être en équilibre sans avoir la fig-
ure elliptique. This is not so strong as the preface to Vol. iii. of the
Recherches … page xxxvi.

565. The article entitled Gravitation in the Encyclopédie was by
D’Alembert; the date of the volume in which it was published is 1757.

The only part of the article which concerns us consists of some obser-
vations respecting the paradox which D’Alembert considered that he had
discovered as to the attraction of an infinitesimally thin spherical shell:
see his Recherches … Systême du Monde, Vol. iii. page 199; and Arts. 434
and 561.

D’Alembert shews analytically, that if a particle be outside the shell
the resultant attraction on it is the same as if the mass of the shell were
collected at the centre; this result is no more than Newton had given in
his Principia: see Art. 4.

D’Alembert’s observations to which we are here referring are omitted
in the article Gravitation of the Encyclopédie Méthodique; but the sub-
stance of them is reproduced as we shall see in the first volume of the
Opuscules Mathématiques.

566. The first volume of D’Alembert’s Opuscules Mathématiques was
published in 1761. On pages 246…264 we have a memoir entitled Re-
marques sur quelques questions concernant l’attraction.

567. According to D’Alembert’s formula on page 42 of his Réflexions
… des Vents, which is reproduced in our Art. 376, relative equilibrium
might subsist in the case of a solid oblatum covered with fluid, such that
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the external surface of the fluid was an oblongum; the whole rotating on
a common axis. This result, D’Alembert says, had been attacked by un
Géometre Italien, qui a du nom dans les Mathématiques: pages 246…252
constitute a reply to this attack.

The Italian Geometer was doubtless Boscovich; see page 463 of his
De Litteraria Expeditione…, and Art. 470. The objection urged against
D’Alembert’s result amounts to this in modern language: that the relative
equilibrium would not be stable. D’Alembert says, very justly, he might
reply that in such researches no mathematician had as yet attempted to
consider whether this condition was satisfied. However, he makes some
remarks on the point. He contents himself with shewing when the tan-
gential force at the external surface of the fluid would act towards the
pole, and when towards the equator. He arrives at the conclusion that
the relative equilibrium would be stable in the case to which objection
had been taken, provided the density of the fluid were less than five-
thirds of the density of the solid. D’Alembert’s investigation is not ad-
equate to solve the problem of the motion of the fluid when disturbed
from its position of relative equilibrium: but his defence is at least as
good as the attack of the Italian Geometer.

The subject will appear before us again in the sixth volume of the
Opuscules Mathématiques.

568. On his pages 252…257, D’Alembert corrects an error into which
he had fallen in his Réflexions … des Vents, pages 155…157. We have
already paid attention to this correction: see our Art. 381.

569. On his pages 257…264, D’Alembert recurs to what he considered
a paradox, as to the attraction of an infinitesimally thin spherical shell:
see Art. 565. D’Alembert reproduces the substance of some remarks orig-
inally published in the Encyclopédie. He takes objection to Lagrange’s
explanation, and he says he gives one of his own: see Art. 561. What
D’Alembert really does is to translate Lagrange’s idea from popular lan-
guage to mathematical language; and then to ascribe the entire merit to
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himself. He shews that the infinitesimal part of the shell to which La-
grange refers may be taken to be the part determined by tangents from
the external particle.

It may be observed that neither Lagrange nor D’Alembert uses a sym-
bol to express the infinitesimal thickness of the shell. If we consider the
shell to be very thin, though not infinitesimally thin, and suppose the
attracted particle to pass gradually from the outside of the shell to the
inside of the shell, all the so-called paradox disappears: for the attrac-
tion changes gradually and not discontinuously.

570. The fifth volume of D’Alembert’s Opuscules Mathématiques
was published in 1768. On pages 1…40 we have a memoir entitled Sur
l’équilibre des Fluides; and the pages 23…40 of this memoir constitute
an Appendice sur la Figure de la Terre.

571. The memoir begins by corrections of errors in preceding inves-
tigations.

D’Alembert had supposed that he had obtained in his Essai sur la
Résistance des Fluides more general results than his predecessors in the
theory of the equilibrium of fluids and the figure of the Earth. He now
admits that the supposition was unfounded. The quantity denoted by 𝐾
on page 210 of that work he now allows should be zero; and so his result
coincides with Clairaut’s: see Art. 405.

In like manner he admits that the same simplification ought to be
made in various equations which he had given in the third part of his
Recherches … Systême du Monde, beginning with page 229. I have al-
ready, in my account of this work, noticed the correction: see Art. 444.

572. D’Alembert returns to the subject he had introduced on page 203
of his Essai sur la Résistance des Fluides: see Art. 400. He maintains, and
rightly, that in a fluid in equilibrium the surfaces of equal density are
not necessarily level surfaces. He admits, however, that for such forces
as occur in nature, the surfaces of equal density are level surfaces; his
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original error on this point was corrected by Lagrange: see page 2 of the
Opuscules Mathématiques, Vol. v.; also Arts. 405 and 562.

573. D’Alembert gives a form, at once simpler and more general, to
the equations which he had used in the Essai sur la Résistance des Flu-
ides: see page 6 of the Opuscules Mathématiques, Vol. v.; also Art. 402.

574. D’Alembert occupies his pages 10…22 with remarks on the con-
ditions of fluid equilibrium. The remarks are sound, must have been
valuable at the time, and may even now be read with profit. D’Alembert
objects with justice to Clairaut’s explanation of a paradox in the subject;
see Art. 312.

The main principle which D’Alembert asserts, expressed in modern
language, is in effect this: Consider only forces in one plane; then we
have for the equilibrium of a fluid the equations

𝑑𝑝
𝑑𝑥

= 𝜌𝑋,
𝑑𝑝
𝑑𝑦

= 𝜌𝑌.

Take the simple case of homogeneous fluid; then it is not sufficient
for equilibrium that 𝑋𝑑𝑥+𝑌𝑑𝑦 should be a perfect differential. If we sup-
pose that 𝑋𝑑𝑥 + 𝑌𝑑𝑦 is the differential of 𝜙(𝑥, 𝑦) then 𝜙(𝑥, 𝑦) must have
only one value for given values of 𝑥 and 𝑦. Thus, for example, 𝜙(𝑥, 𝑦)

must not be such a function as tan−1
𝑦
𝑥
.

Again, suppose we use polar coordinates, and find that 𝑝 = 𝐹(𝑟, 𝜃);
then when 𝑟 = 0 we have 𝑝 apparently a function of 𝜃 only. But unless
this apparent function of 𝜃 reduces to a constant, the pressure would not
be the same in all directions about the origin; which is contrary to the
nature of a fluid.

In the two preceding paragraphs we have translated D’Alembert’s
ideas into modern language; he himself does not speak of pressure, nor
does he use the symbol 𝑝.
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575. D’Alembert devotes his pages 23…40 to an Appendix on the Fig-
ure of the Earth. His object is to enquire if the oblatum is the only form
of relative equilibrium for a rotating mass of homogeneous fluid.

He says it follows from what he has proved in his Recherches sur les
Vents, Art. 28, that if the fluid mass is originally spherical, and is then
put into rotation, so that the ratio of the centrifugal force to gravity is
small, the form of relative equilibrium must be an oblatum. It is almost
needless to remark that D’Alembert’s statement is not demonstrated: the
motion of such a fluid mass is too difficult for his rough approximative
analysis to master.

However, he now proceeds to discuss the problem without assuming
that the mass is originally spherical. He arrives at the conclusion that if
the fluid is in the form of a figure of revolution, and is nearly spherical,
there cannot be relative equilibrium for any other form than an oblatum.
Unfortunately, his demonstration is unsound. The theorem, however, is
now admitted to be true. Legendre indeed gave a demonstration, which
does not assume the figure to be nearly spherical; but the demonstra-
tion is not quite free from objection. Laplace, assuming the figure to be
nearly spherical, but not assuming it to be of revolution, demonstrated
the theorem: he omits to mention the condition that the figure is nearly
spherical when he refers to the subject in the Mécanique Céleste, Vol. v.,
page 10.

576. We will now indicate the nature of D’Alembert’s method, and
the point at which it fails.

Let 𝑃 be the pole of the body, 𝑄 any point on the surface. We shall re-
quire the attraction at 𝑄 resolved in the direction which is in the merid-
ian plane of 𝑄, and is at right angles to the radius from the centre to
𝑄.

Let 𝑅 be any point on the surface; let 𝑃𝑄 = 𝛽, 𝑄𝑅 = 𝑢, 𝑃𝑅 = 𝑧; and
let 𝑃𝑄𝑅 = 𝜋 − 𝜓, so that 𝜓 is the angle between 𝑅𝑄 and 𝑃𝑄 produced.
Let the polar radius be denoted by 1, and the radius at 𝑅 by 1 + 𝛼𝐹(𝑧),
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where 𝛼 is a small quantity. Then proceeding as in Art. 424, we find
that the element of the required attraction, estimated from the pole, to
the order we have to regard

=
𝑑𝑢𝑑𝜓 sin𝑢 cos𝜓 cos 12𝑢

4 sin2 1
2𝑢

𝛼𝐹(𝑧)

=
𝑑𝑢𝑑𝜓 sin2 𝑢 cos𝜓

8 sin3 1
2𝑢

𝛼𝐹(𝑧)

=
𝑑𝑢𝑑𝜓 sin2 𝑢 cos𝜓
2 3
2 (1 − cos𝑢) 32

𝛼𝐹(𝑧).

This agrees with D’Alembert’s formula at the top of his page 26; his
Δ is our 𝜓.

The transverse attraction which we require would be obtained by in-
tegrating the above expression between the limits 0 and 2𝜋 for 𝜓, and 0
and 𝜋 for 𝑢. Let 𝑇 denote this transverse attraction.

Let 𝑉 denote the attraction at 𝑄 resolved along the radius; and 𝜒 the
angle between this radius and the tangent to 𝑄𝑃 at 𝑄. Then 𝑉 cos𝜒 is
the resolved part of 𝑉 along the tangent to 𝑄𝑃 at 𝑄. Hence, supposing
the body to be fluid, or at least the outer stratum to be fluid, we must
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have for equilibrium
𝑉 cos𝜒 = 𝑇. (1)

If the body rotates, then to secure relative equilibrium, we must
supply in this equation a term corresponding to the resolved centrifugal
force.

We must now give some specific form to 𝐹(𝑧) before we can carry
the investigation further. Assume, with D’Alembert, that

𝐹(𝑧) = 𝐴 + 𝐵 cos 𝑧 + 𝐶 cos2 𝑧 +… +𝑀 cos𝑚 𝑧.

We shall then have to our order of approximation

cos𝜒 = − sin 𝛽(𝐵 + 2𝐶 cos 𝛽 +…+𝑚𝑀 cos𝑚−1 𝛽)𝛼;

and it will be sufficient in (1) to put
4𝜋
3

for 𝑉. Thus (1) becomes

−
4𝜋𝛼
3

sin 𝛽(𝐵 + 2𝐶 cos 𝛽 +…+𝑚𝑀 cos𝑚−1 𝛽) = 𝑇. (2)

Now cos 𝑧 = cos 𝛽 cos𝑢 − sin 𝛽 sin𝑢 cos𝜓. Hence, corresponding to
the term 𝑀 cos𝑚 𝑧 in 𝐹(𝑧) we have in 𝑇 the term

𝛼𝑀
2 3
2
∫

𝜋

0
∫

2𝜋

0

sin2 𝑢 cos𝜓(cos 𝛽 cos𝑢 − sin 𝛽 sin𝑢 cos𝜓)𝑚

(1 − cos𝑢) 32
𝑑𝑢𝑑𝜓.

When we integrate with respect to 𝜓 all the terms which involve odd
powers of cos𝜓 vanish; so that we are left with

−
𝛼𝑀
2 3
2
∫

𝜋

0
∫

2𝜋

0

sin2 𝑢𝑍𝑑𝑢𝑑𝜓
(1 − cos𝑢) 32
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where

𝑍 = 𝑚 cos𝑚−1 𝛽 sin 𝛽 cos𝑚−1 𝑢 sin𝑢 cos2 𝜓

+
𝑚(𝑚 − 1)(𝑚 − 2)

3
cos𝑚−3 𝛽 sin3 𝛽 cos𝑚−3 𝑢 sin3 𝑢 cos4 𝜓

+…

Here every term involves some odd power of sin 𝛽. Now suppose we
put (1 − cos2 𝛽) sin 𝛽 for sin3 𝛽, and (1 − cos2 𝛽)2 sin 𝛽 for sin5 𝛽, and so
on. Then 𝑍 takes the form

sin 𝛽(𝑁1 cos𝑚−1 𝛽 + 𝑁3 cos𝑚−3 𝛽 + 𝑁5 cos𝑚−5 𝛽 +…),

where 𝑁1, 𝑁3, 𝑁5, … are functions of 𝑢 and 𝜓.
In like manner the other terms in 𝐹(𝑧) will give rise to corresponding

terms in 𝑇, involving the product of sin 𝛽 into various powers of cos 𝛽;
but these powers of cos 𝛽 will all be less than the (𝑚 − 1)th power.

Hence equating the coefficients of like terms in (2), we see that be-
sides other relations we must have

−
4𝜋𝑚
3

= −
1
2 3
2
∫

𝜋

0
∫

2𝜋

0

𝑁1 sin
2 𝑢𝑑𝑢𝑑𝜓

(1 − cos𝑢) 32
. (3)

D’Alembert then has to shew that equation (3) cannot be satisfied if
𝑚 be a positive integer greater than 2. His demonstration, however, fails
completely, because he has given a wrong value to the quantity which
we denote by 𝑁1: his error begins with his Article 50, on his page 26.

Take the second term which we have expressed in the value of 𝑍; and
put sin 𝛽(1 − cos2 𝛽) for sin3 𝛽: then we have as part of 𝑁1

−
𝑚(𝑚 − 1)(𝑚 − 2)

3
cos𝑚−3 𝑢 sin3 𝑢 cos4 𝜓.
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Instead of keeping this, D’Alembert puts sin𝑢(1 − cos2 𝑢) for sin3 𝑢,
and then omits sin𝑢, retaining only − sin𝑢 cos2 𝑢, so that instead of what
we have just given, he has

𝑚(𝑚 − 1)(𝑚 − 2)
3

cos𝑚−1 𝑢 sin𝑢 cos4 𝜓.

He treats the other terms of 𝑍 in the same unwarrantable manner;
and the consequence is that his value of 𝑁1 is altogether wrong. The
error renders all the rest of his argument worthless.

Laplace, as we shall see, alludes in his first and second memoirs to
D’Alembert’s demonstration, but says nothing about its unsoundness.
Legendre, who may be considered to have been the first to solve
the problem here involved, does not even allude to D’Alembert’s
demonstration.

577. It is important to notice what D’Alembert’s process would have
established if it had been sound. It would have shewn that 𝐹(𝑧) cannot
be a finite series of powers of cos 𝑧, in which the highest power is greater
than 2. But it would not have shewn that 𝐹(𝑧) cannot be an infinite
series of powers of cos 𝑧.

578. D’Alembert gives on his page 29 the value of the definite inte-

gral ∫
−1

1

𝑥𝑚−1𝑑𝑥
(1 − 𝑥) 12

when for 𝑚 we put 1, 2, 3, 4, 5, 6, or 7. There is no

objection to his method. We may, if we please, transform the integral to

2(−1)𝑚∫
√2

0
(𝑦2 − 1)𝑚−1𝑑𝑦: thus it is easy to verify his values.

After leaving this subject, D’Alembert on his pages 36…40, makes a
few other remarks; they are not of great importance, but they are correct,
except those contained in his Art. 78, which are erroneous.
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579. The sixth volume of D’Alembert’s Opuscules Mathématiques was
published in 1773; a large part of it is devoted to our subject.

580. A memoir entitled Sur la Figure de la Terre, occupies pages
47…67. It begins thus:

Feu M. Maclaurin est le premier qui ait démontré rigoureusement qu’une
masse fluide homogene, tournant autour d’elle-même, devoit prendre la figure
d’une ellipse dans l’hypothèse de l’attraction en raison inverse du quarré des
distances. Mais personne, que je sache, n’avoit encore remarqué que dans ce
cas le problême est susceptible de deux solutions, c’est-à-dire, qu’il y a deux
figures possibles à donner au spheroïde, et dans lesquelles l’équilibre aura lieu.
Cette considération est l’objet des Recherches suivantes.

We have already remarked that Thomas Simpson had implicitly
shewn the possibility of this double solution: see Art. 285. However,
D’Alembert now gives an explicit investigation, which, in substance, was
afterwards incorporated by Laplace in the Mécanique Céleste, and thus
constitutes a permanent part of the subject: see the Mécanique Céleste,
Livre iii., Chapitre iii.

On his page 47, D’Alembert makes the undemonstrated assertion,
that if a spherical mass of homogeneous fluid be put in rotation it will
take the form of an oblatum: see Art. 575.

581. We will, in giving an account of D’Alembert’s process, adopt to
a great extent Laplace’s notation.

Suppose 𝜔 the angular velocity of rotation, 𝜌 the density of the fluid;

put 𝑞 for
𝜔2

4𝜋𝜌
3

. Suppose the major axis of the Earth to be √(𝜆2+1) times

the minor axis; then the excentricity of the ellipse is
𝜆

√(𝜆2 + 1)
. Denote

the minor axis by 2𝑐. Then by the formulæ of Art. 261, or by those of
any elementary work on Statics we find that the attraction on a particle
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at the pole is
4𝜋𝜌𝑐(1 + 𝜆2)

𝜆2
{1 −

tan−1 𝜆
𝜆

} ;

and the attraction on a particle at the equator is

2𝜋𝜌𝑐√(𝜆2 + 1)
𝜆2

{(1 + 𝜆2)
tan−1 𝜆

𝜆
− 1} :

call the latter 𝑋, and the former 𝑌.
The centrifugal force at the equator

= 𝑐√(𝜆2 + 1)𝜔2 =
4𝜋𝜌𝑐𝑞
3

√(𝜆2 + 1).

Then, as in Art. 262, the condition for relative equilibrium is

𝑋 −
4𝜋𝜌𝑐𝑞
3

√(𝜆2 + 1)

𝑌
=

1
√(𝜆2 + 1)

,

which reduces to
2𝑞
3
=
(𝜆2 + 3) tan−1 𝜆 − 3𝜆

𝜆3
. (1)

This is the standard equation on the subject: see the Mécanique
Céleste, Livre iii. § 18. D’Alembert has the same equation: see his page
50. He uses 𝑘 for Laplace’s 𝜆, and 𝜔 for Laplace’s 𝑞. Neither D’Alembert
nor Laplace uses the symbol tan−1, which is of more recent origin. It
will be observed that if a sphere of the same density as the fluid were
to rotate with the same angular velocity, 𝑞 would be the ratio of the
centrifugal force to the attraction at the equator.

D’Alembert shews that the equation (1) will give two values of 𝜆 for
a given value of 𝑞, provided 𝑞 be not too great. Denote by 𝜙(𝜆) the right-
hand member of equation (1); then considering 𝜆 as an abscissa, and
𝜙(𝜆) as the corresponding ordinate, he in fact traces the curve which



d’alembert. 419

thus arises. We have 𝜙(𝜆) zero when 𝜆 is zero, and also when 𝜆 is infi-

nite; when 𝜆 is very small 𝜙(𝜆) is approximately equal to
4𝜆2

15
. Since 𝜙(𝜆)

vanishes when 𝜆 vanishes, and when 𝜆 is infinite, there must be some
maximum value of 𝜆; this maximum is determined by putting 𝜙′(𝜆) = 0;
this leads to

tan−1 𝜆 =
9𝜆 + 7𝜆3

(1 + 𝜆2)(9 + 𝜆2)
. (2)

It is evident from what has been said that this equation must have a
root. We may also establish the existence of a root in the following way.
When 𝜆 is very small the left-hand member is approximately

𝜆 −
𝜆3

3
+
𝜆5

5
−… ,

and the right-hand member is approximately

𝜆 −
𝜆3

3
+
7𝜆5

27
−… ;

thus, when 𝜆 is very small, the right-hand member is the larger. When 𝜆
is infinite the left-hand member is the larger. Hence for some intermedi-
ate value the two members will be equal. See D’Alembert’s pages 51 and
52.

582. Suppose that 𝑞 has a given value; let 𝜆1 denote the smaller of the
two values which equation (1) furnishes. By comparing the weights of a
polar and an equatorial column of fluid, without assuming that there is
equilibrium, D’Alembert finds that if 𝜆 is a little less than 𝜆1 the weight
of the polar column predominates, and that if 𝜆 is a little greater than
𝜆1 the weight of the equatorial column preponderates. Then he argues
thus: Let the fluid be in relative equilibrium with the value 𝜆1. Suppose
the oblatum a little elongated; this amounts to diminishing 𝜆; then the
weight of the polar column preponderates, and pushes out the equato-
rial column: thus there is a tendency to restore the equilibrium figure.
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Again, suppose that we start from the equilibrium figure, and compress
it a little; this amounts to increasing 𝜆; then the weight of the equatorial
column preponderates, and pushes out the polar column: thus there is
a tendency to restore the equilibrium figure. Hence in modern language
the relative equilibrium is stable; D’Alembert uses the word ferme.

In like manner he concludes that the relative equilibrium correspond-
ing to the larger of the two values which equation (1) furnishes is unsta-
ble.

His discussion on these points will be found on his pages 55…57: it
cannot be considered adequate for such a difficult matter. I do not find
that the later writers Laplace, Poisson, and Pontécoulant have followed
D’Alembert in determining the stability or instability.

If the angular velocity is such as corresponds to a single solution, so
that (1) and (2) are simultaneously satisfied, D’Alembert arrives at what
he considers a singular result. This result expressed in modern language
is that the relative equilibrium is stable with respect to an elongation of
the oblatum, and unstable with respect to a compression of the oblatum:
see his page 57.

583. On his page 58, D’Alembert says:
Ceci me porteroit à croire, pour le dire en passant, que dans les Théories

données jusqu’ici sur la Figure de la Terre, on a peut-être trop cherché à faire
accorder entr’eux les deux principes, celui de la perpendicularité de la pesanteur
à la surface, et celui de l’équilibre des colomnes. Car ce dernier n’est nécessaire
que quand la Terre est fluide, et n’est jamais suffisant, soit que la Terre soit
solide ou fluide; au lieu que le premier est nécessaire dans les deux cas, et suffit
si la Terre est solide.

By the principle of columns he probably means the balancing of
columns at the centre. Boscovich had shewn that if at every point every
pair of rectilinear columns balances, then also Huygens’s principle of
equilibrium is satisfied: see Boscovich’s De Litteraria Expeditione … page
424; and Art. 463.
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584. When the angular velocity is very small, one of the forms of
relative equilibrium determined by equation (1) is very nearly spherical,
and the other is very much compressed; D’Alembert calls this a singulier
paradoxe: see his page 58.

Let us suppose that 𝑞 is very small; one value of 𝜆 is very large as we
have said. Thus (1) becomes approximately

2𝑞 =
3𝜆2

𝜋
2

𝜆3
=
3𝜋
2𝜆
;

therefore
𝜆 =

3𝜋
4𝑞
. (3)

Let 𝑟 be the radius of a sphere having the same volume as the obla-
tum; then with the notation of Art. 581,

(𝜆2 + 1)𝑐3 = 𝑟3. (4)

D’Alembert shews that the velocity of a point at the equator is very
small when 𝜆 is very great; that is, the smallness of the angular velocity
more than counterbalances the largeness of the radius.

For the square of this velocity

= (𝜆2 + 1)𝑐2𝜔2 = (𝜆2 + 1)𝑐2
4𝜋𝜌
3
𝑞

= 𝑟2(𝜆2 + 1) 13
4𝜋𝜌
3
𝑞 by (4) = 𝑟2𝜆 2

3
4𝜋𝜌
3
𝑞 approximately

= 𝑟2 (
3𝜋
4𝑞
)
2
3 4𝜋𝜌

3
𝑞 by (3) =

2𝑟2𝜋 5
3 𝑞 1

3𝜌
3√6

:

this is small since 𝑞 is small.
D’Alembert also compares the centrifugal force at the equator in this

case with the centrifugal force at the equator of the sphere of equal vol-
ume. The ratio of the former to the latter

=
√(𝜆2 + 1)𝑐𝜔2

𝑟𝜔2
= (𝜆2 + 1) 16 :
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this is large since 𝜆 is large. See his page 59; there are misprints towards
the bottom of the page.

585. D’Alembert was aware that his investigations did not shew that
there could not be more than two forms of relative equilibrium corre-
sponding to a given angular velocity. He expressly leaves this point to
be discussed by other Geometers: see his page 61. Laplace was the first
who demonstrated that there could not be more than two forms of rel-
ative equilibrium: see D’Alembert’s Opuscules Mathématiques, Vol. viii.
page 292, and Laplace’s Théorie … de la Figure des Planetes, page 124.

586. The proposition which D’Alembert thus left to be demonstrated
amounts to this, that 𝜙′(𝜆) vanishes only once as 𝜆 changes from zero
to infinity, besides when 𝜆 = 0; D’Alembert draws his curve consistently
with this proposition, though he did not demonstrate it. The proposition
is known to be true as it is indirectly involved in Laplace’s investigations;
but it may be useful to give a direct demonstration.

Put tan 𝜃 for 𝜆; then 𝜙(𝜆)

=
(3 + tan2 𝜃)𝜃 − 3 tan 𝜃

tan3 𝜃
=
(1 + 2 cos2 𝜃)𝜃 − 3 sin 𝜃 cos 𝜃

sin3 𝜃
cos 𝜃

=
𝜃(1 + 2 cos2 𝜃) cos 𝜃

sin3 𝜃
− 3 cot2 𝜃.

The differential coefficient of this with respect to 𝜃 is

cos 𝜃(8 + cos 2𝜃)
sin3 𝜃

−
(5 + 4 cos 2𝜃)𝜃

sin4 𝜃
=
sin 2𝜃(8 + cos 2𝜃) − 2𝜃(5 + 4 cos 2𝜃)

2 sin4 𝜃
.

Put 𝐹(𝜃) for the numerator.

When 𝜃 is very small, we shall find that 𝐹(𝜃) =
16𝜃5

15
. This is easily

obtained by expansion, for

𝐹(𝜃) = 8 sin 2𝜃 +
1
2
sin 4𝜃 − 2𝜃(5 + 4 cos 2𝜃).
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Or we may proceed thus: we know that when 𝜆 is very small 𝜙(𝜆) =
4𝜆2

15
,

so that 𝜙′(𝜆) then =
8𝜆
15
; hence when 𝜃 is very small we must have

𝐹(𝜃)
2(sin 𝜃)4

=
8𝜃
15
, and therefore 𝐹(𝜃) =

16𝜃5

15
.

When 𝜃 =
𝜋
2
we see that 𝐹(𝜃) is negative.

If then 𝐹(𝜃) vanishes for more than one value of 𝜃, besides 𝜃 = 0,

between 𝜃 = 0 and 𝜃 =
𝜋
2
, it must vanish for three values: and then

𝐹′(𝜃) must vanish for two values of 𝜃 besides 𝜃 = 0. But

𝐹′(𝜃) = 8 cos 2𝜃 + 2 cos 4𝜃 − 10 + 16𝜃 sin 2𝜃;
𝐹″(𝜃) = −8 sin 4𝜃 + 32𝜃 cos 2𝜃 = 16 cos 2𝜃(2𝜃 − sin 2𝜃).

