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PREFACE




ALTHOUGH in the course of the last three centuries scientific theories
have been subject to all manner of vicissitude and change, the
governing motive that has inspired scientists has been ever the same—a
search for unity in diversity, a desire to bring harmony and order into
what might at first sight appear to be a hopeless chaos of experimental
facts.


In this book the essential features of Newton’s great discoveries,
the apparent inevitableness of absolute space and time in classical
science, are passed in review. Then we come to Riemann, that great
mathematician who wrested the problem of space from the dogmatic
slumber where it had rested so long. Finally we see how Einstein
succeeded in transporting to the realm of physics the ideas that
Riemann had propounded, giving us thereby that supreme achievement of
modern thought, the theory of relativity.


Although I have used non-technical language, great care has been given
to an accurate presentation of facts. In certain parts, however,
notably in those devoted to non-Euclidean geometry and to the principle
of Action, a looseness of presentation has appeared unavoidable owing
to the extreme technicality of the subjects discussed. But as it was a
question of presenting these subjects loosely or leaving them out of
the picture entirely, it appeared preferable to sacrifice accuracy to
general comprehensiveness.


Here, however, the reader may be reminded that even for those who are
interested solely in trends of thought or in the evolution of ideas,
no popular or semi-popular book can ever aspire to take the place
of the highly technical mathematical works. The superiority of the
latter lies not in the bare mathematical formulæ which they contain.
Rather does it reside in the power the mathematical instrument has
of giving us a deeper insight into the problems of nature, revealing
unsuspected harmonies and extending our survey into regions of thought
whence the human intelligence would otherwise be excluded. Thus the
sole rôle a semi-popular book can hope to perform is to serve as a
general introduction, to whet the appetite for further knowledge, if
a craving for knowledge is within us. To presume, as the philosophers
do, that a vague understanding of a highly technical subject, gleaned
from semi-popular writings, or from the snatching at a sentence here
and there in a technical book, should enable them to expound a theory,
criticise it, and, worse still, ornament it with their own ideas, is
an opinion which has done much to create a spirit of distrust towards
their writings. The answer Euclid gave to King Ptolemy, “There is no
royal road, no short cut to knowledge,” remains true to-day, still

truer than in the days of ancient Alexandria, when science had not yet
grown to the proportions of a mighty tree.


I wish to take this opportunity to express my gratitude to Prof. Leigh
Page of Yale University for his kindness in looking over the manuscript
and offering many valuable suggestions.


A. D’ Abro.


NEW YORK, 1927.
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FOREWORD






“And now, in our time, there has been unloosed a cataclysm which has
swept away space, time and matter, hitherto regarded as the firmest
pillars of natural science, but only to make place for a view of things
of wider scope, and entailing a deeper vision.”



H. WEYL (“Space, Time and Matter”).





THE theory of relativity represents the greatest advance in our
understanding of nature that philosophy has yet witnessed.


If our interest is purely philosophical, we may wish to be informed
briefly of the nature of Einstein’s conclusions so as to examine their
bearing on the prevalent philosophical ideas of our time. Unfortunately
for this simplified method of approach, it is scarcely feasible.
The conclusions themselves involve highly technical notions and, if
explained in a loose, unscientific way, are likely to convey a totally
wrong impression. But even assuming that this first difficulty could
be overcome, we should find that Einstein’s conclusions were of so
revolutionary a nature, entailing the abandonment of our ideas on
space, time and matter, that their acceptance might constitute too
great a strain on our credulity. Either we would reject the theory
altogether as a gigantic hoax, or else we should have to accept it on
authority, and in this case conceive it in a very vague and obscure way.


From a perusal of the numerous books that have been written on the
subject by a number of contemporary philosophers, the writer is firmly
convinced that the only way to approach the theory, even if our
interest be purely philosophical, is to study the scientific problem
from the beginning. And by the beginning we refer not to Einstein’s
initial paper published in 1905; we must go back much farther, to
the days of Maxwell and even of Newton. Here we may mention that
however revolutionary the theory of relativity may appear in its
philosophical implications, it is a direct product of the scientific
method, conducted in the same spirit as that which inspired Newton
and Maxwell; no new metaphysics is involved. Indeed Einstein’s theory
constitutes but a refinement of classical science; it could never have
arisen in the absence of that vast accumulation of mathematical and
physical knowledge which had been gathered more especially since the
days of Galileo. Under the circumstances it is quite impossible to gain
a correct impression of the disclosures of relativity unless we first
acquaint ourselves with the discoveries of classical science prior to
Einstein’s time. It will therefore be the aim of this book, before
discussing Einstein’s theory proper, to set forth as simply as possible
this necessary preliminary information.


Modern science, exclusive of geometry, is a comparatively recent
creation and can be said to have originated with Galileo and Newton.

Galileo was the first scientist to recognise clearly that the only
way to further our understanding of the physical world was to resort
to experiment. However obvious Galileo’s contention may appear in the
light of our present knowledge, it remains a fact that the Greeks, in
spite of their proficiency in geometry, never seem to have realised,
the importance of experiment (Democritus and Archimedes excepted).


To a certain extent this may be attributed to the crudeness of their
instruments of measurement. Still, an excuse of this sort can scarcely
be put forward when the elementary nature of Galileo’s experiments and
observations is recalled. Watching a lamp oscillate in the cathedral
of Milan, dropping bodies from the leaning tower of Pisa, rolling
balls down inclined planes, noticing the magnifying effect of water in
a spherical glass vase, such was the nature of Galileo’s experiments
and observations. As can be seen, they might just as well have been
performed by the Greeks. At any rate, it was thanks to such experiments
that Galileo discovered the fundamental law of dynamics, according to
which the acceleration imparted to a body is proportional to the force
acting upon it.


The next advance was due to Newton, the greatest scientist of all
time if account be taken of his joint contributions to mathematics
and physics. As a physicist, he was of course an ardent adherent of
the empirical method, but his greatest title to fame lies in another
direction. Prior to Newton, mathematics, chiefly in the form of
geometry, had been studied as a fine art without any view to its
physical applications other than in very trivial cases.[1] But with
Newton all the resources of mathematics were turned to advantage in
the solution of physical problems. Thenceforth mathematics appeared
as an instrument of discovery, the most powerful one known to man,
multiplying the power of thought just as in the mechanical domain
the lever multiplied our physical action. It is this application of
mathematics to the solution of physical problems, this combination of
two separate fields of investigation, which constitutes the essential
characteristic of the Newtonian method. Thus problems of physics were
metamorphosed into problems of mathematics.


But in Newton’s day the mathematical instrument was still in a very
backward state of development. In this field again Newton showed the
mark of genius, by inventing the integral calculus. As a result of this
remarkable discovery, problems which would have baffled Archimedes were
solved with ease. We know that in Newton’s hands this new departure in
scientific method led to the discovery of the law of gravitation. But
here again the real significance of Newton’s achievement lay not so
much in the exact quantitative formulation of the law of attraction,
as in his having established the presence of law and order at least
in one important realm of nature, namely, in the motions of heavenly
bodies. Nature thus exhibited rationality and was not mere blind chaos

and uncertainty. To be sure, Newton’s investigations had been concerned
with but a small group of natural phenomena (planetary motions and
falling bodies), but it appeared unlikely that this mathematical
law and order should turn out to be restricted to certain special
phenomena; and the feeling was general that all the physical processes
of nature would prove to be unfolding themselves according to rigorous
mathematical laws.


It would be impossible to exaggerate the importance of Newton’s
discoveries and the influence they exerted on the thinkers of
the eighteenth century. The proud boast of Archimedes was heard
again—“Give me a lever and a resting place, and I will lift the
earth.”—But the boast of Newton’s successors was far greater—“Give us
a knowledge of the laws of nature, and both future and past will reveal
their secrets.”


To-day these hopes appear somewhat childish, but this is because
we have learnt more of nature than was ever dreamt of by Newton’s
contemporaries. Nevertheless, although we recognise that we can never
be demigods, the mathematical instrument in conjunction with the
experimental method, still constitutes our most fruitful means of
progress.


Now Newton, in his application of mathematics to the problems of
physics, had been concerned only with the very simplest of physical
problems—planetary motions, mechanics, propagation of sound, etc.
But when it came to applying the mathematical method to the more
intricate physical problems, a considerable advance was necessary in
our scientific knowledge, both mathematical and empirical. Thanks to
the gradual accumulation of physical data, and thanks to the efforts
of Newton’s great successors in the field of pure mathematics (Euler,
Lagrange, Laplace), conditions were ripe in the first half of the
nineteenth century for a systematic mathematical attack on many of
nature’s secrets.


The mathematical theories constructed were known under the general
name of theories of mathematical physics. In so far as they
represented a mere application of mathematics to natural phenomena,
they had their prototype in Newton’s celestial mechanics. The only
difference was that they dealt with a wide variety of physical
phenomena (electric, hydrostatic, etc.), no longer with those of a
purely mechanical nature. The most celebrated of these theories (such
as those of Maxwell, Boltzmann, Lorentz and Planck) were concerned
with very special classes of phenomena. But with Einstein’s theory of
relativity, itself a development of mathematical physics, the scope of
our investigations is so widened that we are appreciably nearer than
ever before to the ideal of a single mathematical theory embracing
all physical knowledge. This fact in itself shows us the tremendous
philosophical interest of the theory of relativity.


Now in all these theories of mathematical physics, the same type of
procedure is invariably followed. Experimenters establish certain
definite facts and detect precise numerical relationships between
magnitudes, for example, between the intensity of an electric current
flowing along a wire and the intensity and orientation of the magnetic
field surrounding the wire. The mathematical physicist then enters
upon the scene, assigns certain letters of the alphabet to the

physical entities involved (in the present case electric current
designated by  and magnetic intensity designated by ) and by
this means translates the numerical relationships discovered by the
experimenter into mathematical form. He thus obtains a mathematical
relationship or equation  which is assumed to constitute the
mathematical image of the concrete physical phenomenon . His task
will now be to extract from his mathematical equation or equations
 all their necessary mathematical consequences. In this
way, provided his technique does not fail him, he may be led to new
equations . These new equations , when translated
back from the mathematical to the physical, will express new physical
relationships .


The mathematician assumes that just as his equations  were
the necessary mathematical consequences of his original equations
, so also must the physical translation of 
constitute a physical phenomenon , which follows as a necessary
consequence of the existence of the physical phenomenon . If 
occurs,  must ensue.


We thus understand the significance of a theory of mathematical
physics. Its utility is to allow us to foresee and to foretell
physical phenomena. In this way it suggests precise experiments
which might never have been thought of, and permits us to anticipate
new relationships and new laws and to discover new facts. From a
philosophical point of view, by establishing a rational connection
between seemingly unconnected phenomena, it enables us to detect the
harmony and unity of nature which lie concealed under an outward
appearance of chaos.


Of course the experimenter in the first place must be very careful to
give accurate information to the mathematician; for if by any chance
his information should be only approximately correct, the mathematical
translation  would likewise be lacking in accuracy, and the
mathematical consequences of a might be still further at variance
with the world of physical reality. It is as though, when firing at
a distant target, we were to point the rifle a wee bit too far to
one side; the greater the range, the wider would be the divergence.
Dangers of this sort are of course inevitable, for human observations
are necessarily imperfect. In any case, therefore, the mathematician’s
physical anticipations will always require careful checking up by
subsequent experiment. Obviously, however, something much deeper is at
stake than mere accuracy of observation.


Mathematical deductions are mind-born; they pertain to reason and
are not dependent on experience. When, therefore, we assume that our
mathematical deductions and operations will be successful in portraying
the workings of nature, we are assuming that nature also is rational,
and that therefore a definite parallelism or correspondence exists
between the two worlds, the mathematical and the physical. A
priori, there appears to be no logical necessity why any such
parallelism should exist. Here, however, we are faced with a situation
over which it is useless to philosophise. Success has attended the
efforts of mathematical physicists in so large a number of cases that,
however marvellous it may appear, we can scarcely escape the conclusion
that nature must be rational and susceptible to mathematical law. In

fact, were this not the case, prevision would be impossible and science
non-existent.


It may be that nature is only approximately rational; it may be that
her appearance of rationality is due to the very crudeness of our
observations and that more refined experiments would yield a very
different picture. Eddington goes so far as to suggest that the
difficulties which confront us in the study of quantum phenomena may
indeed be due to the fact that nature is found to be irrational when
we seek to examine her processes in a microscopic way. This is a
possibility which we cannot afford to reject. But at any rate, as long
as our theories appear to be verified by experiment, we must proceed as
though nature were rational, and hope for the best.


Now it must not be thought that the introduction of the mathematical
instrument into our study of nature creates any essential departure
from the commonplace method of ordinary deductive and inductive
reasoning. There is no particular mystery about mathematical analysis;
its only distinguishing feature is that it is more trustworthy, more
precise, and permits us to proceed farther and along safer lines.


Consider, for example, the well-known change of colour from red to
white displayed by the light radiated through an aperture made in a
heated enclosure, as the temperature increases. From this elementary
fact of observation Planck, thanks to mathematical analysis, was able
to deduce the existence of light quanta and thence the possibility
that all processes of change were discontinuous, and that a body could
only rotate with definite speeds. Obviously, commonplace reasoning
unaided by mathematics would never have led us even to suspect these
extraordinary results.


Now when we say that a theory of mathematical physics is correct, all
we mean is that the various mathematical consequences we can extract
from its equations call for the existence of physical phenomena which
experiment has succeeded in verifying. On the other hand, if our
mathematical anticipations do not tally with experimental verification,
we must recognise that our theory is incorrect. This does not mean that
it is incorrect from a purely mathematical point of view, for in any
case it exemplifies a possible rational world; but it is incorrect in
that it does not exemplify our real world. We must then assume that
our initial equations were in all probability bad translations of the
physical phenomena they were supposed to represent.


In a number of cases, however, it has been found unnecessary to
abandon a theory merely because one of its anticipations happened to
be refuted by experiment. Instead, it is often possible to assume that
the discrepancy between the mathematical anticipation and the physical
result may be due to some contingent physical influence, which,
owing to the incompleteness of the physical data furnished us by the
experimenters, our equations have failed to take into consideration. A
case in point is afforded by the discovery of Neptune.


The Newtonian mathematical treatment of planetary motions assigned a

definite motion to the planet Uranus. Astronomical observation then
proved that the actual motion of Uranus did not tally with these
mathematical anticipations. Yet it was not deemed necessary to abandon
Newton’s law; Adams and Leverrier suggested the possibility that an
unknown planet lying beyond the orbit of Uranus might be responsible
for the deviations in Uranus’ motion. Taking the existence of this
unknown planet into consideration in his mathematical calculations,
Leverrier succeeded in determining the exact position which it would
have to occupy in the heavens at an assigned date. As is well known,
at the precise spot calculated, the elusive planet (presently named
Neptune) was discovered with a powerful telescope.


This procedure of ascribing discrepancies in our mathematical
anticipations to the presence of contingent influences rather than
to the falsity of our theory is only human. There is no inclination,
merely because the hundredth case turns out to be an exception, to
abandon a theory which has led to accurate anticipations in 99 cases
out of 100. But we must realise that this procedure of appealing to
foreign influences, while perfectly legitimate in a tentative way, must
be applied with a certain amount of caution; in every particular case
it must be justified by a posteriori determination of fact. Thus
Leverrier was also the first to discover certain irregularities in the
motion of the planet Mercury. As in the case of Uranus, he attempted
to ascribe these discrepancies to the presence of an interior planet
which he called Vulcan and which he assumed to be moving between the
orbit of Mercury and the sun. Astronomers have, however, failed to find
the slightest trace of Vulcan, and a belief in its existence has been
abandoned. If contingent influences are to be invoked for Mercury’s
anomalies, we must search for them in some other direction.


In this particular case all other suggestions were equally
unsatisfactory. Hence even before the advent of Einstein’s theory,
doubts had been raised as to the accuracy of Newton’s law of
gravitation. The procedure of patching up a mistaken theoretical
anticipation with hypotheses ad hoc has not much to commend it.
Yet when, as was the case with Vulcan and Neptune, the influence we
appeal to is of a category susceptible of being observed directly, the
method is legitimate. But when our hypothesis ad hoc transcends
observation by its very nature, and when, added to this, its utility
is merely local, accounting for one definite fact and for no other, it
becomes worse than useless.


This abhorrence of science for the unverifiable type of hypothesis
ad hoc so frequently encountered in the speculations of the
metaphysicians is not due to a mere phenomenalistic desire to eliminate
all that cannot be seen or sensed. It arises from a deeper motive
entailing the entire raison d’être of a scientific theory.
Suppose, for instance, that our theory had led us to anticipate a
certain result, and that experiment or observation should prove that in
reality a different result was realised. We could always adjust matters
by arbitrarily postulating some local invisible and unverifiable
influence, which we might ascribe to the presence of a mysterious

medium—say, the ether . We should thus have added a new influence
to our scheme of nature.


