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Sec. 1. Introductory.

The heating of conductors by the passage of an electric current is injurious
to the insulation if the conductor be insulated, and may lead to risks from fire.

In small installations the heating of conductors is always small, because of
this fact—that if contractors were to lay down wires so thin that overheating
ensued, then we may be sure that the resistance would be far too great for the
capabilities of the dynamo machine.

But in large installations, currents of much greater density being carried, the
heating may be very great although the resistance of the circuit is small; and it
becomes a matter of the utmost importance to know how the heating depends
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upon the size of conductors and the current density.
I have searched in vain for experimental facts on a large scale, and in ab-

sence of these have undertaken the mathematical solution of the problem, and
confirmed my results by a few experiments on small currents, besides such iso-
lated examples of measurements of large currents as were available.

I have been at some trouble to determine carefully the nature of conduc-
tors which would be required to carry a current capable of supplying 100,000
lamps—say, 70,000 ampères. It may be said that no such conductor would be
required—that electricity will be so carried in a network of conductors that in no
part will the current carried be excessive. It may further be said that high tension
currents will be used to charge accumulators in series, scattered here and there
over a district, and that, consequently, small currents only will be required in the
mains. To the latter objection, I say that, to carry out some of the provisional
orders granted by the Board of Trade, the system of secondary batteries being
inadmissible, it will be necessary to carry through the mains, current sufficient
for all the lamps. To the former objection, I say that the supply of gas gives
us a valuable insight into the similar progress which must be made in the sup-
ply of electricity. The problems are remarkably similar, and a due attention to
this fact will save the pioneers of electricity much useless expenditure of time,
money, and thought. But in gas lighting we carry enormous mains for distances
of manymiles from the place of manufacture. Witness the huge 4-feet pipes laid
through this district last year, to carry gas from Wandsworth to the City. There
is no network of conductors here: it is found necessary to carry in one main, gas
enough to supply hundreds of thousands of gas lamps. Let it be well noticed,
also, that it would be possible to force the gas at high pressure through narrow
tubes to fill and supply gas-holders spread about in different parts of a district.
The analogy to the proposed system of charging accumulators at high tension
is perfect, and this leads me to doubt very much whether the system which has
not been found advisable with gas is likely to be successful with electricity.

I still maintain that, to supply the electric light on a large scale, we must
face the problem of finding out what conductor will carry a current of 70,000
ampères without overheating.

Now, in doing this we are going a step in advance of what has been done
before, just as (to cite, as example, a contemporary engineering work), in de-
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signing the Forth Bridge, Messrs. Fowler and Baker are extending the principles
of bridge-making to magnitudes hitherto unknown. Here the laws of the stabil-
ity of bridges are known, and, with experience on smaller bridges, combined
with laboratory tests of the strength of materials, a sure advance can be made to
the larger structure. It has been my endeavour to find out whether, with the facts
at our disposal as to the smaller currents carried by smaller conductors, and the
laboratory experiments on the nature of our conductors and insulators, we are
in a position to propound laws which shall be a guide to us in extending these
principles to the construction of a suitable conductor for very large currents,
say, of 70,000 ampères.

Sec. 2. Historical Summary.

In 1882 the Fire Risks Committee of this Society discussed the question,
and I believe I am right when I state that it was seriously proposed as a rule, to
prevent overheating of the wires, that the permissible current should be so many
ampères per square inch section. I have often heard this error repeated. I be-
lieve it has actually been adopted by the fire insurance companies as a measure
of safety, and a precise 1,000 ampères per square inch has been given as the safe
current. With regard to the insurance companies, little harm has been done by
this, because they have had only small installations to deal with at present, and,
as above stated, there is practically no danger from this cause; but it seems sur-
prising that in one breath they should tell contractors that in small installations
they must not raise the temperature of their conductors 1

10 of a degree, and that
in large installations they may make their conductors red-hot.

As a matter of fact, in any installations, except very large ones, the safe con-
ductor ensures greater economy than the unsafe one; and Sir William Thomson
has done well∗ in fixing the size of conductors by commercial considerations,
when he showed that the interest and depreciation on the cost of conductors
should equal the annual loss of horse-power in heating up these conductors.

There is a limit above which this rule does not apply, because the heating
becomes so great that the insulation is injured. The first person who, so far as I
∗ B. A. Reports, 1881, pp. 518 and 526.
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know, has taken notice of this, is Mr. Cowling Welsch, in a table published by
Messrs. E. & F. Spon. He fixes the limit at 2,700 ampères, but he does not state
what he considers to be the limiting temperature which is tolerable, nor does he
specify the nature of the insulation. His facts seem to be taken from the tests of
Messrs. Clark, Forde, and Taylor (see next page.) Mr. T. Gray has also taken
notice of the failure of Sir William Thomson’s law for high currents, in a paper
contributed to the Philosophical Magazine in 1883, and fixes the limiting value
at 5,000 ampères.

I shall not take up the question of how Sir William Thomson’s rule is to be
applied commercially. I have resolved in this communication to confine myself
to one point—the strength of current which can be carried through a wire under
different conditions without overheating.

I find that two writers have worked at this subject from a mathematical point
of view, and each has worked out some concrete examples. One of these is
Mr. Day, of King’s College, whose useful little book, “Electric Light Arith-
metic,” should be studied by all learners. The other author is Mr. T. Gray.
His remarks on the subject appear in the Philosophical Magazine, Septem-
ber, 1883. In discussing the question of bare wires, both of these authors as-
sume that the cooling effect is proportional to the surface, and they make no
reference to the variation from this law which I pointed out in 1882 to the
British Association, and which has been confirmed by Mr. Preece. Mr. Day
deals only with the case of a naked wire, in which he arrives at the theoretical
law—(current)2 ∝ (diameter)3—which I published in 1882, but which I also
showed at that time to be contradicted by experiments on a small scale. My
own view of the matter is, that while, of course, radiation is proportional to sur-
face, convection is not so, but is nearly constant for rectilinear wires of different
diameters but the same temperatures, and that with thin wires consequently con-
vection is the most important factor, but for thick wires radiation proportional to
surface is the ruling factor; hence the tables which I have computed are correct
for large diameters, but with small wires greater currents may be safely carried.