Thus 𝐹″(𝜃) is positive from 𝜃 = 0 to 𝜃 =
𝜋
4
, and then negative from

𝜃 =
𝜋
4
to 𝜃 =

𝜋
2
; therefore 𝐹′(𝜃) increases continually from 𝜃 = 0 to

𝜃 =
𝜋
4
, and diminishes continually from 𝜃 =

𝜋
4
to 𝜃 =

𝜋
2
: hence 𝐹′(𝜃)

cannot vanish more than once besides 𝜃 = 0, as 𝜃 changes from 0 to
𝜋
2
.

587. We may put equation (1) in the form

2𝜆3𝑞
3

= (𝜆2 + 3) tan−1 𝜆 − 3𝜆.

If we suppose 𝜆 = 0, both sides vanish whatever may be the value
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of 𝑞. But 𝜆 = 0 is not a solution of (1); we have in fact introduced this
solution by multiplying both sides of (1) by 𝜆3.

D’Alembert devotes his page 62 to this matter; which would now be
considered too obvious to need remark.

588. D’Alembert gives some extension to his investigation on his
pages 63…67 by supposing extraneous forces to act; but this extension
is of little importance. D’Alembert afterwards returns to the subject and
discusses it in an elaborate manner: see Art. 596.

At the top of his page 64, D’Alembert seems to say he has four forces;
but his first force is in fact resolved into his second and third, and is not
in addition to them.

589. The next memoir in the sixth volume of D’Alembert’s Opuscules
Mathématiques is entitled Eclaircissemens sur deux endroits de mes Ou-
vrages, qui ont rapport à la Figure de la Terre; this occupies pages 68…76:
it is followed by some Remarques sur l’Article précédent on pages 77…84.

The passages in his previous works to which D’Alembert here alludes
occur on page 42 of the Réflexions … des Vents, and on pages 246…252
of the first volume of the Opuscules Mathématiques: see Arts. 376, 378,
514, and 567.

590. We have already learned from Art. 567, that Boscovich criticised
D’Alembert, and that D’Alembert defended himself. Boscovich’s work
was translated into French, and a long note inserted on pages 449…453
which renewed the attack on D’Alembert: and now D’Alembert replies.

The matters in controversy admit of being stated briefly though nei-
ther of the disputants defines them very clearly.

The translator ascribes great merit to Boscovich for introducing the
notion of what we should call the stability of the equilibrium: D’Alem-
bert replies that the notion is really due to Daniel Bernoulli. Next as to
mathematical results we may say that both disputants accepted the for-
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mula of Art. 376; and also both allowed that the equilibrium would be

stable if 𝜌 were less than
5
3
𝜎. Then D’Alembert asserts that we may have

𝜌 less than
5
3
𝜎, and 𝜖′ positive, and yet have 𝜖 negative; and the formula

of Art. 376 shews that his statement is correct. The French translator

denies this, and so is wrong; he seems to have assumed that 1 −
𝜌
𝜎
must

be positive, which is not necessary.
The following passage of the translator’s note relates to the opinion

which D’Alembert held of Boscovich.
… M. d’Alembert se contente ici de dire qu’il a du nom dans les mathéma-

tiques: dans un autre opuscule postérieur, il parle du P. Boscovich avec éloge,
en disant qu’il mérite la réputation dont il jouit; mais pour ajouter qu’il a été
tellement persécuté par les Supérieurs de son Ordre, que toute l’autorité du Sou-
verain Pontife a à peine suffi pour le délivrer de leurs poursuites. Cependant on
sait très bien que le R. P. Boscovich a toujours été considéré et respecté dans sa
Compagnie comme un de ses plus dignes membres, et comme un homme du
premier mérite à tous égards.

On page 71 of the memoir by D’Alembert which we are now consid-
ering he uses the words habile Mathématicien, I presume with reference
to Boscovich. It has been asserted in recent times that D’Alembert and
Lagrange had but a low opinion of Boscovich; see Arago’s Œuvres com-
plètes, Vol. ii. page 140.

591. D’Alembert states on his page 75 his objection to the formula
which Clairaut gave on his page 226. I have discussed the point in Art.
328. D’Alembert admits on his page 82 that Clairaut’s more general for-
mula on page 217 would supply all that was needed.

D’Alembert quotes in his own favour, with respect to his controversy
with Boscovich’s translator, a passage from a letter to himself, written as
he says, by one of the greatest geometers of Europe: see his page 83.
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592. The next memoir in the sixth volume of D’Alembert’s Opuscules
Mathématiques is entitled Sur l’effet de la pesanteur au sommet et au pied
des Montagnes and more briefly Sur l’attraction des Montagnes; this oc-
cupies pages 85…92: it is followed by an Addition à l’Article précédent on
pages 93…98.

593. A certain observer had reported that on the summit of a moun-
tain in the Alps, 1085 toises high, a seconds pendulum had gained 28
minutes in two months; so that gravity appeared to be greater at the sum-
mit of the mountain than at its base. D’Alembert proposes to shew how
the fact may be explained, assuming the observation to be accurate.

D’Alembert investigates the attractions of mountains of various
shapes. The investigations are simple and satisfactory. In one case
he supposes the mountain to be cylindrical, its height being small
compared with the radius; he obtains a result which was first given by
Bouguer, and has since passed into the elementary books: see Art. 363.

D’Alembert also investigates the influence exerted on a pendulum
when it is placed in a valley between two mountains.

If 𝜌 be the mean density of the Earth, and 𝜌′ that of the mountain,
D’Alembert finds that supposing we accept the observation on the Alps

as trustworthy we must have 𝜌′ =
8𝜌
3
. This we should now consider to

be quite inadmissible, and so we should have no faith in the observation.
But at the date of the memoir the state of knowledge was different; and
D’Alembert says on his pages 90, 91:

… cette hypothèse n’a rien de forcé; puisqu’on peut très bien supposer que
la densité moyenne de la Terre est moindre que la densité des couches qui sont
à sa surface.

The words are hardly fair; for the formula would make the mean den-
sity of the Earth scarcely one-third of that of the mountain.
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D’Alembert refers on his page 92 to Bouguer’s work on the Figure of
the Earth, pages 357 and following. D’Alembert says:

On y trouve une Théorie de l’Attraction des Montagnes, mais beaucoup
moins générale que celle qui a été l’objet de ce Mémoire.

594. On his page 93 D’Alembert refers to new observations with
which he had become acquainted long after he had finished the
preceding memoir. These observations seemed to shew that in a certain
district of the Alps, attraction in ascending the mountains varied directly
(not inversely) as the square of the distance from the centre of the
Earth. He traces the consequence of this hypothesis.

Let ℎ be the height of the mountain, 𝜌′ its mean density, 𝜌 the mean
density of the Earth, 𝑟 its radius. Then by the investigation referred to in
Arts. 363 and 593 it appears that the attraction at the top of the moun-

tain is
4𝜋𝜌𝑟3

3(𝑟 + ℎ)2
+ 2𝜋𝜌′ℎ, that is approximately

4𝜋𝜌𝑟
3

+ 2𝜋ℎ (𝜌′ −
4𝜌
3
).

If the attraction varies directly as the square of the distance from the

Earth’s centre this must be equal to
4𝜋𝜌𝑟
3

(
𝑟 + ℎ
𝑟

)
2
, that is approximately

to
4𝜋𝜌𝑟
3

(1 +
2ℎ
𝑟
).

Hence we have

4𝜋𝜌𝑟
3

.
2ℎ
𝑟
= 2𝜋ℎ (𝜌′ −

4𝜌
3
) ;

this leads to
𝜌′ =

8𝜌
3
.

The coincidence of this result with that in Art. 593 is certainly curi-
ous; because it is a theoretical inference from observations which do not
seem to have been influenced by theory. However there can be, I pre-
sume, no doubt that the observations must have been erroneous. Frisi
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alludes to the matter; see his Cosmographia, Vol. ii. page 142: he seems
to treat the observations as fictitious. He says:

Notitiis enim conquisitis undique accepi alpina illa experimenta … omnino
esse supposita, et circa differentiam attractionum in vertice, et ad pedes mon-
tium Bouguerii tantum experimenta superesse quæ in investigationibus figuræ
terrestris locum aliquem semper habere debeant.

See also La Lande’s Bibliographie Astronomique, page 532.

595. The next memoir in the sixth volume of D’Alembert’s Opuscules
Mathématiques is entitled Suite des Recherches sur la Figure de la Terre;
this occupies pages 99…133; it is followed by some Remarques sur le Mé-
moire précédent on pages 134…160.

596. The problem discussed is one which D’Alembert briefly noticed
on pages 63…67 of the volume: a homogeneous mass of fluid in the
form of an ellipsoid of revolution rotates with uniform angular velocity
round its axis of figure, and is supposed to be in relative equilibrium
under its own attraction and the attraction of a distant body situated on
the prolongation of the axis of figure; then the condition for this relative
equilibrium is found and discussed. Although the problem cannot be
considered to be of any physical importance yet the analytical processes
are both interesting and instructive.

Let 𝑀 denote the mass of the distant body, ℎ its distance from the
centre of the ellipsoid; the axis of revolution of the ellipsoid when pro-
duced passes through 𝑀: take this for the axis of 𝑥.

Then the distant body exerts an action
𝑀
ℎ2

at the centre of the ellip-

soid; and then in the usual way we find that what we may call the dis-

turbing action of the distant body at a point (𝑥, 𝑦) is equivalent to
2𝑀𝑥
ℎ3

and
𝑀𝑦
ℎ3

parallel to the axes of 𝑥 and 𝑦 respectively; the former in the di-
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rection in which 𝑥 increases, the latter contrary to the direction in which

𝑦 increases. D’Alembert says nothing about the force
𝑀
ℎ2
; we must in fact

imagine it to be counteracted by an equal force applied at every point.
Let us suppose that the equatorial axis of the ellipsoid is 𝑚 times the

polar axis; and let 𝑘 = √(𝑚2 − 1).
Suppose the density of the ellipsoid to be unity: then taking it to

be an oblatum the attractions at (𝑥, 𝑦) parallel to the axes of 𝑥 and 𝑦
respectively are by Art. 581

4𝜋
𝑘3
(𝑘2 + 1)(𝑘 − tan−1 𝑘)𝑥 and

2𝜋
𝑘3

{(𝑘2 + 1) tan−1 𝑘 − 𝑘} 𝑦.

We have also the centrifugal force 𝜔2𝑦 parallel to the axis of 𝑦, where
𝜔 is the angular velocity.

Hence putting 𝑋 and 𝑌 for the whole forces at (𝑥, 𝑦) parallel to the
axes of 𝑥 and 𝑦 respectively, and estimating these forces inwards, we have

𝑋 =
4𝜋
𝑘3
(𝑘2 + 1)(𝑘 − tan−1 𝑘)𝑥 −

2𝑀𝑥
ℎ3

,

𝑌 =
2𝜋
𝑘3
{(𝑘2 + 1) tan−1 𝑘 − 𝑘}𝑦 +

𝑀𝑦
ℎ3

− 𝜔2𝑦.

Now we may apply Huygens’s principle to obtain the condition of
relative equilibrium. Thus 𝑋 and 𝑌 must be positive, supposing 𝑥 and
𝑦 to be positive; and 𝑋𝑑𝑥 + 𝑌𝑑𝑦 = 0, must coincide with the differen-
tial equation to the ellipse which generates the ellipsoid, that is with

𝑥𝑑𝑥 +
𝑦𝑑𝑦
𝑘2 + 1

= 0. Hence we obtain

4𝜋
𝑘3
(𝑘2 + 1)(𝑘 − tan−1 𝑘) −

2𝑀
ℎ3

= (𝑘2 + 1) [
2𝜋
𝑘3
{(𝑘2 + 1) tan−1 𝑘 − 𝑘} +

𝑀
ℎ3

− 𝜔2] ;
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and simplifying we have

𝜔2

2𝜋
−

𝑀
2𝜋ℎ3

=
(3 + 𝑘2) tan−1 𝑘 − 3𝑘

𝑘3
+

𝑀
𝜋ℎ3(𝑘2 + 1)

.

This is the fundamental equation of the problem; it agrees with
D’Alembert’s on his page 100, though with rather different notation.

We shall, as in Art. 581, put 𝜙(𝑘) for

(3 + 𝑘2) tan−1 𝑘 − 3𝑘
𝑘3

.

597. We have hitherto supposed the ellipsoid of revolution to be an
oblatum. If it be an oblongum our fundamental equation still holds, only
as 𝑘 = √(𝑚2−1), and 𝑚 is now less than unity, 𝜙(𝑘) contains impossible
quantities which must be transformed. We have

𝜙(𝑘) =
3 + 𝑘2

𝑘2
.
tan−1 𝑘

𝑘
−

3
𝑘2

=
2 +𝑚2

𝑚2 − 1
.
tan−1 √(𝑚2 − 1)

√(𝑚2 − 1)
−

3
𝑚2 − 1

.

If 𝑚 is less than 1, we find that
tan−1 √(𝑚2 − 1)

√(𝑚2 − 1)
transforms in the

usual way into
1

2√(1 − 𝑚2)
log

1 + √(1 − 𝑚2)
1 − √(1 − 𝑚2)

.

598. Our fundamental equation may be written thus

𝜔2

2𝜋
−

𝑀
2𝜋ℎ3

= 𝜙(𝑘) +
𝑀

𝜋ℎ3(𝑘2 + 1)
= 𝜙 {√(𝑚2 − 1)} +

𝑀
𝜋ℎ3𝑚2 .

We have to consider whether a value or values of 𝑚 between zero
and infinity can be found to satisfy this equation. Moreover, if 𝑚 is less
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than unity, we must consider that the proper form for 𝜙√(𝑚2 − 1), free
from impossible expressions, is

−
𝑚2 + 2

2(1 − 𝑚2) 32
log

1 + √(1 − 𝑚2)
1 − √(1 − 𝑚2)

+
3

1 − 𝑚2 ;

we will denote this by 𝜓(𝑚).
That we have obtained the right equation for the case in which 𝑚 is

less than unity, may be verified by an independent investigation of the
attraction of an oblongum on a particle at its surface. D’Alembert himself
indicates this method of confirming the result obtained by the ordinary
use of imaginary symbols: see his pages 134, 135.

599. Let us first consider the range of values of 𝜙(𝑘), as 𝑘 increases
from zero to infinity.

When 𝑘 is very small 𝜙(𝑘) is approximately equal to
4𝑘2

15
, as may be

easily shewn by expansion. And 𝜙(𝑘) obviously vanishes when 𝑘 is infi-
nite.

D’Alembert wishes to shew that 𝜙(𝑘) is always positive; see his
pages 102 and 103. His demonstration is unsound. He shews that

tan−1 𝑘 −
𝑘

1 + 1
3𝑘2

is positive when 𝑘 is infinitesimal; and he shews that

this expression is positive when
𝑘

1 + 1
3𝑘2

has its greatest value, namely,

when 𝑘 = √3. It is easy then to see that the expression must be positive
when 𝑘 is greater than √3. But it does not necessarily follow that as 𝑘
changes from 0 to √3 the expression is always positive.

We may proceed thus. Put 𝑢 = (3 + 𝑘2) tan−1 𝑘 − 3𝑘; then
𝑑𝑢
𝑑𝑘

=

2𝑘 (tan−1 𝑘 −
𝑘

1 + 𝑘2
) = 2 tan 𝜃(𝜃 − sin 𝜃 cos 𝜃), if tan−1 𝑘 = 𝜃. Thus

𝑑𝑢
𝑑𝑘
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is positive while 𝑘 changes from zero to infinity; and so 𝑢 continually
increases with 𝑘 and never vanishes.

Since 𝜙(𝑘) is always positive and vanishes both when 𝑘 is zero and
when 𝑘 is infinite, it follows that 𝜙′(𝑘) must vanish, once at least, within
this range of values of 𝑘. We have moreover shewn in Art. 586 that 𝜙′(𝑘)
can vanish only once. We may observe that D’Alembert draws his dia-
grams consistently with the fact that 𝜙′(𝑘) vanishes only once, though as
we have remarked he did not demonstrate this.

600. D’Alembert shews that 𝜓(𝑚) is always negative if 𝑚 lies between
0 and 1. We have, in fact, to shew that

−
2 +𝑚2

2(1 − 𝑚2) 32
log

1 + √(1 − 𝑚2)
1 − √(1 − 𝑚2)

+
3

1 − 𝑚2

is always negative. D’Alembert’s method is rather laborious: see his page
104. The best way is to expand in powers of √(1−𝑚2). Put 𝑡 for √(1−𝑚2);
then we have

𝜓(𝑚) = −
3 − 𝑡2

2𝑡3
log

1 + 𝑡
1 − 𝑡

+
3
𝑡2
.

Expanding the logarithm we find that

𝜓(𝑚) = −4 {
𝑡2

3 . 5
+
2𝑡4

5 . 7
+ … +

𝑛𝑡2𝑛

(2𝑛 + 1)(2𝑛 + 3)
+ …} .

Thus as 𝑚 increases from zero to unity, we have 𝜓(𝑚) always nega-
tive, and numerically continually decreasing from infinity to zero. This
continual decrease is not mentioned by D’Alembert, though he draws his
diagram consistently with it.

It will be convenient to give also the expansion of 𝜙(𝑘). We have

𝜙(𝑘) = (1 +
3
𝑘2
)
tan−1 𝑘

𝑘
−

3
𝑘2
;
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expand tan−1 𝑘; thus we get

𝜙(𝑘) =
4𝑘2

3 . 5
−
8𝑘4

5 . 7
+ … + (−1)𝑛−1

4𝑛𝑘2𝑛

(2𝑛 + 1)(2𝑛 + 3)
+ …

Since 𝑘2 = 𝑚2 − 1 = −𝑡2, we see by comparing these two expan-
sions that the value of 𝜙{√(𝑚2 − 1)} suffers no discontinuity as 𝑚 passes
through the value unity. This of course might have been held probable,
but now it is demonstrated.

The series for 𝜓(𝑚) and 𝜙(𝑘) furnish us with an expansion for
𝜙{√(𝑚2 − 1)}, which will remain convergent for values of 𝑚 between 0
and √2, the former extreme value being excluded.

601. Suppose we put 𝑀 = 0 in the fundamental equation of Art. 596;
then we see that the equation cannot be solved by a value of 𝑚 less than
unity; for the left-hand member would be positive, and by Art. 600 the
right-hand member would be negative. Hence a mass of rotating fluid
cannot be in relative equilibrium if it is in the form of an oblongum, the
axis of rotation coinciding with the axis of figure.

D’Alembert does not draw this inference from his formula. The theo-
rem was first given by Laplace in his Théorie … de la Figure des Planetes,
page 128.

602. From Arts. 599 and 600 we have the following results as to
the value of 𝜙{√(𝑚2 − 1)}. When 𝑚 increases from zero to infinity,
𝜙{√(𝑚2 − 1)} begins by being negative infinity, increases algebraically, is
zero when 𝑚 = 1, then becomes positive and increases to a maximum,
and finally reduces to zero. In the diagram we take 𝑚 as the abscissa,
and 𝜙{√(𝑚2−1)} as the ordinate of the curve, and we consider ordinates
positive when they are above the straight line 𝑂𝑀: D’Alembert reverses
this arrangement.
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603. Next we may proceed to consider the curve, the ordinate of
which is formed by adding to the corresponding ordinate of the preced-

ing curve the term
𝑀

𝜋ℎ3𝑚2 , as required by the fundamental equation of

Art. 598.

Put 𝑓(𝑚) for 𝜙{√(𝑚2−1)}+
𝑀

𝜋ℎ3𝑚2 , so that the fundamental equation

becomes
𝜔2

2𝜋
−

𝑀
2𝜋ℎ3

= 𝑓(𝑚).

When 𝑚 is indefinitely small, 𝑓(𝑚) is positive and indefinitely great;
when 𝑚 is infinite 𝑓(𝑚) vanishes. Let 𝑦 denote an ordinate correspond-
ing to the abscissa 𝑚; then the curve determined by 𝑦 = 𝑓(𝑚) may take
various forms.

D’Alembert discusses the fundamental equation with great detail,
considering various cases which arise according to the values of
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𝜔2

2𝜋
−

𝑀
2𝜋ℎ3

and the different forms of the curve 𝑦 = 𝑓(𝑚). We will

notice briefly some of the more interesting points which occur.
Let us consider some of the peculiarities of the curve 𝑦 = 𝑓(𝑚).
(1) Let 𝑚1 denote the value of 𝑚 for which 𝜙{√(𝑚2−1)} has its max-

imum value. If
𝑀
𝜋ℎ3

is less than 𝜙{√(𝑚1
2 − 1)} +

𝑀
𝜋ℎ3𝑚1

2 , we have 𝑓(𝑚)

greater when 𝑚 = 𝑚1 than when 𝑚 = 1. And 𝑓(𝑚) is greater when
𝑚 = 𝑚1 than when 𝑚 = ∞. Thus 𝑓(𝑚) must have some maximum
value between 𝑚 = 1 and 𝑚 = ∞. D’Alembert, pages 107 and 148.

(2) It is possible that 𝑓(𝑚) should be negative for part of the range

between 𝑚 = 0 and 𝑚 = 1. For this merely requires that
𝑀

𝜋ℎ3𝑚2 + 𝜓(𝑚)

should be negative, or that
𝑀
𝜋ℎ3

+𝑚2𝜓(𝑚) should be negative. Therefore,

if
𝑀
𝜋ℎ3

is less than the numerically greatest value of 𝑚2𝜓(𝑚), which is

always negative between 𝑚 = 0 and 𝑚 = 1, there will be negative values
of 𝑓(𝑚). As 𝑚2𝜓(𝑚) vanishes when 𝑚 = 0 and when 𝑚 = 1, there
will be a numerically greatest value of 𝑚 within this range. D’Alembert,
pages 111 and 148.

(3) If, however,
𝑀
𝜋ℎ3

is greater than the numerically greatest value of

𝑚2𝜓(𝑚) within the range from 𝑚 = 0 to 𝑚 = 1, then 𝑓(𝑚) is always
positive from 𝑚 = 0 to 𝑚 = ∞.

(4) It is possible to have such a value for
𝑀
𝜋ℎ3

that 𝑓(𝑚) shall decrease

continually from 𝑚 = 0 to 𝑚 = ∞; that is, 𝑓′(𝑚) shall be always negative.
D’Alembert, pages 117 and 120.
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First, from 𝑚 = 0 to 𝑚 = 1. Here we have

𝑓′(𝑚) = 𝜓′(𝑚) −
2𝑀

𝜋ℎ3𝑚3

= −
(8 + 𝑚2)𝑚
2(1 − 𝑚2) 52

log
1 + √(1 − 𝑚2)
1 − √(1 − 𝑚2)

+
7𝑚2 + 2

𝑚(1 − 𝑚2)2
−

2𝑀
𝜋ℎ3𝑚3 .

This will be negative within the range, if algebraically

2𝑀
𝜋ℎ3

is greater than
(7𝑚2 + 2)𝑚2

(1 − 𝑚2)2
−
(8 + 𝑚2)𝑚4

2(1 − 𝑚2) 52
log

1 + √(1 − 𝑚2)
1 − (√1 − 𝑚2)

.

The expression on the right-hand side vanishes when 𝑚 = 0; and by

evaluation it will be found to be
8
15

when 𝑚 = 1. It is always finite be-

tween these limiting values; and if
2𝑀
𝜋ℎ3

is greater than the algebraically

greatest of the values, 𝑓′(𝑚) will be negative from 𝑚 = 0 to 𝑚 = 1.
Next from 𝑚 = 1 to 𝑚 = ∞. Here we have

𝑓′(𝑚) = 𝜙′(𝑘)
𝑑𝑘
𝑑𝑚

−
2𝑀

𝜋ℎ3𝑚3 = {
7𝑘2 + 9
𝑘3(1 + 𝑘2)

−
9 + 𝑘2

𝑘4
tan−1 𝑘}

𝑚
𝑘
−

2𝑀
𝜋ℎ3𝑚3 ,

where 𝑘2 = 𝑚2 − 1. This will be negative between 𝑘 = 0 and 𝑘 = ∞, if
algebraically

2𝑀
𝜋ℎ3

is greater than
(𝑘2 + 1)2

𝑘
{
7𝑘2 + 9
𝑘3(𝑘2 + 1)

−
9 + 𝑘2

𝑘4
tan−1 𝑘} .

The expression on the right-hand side will be found to be
8
15

when

𝑘 = 0, as it should be from above; and it is negative infinity when 𝑘 = ∞.
Hence there must be a greatest value among the positive values which it
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can take. If
2𝑀
𝜋ℎ3

is greater than this value, 𝑓′(𝑚) will be negative from

𝑚 = 1 to 𝑚 = ∞.

If then
2𝑀
𝜋ℎ3

be greater than the greatest of the two values which have

thus presented themselves, 𝑓′(𝑚) will be negative from 𝑚 = 0 to 𝑚 = ∞.

604. The numerical result
8
15

which occurs in the preceding Article

may be easily verified. In fact, it is the value of 𝜓′(𝑚) when 𝑚 = 1, or of
𝑑
𝑑𝑚

𝜙(𝑘) which is required. Take the latter; then we have 𝜙′(𝑘)
𝑑𝑘
𝑑𝑚

, that

is, 𝜙′(𝑘)
𝑚
𝑘
, that is, by Art. 600,

𝑚
𝑘
(
8𝑘
15

−
32𝑘3

35
+…); and when 𝑚 = 1 so

that 𝑘 = 0, this becomes
8
15
. The same result will follow by the aid of

Art. 600 from the value of 𝜓′(𝑚).

605. D’Alembert shews that the problem may in certain cases have
two or three solutions for given values of 𝜔, 𝑀 and ℎ. He makes some
remarks as to what we should now call the stability of the relative equi-
librium, like the remarks on pages 56 and 57 of the volume which we
have noticed in Art. 582. See his pages 112…115, 126…128, 153.

606. In the fundamental equation of Art. 598 put 𝑚 = 1; then since
𝜙{√(𝑚2 − 1)} = 0 when 𝑚 = 1, we have

𝜔2

2𝜋
=

3𝑀
2𝜋ℎ3

.

Hence this relation must hold in order that a sphere may be a possible
form of relative equilibrium.

607. When we have obtained a solution of the fundamental equation,
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it will still be necessary to advert to the condition stated in Art. 596, that
𝑋 and 𝑌 must be positive if 𝑥 and 𝑦 are, before we can say that relative
equilibrium exists. It will be sufficient to ensure that one of them is
positive, because if the fundamental equation is satisfied, we know that
𝑋 and 𝑌 are of the same sign, supposing 𝑥 and 𝑦 to be. D’Alembert pays
proper attention to this point: see his pages 105, 116, 117, 122, 123.

Let us, for instance, consider the value of 𝑌. Hence we see that we

must have
(𝑘2 + 1) tan−1 𝑘 − 𝑘

𝑘3
greater than

𝜔2

2𝜋
−

𝑀
2𝜋ℎ3

. Denote the for-

mer expression by 𝑣; then it will be found that

𝑑𝑣
𝑑𝑘

=
3𝑘 − (3 + 𝑘2) tan−1 𝑘

𝑘4
.

By Art. 599 we see that
𝑑𝑣
𝑑𝑘

is always negative for real values of 𝑘;

and so for such values 𝑣 is greatest when 𝑘 = 0: and then 𝑣 =
2
3
.