If we should now take this new influence into consideration, the first
numerical result would, of course, be explained automatically, since
our ether  was devised with this express purpose in view. But we
should now be led to anticipate a different numerical result for some
other phenomenon. If this second anticipation were to be disproved
by experiment we could invoke some second unverifiable disturbing
influence to account for the discrepancy, while leaving the first
result unchanged. Let us call this new influence the ether . We
might go on in this way indefinitely.


But it is obvious that our theory of mathematical physics whose object
it was to allow us to foresee and to foretell would now be useless. No
new phenomenon could be anticipated, since past experience would have
shown us that unforeseen influences must constantly be called into play
if theory were to be verified by experiment. Under these circumstances
we might just as well abandon all attempts to construct a mathematical
model of the universe.


Suppose now that by modifying once and for all our initial premises we
are led to a theory which allows us to foresee and foretell numerical
results that are invariably verified with the utmost precision by
experiment, without our having to call to our assistance a number of
foreign hypotheses. In this case we may assume that the new theory
is correct, since it is fruitful; and that our former theory was
incorrect, because it led us nowhere.


The considerations we have outlined have an important bearing on the
understanding of the outside world as shared by the vast majority
of scientists. If we hold that the simplest of all the mathematical
theories which finds itself in accord with experiment constitutes the
correct theory, giving us the correct representation of the real world,
we shall recognise that it would be a dangerous procedure to saddle
ourselves with a number of hypothetical presuppositions at too early a
stage of our investigations.


To be sure, we may have to make a certain number of fundamental
assumptions, but we must regard these as mere working hypotheses which
may have to be abandoned at a later stage if peradventure they lead to
too complicated a synthesis of the facts of experiment. We shall see,
for instance, that relativity compels us to abandon our traditional
understanding of space and time. It is this fact more than any other
which has been responsible for the cool reception accorded to the
theory by many thinkers. When, however, we become convinced that
Einstein’s synthesis is the simplest that can be constructed if due
account be taken of the results of ultra-refined experiment, and when
we realise that a synthesis based on the classical understanding of
separate space and time would be possible only provided we were willing
to introduce a host of entirely disconnected hypotheses ad hoc
which would offer no means of direct verification, we cannot easily
contest the soundness of Einstein’s conclusions.


There are some, however, who argue that we have an a priori
intuitional understanding of space and time which is fundamental, and

that we should sacrifice simplicity of mathematical co-ordination if
it conflicts with these fundamental intuitional notions. Needless to
say, no scientist could subscribe to such views. Quite independently
of Einstein’s discoveries, mathematicians had exploded these Kantian
opinions on space and time many years ago. As Einstein very aptly
remarks in his Princeton lectures:


“The only justification for our concepts and system of concepts is that
they serve to represent the complex of our experiences; beyond this
they have no legitimacy. I am convinced that the philosophers have had
a harmful effect upon the progress of scientific thinking in removing
certain fundamental concepts from the domain of empiricism where they
are under our control to the intangible heights of the a priori.
For even if it should appear that the universe of ideas cannot be
deduced from experience by logical means but is in a sense a creation
of the human mind without which no science is possible, nevertheless
this universe of ideas is just as little independent of the nature of
our experiences as clothes are of the form of the human body. This is
particularly true of our concepts of time and space which physicists
have been obliged by the facts to bring down from the Olympus of the
a priori in order to adjust them and put them in a serviceable
condition.”


In the passage just quoted, Einstein argues from the standpoint of the
physicist, but the opinions he expresses will certainly be endorsed
by pure mathematicians. They, more than all others, have been led
to realise how cautious we must be of the dictates of intuition and
so-called common sense. They know that the fact that we can conceive
or imagine a certain thing only in a certain way is no criterion of
the correctness of our judgment. Examples in mathematics abound. For
example, before the discoveries of Weierstrass, Riemann and Darboux
the idea that a continuous curve might fail to have a definite slant
at every point was considered absurd; and yet we know to-day that the
vast majority of curves are of this type. In the same way our intuition
would tell us that a line, whether curved or straight, being without
width, would be quite unable to cover an area completely; yet once
again, as Peano and others have shown, our intuition would have misled
us. Many other examples might be given, but they are of too technical
a nature and need not detain us. At all events, mathematicians, as
a whole, refused to question the soundness of Einstein’s theory on
the sole plea that it conflicted with our traditional intuitional
concepts of space and time, and we need not be surprised to find
Poincaré, one of the greatest mathematicians of the nineteenth century,
lending full support to Einstein when the theory was so bitterly
assailed in its earlier days.


We have now to consider in a very brief way certain of the
philosophical problems which antedate Einstein’s discoveries, but
with which his theory is intimately connected. Long before the advent
of Einstein, problems pertaining to the relativity of motion through
empty space had occupied the attention of students of nature. There
were some who held that empty space, and with it all motion, must

be relative; that states of absolute motion or absolute rest through
empty space were meaningless concepts. According to these thinkers,
in order to give significance to motion and rest, it was necessary to
refer the successive positions of the body to some other arbitrarily
selected body taken as a system of reference. We should thus obtain
relative rest or motion of matter, with respect to matter. All these
views were in full accord with our visual perceptions and they were
expressed by what is known as the visual or kinematic principle of
the relativity of motion. Other thinkers preferred to uphold the
opposing philosophy. They assumed that space was absolute; that all
motion must be absolute; that there was meaning to the statement that a
body was in motion or at rest in space, regardless of the presence of
other bodies to be used as terms of comparison. The controversy mighty
have continued indefinitely, had it not been for the appearance of the
scientist with his empirical methods of investigation.


Galileo and Newton were the first to recognise in a clear way that,
provided certain very plausible assumptions were made, the dynamical
evidence adduced from mechanical experiments proved the relativistic
philosophy to be untenable. Classical science was therefore compelled
to recognise the absoluteness of space and motion. It is true that many
philosophers still defended the relativity of all motion. But their
failure to take into consideration the real obstacles that seemed to
bar the way to a relativistic conception of motion, coupled with the
looseness of their scientific arguments, precluded their opinions from
exercising any influence on scientific thought. Now it is to be noted
that notwithstanding the absolute nature which Newton attributed to
all states of motion and of rest in empty space, a certain type of
absolute motion called Galilean[2] or again uniform translationary
motion (defined by an absolute velocity but no absolute acceleration),
was recognised by him as being incapable of detection, so far as
experiments of a mechanical nature were concerned. This complete
irrelevancy of absolute velocity or absolute Galilean motion to
mechanical experiments was expressed in what is known as the Galilean
or Newtonian or classical or dynamical principle of the relativity of
Galilean motion through empty space. The existence of such a principle
of relativity created a duality in the physical significance of motion,
hence of space, but the philosophical importance of the principle, as
referring to the problem of space, was lessened by the fact that this
relativity applied solely to experiments of a mechanical nature. It was
confidently assumed that electromagnetic and optical experiments would
be successful in revealing the absolute Galilean motions which had
eluded mechanical tests.


Such was the state of affairs when Einstein, in 1905, published his
celebrated paper on the electrodynamics of moving bodies. In this
he remarked that the numerous difficulties which surrounded the
equations of electrodynamics, together with the negative experiments

of Michelson and others, would be obviated if we extended the validity
of the Newtonian principle of the relativity of Galilean motion (which
applied solely to mechanical phenomena) so as to include all manner of
phenomena: electrodynamic, optical, etc.


When extended in this way the Newtonian principle of relativity became
Einstein’s special principle of relativity. Its significance lay
in its assertion that absolute Galilean motion or absolute velocity
must ever escape all experimental detection. Henceforth absolute
velocity should be conceived of as physically meaningless, not only
in the particular realm of mechanics, as in Newton’s day, but in the
entire realm of physical phenomena. Einstein’s special principle,
by adding increased emphasis to this relativity of velocity, making
absolute velocity metaphysically meaningless, created a still more
profound distinction between velocity and accelerated or rotational
motion. This latter type of motion remained absolute and real as
before. From this we see that the special principle was far from
justifying the ultra-relativistic belief in the complete relativity
of all motion, as embodied in the kinematical or visual principle of
relativity.


It is most important to understand this point and to realise that
Einstein’s special principle is merely an extension of the validity
of the classical Newtonian principle to all classes of phenomena.
Apart from this extension there is no essential difference between
the two principles, since both deal exclusively with Galilean motion
or velocity. Much of the criticism that has been directed against
Einstein’s special theory, and in particular against its so-called
paradoxes, can be traced to a confusion on the part of the critic
between the very wide visual or kinematical principle of the relativity
of all motion, including acceleration as well as velocity, and the much
more restricted special principle which deals solely with velocity.


Owing to this initial error it has been assumed by some that the theory
of relativity professes to have established the complete relativity of
all motion. So far as the special theory is concerned, this assumption
is obviously untenable; and a very marked distinction is maintained, as
in classical science, between the significance of acceleration and of
velocity. This distinction is by no means new, since it forms part and
parcel of classical science; but in view of its importance to any one
who wishes to obtain any insight into the philosophical implications
of Einstein’s more difficult theory, we have deemed it advisable in
the course of this book to devote a preliminary chapter to Newtonian
mechanics. We may add that Einstein’s paper created an uproar, for it
compelled us to reorganise in a radical way those fundamental forms of
human representation which we call space and time.


After discussing the special theory we shall proceed to examine
Einstein’s general theory, which he began to develop in 1912 and
which he completed in 1916. The general theory deals more especially
with gravitation, though it also sheds new light on the problem of
the relativity of motion. It is our opinion that the reader will

save himself much unnecessary trouble if he realises from the start
that Einstein, even in the general theory, does not succeed in
establishing the complete relativity of all motion. While it is true
that acceleration loses much of its absoluteness, we are still far
from being able to subscribe to the very wide visual or kinematical
principle which the complete relativity of all motion would necessitate.


Following the general theory, Einstein entered into cosmological
considerations on the form of the universe as a whole. This part of the
theory is still highly speculative; and until such time as astronomical
observations conducted on the globular clusters and the Milky Way have
given their verdict, nothing definite can be said.


From the standpoint of the relativity of motion, this last part of
Einstein’s theory is of fascinating interest; for should it be proved
correct, the relativity of all motion might finally be justified and
the bugaboo of absolute rotation dispelled forever. We should then
be led to a modified form of the visual or kinematical principle of
the complete relativity of motion; namely, to Mach’s mechanics. On
the other hand, should astronomical observation deny the correctness
of Einstein’s cosmological views, the theory would have failed to
establish the complete relativity of all motion.


In addition to all this preliminary physical information with which it is
necessary to be acquainted (Newtonian mechanics, electrodynamics)
before proceeding to a study of Einstein’s theory, a considerable amount
of purely mathematical knowledge must be mastered. Here we refer
not to the actual technique of calculation, but to the general significance
of the mathematical doctrines developed by the great mathematicians of
the past.


Einstein’s theory, more especially the second part (the general
theory), is intimately connected with the discoveries of the
non-Euclidean geometricians, Riemann in particular. Indeed, had it not
been for Riemann’s work, and for the considerable extension it has
conferred upon our understanding of the problem of space, Einstein’s
general theory could never have arisen. As Weyl expresses it:


“Riemann left the real development of his ideas in the hands of some
subsequent scientist whose genius as a physicist could rise to equal
flights with his own as a mathematician. After a lapse of seventy years
this mission has been fulfilled by Einstein.”


In a general way it may be said that prior to the discovery of
non-Euclidean spaces two conflicting philosophies held the field. Some
thinkers inclined to Berkeley’s views and maintained that the concept
of space arose from the complex of our experiences, and chiefly from
a synthesis of our visual and tactual impressions. Others, such as
Kant, argued that the concept of three-dimensional Euclidean space
was antecedent to all reason and experience and was essentially
a priori, a form of pure sensibility. As in the case of the
relativity of motion, discussions might have gone on indefinitely had
it not been for the work of the psycho-physicists and mathematicians.

The latter settled the question by proving that Berkeley had guessed
correctly, at least in a general way. The essence of Riemann’s
discoveries consists in having shown that there exist a vast number
of possible types of spaces, all of them perfectly self-consistent.
When, therefore, it comes to deciding which one of these possible
spaces real space will turn out to be, we cannot prejudge the question.
Experiment and observation alone can yield us a clue. To a first
approximation, experiment and observation prove space to be Euclidean,
and this accounts for our natural belief in the truth of the Euclidean
axioms, accepted as valid merely by force of habit. But experiment is
necessarily inaccurate, and we cannot foretell whether our opinions
will not have to be modified when our experiments are conducted with
greater accuracy. Riemann’s views thus place the problem of space on an
empirical basis excluding all a priori assertions on the subject.


Of course, these discoveries on the part of mathematicians precede
Einstein’s theory by fully seventy years. They are the direct outcome
of non-Euclidean geometry and would in no wise be affected by the fate
of Einstein’s theory. But, on the other hand, the relativity theory
is very intimately connected with this empirical philosophy; for, as
will be explained later, Einstein is compelled to appeal to a varying
non-Euclideanism of four-dimensional space-time in order to account
with extreme simplicity for gravitation. Obviously, had the extension
of the universe been restricted on a priori grounds, by some
ukase, as it were, to three-dimensional Euclidean space, Einstein’s
theory would have been rejected on first principles. On the other hand,
as soon as we recognise that the fundamental continuum of the universe
and its geometry cannot be posited a priori and can only be
disclosed to us from place to place by experiment and measurement,
a vast number of possibilities are thrown open. Among these the
four-dimensional space-time of relativity, with its varying degrees of
non-Euclideanism, finds a ready place.






PART I

PRE-RELATIVITY PHYSICS











CHAPTER I

MANIFOLDS





IN this chapter we shall be concerned solely with manifolds and their
dimensionality; and not with their metrics, which pertains to a
different problem entirely.


We all possess a certain instinctive understanding of what is meant by
continuity. We notice, for example, that sounds, colours or tactual
sensations merge by insensible gradations into other sounds, colours
or tactual sensations, without any abrupt transitions. An aggregate
of such continuous sensations constitutes what is called a sensory
continuum or continuous manifold. That continuity is a concept
which springs from experience can scarcely be doubted, and it can be
accounted for by the inability of our crude senses to differentiate
between impressions which are almost alike.


Consider, for example, the succession of musical notes exhibited in
the chromatic scale on the piano. Here we are not in the presence of
a sensory continuum, for the successive sounds do not merge into one
another by insensible degrees. Even an untrained ear can differentiate
between a  and the -sharp immediately following it. But we
can conceive of a piano in which a sufficient number of semitones
and intermediary notes have been interposed so that every note would
be indistinguishable from its immediate successor and immediate
predecessor, although we should still be able to differentiate between
non-contiguous notes. It would thus be possible for us to pass through
a continuous chain of sounds from any one musical sound to any other
without our ear’s ever being able to detect a sudden jump; and this
is what we mean by calling our aggregate of sounds a sensory
continuum.


Suppose now that we were to remove any one of these notes from our
piano (excluding the two extreme ones). The continuity of our chain
of sounds would be broken, for when we reached the missing note we
should detect a sudden variation in pitch as we passed from the sound
immediately preceding the removed note to the one immediately following
it. In short, the removal of one of the notes would cut our continuous
chain of sounds in two.





The dimensionality of our continuum of sounds is obviously unity, for
we can assign successive numbers to the successive notes, starting from
some standard note, and by this means determine them without ambiguity.


Let us complicate matters somewhat by assuming that every individual
note may be sounded with various intensities, but always in such a way
that a note of given intensity can never be distinguished from the
one sounded just a little louder or just a little softer. Once again
it will be possible for us to pass in a continuous way from a note
of feeble intensity to the same note sounded with louder intensity,
without our ear’s ever being able to detect a variation in intensity
between two successive sounds. More generally we shall be able to pass
in a continuous way from a note of given pitch and given intensity to
one of some other pitch and some other intensity.


In the case assumed we should be dealing with a two-dimensional
continuum or continuous manifold of sounds; for in order to locate a
definite sound it would be necessary for us to designate it by two
numbers, one specifying its pitch and the other its intensity. We may
also notice that whereas in the first case, by removing one of the
notes, we were able to cut the manifold of successive pitches into
two parts, the removal of one particular note of definite pitch and
intensity will now be incapable of effecting this separation.


For instance, if we were to remove the note  sounded with a
definite intensity it would still be possible to pass in a continuous
way from any one note of given intensity to any other note of our
continuum by circumscribing the missing note; namely, by choosing
some route of transfer which would pass through a  differing in
intensity from that of the  we had removed.