Mr. Gray has also gone partially into the theory of an insulated cable, and
arrived at formulæ very similar to my own.

Some experiments were made by Messrs. Clarke, Forde, and Taylor for the
Indian and Oriental Electrical Storage and Works Company, in the last year or
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two, and the results are published in the Electrician for April, 1883. The general
conclusion arrived at is, that up to 10 ampères it is safe to allow 1 ampère per
10 pounds of copper per mile, either with naked wire or with insulated wires
buried in sand, in the hot Indian climate. They furnish the following table:—

CLARKE, FORDE, and TAYLOR’S TABLE.

B.W.G. Diam. Mills. Weight in lbs.
per mile. Ampères. Lbs. per

ampère.

22 28 12·4 2·33 5·32
21 32 16·2 2·84 5·70
20 35 19·5 3·27 6·00
19 42 28·0 4·3 6·5
18 49 38·1 5·4 7·0
17 58 53·3 6·9 7·7
16 65 67·1 8·3 8·1
15 72 82·5 9·6 8·6
14 83 109·5 11·9 9·1
13 95 143·0 14·56 10·0

No information is given as to the temperature which is considered permissible.
In the second supplement of the Electrician, published in March, 1883, a

table was printed, supposed to give the currents which could be safely worked
through different thicknesses of conductor. This table, however, was founded
upon the assumption that the safe-working current was proportional to the sec-
tional area, which is now well known to be far from the case. I quote this simply
as one example, out of many which has come to my notice, of the same mistake
being made by people who ought to be better informed.

There are five primary cases of conductors which must be treated sepa-
rately—

(1) Overhead naked wires.
(2) Overhead cables.
(3) Subaqueous cables.
(4) Subterranean and embedded cables.
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(5) Coils.
I have added the fifth case, of coils, because it is important in the manufac-

ture of dynamos and magnets.
Each of these classes has its own peculiarities. In all of them heat is gen-

erated by the current, and this heat must be got rid of. In case (1) it is got rid
of solely by radiation and convection; in the others partly by conduction, and
in case (4) very largely by absorption. In case (1) the maximum temperature is
reached almost immediately: in some of the other cases it may be many hours
before the final steady flow of heat sets in.

Sec. 3. Bare Copper Wires.

Having convinced myself that the most satisfactory mode of attacking the
problemwas to treat it in a strict mathematical way, and being well aware that all
the requisite data had been obtained by previous experimenters, I determined to
work out practicable tables for the use of electricians from these data, including
both bare and insulated conductors. The first step was to solve the following
problem:—

Problem I.—To find the law connecting diameter, D, of conductor with that
strength of current, C, which raises its temperature by a fixed amount t° cent.
above that of the surrounding air.

Let R = the resistance in ohms of a cubic centimètre of the substance of
the conductor (= its specific resistance).

Let E = the heat radiated per second from a square centimètre surface when
the temperature of the surface is 1° cent. above that of the surrounding
air.

The radiation from the surface of 1 cm. length of the wire is 𝜋 D 𝑡 E, and this
must equal the heat generated in 1 cm. length of the substance = C2 ⋅ R

𝜋 (
D
2 )

2 ×

(number of units of heat in 1 joule) = C2 ⋅ 4R
𝜋D2 × ·24.∗

∗ Everett’s “Units and Physical Constants.” Joule’s equivalent of a Gramme centigrade heat
unit = 4·2 × 107 ergs, and one joule = 107 ergs, ∴ ·24 = number of heat units in one joule.
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Whence
𝜋 D 𝑡 E = C2 4R × ·24

𝜋D2

and
C2 = D3𝑡 ⋅ 𝜋2E

R × 4 × ·24
(A)

This shows that if the heat be lost by radiation, or by any means which is
proportional to the surface, then, in order to keep all the wires of different di-
ameters at the same temperature, we must have the cubes of these diameters
proportional to the squares of the currents if the change of resistance with tem-
perature be neglected.

Example:—To take, as a special example, the case of copper we know that
R = ·000001642 ohm∗ at 0° centigrade,

and increases ·38 per cent. per degree centigrade;
E = ·000168 (polished), or ·000300 (blackened).†

To take an example, let C = 10 ampères; let the wire be No. 16 B.W.G. =
0·165 cm.; the rise of temperature comes out

𝑡 = 21·2° C., polished,
or

𝑡 = 15·0° C., blackened.

The accompanying Table I. has been computed from the formula obtained
above:

C2 = D3𝑡 ⋅ 𝜋2E
4R × 0·24

∗ Maxwell’s “Electricity and Magnetism,” Vol. I., last chapter. † This is taken from D. Mc-
Farlane’s experiments (Proceedings Royal Society, Edinburgh, 1872, p. 93), in which radiation
took place from balls of considerable size, and, consequently, convection played an unimportant
part. If the rise in temperature were 100° or more, it would become necessary to take account
of McFarlane’s second and even third terms, depending on 𝑡2 and 𝑡3.
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C = current (ampères).
D = diameter of wire (centimètres).
𝑡 = excess of temperature (centigrade) above air.

E = coefficient of radiation and convection.
R = specific electrical resistance (ohms).

.24 = number of gramme-centigrade heat units in a watt.
Temperature of the air assumed 20° C.

R = 0·000001642 (1 + ·38𝑡
100 ) .

E = ·000168 for polished, ·00032 for blackened, copper.

It gives the rise in temperature in bare copper wires with different currents. In
computing with this formula, it must be noticed that the value of R, the specific
resistance, varies with the temperature. The resistance at 0° C. is 1642, as stated
above. At the temperature of the air (which may be taken at 20° C.) it is 1736,
and at any temperature which is 𝑡° above 20° C. the resistance is 1642 (1 +
·0038 (𝑡 + 20)). This change of resistance produces a change of 15 per cent. in
the current which can be carried at the higher temperatures.