When we put √(𝑚2 − 1) for 𝑘, and suppose 𝑚 less than 1, we get

𝑑𝑣
𝑑𝑚

=
𝑑𝑣
𝑑𝑘

𝑑𝑘
𝑑𝑚

=
𝑚
𝑘4

{3 − (3 + 𝑘2)
tan−1 𝑘

𝑘
}

=
𝑚

(𝑚2 − 1)2
{3 −

𝑚2 + 2
2√(1 − 𝑚2)

log
1 + √(1 − 𝑚2)
1 − √(1 − 𝑚2)

} .

By Art. 600 we know that this is always negative if 𝑚 lies between 0
and 1; and so for such values 𝑣 is greatest when 𝑚 = 0.

But 𝑣 = −
𝑚2

2(1 − 𝑚2) 32
log

1 + √(1 − 𝑚2)
1 − √(1 − 𝑚2)

+
1

1 − 𝑚2 , so that when 𝑚 = 0

we have 𝑣 = 1.
Thus as 𝑚 varies from zero to infinity, 𝑣 continually diminishes from

unity to zero. See D’Alembert’s pages 116, 117, 151, 152.
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The fact that 𝑣 continually diminishes as 𝑚 increases may also be

shewn by putting the value of
𝑑𝑣
𝑑𝑚

thus:

𝑑𝑣
𝑑𝑚

=
𝑚

1 −𝑚2𝜙{√(𝑚
2 − 1)};

this is always negative, for the factor 𝜙{√(𝑚2 −1)} is negative when 𝑚 is

less than 1, and the factor
𝑚

1 −𝑚2 is negative when m is greater than 1.

It follows from this discussion that there can be no relative equilib-

rium if
𝜔2

2𝜋
−

𝑀
2𝜋ℎ3

is algebraically greater than unity. See D’Alembert’s

page 117.

608. Now let us consider the value of 𝑋. Hence we see that we must

have
(𝑘 − tan−1 𝑘)(𝑘2 + 1)

𝑘3
greater than

𝑀
2𝜋ℎ3

. This leads us to investi-

gate the greatest value of the former expression. It will be found that

this expression = 1 −
(𝑘2 + 1) tan−1 𝑘 − 𝑘

𝑘3
= 1 − 𝑣; and as 𝑣 continually

diminishes from unity to zero, this expression continually increases from

zero to unity. It follows that there can be no relative equilibrium if
𝑀

2𝜋ℎ3
is greater than unity. See D’Alembert’s page 124.

609. D’Alembert suggests another mode of obtaining solutions of the
problem: see his pages 128…132. Let 𝑚 be an abscissa and 𝑦 an ordinate
as before; and let 𝑘 = √(𝑚2 − 1). Then draw the curves

𝑦 =
2(𝑘 − tan−1 𝑘)

𝑘3
−

𝑀
𝜋ℎ3(𝑘2 + 1)

,
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and
𝑦 =

(𝑘2 + 1) tan−1 𝑘
𝑘3

−
1
𝑘2

+
𝑀

2𝜋ℎ3
−
𝜔2

2𝜋
.

At a point of intersection of these curves the corresponding value of
𝑚 will satisfy the fundamental equation; and if the value of 𝑦 at the
point of intersection is positive, the resultant force at the surface tends
inwards: therefore with the value of 𝑚 thus obtained relative equilibrium
will subsist.

It is sufficient by Art. 608 to confine ourselves to the case in which
𝑀

2𝜋ℎ3
is less than unity.

In drawing the curves the results obtained in Art. 607 will be found
useful. Thus, for instance, the equation to the first curve may be written

𝑦 =
1
𝑚2 (2 −

𝑀
𝜋ℎ3

− 2𝑣) ;

and we know that 𝑣 diminishes continually from unity to zero as 𝑚 in-
creases from zero to infinity. Hence 𝑦 begins by being negative infinity,
vanishes and changes sign once and only once, and is zero when 𝑚 is
infinite.

When 𝑚 = 1 we have 𝑦 = 2 −
𝑀
𝜋ℎ3

−
4
3
=
2
3
−

𝑀
𝜋ℎ3

; this is positive or

negative according as
𝑀

2𝜋ℎ3
is less or greater than

1
3
.

610. Instead of the two curves of the preceding Article, D’Alembert
suggests in his pages 158…160, that we may take the two curves

𝑦 =
2(𝑘2 + 1)(𝑘 − tan−1 𝑘)

𝑘3
−

𝑀
𝜋ℎ3

,

and
𝑦 = (𝑘2 + 1) {

(𝑘2 + 1) tan−1 𝑘
𝑘3

−
1
𝑘2

+
𝑀

2𝜋ℎ3
−
𝜔2

2𝜋
} .
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611. D’Alembert discusses at some length two analytical matters
which present themselves.

On pages 134…142 he treats of difficulties which may occur in the
use of the symbol √(−1). For example, suppose we require the product
of √(−𝑎) into √(−𝑏). On one hand we may take for it √(−𝑎×−𝑏), that is,
√(𝑎𝑏). On the other hand we may take for it √(𝑎)×√(−1)×√(𝑏)×√(−1),
that is, √(𝑎𝑏) × √(−1) × √(−1), that is, −√(𝑎𝑏).

On pages 142…145 he shews in various ways that 𝑥 log𝑥 is zero when
𝑥 is; and so also is 𝑥𝑝 log𝑥𝑞 where 𝑝 and 𝑞 are positive and finite.

612. The next memoir in the sixth volume of D’Alembert’s Opuscules
Mathématiques is also entitled Suite des Recherches sur la Figure de la
Terre; this is a continuation of the preceding memoir; it occupies pages
161…197: it is followed by some Remarques sur le Mémoire précédent on
pages 198…210.

613. In the preceding memoir D’Alembert had considered the relative
equilibrium of a mass of rotating fluid in the form of an ellipsoid of
revolution acted on by the disturbing force of a distant body, situated on
the axis of rotation produced. In the present memoir he generalises the
problem by giving any situation to the distant body, and by taking for
the fluid mass the form of an ellipsoid, not necessarily of revolution.

614. We shall use notation more symmetrical than D’Alembert’s.
Suppose then that the fluid is in the form of an ellipsoid. Take the

axes of 𝑥, 𝑦, 𝑧 to coincide with the axes of the ellipsoid; let 2𝑎, 2𝑏,
2𝑐 be the corresponding lengths of the axes. Let there be a distant
body of mass 𝑀; and let its co-ordinates be 𝑙, 𝑚, 𝑛 respectively: put
𝑅2 = 𝑙2 +𝑚2 + 𝑛2.

Suppose the fluid to rotate with angular velocity 𝜔 round an axis, the
direction cosines of which are 𝜆, 𝜇, 𝜈. We have to form the conditions
for relative equilibrium.
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Now here we must observe that the distant body must, in fact, be
supposed to share in this rotation of the fluid mass. D’Alembert never
notices this fact, though it is really involved in his process. In the partic-
ular case of the preceding memoir, in which the distant body is supposed
to be on the axis of rotation, we may practically regard the distant body
as fixed; but we cannot in the present memoir. A particular case of the
present memoir, as we shall see, was afterwards discussed by Laplace; in
this case the Moon is taken to be the fluid mass, and the Earth to be
the distant body. See Laplace’s Théorie … de la Figure des Planetes, pages
113…116.

615. Let 𝑃 be any point of the fluid; let 𝑥, 𝑦, 𝑧 be the coordinates of
𝑃. The attraction of the fluid ellipsoid parallel to the axes of 𝑥, 𝑦, 𝑧 re-
spectively will be 𝐴𝑥, 𝐵𝑦, 𝐶𝑧 respectively where 𝐴, 𝐵, 𝐶 are certain con-
stants. D’Alembert in effect briefly states that this can be easily shewn
in the way in which Maclaurin treated the attraction of an ellipsoid of
revolution; this is true, and it is to be noted that we have here, for the
first time, the important extension of Maclaurin’s result from an ellipsoid
of revolution to the general ellipsoid. See D’Alembert’s page 165. But as
we shall hereafter point out, Frisi had previously gone some way in this
direction: see his De Gravitate, pages 157 and 159.

616. The attraction of the distant body at 𝑃 parallel to the axis of 𝑥
is

𝑀(𝑙 − 𝑥)

{(𝑙 − 𝑥)2 + (𝑚 − 𝑦)2 + (𝑛 − 𝑧)2}
3
2
;

the disturbing part of this is approximately

−
𝑀𝑥
𝑅3

+
3𝑀𝑙(𝑙𝑥 + 𝑚𝑦 + 𝑛𝑧)

𝑅5
,

say −
𝑀𝑥
𝑅3

+
3𝑀𝑙𝑢
𝑅5

where 𝑢 is put for 𝑙𝑥 + 𝑚𝑦 + 𝑛𝑧.

It is only the disturbing part of the action of 𝑀 which D’Alembert
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regards; he makes no allusion to the other part, that is,
𝑀𝑙
𝑅3

in this case.

See Art. 596.
Let 𝑂 denote the centre of the ellipsoid; let 𝑄 denote the foot of the

perpendicular from 𝑃 on the axis of rotation; then the so-called centrifu-
gal force is 𝜔2𝑃𝑄, and we require the resolved part of this. We have to
project 𝑃𝑄 on the axis of 𝑥; and by a known theorem of projections we
may take the difference of the projections of 𝑂𝑃 and 𝑂𝑄 for the projec-
tion of 𝑃𝑄.

Thus we obtain 𝜔2(𝑂𝑃.
𝑥
𝑂𝑃

− 𝑂𝑄 cos 𝜆); and this

=𝜔2(𝑥 − 𝑂𝑄 cos 𝜆) = 𝜔2(𝑥 − 𝑂𝑃 cos𝑃𝑂𝑄 cos 𝜆)
=𝜔2{𝑥 − (𝑥 cos 𝜆 + 𝑦 cos𝜇 + 𝑧 cos 𝜈) cos 𝜆}
=𝜔2(𝑥 − 𝑣 cos 𝜆) where 𝑣 is put for 𝑥 cos 𝜆 + 𝑦 cos𝜇 + 𝑧 cos 𝜈.

Let 𝑋 denote the whole force parallel to the axis of x, estimated in-
wards; then

𝑋 = 𝐴𝑥 +
𝑀𝑥
𝑅3

−
3𝑀𝑙𝑢
𝑅5

− 𝜔2(𝑥 − 𝑣 cos 𝜆).

Similar expressions hold for the attractions parallel to the other axes,
which we will denote by 𝑌 and 𝑍 respectively.

D’Alembert’s method is substantially equivalent to this though his no-
tation is less symmetrical.

617. The conditions for relative equilibrium are

𝑋 ÷
𝑥
𝑎2

= 𝑌 ÷
𝑦
𝑏2

= 𝑍 ÷
𝑧
𝑐2
.

Take the equation 𝑋𝑎2𝑦 = 𝑌𝑏2𝑥; this must be identically true, and
so we may equate the coefficients of 𝑥𝑦, 𝑥2, 𝑦2, 𝑥𝑧, 𝑦𝑧. By equating the
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coefficients of 𝑥𝑦 we obtain

𝑎2 {𝐴 +
𝑀
𝑅3

−
3𝑀𝑙2

𝑅5
− 𝜔2(1 − cos2 𝜆)}

= 𝑏2 {𝐵 +
𝑀
𝑅3

−
3𝑀𝑚2

𝑅5
− 𝜔2(1 − cos2 𝜇)} .

By equating the coefficients of 𝑥2, and by equating the coefficients of
𝑦2, we arrive at the same condition, namely,

−
3𝑀𝑙𝑚
𝑅5

+ 𝜔2 cos 𝜆 cos𝜇 = 0.

By equating the coefficients of 𝑥𝑧 we have

−
3𝑀𝑚𝑛
𝑅5

+ 𝜔2 cos𝜇 cos 𝜈 = 0.

By equating the coefficients of 𝑦𝑧 we have

−
3𝑀𝑛𝑙
𝑅5

+ 𝜔2 cos 𝜈 cos 𝜆 = 0.

In like manner we may take the equation 𝑋𝑎2𝑧 = 𝑍𝑐2𝑥; by so doing
we shall find that we get only one new condition.

The whole results may be written thus:

3𝑀𝑚𝑛
𝑅5

= 𝜔2 cos𝜇 cos 𝜈,
3𝑀𝑛𝑙
𝑅5

= 𝜔2 cos 𝜈 cos 𝜆,
3𝑀𝑙𝑚
𝑅5

= 𝜔2 cos 𝜆 cos𝜇.

𝑎2 (𝐴 +
𝑀
𝑅3

−
3𝑀𝑙2

𝑅5
− 𝜔2 sin2 𝜆) = 𝑏2 (𝐵 +

𝑀
𝑅3

−
3𝑀𝑚2

𝑅5
− 𝜔2 sin2 𝜇)

= 𝑐2 (𝐶 +
𝑀
𝑅3

−
3𝑀𝑛2

𝑅5
− 𝜔2 sin2 𝜈) .
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618. As a particular case of the preceding investigation, suppose that
there is no distant disturbing body; then 𝑀 = 0; thus cos𝜇 cos 𝜈 = 0,
cos 𝜈 cos 𝜆 = 0, cos 𝜆 cos𝜇 = 0. Hence two of the three cosines cos 𝜆,
cos𝜇, cos 𝜈 must vanish; so that the rotation must be round one of the
principal axes of the ellipsoid. Hence we see that the case taken in Ja-
cobi’s theorem is the only case in which an ellipsoid of fluid rotating
round a diameter can remain in relative equilibrium. A statement which
has been recently made to the contrary by Dahlander and by Schell is
inaccurate: see the Proceedings of the Royal Society, Vol. xxi.

619. Return to the conditions obtained in Art. 617. Let us suppose
that 𝑙, 𝑚, and 𝑛 are not zero. The first and the second of these conditions
give

𝑚
𝑙
=
cos𝜇
cos 𝜆

;

the second and the third give

𝑛
𝑚
=
cos 𝜈
cos𝜇

.

Hence the radius vector to the distant body coincides in direction
with the axis of rotation; thus

cos 𝜆 =
𝑙
𝑅
, cos𝜇 =

𝑚
𝑅
, cos 𝜈 =

𝑛
𝑅
,

and then from any of the first three conditions we get

3𝑀
𝑅3

= 𝜔2;

and the other conditions reduce to

𝑎2 (𝐴 −
2𝑀
𝑅3

) = 𝑏2 (𝐵 −
2𝑀
𝑅3

) = 𝑐2 (𝐶 −
2𝑀
𝑅3

) ;

these last will be satisfied if 𝑎 = 𝑏 = 𝑐, that is if the fluid mass be
spherical.
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The particular case in which the radius vector to the distant body and
the axis of rotation coincide in direction presents itself in D’Alembert’s
memoir; but he does not pay much attention to it: see his page 200.

He also notices a particular case in which it is given that two of the
three 𝑎, 𝑏, 𝑐 are nearly equal: see his page 209.

But he does not notice that we may have a sphere exactly if
𝑙

cos 𝜆
=

𝑚
cos𝜇

=
𝑛

cos 𝜈
and 𝜔2 =

3𝑀
𝑅3

.

620. It will be interesting to enquire if the conditions in the preced-
ing Article can be satisfied in any other way besides having 𝑎 = 𝑏 = 𝑐;
this enquiry leads us a little beyond the point at which the theory of the
attraction of ellipsoids had arrived at this date.

Let 𝑉 denote the mass of the ellipsoid; then we know that

𝐴 =
3𝑉
𝑎
∫

1

0

𝑥2𝑑𝑥
√{𝑎2 + (𝑏2 − 𝑎2)𝑥2}{𝑎2 + (𝑐2 − 𝑎2)𝑥2}

;

This result was given by Laplace in his Théorie … de la Figure des
Planetes, page 92; as we shall see D’Alembert himself first obtained it
but rejected it in the seventh volume of his Opuscules Mathématiques.

Assume 𝑥 =
𝑎

√(𝑎2 + 𝑠)
; then we find that

𝐴 =
3𝑉
2
∫

∞

0

𝑑𝑠
(𝑎2 + 𝑠)𝐷

,

where 𝐷 stands for √{(𝑎2 + 𝑠)(𝑏2 + 𝑠)(𝑐2 + 𝑠)}.
In like manner we have

𝐵 =
3𝑉
2
∫

∞

0

𝑑𝑠
(𝑏2 + 𝑠)𝐷

, 𝐶 =
3𝑉
2
∫

∞

0

𝑑𝑠
(𝑐2 + 𝑠)𝐷

.
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Put 𝜙2 for
2𝑀
𝑅3

; then the conditions we have to examine may be writ-

ten

(𝑎2 − 𝑏2)𝜙2 = 𝑎2𝐴 − 𝑏2𝐵 =
3𝑉(𝑎2 − 𝑏2)

2
∫

∞

0

𝑠𝑑𝑠
(𝑎2 + 𝑠)(𝑏2 + 𝑠)𝐷

,

(𝑏2 − 𝑐2)𝜙2 = 𝑏2𝐵 − 𝑐2𝐶 =
3𝑉(𝑏2 − 𝑐2)

2
∫

∞

0

𝑠𝑑𝑠
(𝑏2 + 𝑠)(𝑐2 + 𝑠)𝐷

;

hence we see that these conditions cannot be satisfied if 𝑎, 𝑏, 𝑐 are all
unequal; for they would lead to two different values of 𝜙2.

But suppose two of the three, 𝑎, 𝑏, 𝑐 to be equal; say 𝑎 and 𝑏: then
our conditions reduce to

𝜙2 =
3𝑉
2
∫

∞

0

𝑠𝑑𝑠
(𝑏2 + 𝑠)(𝑐2 + 𝑠)𝐷

;

and this is quite admissible if 𝑏, 𝑐, 𝑉 and 𝜙 be properly adjusted, whether
𝑏 is greater or less than 𝑐.

621. If 𝑙, 𝑚, 𝑛 are all different from zero we have the case discussed
in the preceding two Articles, in which the radius vector to the distant
body and the axis of rotation coincide in direction. D’Alembert himself
pays little attention to this case: indeed in his page 200 he seems to con-
sider that it cannot occur. Let us now return to the general conditions of
Art. 619; and suppose that 𝑙, 𝑚, 𝑛 are not all different from zero. Sup-
pose for example that 𝑛 = 0; then it follows from the first and second
conditions that either cos 𝜈 = 0, or else cos 𝜆 = 0, and cos𝜇 = 0: if we
suppose the latter, then 𝑙 or 𝑚 must also = 0. In the former case, the
axis of rotation is in the principal plane corresponding to 𝑎 and 𝑏; in the
latter case the axis of rotation coincides with the axis corresponding to
𝑐. In each case the axis of rotation and the radius vector to the distant
body are both in one of the principal planes of the fluid mass.

622. In Arts. 619 and 620 we see that the supposed ellipsoid is either
a sphere or an ellipsoid of revolution; and in Art. 621 we see that the axis
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of rotation and the radius vector to the distant body must be in one of
the principal planes of the fluid mass. Combining these two results, we
may say that in every case in which the relative equilibrium is possible
the axis of rotation and the radius vector to the distant body must be
in one of the principal planes of the fluid mass. D’Alembert arrives at
this result, and confirms it by some general reasoning which is not very
cogent: see his pages 198…200.

623. As a particular case of Art. 617 let us suppose we have given
that the axis of rotation and the radius vector to the distant body are at
right angles. This may be considered to hold with respect to the moon
supposed fluid, the distant body being the Earth. Since here we have not
the case of Arts. 619 and 620, it follows that one or two of the three 𝑙,
𝑚, 𝑛 must be zero. Suppose 𝑛 = 0; then from the first two conditions of
Art. 617, we shall find either cos 𝜈 = 0, or both cos 𝜆 = 0, and cos𝜇 = 0.

I. Suppose cos 𝜈 = 0. Then the third condition is

𝜔2 cos 𝜆 cos𝜇 =
3𝑀𝑙𝑚
𝑅5

.

Now by our hypothesis that the two directions are at right angles, this

would give 𝜔2 = −
3𝑀
𝑅3

, if we suppose that 𝑙𝑚 does not vanish; this is

impossible. Therefore 𝑙𝑚 vanishes. Hence we must have either 𝑙 = 0,
and cos𝜇 = 0, or 𝑚 = 0, and cos 𝜆 = 0.

II. Suppose cos 𝜆 = 0, and cos𝜇 = 0.
Then the third condition shews that 𝑙𝑚 = 0. Therefore either 𝑙 = 0,

or 𝑚 = 0.
Hence we must have the axis of rotation coinciding with one of the

principal axes of the body, and the radius vector to the distant body co-
inciding with another.

The result might have been anticipated perhaps; and we shall find
that Laplace assumes it as evident: see the reference in Art. 614.
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624. We have seen in Art. 622 that the axis of rotation and the radius
vector to 𝑀 must always be in one of the principal planes of the ellipsoid.
We will suppose that 𝑛 = 0, and cos 𝜈 = 0. Hence the conditions of Art.
617, reduce to

3𝑀𝑙𝑚
𝑅5

= 𝜔2 cos 𝜆 cos𝜇,

𝑎2 {𝐴 +
𝑀
𝑅3

−
3𝑀𝑙2

𝑅5
− 𝜔2 sin2 𝜆}

= 𝑏2 {𝐵 +
𝑀
𝑅3

−
3𝑀𝑚2

𝑅5
− 𝜔2 sin2 𝜇} = 𝑐2 {𝐶 +

𝑀
𝑅3

− 𝜔2} .

And in virtue of our supposition that 𝑛 and cos 𝜈 vanish we have

cos2 𝜆 + cos2 𝜇 = 1, 𝑙2 +𝑚2 = 𝑅2.

As to whether these equations are consistent nothing is said by
D’Alembert; we have discussed one case of the general problem in Arts.
619 and 620, but the matter is not of sufficient importance to detain us
longer.

625. D’Alembert begins on his page 174 an investigation of the at-
traction of an ellipsoid on any particle at the surface. This amounts to
seeking the values of the 𝐴, 𝐵, 𝐶 of Art. 615.

He makes some simple and useful remarks on his pages 174…176;
we will give an example of them. Suppose the semiaxes of an ellipsoid
to be 𝑟, 𝑟(1 + 𝛼), and 𝑟(1 + 𝛽), where 𝛼 and 𝛽 are very small. Let the
approximate value of the attraction be required for a particle situated at
the end of the semiaxis 𝑟. We may assume that this attraction will be
4𝜋𝑟
3
(1+𝑝𝛼+𝑞𝛽), where 𝑝 and 𝑞 are certain constants to be determined:

this assumption depends on the fact that if 𝛼 and 𝛽 vanish, the body

becomes a sphere, and the attraction then is
4𝜋𝑟
3
. Next we may admit
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that 𝑝 = 𝑞; because the attraction ought to remain unchanged if we in-
terchange the second and third semiaxes. Hence the attraction becomes
4𝜋𝑟
3
{1+𝑝(𝛼+𝛽)}. Now we can determine 𝑝. For if we suppose 𝛼 = 𝛽 the

ellipsoid becomes an ellipsoid of revolution, and the attraction of such a
solid on a particle at the pole is known: hence equating this known at-

traction, estimated approximately, to
4𝜋𝑟
3
(1 + 2𝑝𝛼) we determine 𝑝. We

should thus get 𝑝 =
2
5
.

626. D’Alembert attempted to find the attraction of an ellipsoid by
decomposing it into slices in various ways; but he does not succeed in
effecting the integrations. We know now that the result can be expressed
by means of elliptic integrals, but not by circular arcs or logarithms. We
will briefly state the methods of decomposition of the ellipsoid which he
tries. The attracted particle is supposed to be at the end of the semiaxis
𝑐.

I. Suppose a plane to pass through the attracted particle, and also
through the tangent to the ellipsoid at that point which is parallel to the
axis 2𝑎. Let this plane turn round the tangent line and cut the ellipsoid
into wedge-shaped slices: see D’Alembert’s page 180. This decomposition
is like that used by Thomas Simpson; which we have noticed in Art. 279.

II. Instead of using the tangent parallel to the axis 2𝑎, we may use
the tangent parallel to the axis 2𝑏.

III. Suppose a plane to pass through the axis 2𝑐 and to turn round,
and thus cut the ellipsoid into wedge-shaped slices: see D’Alembert’s
page 183. This decomposition is like that used by Maclaurin; which we
have noticed in Art. 255.

IV. Or the ellipsoid may be cut into laminæ by a plane which is al-
ways at right angles to the axis 2𝑐: see D’Alembert’s page 184.
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627. For the case of an ellipsoid in which two of the axes are very
nearly equal D’Alembert obtains approximate values of the attraction at
the end of the principal axes: see his page 192. A mistake in the results
is corrected on page 424.

The approximate results just referred to are applied by D’Alembert to
the question of relative equilibrium which was proposed at the beginning
of the memoir: see his pages 194…197. He finishes in a patronising tone:

Je ne doute point que cette nouvelle Recherche ne donnât lieu à plusieurs
remarques curieuses; mais je les abandonne à d’autres Géometres, la matiere
n’ayant plus aucune difficulté.

628. The next memoir in the sixth volume of D’Alembert’s Opuscules
Mathématiques is also entitled Suite des Recherches sur la Figure de la
Terre; this is a continuation of the preceding memoir; it occupies pages
211…246: it is followed by some Remarques sur le Mémoire précédent on
pages 247…259.

629. D’Alembert now proposes to extend the problem of the preced-
ing memoir by supposing several distant attracting bodies instead of the
single distant attracting body there considered.

This extension becomes very easy with the aid of modern symmetri-
cal notation. Let 𝑀1, 𝑀2, 𝑀3 … denote the masses of the various distant
bodies respectively; let 𝑙1, 𝑚1, 𝑛1 be the coordinates of the first body, 𝑅1
its distance; and let similar notation hold with respect to the other bod-
ies.

Then instead of the first equation of Art. 617, namely

3𝑀𝑚𝑛
𝑅5

= 𝜔2 cos𝜇 cos 𝜈,



d’alembert. 452

we now have
3𝑀1𝑚1𝑛1

𝑅15
+
3𝑀2𝑚2𝑛2

𝑅25
+
3𝑀3𝑚3𝑛3

𝑅35
+ … = 𝜔2 cos𝜇 cos 𝜈,

which we may write thus 3∑
𝑀𝑚𝑛
𝑅5

= 𝜔2 cos𝜇 cos 𝜈.

Similarly the other equations may be expressed.
D’Alembert himself does not proceed in this way nor adopt this nota-

tion. He uses spherical trigonometry. It may be observed that he demon-
strates the expression for the cosine of an angle of a spherical triangle in
terms of the sines and cosines of the sides; he starts from formulæ for a
right-angled spherical triangle which he assumes: see his pages 247 and
248.

As we have remarked in Art. 614, the distant bodies must be sup-
posed to rotate with the fluid mass; though D’Alembert does not notice
this fact. And as in Arts. 596 and 616, D’Alembert says nothing about
certain forces which are not what I have called disturbing forces.

630. The only point which appears to be of any interest in the prob-
lem is a remark which D’Alembert makes on his page 253; the remark
amounts to this: if the axis of rotation and the radii vectores to the dis-
tant attracting bodies are all in one plane that plane must be a principal
plane of the ellipsoid. He does not demonstrate this, but seems to rely
on the principle of symmetry as in the corresponding theorem for a sin-
gle distant attracting body: see Art. 622. We will examine the theorem.
Suppose that the equation to the plane is 𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧 = 0; so that

𝛼 cos 𝜆 + 𝛽 cos𝜇 + 𝛾 cos 𝜈 = 0,
𝛼𝑙1 + 𝛽𝑚1 + 𝛾𝑛1 = 0,
𝛼𝑙2 + 𝛽𝑚2 + 𝛾𝑛2 = 0,

and so on.
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Take the three equations

3∑
𝑀𝑚𝑛
𝑅5

= 𝜔2 cos𝜇 cos 𝜈, 3∑
𝑀𝑛𝑙
𝑅5

= 𝜔2 cos 𝜈 cos 𝜆,

3∑
𝑀𝑙𝑚
𝑅5

= 𝜔2 cos 𝜆 cos𝜇.