In the present case, if we wished to divide our two-dimensional
manifold into two parts, it would be necessary to remove some
one-dimensional continuum of sounds, for example the one-dimensional
continuum formed by all the notes of a given pitch , but varying
in intensity, or again of given intensity but varying in pitch. If
this were done, it would be impossible for us to pass in a continuous
way from a note of definite pitch and intensity of our two-dimensional
continuum to a note of any other definite pitch and intensity; for
we could never get past the removed line of sounds without our ear’s
detecting a sudden change.


We might complicate matters still further by taking into consideration
variations in tonality, as for instance the variation which our ear can
detect between two given notes of the same pitch and intensity sounded
by two different instruments, such as a violin and an organ. Assuming
that every one of our notes of given pitch and intensity in our
two-dimensional manifold could also vary in tonality by imperceptible
degrees, we should be dealing with a three-dimensional sensory
continuum in which every note of given pitch, intensity and tonality
could be defined unambiguously by the choice of three numbers.


As before, we should find that the removal of a single note of given
pitch, intensity and tonality, or even the removal of a one-dimensional
continuum of notes such as all those of given intensity and pitch, but
varying in tonality, was quite insufficient to effect a separation in
our three-dimensional manifold. In the present case we should have

to remove some two-dimensional continuum—say, all notes of given
intensity but varying in pitch and tonality. Only then should we have
effected a separation between any given element and any other one,
rendering it impossible for a continuity of sound impressions to extend
between the two elements. By proceeding in this way indefinitely it
is obvious that we can conceive of sensory continua of any number of
dimensions; there is no need to limit ourselves to three.


In a general way we may say, therefore, that a sensory continuum is
-dimensional when, in order to render a path of continuous passage
impossible between any two of its elements, it is necessary to remove
a sub-continuum of  dimensions. This sub-continuum itself is
known to be  dimensional because we can separate it into two
parts only by removing from it a sub-continuum of  dimensions,
etc., till we finally get a sub-sub-sub ... continuum, which can be
separated by removal of a single element. But such an element no
longer constitutes a continuum, since passage in it is excluded; its
dimensionality is then zero; so that the continuum it separates in two
is obviously one-dimensional.


A sensory continuum would also be given by a succession of weights
placed on one’s hand, each only slightly heavier than the preceding
one. Again our tactual impressions might yield a sensory continuum. In
view of the fact that it is possible to account for the rise of the
concept of space, even in the consciousness of a blind man, through
the sole means of his tactual impressions, it may be of interest to
discuss briefly an illustration of a tactual continuum—that obtained
by exploring the surface of our skin by means of pinpricks. If these
pinpricks are sufficiently close to one another, it will be impossible
for us to differentiate between them and we shall always experience the
sensation of one solitary pinprick. We can thus consider the sensory
continuum obtained by some definite chain of pinpricks extending, let
us say, from our elbow to our hand. This particular chain of sensations
exhibits all the characteristics of a one-dimensional sensory
continuum, since every one of its elements is indistinguishable from
its immediate neighbours and since the removal of one of these elements
(pinpricks) would create a hiatus rendering it impossible for us to
pass in a continuous way from elbow to hand, along the chain.


But if we should now consider all the possible chains of pinpricks
extending from a point on our elbow to a point on our hand, the mere
removal of one particular pinprick from one particular chain would
be insufficient to interfere with the continuous passage. We might
always follow one of the other chains, or even, following the same
chain up to the missing element, skip round the latter without sensory
continuity being interfered with. In the present case the only way
to render this continuous passage impossible would be to remove some
continuous chain of pinpricks—say, those circling round our wrist. The
sensory skin-continuum would now be divided into two parts, and as the
continuum removed was one-dimensional, we should conclude that the

skin continuum as manifesting its sensitivity to tactual stimuli was
two-dimensional.


In a similar way, in crude geometry we recognise a wire as
one-dimensional, since by removing a point of the wire our finger
cannot pass in a continuous way from one extremity to the other.
Likewise, a surface is regarded as two-dimensional because only by
cutting it along a line is it possible to interrupt the smooth passage
of our finger from any one point to any other. The mere removal of a
point on the surface would not interfere with the continuous passage
as it did in the case of the wire. It is the same for a volume. Only a
surface can divide it in two; hence volume is three-dimensional.[3]


When we seek to determine the dimensionality of perceptual space,
itself a sensory continuum produced by the superposition of the visual,
the tactual and the motive continua, the problem is more difficult. It
would be found, however, that perceptual space has three dimensions;
but as the necessary explanations would require several chapters we
must refer the reader to Poincaré’s profound writings for more ample
information.


Summarising, we may say that our belief in the tri-dimensionality of
space can be accounted for on the grounds of sensory experience.


Now the subject of our investigations up to the present point has been
the dimensionality of sensory continua and the general characteristics
of sensory continuity; considerations relating to measurement, or to
the extensional equality of two continuous stretches in our continua,
have not been entered upon. Neither has any definition of what is meant
by a straight line been introduced at this stage. As a result, metrical
geometry, which deals with measurements, and projective geometry,
which deals with the projections of points, cannot be discussed. The
only type of geometry we can consider at this stage is that purely
qualitative non-metrical type called Analysis Situs, which deals
solely with problems of connectivity.


Connectivity relates to the types of paths of continuous passage from
one part of a continuum to another. Manifolds may possess the same
dimensionality and yet differ in connectivity. Thus, the connectivity
of a sphere differs from that of a torus or doughnut; since the
doughnut, in contrast to the sphere, presents a hole or discontinuity
through its centre. Yet both sphere and doughnut are two-dimensional
surfaces.





In Analysis Situs, metrical considerations obviously play no part. From
a metrical point of view, although a sphere differs in shape from an
ellipsoid, yet the connectivity or Analysis Situs of the two surfaces
is exactly the same. We may add that there exists an Analysis Situs for
every continuous manifold, so that we may conceive of an Analysis Situs
of  dimensions corresponding to an -dimensional manifold.


Our next task is to determine how a metrics can be established in a
sensory continuum. Consider, for example, a continuous stretch of
shades of grey passing from white to black. What do we mean exactly
when we say that some definite shade is twice as dark as another?
Obviously no definite meaning can be assigned to this statement until
we have posited some convention permitting us to establish comparisons.


As another instance, take the case of a continuous stream of sounds
varying in pitch. What do we mean by saying that some particular
musical note is twice as high in pitch as some other, or that the
interval between two notes is equal to the interval between two
others? If we were to be guided solely by our ear we might assert that
as certain musical notes, though differing in pitch, yet appear to
present a certain undefinable similarity (the successive octaves), the
intervals between these successive similar notes should be considered
equal or congruent. We should thus define as equal the extension of
notes subtending the successive octaves of a given musical note.


But if now we had learnt to measure the frequencies of vibration of the
various musical sounds, a new type of measurement would immediately
suggest itself. Starting from any musical note—say, the middle 
of the piano, we should find that the octave of  was vibrating
twice as fast, the following  three times as fast, and the second
octave of our original  four times as fast. It would then appear
plausible to define equal intervals between musical notes by the
differences in their rates of vibration, and we should infer that the
distance between  and its first octave was equal to the distance
between this last note and the following , and equal again to the
distance between this  and the following superoctave .


We should thus have obtained a definition of equal stretches of sounds
which was at variance with our original definition, in which all
octave intervals were regarded as equal or congruent. In view of these
conflicting results, we could not well escape the conclusion that a
sensory continuum of itself offers us no precise means of defining
equal stretches, and that whatever definition we might finally select
would be a mere matter of choice, an arbitrarily posited convention.


And yet in the case of space, itself a sensory continuum, men have
found no difficulty in agreeing on a common system of measurements.
As we shall see in the following chapters, the definition of the
equality of different stretches of space to which men were unavoidably
led was imposed upon them by the behaviour of certain bodies located
in space, bodies which were deemed to remain rigid, hence to occupy
equal volumes and equal lengths of space wherever they were displaced.
For the present, however, we may leave these metrical considerations
aside and confine our attention to the general concept of mathematical
or geometrical space, which is the subject of study of the pure
mathematician.


The concept of a sensory continuum, hence of perceptual space, as
presented to us by crude experience, contains certain contradictions
and peculiarities which it was necessary to eliminate before it
could be subjected to rigorous mathematical treatment. In the first

place, this perceptual space is not homogeneous, and the principle
of sufficient reason demands that pure empty conceptual space be
homogeneous and isotropic, the same everywhere and the same in all
directions.


This homogeneity of space permits us to foresee that it must be
unbounded, since a boundary would suggest a discontinuity of structure,
defining an inside and an outside, hence a lack of homogeneity. Prior
to Riemann’s discoveries it was thought that the absence of a boundary
would necessitate the infiniteness of space. To-day we know that this
belief is unjustified, for a space can be finite and yet unbounded;
and two major varieties of such spaces have been discovered by
mathematicians.


But the inherent inconsistencies which endure in all sensory continua
constituted a still more important reason for compelling mathematicians
to idealise perceptual space. In a sensory continuum, as we have seen,
a sensation  cannot be distinguished from its immediate successor,
the sensation ; neither can  be differentiated from .
Yet no difficulty is experienced in differentiating  from .
Expressed mathematically, these facts yield the inconsistent series of
relations ; ; . Now, an inconsistency
of this sort precludes all mathematical treatment. In mathematics
magnitudes cannot be both equal and unequal; they must either be one
or the other. The mathematician is therefore compelled to idealise the
sensory continuum of experience by assuming that were it not for the
crudeness of our senses, the points or sensations ,  and
 would all be distinguishable, and that in place of ;
 and , we should have ;
; .


But it is obvious that a continuum idealised in this way becomes atomic
or discrete, since between  and , as between  and ,
no intermediary points have been mentioned. In order to re-establish
continuity the mathematician is forced to postulate that between
any two points  and  there exist an indefinite number of
intermediary points, such that no one of these points has an immediate
neighbour. In other words, the continuum is infinitely divisible.


Thus the magnitudes 1 and 2 are not neighbours, since a number of
rational fractions separate them. And no two of these fractional
numbers are immediate neighbours, since whichever two such numbers we
choose to select, we can always discover an indefinite number of other
fractional numbers existing between them. Between any two points on a
line in our continuum, however close together they may be, we have thus
interposed an indefinite number of rational fractions defining points;
yet, despite this fact, we have by no means eliminated gaps between the
various points along our line.


The Greek mathematician Pythagoras was the first to draw attention to
this deficiency after studying certain geometrical constructions. He
remarked, for instance, that if we considered a square whose sides were
of unit length, the diagonal of the square (as a result of his famous
geometrical theorem of the square of the hypothenuse) would be equal

to . Now,  is an irrational number and differs
from all ordinary fractional or rational numbers. Hence, since all the
points of a line would correspond to rational or ordinary fractional
numbers, it was obvious that the opposite corner of the square would
define a point which did not belong to the diagonal. In other words,
the sides of the square meeting at the opposite corner to that whence
the diagonal had been drawn, would not intersect the diagonal; and we
should be faced with the conclusion that two continuous lines could
cross one another in a plane and yet have no point in common.


The only way to remedy this difficulty was to assume that the point
corresponding to  and in a general way points corresponding
to all irrational numbers (such as ,  and radicals) were
after all present on a continuous mathematical line. Accordingly,
mathematical continuity along a line was defined by the inclusion of
all numbers whether rational or irrational, and a similar procedure
was followed for a mathematical continuum of any number of dimensions.
In this way mathematicians obtained what is known as the Grand
Continuum, or Mathematical Continuum.[4]


Now, it is obvious that although the mathematical continuum is still
called a continuum, it differs considerably from the popular conception
of a continuum, where every element merges into its neighbour. However
this may be, the mathematical continuum, and with it mathematical
continuity, are as near an approach to the sensory continuum and to
sensory continuity as it is possible for mathematicians to obtain. The
sensory continuum itself is barred from mathematical treatment owing to
its inherent inconsistencies.


And here an important point must be noted. In a sensory continuum
considered as a chain of elements, an understanding of nextness or
contiguity, hence an understanding of order, was imposed upon us
by judgments of identity in our sensory perceptions. But the same no
longer holds in the case of a mathematical aggregate of points, owing
to the absence of that merging condition which guided us in the sensory
manifolds. Theoretically, we may with equal justification order these
points in whatever way we choose, and by varying the order in which we
pass from point to point, we should find that the dimensionality of the
aggregate varied in consequence.[5]





Dimensionality is thus a property of order, and order must be imposed
before dimensionality can be established.


In practice, the geometrician will retain the type of ordering relation
imposed by our sensory experience and will conceive, by abstraction,
of a mathematical space of points which will manifest itself as
three-dimensional when this ordering relation is adhered to. There is
nothing to prevent him, however, from conceiving of mathematical spaces
of any whole number of dimensions, either by modifying the ordering
relation or again by modelling his mathematical manifold on some
-dimensional sensory continuum.


Let us suppose, then, that we have conceived of a three-dimensional
mathematical space, obtained as an abstraction from the
three-dimensional space of common experience. Just as was the case with
our sensory continuum, the mathematical continuum will be amorphous;
no intrinsic metrics will be inherent in it, hence it will present
us with no definite geometry. The definition of congruence, that
is, of the equality of two spatial stretches and more generally of
two volumes, and the identity of shapes and sizes, will remain as
conventional as before; and it will be only after we have introduced
measuring conventions into an otherwise indifferent mathematical space
that Metrical Geometry as opposed to Analysis Situs will be possible.
However, the discussion of these points will be reserved for the next
chapters.








CHAPTER II

THE BIRTH OF METRICAL GEOMETRY





IN the preceding chapter, we mentioned that the concept of continuity
was suggested by our sense experiences; and that our understanding of
space as a three-dimensional continuum had arisen from a synthesis of
our various sense impressions. In the present chapter, we shall be
concerned more especially with the geometry of the space continuum; and
we shall show how measurement in turn would appear to have arisen from
experience, more particularly visual experience.


For this purpose, let us consider the case of a motionless observer,
rooted to the earth ever since his birth—a species of man-plant.
Viewing the world whence he stood, he would notice that whereas certain
visual impressions manifested a property of what he would recognise
as “permanence,” others would appear as squirming forms moving across
his field of vision. In order to simplify this discussion, we shall
omit to take into consideration any awareness of focussing efforts,
on the part of our observer, as also any appreciation on his part
of the convergence of his eyes. Under the circumstances, his visual
perceptions would reveal a world of two dimensions, “up and down,
right and left”; the third dimension with which we are all familiar,
i.e., “away from and towards,” would be lacking. As a result,
the squirming forms passing through his field of vision would be
interpreted as betraying a two-dimensional world of changing forms,
which would in no wise be connected with the existence of a third
dimension. In particular, there would be no reason for him to attribute
these changes to the variations in the distances of rigid material
objects from his post of observation.


But suppose, now, that concomitant with the activity of his will,
our observer were to become aware of certain muscular exertions that
accompanied a variation in the shapes of those forms which had hitherto
remained fixed and undeformed in his field of vision. In ordinary
parlance, our observer would be displacing his post of observation,
that is to say, “walking.” He would no longer remain fixed like a tree.
As a result of these displacements, which he would end by recognising
as such, not only would forms erstwhile fixed in shape appear to vary,
but, vice versa, certain forms hitherto squirming could be made to
maintain an unchanging appearance. Eventually, he would recognise that
in those cases where variations of shape and size could be counteracted
by suitable displacements of his post of observation, he had been
observing rigid bodies varying their distances along a third dimension
with respect to him. In this way, there would arise an understanding
both of rigid bodies and of a third dimension. Furthermore, owing to

his being able to repeat his experiments here as there, a
realisation of the homogeneity of space would ensue.


We see, then, that the three-dimensional space of experience appears to
have arisen as the result of a synthesis of private views, each one of
which would be that of an observer unable to move from a certain fixed
spot. This synthesis would be extremely complex; unfortunately we have
no time to mention the various conditions that would have to be taken
into consideration. Suffice it to say that our senses of sight, of
touch, of muscular effort, of sound and of smell, to which should also
be added the action of the semi-circular canals, would all play a part,
dovetailing one into the other. Further considerations would also show
that there is nothing mysterious in the fact that these various data
should yield concordant results, rather than an incompatible set of
conflicting spaces.


All we wish to point out is that by the physical space of experience,
we do not merely wish to imply space with the objects located therein,
such as it would appear from some definite point of observation. We do
not mean the private vision in which rails converge and distant objects
appear smaller; we mean a synthesis of these private perspectives,
yielding us a common public space.


One private perspective with its converging rails taken by itself and
considered without reference to other perspectives could not contain
sufficient data to enable us to conceive of three-dimensional space,
homogeneous and isotropic.[6] That this synthesis has been arrived at
without the conscious effort of reason is granted. Nevertheless, though
instinctive, the co-ordination of private experiences and perspectives
is of great complexity; and it would not be impossible to conceive of
this co-ordination as having followed other lines, just as an aggregate
of books may be arranged in alphabetical order, or in order of size
or of content, and so forth. With a change in our ordering relation
we might have obtained a space of a greater number of dimensions.
Undoubtedly, however, when account is taken of the facts of experience,
the three-dimensional co-ordination is by far the simplest; hence there
is no reason to be surprised at its having imposed itself with such
force. These too brief indications must suffice for the present.