The effects of temperature in altering the resistance are continually crop-
ping up in our application of theory to practice, and the following very striking
experiment is worth recording:—

I have been informed by Mr. H. Edmunds that he made experiments with
wires 1

32 inch diameter, flattened out to various widths, through which he passed
the current from a machine, the E.M.F. being the same in all the experiments.
In the form of wire 1

32 inch diameter, it was heated to a bright colour; when

flattened to 1
16 and 1

8 inch width, it lost luminosity; and so on until, when used

in a strip 1
2 inch wide, it kept pretty cool, and fairly stopped the engine. Here we

see that the resistance of the wire and all the strips was the same at any constant
temperature, but the surface for cooling by radiation and convection was greater
with the wider strips. This explains why the wider strips were cooler than the
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narrower ones, and still more than the wire. Lastly, the resistance is trebled
at a temperature which makes the metal barely luminous, and is enormously
increased at a bright heat. Hence, in the cases where therewas bright luminosity,
there was high resistance and less current. The wide strip, being the coolest, had
most current, and used up most work, and so stopped the engine.

In the above table (as in the others which follow it), the current specified
heats the wire to the degree stated only when steadily applied. A much more
powerful current might be used for a very short time at intervals, as in signalling
for railways.

The only doubt of the accuracy of the table can come from a doubt as to the
accuracy of McFarlane’s experiments, which were made in Sir William Thom-
son’s laboratory, or in the extension of his results to surfaces of different dimen-
sions. On this matter I have a few remarks to make.

1. The value which McFarlane found for the loss of heat per second per
degree difference of temperature between the metal and the enclosure increased
from 𝑡 = 5° C. to 𝑡 = 60° C. in the ratio 178 ∶ 226 for polished copper. I have
used the value 178 in calculating the above table, so that the current which can
be carried with the copper in any state of oxidation, or dirt, is certain to lie
between the two values given in the table under bright and blackened.

2. The only experiments with which I can compare Mr. McFarlane’s are
those by the late Mr. Nichol, published by Professor Tait in the Proceedings
Royal Society, Edinburgh, 1869-70, p. 207. The following table gives the com-
parison.
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Loss of heat (per sq. cm. per second per degree centigrade difference of temperature) from
copper in air at atmospheric pressure in blackened enclosure at constant temperature (8°
C. in Nichol’s experiments), for various differences of temperature:—

Polished. Blackened.

Difference of
temperature.

Loss per sq. cm. per sec.
per degree. Difference of

temperature.

Loss per sq. cm. per sec.
per degree.

McFarlane. Nichol. McFarlane. Nichol.

Degrees. Degrees.
10·0 ·000176 … 10·0 ·000266 …
12·5 … ·000198 12·5 … ·000364
15·0 ·000193 … 19·3 … ·000331
15·3 … ·000182 20·0 ·000289 …
20·0 ·000201 … 30·0 ·000306 …
21·6 … ·000175 33·6 … ·000320
30·0 ·000212 … 40·0 ·000319 …
32·5 … ·000173 42·2 … ·000322
40·0 ·000220 … 50·0 ·000326 …
42·5 … ·000173 53·2 … ·000328
50·0 ·000225 … 60·0 ·000328 …
55·8 … ·000177
60·0 ·000226 …

A comparison of the results of McFarlane and Nichol shows that they agree
generally as well as could possibly be expected, so far as the termwhich depends
on the first power of the temperature in the expression

loss of heat = A 𝑡 + B 𝑡2 + C 𝑡3 + ⋯

is concerned, but that in the comparatively unimportant second termMcFarlane
makes B negative, and Nichol makes it sometimes positive and sometimes neg-
ative. The general conclusion is that we can trust safely to the first term, but
that we must not push the application to extremely high temperatures.

3. Both the above sets of experiments were made upon masses of metal
some centimètres in diameter, and the conclusion seems warrantable that with
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such masses my formula is accurate. I state this now, because I have next to
show that the law does not extend to small masses where convection plays a
more important part than radiation. My impression is that thin wires lose their
heat chiefly by convection when free in the air, but larger masses chiefly by
radiation.

I worked at the subject experimentally in 1881 and the following years. My
results were published in the British Association Reports, 1882; Annales de
l’Electricité, 15th October, 1882; the Electrician, 1882, September, and 1883,
February.

My first object in those experiments was to test the correctness of the fol-
lowing considerations:—When a current passes through a wire keeping up a
constant temperature, the heat developed by the current over a given length is
equal to that lost by radiation, convection, and conduction. It seemed right to
suppose that at a fixed temperature this cooling varies as the surface, i.e., as the
diameter of the wire. The heat generated by the law of Joule varies as C2R or
C2

D2 , where C = the current, R the resistance, and D the diameter of the wire.
Whence

C2

D2 = 𝑎D (𝑎 being a constant),

and

C = 𝑎D
3
2 .

To verify the exactness of this law, I experimented on several wires of dif-
ferent diameters but the same conductivity. Each wire was thinly coated with
beeswax, whose melting point was 58° C., the temperature of the room being
18° C. A current was passed through one of these wires, and resistances were
slowly and gradually removed from the circuit, until the current heated the wire
so as to melt the wax. The angle of deflection of the tangent galvanometer was
then read off, to give the intensity of the current. The same operation was re-
peated on the other wires, and the following table gives the results obtained:—
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D C C
D

C

D
3
2

C
D2

Mm.
0·58 0·984 1·696 2·229 2·924
1·22 2·304 1·888 1·709 1·548
1·58 3·026 1·915 1·523 1·212

If C ∝ D
3
2 , the quotient C

D
3
2

should be constant for all the wires. If, as some

have supposed, C ∝ D2, the quotient C
D2 should be constant. If, lastly, C

D
is

more nearly constant, as is seen to be the case, the law is that the current varies
more nearly as the diameter.

Within the last few days I have come across some tests which I had made in
1881, on five thicknesses of lead wire, to find the current required to fuse them.
I found that this depended upon the length of the specimen. The reason is that
the ends of the wire are clamped by cold metal, which absorbs the heat, and so
a greater current is carried without fusion with short specimens than with long
ones. I give the results for what they are worth.
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Fusing Currents for Lead Wires.

Diameter. Length. Fusing Current.