Substitute in the first of these for 𝑛1, 𝑛2, …, and for cos 𝜈; thus

3∑
𝑀𝑚(𝛼𝑙 + 𝛽𝑚)

𝑅5
= 𝜔2 cos𝜇(𝛼 cos 𝜆 + 𝛽 cos𝜇);

therefore by means of the third equation we obtain

3∑
𝑀𝑚2

𝑅5
= 𝜔2 cos2 𝜇.

Similarly

3∑
𝑀𝑙2

𝑅5
= 𝜔2 cos2 𝜆, 3∑

𝑀𝑛2

𝑅5
= 𝜔2 cos2 𝜈.

Hence the first of the three equations becomes

∑
𝑀𝑚𝑛
𝑅5

=√∑
𝑀𝑚2

𝑅5
. ∑

𝑀𝑛2

𝑅5
.

Squaring we get

{
𝑀1𝑚1𝑛1
𝑅15

+
𝑀2𝑚2𝑛2
𝑅25

+
𝑀3𝑚3𝑛3
𝑅35

+…}
2

= {
𝑀1𝑚1

2

𝑅15
+
𝑀2𝑚2

2

𝑅25
+
𝑀3𝑚3

2

𝑅35
+…} {

𝑀1𝑛12

𝑅15
+
𝑀2𝑛22

𝑅25
+
𝑀3𝑛32

𝑅35
+…} .

This by common Algebra leads to
𝑚1
𝑛1

=
𝑚2
𝑛2

=
𝑚3
𝑛3

= …
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In this way we see that all the radii vectores to the distant bodies
must coincide. Thus the case reduces to that of Art. 619.

But suppose, as in fact D’Alembert does, that the plane in which the
axis of rotation and the radii vectores to the distant bodies lie is perpen-
dicular to a principal plane; let its equation be

𝛼𝑥 + 𝛽𝑦 = 0.

Then as before we can obtain from our three equations,

3∑
𝑀𝑙2

𝑅5
= 𝜔2 cos2 𝜆, 3∑

𝑀𝑚2

𝑅5
= 𝜔2 cos2 𝜇;

but we do not now have also 3∑
𝑀𝑛2

𝑅5
= 𝜔2 cos2 𝜈.

The equations which correspond to the last two of Art. 617 are

𝑎2 {𝐴 +∑
𝑀
𝑅3

− 𝜔2} = 𝑏2 {𝐵 +∑
𝑀
𝑅3

− 𝜔2} = 𝑐2 {𝐶 − 2∑
𝑀
𝑅3
} ;

for 𝜔2 sin2 𝜈 = 𝜔2(cos2 𝜆 + cos2 𝜇) = 3∑𝑀
𝑙2 +𝑚2

𝑅5
= 3∑

𝑀(𝑅2 − 𝑛2)
𝑅5

.

If D’Alembert’s remark were universally true the equations connect-
ing 𝑎, 𝑏, and 𝑐 ought to be impossible, or inconsistent with the others, if
𝑎, 𝑏, and 𝑐 are unequal. But this does not seem to be the case. By the
method of Art. 620, we get from them

𝜔2 −∑
𝑀
𝑅3

=
3𝑉
2
∫

∞

0

𝑠𝑑𝑠
(𝑎2 + 𝑠)(𝑏2 + 𝑠)𝐷

,

and
2𝑐2∑

𝑀
𝑅3

=
3𝑉
2
∫

∞

0

𝑐2𝑠 + 𝑐2(𝑎2 + 𝑏2) − 𝑏2𝑎2

𝐷3 𝑠𝑑𝑠;

and these if 𝑐2(𝑎2 + 𝑏2) − 𝑏2𝑎2 is positive present nothing impossible.
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As an example we might suppose two distant bodies, and take

𝑙1 = 0, 𝑚1 = 0, 𝑛1 = 𝑅,
𝑙2 = 𝑅2 cos 𝜆, 𝑚2 = 𝑅2 cos𝜇, 𝑛2 = 𝑅2 cos 𝜈.

Then it will be found that our first three equations give 𝜔2 =
3𝑀2
𝑅23

;

and we have only to ascertain if this is consistent with the last two equa-
tions, the form of which has just been given. Thus we have to put

2𝑀2
𝑅23

−
𝑀1
𝑅13

=
3𝑉
2
∫

∞

0

(𝑐2 + 𝑠)𝑠𝑑𝑠
𝐷3 ,

and
2𝑐2 (

𝑀2
𝑅23

+
𝑀1
𝑅13

) =
3𝑉
2
∫

∞

0

𝑐2𝑠 + 𝑐2(𝑎2 + 𝑏2) − 𝑏2𝑎2

𝐷3 𝑠𝑑𝑠.

It will be found that these lead to values of
𝑀2
𝑅23

and
𝑀1
𝑅13

which are cer-

tainly positive if (𝑎2−𝑐2)(𝑐2−𝑏2) is positive; for then also 𝑐2(𝑎2+𝑏2)−𝑏2𝑎2
is positive. It is manifest that this condition may be satisfied; and thus
D’Alembert’s remark is not true.

631. D’Alembert on his page 216, refers to Maclaurin’s Essay on the
Tides, as containing a little matter bearing on the problem discussed in
this memoir; but Maclaurin had not effected much. Maclaurin did not
shew that the figure of an ellipsoid would satisfy the conditions of equi-
librium; nor did he show how to determine the position of the axes of
the ellipsoid. D’Alembert says of his own memoir: Nous avons de plus
démontré dans celui-ci que la figure du sphéroïde est elliptique…. How-
ever he does not shew that the figure is an ellipsoid, but only that it may
be an ellipsoid.

632. D’Alembert says on his page 217, that he will conclude with
some detached reflexions bearing on the Figure of the Earth.



d’alembert. 456

633. He says that among the solutions hitherto given of the problem
the only one which is exact is that which supposes the spheroid to be
fluid and homogeneous; the other solutions being approximations. Sup-
pose that 𝛼 is a very small quantity; and we have found that neglecting
𝛼2 the equation of relative equilibrium is satisfied for a certain figure;
we must not say that this figure exactly satisfies the conditions of relative
equilibrium. But D’Alembert suggests that if we give to the figure a cer-
tain small change of the order 𝛼2 the conditions of relative equilibrium
may be rigorously satisfied; and he considers it a plausible supposition
that there may be an infinity of figures in which the relative equilibrium
will subsist rigorously: see his page 223. Probably few persons will agree
with D’Alembert in considering this supposition plausible.

634. D’Alembert returns on his pages 225…230 and 254…259, to his
favourite equation relating to the ellipticity of fluid surrounding a solid
nucleus: see Arts. 376, 430, and 590.

We shall briefly notice some points that arise.
On his pages 227…229, D’Alembert criticises as inexact certain for-

mulæ on page 247 of Clairaut’s work, and thus as affording an insuf-
ficient proof of Clairaut’s theorem which is founded on them. But, as
might be expected, D’Alembert is wrong and Clairaut is right. The fact
amounts to this: what I have called for instance 𝐴 in Art. 336, is called 𝐴
by Clairaut. Now D’Alembert really supposes 𝐴 to stand for an integral
taken not from 0 to 𝑟1, but from some value say 𝑟2 up to 𝑟1: and thus he
wants to add terms to Clairaut’s formulæ. Plana rightly takes the side of
Clairaut: see Astronomische Nachrichten, Vol. xxxviii, page 245.

On his pages 254, 255, D’Alembert gives, without any preparatory
statements what is really a more exact investigation of the problem of
Art. 376. He thus arrives at the result which I have given in Art. 377,
in which the difference between 𝑟′ and 𝑟1 is not neglected. In this in-
vestigation however he assumes on the second line of his page 255 the
expression for the force at right angles to the radius. In Clairaut’s in-
vestigations the necessary results are demonstrated. D’Alembert does not
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observe that the theorem is included in a more general one which he
had demonstrated like Clairaut: see Art. 443.

In the formulæ of Art. 376, suppose that 𝜖 = 𝜖′; then we get 𝜖 =
5
4
𝜙

where 𝜙 stands for 𝜔2÷
4𝜋𝜎
3
. This result is independent of 𝜌; it is the same

as we should get for a homogeneous fluid. D’Alembert seems to attach
special importance to this result: see pages 79, 225, 256 of the Volume.
But the result is what might be expected. Suppose a homogeneous fluid
rotating in relative equilibrium: solidify all but a film of fluid; the relative
equilibrium will not be disturbed. If we consider the film so thin that its
action on itself may be disregarded, it is kept in relative equilibrium by
the attraction of the solid part. Hence if we alter the density of the fluid
film, it will still be kept in relative equilibrium.

635. On his page 231 D’Alembert refers to the demonstration he had
given of the proposition that an oblatum is the only form of relative equi-
librium for a revolving fluid: see Art. 575. That demonstration we pro-
nounced a failure. From what he now says, it appears to me that he
overlooks the consideration brought forward in Art. 577, as to what his
theorem would have established if the demonstration had been sound.

636. D’Alembert devotes his pages 232…246 to investigations relative
to the attraction of an ellipsoid on an external particle. He confirms by
analysis Maclaurin’s proposition respecting the attraction of confocal el-
lipsoids of revolution on an external particle which is on the line of the
axis or in the plane of the equator. But D’Alembert was unable to ex-
tend this as Maclaurin did, to the case of ellipsoids not of revolution.
D’Alembert says on his pages 242 and 243.

Je soupçonne donc que M. Maclaurin s’est trompé dans l’art. 653 de son
Traité des Fluxions, quand il a dit que sa méthode pour trouver l’attraction d’un
sphéroïde de révolution dans le plan de l’équateur, ou dans l’axe, pouvoit s’appli-
quer à un solide qui ne seroit pas de révolution…. Au reste, ce n’est ici qu’un
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doute que je propose, n’ayant pas suffisamment examiné la proposition de M.
Maclaurin, qu’il se contente d’énoncer sans la démontrer.

As we have stated in Art. 260 Maclaurin really demonstrated the the-
orem which D’Alembert considers to have been only enunciated, and the
truth of which he here doubts. Subsequently, as we shall see, D’Alem-
bert conquered his doubts and demonstrated the theorem: he was the
first person who drew attention to the theorem and demonstrated it af-
ter Maclaurin himself.

637. The next memoir in the sixth volume of D’Alembert’s Opuscules
Mathématiques is entitled Sur les Atmospheres des Corps Célestes; it occu-
pies pages 339…359.

638. The first paragraph explains the object of the memoir:
Le but des Recherches suivantes est de donner sur l’Atmosphere des Plan-

etes quelques Remarques que je crois nouvelles, et de corriger en même-temps
quelques méprises où des Auteurs célébres sont tombés sur cette matiere.

D’Alembert refers on his pages 345, 347, 349 and 350 to Mairan’s
Treatise on the Aurora Borealis; he refers to Euler on his page 350; and
to Maupertuis on his page 358. Thus, I presume, these are the celebrated
authors whose mistakes he proposes to correct.

639. D’Alembert obtains his fundamental equation in an unsatisfac-
tory manner. He assumes that the stratum of the air in contact with the
surface of the planet is a level surface; then he takes an exterior level
surface; and he makes what he calls the weight of a column terminated
at these surfaces constant. He ought not to assume that the surface of
the planet is a level surface for the air.

Suppose 𝜔 the angular velocity, 𝑟 the distance of a point in the at-
mosphere from the centre of the Earth, 𝜃 the angle which 𝑟 makes with
the polar axis, 𝑀 the mass of the Earth. Then by the usual equations for
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relative equilibrium

1
𝜌
𝑑𝑝
𝑑𝑦

= −
𝑀
𝑟2
cos 𝜃,

1
𝜌
𝑑𝑝
𝑑𝑥

= −
𝑀
𝑟2
sin 𝜃 + 𝜔2𝑥.

Hence the equation to a level surface is

𝑀
𝑟
+
𝜔2𝑥2

2
= constant.

Let 𝑟1 and 𝑟2 be the values of 𝑟 at the equator and the pole respectively
in the same level surface; then

𝑀
𝑟1
+
𝜔2𝑟12

2
=
𝑀
𝑟2
.

The matter is discussed by Laplace, as we shall see hereafter; but
nothing is really added to what we find in D’Alembert’s memoir. D’Alem-
bert shews that the zodiacal light cannot be caused by the atmosphere of
the Sun: the remark is repeated by Laplace. See the Mécanique Céleste,
Livre III., Chapitre vii.

640. The form of the atmosphere is determined by a curve of which
the equation in polar coordinates is

𝑟3 sin2 𝜃
𝑐3

−
𝑟
𝑏
+ 1 = 0.

It may happen that corresponding to a given value of 𝜃 we have two
positive values of 𝑟, and one negative value. The three values would all
be regarded in tracing the curve according to modern notions. D’Alem-
bert touches on the subject in his pages 347…349. We may state that his
opinion briefly amounts to rejecting the negative value of 𝑟 entirely. He
observes, in fact, that if we put √(𝑥2 + 𝑦2) for 𝑟, and clear of radicals,
we obtain an equation of the sixth degree; and this gives a branch cor-
responding to the negative value of 𝑟 just mentioned. But according to
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him this new branch does not belong to us. However, he is not so much
regarding the curve itself as the physical problem from which it arose.

641. Hitherto we have not supposed any action on the atmosphere
except that of the planet to which it belongs; but D’Alembert proceeds
to consider the action of one or more other planets. As in the case of
a revolving fluid, when he introduces a distant planet he first puts it on
the prolongation of the axis of rotation: see his pages 354 and 355. Next
he supposes the distant planet to have any position. As before too he
really supposes the distant planet to preserve the same relative position,
so that, in fact, the distant planet must be supposed to rotate with the
planet which carries the atmosphere. See Art. 629.

642. The mode in which D’Alembert finds what we should now
call the pressure at any point of the atmosphere, when there is besides
the planet itself, a distant planet acting, may be noticed. See his pages
355…357.

We know that the polar equations for relative equilibrium are

1
𝜌
𝑑𝑝
𝑑𝑟

= 𝑅,
1
𝜌
𝑑𝑝
𝑟𝑑𝜃

= 𝑇.

Now, in fact, he only considers the first of these equations. The value
of 𝑝 found from this must give the right result, provided we remember
that the so-called arbitrary constant must be, if necessary, regarded as a
function of 𝜃. But without working out the problem fully in rectangular
coordinates, we easily see that the value of 𝑝 must be such that 𝜃 never
enters alone, but always accompanied by 𝑟. Thus 𝑝 cannot contain any
arbitrary function of 𝜃 alone. Therefore, the first equation alone is suf-
ficient for finding 𝑝. D’Alembert himself, however, gives no explanation
of his process.

643. In the Nouveaux Mémoires de l’Académie … of Berlin, for
1774, published in 1776, we have extracts from two letters addressed by
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D’Alembert to Lagrange; see pages 308…311 of the volume. D’Alembert
had discovered that Maclaurin’s theorem, about which he formerly
doubted, was really true; and here he sends to Lagrange sketches of two
demonstrations: see Art. 636. The demonstrations are given at full in
the seventh volume of the Opuscules Mathématiques, to which we now
proceed.

644. The seventh volume of D’Alembert’s Opuscules Mathématiques
was published in 1780; a memoir entitled Sur l’attraction des Sphéroides
Elliptiques, occupies pages 102…207; this is followed by some Remarques
sur le Mémoire précédent on pages 208…233. From page 208 we learn
that the Remarks were written long after the memoir; and, therefore, the
memoir must have been written long before 1780.

D’Alembert says that his attention had been turned to the subject
again by reading the excellent memoir by Lagrange in the Berlin Mé-
moires for 1773.

645. The first part of the memoir, which occupies pages 103…116, is
devoted to the proof of Maclaurin’s theorem: see Art. 636. D’Alembert
starts from formulæ given in the sixth volume of his Opuscules Mathé-
matiques; and by three different methods arrives at the required result.

One of these methods occupies D’Alembert’s Article 30; it is curious
from its obscurity. When carefully examined it is found to be equivalent
to a circuitous method of arriving at the expression 𝜋𝑎𝑏 for the area of
an ellipse, of which 𝑎 and 𝑏 are the semiaxes.

D’Alembert, on his page 114, corrects an important misprint in La-
grange’s memoir in the Berlin Mémoires for 1773.

646. The second part of the memoir, which occupies pages 116…159,
is devoted to the discussion of two formulæ relating to the attraction of
an ellipsoid, which were given on pages 180 and 184 of the sixth volume
of the Opuscules Mathématiques: see Art. 626. We will briefly indicate,
by modern methods and notation, the nature of these formulæ.
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Suppose we wish to find the attraction of an ellipsoid, the axes of
which are 2𝑎, 2𝑏, 2𝑐, on a particle at the end of the axis 2𝑐. We use
the method I. of Art. 626. Taking this point as origin, we have for the
equation to the ellipsoid,

2𝑧
𝑐
=
𝑥2

𝑎2
+
𝑦2

𝑏2
+
𝑧2

𝑐2
.

Put 𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃 cos𝜙, 𝑧 = 𝑟 sin 𝜃 sin𝜙; then

2 sin 𝜃 sin𝜙
𝑐

= 𝑟 (
cos2 𝜃
𝑎2

+
sin2 𝜃 cos2 𝜙

𝑏2
+
sin2 𝜃 sin2 𝜙

𝑐2
) .

The attraction which we require is equal to

∭𝑑𝑟 sin 𝜃 𝑑𝜃 𝑑𝜙 . sin 𝜃 sin𝜙,

that is,

2𝑎2𝑏2𝑐∬
sin3 𝜃 sin2 𝜙𝑑𝜃 𝑑𝜙

𝑏2𝑐2 cos2 𝜃 + 𝑎2𝑐2 sin2 𝜃 cos2 𝜙 + 𝑎2𝑏2 sin2 𝜃 sin2 𝜙
.

The limits for 𝜃 are 0 and 𝜋; the limits for 𝜙 are −
𝜋
2
and

𝜋
2
. Now

suppose we integrate first with respect to 𝜃; put 𝑡 for cos 𝜃; thus we ob-
tain the form

∫
(1 − 𝑡2)𝑑𝑡

𝑎2𝑐2 cos2 𝜙 + 𝑎2𝑏2 sin2 𝜙 + 𝑡2(𝑏2𝑐2 − 𝑎2𝑐2 cos2 𝜙 − 𝑎2𝑏2 sin2 𝜙)
.

There is no difficulty in integrating this; but the form of the integral
is different according to the sign of

𝑏2𝑐2 − 𝑎2𝑐2 cos2 𝜙 − 𝑎2𝑏2 sin2 𝜙;
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involving circular functions if this quantity is positive, and logarithms if
this quantity is negative. It is this double form which renders the pro-
cess troublesome, if we adopt this order of integration; and D’Alembert
discusses the matter at great length.

The best mode would be to integrate with respect to 𝜙 first; this
would lead to a result which we shall presently obtain in another way:
but D’Alembert does not adopt this order of integration.

647. Let us now consider the problem by the method III. of Art. 626.
Suppose that instead of an ellipsoid we had an ellipsoid of revolution,

in which the semiaxes are 𝑐, 𝑏, and 𝑏. Then, by Art. 255, the attraction
on a particle at the end of the semiaxis 𝑐 would be

2𝑐𝑏2∫
2𝜋

0
∫

𝜋
2

0

sin 𝜃 cos2 𝜃 𝑑𝑢 𝑑𝜃
𝑏2 + (𝑐2 − 𝑏2) sin2 𝜃

.

Then for the case of an ellipsoid, not of revolution, we must put 𝜌2
instead of 𝑏2, where

𝜌2 =
𝑏2

1 + (
𝑏2

𝑎2
− 1) cos2 𝑢

,

so that our formula becomes

2𝑐∫
2𝜋

0
∫

𝜋
2

0

sin 𝜃 cos2 𝜃 𝑑𝑢 𝑑𝜃

1 + (
𝑐2

𝜌2
− 1) sin2 𝜃

.

If we integrate with respect to 𝜃 first, we shall have two forms, ac-

cording as
𝑐2

𝜌2
is greater or less than unity; and D’Alembert discusses the

matter at great length.
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648. But suppose we integrate the formula of the preceding Article
with respect to 𝑢 first. We have

2𝑐 sin 𝜃 cos2 𝜃

1 + (
𝑐2

𝜌2
− 1) sin2 𝜃

=
2𝑐 sin 𝜃 cos2 𝜃

cos2 𝜃 +
𝑐2

𝜌2
sin2 𝜃

=
2𝑐 sin 𝜃 cos2 𝜃

cos2 𝜃 +
𝑐2

𝑏2
{1 + (

𝑏2

𝑎2
− 1) cos2 𝑢} sin2 𝜃

=
2𝑐 sin 𝜃 cos2 𝜃

cos2 𝜃 +
𝑐2

𝑏2
(sin2 𝑢 +

𝑏2

𝑎2
cos2 𝑢) sin2 𝜃

=
2𝑐 sin 𝜃 cos2 𝜃

(cos2 𝜃 +
𝑐2

𝑎2
sin2 𝜃) cos2 𝑢 + (cos2 𝜃 +

𝑐2

𝑏2
sin2 𝜃) sin2 𝑢

.

Integrate with respect to 𝑢 between the limits 0 and
𝜋
2
and multiply

the result by 4. Then we find that the required attraction

= 4𝜋𝑎𝑏𝑐∫
𝜋
2

0

sin 𝜃 cos2 𝜃 𝑑𝜃
√(𝑎2 cos2 𝜃 + 𝑐2 sin2 𝜃)√(𝑏2 cos2 𝜃 + 𝑐2 sin2 𝜃)

Thus the attraction is made to depend on a single definite integral.
We may say that this result is the point at which modern investigations
have finally arrived.

We shall presently see that D’Alembert absolutely rejected this impor-
tant formula which was within his reach.

649. D’Alembert himself draws attention to the fact, that when we
have to find the value of a double integral, the facility of the process may
depend very much on the order in which we effect the two integrations.
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See his page 158. He makes this remark after he has considered a way
of finding the volume of a right cone, by cutting it into hyperbolic slices,
by planes parallel to the axis: this way is difficult, though the final result
is necessarily very simple.

650. The third part of the memoir occupies pages 159…207; it consid-
ers different ways of calculating the attraction of elliptic spheroids, and
treats also of the attraction of some other spheroids.

I will notice some of the more important points.
We know that a plane may be so moved, parallel to itself, that all

the sections which it makes of an ellipsoid shall be circular sections.
D’Alembert suggests the problem of finding the attraction of an ellip-
soid at the extremity of the diameter which passes through the centres
of a series of circular sections. But the integrations are too complex to
be worked out. See his pages 159…164.

Let any segment of an ellipse revolve round its bounding chord; then
the attraction exerted by the solid thus generated on a particle at the
extremity of the chord can always be found, or at least expressed as a
single definite integral without radicals. See D’Alembert’s page 164.

In fact, this attraction = 2𝜋∫
𝛽

0
𝑟 sin 𝜃 cos 𝜃 𝑑𝜃, where 𝛽 is the an-

gle between the chord and the tangent to the ellipse at the origin; and

𝑟 =
ℎ cos 𝜃 + 𝑘 sin 𝜃

𝑎 sin2 𝜃 + 𝑏 sin 𝜃 cos 𝜃 + 𝑐 cos2 𝜃
.

A theorem which presents itself incidentally may be noticed: see
D’Alembert’s page 167. Take any diameter of an ellipse, and let a
solid be generated by the revolution of one of the halves of the ellipse
about this diameter: then the volume generated varies inversely as this
diameter.
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If this diameter be called 2𝑙, and the axes of the ellipse be 2𝑎 and 2𝑏,

the volume of the solid is
4𝜋𝑎2𝑏2

3𝑙
.

D’Alembert invites mathematicians to continue their attempts to ex-
press the attraction of an ellipsoid without the use of arcs of conic sec-
tions; he says that the attempt does not appear to him hopeless: see his
page 171. We now know that he was seeking what it is impossible to
obtain. Plana has drawn attention to this passage in Crelle’s Journal für
… Mathematik, Vol. xx. page 190.

D’Alembert gives some simple examples of the process for the change
of the independent variables in a double integral which Lagrange had de-
veloped in the volume of the Berlin Mémoires for 1773. See D’Alembert’s
pages 176 and 177.

651. We now arrive at a very singular passage. D’Alembert in effect
gives the process of our Art. 648 and rejects it as inadmissible. See his
pages 177…180. His 𝑦 is our 𝜃. He says:

J’avois imaginé d’intégrer d’abord la formule de la page 183 du Tome VI. de
nos Opuscules en faisant varier 𝑢, et ensuite 𝑦, et j’avois cru trouver un résul-
tat qui me conduisoit à une formule algébrique d’attraction pour les sphéroïdes
elliptiques. Comme cette méthode pourroit en tromper d’autres, il ne sera peut-
être pas inutile de la détailler ici.

In his process there is nothing wrong in principle, but he has omit-
ted a bracket in the third line of his Art. 147; thus his result is slightly
inaccurate. He gives some invalid arguments against the method. Thus
D’Alembert deliberately rejects one of the most important formulæ of the
subject, which in fact quite supersedes a large part of the present mem-
oir. This is perhaps the strangest of all his strange mistakes.

652. D’Alembert shews in his page 199 that a theorem given by
Laplace in the Paris Mémoires for 1775 might be investigated with ease.
Laplace himself found afterwards a much simpler demonstration than
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that which he originally gave: for this see the Paris Mémoires for 1776,
page 261. D’Alembert says in his page 221, with respect to Laplace and
his two proofs of his theorem:

Ce même Académicien, à qui j’avois communiqué ma démonstration très-
simple de son théorême, en a aussi trouvé depuis une autre plus simple que la
premiere, et qu’il a lue à l’Académie au mois de Juillet 1778. Il m’a appris en
même-temps que M. de la Grange avoit aussi trouvé de son côté une démon-
stration de ce théorême général.

The following is the theorem. Let the radius vector of a spheroid be
1+𝛼𝜇, where 𝛼 is very small and 𝜇 a function of the colatitude 𝜓. At any
point of the surface let 𝐴 denote the attraction along the radius vector,
and 𝐵 the attraction at right angles to the radius vector in the meridian
plane from the pole: then will

𝑑𝐴
𝑑𝜓

=
𝐵
2
−
2𝜋𝛼
3

𝑑𝜇
𝑑𝜓

. (1)

We shall demonstrate the theorem when we treat on Laplace’s con-
tributions to our subject.

Suppose 𝑇 the whole force along the tangent, 𝜔 the angular velocity:
then to the order of approximation we regard

𝑇 = 𝐵 − 𝐴
𝑑(1 + 𝛼𝜇)

𝑑𝜓
+ 𝜔2 sin𝜓 cos𝜓:

in the small term we may put
4𝜋
3

for 𝐴; thus

𝑇 = 𝐵 −
4𝜋
3
𝛼
𝑑𝜇
𝑑𝜓

+ 𝜔2 sin𝜓 cos𝜓. (2)

From (1) and (2) we have

𝑑𝐴
𝑑𝜓

=
𝑇
2
−
𝜔2

2
sin𝜓 cos𝜓. (3)
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Let 𝑃 denote the gravity, so that 𝑃 = 𝐴 − 𝜔2 sin2 𝜓; then (3) becomes

𝑑(𝑃 + 𝜔2 sin2 𝜓)
𝑑𝜓

=
𝑇
2
−
𝜔2

2
sin𝜓 cos𝜓,

that is
𝑑
𝑑𝜓

(𝑃 +
5𝜔2

4
sin2 𝜓) =

𝑇
2
. (4)

D’Alembert contemplates the theorem under the form (4), and puts
it into words: see his pages 200 and 201.