And now let us return to the problem of measurement. We have mentioned
that in certain cases it would be possible, by changing our post of
observation, to counteract the apparent modifications in the visual
shapes of bodies that had suffered a displacement in our field of
vision.


For instance, if we received a visual impression corresponding to a
circle, and if this impression were followed by one corresponding
to a triangle, and if it were impossible for us to re-establish the
circular impression, we should have to assume that the body had

changed in shape; whereas, if it were possible to re-establish the
circular impression by exerting certain efforts (which would finally be
interpreted as a displacement of our point of observation), we should
end by assuming that we had witnessed a partial rotation of a rigid
cone-shaped object.


This discovery of rigid objects in nature is of fundamental importance.
Without it, the concept of measurement would probably never have
arisen and metrical geometry would have been impossible. But with
the discovery of objects which were recognised as rigid, hence as
maintaining the same size and shape wherever displaced, it was only
natural to appeal to them as standards of spatial measurement.


Measurements conducted in this way would soon have proved that between
any two points a certain species of line called the straight line would
yield the shortest distance; and this in turn would have suggested the
use of straight measuring rods. Henceforth, two straight rods would
be considered equal or congruent if, when brought together, their
extremities coincided. As for a physical definition of straightness, it
could have been arrived at in a number of ways, either by stretching
a rope between two points or by appealing to the properties of these
rigid bodies themselves. For instance, two rods would be recognised
as straight if, after coinciding when placed lengthwise, they
continued to coincide when one rod was turned over on itself. Finally,
parallelograms would be constructed by forming a quadrilateral with
four equal rods, and parallelism would thus have been defined.


Equipped in this way, the first geometricians (those who built
the Pyramids, for instance) were able to execute measurements on
the earth’s surface and later to study the geometry of solids, or
space-geometry. Thanks to their crude measurements, they were in
all probability led to establish in an approximate empirical way a
number of propositions whose correctness it was reserved for the Greek
geometers to demonstrate with mathematical accuracy. Thus there is
not the slightest doubt that geometry in its origin was essentially
an empirical and physical science, since it reduced to a study of the
possible dispositions of objects (recognised as rigid) with respect to
one another and to parts of the earth. In fact, the very word geometry
proves this point conclusively.


Now, an empirical science is necessarily approximate, and geometry as
we know it to-day is an exact science. It professes to teach us that
the sum of the three angles of a Euclidean triangle is equal to 180°,
and not a fraction more or a fraction less. Obviously no empirical
determination could ever lay claim to such absolute certitude.
Accordingly, geometry had to be subjected to a profound transformation,
and this was accomplished by the Greek mathematicians Thales,
Democritus, Pythagoras, and finally Euclid.


The difficulty that Euclid had to face was to succeed in defining
exactly what he meant by a straight line and by the equality of two
distances in space. So long as geometry was in its empirical stage
these definitions were easy enough. All that men had to say was, “Two
solid rods will be recognised as straight if after turning one of them

over they still remain in perfect contact,” or again, “The distance
between the two extremities of a material rod remains the same by
definition wherever we may transport the rod.”


Euclid, however, could not appeal to such approximate empirical
definitions; for perfect rigour was his goal. Accordingly he was
compelled to resort to indirect methods. By positing a system of axioms
and postulates, he endeavoured to state in an accurate way properties
which were presented only in an approximate way by the solids of
nature. Euclid’s geometry was thus the geometry of perfectly rigid
bodies, which, though idealised copies of the bodies commonly regarded
as rigid in the world of experience, were yet defined in such a manner
as to be untainted by the inaccuracies attendant on all physical
measurements.


But this empirical origin of Euclid’s geometrical axioms and
postulates was lost sight of, indeed was never even realised. As a
result Euclidean geometry was thought to derive its validity from
certain self-evident universal truths; it appeared as the only type of
consistent geometry of which the mind could conceive. Gauss had certain
misgivings on the matter, but did not have the courage to publish his
results owing to his fear of the “outcry of the Bœotians.” At any rate,
the honour of discovering non-Euclidean geometry fell to Lobatchewski
and Bolyai.


To make a long story short, it was found that by varying one
of Euclid’s fundamental assumptions, known as the Parallel
Postulate, it was possible to construct two other geometrical
doctrines, perfectly consistent in every respect, though differing
widely from Euclidean geometry. These are known as the non-Euclidean
geometries of Lobatchewski and of Riemann.


Euclid’s parallel postulate can be expressed by stating that through
a point in a plane it is always possible to trace one and only one
straight line parallel to a given straight line lying in the plane.
Lobatchewski denied this postulate and assumed that an indefinite
number of non-intersecting straight lines could be drawn, and Riemann
assumed that none could be drawn.


From this difference in the geometrical premises important variations
followed. Thus, whereas in Euclidean geometry the sum of the angles
of any triangle is always equal to two right angles, in non-Euclidean
geometry the value of this sum varies with the size of the triangles.
It is always less than two right angles in Lobatchewski’s, and always
greater in Riemann’s. Again, in Euclidean geometry, similar figures of
various sizes can exist; in non-Euclidean geometry, this is impossible.


It appeared, then, that the universal absoluteness of truth formerly
credited to Euclidean geometry would have to be shared by these
two other geometrical doctrines. But truth, when divested of its
absoluteness, loses much of its significance, so this co-presence of
conflicting universal truths brought the realisation that a geometry
was true only in relation to our more or less arbitrary choice of a
system of geometrical postulates. From a purely rational point of

view, there was no means of deciding which of the several consistent
sets was true. The character of self-evidence which had been formerly
credited to the Euclidean axioms was seen to be illusory.


However, there are a number of rather delicate points to be considered,
and these we shall now proceed to investigate. Euclid’s parallel
postulate and the alternative non-Euclidean postulates reduce to
indirect definitions of what we intend to call a straight line
in the respective geometries mentioned. If there existed such a
universal as absolute straightness, represented, let us say,
by a Euclidean straight line, we might claim that Euclidean geometry
constituted the true geometry, since its straight line conformed to
the ideal of absolute straightness. But this existence of a universal
representing absolute straightness is precisely one of the metaphysical
cobwebs of which the discovery of non-Euclidean geometry has purged
science. To illustrate this point more fully, let us assume that we
think we know what is implied by a straight line. Whether we merely
imagine a straight line or endeavour to realise one concretely, we are
always faced with the same difficulty. For instance, we consider that a
rod is straight when it can be turned over and superposed with itself,
or else we place our eye at one of its extremities and note that no
bumps are apparent. Again, we may realise straightness by stretching
a string, viewing a plumb line or the course of a billiard ball. We
may also execute measurements with our rigid rods; the straight line
between any two points will then be defined by the shortest distance.
But whatever method we adopt, it is apparent that our intuitive
recognition of straightness in any given case will always be based on
physical criteria dealing with the behaviour of light rays and material
bodies. We may close our eyes and think of straightness in the abstract
as much as we please, but ultimately we should always be imagining
physical illustrations.


Suppose, then, that material bodies, including our own human body, were
to behave differently when displaced. If corresponding adjustments
were to affect the paths of light rays, we should be led to credit
rigidity to bodies which from the Euclidean point of view would be
squirming when set in motion. As a result, our straight line, that is,
the line defined by a stretched rope, our line of sight, the shortest
path between two points, would no longer coincide with a Euclidean
straight line. From the Euclidean standpoint our straight line would
be curved, but from our own point of view it would be the reverse; the
Euclidean straight line would now manifest curvature both visually and
as a result of measurement. A super-observer called in as umpire would
tell us that we were arguing about nothing at all. He would say: “You
are both of you justified in regarding as straight that which appears
to you visually as such and that which measures out accordingly. It
will be to your advantage, therefore, to reserve your definitions of
straightness for lines which satisfy these conditions. But you are
both of you wrong when you attribute any absolute significance to
the concept, for you must realise that your opinions will always be

contingent on the nature of the physical conditions which surround you.”


Incidentally, we are now in a position to understand why the Euclidean
axioms appeared self-evident or at least imposed by reason. They
represented mathematical abstractions derived from experience, from our
experience with the light rays and material bodies among which we live.
We shall return to these delicate questions in a subsequent chapter.
For the present, let us note that since our judgment of straightness
is contingent on the disclosures of experience, even the geometry
of the space in which we actually live cannot be decided upon a
priori. To a first approximation, to be sure, this geometry appears
to be Euclidean; but we cannot prophesy what it may turn out to be when
nature is studied with ever-increasing refinement. It was with this
idea in view that Gauss, who had mastered in secret the implications of
non-Euclidean geometry, undertook triangulations with light rays over
a century ago. Furthermore, even were the geometry to be established
for one definite region of space, we could not assert that our
understanding of straightness, hence of geometry, might not vary from
place to place and from time to time; hence we cannot assert with Kant
that the propositions of Euclidean geometry possess any universal truth
even when restricting ourselves to this particular world in which we
live.


Such discussions might have appeared to be merely academic a few
years ago; and non-Euclidean geometry, though of vast philosophical
interest, might have seemed devoid of any practical importance. But
to-day, thanks to Einstein, we have definite reasons for believing that
ultra-precise observation of nature has revealed our natural geometry
arrived at with solids and light rays to be slightly non-Euclidean and
to vary from place to place. So although the non-Euclidean geometers
never suspected it (with the exception of Gauss, Riemann and Clifford),
our real world happens to be one of the dream-worlds whose possible
existence their mathematical genius foresaw.


Now, all these investigations initiated by attempts to prove the
correctness of the parallel postulate led mathematicians to further
discoveries.


A more thorough study of Euclid’s axioms and postulates proved them to
be inadequate for the deduction of Euclid’s geometry. Euclid himself
had never been embarrassed by the incompleteness of his basic premises,
for the simple reason that although he failed to express the missing
postulates explicitly, he appealed to them implicitly in the course
of his demonstrations. The great German mathematician Hilbert and
others succeeded in filling the gap by stating explicitly a complete
system of postulates for Euclidean and non-Euclidean geometries alike.
Among the postulates missing in Euclid’s list was the celebrated
postulate of Archimedes, according to which, by placing an indefinite
number of equal lengths end to end along a line, we should eventually
pass any point arbitrarily selected on the line. Hilbert, by denying
this postulate, just as Lobatchewski and Riemann had denied Euclid’s
parallel postulate, succeeded in constructing a new geometry known

as non-Archimedean. It was perfectly consistent but much stranger
than the classical non-Euclidean varieties. Likewise, it was proved
possible to posit a system of postulates which would yield Euclidean
or non-Euclidean geometries of any number of dimensions; hence, so far
as the rational requirements of the mind were concerned, there was no
reason to limit geometry to three dimensions.


Incidentally, we see to what rigour of analysis and to what profound
introspection the mathematical mind must submit; for the implicit
postulates appealed to unconsciously by Euclid are so inconspicuous
that it is only owing to the dialectics of modern mathematicians that
their presence was finally disclosed and the deficiency remedied by
their explicit statement.


From all this rather long discussion on the subject of postulates
and axioms we see that the axioms or postulates of geometry are most
certainly not imposed upon us a priori in any unique manner. We
may vary them in many ways and, as regards real space, our only reason
for selecting one system of postulates rather than another (hence one
type of geometry in preference to another) is because it happens to be
in better agreement with the facts of observation when solid bodies and
light rays are taken into consideration. Our choice is thus dictated by
motives of a pragmatic nature; and the Kantians were most decidedly in
the wrong when they assumed that the axioms of geometry constituted a
priori synthetic judgments transcending reason and experience.








CHAPTER III

RIEMANN’S DISCOVERIES AND CONGRUENCE





THE procedure of presentation of non-Euclidean geometry which we have
followed to this point hinges on the parallel postulate, hence on the
definition of the straight line. In many respects, a much deeper method
of investigation was that pursued by Riemann, founded on the concept of
congruence. By congruence we mean the equality of two distances
and more generally of two volumes in space. As we have explained
elsewhere, the two methods lead to the same results. Indeed, once a
metrical geometry has been defined, whether by the method of postulates
or by any other means, a corresponding definition of a straight line
and of equal or congruent distances is entailed thereby.


Thus, with Euclidean geometry, congruent lengths at different places
are exemplified by the lengths spanned by a material rod transported
from one place to another. Congruent or rigid objects having thus been
defined, a straight line is given by the axis of rotation of a material
body, two of whose points are fixed, or again by the shortest distance
between two points measured with our rigid rod.


Nevertheless, although the various methods of presentation are
equivalent, it may be of advantage to make the definition of congruence
fundamental rather than that of the straight line. Such was the
procedure followed by Riemann.


When we revert to experience for an understanding of congruence, we
find it exemplified in the rigid bodies of nature, whose geometrical
dispositions yield, more or less precisely, the results of pure
Euclidean geometry. If we idealise congruence, as thus defined, and
express it mathematically, we may say that perfectly rigid bodies are
those whose measurements would yield Euclidean results with absolute
precision. But though the mathematician has thereby eliminated from his
definitions the inaccuracies attendant on physical measurements, his
understanding of congruence reduces to a mere idealised copy of the
behaviour of special bodies found in nature. While he has thus obtained
a possible mathematical definition of congruent bodies (that given in
nature), it remains to be seen whether other types of congruence would
not also be rationally possible. His aim must therefore be to define
congruence mathematically, without appealing to experience.


When, however, we discard the empirical criterion which prompted us to
define material bodies as rigid, we find that a unique mathematical
definition of rigidity eludes us. For to say that a body remains rigid
or congruent with itself during displacement means that the spatial
distance between its extremities remains ever the same. But our

only means of disclosing this fact is by measuring the body with an
admittedly rigid rod at successive intervals of time and noting the
continued identity in our numerical results. Hence it follows that the
value of these results would be nullified were we to cast any doubt on
the maintenance of the rigidity of our measuring rod. And how could we
ever justify its rigidity unless we were to compare it with some other
rod regarded as rigid, and so on ad infinitum? From all this it
appears that a body can be regarded as rigid only with respect to our
measuring rod; and in order to ascribe any significance to rigidity we
must first admit that our measuring rod is rigid by definition or by
convention. We have no other means of establishing this rigidity.


We should reach the same conclusions were we to compare two lengths
 and  situated in different parts of space. We could not
say that the two lengths were equal or congruent in any absolute sense
merely because our measuring rod could be made to coincide now with
, now with . A definition of this sort would obviously
presuppose that our measuring rod had remained undeformed or congruent
with itself when displaced from  to . It would reduce to
testing the congruence of  and  by presupposing that we
knew how to recognise the maintenance of congruence in our rod during
displacement. In thus defining congruence in terms of congruence our
argument would be circular.


The whole trouble arises from the continuity of space which precludes
us from attributing any absolute meaning to the statement that two
lengths situated in different parts of space are equal or unequal.
There is no absolute significance in stating that there is as much
space between  and  as between  and . We cannot
compare lengths by counting the number of points that they contain,
since there are just as many points between the extremities of an inch
as between the extremities of a mile—an infinite number in either
case.[7]


In short, we see that in mathematical continua, just as in sensory
ones, measurement and comparison of lengths can be considered only as a
result of some convention; there is nothing in the continua themselves
to suggest any definite metrics or geometry. This is what is meant
by saying that space is amorphous and presents us with no means of
determining absolute shape and size.





Now, it might appear from the preceding discussions that so far as
the mathematician is concerned, since a definition of equal distances
is purely conventional, any conceptual rod might be chosen for this
purpose. We might take a rod which, when moved about, would squirm
like a worm, and elevate it to the position of a standard rod to
which all other lengths would have to be compared. But this would be
too extreme; for although mathematical space possesses no inherent
metrics, yet certain requirements are demanded of rods susceptible of
being considered as remaining congruent when displaced. It is these
requirements, as postulated by Riemann, which we shall now proceed to
discuss. Riemann assumed that the necessary requirements would be as
follows:


In the first place, he assumed that if we restricted ourselves to
infinitesimal volumes of space, congruence would be established by
means of Euclidean solids and measuring rods. This postulate is called
the postulate of Euclideanism in the infinitesimal.


Furthermore, if our rods remained congruent and we made certain
constructions with them (pyramids, etc.), we should be able to transfer
these rods and make exactly the same constructions, presenting exactly
the same numerical relationships, in any other part of space. This
postulate is a mere reflection of our belief in the homogeneity and
isotropy of measurements in space, the same everywhere and the same in
any direction. When presented in a slightly different form, it is often
referred to as the postulate of free mobility.