Mm. Mètre. Ampères.
0·55 0·025 0·78
0·78 0·025 0·937
0·94 0·025 1·125

{
1·03 0·025 8·2
1·03 0·225 6·0

⎧⎪
⎪
⎨
⎪
⎪⎩

1·28 0·300 9·5
1·28 0·150 12·37
1·28 0·075 12·75
1·28 0·050 13·5
1·28 0·025 16·87

These measurements were not made by myself, and I cannot vouch for any
very great accuracy. One fact which we learn from them is, that in such exper-
iments, with wires about 1 millimètre thick, the length in experiments of this
nature should be not less than 30 centimètres, or, generally, the length should
be 300 times the diameter. The effect of using short wires is especially shown
with the thicker ones, the experiments on which show that a large quantity of
heat is carried off by thermal conduction to the massive cooling terminals.

Taking the case of a long wire, let us see how far it gives us reason to believe
in the applicability of the formulæ of this memoir to practical cases. A lead
wire, 1·28 millimètre diameter and of considerable length, was heated to the
temperature of fusion with a current of 9·5 ampères, and one of 1·03 millimètre
diameter, with a current of 6·0: let us find the theoretical current required.

By referring to Problem I., we see that the heat generated per second in one
centimètre length of the substance = C2 R

𝜋 (
D
2 )

2 × ·24 where

C = current in ampères,
R = specific resistance in ohms,
D = diameter.
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Now R∗ = 19,850 at 0° C. for lead in C.G.S. units.
= 44,751 at 327° in C.G.S. units,
= ·000044751 in ohms.

The melting temperature of lead being 327° C.†, or, say, 310° C. above the
surrounding air,

∴ heat generated = C2 ·000044751 × 4
𝜋D2 × ·24 = ·0000570C2

D2 × ·24.

Referring to McFarlane’s experiment, I find that 60° C. excess of temper-
ature gives a loss of heat per square centimètre per second = ·01356 gramme
centigrade heat units with polished copper, and that the loss is nearly propor-
tional to the temperature. This would give ·07006 for 310° C.

The surface of one centimètre length of the first wire is

𝜋 × ·128 = ·402,

and of the second it is
𝜋 × ·103 = ·324;

and the loss of heat is in the first wire

·07 × ·402 = ·02814,

in the second
·07 × ·324 = ·02268,

and this must equal the heat generated as given above, viz.—

= ·0000570 × ·24 C2

D2

= ·00001368 C2

D2

= ·000848 C2 for the first wire,
and = ·001290 C2 for the second wire;

∗ Jenkin: Cantor Lectures. † Balfour Stewart: “Elementary Treatise on Heat,” p. 88.
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whence for the first wire
C2 = ·02814

·000848
and for the second

C2 = ·02268
·001290

which gives us 5·8 and 4·2 ampères theoretically in place of 9·5 and 6·0 respec-
tively, as found by experiment. This only shows that McFarlane’s constant does
not apply to high temperatures, and that the loss of heat is then much greater
than in direct proportion to the temperature.

The only extensive experiments on the subject, with which I am acquainted,
have been made by Mr. W. H. Preece, and the results are about to be commu-
nicated to the Royal Society. He has been kind enough to show me his exper-
imental results, in order that I might be able to bring before you a comparison
with my own results.

He measured the current which was just sufficient to melt platinum wires of
different sizes, and he also measured the current which is just sufficient to make
wires luminous. The results obtained by Mr. Preece confirm my experiments,
and show that with small wires the (current)2 is more nearly proportional to the
(diameter)2 than to the (diameter)3.

Sec. 4. Aerial and Subaqueous Cables.

We now come to the case of insulated conductors. There are two caseswhich
can be taken together—aerial and subaqueous. The mathematical treatment of
these is, however, not quite the same. In the subaqueous cable we may assume
that the outside of the insulator remains at the temperature of the water. In
an aerial line it sometimes happens that the insulator is so thin that its outside
becomes quite hot. The mathematical view of this case is nearly the same as
that of a copper conductor covered with lampblack, which case has already been
treated.

Problem II.—A conductor of radius 𝑟1 is surrounded with an insulator to an
outer radius 𝑟2. If the ratio

𝑟2
𝑟1

remains constant, it is required to find the way
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in which the current C must vary with radius 𝑟1, so that the temperature of the
wire shall be 𝑡1 degrees cent. above that of the outside of the insulator.

Let R, as before, be the specific electrical resistance of the conductor in
ohms, and let K be the thermal conductivity of the insulator.

Let H be the heat which is generated per second by the current in a length
of one centimètre of the conductor.

Then H is also the heat which flows per second radially out of the insulator
per centimètre of length. Imagine the insulator to be made up of a number of
concentric cylinders, and let the radius of one of them be 𝑟 and the thickness
𝛿 𝑟, then the surface of one centimètre length of this cylindrical shell is 2 𝜋 𝑟;
and if −𝛿 𝑡 be the difference of temperature, we have, from Fourier’s definition
of conductivity,

H = −K ⋅ 2 𝜋 𝑟 ⋅ 𝛿 𝑡
𝛿 𝑟

If we integrate this between the limits 𝑟 = 𝑟1 and 𝑟 = 𝑟2, the difference of
temperatures at these points being 𝑡1, we find that

log .𝑒
𝑟2
𝑟1

= 2 𝜋 K
H

𝑡1

Now we also know, from Joule’s law, that the heat generated in one cen-
timètre length of the conductor is

H = 4 C2 R
𝜋 D2

1

× (number of heat units in one joule = 0·24).