If the body is fluid and in relative equilibrium the condition 𝑇 = 0
must be satisfied; and thus the theorem is simplified.

653. On pages 391…392 of the volume D’Alembert suggests a process
for the calculation of the attraction of a hemispherical mountain on a
pendulum occupying any position close to the mountain; but it is not
fully intelligible, and nothing is really effected. He makes the erroneous
statement that the direction at right angles to any radius of the mountain
will also be at right angles to the radius of the Earth.

654. The eighth volume of D’Alembert’s Opuscules Mathématiques
was published in 1780. A memoir entitled Nouvelles réflexions sur les
loix de l’équilibre des fluides occupies pages 1…35; and there are some
remarks relating to the memoir on pages 354…357.

655. This memoir is not very closely connected with our subject; we
will briefly indicate the nature of the topics discussed. We may observe
that the old and obscure language with respect to fluid equilibrium is
still retained; no advantage is taken of the capital improvement effected
by Euler in introducing the notion of pressure and its appropriate symbol
𝑝.

D’Alembert notices an objection which he says an able mathemati-
cian had brought to him. It amounts to this. Suppose for simplicity the
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density of the fluid to be uniform; then we have shewn in Art. 394, that

𝑑𝑌
𝑑𝑥

=
𝑑𝑋
𝑑𝑦

;

but in the demonstration small quantities of the second order have been
neglected: thus we may be in doubt whether any inference from this
result is rigorously true. D’Alembert’s words adapted to the notation and
diagram of Art. 394 are:

… il est certain que 𝑋𝑑𝑥 ne représente la force du canal 𝑃𝑆 qu’à un in-
finiment petit du second ordre près, puisqu’on néglige les quantités infiniment
petites du premier ordre qui entrent dans 𝑋, pour en exprimer la valeur le long
du canal 𝑃𝑆; il est certain aussi qu’il en est de même de 𝑌𝑑𝑦; ne peut-on pas

conclure delà, m’a objecté un habile Mathématicien, que l’équation
𝑑𝑋
𝑑𝑦

=
𝑑𝑌
𝑑𝑥

ne

représente l’équilibre du canal rectangulaire 𝑃𝑄𝑅𝑆, qu’à un infiniment petit du
second ordre près, et qu’ainsi elle ne représente pas rigoureusement l’équilibre,
qui doit exister rigoureusement entre les parties du fluide, et qui seroit néces-
sairement troublé, s’il n’étoit pas tel?

D’Alembert discusses the matter in his pages 2…8.
D’Alembert considers whether it is necessary that 𝑋 and 𝑌 should be

continuous; that is whether throughout the fluid 𝑋 should always be the
same function of 𝑥 and 𝑦, and also 𝑌 the same function of 𝑥 and 𝑦. He
maintains correctly that this is not necessary: see his pages 9…15.

But he seems on his page 355 to lose faith in his own demonstration.
In his pages 16…20 he adverts to a supposition he had formerly made

with the view of giving greater generality to the equations of fluid equi-
librium: see Art. 397. In effect he now abandons that supposition.

In his pages 20…26, to use modern language, he makes some remarks
on the equations of fluid equilibrium, when referred to polar coordinates;
he had formerly considered this topic: see Art. 574.

His pages 26…28 he devotes to shewing that if a fluid occupies an



d’alembert. 470

infinite tube, and a finite portion of the fluid be put in motion, no sen-
sible movement in the mass will be produced. It does not seem to me
that the investigation is of any value.

In his pages 28…30 he professes to demonstrate the statement, com-
monly admitted by writers on hydrostatics, that if a fluid mass be in
equilibrium any portion of it may be supposed to become solid without
disturbing the equilibrium. The demonstration does not seem to me of
any value.

We have three last remarks in conclusion. On page 30 he says: Ter-
minons ces recherches par quelques réflexions sur la loi de la compres-
sion de l’air en raison des poids dont il est chargé. Then on page 32 he
says: Nous ajouterons ici en finissant, une remarque à laquelle il est bon
de faire attention dans la graduation des baromètres. And on page 33
he says: Je terminerai ces recherches par une nouvelle remarque sur la
théorie de l’équilibre des fluides. This new remark however is substan-
tially old, having been given in page 206 of the Théorie de la Résistance
des Fluides: see Art. 448.

656. In pages 292…297 of the eighth volume of the Opuscules Mathé-
matiques we have a memoir entitled Sur la Figure de la Terre; and some
remarks on it are given on pages 389…392: these form D’Alembert’s last
contribution to our subject.

657. We have already observed that D’Alembert having arrived at a
certain equation shewed that it would sometimes have two roots; but left
for others to demonstrate the proposition that there could not be more
than two roots; and this was first established by Laplace: see Arts. 581
and 585. D’Alembert says:

M. de la Place m’en a communiqué une démonstration assez simple qui
m’en a fait aussi trouver une très-simple, presque sans aucun calcul.

D’Alembert’s demonstration is ingenious in principle but unsound.
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In equation (1) of Art. 581 put 𝑥 for 𝜆; thus we get

2𝑞𝑥3 + 9𝑥
3𝑥2 + 9

= tan−1 𝑥.

Let 𝑦 be an ordinate corresponding to the abscissa 𝑥, and let the curve
be drawn whose equation is

𝑦 =
2𝑞𝑥3 + 9𝑥
3𝑥2 + 9

.

Again let 𝜂 be an ordinate corresponding to the abscissa 𝑥, and let
the curve be drawn whose equation is

𝜂 = tan−1 𝑥.

We have to shew that the curves cannot intersect more than twice for
positive values of 𝑥, besides the intersection at the origin.

We have
𝑦 =

9𝑥
9 + 3𝑥2

+
2𝑞𝑥3

9 + 3𝑥2
;

and thus when 𝑥 is very small

𝑦 = 𝑥 −
𝑥3

3
+
2𝑞𝑥3

9
+…

Also when 𝑥 is very small

𝜂 = 𝑥 −
𝑥3

3
+…

Thus when 𝑥 is very small 𝑦 is greater than 𝜂; and so near the origin
the first curve is above the second.

When 𝑥 is infinite 𝑦 is infinite and 𝜂 is finite. Thus if the curves
intersect at one point, say 𝑥1, they must intersect at another say 𝑥2. At
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this second point therefore
𝑑𝑦
𝑑𝑥

will be greater than
𝑑𝜂
𝑑𝑥

. To ensure that

the curves never intersect again we have only to shew that
𝑑𝑦
𝑑𝑥

−
𝑑𝜂
𝑑𝑥

is

always positive when 𝑥 is greater than 𝑥2; for if this be the case, 𝑦 is
always greater than 𝜂 if 𝑥 is greater than 𝑥2.

Now D’Alembert says that
𝑑𝑦
𝑑𝑥

−
𝑑𝜂
𝑑𝑥

is of the form

𝐴𝑥6 + 𝐵𝑥4 + 𝐶𝑥2 + 𝐷
(1 + 𝑥2)(9 + 3𝑥2)2

;

and this is true. Then he asserts that every quantity of the form 𝐴𝑥6 +
𝐵𝑥4 +𝐶𝑥2 +𝐷, which is positive for a certain value of 𝑥, will be positive
if 𝑥 is increased. His words are:

… toute quantité de cette forme 𝐴𝑘6+𝐵𝑘4+𝐶𝑘2+𝐷, qui sera positive pour
une certaine valeur de 𝑘, doit l’être si on augmente 𝑘; car cette quantité est
toujours = 𝐴𝑘2(𝑘2 + 𝐸)2 + 𝐺, qui augmente quand 𝑘 augmente.

But this statement is untrue. In the present case
𝑑𝑦
𝑑𝑥

−
𝑑𝜂
𝑑𝑥

is positive

when 𝑥 is very small, but it is not always positive: it must be negative
when 𝑥 = 𝑥1.

The demonstration may be made sound by shewing that in the
present case the values of 𝐴, 𝐵, 𝐶, 𝐷 are such that

𝐴𝑥6 + 𝐵𝑥4 + 𝐶𝑥2 + 𝐷

is always positive when 𝑥 is greater than 𝑥2. This method is really
adopted by Cousin in his Astronomie Physique, page 148.

But we do not require the values of 𝐴, 𝐵, 𝐶, 𝐷 to establish the point;
it is sufficient to observe that 𝐷 is zero: this is obvious from the fact that
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when 𝑥 is very small we must have

𝑑𝑦
𝑑𝑥

−
𝑑𝜂
𝑑𝑥

=
𝑑
𝑑𝑥

2𝑞𝑥3

9
=
2𝑞𝑥2

3
.

Since then 𝐷 = 0, we have

𝑑𝑦
𝑑𝑥

−
𝑑𝜂
𝑑𝑥

=
𝑥2(𝐴𝑥4 + 𝐵𝑥2 + 𝐶)
(1 + 𝑥2)(9 + 3𝑥2)2

:

now we know that the quadratic expression 𝐴𝑥4+𝐵𝑥2+𝐶 cannot change
sign more than twice; and in the present case the sign is positive when
𝑥 = 0, negative when 𝑥 = 𝑥1, and positive when 𝑥 = 𝑥2; therefore the
sign must always be positive when 𝑥 is greater than 𝑥2.

658. The memoirs of D’Alembert on our subject which we have thus
analysed in our Chapters XIII. and XVI. occupy about 700 pages in their
original form. But the amount of important matter which they contain
is not in proportion to their great extent. Probably the researches in the
third volume of the Recherches … Systême du Monde are the most valu-
able. The sixth volume of the Opuscules Mathématiques contains much
interesting matter; but this matter is rather of a speculative kind than of
physical importance.

On the whole we may sum up D’Alembert’s contributions to our sub-
ject thus: He shewed how to calculate the attractions of a nearly spheri-
cal body of a form more general than an ellipsoid of revolution: see Art.
452. He drew explicit attention to the fact that more than one oblatum
would correspond to a given angular velocity, a fact which had indeed
been implicitly noticed before: see Art. 580. He considered the action of
a distant body or bodies on a mass of rotating fluid supposed in relative
equilibrium: see Arts. 596…630.

On the other hand we must observe that there are numerous and
striking faults. Laplace, referring more especially to the Recherches
… Systême du Monde, says: Les recherches de D’Alembert, quoique



d’alembert. 474

générales, manquent de la clarté si nécessaire dans les calculs com-
pliqués. Mécanique Céleste, Vol V. page 8. The full import of the
criticism becomes apparent when we remember that with French
writers clarté is the supreme indispensable requisite: want of clearness
with them is on the same level as want of utility with Englishmen, or
want of learning with Germans. The errors of D’Alembert are certainly
surprising; they seem to me to indicate that he was little in the habit of
enlarging his own views by comparing them with those of others. His
criticisms of Clairaut prove that he had not really mastered the greatest
work which had been written on the subject he was constantly studying.
His readiness to publish unsound demonstrations and absolute errors
is abundantly shewn in the course of our criticism: see for instance
Arts. 576, 651, and 657. On the whole the blunders revealed in the
History of the Mathematical Theory of Probability, and in the present
History, constitute an extraordinary shade on a fame so bright as that of
D’Alembert.



CHAPTER XVII.

FRISI.

659. In the present Chapter I shall give some account of three works
by Paul Frisi. As I have stated in Art. 532, I have not seen the first pub-
lication by Frisi on our subject; but probably it was incorporated in his
later works.

660. The first of these works is entitled De Gravitate Libri Tres. This
was published at Milan in 1768: it is a quarto volume of 420 pages, be-
sides 12 pages which contain the Title, Dedication, Preface, and Index;
there are six plates of figures.

This work forms a treatise intended for didactic purposes, the ob-
ject being to conduct a student with elementary mathematical knowl-
edge through a course of Mechanics and Physical Astronomy: see the
first page of the Preface. The two volumes published by Frisi about six
years later, under the title of Cosmographia, may be regarded as an im-
proved and enlarged edition of the present work.

The part of the volume with which we are concerned consists of
pages 135…189; they form the first four Chapters of Frisi’s Second Book.

The pages 135…145 are introductory. They contain an outline of the
facts then known as to the lengths of degrees and to the lengths of the
seconds pendulum.

661. The first Chapter is entitled De Figura Terræ, it occupies pages
146…154.

This Chapter contains approximate formulæ for the lengths of a de-
gree of meridian and of a degree of longitude. From these formulæ, and
the results furnished by observation, the ellipticity of the Earth may be
deduced. Frisi maintains that all the measurements hitherto made agree
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reasonably well with the ratio of the axes assigned by theory for an obla-
tum of fluid, namely that of 231 to 230.

Some erroneous statements occur in the second Corollary on page
151. Frisi has given a formula for determining the ellipticity from the
lengths of a degree of meridian in two different latitudes. Then he says
that if the arc in Lapland and the arc at the Cape of Good Hope be taken

the ellipticity deduced is
1

1282
; but in the Cosmographia, Vol. II., page

97, he gives the correct result, namely about
1
252

. The error probably

arose from taking the ellipticity which Boscovich had deduced from the
arcs in France and South Africa by mistake, instead of that which was
deduced from the arcs in Lapland and South Africa: see the supplement

by Boscovich to Stay’s poem, Vol. II., page 408. Again Frisi gives
1
80

as

the ellipticity deduced from the arcs in Peru and South Africa; but in
the Cosmographia, Vol. II, page 96, he gives the correct result, namely

about
1
182

. The error probably arose from simply copying one made by

Boscovich: see Art. 508.
Frisi’s first Chapter closes thus:
Quam ex amplissima Pensilvaniæ planitie Clariss. Mason, et Dixon afferent

mensuram gradus figuræ terrestris inquisitioni novam lucem affundent. Interim
certum manet Terram sub æquatore, et polari circulo, et in meridionali Africæ,
et Galliæ Narbonensis parte, atque in Anglia etiam, et Stiria, ac Pedemonte, a
figuræ sphæroidicæ, et proportionis assumptæ hypothesi non magis recedere,
quam ut in minimos errores observationum differentia omnis refundi possit.

The anticipation as to the light to be derived from the American arc,
has scarcely been realised; for this arc has not been received with much
confidence: see Bowditch’s translation of the Mécanique Céleste, Vol. II,
page 444.
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662. The second Chapter is entitled De æquilibrio particularum sese
trahentium; it occupies pages 154…164.

This Chapter contains a demonstration of the proposition that an
oblatum is a form of relative equilibrium for rotating fluid; the method
is that of Maclaurin and Clairaut: see Art. 318.

We have, in this Chapter, some extensions to ellipsoids in general of
results which had already been established for ellipsoids of revolution:
see the Corollary ii. on page 157, and the Corollary ii. on page 158. Thus
Newton had shewn that a shell bounded by homothetical ellipsoids of
revolution exerts no attraction on a particle placed within the inner sur-
face. Frisi shews that this is true for a shell bounded by homothetical el-
lipsoids when the particle is on the inner surface. He does not expressly
shew that this is true when the particle is within the inner surface; but
it was quite in his power to infer this from what he had already given.

This seems to be the first introduction of the ellipsoid, as dis-
tinguished from the oblatum and the oblongum, into our subject.
D’Alembert afterwards considered the matter in the sixth volume of his
Opuscules Mathématiques: see Art. 615.

Frisi also alludes to the results which will follow when the fluid obla-
tum is disturbed by the action of one or two distant attracting bodies, like
the sun and the moon. His process however is brief and not very satis-
factory. This matter was afterwards discussed in detail by D’Alembert in
the sixth volume of his Opuscules Mathématiques: see Chapter xvi.

At the end of the Chapter Frisi refers to Maclaurin, Simpson,
Clairaut, and Newton. The last is styled vir longe omnium ingenio-
sissimus: these words are omitted in the corresponding passage of the
Cosmographia. But in both works Frisi says:

… ut recte propterea dixerit Daniel Bernoullius, § 8. cap. 2. de fluxu, et re-
fluxu maris, Newtonum trans velum etiam vidisse, quæ vix ab aliis microscopii
subsidio discerni possunt.

We have given the original words of D. Bernoulli in Art. 501.
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663. The third Chapter is entitled De sphærarum, sphæroidumque at-
tractione; it occupies pages 164…175: but the pages 170…173, which are
rather difficult, do not belong to our subject, and are removed to a more
appropriate place in the Cosmographia.

Here we have an exact investigation of the attraction of a spherical
shell on an internal particle; and an application to the case in which
the particle is on the surface of the shell, or forms a component of the
shell. The process, like others in the Chapter, really involves the Integral
Calculus, though without its notation.

Next we have an approximate investigation of the attraction of an
oblatum on a particle situated on the prolongation of the axis of revo-
lution; the result is correct to the first power of the ellipticity.

Then we have an approximate investigation of the attraction of an
oblatum on any external particle; this problem is treated in Clairaut’s
manner: see Clairaut’s pages 236…239, or Art. 335.

Frisi refers to the criticism of Short and Murdock on his supposed
discovery of an error in Newton: see Arts. 533 and 534. Frisi however
does not admit the accuracy of the criticism; he says:

Nævum hujusmodi cap. 6. dissertationis de Figura Terræ a nobis jam adno-
tatum, in Transact. anni 1753. excusare voluerunt Clariss. Short, et Murdock,
postrema Newtoni verba in eadem ratione quam proxime intelligentes de rationis
continuitate, non de identitate cum ratione semiaxium: qui tamen sensus allati
textus minime videtur esse.

664. The fourth Chapter is entitled De æquilibrio, et lege terrestrium
ponderum; it occupies pages 175…189.

Here we have first a proposition and corollaries which belong rather
to a rude theory of the tides than to our subject.

Next we have an approximate investigation of the ratio of the axes,
in order that an oblatum of rotating fluid may be in relative equilibrium.

Then it is shewn that if the Earth be homogeneous, or be composed
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of spheroidal strata, the weight of a given body on the surface of the
Earth will increase in passing from the equator to the pole; the increment
varying as the square of the sine of the latitude.

For a particular case Frisi finds that we may reasonably satisfy the
observations by supposing the Earth to consist of a sphere having the
minor axis for diameter, and of an outer portion; each of the two por-
tions being homogeneous, but the density of the sphere to the density of
the outer portion as 1 + 1

5 is to 1. See his pages 183…185.
On his page 186, Frisi draws attention to a point as to which he dif-

fered with Newton. He had already referred to this by anticipation on
his page 174, where he says Omnino falsum est illud, quod in Prop. 38.
Lib. 3. assumpserat Newtonus,… We will return to this point when we
give an account of Frisi’s Cosmographia.

665. On his pages 224…235 Frisi has a Chapter entitled De varia-
tionibus Maris, quæ oriri possunt ex Sole aut Luna. The first half of this
Chapter bears rather more on our subject than the title might seem to
indicate; but we will reserve our notice of it until we speak of the Cos-
mographia.

666. Frisi himself gave an account of the contents of his work be-
fore it was published; this account is contained on pages 514…530 of the
Bologna Commentarii, Vol. v., part 2, 1767. This account adds nothing
to our subject. Frisi, on page 522, draws attention to the two points at
which he differs with Newton: see Arts. 663 and 664.

667. Judging from the part of Frisi’s work which I have thus had to
examine, I should say that it may be considered to have formed a rea-
sonably good elementary treatise at the time of its appearance. It con-
tains however none of the higher researches which Clairaut had given
as to the Figure of the Earth, when supposed to be heterogeneous; and
thus the promise held out in the Preface of conducting the reader to the
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summit of physical astronomy–ad summum Physicæ celestis apicem–is
scarcely fulfilled.

668. We have now to notice the second work by Paul Frisi. It is in
two quarto volumes. The first volume is entitled Cosmographiæ Physicæ,
et Mathematicæ Pars prior Motuum periodicorum theoriam continens. The
second volume is entitled Cosmographiæ Physicæ, et Mathematicæ Pars
altera De Rotationis Motu et Phænomenis inde pendentibus.

The work was published at Milan; the first volume is not dated; the
second is dated 1775. The first volume contains 266 pages, besides a page
of errata, and the Title, Dedication, and Index on 6 pages. The second
volume contains 276 pages, besides the Title, Dedication, and Index on
6 pages. Each volume has three plates of figures.

669. It is well known that in what is called the Jesuits’ edition of
Newton’s Principia, there is a note by the editors in which they profess
their submission to the decrees issued by the supreme Pontiffs against
the motion of the Earth, although in commenting upon Newton they
were obliged to adopt the same hypothesis as he did. I do not know
at what date these decrees of the supreme Pontiffs were first allowed to
be disregarded. Certainly in the present work Frisi has no hesitation in
adopting the truth as to the Earth’s motion; his language seems much
more decisive than it was in his former work. We have the following
words on page 28 of Vol. i. of the Cosmographia:

Galilæus Martem, et Venerem moveri circa Solem certissime ex eorumdem
phasibus collegit. Totum vero Telluris motæ sistema novo hoc analogiæ argu-
mento confirmatum ita in dialogis vindicavit, adornavitque, ut, qua in physi-
cis rebus certitudine fieri poterat, ostenderit Planetas quinque primarios simul
cum Terra motu periodico ab occidente in orientem revolvi circa Solem in planis
transeuntibus per Solem ipsum, et parum dehiscentibus a se invicem: Lunam
ab occidente pariter in orientem revolvi circa Solem,…

The context shews that the last word Solem is a mistake for Terram.
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670. The Cosmographia may be considered as an enlarged edition of
the treatise De Gravitate, of which we have already given an account.
The part of the Cosmographia with which we are concerned consists of
pages 83…142, and 207…219 of the second volume.

671. The pages 83…142, form the Second Book of the second volume.
This Book consists of an introductory portion followed by four Chapters.

The introductory portion occupies pages 83…92. This gives an ac-
count of the various measurements of arcs on the Earth’s surface up to
the current date.

The following important passage relative to the errors which might
arise from the use of a zenith sector, occurs on page 88:

… certo autem ostendit Clariss. Maskelinius cum in expeditione ad insulam
S. Helenæ pro parallaxi Sirii, aliisque Caillii observationibus recognoscendis sus-
cepta deprehendit iis sectoribus, quibus Maupertuisius, aliique, ad mensuram
graduum usi fuerant, frictionem fili ex instrumenti centro suspensi errorem 3″,
aut 4″ in partes adversas quandoque parere: ut fuse a summo ipso Astronomo
cum Grenovicii essem accepi.

The substance of this passage occurs also in the De Gravitate, page
140; but the words from ut fuse to the end are not given there.

Frisi notices that the arc measured at the Cape of Good Hope by
La Caille, was longer than might have been expected from the results
of other measurements. He suggests that this may be owing to the cir-
cumstance that the continent of Africa supplies an excess of matter to-
ward the end of the arc which is nearer to the equator when contrasted
with the ocean near which the other end of the arc is situated. Thus
the plumb line at the end of the arc which is nearer to the equator may
be considered to be affected as it would be by a range of mountains at
the equator; so that the amplitude of the arc would be rendered a little
too short. This suggestion was also made by Cavendish; see the Philo-
sophical Transactions for 1775, page 328. We have spoken of the modern
remeasurement of the South African arc in Art. 542.
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672. The first Chapter is entitled De dimensione graduum, et, quæ
inde colligitur, Figura Terræ; it occupies pages 92…104.

This Chapter corresponds to the first Chapter which we examined in
the former work; see Art. 661. Frisi maintains, as before, that all the
measurements hitherto made agree reasonably well with the ratio of the
axes assigned by theory for an oblatum of fluid, namely that of 231 to
230.

673. The second Chapter is entitled De æquilibrio particularum om-
nium sese trahentium: it occupies pages 104…113. This Chapter corre-
sponds to the second Chapter of the former work: see Art. 662.

There is a slight mistake in the second corollary on page 112. The
mistake is not of much importance, but the correct expressions involved
are often useful: see Art. 596.

Suppose a body acted on by a very distant particle of mass 𝑀. Take a
fixed point in the first body as origin; and let the axis of 𝑥 pass through
the second body. Let 𝑘 represent the distance of the particle of mass 𝑀
from the origin.

Then the action of 𝑀 at a point (𝑥, 𝑦) will be equivalent to
𝑀(𝑘 − 𝑥)

𝑅3

parallel to the axis of 𝑥, and −
𝑀𝑦
𝑅3

parallel to the axis of 𝑦; where

𝑅2 = (𝑘 − 𝑥)2 + 𝑦2: both resolved attractions being estimated outwards.

Expand and neglect powers of
𝑥
𝑘
and

𝑦
𝑘
above the first. Thus we ob-

tain
𝑀
𝑘2

+
2𝑀𝑥
𝑘3

parallel to the axis of 𝑥, and −
𝑀𝑦
𝑘3

parallel to the axis of

𝑦.

The force
𝑀
𝑘2

is constant. Thus in the language of the Planetary The-
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ory we may say that we have as disturbing forces,
2𝑀𝑥
𝑘3

parallel to the

axis of 𝑥, and −
𝑀𝑦
𝑘3

parallel to the axis of 𝑦.

Frisi’s mistake consists in changing the coefficient 2 to 3.
We may if we please arrange these disturbing forces differently. Since

2𝑀𝑥
𝑘3

=
3𝑀𝑥
𝑘3

−
𝑀𝑥
𝑘3

, we may say that we have
3𝑀𝑥
𝑘3

parallel to the axis

of 𝑥, besides −
𝑀𝑥
𝑘3

and −
𝑀𝑦
𝑘3

parallel to the axes of 𝑥 and 𝑦 respectively:

then the latter two may be combined into a single force towards the ori-

gin. Thus finally we have
3𝑀𝑥
𝑘3

parallel to the axis of 𝑥, and
𝑀√(𝑥2 + 𝑦2)

𝑘3
towards the origin.

Or we may if we please arrange these disturbing forces in another

way. Since −
𝑀𝑦
𝑘3

=
2𝑀𝑦
𝑘3

−
3𝑀𝑦
𝑘3

, we may say that we have −
3𝑀𝑦
𝑘3

parallel

to the axis of 𝑦, besides
2𝑀𝑥
𝑘3

and
2𝑀𝑦
𝑘3

parallel to the axes of 𝑥 and 𝑦

respectively: then the latter two may be combined into a single force

towards the origin. Thus finally we have −
3𝑀𝑦
𝑘3

parallel to the axis of 𝑦,

and
2𝑀√(𝑥2 + 𝑦2)

𝑘3
from the origin.

674. The third Chapter is entitled De sphærarum, spheroidumque at-
tractione; it occupies pages 114…123. This Chapter corresponds to the
third Chapter of the former work: see Art. 663.

Frisi retains his opinion noticed in that Article as to the supposed
error of Newton.
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675. The fourth Chapter is entitled De Planetarum Figura, quæ ex
æquilibrii legibus colligitur; it occupies pages 123…142. This Chapter cor-

responds to the fourth Chapter of the former work: see Art. 664. The
1
5

of Art. 664 is now replaced by
1
512
.

676. I will now explain the difference between Frisi and Newton to
which I have alluded in Art. 663: Frisi refers to it on his page 135.

Let 𝑚 denote the mass of the moon, 𝑀 that of the Earth, 𝑘 the dis-
tance between their centres.

Suppose the moon to be a homogeneous fluid; then the surface of the
moon may be in the form of an oblongum with the longer axis directed
to the Earth.