We may also say that if two rods coincide in a certain region of space,
they should continue to coincide when separated, then brought together
again in any other region.[8]


With these restrictions imposed, Riemann discovered that the Euclidean
type of measurement was only one among others. Two other types, namely,
the Lobatchewskian and the Riemannian, were also possible.


Sophus Lie considered the same problem, though from a different
standpoint. He argued that a rigid body would be such that when one of
its points was fixed, any other of its points would describe a surface.
When one of its lines was fixed, any other of it's points would
describe a curve, and finally, when three points were fixed, the rigid
body would be unable to move.


As a result of these investigations it was proved that there existed
bodies which, as contrasted with Euclidean solids, would squirm when
displaced. Yet, in spite of this fact, these non-Euclidean bodies
would present all the mathematical requirements of congruent bodies.
These alternative types of bodies may be called Riemannian bodies and
Lobatchewskian bodies, respectively.


If we select Euclidean congruence for the purpose of measuring
space, non-Euclidean bodies will appear to squirm as they move; if
we select non-Euclidean congruence, it will be the Euclidean bodies
which appear to vary in form when displaced. It is usual, however, to
reserve the term rigid for the Euclidean bodies; but this is only in
order to conform to the ordinary understanding of rigidity as derived
from experience. If we omit to take into consideration the physical
behaviour of material bodies which has forced a certain conception
of rigidity upon us, there appears to be no mathematical reason
for assigning greater importance to Euclidean measurements than to
non-Euclidean ones. It follows that the non-Euclidean bodies are just
as much entitled to the appellation “rigid” as are the better-known
Euclidean ones. When it comes to deciding which of the types of
rigidity represents conservation of absolute shape and size, the
problem appears to be entirely meaningless. Accordingly we shall refer
to the various types of bodies as Euclideanly or as non-Euclideanly
rigid.


Now it is perfectly obvious that when we measure lengths and ratios
of lengths with one type of standard rods or another, we shall obtain
conflicting numerical ratios and values. Thus, if we fix one extremity
of our standard rod and allow it to rotate in all directions, its free
extremity will describe points on a spherical surface regardless of the
type of rod or geometry with which we are dealing. In a similar way
we might obtain a circumference. If, then, we abide by the Euclidean
system of measurement, the value of the ratio of the lengths of
circumference and diameter would remain ever the same however great the
diameter; we should always obtain the same constant number, known as
—equal to 3.141592 ..., first calculated by Archimedes. On the
other hand, with Riemannian or Lobatchewskian measurements, we should
obtain a variable value for this ratio, always smaller than  in
the case of Riemannian geometry, decreasing as the diameter increased;
and always greater than  in the event of our having selected

Lobatchewskian measurements. Similar discrepancies would attend the
measurement of all other geometrical figures and angles.


And here there is a further point to be considered. Even when we
have defined a particular type of measurement, be it Euclidean or
non-Euclidean, we have by no means fixed the behaviour of our rods and
bodies in any absolute sense; and an understanding of absolute rigidity
still escapes us. We can only define Euclidean bodies, for example, as
those whose laws of disposition yield Euclidean numerical results. The
following illustration will show us that these bodies might all vary
in absolute shape when displaced, yet still yield the same Euclidean
results.


All we have to do is to consider a transparent plane and a man
executing geometrical constructions with Euclidean rods on its surface.
If we consider a point-source of light casting the shadows of these
rods on some other surface, whether plane or curved, these shadows,
considered as measuring rods in turn, will still yield exactly the same
Euclidean results, their laws of disposition will remain unchanged,
and hence they will be rigid Euclidean rods exactly to the same extent
as the original ones. Yet as contrasted with these original rods the
shadows would squirm when displaced varying in shape and size, and the
Euclidean straight lines would appear curved.


In short we see that absolute shape, straightness, size and
rigidity in conceptual mathematical space escape us completely, and
the significance of rigidity as portraying the maintenance of an
unchanging volume of space, even when considering Euclidean bodies, is
indeterminate. In its most extended sense, this is what mathematicians
mean by the relativity of space. The sole justification for the general
acceptance of the concept of rigidity in the popular sense is due to
the presence of material bodies in our universe which we agree to
accept as standards. These, incidentally, yield Euclidean results.


Summarising, we see that mathematical space is amorphous; it has no
particular metrics, no particular geometry. According to our methods
of measurement, we may obtain one geometry or another in the same
space. It is often convenient to express all these results by saying
that space is Euclidean, Riemannian or Lobatchewskian; but we must be
careful to note that space itself has very little to do with the matter.


Let us now examine another aspect of the problem. Until such time as
we have fixed our choice on a system of measurements, the amorphous
nature of space forbids us to attach any determinate significance to a
distance between two points. This, in turn, prevents us from attaching
any significance to what may be considered the shortest distance
between two points. However, when we have adopted one of the three
measuring conventions, the significance of a shortest distance becomes
determinate and a definite line joining the two points will be found
to embody this shortest distance. Lines of this type are known under
the name of geodesics; and in any of the geometries with which
we shall be dealing, they play the part taken by the straight line in

Euclidean geometry.[9]


Corresponding to every one of the three congruence definitions we have
mentioned, there exists a definite type of straight line or geodesic
between any two points. With Euclidean congruence we obtain the
Euclidean straight line which satisfies Euclid’s parallel postulate,
and vice versa. Again, if we adopt one of the two non-Euclidean
types of congruence we are led to the non-Euclidean straight lines
or geodesics, those which satisfy the non-Euclidean postulates, and
vice versa. In short, we see that the two methods of presenting
non-Euclidean geometry, either through the metrical or congruence
method or through the parallel-postulate method, are in the main
equivalent.


In a more thorough treatment of non-Euclidean geometry other
non-metrical methods of presentation are sometimes adhered to. One
of these is based on the theory of groups and projective geometry;
another is due to the discoveries of Levi-Civita and Weyl and depends
on the fundamental concept of an infinitesimal parallel displacement;
it opens the way to Weyl’s still more general geometry. Still another
mathematical method of exploring space is that of continuous tracks
which was investigated by Eisenhart and Veblen. In this book we shall
refrain from discussing these more difficult methods, for they present
too technical an aspect;[10] but it would be a great mistake to assume
that these imaginative flights of the pure mathematicians were of no
utility to physical science. Apart from the deep philosophical light
which they throw on the entire problem of space, we know from past
experience that what was at its inception a pure mathematical dream has
more than once become at some later date the image of physical reality.
Non-Euclidean geometry, and possibly Weyl’s still stranger geometry,
are cases in point.


We have now to consider a number of questions pertaining to location
and motion in space. Mathematical space, as we have seen, is
-dimensional and amorphous. But in order to bring it into closer
contact with the physical space of experience we may assume the
necessary postulates of order and contiguity to have been specified.
We thus obtain three-dimensional mathematical space. Now mathematical
space, in view of its amorphous nature, is essentially relative. The
very homogeneity of space, its sameness “here” as “there,” precludes
our being able to differentiate one absolute position from another.
It will follow that absolute motion, i.e., a variation of
absolute position in empty amorphous mathematical space, can have no
significance.


Our sole means of giving significance to position and motion will be
by selecting some three-dimensional frame of reference as standard.
For instance, we might consider three mutually perpendicular axes

meeting at a point. A more concrete illustration would be afforded by
considering the two adjoining walls and the floor of our room. Then,
after having selected the standard rods which we intend to employ, and
also a clock, we should proceed to measure the position and change of
position of an object with respect to our room. This would yield us the
relative position and motion of the object (relative to our room).


Now, if our choice of a frame of reference, and our methods of
measurement, were not arbitrary, but were imposed in some inevitable
way by the texture or nature of space, we might still claim that
position and motion, though relative to our frame, were yet absolute,
since they could always be determined without ambiguity. But this
inevitability of a particular frame of reference is precisely what the
amorphous nature of mathematical space renders impossible, for there
is nothing in mathematical space which permits us to single out any
particular frame. Hence no absolute unique determination of position
and motion can be contemplated. In fine, we must conclude that in
mathematical space position and motion, like distance and shape, are
entirely relative.


Thus far we have been considering mathematical space; and mathematical
space is but an abstraction from the space of experience. It remains
to be seen, therefore, whether our conclusions will apply without
modification when we consider the physical space of experience. Here
we may state that so far as absolute position is concerned there is
nothing to change in our conclusions. Thus, in everyday life, when we
speak of returning to the same point in space, we do not really mean
the same point in empty space. We mean rather the same point on
the earth’s surface; and we do not stop to consider whether the earth
has moved through space in the interval. As a matter of fact it would
be totally impossible for us to discover exactly what distance the
earth had travelled. Granting that we might ascertain the displacement
of the earth along its orbit round the sun, all further progress would
be arrested by our ignorance of the velocity of the sun through space.
We might even measure the velocity of the sun with respect to the
stars, but this again would not yield us its velocity through empty
space; for we should still remain in complete ignorance of the velocity
of the stars as a whole through space. So we see that when we speak of
the same point in physical space we are always referring to the same
relative position with respect to some observable frame of reference.
It is not absolutely necessary that the frame be material, and we might
perfectly well conceive of it as being defined by three perpendicular
light rays. The essential requirement is that it should be observable,
so that all men should agree on the frame they were talking about.


Owing to the important part the earth’s crust occupies in our daily
lives, the impossibility of defining the same point at different times
without the help of a frame of reference is somewhat obscured. But it
is imperative to master this aspect of the elusiveness of space before
proceeding to the study of the more complex questions raised by the

theory of relativity.


When, however, we consider the problem of motion, we shall find that
in contradistinction to what holds for mathematical space, motion in
physical space appears to be absolute. While it is true that from a
purely visual standpoint the motion of a body will depend essentially
on the frame of reference we select, and will vary when we change
our frame from the earth to, say, the moon or the sun, yet owing to
the generation of dynamical effects it is possible to decide in an
absolute way whether the body is rotating or not. This is due to the
fact that these telltale dynamical effects are present just the same
regardless of our choice of a frame of reference. It was owing to these
empirically discovered dynamical facts that Newton felt compelled to
accept the absolute significance of motion, hence of space. We may
gather from what has been said that we may not extend lightly to the
physical space of experience the conclusions derived from conceptual
mathematical space.


We now come to a last point. Suppose that in mathematical space we wish
to measure the distance between two objects moving in various ways
through our frame. For our measurements to have any significance, we
must of course specify that the positions of the two objects correspond
to the same instant of time. If, therefore, a change in the relative
motion of our frame of reference were assumed to cause a modification
in our understanding of the sameness of a time at two different places,
the distance between the two objects would vary with the frame in which
we were reckoning it. But here we are discussing pure mathematical
space, which we may always conceive of as divorced from time. Hence we
may assume that the sameness of a time at two different places remains
unaffected by any alteration in the choice of our frame.


Classical science believed that the space of experience would also
satisfy these conditions. It thought that time was absolute, that its
rate of flow was ever the same, and that the concept of the sameness
of a time at two different places was an absolute and unambiguous
one. This assumption was tantamount to divorcing space from time and
regarding them as two essentially different categories. It has been one
of the triumphs of the relativity theory to disprove this fundamental
thesis, and to show that in the real world of experience a continuum of
space by itself is but a shadow. Henceforth the continuum of reality is
space-time, a four-dimensional continuum of events, and no longer, as
in classical science, a three-dimensional one of points, coupled with
a one-dimensional continuum of instants. But inasmuch as the necessity
for these new conceptions will be justified at length in future
chapters, we shall refrain from discussing them at this stage.








CHAPTER IV

THE PROBLEM OF PHYSICAL SPACE





THUS far we have discussed more especially that abstraction from the
space of experience which we called mathematical space; we have seen
it to be entirely amorphous. In the present chapter we shall have
to consider the space of experience and determine to what extent it
differs from conceptual mathematical space. An important difference as
regards the problem of motion has already been noted, for we remember
that in physical space, motion often manifests itself as absolute. For
the present, however, we shall confine our attention to the problem of
congruence.


Mathematical space is amorphous; it possesses no intrinsic metrics,
and our choice of standards of measurement is largely arbitrary. As a
result, absolute shape, size and straightness are meaningless concepts.
But in physical space, it is a matter of common knowledge that men have
no difficulty in agreeing at least approximately on the sameness of two
shapes or of two sizes. They agree that a stone remains undeformed when
displaced, hence declare the stone to be rigid, whereas they recognise
that an object behaving like a worm is of the squirming variety.


So here there appears to exist an important difference between
mathematical space, where no particular definition of congruence is
suggested, and physical space, where a definite type seems to impose
itself naturally and is accepted unanimously. After all, there is
nothing very mysterious about this unanimous agreement; for had men
refused to be guided in their definition of congruence by their sense
of sight, they would have been led into all manner of difficulties.
They would have had to assume that a stone carried in their hands,
though appearing unchanged visually, was yet squirming, and, vice
versa, that bodies which appeared to squirm were yet rigid. The
difficulties in reaching some common understanding of measurement would
thus have been hopelessly great. In fact, the definition of congruence,
which we have mentioned, imposes itself so irresistibly that it is
only since the discovery of non-Euclidean geometry that its absolute
validity has been refuted.


Viewing the situation as it now stands, we may say that material rods,
visually recognised as rigid, will be taken as norms of measurement
in physical space. In other words, it will be assumed that rods which
coincide when brought together will continue to remain congruent
when transferred, independently of one another, to other regions
of space. Of course, the physicist will guard himself as much as
possible against local contingent influences, such as variations of
pressure and temperature, which might influence the behaviour of his
rods. But when all these elementary precautions have been observed,
the geometry determined by our rods will automatically become the

geometry of space. This physical definition of congruence may be termed
practical congruence, as distinguished from theoretical
congruence, which is embodied by the mathematical types we have
discussed.


With his standard rigid bodies defined in this way by physical objects,
the physicist can perform measurements in the space of his frame and
in consequence obtains the numerical results of three-dimensional
Euclidean geometry. Inasmuch as the more careful he is to guard against
such contingent influences as variations of temperature, the more
accurately will his numerical results approximate to those of pure
Euclidean geometry, he feels justified in stating that rigid objects
behave like rigid Euclidean bodies and that the space of our experience
is rigorously Euclidean.


We may also recall that his rigid bodies having been defined, the
definition of a straight line as the axis of rotation of a revolving
solid, two of whose points are fixed, or as the shortest distance
between two points in space, follows immediately; and of course the
straight line thus defined satisfies Euclid’s parallel postulate, since
it is derived from the behaviour of Euclidean solids.


At this stage, a number of popular exponents of non-Euclidean geometry
have fallen into a rather unfortunate error. They have argued that
material bodies under perfect conditions must necessarily behave
like Euclidean solids, for if they behaved like non-Euclidean bodies
when displaced they would squirm and change in shape. As it would be
inadmissible to credit any such distorting influence to that void
which we call empty space, a non-Euclideanism of material bodies would
be debarred on first principles. But these men overlook the fact
that Riemann’s and Lobatchewski’s geometries do not in any way refer
to bodies which squirm and are distorted in any absolute sense as
they move about. The non-Euclidean bodies are merely distorted when
contrasted with Euclidean bodies taken as standards; but it would be
equally true to state that Euclidean bodies likewise would squirm
when displaced if we were to contrast them with non-Euclidean bodies
taken as standards. In any case, both Euclidean and non-Euclidean
bodies behave in a homogeneous way throughout space.[11] By this we
mean that wherever they might be situated in empty space, measurements
computed with them would yield the same numerical results. As for
Euclidean congruence and Euclidean rigidity, it is by no means more
representative of real rigidity than are the non-Euclidean varieties.
There is therefore no reason to appeal to a distorting effect of empty
space in order to account for a possible non-Euclidean behaviour of our
material solids when displaced from point to point. Non-Euclideanism
may or may not exist in real space, but this is a point for physical
measurement and not for philosophy or mathematics to decide.





All we can say is that the principle of sufficient reason compels
us to credit empty space with a sameness throughout, and that our
measuring rods and material bodies must also behave homogeneously and
isotropically, as indeed they do in the three geometries discussed.
Only if measurements undertaken with our rods in different parts of
space yielded variable non-homogeneous numerical results should we
have to assume that space was not really empty and that our rods were
subject to local influences.


At any rate, the early non-Euclidean geometers, realising that space
as a result of measurement might turn out to be non-Euclidean, busied
themselves with devising means of settling the question once and
for all. Now, as a result of their measurements with material rods
there was no doubt that space was very approximately Euclidean. But
here it must be realised that the two non-Euclidean geometries as
opposed to the Euclidean variety are not unique. We may conceive of
various intensities of non-Euclideanism of both types, merging by
insensible gradations into Euclidean geometry. It was therefore still
an open question whether space, in spite of its apparent Euclidean
characteristics, might not betray a slight trace of non-Euclideanism. A
simple illustration will make this point clearer.