∴ log .𝑒
𝑟2
𝑟1

=
𝜋2 K D2

1

·48 C2 R
𝑡1

C =
√√√√√

⎷

𝜋2 D2
1 ⋅ K 𝑡1

·48 R log .𝑒
D2
D1

(1)

It appears from this, that when the ratio
D2
D1

is constant, the current must vary

as the radius of the conductor to produce a constant difference of temperature
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between the inside and outside of the insulator. But it would be comparatively
useless to tabulate the data from this formula, for with aerial cables we must
take note of the excess of temperature of the outside of the insulator over the
surrounding air. Call this excess 𝑡2. Then, from the method pursued in the
investigation for bare wire, E being, as before, the coefficient of radiation and
convection, the flow of heat is

= 𝜋 D2 𝑡2 E

but it is also
=

2 𝜋 K 𝑡1

log .𝑒
D2
D1

whence

𝑡1
𝑡2

=
D2 E ⋅ log .𝑒

D2
D1

2 K
putting E = ·0003 (see above) and K = ·0005

𝑡1
𝑡2

= 3
10

D2 log .𝑒
D2
D1

(2)

∴ 𝑡 = 𝑡1 + 𝑡2 = 𝑡1 ⋅
10 + 3 D2 log .𝑒

D2
D1

3 D2 log .𝑒
D2
D1

(3)

and from (1)

C = √

⎧
⎪
⎨
⎪
⎩

𝜋2 K D2
1

·48 R
𝑡 ×

3 D2

10 + 3 D2 log .𝑒
D2
D1

⎫
⎪
⎬
⎪
⎭

This formula is one of great interest. From it we can calculate directly the
value of the current or the rise in temperature, when the other quantities are
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fixed; and all the problems in connection with such cables as are discussed in
this memoir can be dealt with by the help of the same formula. There is another
matter of great practical importance which it enables us to solve. We can com-
pare it with the formula (A) on page 9, for bare copper wire. Call I and I′ the
currents in bare and insulated wires, which with the same value of D give also
the same value of 𝑡.

Assume E = ·0003 for insulation, and E′ = ·0002 for copper.

I2

I′2 =
D3 𝑡 ⋅ 𝜋2 E′

R × 4 × ·24
D2

1 D2 𝜋2 K E ⋅ 𝑡
2 × ·24 × R

⋅ 1

2 K + E ⋅ D2 log .𝑒
D2
D1

= 2
3 × D3

D2
1 D2

⋅ 1
2 K

⋅ (2 K + D2 E log .𝑒
D2
D1 )

= 2
3 ⋅ D3

D2
1 D2

⋅ 1
2 ⋅ (2 + {

E
K

= 3
5} ⋅ D2 log .𝑒

D2
D1 )

and D = D1.
Thus we find that I is greater or less than I′, according as

2 D1 (2 + 3
5 D2 log .𝑒

D2
D1 ) is ≷ 6 D2.

Take as special cases (1)D2 = 2D1 and (2)D2 = 4D1. Then I is ≷ I′, according
as

(1) 4 + 6
5D2 × ·693 is ≷ 6 × 2,

and (2) 4 + 6
5D2 × 1·386 is ≷ 12 × 2,

i.e., according as

(1) D2 is ≷ 6 × 2 × 5 − 20
6 × ·693

≷ 9·6,

and (2) D2 is ≷ 12 × 2 × 5 − 20
6 × 1·386

≷ 12·0,
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or (1) as D1 is ≷ 4·8 centimètres,
and (2) as D1 is ≷ 3·0 centimètres.

If different values of E and K are adopted, these values will vary proportionally
to K

E
, here assumed to be 3

5 .

We have now arrived at a most important result, viz., that an insulated wire
carries a greater current without overheating than a bare wire, if the diameter
be not very great. Assuming the diameter of the cable to be twice that of the
conductor, a greater current can be carried in insulated cables than in bare wires
up to 4·8 centimètres diameter of conductor. But if the insulated cable have a
diameter four times that of the conductor, this is the case up to 3·0 centimètres
diameter of conductor.

When the thickness of insulation is made very great, the limiting size of
conductor which favours the insulated wire is shown below:—

Diameter of insulator.
Diameter of conductor.

Limiting diameter of conductor
which favours insulation.

2 … 4·8 cm.
4 … 3·0 „
6 … 2·5 „
8 … 2·2 „

10 … 2·0 „
100 … 1·0 „

I venture to express the conviction that these results must be looked upon as
very surprising. It was hardly to be expected that, by surrounding a copper
wire with a bad conductor of heat, we could in any case increase the strength
of current which it will carry without overheating. Yet such is clearly the case;
and the general explanation of it is that by so doing we increase the surface from
which radiation and convection take place. When, however, we have to deal
with large currents in large conductors, and the thickness of insulating material
is increased in the same ratio, the heat finds greater difficulty in penetrating
so thick a mass, and the insulation becomes objectionable from its bad heat-
conducting properties, so as to lead us to the result that the bare wire carries
more current than the insulated one without overheating, when the diameter is
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great.
It has been supposed by some persons that heat will escape far more freely

through insulating materials, owing to their sometimes being diathermanous,
and allowing heat to be radiated through them. Now, in opposition to this view,
I must say that very few such substances are diathermanous, and very seldom
are they sufficiently homogeneous to allow the possibility of direct radiation
through their mass.

Before I go on with what I have to say, I must now pause to make a few
remarks on the problem which has just been solved.

1. Permanent State.—The definition of Fourier, which has been made the
basis of the calculations, has reference to the case only when heat has been
steadily supplied for some time, so that the gradation of temperatures from the
hot interior and the cool exterior has reached what is called the permanent state.
The time which is required to attain this state varies with the conditions of the
case. With an insulated cable this time increases with the thickness of the in-
sulating material. It may often happen that many hours must elapse before this
state is arrived at, i.e., before the calculations of the present part of my paper
can be applied. It must be noticed that previous to the establishment of the per-
manent state the heating effect is less injurious; so that in all cases where there
is a considerable amount of insulating material the current may, during the first
working hours, be considerably in excess of what has been calculated out here
as the working current. The reason of this is, that during this preliminary stage
the heat is used up in raising the temperature of the insulating material, which
serves to cool the conductor.