Let 𝑏 denote the minor semiaxis of this oblongum, and 𝑏 + ℎ the
major. Suppose the centre of the moon brought to rest; then we may
consider that besides the attraction of the Earth, there is a central dis-

turbing force, and also the disturbing force
3𝑀𝑥
𝑘3

as in Art. 673. Then if

we proceed as Newton did for determining the figure of the Earth, or in
some more analytical method, we shall obtain approximately

ℎ
𝑏
=
5
4
.

3𝑀𝑏
𝑘3

𝑚
𝑏2

=
15
4
.
𝑀
𝑚
.
𝑏3

𝑘3
,

so that
ℎ =

15
4
.
𝑀
𝑚
.
𝑏4

𝑘3
.

There is no difference of opinion as to this result; it agrees with one
obtained by D. Bernoulli in his Essay on the Tides, Chapter iv. Article
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8. It is also consistent with Newton’s result in the Principia, Book iii.
Proposition 36.

The simplest way of connecting the result with Newton’s investiga-
tions is to adopt the last method of arranging the disturbing forces given

in Art. 673; so that we have a central force and also a force −
3𝑀𝑦
𝑘3

paral-

lel to the axis of 𝑦. Then in Art. 28 corresponding to a centrifugal force

which may be denoted by 𝜔2𝑦 we obtained an oblatum in which 𝜖 =
5𝑗
4
;

and now corresponding to a disturbing force −
3𝑀𝑦
𝑘3

we obtain an ob-

longum with a similar value for the ellipticity.
Now proceed in a similar way to determine the figure of the Earth,

supposed fluid, under the action of the moon.
Let 𝐵 and 𝐵 + 𝐻 denote respectively the semiaxes of the oblongum;

then we have
𝐻 =

15
4
.
𝑚
𝑀
.
𝐵4

𝑘3
.

Hence, by division,
ℎ
𝐻
= (

𝑀
𝑚
)
2
(
𝑏
𝐵
)
4
.

This result is given by Frisi. But Newton in his Principia, Book iii.
Proposition 38, asserts in fact that

ℎ
𝐻
=
𝑀
𝑚
.
𝑏
𝐵
.

It is clear that Frisi is right; but I do not know of any commentator
on Newton, who has accepted the correction. Some further information
on the subject will be found in a paper published in the Monthly Notices
of the Royal Astronomical Society, Vol. xxxii. pages 234…236.
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677. In his pages 140…142 Frisi treats on the attraction of moun-
tains; he refers to what D’Alembert had given on the subject in the sixth
volume of his Opuscules Mathématiques. Frisi in these pages uses the
notation of the Differential Calculus which does not occur in the other
parts of his work that have come under our examination. Frisi throws
doubts on the genuineness of those observations to which D’Alembert
drew attention: see Art. 594.

678. Frisi’s pages 207…219 form a Chapter entitled De æquilibrio flu-
idorum nucleos sphæroidicos circumambientium.

This Chapter presents in an improved and enlarged form the propo-
sitions bearing on our subject to which we referred in Art. 665.

Frisi first shews that the attraction at any point of the surface of a
nearly spherical oblatum or oblongum consists of a central force together
with a small force parallel to the major axis. Then he considers the case
of a spherical nucleus surrounded by fluid, the whole rotating with uni-
form angular velocity. Next he supposes the nucleus to be an oblatum
or an oblongum; this investigation includes the preceding as a particu-
lar case. The result at which Frisi arrives amounts to the same as that
which I have stated at the end of Art. 374; his investigations are fairly
satisfactory.

On his pages 215 and 216, Frisi arrives at results respecting what we
should now call the stability of the relative equilibrium, which resemble
those of D’Alembert: see Art. 567. Frisi’s investigations on this matter
however, as might be expected, are rather rude; they were not given in
his former work, and were doubtless suggested by the sixth volume of
D’Alembert’s Opuscules Mathématiques, to which Frisi refers on his page
219. Frisi refers also on this page to Boscovich, respecting the same mat-
ter, saying “de quibus casibus plura ingeniose scripserat Boscovichius.”
Frisi however does not say that his own conclusion does not agree with
that of Boscovich; the latter, as we have stated in Art. 470, held that the
oblongum could not be a stable form, whereas Frisi holds with D’Alem-
bert that it is so in a certain case: see Art. 590.
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On his page 210 Frisi attempts to investigate the approximate expres-
sions for the attraction on a particle outside an oblatum resolved at right
angles to the straight line drawn to the centre, supposing the particle
very near the plane of the equator: but I cannot consider his process
satisfactory: see Art. 321.

679. Frisi’s Fifth Book, entitled De Atmosphæra Planetarum, occupies
pages 231…271 of the second volume of his Cosmographia. It is not re-
ally a part of our subject, and I have not examined it throughout. I will
however make some remarks on certain passages.

Frisi deduces in a satisfactory manner the result which we may thus
express in modern language: if we omit all consideration of centrifugal
force the height of the atmosphere will be infinite. But then he seems to
be frightened at his own result, and makes a remark which amounts to
saying that his investigation does not hold. See his page 240.

The subject seems to have been regarded as paradoxical by some of
the mathematicians of the eighteenth century. See for instance Fontana’s
Ricerche sopra diversi punti…, pages 89…105. Fontana refers to an error
committed by David Gregory; Frisi without mentioning a name seems to
refer to the same point in his second Corollary on page 239.

Fontana also finds fault with section 36 of a memoir by Playfair, in
the Edinburgh Transactions for 1788; but it seems to me that Fontana
misunderstands what is said: Playfair wishing to shew that the height of
the atmosphere is infinite attains his end by supposing that the density
is zero, for then his formula gives the inadmissible consequence that the
radius of the earth is infinite. He is however not so clear as he might be
on the matter, and Fontana takes him to make the hypothesis that the
radius of the earth is infinite. Fontana’s words are:

Il Sig. Giovanni Playfair … inferisce, che il semidiametro terrestre 𝑟 è in-
finito, e di qui che the athmosphere on this supposition admits of no limit, illazione
visibilmente assurda essendo contro il fatto, e la natura delle cose il dare al
semidiametro della terra una lunghezza infinita.
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Frisi obtains, in his pages 254 and 255, an equation to determine the
limit of the atmosphere; the equation representing the generating curve
of the bounding figure. This equation is

(3𝑎2 − 𝑥2)2(𝑥2 + 𝑦2) = 4𝑎6,

where 𝑎 represents the equatorial semiaxis. This agrees with what we
have already given: see Art. 640. Frisi, in fact, determines one of the
two constants there occurring, inasmuch as he supposes the surface to
pass through the points where the centrifugal force becomes equal to the
attraction.

Frisi says in his page 257, with respect to this equation,
… atmospheræ figuram ex limitibus altitudinis sic deduximus ut rami omnes

excurrentes ad infinitum, et casus alii ramorum duplicium præcluderentur, quos
D. Mairan in tractatu de Aurora Boreali enumeraverat.

680. A collection of works by Frisi was published at Milan in three
volumes quarto; the first volume appeared in 1782, the second in 1783,
the third was issued by the author’s brothers in 1785 after his death.

We are concerned only with the third volume of these works, which
is entitled Paulli Frisii Operum Tomus tertius Cosmographiam Physicam,
et Mathematicam continens. It contains 561 pages, besides the Index on
3 pages, and the Title and Dedication on 6 pages; there are 3 plates of
figures.

681. The Second Book of this volume is entitled De Figura Terræ
et Planetarum; it occupies pages 117…184. This may be described as a
republication of the Second Book of the second volume of the Cosmo-
graphia, with some omissions and some additions; the changes however
are of little importance. We may therefore refer to the notice already
given of the Cosmographia in Arts. 668…679; and shall only add a few
remarks on some points of interest.

682. On his pages 164 and 165, Frisi discusses the problem of
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the solid of revolution of given volume and maximum attraction. He
arrives at the following differential equation for the generating curve;

𝑑𝑦 = (
𝑦
3𝑥

−
2𝑥
3𝑦
) 𝑑𝑥, which is correct. But three observations suggest

themselves.
(1) Frisi makes no reference to an incorrect investigation which he

had formerly given; to this we shall return in the next Chapter: see Art.
686.

(2) In enunciating the problem he implies that the generating curve
is to pass through two fixed points; but he pays no attention to this con-
dition in his solution. If I had been acquainted with this passage of
Frisi’s work when I published my Researches in the Calculus of Varia-
tions I should have noticed it then. Compare page 123 of that work.

(3) Frisi in a Corollary adverts to the solution given by Silvabelle: see
Art. 531. Frisi seems to think that the results obtained by himself and
Silvabelle do not agree: for he uses the words “formularum diversitatem.”
But Silvabelle’s result is 𝑎2𝑥 = (𝑥2 + 𝑦2) 32 , where 𝑎 is a constant; and if
we differentiate this, and eliminate 𝑎, we obtain Frisi’s result. Frisi then
objects to Silvabelle’s solution. The objection amounts to saying in mod-
ern language that Silvabelle confounds 𝑑𝑦 with 𝛿𝑦. Silvabelle’s process
however is quite sound, if we are careful to understand it properly.

683. We may notice the points in which Frisi makes special reference
to Newton.

(1) The passage which I have quoted in Art. 662 now appears on page
153, thus:

Daniel Bernoullius … acute dixerat Newtono trans velum etiam apparuisse
quæ vix ab aliis microscopii subsidio distingui possunt.

(2) Frisi retains his opinion as to the supposed error of Newton: see
Arts. 663 and 674.

(3) Frisi, with more justice, retains his opinion as to the other point
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on which he differed with Newton: see Art. 676. Frisi says, in reference
to this, on his page 170, “qui Newtoni locus a nemine antea fuerat emen-
datus.”

684. We may observe that the names of Lagrange and Laplace are
now mentioned by Frisi: see his pages 153 and 166.

In Frisi’s pages 190…204, we have reproduced with some additions
the matter contained in pages 207…219 of the Cosmographia: see Art.
678.

All the three works by Frisi which we have noticed are printed on
stout durable paper. Either the general public must have received them
with a favour not usually bestowed on mathematical treatises, or they
must have obtained the private patronage of wealthy persons; for the ex-
penses of producing them could scarcely have been otherwise sustained.



CHAPTER XVIII.

MISCELLANEOUS INVESTIGATIONS BETWEEN THE YEARS 1761
AND 1780.

685. The present Chapter will contain an account of various miscel-
laneous investigations between the years 1761 and 1780. The first three
of Laplace’s memoirs relating to our subject were published during this
period, but it will be convenient to defer our notice of them until the
next Chapter.

686. In the Novi Commentarii … St Petersburg, Vol. vii., which is
dated 1761, there is a paper by Frisi, entitled De Problematis quibusdam
isoperimetricis: it occupies pages 227…234 of the volume.

This paper belongs to the early history of the Calculus of Variations,
and not to our subject. I advert to it however because on his last page,
Frisi alludes to Silvabelle’s problem and two others of the same kind,
but without referring to Silvabelle: see Art. 531. In particular, Frisi states
definitely his result for Silvabelle’s problem. But this result is wrong; and
in fact the whole page is vitiated by an error which occurs at the top.
It will be found that in his notation he has neglected to allow for the
change of 𝑇𝐿 into 𝑃𝐿.

687. An academical essay was published at Tübingen in 1764, entitled
Dissertatio Physico-Mathematica de ratione ponderum sub polo et æqua-
tore Telluris … auctor Wolffgangus Ludovicus Krafft. This consists of 28
pages in small quarto, with a page of diagrams. It appears from the last
page of the essay that the father of the author had been a professor at
Tübingen.

688. The mechanical principles involved in the essay are not always
sound. Thus in the first paragraph the author seems to think that the



miscellaneous investigations between 1761 and 1780. 492

time of Jupiter’s rotation on his axis is determined by Kepler’s Third Law;
for he says:

Pari modo in Jove, et multo quidem major, diametrorum inaequalitas a
Cassini et Flamsteedio detecta est, cujus diurnam circa axem conversionem
cum plus, quam duplo celeriorem nostra, ostendat sagacissimi Keppleri
regula, quadrata temporum periodicorum esse ut cubos distantiarum a sole….

689. For another example, we may take some remarks which the au-
thor makes involving centrifugal force. Suppose a sphere of radius a to
rotate with uniform angular velocity; let 𝑓 denote the attraction at any
point of the surface, and 𝜙 the centrifugal force at the equator: then
at a point on the surface in latitude 𝜆 the gravity will be approximately
𝑓 − 𝜙 cos2 𝜆. So far Krafft is correct. Now produce the radius vector of
the place to a point at the distance 𝑥 from the centre. Then he reduces
the expression for gravity in the ratio of 𝑎2 to 𝑥2, and takes for the cen-
trifugal force resolved along the radius vector the usual expression: thus

he obtains for the gravity
𝑎2

𝑥2
(𝑓 − 𝜙 cos2 𝜆) −

𝑥
𝑎
𝜙 cos2 𝜆. But it is obvious

that he has thus introduced the centrifugal force twice, once erroneously

and unnecessarily. The expression for gravity should be
𝑎2𝑓
𝑥2

−
𝑥
𝑎
𝜙 cos2 𝜆.

This error occurs on pages 8 and 10. On page 10 he assigns the distance
from the centre at which gravity would vanish; but the result depends
on his erroneous formula, and is therefore wrong.

690. But it is curious that Krafft avoids this mistake in a problem
which he discusses. The problem would be expressed thus in modern
language: to find the lines of force outside a sphere, supposing that the
sphere attracts, and that there is also a force of the nature of centrifugal
force.

Take the axis of 𝑥 for that which would correspond to the axis of
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rotation; let

𝑋 =
𝑓𝑎2𝑥
𝑟3

, 𝑌 =
𝑓𝑎2𝑦
𝑟3

− 𝜔2𝑦.

Then we have to determine a curve from the equation

𝑑𝑥
𝑋

=
𝑑𝑦
𝑌
.

Thus
𝑓(𝑦𝑑𝑥 − 𝑥𝑑𝑦)𝑎2

𝑟3
= 𝜔2𝑦𝑑𝑥,

that is
𝑦𝑑𝑥 − 𝑥𝑑𝑦
(𝑥2 + 𝑦2) 32

= 𝑐𝑦𝑑𝑥,

where 𝑐 is put for
𝜔2

𝑓𝑎2
.

Krafft obtains this differential equation; to integrate it he assumes

𝑦 =
𝑥√(1 − 𝑧2)

𝑧
, this gives

𝑐𝑥2𝑑𝑥 =
𝑧2𝑑𝑧
1 − 𝑧2

:

hence
2𝑐𝑥3

3
+ constant = log

1 + 𝑧
1 − 𝑧

− 2𝑧,

that is

2𝑐𝑥3

3
+ constant = log

√(𝑥2 + 𝑦2) + 𝑥
√(𝑥2 + 𝑦2) − 𝑥

−
2𝑥

√(𝑥2 + 𝑦2)
.

Krafft gives the second term on the right-hand side incorrectly: see
his page 12.
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Krafft does not enunciate his problem in our modern language. Ac-
cording to him a tower is to be built on the Earth’s surface, in such a
manner that there is to be no force at any point tending to overturn it:
in other words, the force at any point of what we may call the axis of
the tower is to be along the tangent to the axis.

691. Krafft shews that the increment of gravity in proceeding
from the equator to the pole varies as the square of the sine of the
latitude very approximately; his method closely resembles that given by
Boscovich, and is liable to the same remark: see Art. 467. Moreover,
the theorem which Krafft uses as the foundation of his method is that
to which we have drawn attention in Art. 34, and this assumes that
the Earth is in the form of a fluid rotating in relative equilibrium. But
Krafft has said nothing about fluidity, so that an incautious reader might
suppose him to be affirming some proposition relative to the attraction
of an oblatum.

692. The main part of the essay however is the determination of the
attraction of an oblatum at the pole and the equator; this is finally ac-
complished to the order of the square of the ellipticity: see his pages
14…20.

He first calculates the attraction of an elliptic lamina on a particle
directly over the centre of the lamina. Thus his problem is the same as
Euler had already considered, and Krafft investigates it in a similar way,
but there is no reference made to Euler: see Art. 229.

If we put 𝜆 for
𝑎2 − 𝑏2

𝑎2(𝑏2 + 𝑐2)
we shall find by that Article that if we

neglect 𝜆3 and higher powers of 𝜆, the attraction

=
4𝑏𝑐

𝑎√(𝑏2 + 𝑐2)
∫

𝑎

0

√(𝑎2 − 𝑥2)
𝑐2 + 𝑥2

{1 −
𝜆
2
𝑥2 +

3𝜆2

8
𝑥4} 𝑑𝑥.

Of the three integrals which this involves, Krafft works out the first
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in the laborious way which Euler adopted; he merely states the values of
the other two integrals.

We have obtained the first and the second by a simple method in the
Article cited. The third may be easily given. We have

∫
𝑎

0

𝑥4√(𝑎2 − 𝑥2)
𝑐2 + 𝑥2

𝑑𝑥 = ∫
𝑎

0
(𝑥2 − 𝑐2 +

𝑐4

𝑐2 + 𝑥2
)√(𝑎2 − 𝑥2)𝑑𝑥

= ∫
𝑎

0
𝑥2√(𝑎2 − 𝑥2)𝑑𝑥 − 𝑐2∫

𝑎

0
√(𝑎2 − 𝑥2)𝑑𝑥 + 𝑐4∫

𝑎

0

√(𝑎2 − 𝑥2)
𝑐2 + 𝑥2

𝑑𝑥

=
𝜋𝑎4

16
−
𝜋𝑐2𝑎2

4
+
𝜋𝑐4

2
{
√(𝑎2 + 𝑐2)

𝑐
− 1} .

Thus Krafft obtains a very approximate value of the attraction of the
elliptic lamina; but he speaks on his page 18 as if he had thus obtained
the accurate value. Then knowing the attraction of the elliptic lamina,
he proceeds to calculate that of an oblatum at the equator and at the
pole; his investigation is rather intricate, but it is correct, and his final
results are in exact agreement with those given towards the end of Art.
229.

It is strange however to see this tedious approximate solution of the
problem of the attraction of an oblatum at its equator and pole so long
after the exact formulæ had been obtained by Maclaurin and by Simpson.

693. Krafft says that if we take the polar axis to be to the equatorial as
100 is to 101, we find that the attraction at the pole is to the attraction
at the equator as 134396 is to 134129, that is approximately as 509 is
to 508. It seems to me that by his formulæ the ratio should be that of
352790 to 352091, that is approximately that of 505 to 504: moreover the
approximation of 509 to 508 does not follow from his first figures.

694. Some miscellaneous observations on mathematical topics occupy
pages 21…27 of the essay. They do not seem to contain anything of in-
terest except a statement relative to the series 1, 3, 4, 7, 11, 18, … in
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which each term is the sum of the two preceding. This series, according
to Krafft, was introduced by Daniel Bernoulli in his Exercitationes Math-
ematicæ, who gave a formula for the sum of a finite number of terms,
the value of the last term being given. Let 𝑝 denote the last term, then

the sum is
1
2
{3𝑝 − 6 + √(5𝑝2 ± 20)}, where in the ambiguity the upper

or the lower sign is to be taken according as the number of the terms
is odd or even. Krafft adds: “Sed nullo artificio detegi potest terminus

generalis.” But this statement is very strange; for if we put 𝛼 for
1 + √5
2

,

and 𝛽 for
1 − √5
2

, it can be easily shewn that the 𝑛th term of the series

is 𝛼𝑛+𝛽𝑛. The sum of 𝑛 terms can then be readily obtained, and shewn
to agree with the expression given above.

The series occurs on page 7 of the Exercitationes Mathematicæ, and
there D. Bernoulli seems also to state that the general term cannot be
expressed. He says:

… unicam seriem exempli loco afferam talem 1, 3, 4, 7, 11, 18, 29 … in qua
quilibet terminus duorum præcedentium est summa, et quam nunquam ad ter-
minum generalem reduci posse demonstratum habeo; hæc series, quamvis Ge-
ometris non considerata, quod sciam, attentione tamen dignissima est ob mul-
tas, quibus gaudet, proprietates:…

695. Krafft’s essay does not contribute in any way to the advancement
of the subject; in fact the author by his ignorance of what had been ef-
fected by Maclaurin and by Simpson, shews that his knowledge was be-
low the level it might have reached. The problem which we have noticed
in Art. 690, may have been new at the time, but this is very uncertain.

The address of the President, John Kies, to the author of the essay
may be preserved as a specimen of the academical pleasantry of the last
century:
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Gravissimum est argumentum, cujus elaborationem in Te suscepisti,
miratus Tuum volatum à Polo ad Aequatorem Te feliciter rediisse gratulor,
calculorum quos evitare non licuit, neque multitudo neque pondera Te à Tuo
tramite potuerunt avertere, et uti in series eorum infinitas incidisti, ita inde
reduci Tibi seriem prosperitatis et felicitatis infinitam ex animo apprecor.
Sequere porro vestigia Celeberrimi Parentis του μακαριτου, Antecessoris mei in
officio academico desideratissimi. Vale et me amare perge d. 8. Octobr. 1764.

696. We next notice a memoir entitled Pet. von Osterwald Bericht über
die vorgenommene Messung einer Grundlinie von München bis Dachau….

This memoir is contained in the Abhandlungen der … Baierischen
Akademie … Vol. ii., 1764.

It occupies pages 361…386 of the volume.
The base line to which this memoir relates may have been useful for

the topography of Bavaria, but it has had I believe no influence on our
subject. The base was measured twice; the first result was 43824 French
feet; the second result was 10 feet 3 inches more. Five rods of fir-wood
were employed, each 12 feet long. The temperature was higher on the
average at the second measurement than at the first; and to this circum-
stance Osterwald attributes the difference of the result. He gives an ac-
count of experiments to shew that heat contracted and cold expanded his
rods: but this seems very strange, and probably no one at the present
day would accept such a conclusion.

697. In the Philosophical Transactions, Vol. lvi., which is for the year
1766, published in 1767, we have a memoir entitled Proposal of a Method
for Measuring Degrees of Longitude upon Parallels of the Æquator, by J.
Michell, B.D., F.R.S. The memoir occupies pages 119…125 of the volume:
it was read May 8, 1766.

Michell, in fact, proposed to measure an arc perpendicular to the
meridian of a given place; but he does not discuss the practical difficul-
ties which would occur in attempting to execute the design. The memoir
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indeed seems to belong to an earlier generation, and to be quite out of
date in 1766.

698. We have next to notice a memoir by Canterzanus, entitled De
Attractione Sphæræ. This memoir is contained in Vol. v., part 2, of the
De Bononiensi … Academia Commentarii, published at Bologna in 1767;
the memoir occupies pages 66…70 of the volume.

There is an account of the memoir on pages 175…177 of the prelim-
inary portion of Vol. v., part 1, of the same series; this account is by
Franciscus Maria Zanottus.

Zanottus desired to give, as an appendix to a book on central forces,
the theorem, that according to the ordinary law of attraction a sphere
attracts an external particle, as if the mass of the sphere were collected
at its centre. As in the book he had adopted short, simple, Cartesian ex-
planations, Zanottus wished this theorem to be exhibited in like manner,
or at least to be established by a strictly synthetical demonstration.

It seems curious that at this time a book should have been written
using Cartesian methods–Cartesianos calculos. Moreover, it is difficult to
see why Zanottus could not be content with Newton’s demonstration; but
to this he does not allude.

Zanottus refers to a demonstration by Sigorgnius, which he condemns
as unsatisfactory; and justly, assuming that he has reported it faithfully.

John Bernoulli, he says, had demonstrated the theorem, using in-
finitesimal differences, in the manner of Leibnitz.

Gravesand also had given a demonstration, “brevem admodum, si
tantum legas; si comprehendere etiam velis, non admodum.” Moreover,
this demonstration was not really synthetical, but only an analytical one
disguised.

Finally Zanottus had recourse to Canterzanus, whom he describes as
“maximo ingenio juvenem … a quo nihil non sperandum esse videbatur.”
Canterzanus accordingly satisfied him by a demonstration which occu-
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pies nearly five large pages. The demonstration is sound, and not devoid
of elegance. We will give a brief account of it, by the aid of algebraical
symbols; though this would probably have been very distasteful to Zan-
ottus himself.

Let 𝐴 denote the centre of the sphere, 𝑂 any point outside the sphere;
we propose to find the attraction of the sphere at 𝑂.

Let 𝑂𝐴 = 𝑐; let 𝑎 denote the radius of the sphere. Let 𝑥 lie in value
between 𝑐 − 𝑎 and 𝑐 + 𝑎. Describe with 𝑂 as centre a spherical surface
of radius 𝑥, and another of radius 𝑥 + 𝛿𝑥, where 𝛿𝑥 is infinitesimal. Be-
tween these two surfaces a portion of the given sphere is contained. The
attraction of the portion at 𝑂 is along 𝑂𝐴, and is ultimately equal to

1
𝑥2

× 𝜋𝑥2 sin2 𝜃𝛿𝑥, that is 𝜋 sin2 𝜃𝛿𝑥,

where 𝜃 is the angle which a straight line drawn from 𝑂 to the boundary
of the portion makes with 𝑂𝐴: see Art. 8.

This is, in fact, the essence of Canterzanus’s method; he obtains this
result synthetically, and without difficulty.

He then has to determine the whole attraction of the sphere; this also
he obtains synthetically, though with some little trouble.

In modern notation we should say that the whole attraction

is 𝜋∫
𝑐+𝑎

𝑐−𝑎
sin2 𝜃𝑑𝑥; and we should easily effect the integration by

observing that

cos 𝜃 =
𝑐2 + 𝑥2 − 𝑎2

2𝑐𝑥
.

The result will be
4𝜋𝑎3

3𝑐2
.

699. We now proceed to a memoir entitled Eustachii Zanotti. De an-
gulo positionis et ejus usu in determinanda Telluris figura. This is pub-
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lished in the De Bononiensi Scientiarum … Commentarii. Vol. v. part 2,
1767. It occupies pages 256…264 of the volume.

Zanottus at Bologna observed the sun setting near a high tower of
Modena. Hence he determined the angle of position of the tower by a
way which he considered gave a very accurate result. Then if the differ-
ence of longitude between his observatory and this tower were known,
he could calculate the difference of latitude on the assumption that the
Earth is a sphere. By comparing this calculated difference with that as-
signed by direct observations, information would be obtained as to the
Figure of the Earth. However, it is admitted, that practically the diffi-
culty of fixing the difference of longitudes exactly renders the suggestion
useless. Still Zanottus thinks that some advantages could be obtained
by the use of the angle of position, when determined with the accuracy
which his method would ensure.

700. A memoir by J. A. Euler entitled, Versuch die Figur der Erden
durch Beobachtungen des Monds zu bestimmen, is contained in the Ab-
handlungen der … Baierischen Akademie … Vol. v., Munich, 1768. The
memoir occupies pages 199…214 of the volume. The memoir consists of
two parts. In the first part, assuming the form of the Earth, the influ-
ence exerted by this form on the meridian observations of the moon is
investigated. In the second part it is proposed to determine the form of
the Earth from such observations; but the author himself admits that the
process is not satisfactory.

701. A memoir by Lambert entitled Sur la Figure de l’Océan is con-
tained in the Berlin Mémoires for 1767, published in 1769. The memoir
occupies pages 20…26 of the volume. The memoir is not mathematical,
and does not belong to our subject, but rather to geology.