We saw that in Euclidean geometry the ratio of the length of a
circumference to its diameter was always the same number, . In
Riemann’s geometry this number was always smaller than , and
decreased progressively from the value  to the value zero as
the diameter of the circle increased. But there was nothing definite
about this rate of decrease; it might be very rapid, just as it
might be exceedingly slight. We must conceive, therefore, of varying
intensities of non-Euclideanism, or of departure from Euclideanism.
Hence, if the non-Euclideanism of real space were exceedingly slight,
it might require measurements extending over a circumference of
gigantic proportions, reaching as far as the stars in order to detect
it; and measurements conducted in restricted areas could not be
considered conclusive. The only means of disclosing slight traces of
non-Euclideanism would therefore be obtained by having recourse to
measurements conducted over cosmic distances.


Of course, in an attempt of this sort, measurements with material
rods were out of the question and it was necessary to appeal to other
methods of exploration. These were obtained by taking advantage of
the propagation of light rays in empty space. It was argued that the
principle of sufficient reason precluded light rays from deviating to
the right or to the left from their course along the straightest path
through empty space; this belief was also in accord with the important
physical principle of Least Action, as deduced from the laws of
mechanics.[12] Accordingly, light rays would follow geodesics in empty
space; and, as we have seen, a knowledge of the geodesics or straight
lines reveals as much about the geometry of space as congruence itself.





Gauss appears to have been the first to undertake space explorations
of this sort, when he conducted experiments on light rays transmitted
from one mountain top to another. But his observations were too
crude and executed over too small an area to detect any trace of
non-Euclideanism. Lobatchewski suggested astronomical observations
conducted on the course of rays of starlight through interstellar
space. For instance, if two light rays emitted from a very distant
star and striking the earth at two different points of its orbit
appeared to manifest converging directions, we should know that space
was Riemannian. If the two rays appeared to diverge from a common
point, space would be Lobatchewskian; and, finally, if for very distant
stars these two directions appeared identical, space would be truly
Euclidean. Yet the most refined astronomical measurements of stellar
parallaxes failed to reveal the slightest trace of non-Euclideanism.
Hence it was assumed that if any trace of non-Euclideanism was present
in real space it was without doubt exceedingly slight, so that for
all practical purposes the geometry of space might be regarded as
Euclidean. Such were the results obtained by a physical exploration of
space.


From all this we see that the physicist, basing his exploration of
space on empirical methods, is perfectly justified in stating that its
geometry can be determined, that a true definition of congruence can
be arrived at, and that the equality of two lengths and of two spatial
configurations has a definite significance in nature.


And yet, when we submit all these various examples to a critical
analysis, we cannot help but see that this determination of the
geometry of space is essentially physical and is, therefore, contingent
on the behaviour of material objects and of rays of light. Had the
behaviour of material bodies when displaced been regulated by other
physical laws, had rays of light followed different courses, the
geometry we should have attributed to space might have been entirely
different. And we may well wonder what the behaviour of physical
objects should have to do with the geometry of space. We shall return
to this aspect of the problem later.


Also, it has sometimes been argued that our recognition of shape and
size must possess a much deeper significance and cannot be attributed
merely to the laws of behaviour of material objects and of rays of
light. For instance, it is pointed out that even a child who knows
nothing of measurement judges, on simple visual inspection, that a
coin (when viewed from a perpendicular direction) is round and an egg
oval. He does not feel it necessary to verify this fact by applying a
ruler. However, regardless of what opinions we may eventually defend on
the subject of a geometry intrinsic to physical space, it can scarcely
be held that this last argument of the critic proves his point in the
slightest degree.


It may be instructive to consider this illustration in greater detail.
In the first place, we must realise that all we are in a position to
appreciate when merely viewing an object, is its image on our retina.
Indeed, were we to interpose a microscope or a deforming lens between
object and eye, the object would suffer no change; but its image cast
on our retina would, of course, be modified. As a result, our judgment

of its shape and size would vary. Hence, when we decide unhesitatingly
that the coin is round, the only inference to be drawn is that the
coin’s image on the retina is judged by the brain (or the mind, or
whatever we decide to call it) to be circular. We do not wish to
intrude on the ground of the eye-specialist or physiologist, who is
better equipped than we are to proceed farther in this analysis, but
we may point out that the problem which we are now considering is of
an entirely different nature from the one whence we started. There we
were considering whether shape in empty space was absolute; here we are
considering whether an image cast on our retina should impress itself
upon our recognition with any definite shape.


The difference amounts to just this: In mathematical space, and even in
physical space, absolute measurement seemed to elude us, since in view
of the continuity of space it appeared impossible to proceed with an
enumeration of points. But in the case of the retina, its surface is
no longer homogeneous; it possesses a heterogeneous structure like all
tissues, probably a discrete one forming a pattern. In all such cases
a definite metrics suggests itself naturally, just as on a net, in the
absence of a ruler, we would compare lengths instinctively by counting
the holes separating our points.


Whether or not, in the case of the retina, our appreciation of the
coin’s roundness comes from some unconscious counting process is a
problem for the specialist to decide; but at all events, when we
consider that the retina and the eye are Euclidean bodies just like our
rulers, the concordance between our computations of shape and size, as
determined by rods, and our direct visual appreciation of shape does
not appear to present much of a mystery.


But there is still a further point to be considered. Were we to have
a direct intuition of congruence and of absolute shape or length, our
measurements with rods would have to be adjusted so as to conform to
this intuition. The introduction of rods would thus be contemplated
merely as an adjunct, in order to obtain greater definiteness. But it
so happens that such is not the case.


Our intuitive visual appreciations yield results which differ from
results obtained with rods, not merely accidentally as a result
of the imperfection of human observation, but systematically.


A coin that measures out as round will appear flattened to the eye.[13]
This phenomenon is illustrated by the well-known optical illusion
wherein two rigid rulers which coincide when placed side by side,
appear of unequal magnitude when placed horizontally and vertically,
respectively. It is a well-known fact that the vertical appears to be
longer than the horizontal. For this reason, vertical stripes on a
cloth cause the wearer to appear thinner and taller, whereas horizontal
stripes produce the reverse effect. Now the mere fact that we have
agreed to accept such discrepancies as due to optical illusions rather

than to the untrustworthiness of our rods proves that we deliberately
reject our intuitive judgment of shape and size in favour of more
sophisticated rules of measurement. In other words, we have abandoned
direct intuition for physical determinations, hence for convenient but
conventional standards.


In short, we may state that we possess no direct intuition of shape
and length, and that what little we appear to have is traceable in the
final analysis to the properties of material bodies and light rays.


Let us consider a last example relating to distance. We realise,
without resorting to measurement, that the distance across the street
is less than the entire length of the street. A number of different
reasons conspire to account for this conviction. First, the muscular
sensations which accompany the convergence of the eyes and the
focussing of images on the retina would in themselves suggest the
origin of our appreciation of distance. In addition, we know from
experience that it requires a greater effort and a longer time to
travel along the entire length of the street than to step across from
one sidewalk to the other. And if we enquired why it took a shorter
time to cross the street, we should find that it was due to the fact
that we advanced with definite steps.


Although in mathematical space the two distances would be equal or
unequal according to our measuring conventions, in practical life
we have unwittingly posited our measuring convention by walking.
Our successive steps henceforth define in our estimation congruent
distances; and under the circumstances distances become measurable in
terms of these steps. But these steps are themselves controlled by
our human frame; hence all we have done has been to measure space in
terms of our legs. That measurement originated in this way is indicated
clearly by such words as foot and cubit, or again by
the definition of a yard as expressed by the distance between the
tip of a certain king’s nose and the extremities of his fingers. And
it is because our human limbs manifest the same type of congruence
as the material bodies around us that this type of measurement once
again imposes itself so strongly upon us. Indeed, measurements as
computed with human limbs appear to be instinctive and are exemplified
in children who, having grown, are surprised to find the rooms and
buildings they have not seen for some years, appear considerably
smaller. Instinctively, the child is measuring size in terms of his own
height.


Thus, in whatever way we examine the matter, there appears to be
nothing mysterious in our natural belief in the absoluteness of shape
and size or in a definite geometry pertaining to space. None of the
examples mentioned thus far entitle us to maintain that physical
space manifests a definite metrics and that congruence is other than
conventional.


If we consider the problem in its present state, we see that it is the
physical behaviour of material bodies and light rays which is in the
final analysis responsible for our natural belief in absolute shape.
But this realisation brings with it the assurance that space itself
has eluded us entirely in our discussions. Such was indeed Poincaré’s
stand. He maintained that though for purposes of convenience it

was only natural for us to measure space as we do, yet if needs be
we could disregard the behaviour of material bodies entirely, adopt
non-Euclidean standards of measurement, and proceed as before.


In spite of this change we could construct exactly the same engineering
works, in fact rewrite the whole of physics. Needless to say,
everything would be extremely complex, all our known laws would be
disfigured, and hypotheses ad hoc would have to be introduced.
But when all is said and done, the task would be theoretically
possible; so that if we disregard the criteria of convenience and
simplicity, there is nothing to choose between the various types of
measurements, any more than between the metric system and the British
units.


As a further illustration of the elusiveness of absolute shape and
size, Poincaré asks us to conceive of a hollow spherical volume placed
anywhere in space, and to assume that the temperature in the sphere
decreases progressively from the centre, becoming absolute zero at the
surface. He assumes that this hollow sphere is peopled by imaginary
beings whose bodies expand and contract with the temperature and that
all material bodies in the sphere behave in a similar manner. If we
should supplement these suppositions by assuming that the refractive
index of the medium in the sphere’s interior varies in a certain
definite way, the rays of light in this hypothetical world would
describe circles.


This closed universe would of course appear infinite to its
inhabitants, since as they proceeded from the centre to the surface
their bodies would grow smaller, their steps shorter, so that it would
be impossible for them to reach its boundary however long they walked.
The geometricians of this imaginary world would feel justified in
proceeding exactly as we have done ourselves. They would define as
remaining congruent when displaced, hence as rigid, those bodies which
appeared to them to remain the same wherever they carried them. Owing
to the paths devised for the light rays and to the sameness in the
reduction of the sizes of all objects as the centre was left behind,
the expanding and contracting bodies of this universe would present
all the characteristics of rigidity. On conducting measurements with
their rigid rods the hypothetical beings would obtain non-Euclidean
results, their entire world would appear to them as non-Euclidean, and
non-Euclidean geometry would be as inevitable to them as Euclidean
geometry is to the average layman. Some Kant among the hypothetical
beings would surely arise and explain that non-Euclidean space was
the a priori form of pure sensibility, transcending reason
and experience. Then eventually some great mathematician would come
along, sweep all those cobwebs aside, and prove that there existed
other perfectly consistent types of geometries and that the ingrained
preference of his fellow citizens for non-Euclidean geometry was due to
the dictates of common experience and constituted by no means the a
priori form of pure sensibility.


It is not merely in its philosophical aspect that Poincaré’s
illustration is interesting. The major point is the following: The
hypothetical beings would be just as much entitled to assert that

space was non-Euclidean as we are to assert that it is Euclidean. It
is true that if we could look into their world we should say that they
had a wrong understanding of measurement, and were totally in error
when they assumed that their bodies were rigid, since we could see them
getting smaller and smaller as they neared the surface. But we must
not forget that the imaginary beings, in turn, could they but view our
Euclidean bodies, would return the compliment and accuse us of having a
wrong understanding of rigidity and measurement.


From all this it follows that by a mere variation in physical
conditions the same space would be considered non-Euclidean or
Euclidean. Obviously, by reason of this contradiction, space itself can
have nothing to do with the problem; the type of space which physicists
are discussing reduces therefore to a relational synthesis of physical
results. Space itself remains amorphous.


Poincaré develops analogous arguments when he discusses the parallax
observations conducted on the rays of starlight. Euclidean geometry,
for instance, regarded purely as a system of measurement, is from
a mathematical point of view the simplest type of geometry for the
same reason that a monosyllable is simpler than a polysyllable. It
is therefore obviously to our interest to retain it if possible. Of
course if, as in the hypothetical world discussed previously, material
bodies behaved like non-Euclidean solids and if light rays followed
appropriate courses, we should have to abandon Euclidean geometry for
reasons of practical convenience. But since, in the world we live in,
our habitual solids behave to a high order of approximation as do
Euclidean solids, our preference for Euclidean geometry seems perfectly
legitimate even from the standpoint of physics.


Suppose now that the parallaxes of the very distant stars turned out
to be negative: would Euclidean geometry and Euclidean space have
to be abandoned? As Poincaré points out, this would by no means be
necessary or even advisable. It is true that if we assumed, as is
the custom, that rays of starlight follow geodesics through space,
negative parallaxes would imply a trace of Riemannianism in space; but
the primary point to decide is, “How do we know that rays of light
follow geodesics?” Obviously this is capable neither of proof nor
of disproof. An empirical proof that such a contention was correct
or incorrect would be possible only were we to know beforehand how
the geodesics of space were situated, for then we could determine by
observation whether rays of light followed them or not. But how could
we establish the way the geodesics lie unless we were already apprised
of this geometry which we now proposed to determine? Obviously, our
procedure would be circular. Can we at least assume that rays of
light must inevitably follow geodesics? Would any other assumption be
impossible? Certainly not. A denial of the assumption would modify our
understanding of optical phenomena; but what if it did? We could always
get out of the difficulty by varying the laws of optical transmission,
and still retain Euclidean geometry. In other words, the geometry the

physicist credits to space is contingent on his acceptance of a number
of physical laws; and by varying these laws in an appropriate way he
could still account for observed facts and credit corresponding types
of geometry to space. Since all these various systems of physical laws
would account for the facts of experience, how can we ever hope to
decide which one of these systems corresponds to reality? And under the
circumstances, what use is there in discussing the real geometry
of space? All we can discuss is expediency.


In other words, Poincaré, by divorcing space from its material content,
geometry from physics, places space and its geometry beyond the control
of experiment; so that there is really nothing left for the physicist
to argue about.


As a matter of fact, the entire conflict is more apparent than
real; it centres round the meaning we wish to ascribe to the word
reality, whether we conceive of reality in the pragmatic
scientific sense or in the metaphysical sense as embodying “true
being.” For the theoretical physicist, “reality” means that hypothesis
which will permit him to co-ordinate natural phenomena with the
maximum of simplicity. He knows of no other test for reality and would
probably evince very little interest in the unattainable reality of
the metaphysician. If, therefore, a co-ordination of the facts of
experience presents greater simplicity when he assumes space to be
Euclidean or non-Euclidean, then space is Euclidean or non-Euclidean
in spite of the fact that phenomena might just as well have been
co-ordinated (though in a less simple way) had some other hypothesis
been selected.


Riemann expresses the selective rôle of the criterion of simplicity
when he writes:


“Nevertheless it remains conceivable that the measure relations
of space in the infinitely small are not in accordance with the
assumptions of our geometry [Euclidean geometry], and, in fact, we
should have to assume that they are not if, by doing so, we should ever
be enabled to explain phenomena in a more simple way.”[14]


So much for the scientific understanding of the word. But if, on the
other hand, when discussing “reality” we are referring to the reality
of the metaphysicians, as happens to be the case with Poincaré, then it
appears quite impossible to dispute his stand; at least it is scarcely
credible that any scientist would feel inclined to do so. For, assuming
even that such a thing as metaphysical reality has any meaning at all,
why should it be connected with simplicity of co-ordination? At any
rate, Einstein himself, whose entire theory centres round a definite
geometry being ascribed to the spatio-temporal background, writes:
“Sub specie œternitatis, Poincaré in my opinion is right.”





If any criticism is to be directed against Poincaré’s stand, it should
be on the ground that he showed himself a poor prophet when he claimed
that it would always be simpler to retain Euclidean geometry. Einstein
has proved the contrary. At all events, in what is to follow, we will
concern ourselves solely with the real space of the physicist, that
is, with the space to which he is led when he seeks to co-ordinate
phenomena with the maximum of simplicity. With this understanding of
space in our minds, a first reason for rejecting the concept of an
amorphous space arises when we find that a large number of different
methods of investigation all point to the same definite metrics for
space. Thus, the various material bodies we encounter are by no means
identical in nature; some are light, others are heavy, and their
chemical and molecular constitutions are certainly not the same. And
yet in every case, whether our rods be of wood, of stone, or of steel,
we obtain the same Euclidean results provided we operate as far as
possible under the same conditions of temperature and pressure. In
other words, there appears to be a sameness in our determinations of
congruence regardless of the material bodies to which we appeal.


This uniqueness of the geometry of space is still further exemplified
in the following example: Here are two totally different methods of
exploring space, one with material rods giving us a physical definition
of congruence, and one with light-ray triangulations giving us a
physical definition of geodesics. In either case we are led to the same
Euclidean geometry, and this concordance appears rather strange, for
we might have expected that if the geometry we credited to space were
irrelevant to space, the type of geometry obtained would have varied
according to the physical exploration method considered. Besides,
if space were amorphous, hence possessed no geodesics, it would be
inconceivable that a free body or a light pulse should know how and
where to move. The very definiteness and Euclidean straightness of the
paths of free bodies and light rays, when referred to a certain frame
of reference, would seem to indicate that space had a structure and was
not amorphous.