2. Specific Heat.—This leads me to my second remark about the above
calculations, viz., the influence of specific heat of the insulator. It has been
explained that, after the permanent state has set in, the heat which is generated
in the conductor all passes through the insulator to the external air. But previous
to that time the heat generated is partly used up in raising each layer of the
insulator up to the temperature which it must have when in permanent state.
The quantity of heat used up in this way depends upon the specific heat of the
insulator. The specific heat is the number of units of heat required to raise the
temperature of one gramme of the material 1° C. This quantity is known for a
large number of substances.
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A patent has been taken out for resistances of fine wire through which large
currents can be made to pass without undue heating, by embedding the wire in
cement or plaster of Paris. The cooling effect of the plaster of Paris is dependent
upon its specific heat, and is only temporary. After a very long run of a current
through such a conductor, the heating may become greater than in air; and, if the
temperature be that of red heat, the plaster becomes a good enough conductor
to lower the resistance of the combination so as to make it useless.

I have known of cases where much larger currents have been carried through
cables than would be possible by the formula: it is probable in these cases that
the current was not continued long enough for the permanent distribution of the
temperature to be arrived at. Hence the wire carried a larger current without
overheating.

3. Let us form some estimate of the work which is required to heat the
insulator to its permanent condition. The exact solution of this problem is trou-
blesome, so we must be content with a very general view of the question. If
𝑟1 and 𝑟2 be the radii of the interior and exterior respectively of the insulator,
the mass of this material in a centimètre length is 𝜋 (𝑟2

2 − 𝑟2
1). Its weight is

𝑤 𝜋 (𝑟2
2 − 𝑟2

1) when 𝑤 is the specific gravity of the insulator. The heat required
to raise its temperature 1° C. is 𝑐 𝑤 𝜋 (𝑟2

2 − 𝑟2
1) when 𝑐 is the specific heat of the

material. I can find no determination of the specific heat of gutta percha, but,
by the analogy of the substances which it most resembles, it is probably about
0·2. We may take this value for the present, remembering that it is desirable to
have experiments made upon all the substances used as insulators, so as to know
their specific heats. The density of gutta percha is about 1·0. If we take, as an
example, the data derived from an experiment in which C = 500, 𝑟1 = ·625,
𝑟2 = 5, we find

𝑐 𝑤 𝜋 (𝑟2
2 − 𝑟2

1) = 0·2 × 1·0 × 3·1416 × 24·6
= 15·3 heat units per centimètre length.

And if it is raised on an average 25° C. it requires 25 × 15·3 heat units per
centimètre length to establish the state of steady flow.

Now let us see what time it required to generate this heat with the current
of 500 ampères.
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The specific resistance of copper is ·000001624 ohm at 0° C., ∴ the re-
sistance of one centimètre length of the specified cable is ·000001624

𝜋(·625)2 , and the

heat generated by 500 ampères is equivalent to ·000001624
𝜋(·625)2 ×250,000 watts per

centimètre, or ·24 × ·1624 × 2·5
𝜋(·625)2 heat units per second per centimètre = ·07943

heat units per second per centimètre. But the heat required to warm up the in-
sulator to its permanent state is 15·3 heat units per centimètre length per degree
centigrade. Hence, supposing that all the heat generated goes to warm up that
insulator, and that none passes through it until the permanent state has been at-
tained, it will take 15·3 × 25

·079
seconds, = 1 hour 21minutes. It is clear, then, that,

since during all this time much heat is passing through, it will be many hours
before a current of 500 ampères will be able to heat it as much as is implied by
the permanent state.

4. It will be readily believed, from what has been said, how necessary it
is to know the thermal conductivity of the insulating material employed in ca-
bles. Now, it is very important to notice that the thermal conductivity of sub-
stances behaves in the same way as the electrical. The late Principal J. D. Forbes
showed that the metals lie in the same order for either conductivity, and that iron
becomes a worse conductor for heat at higher temperatures, just as it does for
electricity. Now, in the winter of 1872-3, I measured the conductivities of a
large number of substances∗ by an extremely accurate method, consisting of
freezing water through them. All the values are less than those which have been
obtained by other experimenters at higher temperatures, and the low thermal
conductivities of non-metallic substances at low temperatures is completely in
accordance with their electric conductivities. It appears, then, that for the high
temperatures in conductors the thermal conductivity will be higher, and a larger
current can be carried than that given by the formulæ and tables of this memoir.

A few comparisons between the results of Herschel and Lebour, Peclet, and
myself will show this.
∗ Proceedings Royal Society, Edinburgh, 1873.
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G. Forbes. Herschel. Peclet.

Marble {
·00115 ·00470 ·0048

to ·00177 to ·00560 to ·0097

Slate {
·00081 ·00315

— to ·00550

Vulcanised rubber {
·000089 ·00034

— to ·00055
Vulcanite ·000083 ·00037
Caoutchouc — — ·00041
Gutta percha — — ·00048

The average temperature of my results is -10° C; that of the others about
+40° C. At about +2° C., Stephan found the conductivity of ebonite (vulcanite)
0·00026.

5. Another point to be considered is, that when exposed to the air the tem-
perature of the outer surface of the insulator is higher than that of the air. If the
cable be in water this is not the case, unless excessive currents be used. The
case of a cable in water is the most easy to calculate, and is also the most advan-
tageous in practice, as a larger current can be thus conveyed. When it is further
considered that under these conditions gutta percha is practically indestructible,
we see that in very many cases it will be advantageous to utilise water-power to
generate electricity, and the river bed to carry the conductor to the place where
the electricity is to be used.

It has often been noticed that the insulation of leads is unaffected by a few
hours’ run, but is quite hot and soft after twenty-four or thirty hours. This is
completely accounted for by what has now been said.

A general result of this investigation is that an electric insulator should have
as high a thermal conductivity and as high a specific heat as possible.

Having now discussed fully the conditions of the problem of a cable in air
or water, I have computed a table for wires from 1 mm. to 10 cm. diameter,
in which the diameter of the insulated cable is four times that of the conductor
(this being, as I find from makers’ price lists, a common ratio), showing the
current which will raise the temperatures 𝑡° C. above those of the surrounding
air. [This table is substituted for one exhibited to the Society, as it is of more
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practical value.]

TABLE II.

Subaqueous and Aërial Cables (insulated)—
Diameter of cable

Diameter of conductor
= 4.

Temperature of air = 20° C.
t = excess of temperature of conductor over air.

diameter in
centimètres and

mills.

CURRENT IN AMPÈRES.