702. In Volume lviii. of the Philosophical Transactions which is for
1768, published in 1769, we have an Extract of a Letter, dated Vienna
April 4, 1767, from Father Joseph Liesganig, Jesuit, to Dr. Bevis, F.R.S.,
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containing a short Account of the Measurement of Three Degrees of Lati-
tude under the Meridian of Vienna. This occupies pages 15 and 16 of the
volume. It records the amplitudes and the lengths of the various parts
into which Liesganig’s entire arc was divided. See Art. 704.

703. In the same Volume of the Philosophical Transactions we have
an account of the operations carried on by Charles Mason and Jeremiah
Dixon, for determining the length of a Degree of latitude in the provinces
of Maryland and Pennsylvania, in North America. There is an introduc-
tion by Maskelyne, then the detail of the work by Mason and Dixon, and
finally some remarks and a postscript by Maskelyne. The whole occupies
pages 270…328 of the volume. The peculiarity of these operations is that
the whole length was actually measured with rods.

I do not know what Maskelyne means by saying on page 325 that “an
error of only 1″ in the celestial measure would produce an error of no
less than 67 feet in the length of the degree.” Instead of 67 feet, it seems
to me that we should read 100 feet, for the length of the degree is found
to be more than 360000 feet: see his page 324.

Maskelyne himself had supposed that from the nature of the country
no deflections of the plumb-line were to be feared; then he says on his
page 328:

… But the Honourable Mr. Henry Cavendish has since considered this
matter more minutely, and having mathematically investigated several rules
for finding the attraction of the inequalities of the Earth, has, upon probable
suppositions of the distance and height of the Allegany mountains from the
degree measured, and the depth and declivity of the Atlantic ocean, computed
what alteration might be produced in the length of the degree, from the
attraction of the said hills, and the defect of attraction of the Atlantic; and
finds the degree may have been diminished by 60 or 100 toises from these
causes. He has also found, by similar calculations, that the degrees measured
in Italy, and at the Cape of Good Hope, may be very sensibly affected by the
attraction of hills, and defect of the attraction of the Mediterranean Sea and
Indian Ocean.
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Frisi, in his Cosmographia, Vol. ii., page 91, seems to think that this
diminution of 60 or 100 toises in the American arc can hardly be ac-
cepted. It is indeed difficult to see how the Atlantic ocean can have pro-
duced any appreciable effect. Bailly refers to the passage without any
expression of dissent: see his Histoire de l’Astronomie Moderne, Vol. iii.,
page 41.

On pages 329…335 of the same volume of the Philosophical Trans-
actions, some pendulum observations are recorded, which were made by
Mason and Dixon at the northern end of their arc, that is in latitude
39° 56′ 19″ North.

704. An account of the measurements of arcs of the meridian in Aus-
tria and Hungary by Liesganig, was published at Vienna in 1770, under
the title of Dimensio Graduum Meridiani Viennensis et Hungarici. The
volume is in quarto; it contains a Dedication and an Introduction, the
text on 262 pages, and a leaf of Errata; there are ten plates.

The volume contains no theoretical investigations, so that it does not
fall within our range. Practically the results of the operations do not
seem to be esteemed of any value: see De Zach’s Correspondance As-
tronomique, Vol. vii.; and the article Figure of the Earth in the Ency-
clopædia Metropolitana, page 170.

705. In the Philosophical Transactions, Vol. lxi., for 1771, published
in 1772, we have a memoir entitled An attempt to explain some of the
principal Phænomena of Electricity, by Means of an elastic Fluid: By
the Honourable Henry Cavendish, F.R.S. The memoir occupies pages
584…677 of the volume. This memoir would require careful attention
in a History of Electricity; but a very brief notice will suffice for our
purpose, as it contributes nothing that is really new to the theory of
attraction.

We have, on pages 586 and 587, the attraction of a cone on a particle
at the vertex, assuming the law to be that of the inverse 𝑛th power of
the distance.
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We have, on page 592, the enunciation of the proposition that, on the
ordinary law of attraction or repulsion, a spherical shell does not exert
any action on an internal particle: for the demonstration we are referred
to Newton’s Principia, Lib. i., prop. 70.

Cavendish adds:
It follows also from his demonstration, that if the repulsion is inversely, as

some higher power of the distance than the square, the particle 𝑃 will be im-
pelled towards the center; and if the repulsion is inversely as some lower power
than the square, it will be impelled from the center.

Hence, if the law of attraction or of repulsion is given to be that of
some single power of the distance it follows that a particle will not be at
rest when placed inside a spherical shell, unless the law be that of the
inverse square. But this does not apply if the law is merely assumed to be
expressed by some function of the distance, as for example by ℎ𝑟𝑚+𝑘𝑟𝑛,
where 𝑟 denotes the distance, and the other letters denote constants. The
general proposition was given by Laplace in the Mécanique Céleste, Livre
ii. § 12: it has since passed into the elementary treatises on Attraction.

On Cavendish’s page 616, we have an investigation of the attraction
of a circular lamina on an external particle symmetrically situated; the
expression obtained is made to yield various easy inferences in the sub-
sequent pages.

706. In the Paris Mémoires for 1772, Seconde partie, published in
1776, there is a memoir by La Condamine, entitled Remarques sur la
Toise-étalon du Châtelet, et sur les diverses Toises employées aux mesures
des Degrés terrestres et à celle du Pendule à secondes.

The memoir occupies pages 482…501 of the volume; see also pages
8…13 of the historical portion of the volume.

The memoir was read on the 29th of July, 1758; but was forgotten by
its author, and found two years after his death.

The object of the memoir is to recommend the toise of the Equator
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as the standard toise; this toise is that which was used in measuring the
arc of the meridian in Peru, and which is elsewhere called the toise of
Peru: see Arts. 186 and 551.

A certain iron toise existed which was theoretically the standard toise;
this was the Toise-étalon du Châtelet, so called from the place where it
was kept. This standard appears to have been fixed in its place in a wall
in 1668; and Picard adjusted by it the toise which he used for measur-
ing his arc between Paris and Amiens. At the date of the composition of
La Condamine’s memoir, the standard was damaged and no longer trust-
worthy; and Picard’s toise had not been preserved. La Condamine gives
information respecting the toise of the Equator; and he compares with
it various other toises, beginning with that used to measure the arc in
Lapland, called the toise of the North.

With respect to the toise of the Equator and the toise of the North
La Condamine says on his page 492:

Il est vrai que depuis que les deux toises sont revenues en France, on a cru
trouver entr’elles, par une nouvelle comparaison, une légère différence, qu’on
a jugée d’un vingtième ou d’un trentième de ligne (dont la toise du Nord est
plus courte) en attendant une détermination plus précise. Voyez le rapport des
quatre Commissaires, inséré dans les Mémoires de l’Académie de l’année 1754,
p. 178; et le Journal des opérations de M. le Monnier, imprimé au Louvre en
1757, page 8, ligne 11.

We have alluded to this in Art. 551.
La Condamine thinks that the toise of the Equator and the toise of

the North were originally of the same length, and that the slight dif-
ference between them arose from the shipwreck in the Gulf of Bothnia
when the expedition returned from Lapland. At a later period, when
these two toises were again compared, they were found to be equal: see
the Base du Système Métrique, Vol. iii., page 413.

La Condamine considers in the next place the toise which was used
in the geodetical operations in France in 1739 and 1740, and in 1756; this
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toise is called the toise of the Observatory or of the Degrees of France.
La Condamine arrives at the conclusion that this toise was practically
equivalent in length to the toise of the Equator.

La Condamine also thinks that the toise used by La Caille for mea-
suring an arc at the Cape of Good Hope, agrees with the toise of the
Equator.

La Condamine refers also to a toise which had been used by De
Mairan in some pendulum experiments: La Condamine considers
that this toise is about a tenth of a line shorter than the toise of the
Equator. But I have found a statement by D’Alembert which is not quite
consistent with this; it is in the article Figure de la Terre in the original
Encyclopédie, page 754:

… or la toise de M. de Mairan est aussi la même qui a servi à la mesure des
degrés sous l’équateur et sous le cercle polaire, et la même qu’on a employée
pour vérifier en 1740 la base de M. Picard.

I presume that the authority of La Condamine is superior to that of
D’Alembert.

La Condamine briefly examines the various methods of preserving an
exact record of the standard of length: he recommends that the standard
should be hollowed out in a table of porphyry or of granite.

In a note at the end of the Memoir, we are told that the proposition
to take the toise of the Equator as the standard toise was not adopted
in 1758, owing to the opposition of De Mairan; but in 1766 the royal
authority was exerted in favour of it.

The memoir is of great importance with respect to standards of
length; it contains references on the subject to memoirs in the preceding
volumes of the Paris Academy, and to other works. An interesting
paragraph respecting a suitable universal standard of length occurs on
page 500; it begins thus:

M. Mouton, Chanoine de Lyon, est le premier, que je sache, qui proposa
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cette mesure tirée du pendule; ce fut en 1670. Observationes diam. Sol. Lun.
Lyon, publiées en 1670.

707. A memoir by Lagrange entitled Sur l’attraction des sphéroïdes
elliptiques is contained in the Nouveaux Mémoires de l’Académie … Berlin
for 1773, published in 1775. The memoir occupies pages 121…148 of the
volume.

708. Lagrange refers to the investigations given by Maclaurin in his
Prize Essay on the Tides. Lagrange says on his page 121:

… il faut avouer que cette partie de l’Ouvrage de M. Maclaurin est un chef-
d’œuvre de Géométrie, qu’on peut comparer à tout ce qu’Archimede nous a
laissé de plus beau, et de plus ingénieux.

Lagrange proposes to demonstrate by analytical methods the results
which Maclaurin demonstrated by geometry.

709. Lagrange speaks thus of Simpson on his page 122:
On trouve à la vérité dans les Ouvrages de M. Thomas Simpson une solu-

tion purement analytique du probleme de M. Maclaurin, dans laquelle on ne
suppose point que le sphéroïde elliptique soit à très peu près sphérique; mais
d’un autre côté cette solution a le défaut de procéder par le moyen des séries,
ce qui la rend non seulement longue et compliquée, mais encore peu directe et
peu rigoureuse.

I suppose that the defect which Lagrange has in view when he de-
scribes Simpson’s solution as deficient in rigour is the fact that the series
are not always convergent: see Art. 282.

710. The general formulæ for the attraction of a body on a particle in
terms of rectangular coordinates are first investigated, and it is remarked
that the great difficulty is to effect the integrations which are indicated
in the formulæ. This leads to the subject of the transformation of the
variables in a triple integral. Lagrange gives the method which has since
remained in nearly all our elementary books; although obscure and un-
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satisfactory. I have supplied an account of this method, and indicated
its defects, in my Integral Calculus, where I have explained and adopted
another method.

The transformation of multiple integrals is an important branch of
analysis; we may consider that Lagrange was the author of it, and that
the subject of attraction suggested the consideration of it to him. See
Lacroix Traité du Calcul Différentiel et du Calcul Intégral, Vol. ii., page
208.

As an example of this transformation, Lagrange gives the formula,
now very familiar, by which we pass from rectangular to polar coordi-
nates in the expression for an element of volume, namely

𝑑𝑥𝑑𝑦𝑑𝑧 = 𝑟2 sin 𝜃𝑑𝜃𝑑𝜙𝑑𝑟.

711. Lagrange works out the case of the attraction of an oblatum on
an internal particle; the process is essentially the same as would be found
in any modern treatise on attractions: see, for example, Statics, Chapter
xiii.

712. Lagrange says on his page 139:
M. Maclaurin dans son Traité du flux et du reflux de la mer s’est contenté

de chercher l’attraction d’un sphéroïde elliptique sur un point quelconque de ce
sphéroïde; et les résultats de sa belle méthode synthétique s’accordent parfaite-
ment avec ceux que nous venons de trouver par l’Analyse. M. d’Alembert vient
d’étendre la solution de M. Maclaurin à des sphéroïdes où toutes les coupes
seroient elliptiques, en faisant remarquer que les propositions qui servent de
base à cette solution sont également vraies à l’égard de tous les sphéroïdes el-
liptiques, soit de révolution ou non; c’est ce que nous avons trouvé directement
par notre Analyse….

The researches of D’Alembert which are here noticed are, I presume,
those in the sixth volume of the Opuscules Mathématiques.

In the last words of the preceding extract, Lagrange alludes to the
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demonstration of various properties in the attraction of an ellipsoid, not
necessarily of revolution, on an internal particle. Lagrange shews: that
as long as we keep on the same radius drawn from the centre of the
ellipsoid the attraction varies as the distance from the centre; that the
attraction of a shell bounded by similar, similarly situated, and concen-
tric ellipsoidal surfaces on a particle within the shell is zero; and that the
attraction resolved parallel to an axis varies as the perpendicular distance
from the plane which contains the other axes. For the case of an ellip-
soid of revolution these results had been long known; the first and the
second were given by Newton, and the third by Maclaurin. It had more
recently been shewn that they were also true for ellipsoids not of revolu-
tion: see Arts. 615 and 662. Lagrange now establishes these propositions
by analysis.

713. With respect to the absolute value of the attraction of an ellip-
soid on an internal particle, Lagrange says on his page 139:

… à l’égard de la valeur absolue de l’attraction des sphéroïdes qui ne sont
pas de révolution, M. d’Alembert a essayé de la déterminer par différens moyens
très ingénieux, mais dont aucun ne lui a pleinement réussi;…

714. Lagrange also investigates the attraction of an oblatum on an
external particle which is situated on the prolongation of the axis of rev-
olution. He says at the end of the investigation on his page 144:

Ce Probleme a aussi été résolu synthétiquement par M. Maclaurin dans son
Traité des fluxions, et nos solutions s’accordent dans les résultats.

In the course of the investigation Lagrange allows himself to fall un-
der the suspicion of contradicting the first principles of the Integral Cal-

culus: see his pages 142 and 143. He says in fact that ∫𝑃𝑑𝑝 vanishes

when taken between the limits 𝛼 and −𝛼, where 𝑃 is a function of 𝑝
which is always positive. The result at which he arrives is correct, but
his method is unsatisfactory. Instead of integrating with respect to 𝑝 be-
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tween the limits 𝛼 and −𝛼, and then with respect to 𝑞 between the limits
0 and 𝜋, he ought to integrate with respect to 𝑝 between the limits 0 and
𝛼, and with respect to 𝑞 between the limits 0 and 2𝜋.

His polar expression for the element of volume really assumes that
sin𝑝 is always positive.

715. Lagrange alludes to the case of the attraction of an ellipsoid, not
of revolution, on an external particle which is situated on the prolonga-
tion of an axis. He says on his page 145:

… mais l’intégration de la différentielle dont il s’agit étant très difficile, si
même elle n’est pas impossible, nous ne nous y arrêterons pas; outre que cette
matiere n’est pas proprement de l’objet auquel ce Mémoire étoit destiné, elle a
d’ailleurs été déjà savamment discutée dans le sixieme Volume des Opuscules
de M. d’Alembert, auquel il nous suffira par conséquent de renvoyer.

Lagrange says that we should find still greater difficulties in attempt-
ing to investigate the attraction of an ellipsoid on any external point. He
shews what the expressions which have to be integrated become when
the axes of coordinates are shifted so that one of them is made to pass
through the external point.

716. The memoir does not proceed so far in the subject as Maclaurin’s
Treatise of Fluxions did; for the theorem which we have reproduced in
Arts. 257 and 258 is not demonstrated by Lagrange. But as we shall see
Lagrange added the demonstration in the Berlin Mémoires for 1775.

717. An account of a measurement of an arc of the meridian in Lom-
bardy by Beccaria was published at Turin in 1744; I have not seen the
volume. The result obtained by this operation appears however never to
have been received with confidence. See the memoir by De Zach in the
Turin Mémoires for 1811 and 1812; and De Zach’s Correspondance As-
tronomique, Vol. vii., page 502; and also the article Figure of the Earth
in the Encyclopædia Metropolitana, pages 170, 208, and 210.



miscellaneous investigations between 1761 and 1780. 510

718. A work was published in Florence in 1777, entitled Lettere di un
Italiano ad un Parigino intorno alle riflessioni del Sig. Cassini de Thury sul
grado Torinese. The work consists of 67 octavo pages: it is anonymous.

Cassini de Thury seems to have made some remarks on Beccaria’s
book in the Mercure de France for 1776; and the present work is a reply.
The main purport of the reply is to shew that Beccaria’s result was what
might have been expected if due allowance were made for the attraction
exerted by the Alps. There is however no theory nor calculation in the
book, but only general considerations. I have not seen the remarks which
Cassini de Thury made; but judging from the reply, they contained some
inaccuracies or misprints.

719. We have referred in Art. 643 to the extracts from two letters
which D’Alembert addressed to Lagrange; the letters gave rise to some
investigations by Lagrange, which we shall now notice.

720. In the Nouveaux Mémoires de l’Académie … Berlin for 1775, pub-
lished in 1777 we have on pages 273…279 an Addition au Mémoire sur
l’attraction des sphéroïdes elliptiques imprimé dans le Volume pour l’Année
1773, par M. de La Grange.

This addition was read on the 9th of November 1775; it commences
thus:

Les remarques contenues dans la lettre de M. d’Alembert dont j’ai eu
l’honneur de faire part à l’Académie il y a huit jours, m’ont donné occasion de
chercher si le Théoreme de M. Maclaurin concernant l’attraction d’un ellipsoïde
sur un point quelconque placé dans le prolongement de l’un de ses trois axes
ne pourroit pas se déduire des formules que j’ai données dans ce Mémoire; et
je crois que les Analystes verront avec plaisir avec combien de facilité on peut
parvenir par ces formules à la démonstration du Théoreme dont il s’agit.

721. Lagrange starts with a formula which he had obtained in the
memoir of 1773 for the attraction of an ellipsoid on a point on the pro-
longation of an axis.
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Let 𝑐 be the polar semiaxis, 𝑎 the equatorial semiaxis, of an oblatum;
let the density be unity. Then for the attraction on a particle on the pro-
longation of the polar axis at the distance 𝑟 from the centre we have by
Art. 261, the expression

4𝜋𝑐𝑎2

𝑎2 − 𝑐2
{1 −

𝑟
√(𝑎2 − 𝑐2)

tan−1
√(𝑎2 − 𝑐2)

𝑟
} .

Put 𝑚 for
𝑐2

𝑎2
; then the expression becomes

4𝜋
1 − 𝑚

{𝑐 −
𝑟√𝑚

√(1 − 𝑚)
tan−1

√{(1 − 𝑚)𝑐}
𝑟√𝑚

} .

Now let us suppose that instead of an oblatum we have an ellipsoid;
let 𝑎 and 𝑏 be the semiaxes of the section which is at right angles to the
distance 𝑟; and let 𝑐 as before be the semiaxis in the direction of 𝑟. The
attraction will be equal to the integral between 0 and 2𝜋 of

4𝜋
1 − 𝑚

{𝑐 −
𝑟√𝑚

√(1 − 𝑚)
tan−1

√{(1 − 𝑚)𝑐}
𝑟√𝑚

}
𝑑𝜃
2𝜋

,

where 𝑚 now denotes
𝑐2(𝑎2 sin2 𝜃 + 𝑏2 cos2 𝜃)

𝑎2𝑏2
.

This is obvious; for a wedge of this ellipsoid made by two planes in-
clined respectively at angles 𝜃 and 𝜃 + 𝑑𝜃 to the plane of 𝑎 and 𝑐 may
be considered as equivalent to the wedge of an oblatum which has for
semiaxes 𝑐 and 𝑎1, where

𝑎12 cos2 𝜃
𝑎2

+
𝑎12 sin

2 𝜃
𝑏2

= 1,

so that
𝑎12 =

𝑎2𝑏2

𝑎2 sin2 𝜃 + 𝑏2 cos2 𝜃
.
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Thus from the known value of the attraction of an oblatum we have
deduced the expression which must be integrated in order to determine
the attraction of an ellipsoid in the case under consideration. The method
we have used is not formally identical with Lagrange’s, but it is coinci-
dent in principle.

Lagrange then by a suitable transformation of the expression just ob-
tained, succeeds in demonstrating Maclaurin’s theorem.

722. Strictly speaking, Lagrange’s demonstration applies only to the
case in which the attracted particle is on the prolongation of the least
axis of the ellipsoid. But it will be found on examination, that the
method may be applied with obvious modifications to the cases of the
other axes.

Lagrange finishes thus:
C’est le théoreme que M. Maclaurin a énoncé sans démonstration dans l’Art.

653 de son Traité des fluxions; et que nous nous étions proposé de déduire de nos
formules.

As we have already stated in Art. 260, Lagrange underrates what
Maclaurin really effected.

723. A work was published in 1775, by Cassini de Thury, entitled Re-
lation d’un Voyage en Allemagne,… Suivie de la Description des Conquêtes
de Louis XV, depuis 1745 jusqu’en 1748.

This work is in quarto, containing xxviii + 194 pages: it may have a
brief notice, though very slightly connected with our subject. Cassini de
Thury travelled to Vienna, and made numerous observations of angles in
the course of his journey. He calculated a large number of distances, by
means of triangles; and the data and the results are recorded. There are
numerous maps on which the triangles are drawn. On pages 1…6, we
have an account of the measurement of a base near Munich.

On page xx. there is an allusion to an Observatory which Cassini had
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formerly constructed on the top of a tree 100 feet high: it seems to be
the same as we noticed in Art. 226.

Cassini de Thury was present with the French army during part of
the war in Flanders in 1745 and 1746. He records a set of triangles, and
gives a map, extending over the range of the French conquests. He says
on page 124:

… telle est l’idée que l’on doit se former de l’étendue des conquêtes du feu
Roi, que j’ai tâché de représenter dans une Carte générale, qui est le seul mon-
ument qui nous en reste, si l’on compte pour rien une longue paix qui en a été
la suite, et que le plus aimé des Rois préféroit à la victoire.

Cassini de Thury refers on page iii. to a work published in 1765; this
I have not seen, but conjecture to be that of which the title is given on
page 483 of La Lande’s Bibliographie Astronomique with the date 1763.

At the end of the volume we have, on five pages, Extraits des Registres
de l’Academie…: these furnish an account of the book, by Laplace, signed
by Le Monnier and himself.

The work cannot be considered of any scientific importance: see the
Paris Mémoires for 1775, pages 41…44 of the historical portion; and De
Zach’s Monatliche Correspondenz, Vol. vii., page 397.

724. In the Philosophical Transactions, Vol. lxv., for 1775, published
in 1775, there are two memoirs by Maskelyne.

The first memoir is entitled A Proposal for measuring the Attraction
of some Hill in this Kingdom by Astronomical Observations. This occupies
pages 495…499 of the volume: it was read in 1772.

The second memoir is entitled An Account of Observations made on
the Mountain Schehallien for finding its Attraction. This occupies pages
500…542 of the volume: it was read July 6, 1775.

Mr Charles Mason examined various hills in England and Scotland,
and selected Schehallien, in Perthshire, as suitable for the proposed oper-
ations. Maskelyne’s second memoir details the astronomical and geodet-
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ical proceedings, and records the observations of the stars. From a pre-
liminary determination founded on observations of 10 stars it appeared
that a deviation of 11″·6 was produced in the plumb-line by the sum of
the attractions on the North and South sides of the mountain.

725. The following remarks occur in the first memoir, on page 496:
Sir Isaac Newton gives us the first hint of such an attempt, in his popular

Treatise of the System of the World, where he remarks, “That a mountain of an
hemispherical figure, three miles high and six broad, will not, by its attraction,
draw the plumb-line two minutes out of the perpendicular.” It will appear, by a
very easy calculation, that such a mountain would attract the plumb-line 1′ 18″

from the perpendicular.

The work to which Maskelyne here alludes is entitled A Treatise of
the system of the World. By Sir Isaac Newton. London, 1728. This pur-
ports to be a translation of the popular exposition drawn up by Newton
himself, to which he refers at the beginning of the third Book of the Prin-
cipia. The date 1728 is after the death of Newton. The passage which
Maskelyne quotes is from page 41. On the same page is a statement
equivalent to that which we have noticed in Art. 125, so that Mauper-
tuis must have taken it from this book. Since that Article was printed,
I have obtained a copy of the second edition of Maupertuis’s Figure des
Astres; the statement is omitted in this edition.

The passage stands thus:
… For the attractions of homogeneous spheres near their surfaces, are as

their diameters. Whence a sphere of one foot in diameter, and of a like nature
to the Earth, would attract a small body plac’d near its surface, with a force
about 20000000 times less, than the Earth would do if placed near its surface.
But so small a force could produce no sensible effect. If two such spheres were

distant by
1
4
of an inch, they would not even in spaces void of resistance, come

together by the force of their mutual attraction in less than a months time. And
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less spheres will come together at a rate yet slower, viz. in the proportion of
their diameters.

Since the statement is ascribed to Newton it may be proper to give an
investigation, which need not appear necessary when only the authority
of Maupertuis was involved.

Let 𝑎 denote the radius of each sphere, 𝑅 that of the earth, 2𝑎 + 𝑐
the original distance of the centres of the spheres. When the centres of
the spheres are at the distance 𝑟 the acceleration which tends to bring

them nearer is 2
𝑎
𝑅
𝑔 . (

𝑎
𝑟
)
2
. Thus during the motion this acceleration lies

between
2𝑎𝑔
𝑅

(
𝑎

2𝑎 + 𝑐
)
2
, and

2𝑎𝑔
𝑅

(
𝑎
2𝑎
)
2
. If the acceleration were constant

and equal to 𝑓, the time of motion would be
√

2𝑐
𝑓
. Hence the real time

lies between
2𝑎 + 𝑐
𝑎

(
𝑐𝑅
𝑎𝑔
)
1
2
and 2 (

𝑐𝑅
𝑎𝑔
)
1
2
.

In the example it is said that the sphere is one foot in diameter, but

this must be a mistake for one foot in radius. Thus 𝑎 = 1, 𝑐 =
1
48
,

𝑔 = 32, and 𝑅 = 20000000; therefore the time in seconds is between

(2 +
1
48
) 1000 (

5
384

)
1
2
and 2000 (

5
384

)
1
2
, that is less than 250 seconds.

This differs so widely from what we find in the foregoing passage,
that the words must I conclude have some meaning different from that
which they appear to suggest.

The preceding elementary considerations are sufficient for our pur-
pose; but there is no difficulty in supplying an exact investigation.

Let 𝑥 denote the distance of the centre of one sphere from a fixed
origin at the instant denoted by 𝑡, and 𝑥′ the distance of the centre of
the other sphere; suppose 𝑥′ greater than 𝑥, and put 𝑟 for 𝑥′ − 𝑥. Let
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𝑚 denote the mass of each sphere, 𝑀 the mass of the earth, and 𝑇 the
whole time of motion. Then

𝑑2𝑥
𝑑𝑡2

=
𝑚

(𝑥′ − 𝑥)2
,

𝑑2𝑥′

𝑑𝑡2
= −

𝑚
(𝑥′ − 𝑥)2

;

hence by subtraction
𝑑2𝑟
𝑑𝑡2

= −
2𝑚
𝑟2
;

therefore

(
𝑑𝑟
𝑑𝑡
)
2
= 4𝑚(

1
𝑟
−
1
𝑏
) ,

where 𝑏 denotes the initial value of 𝑟, that is 2𝑎 + 𝑐.
Therefore

𝑇 =
√𝑏
2√𝑚

∫
𝑏

2𝑎

√𝑟𝑑𝑟
√(𝑏 − 𝑟)

.

And
𝑚
𝑎2

=
𝑚
𝑀
.
𝑀
𝑅2

.
𝑅2

𝑎2
=
𝑎
𝑅
𝑔.