To be sure, in view of modern discoveries there is nothing very strange
in the fact that the courses of free bodies should coincide with the
paths of light waves, since light has been proved to possess momentum
just as matter does. But even so, it appears strange that the courses
defined by moving bodies should yield the same geometry as measurements
conducted with bodies at rest.


Then again, there are the dynamical properties of space, which we
cannot afford to neglect. If physical space were amorphous, all paths
through space should be equivalent, and yet centrifugal force and
forces of inertia manifest themselves for certain paths and motions
and not for others. Whence could these forces arise if not from the
structure of space itself? Such was indeed Newton’s contention.


In view of all these occurrences, difficult to account for if we
believe in the amorphous nature of space, unless we appeal to some
miraculous pre-established harmony, it appears as though space must
be credited with a definite structure or metrics which, in the

light of experiment, turns out to be Euclidean, at least to a first
approximation. Expressed in a different way, real space appears to be
permeated by an invisible field, the Metrical Field, endowing it
with a metrics or structure.


Now, in view of the fact that the mathematical requirements of that
void we call empty space preclude it from having a metrical field
(i.e., a structure or a metrics per se), the simplest way
out of the difficulty is to assume that real space is not truly empty,
but is filled with some mysterious physical medium, which we may call
the “ether,”[15] and that it is this physical medium and not space
itself which possesses a Euclidean structure. Henceforth it will be
this ether structure which will be responsible for the apparent metrics
or metrical field of space, which will cause material bodies to settle
into definite shapes, and which will regulate the courses of light rays
and free bodies far from matter.


For the physicist, however, this ether will be inseparable from real
space; so that, to all intents and purposes, when the physicist
discusses real space he will be referring to space together with its
ether content. Were this ether structure to vanish, space would become
amorphous, bodies would not know what shape to take, and light rays
would not know where and how to move.


At this stage we must mention the premonitions of Riemann on the
subject of the metrical field of real space. Riemann did not attribute
this structure of space to the presence of some invisible medium, the
ether, possessing a structure of its own. According to him the origin
of the metrical field should be sought elsewhere. He felt that the
metrical field of space should be compared to a magnetic or an electric
field pervading space. And just as a magnetic field exists in the
space surrounding a magnet, Riemann searched for the physical cause of
the metrical field. With characteristic boldness, he found it in the
matter of the universe; the metrical field thus became a species of
material field. If Riemann’s ideas are accepted we can understand how a
redistribution of the star matter in the universe, altering as it would
the lay of the metrical field, would produce deformations in the shape
of a given body and variations in the paths of light rays. As Weyl
tells us, a spherical ball of clay compressed into any other form might
again be made to appear spherical were all the matter in the universe
to be redistributed in a suitable way.


It would also follow that were all the matter in the universe to be
annihilated, and as a result the metrical field to vanish, space
(assuming that any physical meaning were left the term) would become
completely amorphous, just like mathematical space; light rays would
not know where to move, all geodesics having disappeared; and were one
lone material body to be introduced into otherwise empty space, it
would not know what shape to take. Without the metrical field, physical
space would be unthinkable.


Still further important consequences follow from this matter-moulding

hypothesis of Riemann. Prior to these views, the principle of
sufficient reason appeared to imply that physical space would
always turn out to be homogeneous—the same in all places. This
does not necessarily mean Euclidean, for, as we know, Riemann’s and
Lobatchewski’s geometries also correspond to homogeneous spaces;
but all varying degrees of non-Euclideanism from place to place
were thought to be excluded a priori. Of the vast realm of
possible types of geometries or spaces discovered by Riemann, only the
homogeneous types survived; a situation which Weyl finds appropriately
expressed by the classical line: “Parturiunt montes, nascetur
ridiculus mus.”


But with the new views advocated by Riemann the situation changes
entirely; for now the texture, structure or geometry of space is
defined by the metrical field, itself produced by the distribution of
matter. Any non-homogeneous distribution of matter would then entail a
variable structure or geometry for space from place to place.


Now the question arises, What is the nature of this metrical field?
Is it merely a name we are giving to the structure of space caused
by matter? This view appears impossible, for space of itself, being
a mere void, is not amenable to structure. Is the metrical field a
direct emanation from matter, a rarefied form of matter? Or again is
it a reality of a category differing from matter (call it the ether),
which in the absence of matter would be amorphous, and which could
only be forced into a structure by the influences due to matter and
transmitted from place to place through the ethereal substance? In this
case we should again be led to the view that what we commonly call the
structure or geometry of real space reduces to the structure of the
matter-moulded ether-filling space.


Riemann’s exceedingly speculative ideas on the subject of the metrical
field were practically ignored in his day, save by the English
mathematician Clifford, who translated Riemann’s works, prefacing them
to his own discovery of the non-Euclidean Clifford space. Clifford
realised the potential importance of the new ideas and suggested that
matter itself might be accounted for in terms of these local variations
of the non-Euclideanism of space, thus inverting in a certain sense
Riemann’s ideas. But in Clifford’s day this belief was mathematically
untenable. Furthermore, the physical exploration of space, even in the
interior of liquids, seemed to yield unvarying Euclideanism. And here
the remarkable irony of the whole situation must be noted. Although
experimenters had utilised the most refined apparatus for detecting a
possible non-Euclideanism of space and had failed in their efforts, it
was reserved for the theoretical investigator Einstein, by a stupendous
effort of rational thought, based on a few flimsy empirical clues, to
unravel the mystery and to lead Riemann’s ideas to victory.[16] Nor
were Clifford’s hopes disappointed, for the varying non-Euclideanism of
the continuum was to reveal the mysterious secret of gravitation, and
perhaps also of matter, motion and electricity.





Before solving the problem, however, Einstein had been led to recognise
that space of itself was not fundamental. The fundamental continuum
whose non-Euclideanism was to be investigated was therefore not one of
space but one of Space-Time, a four-dimensional amalgamation of space
and time possessing a four-dimensional metrical field governed by the
matter distribution. Einstein accordingly applied Riemann’s ideas to
space-time instead of to space, and attempted to explore the geometry
of space-time by a purely rational co-ordination of known empirical
facts. He discovered that the moment we substitute space-time for space
(and not otherwise), and assume that free bodies and rays of
light follow geodesics no longer in space but in space-time, the
long-sought-for local variations in geometry become apparent. They are
all around us, in our immediate vicinity; and yet we had never realised
it. We had called their effects gravitational effects, ascribing
them to forces foreign to the geometry of the extension, and never
suspecting that they were the result of those very local variations in
the geometry for which our search had ever been vain even though we had
extended our observations to the depths of the universe. Indeed, it may
be said that the theory of relativity is the theory of the space-time
metrical field.


While we are on the subject, we may mention that this mysterious
metrical field which moulds both space and time appears to be
conditioned entirely by the matter of the universe. Such at least are
the conclusions which the existence of Einstein’s cylindrical universe
would suggest. The problem is, however, still extremely obscure. It
is still possible to believe with Eddington and de Sitter that the
metrical field or space-time ether-structure might subsist in the
absence of matter, contrary to the views of Riemann.


Finally let us consider how these new views will affect the problem
of absolute shape and size. We may say that space-time possesses a
definite geometry but that this geometry is subject to local variations
both in space and in time, as the masses of the universe modify their
positions. Yet, as we have mentioned on several occasions, a geometry,
even when fully determined and unchanging, does not imply absolute
shape and size. It merely regulates the relationships or defines the
laws of the mutual dispositions of bodies, and these laws may remain
unmodified even though the absolute shape and size of the bodies vary.
Restricting ourselves to the problem of absolute size, we shall find
that with the finite universe the metrical field yields a universal
standard of length given by the radius of the finite universe. As
referred to this natural gauge, an object presents a definite size,
but obviously there is nothing absolute about the gauge itself. Not
only will its magnitude be governed by the total amount of matter
in the universe, an amount determined presumably by accident, but
furthermore there would be no means of determining the magnitude of
this gauge otherwise than by adopting some other gauge, and so on ad
infinitum.








CHAPTER V


AN ALTERNATIVE VIEW OF THE NON-EUCLIDEAN GEOMETRIES





THE type of geometry we obtain is dependent, as we know, on our
definition of congruence. If we define as congruent displacements
the displacements of those bodies which in ordinary life we consider
rigid and undeformable, we obtain Euclidean geometry. If, on the other
hand, we define as congruent the displacements of those bodies which
in ordinary life we should regard as of changeable shape, we generally
obtain some non-Euclidean type of geometry.


In order to simplify what is to follow, we shall first consider
the particular case of two-dimensional geometry. Consider, then, a
plane surface. If on this plane surface we effect measurements with
Euclidean rods, we obtain Euclidean results; if we employ rods which
according to the Euclidean point of view squirm in an appropriate way
when displaced, we obtain the geometry of Riemann or of Lobatchewski,
as the case may be. It is to be noted that the plane is the same in
all three cases, and yet the geometry we obtain on its surface may be
Euclidean or non-Euclidean. It is not the plane itself but our methods
of measurement conducted thereon which have changed.


Now it may be mentioned that there exist a number of alternative ways
of representing both Euclidean and non-Euclidean geometries. Which way
is to be preferred depends largely on the scope of our investigations.
One of these alternative procedures has often been appealed to in
popular writings (by Helmholtz in particular) because it enables us to
visualise the sequence of theorems involved, without abandoning thereby
our habitual Euclidean representations.


Thus three-dimensional Euclidean space is taken as a starting point.
It is then proposed to show how, in this three-dimensional Euclidean
space, a two-dimensional non-Euclidean geometry can arise. The
fundamental space which we are here postulating being Euclidean,
distances in this space must be computed with rigid Euclidean rods.
Then it is shown that if we apply tiny Euclidean rods to the surface
of a sphere and conduct measurements on this surface, we shall obtain
a series of numerical results which are representative of Riemann’s
geometry. The chief advantage of this method of presentation is that
it allows us to foresee at a rapid glance that Riemann’s geometry must
be consistent,[17] since in the present case it reduces to Euclidean
geometry on a sphere, which is a particular case of Euclidean geometry
in three-dimensional space; and Euclidean geometry is known to be

consistent. But aside from this advantage the procedure is to be
avoided, for it tends to obscure the philosophical importance of
non-Euclidean geometry.


In the first place it is not always possible to follow this method.
Consider, for example, the case of Lobatchewski’s geometry. Just as
Riemann’s geometry was that of the spherical surface, so Lobatchewski’s
geometry turns out to be that of a peculiar saddle-shaped surface
called the pseudosphere, as was proved by Beltrami. Hilbert, however,
has shown that there cannot exist a surface free from singularities
which would represent the total spread of Lobatchewski’s plane
geometry; hence here is a first reason for being on our guard against a
number of unsuspected difficulties.


But this is not all. If we adopt the method of representing
two-dimensional non-Euclidean geometry as the geometry obtained
by taking Euclidean measurements on a curved surface, how are we
to conceive of three-dimensional Riemannian geometry? Obviously
we must start with a four-dimensional Euclidean space in which
a three-dimensional spherical surface is embedded. But as a
four-dimensional Euclidean space transcends our immediate experience
and is in the nature of a mathematical fiction, we should be led to the
erroneous conclusion that three-dimensional non-Euclidean geometry must
likewise be a purely conceptual construction having nothing in common
with measurements which might be conducted with material rods.


We should be led into still greater difficulties if we wished
to represent a three-dimensional non-Euclidean space possessing
various degrees of non-Euclideanism from place to place. Reasoning
by analogy, we should be tempted to say that just as an irregularly
curved surface embedded in three-dimensional Euclidean space yielded
a two-dimensional geometry of varying degrees of non-Euclideanism, so
now all we should have to do would be to conceive of an irregularly
curved three-dimensional surface embedded in a four-dimensional
Euclidean space. But the analogy would be deceptive; for calculation
shows that it would be impossible to represent an arbitrarily curved
three-dimensional surface in a four-dimensional Euclidean space.
In the general case we should have to situate our variously bumped
three-dimensional surface in a six-dimensional Euclidean space. In the
same way, a four-dimensional non-Euclidean space of variable curvature
could be represented only in a ten-dimensional Euclidean space; and so
on.[18]


Now in view of these difficulties, in view of the fact that to
represent a non-Euclidean space of three dimensions in terms of
Euclidean space, we may be compelled to appeal to a Euclidean space
of six dimensions, it is certainly exalting Euclidean space unduly
to regard it as The Space. This is especially obvious when
we remember that we could have conceived of our three-dimensional

non-Euclidean space directly, as a result of measurements with
squirming rods, without any reference to Euclidean geometry, and
without ever having had to introduce any greater number of dimensions.


At this juncture the beginner is often inclined to argue as follows:
“You say that non-Euclidean geometry of two dimensions is the
geometry obtained by executing Euclidean measurements on a suitably
curved surface. But your concept of curvature is meaningless unless
we conceive it as contrasted with some pre-existing standard of
straightness. Does not your presentation prove, therefore, that
Euclidean space as representative of flatness or straightness is
logically antecedent to non-Euclidean space, which connotes curvature?”


This argument is radically incorrect, and arises from too loose an
understanding of non-Euclidean geometry. In the first place, to assume
that the concept of curvature presupposes the concept of straightness
is no more inevitable than to assume that the concept of straightness
presupposes that of curvature. For if it is true to say that that which
is curved is that which is not straight, it is equally true to say that
that which is straight is that which is not curved; so that in the
absence of curvature, straightness would in turn be meaningless. The
question of deciding, for example, whether a circle or a straight line
is the more fundamental is strictly a matter of opinion. The Greeks
held circular motion to be the noblest of all motions; and between
the designations “noblest” and “most fundamental,” the distinction is
exceedingly slight. And even this is not all, for thus far we have been
arguing as though Euclidean space were truly flat, and non-Euclidean
space truly curved. But we must remember that this curvature of which
we speak is not to be construed as representing anything absolute; it
arises solely from the particular type of representation we have agreed
to select.


Thus, in the presentation of non-Euclidean geometry which we have just
been discussing, we started from three-dimensional Euclidean space as a
basis and considered curved surfaces embedded in this space. This form
of presentation was equivalent, as we know, to stating that Euclidean
measurements must be adhered to on the curved surface. But we might
have proceeded otherwise. We might have started with three-dimensional
non-Euclidean space and considered the geometry of curved surfaces (of
a sphere, for example) embedded in this space. This would have been
equivalent to applying non-Euclidean rods on our curved surface.


Under suitable conditions the geometry of our curved surface (or
sphere) would then become Euclidean. Euclideanism itself would
thus be linked with curvature, while non-Euclideanism, which would
here be the type of geometry obtained on the plane embedded in our
three-dimensional non-Euclidean space, would accordingly be linked with
flatness. In short, we must not allow the word “curvature” to mislead
us into forming a false impression about non-Euclidean geometry. In
many respects Riemann’s choice of the word “curvature” has proved
unfortunate and the more scientific appellation non-Euclideanism

should be adhered to.[19]


There is still another point which we must mention. It might be
argued that in Riemann’s geometry of two dimensions, that is to say,
in the geometry of the spherical surface when Euclidean measurements
are adhered to, a straight line on the sphere, being a great circle,
constitutes a closed curve, whereas in Euclidean geometry a straight
line can never constitute a closed curve. Here, however, the
difficulty which arises does not pertain so much to Euclideanism and
non-Euclideanism as to another branch of geometry, Analysis Situs, on
which we shall make a few brief remarks in a note at the end of the
chapter. The fact is that the geometry of the cylinder embedded in
Euclidean space is Euclidean to the same extent as the geometry of the
plane, and yet on a cylinder certain straight lines, namely, the rings
which surround the cylinder, constitute closed curves.


It might be objected that these rings are not Euclidean straight lines.
But here the critic would be confusing geometry and dimensionality.
From the standpoint of two-dimensional Euclidean geometry, the rings on
the cylinder are perfectly straight lines, and it would never enter the
mind of the flat being moving over the cylindrical surface to view them
in any other light. Only when we represent the cylinder’s surface in a
three-dimensional Euclidean space must we regard the rings as curves.
In short, lines that would be straight in two dimensions might be
curved when viewed from the standpoint of a higher dimensionality. By
analogy, lines which would be regarded as straight in three-dimensional
space might be recognised as curved were we to appeal to a fourth

dimension. Thus, whichever way we choose to investigate the concept of
straightness, we find that it eludes us more and more.


It appears unnecessary to dwell further on these rather special
problems, for they would lead us too far afield.