𝑡 = 1° C. 𝑡 = 9° C. 𝑡 = 25° C. 𝑡 = 49° C. 𝑡 = 81° C.

Cm. Mills.
·1 40 3·7 11·0 17·8 24·0 29·5
·2 80 9·1 27·0 43·8 59·0 72·5
·3 120 15·0 44·4 72·1 97·3 119
·4 160 21·2 62·5 102 137 168
·5 200 27·4 81·0 131 177 218
·6 240 33·7 100 164 219 268
·7 280 40·1 119 192 259 319
·8 310 46·4 137 223 301 369
·9 350 52·9 157 253 342 420

1·0 390 59·3 175 285 384 472
2·0 780 124 367 595 803 988
3·0 1180 189 559 908 1225 1503
4·0 1570 254 753 1221 1646 2021
5·0 1970 319 945 1534 2068 2523
6·0 2360 385 1138 1846 2491 3058
7·0 2760 450 1330 2158 2846 3575
8·0 3150 514 1525 2472 3335 4094
9·0 3540 580 1716 2785 3755 4611

10·0 3940 645 1909 3097 4178 5130
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Computed from the formula,

C = √

⎧
⎪
⎨
⎪
⎩

𝜋2D2
1K

·48 R
. 𝑡 ×

3 D2

10 + 3 D2 log .𝑒
D2
D1

⎫
⎪
⎬
⎪
⎭

K = thermal conductivity of insulator, = ·00048 for gutta percha;
E = coefficient of cooling, = ·0003.

If, as is possible, the thermal conductivity of an insulating covering were
only 0·0003, then a change of K to this amount can be approximately allowed
for by multiplying the currents in the table by a factor which varies from 0·95
to 0·84 for the first ten (incl.), and from 0·84 to 0·78 for the last ten sizes (incl.)
of conductors.

Sec. 5. Buried Conductors.

The case of conductors buried underground is very difficult to treat math-
ematically. At present I content myself with a study of a specially favourable
case, viz., when the conductor takes the form of a thin sheet lying in a horizontal
plane under the ground. This form requires far less metal than any other. The
heat which is created by the current is at first largely absorbed in heating up the
earth near to it, but after some hours a tolerably permanent state sets in, when a
very small amount of heat is still penetrating downwards; but the greater part is
conducted through the superincumbent earth and paving, and thence cooled by
radiation and convection.

With regard to conduction into the soil, we have some experience from the
observations which have been made on the temperature at various depths in the
soil or in rock. The daily and yearly variations of temperature produce waves of
heat in the soil, which are slowly propagated. At a depth of 25 feet the maximum
heat occurs in midwinter, and the annual variation of temperature is only 1

23 of
what it is at the surface.

At a depth of two feet the daily variations of temperature are barely percep-
tible. In the buried cable the heat generated in the dark hours will not all be
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dissipated at once, but there will be a steady flow of heat at the surface day and
night.

Having stated these preliminary facts, I shall now attempt an approximate
solution of our problem.

Problem III.—A sheet of copper 1 centimètre thick and of a width 𝑏, buried
at a depth 𝑑, carries a current C with a rise of temperature t above the surface
of the ground, the ground being 𝑡′∘ above the surrounding air. When the steady
flow of heat has set in, find the relation between these quantities.

The heat generated per centimètre length per second

= C2 R × ·24
𝑏

;

The heat radiated∗
= ·0003 × 𝑏 × 𝑡′;

and these are equal.

∴ C2 = 𝑏2 𝑡′

800 R
.

It would not be permissible to have the surface of the ground raised more

than 5° C. in summer. Let us take 10° as a maximum value for 𝑡′, ∴ C2 = 𝑏2

80 R
.

We have also the equation of conductivity (N.B.—Conductivity of paving
stones and similar materials is ·004 to ·005, according to the experiments and
deductions of Peclet, Herschel and Lebour, J. D. Forbes, Thomson and Everett,
Ayrton and Perry).

C2 R × ·24
𝑏

= heat conducted = K 𝑏 𝑡
𝑑

= ·004 × 𝑏 𝑡
𝑑

∴ C2 = ·004 × 𝑏2 𝑡
·24 R ⋅ 𝑑

= 𝑏2

80 R

∴ ·004 𝑡
·24 𝑑

= 1
80

𝑡 = ·75 × 𝑑.

∗ It is assumed that the coefficient of cooling for the ground is the same as for a ball freely
suspended. It is probably less.
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With a depth of 2 feet, or 60 centimètres, the rise of temperature from the
surface of the earth to the conductor is 45°, and the difference of temperature
between the conductor and surrounding air is 55° C. We might place the con-
ductor under the foot pavement or street close to the surface. This would dimin-
ish the value of 𝑡, but practically we are not injured by taking a depth of 2 feet,
as 50° C. is a permissible rise of temperature. Up to this depth, then, we need
only consider the rate at which we can get rid of heat by cooling. We have the
equation

C2 = 𝑏2

80 R
and for 50° above the temperature of the air, assumed to be 15°, we have

R = 2·031 × 10−6 ohm,

∴ C = 𝑏 × 103

√162·48
= 25 𝑏.

The following table is calculated on these principles:—

TABLE III.

Underground flat conductor of copper 1 cm. thick at a depth less than 2 feet below the surface,
raising temperature of conductor less than 50°C., and surface of ground 10°C. above air.

Width of copper
conductor 1 cm.

thick.

Equivalent
diameter of same

section.

Current to raise
surface temperature

10° C.
Cm. Cm. Ampères.

10 3·5 250
40 7·0 1, 000
90 10·5 2, 250

160 14·0 4, 000
360 21·0 9, 000

2, 800 67·5 70, 000

The second column is given to show the diameter of wire which would give
the same quantity of metal, merely to admit of a comparison with the aerial
conductors.
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It appears, then, that if 𝑐 = 70,000 ampères, we must have 𝑏 = 2,800 cen-
timètres, or the strip of copper must be 28 mètres wide. This gives the least
weight of copper permissible (unless, indeed, we were to diminish still further
the thickness), and it gives us a section = 53 centimètres square of pure copper,
equivalent to a diameter of 67·5 centimètres.