Assume 𝑟 = 𝑏 sin2 𝜃; thus

𝑇 =
𝑏 3
2

𝑎 3
2
(
𝑅
𝑔
)
1
2
∫

𝜋
2

𝛽
sin2 𝜃𝑑𝜃,

where
sin2 𝛽 =

2𝑎
𝑏
.

Therefore

𝑇 =
𝑏 3
2

2𝑎 3
2
(
𝑅
𝑔
)
1
2
{
𝜋
2
− 𝛽 +

sin 2𝛽
2

} .

This is exact, and the value may be easily calculated numerically.
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Suppose 𝑐 small compared with 𝑏; then we may approximate thus:

Put 𝛾 for
𝜋
2
− 𝛽, therefore sin 2𝛽 = sin 2𝛾 = 2𝛾 nearly.

Also cos 𝛾 = √
2𝑎
𝑏
= (

𝑏 − 𝑐
𝑏

)
1
2
; so that approximately

1 −
𝛾2

2
= 1 −

𝑐
2𝑏
, and 𝛾2 =

𝑐
𝑏
.

Hence

𝑇 =
𝑏 3
2

𝑎 3
2
(
𝑅
𝑔
)
1
2
𝛾 = (

𝑐𝑅
𝑎𝑔
)
1
2 2𝑎 + 𝑐

𝑎
.

726. Maskelyne obtained some results by calculation, which are thus
stated:

By calculation … it should follow, that the sum of the contrary attractions
of Whernside … on the plumb-line placed half-way up the hill, would not be
less than 30″, and might amount to 46″….

By a calculation …, the sum of the contrary attractions of the plumb-line,
placed alternately on the North-side of Helwellin, and the South-side of Skidda,
amounts to about 20″…. And although the density of the earth near the sur-
face should be five times less than the mean density, as there is some reason to
suspect, and the attractions, as here stated, should consequently be diminished
in the proportion of five to one, still the sum of the contrary attractions of Wh-
ernside would be 6″ or 9″, and the sum of the contrary attractions of Helwellin
and Skidda would be 4″….

727. On the whole 43 stars were observed, and 337 observations
taken. Maskelyne proposed at his leisure to compute the result from
all the observations: see his page 530. It does not appear that this was
done by him; but it was by De Zach; see L’attraction des Montagnes,
pages 686…692. The result obtained by De Zach agrees very closely with
Maskelyne’s own.
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Some important calculations were founded on Maskelyne’s result by
Hutton in 1778, and by Playfair in 1811; these we shall consider here-
after: see Art. 730.

728. We next notice a work entitled Essai sur les Phénomènes relat-
ifs aux disparitions périodiques de l’Anneau de Saturne. Par M. Dionis du
Séjour. Paris, 1776. This is an octavo, and contains xxxii + 444 pages, be-
sides title-pages, and plate. A notice of the work is given in the historical
portion of the Paris Mémoires for 1775, pages 53…55.

The work relates to the appearances presented by Saturn’s ring, and
barely touches on the theory with which we are concerned.

On pages 402…406 we have the equation which Maupertuis investi-
gated for the form of the ring; for the demonstration we are referred to
Maupertuis: see Art. 119.

On pages 407…411 we have a formula for the attraction of a circular
lamina on a constituent particle: the formula however would not be of
any use, because the expression to be integrated becomes infinite within
the range of integration.

The author believes that the parts of the ring of Saturn must be ani-
mated by a centrifugal force in order to balance the effect of the attrac-
tion of Saturn: see his pages iv and 401.

This supposition has been confirmed since by the researches of
Laplace, and the observations of Herschel.

729. A work was published by John Whitehurst entitled An Inquiry
into the original state and formation of the Earth….

The first edition appeared in 1778, and the second in 1786; both are
in quarto. In Hutton’s Philosophical and Mathematical Dictionary under
the head Whitehurst, it is stated that a third edition appeared in 1792.

The work is geological, and not mathematical, and so does not fall
within our range.
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I extract one sentence which reproduces an undemonstrated asser-
tion noticed in Art. 130; it occurs on page 6 of the first edition: “… and
therefore when the component parts of fluid bodies are thus assembled
together, they must necessarily assume spherical forms….”

730. In the Philosophical Transactions, Vol. lxviii., for 1778, part 2,
published in 1779, there is a memoir by Hutton, entitled An account of
the Calculations made from the Survey and Measures taken at Schehallien,
in order to ascertain the mean Density of the Earth. The memoir occupies
pages 689…788 of the volume: it was read on May 21, 1778.

The attraction of the mountain had to be calculated for each of the
two stations at which Maskelyne made his astronomical observations.
The form of the mountain was ascertained by a very minute survey; then
it was supposed to be decomposed into slender vertical prisms, the at-
traction of every one of which could be calculated. There were 960 such
prisms for each of the two stations.

The numerical labour was of course very great; but the memoir adds
nothing to the theory of Attraction. We may notice the method adopted
for facilitating the calculation, derived; as Hutton says on his page 750,
“partly from some hints of the Honourable Henry Cavendish, F.R.S. and
partly from some of my own, which had been communicated to the As-
tronomer Royal in the years 1774 and 1775….” Compare the note on
page 237 of the article, Figure of the Earth in the Encyclopædia Metropoli-
tana.

Take the horizontal plane through one of the stations for the plane
of polar coordinates; let the station be the origin, and let the initial line
be in the direction of the meridian.

Let there be a vertical prism standing on a base which has 𝑟 and
𝜃 for the polar coordinates of a corner; and let 𝑟Δ𝑟Δ𝜃 denote the
area of the base. Suppose 𝑧 the height of the prism; then, taking
the density as unity, the horizontal attraction of the prism is very
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approximately
𝑟Δ𝑟Δ𝜃 . 𝑧
𝑟√(𝑟2 + 𝑧2)

and the resolved part of this in the direction

of the meridian is
𝑧Δ𝑟Δ𝜃

√(𝑟2 + 𝑧2)
cos 𝜃. This may be put in the form

𝑧
√(𝑟2 + 𝑧2)

{sin(𝜃 + Δ𝜃) − sin 𝜃}Δ𝑟. Then to facilitate the calculation the

values of Δ𝜃 were so taken as to make sin(𝜃 + Δ𝜃) − sin 𝜃 retain a
constant value. Thus, to obtain the attraction of the prisms forming part

of the same ring, the values of
𝑧

√(𝑟2 + 𝑧2)
must be summed, and the

result obtained must be multiplied by {sin(𝜃 + Δ𝜃) − sin 𝜃}Δ𝑟.

Hutton’s conclusion is that the mean density of the Earth is
9
5
of that

of the mountain. He conjectures that the mean density of the mountain

may be
5
2
times that of water; so that the mean density of the Earth is

about
9
2
times that of water. See Art. 17.

Hutton’s memoir is reproduced in his Tracts on Mathematical and
Philosophical Subjects, Vol. ii. 1812, with the addition of a few remarks
towards the end, on the character of the mountain, which were derived
partly from Mr Duncan Macara, and partly from Professor Playfair.

731. In the Philosophical Transactions for 1811, part 2, published
in 1811, there is a memoir by Playfair entitled Account of a Lithologi-
cal Survey of Schehallien, made in order to determine the specific Gravity
of the Rocks which compose that Mountain. The memoir occupies pages
347…377 of the volume: it was read June 27, 1811. It will be convenient
to notice this memoir here.

Hutton, as we have seen, calculated the attraction of Schehallien, and
thence deduced the mean density of the Earth, on the supposition that
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the mountain was homogeneous; and he assumed 2·5 for the density,
that of water being unity. Playfair investigated the composition of the
mountain, and modified the calculations by allowing for the actual den-
sity of the parts. Playfair found that the upper part of the mountain
was composed of quartz of the mean specific gravity 2·6398; and that the
lower part was composed of mica and hornblend slate of the mean spe-
cific gravity 2·83255, and limestone of the mean specific gravity 2·76607.
On the whole he considered that the matter composing the mountain
could be divided into two classes of rocks; namely, quartz of the mean
specific gravity 2·639876, and micaceous rock, including calcareous, of
the mean specific gravity 2·81039. The line separating the two classes
of rocks could be accurately traced on the face of the mountain. As
to the arrangements in the interior of the mountain, Playfair considered
that only two suppositions could be made with any degree of probability;
these amount to assuming that the two classes of rocks are separated by
a vertical boundary, or by a nearly horizontal boundary. Playfair calcu-
lates the mean density of the Earth on both suppositions; on the former
he obtains 4·55886, and on the latter 4·866997.

The memoir adds nothing to the theory of Attraction. Playfair availed
himself of the practical method for facilitating the computation which is
given in Hutton’s memoir. Playfair says, on his page 364:

I have also used a theorem in these computations, which gives an accurate
value of the attraction of a half cylinder of any altitude 𝑎, and any radius 𝑟,
on a point in the centre of its base, and in the direction of a line bisecting the
base.

Let 𝐴 be equal to that attraction; then

𝐴 = 2𝑎 log
𝑟 + √𝑎2 + 𝑟2

𝑎
.

The investigation of this formula may be usefully supplied.
Take the origin at the attracted point; let the axis of 𝑧 coincide with

the axis of the cylinder, and the axis of 𝑥 with the direction in which
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the attraction is estimated. Then the resolved attraction is

∭
𝑥𝑑𝑥𝑑𝑦𝑑𝑧

(𝑥2 + 𝑦2 + 𝑧2) 32
.

We integrate first with respect to 𝑧, between the limits 0 and 𝑎; thus
we obtain

∬
𝑎𝑥𝑑𝑥𝑑𝑦

(𝑥2 + 𝑦2)(𝑥2 + 𝑦2 + 𝑎2) 12
.

The limits for 𝑦 are −√(𝑟2 − 𝑥2) and √(𝑟2 − 𝑥2); and the limits for 𝑥
are 0 and 𝑟.

Assume 𝑥 = 𝑠 cos 𝜃 and 𝑦 = 𝑠 sin 𝜃; thus the integral transforms into

2𝑎∫
𝑟

0
∫

𝜋
2

0

cos 𝜃𝑑𝑠𝑑𝜃
(𝑠2 + 𝑎2) 12

;

and the value is
2𝑎 log

𝑟 + √(𝑎2 + 𝑟2)
𝑎

.

There is something wrong about the plates which ought to accom-
pany the memoir. Playfair refers to a plan of the mountain which shews
the boundary between the two classes of rocks, and also to a diagram;
see his page 363: but neither of these is given. Also it appears from his
page 365, that the plates which are given ought to have been coloured.

732. It will be convenient to notice here a subsequent paper con-
nected with the Schehallien experiment. In the Philosophical Transac-
tions for 1821, part 2, published in 1821, there is a memoir by Hutton,
entitled On the mean density of the Earth. It occupies pages 276…292 of
the volume: it was read April 5, 1821.

Hutton adverts to the Schehallien operations, and to Playfair’s investi-
gation of the density of the mountain. Hutton thinks that the mean den-
sity of the Earth is very nearly five times that of water, but not greater.
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He prefers the Schehallien determination to that which Cavendish had
obtained by experiment. At the age of 84, he had undertaken to recom-
pute the experiments of Cavendish, and had discovered some important
errors in the original computation. He suggests that observations might
be made near one of the Egyptian pyramids, of the nature of those made
at Schehallien.

733. We will collect here the titles of some investigations which de-
serve to be studied by those who are interested in the important question
of the mean density of the Earth; the greater part of these investigations
fall without the period over which the present history ranges. We sup-
pose the density of water to be unity.

A famous experiment was made by Cavendish, from which he de-
duced that the mean density of the Earth was about 5·48. The details
are given in the Philosophical Transactions for 1798; we shall recur to
the memoir hereafter.

A memoir by Hutton in the Philosophical Transactions for 1821 we
noticed in Art. 732. According to Hutton’s calculation the result of
Cavendish’s own experiments is 5·31.

A paper by Carlini in the Milan Ephemeris for 1824 gives an account
of a series of pendulum experiments made at the height of a thousand
toises. The result obtained for the mean density is 4·39; but a serious
error is introduced by using a wrong formula to express a certain at-
traction; the error was pointed out by Schmidt and by Giulio. More-
over there are other considerations which shew that the process does not
seem to deserve much confidence. See the Report on Astronomy by the
Astronomer Royal in the Reports of the British Association, Vol. i. page
169; and a note by Sabine in the translation of Humboldt’s Cosmos, Vol.
i. 1849, page xlvii.

The subject is discussed in Schmidt’s Lehrbuch der mathematischen
und physischen Geographie, 1830; see Vol. ii. pages 469…487.
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Schmidt corrects Carlini’s result 4·39 to 4·837. Schmidt obtains 5·52
by calculation from Cavendish’s own experiments.

In 1838, a work was published at Freiberg, entitled Versuche über die
mittlere Dichtigkeit der Erde … von F. Reich. In his introduction he refers
to an article by Muncke in the new edition of Gehler’s Physikalisches
Wörterbuch Vol. iii. page 940…, as giving a valuable comparison of the
results hitherto obtained. Reich himself repeated Cavendish’s experiment
and obtained nearly 5·44 for the mean density.

A memoir by Menabrea is published in the Turin Memorie, Vol. ii.
1840, entitled Calcul de la densité de la Terre. This contains an investiga-
tion of the theory connected with Cavendish’s experiment.

A memoir by Giulio is published in the Turin Memorie, Vol. ii. 1840,
entitled Sur la détermination de la densité moyenne de la terre, déduite de
l’observation du pendule faite à l’hospice du Mont Cenis par M. Carlini en
Sept. 1821.

Carlini’s result 4·39 is here corrected to 4·95.
Cavendish’s experiment was repeated by Baily, who made far more

trials, and with greater precautions, than his predecessors. The details
form Vol. xiv. of the Memoirs of the Royal Astronomical Society, 1843;
see also the references connected with this volume in the Royal Society’s
Catalogue of Scientific Papers under the head Baily, No. 45. The result
obtained for the mean density was about 5·67; but the results of individ-
ual experiments were found to vary considerably.

In the Philosophical Transactions for 1847 there is a memoir by Hearn
entitled, On the cause of the discrepancies observed by Mr. Baily with the
Cavendish apparatus for determining the mean density of the Earth.

The discrepancies are attributed to the influence of magnetism.
After the publication of Baily’s result Reich again repeated the experi-

ment: see the Leipzig Abhandlungen, Vol. i. 1852, and the Royal Society’s
Catalogue of Scientific Papers under the head Reich, No. 17. The result
gives about 5·58 for the mean density.
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Reich refers to Hearn’s memoir, but does not agree with it.
In the Account of the … Principal Triangulations … 1858, which forms

part of the Ordnance Survey of Great Britain … the subject is discussed in
Section x. Some account is given of preceding researches, together with
the details of a new operation, like that at Schehallien, on the hill called
Arthur’s Seat at Edinburgh. The new operation gives the mean density
5·316.

Pendulum experiments were made in 1854, by the Astronomer Royal
in Harton Colliery for ascertaining the mean density of the Earth: see the
Philosophical Transactions for 1856, and the Royal Society’s Catalogue of
Scientific Papers under the head Airy, Nos. 100, 101, and 110. The result
is the value 6·566.

The Astronomer Royal observes with respect to this result on page
342 of the Philosophical Transactions for 1856:

The value thus obtained is much larger than that obtained from the Schehal-
lien experiment, and considerably larger than the mean found by Baily from
the torsion-rod experiments. It is extremely difficult to assign with precision
the causes or the measures of the error of any of these determinations; and I
shall content myself with expressing my opinion, that the value now presented
is entitled to compete with the others, on, at least, equal terms.

Haughton, in the Philosophical Magazine for July, 1856, by a special
method deduces the result 5·48 from the Harton Colliery experiments.

A memoir was published in Göttingen, in 1869, entitled Ueber die
Bestimmung der mittleren Dichtigkeit der Erde von Anton Schell. This is
in quarto, containing 39 pages, with three plates. It is a useful account
of various researches on the subject.

734. We notice next a memoir entitled De Figura Terræ Commentatio.
Autore J. A. J. Cousin, Parisino. This is contained in the Acta Academiæ
Electoralis Moguntinæ … 1777. Erfurti. 1778. It occupies pages 209…216
of the volume.
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The memoir consists chiefly of relations between certain lines in any
curve, expressed in the language of the Differential Calculus. But no
diagram is supplied, at least in the only copy which I have seen, and
thus part of the memoir is unintelligible. However it may be safely pro-
nounced to be of no importance.

735. A memoir by Euler, entitled Theoria Parallaxeos ad Figuram
Terræ sphaeroidicam accommodata, is contained in the Acta Academiæ
… Petropolitanæ for 1779, pars prior, published in 1782. The memoir oc-
cupies pages 241…278 of the volume.

This memoir adds nothing to the theory of the Figure of the Earth.
Euler assumes that the Earth is an oblatum, and investigates the conse-
quent expressions for the moon’s parallax. He gives tables and numerical
examples, which are calculated on the supposition that the ellipticity is
1
200

.

736. In the Philosophical Transactions for 1780, published in 1780,
there is a memoir by Hutton, entitled Calculations to determine at what
Point in the Side of a Hill its Attraction will be the greatest. It occupies
pages 1…14 of the volume: it was read Nov. 11, 1779.

The memoir proposes to find at what point on the surface of a hill the
horizontal component of the attraction of the hill is greatest. The prob-
lem was naturally suggested by the operations on the mountain Schehal-
lien.

Hutton supposes that the vertical section of his mountain is a trian-
gle, and that the mountain extends to infinity in the horizontal direction
on both sides of the point considered. Thus his problem may be stated
in these words: find a point on a given face of a triangular prism of infi-
nite length where the attraction of the prism resolved parallel to another
given face is greatest.

Hutton’s solution is wrong. I will briefly indicate the correct method.
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Let 𝐴𝐵𝐶 be a section of the prism at right angles to its edges. Let 𝑃
be any point on the side 𝐴𝐵.

Then we may divide the prism into two prisms, one corresponding
to 𝑃𝐵𝐶, and the other to 𝑃𝐴𝐶, and estimate the attraction of each sepa-
rately.

Suppose 𝑃 the origin of polar coordinates, in the plane of the triangle;
and take the initial line parallel to 𝐵𝐶.

The attraction of the infinite rod parallel to the edges of the prism

which corresponds to the polar element 𝑟𝑑𝑟 𝑑𝜃 is
2
𝑟
𝑟𝑑𝑟 𝑑𝜃, where the

density is taken to be unity.
Consider first the prism corresponding to 𝑃𝐵𝐶.
The attraction of a rod will be 2 cos 𝜃𝑑𝑟𝑑𝜃 parallel to 𝐵𝐶, and

2 sin 𝜃𝑑𝑟𝑑𝜃 perpendicular to 𝐵𝐶. Let the perpendicular 𝑃𝑀 be denoted

by ℎ. Then we must integrate for 𝑟 from 0 to
ℎ

sin 𝜃
; and we must

integrate for 𝜃 from 𝛼 to 𝛽, where 𝛼 is equal to 𝑃𝐶𝐵, and 𝛽 exceeds 𝛼

by 𝐵𝑃𝐶. Thus the component attractions are 2ℎ log
sin 𝛽
sin𝛼

parallel to 𝐵𝐶,

and 2ℎ(𝛽 − 𝛼) perpendicular to 𝐵𝐶.
Similarly for the prism corresponding to 𝑃𝐴𝐶 we find that the com-
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ponent attractions are 2ℎ1 log
sin 𝛽1
sin𝛼1

parallel to 𝐴𝐶, and 2ℎ1(𝛽1−𝛼1) per-

pendicular to 𝐴𝐶; where ℎ1 denotes the perpendicular from 𝑃 on 𝐴𝐶,
and 𝛼1 is equal to 𝑃𝐶𝐴, and 𝛽1 − 𝛼1 to 𝐴𝑃𝐶.

Hence the attraction of the whole prism corresponding to 𝐴𝐵𝐶 par-
allel to 𝐵𝐶 is

2ℎ log
sin 𝛽
sin𝛼

+ 2ℎ1 cos𝐶 log
sin 𝛽1
sin𝛼1

+ 2ℎ1 sin𝐶(𝛽1 − 𝛼1).

This expression may be made to involve only one variable 𝛼; and then
we can seek the maximum value by putting the differential coefficient
with respect to 𝛼 zero. The equations which serve to express the other
variables in terms of 𝛼 are

ℎ(cot𝐵 + cot𝛼) = 𝐵𝐶,
ℎ𝐵𝐶 + ℎ1𝐴𝐶 = twice the area of 𝐴𝐵𝐶,
𝛽 = 𝜋 − 𝐵,
𝛼1 + 𝛼 = 𝐶,
𝛽1 − 𝛼1 = 𝐵 + 𝛼.

Hutton instead of taking the whole prism supposes another plane to
pass through 𝑃𝑀, and to make an infinitesimal angle with the plane of
the paper. Thus he obtains a slice in the form of a double wedge; he
estimates the resolved attraction of the slice, and assumes that this will
represent the attraction of the whole prism. He says:

And then from the foregoing suppositions it is evident that in whatever
point of 𝐴𝐵 the attraction of 𝐴𝐵𝐶 is greatest, there also will the attraction of
the whole hill be the greatest.

This assertion is unjustifiable. After I wrote this I found that to this
sentence Hutton adds the words “very nearly,” in the abridgement of the
memoir which is given in the Philosophical Transactions abridged by Hut-
ton, Shaw and Pearson; and also in the republication of the memoir in
Hutton’s Tracts, Vol. ii.
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Hutton considers especially the case in which the triangle 𝐴𝐵𝐶 is
equilateral.

Suppose, for example, that 𝑃 is at 𝐵. Put 𝑐 for 𝐴𝐵. Then ℎ = 0,

ℎ1 =
𝑐√3
2
, 𝛼1 =

𝜋
3
, 𝛽1 =

2𝜋
3
. The attraction parallel to 𝐵𝐶

= 2 .
𝑐√3
2

.
√3
2
.
𝜋
3
=
𝑐𝜋
2
.

Next suppose that 𝑃 is at the middle point of 𝐴𝐵. Then

ℎ1 = ℎ =
𝑐√3
4
, 𝛼 =

𝜋
6
, 𝛽 =

2𝜋
3
, 𝛼1 =

𝜋
6
, 𝛽1 =

2𝜋
3
.

The attraction parallel to 𝐵𝐶

=
𝑐√3
2

log√3 +
𝑐√3
4

log√3 +
𝑐√3
2
.
√3
2
.
𝜋
2
= 𝑐

3√3
4

log√3 +
3𝑐𝜋
8
.

The ratio of the latter to the former

=
3
4
+
3√3
2𝜋

log√3 =
3
4
(1 +

√3
𝜋
log 3) .

This is obviously the ratio of the whole attraction at 𝐵 to the whole
attraction midway between 𝐴 and 𝐵; for each whole attraction is inclined
at 30° to the horizon.

This will be found 1·204 approximately.
Hutton’s theoretical expression for the ratio is quite different; but nu-

merically it is nearly the same: he gives almost 1·206. The coincidence
is curious.

737. Here we may be said to finish the first part of our work; the
history has been carried through a period of nearly a century, from the
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publication of the Principia, in which Newton laid the solid foundations
of the Theories of Attraction and of the Figure of the Earth. Maclaurin
and Clairaut continued the work with great success; the former mainly
devoting himself to the Theory of Attraction, and the latter to that of the
Figure of the Earth. The incessant labours of D’Alembert effected more
indirectly than directly; they kept up an interest in the subjects, and
probably suggested the more fortunate efforts of Legendre and Laplace.
In the second volume we shall trace the progress of our Theories under
the influence of the powerful analysis of these two great mathematicians.

738. Some publications are recorded in La Lande’s Bibliographie As-
tronomique bearing on our subject, which I have not been able to con-
sult; although I believe they are of small importance, I will quote the
titles here, adding the pages of La Lande’s work where they are given.

1735. Paris, in-12. Proposition d’une mesure de la terre, dont il ré-
sulte une diminution considérable dans la circonférence de l’équateur,
par M. D’Anville, géographe ordinaire du roi…. Page 400.

1738. … in-12. Anecdotes physiques et morales. Page 407.
A notice of this in La Lande’s work follows immediately after that of

the Examen desintéressé; he says it is on the same subject: see Art. 143.
1740. Bologna, in-8o. Lettera contenente l’aviso delle operazioni fatte

nell’ America meridionale dai matematici spagnuoli e francesi, per cui
venne a conchiudersi la gran controversia sopra la figura della terra. Page
412.

1743. Viennæ, in-8o. De figurâ telluris dialogus à scholasticis univer-
sitatis Viennensis. Page 422.

1744. Stockholm, in-8o. … Klingenstierna, … donna le problème suiv-
ant: Trouver la figure de la terre par la comparaison de deux degrés. Page
424.

1748. London, in-8o. A new theory of the figure of the earth, wherein
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are demonstrated the mechanical causes of its figure as it is determined
by the observations of Rowland Jackson. Page 433.

1748. Tournay, in-8o. Discours sur ta figure de la terre, par M. le
baron de Grante. Page 435.

1763. Manhemii, in-4o. Basis Palatina, anno 1762 bis dimensa, hoc
anno 1763 novis mensuris aucta et confirmata, à Christiano Mayer….
Page 483; see also page 503.

1766. Pisa, in-8o. Ragionamento filosofico-historico sopra la figura
della terra, dal Sr. Ant. Mattuni. Page 496.

1769. Vlissengen, in-8o. … On trouve dans le troisième volume un
mémoire de M. Hennert sur la figure de la terre, … Page 509.

1778. Utrecht, in-8o. Dissertations physiques et mathématiques, sur
la figure de la terre, les comètes, l’attraction, &c., par M. Hennert. Page
562.

1778. Varsaviæ, in-8o. Michaelis Hube, De telluris formâ. Page 563.

739. I hope that few of the memoirs which are contained in the
collections of the various Academies and Scientific Societies have been
overlooked. In seeking for these the well-known Repertorium Commen-
tationum of J. D. Reuss affords most valuable assistance. Here I find
memoirs by four authors recorded which I have not been able to con-
sult, namely Celsius, Klingenstierna, Mallet, and Fester: the titles occur
in the fifth volume of the work on the pages 80, 82, and 83.

740. There are three matters considered in the present volume to
which it will be convenient to allude here.

The difficulty which is mentioned in Art. 124 is discussed in Art. 725.
Since Art. 228 was printed I have been informed by M. O. Struve, that

Delisle’s original manuscripts were found some years since at St Peters-
burg: those at Paris were copies.

Since Art. 542 was printed I have published some remarks on the
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modern South African arc in the Monthly Notices of the Royal Astronom-
ical Society, Vol. xxxiii. pages 27…34.

END OF VOLUME I.
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Transcriber’s notes

An occasional missing accent on the word ‘Céleste’ has been added.
Otherwise, inconsistent spelling has been retained.

In the equation following ‘Since…, we obtain’ in section 257 it seems likely
that the 𝑎 in the denominator of the right hand side should be primed but
this change has not been made.

The prime on 𝑗 in this equation in section 289 seems dubious.

In the expression on the line following ‘so that the definite integral…’ in
section 504 there appears to be a missing closing square bracket.

The following changes have been made:

‘= 0’ has been added to equation 2 in section 426.

‘the result becomes 16𝜋𝜌ℎ’ in section 472 has been changed to ‘the result
becomes 16𝜋𝜌𝑟’.

‘+’ has been added before 𝑚𝑀 cos𝑚−1 𝛽 in equation 2 in section 576.

The sentence ‘Similarly the other equations…’ in section 629 is made into a
paragraph with a capital letter.
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