I wish here to insist very positively upon the necessity of making such con-
ductors for large currents in the form of flat sheets. Further, when we see the
enormous mass of metal required, it is clearly necessary to use iron, which re-
duces the cost of material to about 1

6 . I hold this view very strongly in opposition
to my friend Mr. Preece, who maintains that for electric light leads very pure
copper should be used.

Sec. 6. Coils.

There is a very important application of the principles which have here been
enunciated, and this is to the currents which can be carried by coils of wire
when the wire is varied in thickness or the coil is varied in size. I have been
sometimes simply astounded to see the waste of labour, time, and money which
have been lavished on determining the proper thickness of wire with which to
wind a coil without overheating, for a dynamo field-magnet, for regulating coils
in arc lamps, etc., while the whole thing could be done by calculation. My first
experiments to test the truth of the theory were undertaken two years ago. I first
attacked the question as follows:—Having two coils of the same size, but rolled
with wires of different diameters, so as to occupy the same volume and to have
the same weight, then if the number of turns on each bobbin is considerable,
the length of wire is proportional to 1

D2 (D being the diameter of the wire),

and the cross-section is proportional to D2, hence the resistance of each coil is
proportional to 1

D4 , and the heat developed in the circuit during a unit of time

varies as C2 R or C2

D4 . But the radiating surface of the two coils is the same;

whence, if the temperature be the same in both, the heat lost by radiation and
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convection in a given time is constant, and the heat created in unit time must be
constant.

Whence

C2

D4 = 𝑎2, where 𝑎 is constant,

and
C = 𝑎 D2;

i.e., to attain the same temperature with equal-sized bobbins, the current varies
as the section of the wire.

To test the truth of this law, I prepared two copper tubes with flanges at each
extremity, and closed at one end, and wound equal weights of two kinds of wire
of different diameters. Filling one with water, and inserting a thermometer, the
current was increased very slowly until a fixed temperature, sufficiently high,
was steadily maintained. The tangent galvanometer was then read off. After-
wards the same temperature was attained with the other coil in the same way.
The law above stated was exactly confirmed: the tangents of the angles were
proportional to the squares of the diameters.

I next tested the theory in the case of the following problem:—Two coils of
similar shape have their linear dimensions in the ratio 𝑛 ∶ 1, and the thickness
of wire in the same ratio: what ratio of currents is required to raise both to the
same temperature?

LetC R H be the current, resistance, and heat generated in the smaller coil,
and C′ R′ H′ the corresponding quantities in the larger coil.

Then we have

C2 R = 𝑎 H, when 𝑎 is a constant.
C′2 R′ = 𝑎 H′

R′ = R
𝑛

Also, since the temperatures are equal, the heat radiated and convected in
the two cases is in proportion to the surfaces, or as 𝑛2 ∶ 1, and this is equal to
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the heat generated, wherefore
H′ = 𝑛2 H,

or
C′2 R′ = 𝑛2 C2 R,

or
C′2 R

𝑛
= 𝑛2 C2 R,

and
C′2 = 𝑛3 C2;

i.e., the squares of the currents are proportional to the cubes of the linear di-
mensions. To test this, Mr. R. Goodwin made for me the following experi-
ments:—Coils of wire were wound upon two bobbins whose dimensions are—

Small coil—Length = 50 mm.;
Diameter of tube = 13 mm.;
Diameter of wire = 1·05 mm.

Large coil—Length = 100 mm.;
Diameter of tube = 25·7 mm.
Diameter of wire = 2·09 mm.

Here 𝑛 = 2 and 𝑛
3
2 = 2·83 = C′

C
theoretically.

At the temperature of 63° C., the tangent galvanometer showed a deflection
of 37° with the small coil, and at the same temperature with the large coil the
deflection of 64°. The tangents of these angles are 0·75355 and 2·0503 respec-
tively, the ratio of which is 2·72 ∶ 1, which agrees well with the theoretical
value.

It becomes an easy thing in any case to calculate the heating of a coil when
we know its cooling surface and its resistance.

Let 𝜌 = the resistance of a coil in ohms at the permissible temperature,
S = the surface exposed to the air measured in centimètres,
𝑡 = the rise in temperature,

C = the current in ampères.
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·24 C2 𝜌 = heat generated = E 𝑡 S,
where E is McFarlane’s constant varying from ·0002 to ·0003. The latter value
may be taken. If 50° C. be the permissible rise in temperature

C = √
·0003 × 50 × S

·24 × 𝜌
= ·25 √

S
𝜌

N.B.—It must be remembered in practice that the resistance (cold) must be
increased by 1

5 of its value to give 𝜌.
Example:—The resistance of the field-magnets of a dynamo is 1·5 ohms

cold, and the surface exposed to the air is 1 metre: find the current to heat it not

more than 50° C. Here S= 10,000, 𝜌=1·8 ohms, andC = ·25 √
10,000

1·8
= 33·5

ampères. Those who are accustomed to handling dynamos will know that this is
very much what we actually find, and it gives us confidence in the applications
of theory.

Sec. 7. Conclusions.

The general result of this research seems to be that we have the factors re-
quired for arriving at correct theoretical results. The general accordance of the
theory with the few experimental facts which I have been able to get hold of,
give a confidence in the application of these principles.

1. One of the most important results I have obtained is that the insulation of
an aerial conductor is favourable, and gives us a power of using larger currents
with conductors of the same size, when the diameters are not very great.

2. In small installations, the question of safety from fire or injury to insula-
tion is not likely to crop up, but the tables here calculated will always be useful
to let us know the amount of heating.

3. It is satisfactory to have a set of tables which will give us the increase
of temperature with any arrangement of currents and size of wires. But these
tables which I have worked out are not (except in the case of large currents) a
measure of the best size of conductor for any special installation. They indicate
only the safety from heating.
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4. In buried conductors the mass of metal must be very great indeed, the
inferior limit being set by the amount of heating of the surface of the ground
which is permissible.

5. In all ordinary applications of coils of wire we can calculate the rise of
temperature, experiment and theory being found to be in accordance.
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