Now, finally, there is still another reason, on which we have lightly
touched, which must make us very wary of being led astray by faulty
analogies. When, for instance, we consider the two-dimensional geometry
of a spherical surface embedded in a three-dimensional Euclidean space,
we realise that the surface divides space into an outside and an
inside. We should then be inclined to argue that a three-dimensional
Riemannian or spherical space must also divide four-dimensional space
into an inside and an outside.


This line of reasoning would be correct in the present case, but it
is important to note that this conception of an inside and an outside
is in no wise essential to non-Euclidean geometry. Had we adopted the
more rational method of presenting three-dimensional non-Euclidean
space as due to the peculiar behaviour of our measuring rods, the
conception of an inside and an outside would have been meaningless.
We must understand that this notion arose merely as a result of our
particular choice of a mode of presentation, and in no wise constitutes
an intrinsically necessary condition.


If these rather delicate points have been understood, no harm can be
done by discussing non-Euclidean geometries as the geometries obtained
by applying Euclidean rods on curved surfaces. In many respects,
indeed, this method of presentation is helpful; for accustomed as we
are in everyday life to effect measurements with Euclidean rods, we are
able to visualise more easily a series of abstract investigations when
this familiar procedure is followed.


Let us now proceed to a more thorough study of the preceding method.
We have said that non-Euclidean results are obtained when we confine
ourselves to Euclidean rods while conducting our measurements on curved
surfaces. In the case of Riemannian geometry of two dimensions, the
required surface is that of a sphere embedded in three-dimensional
Euclidean space. In the case of Lobatchewski’s geometry, it is
a saddle-shaped surface known as a pseudosphere (subject to the
limitations mentioned previously).


We will confine ourselves to the study of Riemann’s geometry for the
time being. Such a study in two dimensions permits easy visualisation,
owing to the fact that since the earth is spherical in shape it is
precisely this type of geometry which we obtain when we conduct
measurements on its surface with rigid Euclidean measuring rods
(assuming the surface to be perfectly smooth, like that of the ocean
on a calm day). In fact, we shall see that the postulates of Riemann’s
geometry are immediately verified on the sphere.


To begin with, the shortest distance, or, better still, the most
direct distance, between two points on the earth’s surface, when
Euclidean rigid rods or inextensible tape measures are employed as a

means of measurement, is an arc of a great circle. Great circles, such
as meridians on the surface of our planet, constitute therefore the
straight lines or geodesics of Riemann’s geometry; and when discussing
Riemann’s geometry we may call them straight lines.


Consider, then, one such straight line or geodesic, and let it be that
particular great circle which we call the equator. According to the
axioms of Euclid’s geometry two perpendiculars drawn at two different
points of the same straight line can never meet; they lie parallel to
one another. On the sphere, on the other hand, two perpendiculars to
the equator are two meridians and these meridians always meet at the
pole. In fact it is impossible to draw any two great circles on the
sphere which do not intersect. Hence we see that no parallel geodesics
can exist in Riemann’s geometry. Likewise, whereas in Euclid’s geometry
the sum of the three angles of a triangle is equal to two right angles,
in Riemann’s geometry this sum is always greater than two right angles.
This we could easily verify by stretching ropes between three distant
points on the earth’s surface so as to form a triangle, and then
summing the values of the angles at the three corners of our triangle.


A similar verification would ensue if we were to effect measurements
along a circumference and its diameter. Thus, if at a central point
on the earth’s surface we fix one end of a rope and cause the other
extremity to rotate around the central point, it will describe a circle
on the earth’s surface. We shall then find, upon measuring the length
of the circumference marked out by the extremity of the rope, that the
ratio of the length of this circumference to the length of the diameter
is a variable number, always smaller than  and depending
on the area covered by our circle; whereas in Euclidean geometry this
ratio would be the constant number .


There is still another result of importance which must be mentioned.
On a plane, the farther we wander along a straight line, the farther
we move from our starting point, whereas on our sphere we see that if
we follow a straight line or geodesic we shall finally return to our
starting point after having circled the earth. We express this fact by
saying that in Riemann’s geometry space is finite, yet unbounded. It
is finite since we cannot wander away indefinitely from our starting
point; it is unbounded because however far we go, we never come to a
stone wall or a gap beyond which we can proceed no farther. On the
other hand, Euclidean space, such as that of the plane surface, is
infinite and unbounded.


And now suppose the earth on which we were conducting our measurements
were to swell indefinitely. All the characteristics of Riemann’s
geometry which we have discussed would gradually fade away, provided we
limited our measurements to the same restricted area of the surface.
Our measurements would still yield Riemannian results, of course, since
however large our earth had grown, it would still remain spherical. But
the results of our measurements over a definite area would approximate

more and more to those of Euclidean geometry. The reason is obvious,
since the greater the volume of the sphere, the more nearly would a
given area of its surface approximate to an ordinary plane.


In fact a plane surface may be assimilated to the surface of a sphere
of infinite radius; so that if our sphere were to grow indefinitely we
should find that our measurements lost little by little their Riemannian
characteristics, until it would be impossible to distinguish them from
Euclidean measurements.


Suppose now that our sphere continued to change in shape after having
attained an infinite radius; in particular, suppose that our surface
gradually began to assume the shape of a saddle, curved downwards if we
intersected it from east to west and curved upwards if we intersected
it from north to south. As this double curvature became gradually more
pronounced we should find that our measurements lost their Euclidean
character and became more and more conspicuously Lobatchewskian.


Thus we see that Euclidean geometry stands at the dividing line of
Riemannian and Lobatchewskian geometry. When our surface changes in
shape the geometry remains Riemannian so long as there subsists the
least trace of sphericity, that is, of positive curvature. Likewise
it remains Lobatchewskian so long as there subsists the least trace
of saddle-shapedness, or negative curvature. Finally, it is strictly
Euclidean only when the surface has become a plane, that is, exhibits
zero curvature.


For this reason Euclidean geometry has a uniqueness about it which is
denied to the non-Euclidean varieties. These latter constitute a class
of geometries; and the precise type of the geometry we may happen
to be discussing is determined by the intensity of curvature of the
sphere or pseudosphere to which it pertains. We also see why it is so
difficult to determine by empirical methods whether the space of the
universe is truly Euclidean or not. It is because both Riemannian and
Lobatchewskian geometry merge by insensible gradations into Euclidean
geometry.


The analysis we have given refers to non-Euclidean geometries as
derived from the geometry of surfaces; that is, to the numerical
results obtained when we use rigid Euclidean rods to effect
measurements on curved surfaces. It must be noted, however, that the
surfaces we have discussed are of a very special kind. Both spheres and
pseudospheres are known as surfaces of constant curvature. There is no
need to go into the mathematical definition of what is meant by this;
we will limit ourselves to stating the principal characteristic of such
surfaces.


Consider, for example, a net made of inextensible threads (inextensible
or undeformable being used in the Euclidean sense). If this net can
be applied with perfect contact to any portion of a plane, it can be
slid over the entire plane without ever losing its perfect contact. The
same is true of the sphere and pseudosphere. Thus, a net which could be
fitted with perfect contact to any part of a sphere could be slid over
any portion of the surface without ever losing its perfect contact.





The only surfaces which possess this property are precisely the sphere,
the plane and the pseudosphere (and those derived therefrom without
stretching); and these surfaces are the surfaces of constant positive
curvature, of constant zero curvature, and of constant negative
curvature, respectively. So far, then, as the shape of nets applicable
to the surface is concerned, there is no means of distinguishing
one part of the surface from any other part, since the net can be
slid over the surface, preserving its dimensions and never losing
its perfect contact with the surface. In other words, the surface
appears to be isotropic and homogeneous when measurements with rigid
Euclidean rods are conducted over it, or when the nets we slide over
it are Euclideanly inextensible, This is the property called free
mobility.


Such would no longer be the case were we to consider surfaces of
variable curvature, e.g., the surface of an ellipsoid or of
a trumpet. A net which could be applied with perfect contact to one
part of the surface would lose its perfect contact when slid over the
surface, unless we deformed it by stretching it or causing it to shrink.


It is because all three types of geometry we have mentioned
(Euclidean, Riemannian and Lobatchewskian) hold in exactly the same
way for all parts of the space in which we are operating, that the
surfaces which portray them in two dimensions are necessarily of the
constant-curvature type.


We have yet to show the connection between non-Euclidean geometry of
two dimensions defined as the geometry obtained with Euclidean rods on
a surface of constant curvature, and non-Euclidean geometry obtained
with squirming Euclidean rods, i.e., rigid non-Euclidean ones.
For this purpose consider a sphere resting on a plane. We may call the
south pole that point of the sphere which stands in contact with the
plane; and we shall assume that a point-source of light is located
at the north pole. If the sphere is transparent to rays of light all
figures traced on the surface of the sphere will cast shadows on the
plane. But the same will be true of our little Euclidean rods which we
place alongside these figures on the sphere for purposes of measurement.


It is easy to see that a circle, for instance, traced on the spherical
surface will, generally speaking, have for its shadow an ellipse on
the plane. As this circle is displaced on the sphere towards the north
pole, its shadow will grow larger and larger, tending finally, when any
point of the circle coincides with the north pole, to become a parabola
extending to infinity. But inasmuch as the shadows of the little rods
with which we measure lengths on the sphere vary in exactly the same
way as do the shadows of the figures measured, we shall obtain on the
plane exactly the same Riemannian results that endure on the sphere.


In short, if we assume that on the plane our standard measuring rods
are given by the shadows of the standard measuring rods used on the
sphere, we shall obtain Riemannian geometry on the plane. It is
scarcely necessary to state that with our Euclidean ideas of congruence
it would be impossible for us to accept the statement that these
successive squirming shadows of a Euclidean length displaced on the

surface of the sphere were all congruent to one another; but this is
not the point at issue. If we were perfectly flat, two-dimensional
beings, living on the plane, and if not only all the flat bodies
sliding over the plane behaved as did the shadows in our previous
example, but also our measuring rods and our own living bodies behaved
likewise, we should have no other alternative than to assume that
these shadows represented the displacements of bodies that moved while
remaining rigid or without change. We should accordingly regard the
geometry of our two-dimensional space as Riemannian.


It is impossible to show more clearly that the geometry we attribute
to space is nothing but an expression of the properties of our bodies
and measuring rods when displaced, since here we have a plane which
is Euclidean or Riemannian in its geometry according to the behaviour
of the bodies that glide over its surface. And so we see that two
alternative methods of interpreting non-Euclidean geometry are open to
us. Either we may regard our rods as Euclidean and applied to a curved
surface, or else we may attribute non-Euclideanism to the behaviour of
our rods on a flat surface.[20]


Now in this chapter we have discussed only non-Euclidean geometries
of two dimensions. Riemann’s geometry and Lobatchewski’s geometry
are more particularly these same geometries, extended to the case of
three dimensions. We can easily see how Riemann’s geometry of three
dimensions would arise.


We have only to suppose that, as contrasted with Euclidean solids, all
material bodies expand as did the shadows when displaced from a fixed
centre. But the Riemannian observer of course would have no realisation
of this expansion, owing to the modified laws of light propagation and
owing to his own body’s expanding in company with all other bodies. So
he would be of the opinion that all these bodies maintained their same
shape and size, that is, remained congruent when displaced. In fact, if
he applied the test of practical congruence he would find that these
bodies which the Euclidean observer would claim were expanding were,
so far as he himself was concerned, always the same both in visual
appearance and as regards exploration by the sense of touch. If our
Riemannian being were to view bodies which the Euclidean man considered
rigid and undeformable, he would assert without hesitation that those
bodies were decreasing in size as they approached a certain point. Once
again maintenance of shape and size is essentially relative.


All the conclusions which we reached when discussing a Riemannian

world of two dimensions can be extended to the case of three
dimensions. Thus, a Riemannian universe or spherical space of three
dimensions is finite but unbounded. Travelling for a sufficient length
of time along a geodesic or straight line, we should return finally
to our starting point, and rays of light which follow geodesics would
circle round our space.


Just as in the case of two-dimensional geometry, we may also conceive
of a three-dimensional non-Euclidean space as of constant or variable
curvature. Prior to Einstein’s discoveries mathematicians concerned
themselves more especially with the homogeneous types of geometry,
because it was assumed (notwithstanding Riemann’s premonitions) that
whatever the practical geometry of real space might turn out to be,
it would always remain the same throughout, there being no palpable
reason for it to vary here from there. But with the
advent of the material or metrical field, conditioned by a more or
less capricious distribution of matter, the possibility of a variation
in the geometry of space from place to place had to be taken into
consideration, and it then became impossible to limit our analysis to
spaces of constant curvature. It has been proved that the variable
non-Euclideanism of the space surrounding matter in Einstein’s
theory—say, over the equatorial plane—would be represented by the
geometry of a surface of variable curvature, which turns out to be that
of a paraboloid of revolution.


There is one additional aspect of Riemann’s geometry which it may be
of interest to mention on account of its possible bearing on the shape
of the universe in Einstein’s theory. We refer to elliptical space.
The type of Riemann’s geometry which we have discussed so far is known
as Riemann’s spherical geometry, because in the case of two dimensions
it turns out to be the Euclidean geometry of a spherical surface. But
there exists another type of Riemannian geometry discovered by Klein.
It is called elliptical space, though it has nothing to do with the
surface of an ellipsoid. It corresponds to exactly the same geometry
as that of Riemann proper, the only difference consisting in the
connectivity of the space. That is to say, the paths of continuous
passage from a point  to a point  are different in the two
spaces.


In a similar way the geometry of the cylinder is Euclidean, as is
that of the plane (since a plane sheet of paper can be rolled round a
cylinder); but its connectivity is different since we can go round the
cylinder by following a geodesic and yet return to our starting point.





In order to illustrate elliptical space in two dimensions, as we have
illustrated spherical space, we must assume that we limit the surface
of our sphere to one of its hemispheres. It might appear that in this
case the surface would no longer be unbounded since it would stop
abruptly at the equator, but the connectivity of elliptical space is
such that every point on the equator is identical with its antipodal
point on the other side of the equator. It would be as though, in our
concrete representation, there were cross-connections of zero length
uniting into one sole point, each pair of points situated diametrically
opposite one another on the equator.


It is exceedingly difficult to visualise how it can be that a diameter
joining two antipodal points of the equator should be vanishing in
length, but the difficulty arises from our endeavouring to represent
the distance between two points by a line joining these two points.
Such a procedure may often be successful, but in the more complex
cases of connectivity it breaks down completely. As Eddington remarks,
for obscure psychological reasons we find it natural to represent a
distance between two points by a line joining them, believing that this
line represents a something fundamental in nature. But it is probable
that the line we trace does not have the fundamental importance
with which we credit it, and that it cannot be regarded as having
any intrinsic significance outside of the ease with which it often
introduces itself into our graphical description of natural phenomena.
Distance would be more akin to a difference of temperature between two
points, and it would never enter our minds to represent this difference
of temperature by a line joining the two points. Why in the case of
distance such a graphical representation appears obligatory is more
or less of a mystery. At any rate the graphical representation is not
always possible, and our description of elliptical space gives us an
illustration to this effect.


Incidentally we see that the problem of space, even when restricted to
the particular cases studied by Riemann, is not exhausted by the sole
concept of congruence. Connectivity or routes of continuous passage
between points must also be taken into consideration. The study of
connectivity opens up a new branch of geometry also created by Riemann
and known as Analysis Situs.[21]








CHAPTER VI

TIME





OUR awareness of the passage of time constitutes one of the most
fundamental facts of consciousness, and our sensations range themselves
automatically in this one-dimensional irreversible temporal series. In
this respect we must concede a certain difference between space and
time, the former being, as we have seen, a concept due in the main to
a less inevitable synthetic co-ordination of sense impressions. Yet,
on the other hand, there exists a marked similarity between space and
duration, in that they both manifest the characteristics of sensory
continuity.


Thus, in the case of time, two sensations  and  may be so
close together that it will be impossible for us to determine which
of the two was sensed first; the same may happen in the case of two
sensations  and  and yet we might have no difficulty in
ascertaining that  was prior to . These facts are expressed
by the inconsistent relations , , ,
which, as we have seen, are characteristic of sensory continuity,
be it in space, or in time, or in whatever domain we please. In the
case of time, as in that of space, only by a process of abstraction
can we remedy this inconsistency. We thereby conceive of mathematical
duration, a duration in which mathematical continuity is assumed to
have replaced sensory continuity.


Now, owing to the ordering relation or path of continuous transfer
which appears to be imposed upon us by nature, perceptual time must
be regarded as uni-dimensional, and by retaining the natural ordering
relation, we will attribute the same uni-dimensionality to mathematical
duration. It is, of course, to this mathematical duration that we
appeal in all theoretical investigations in mechanics and physics.


Primarily the only time of which we are conscious is an “egoistic”
time, the time of our stream of consciousness. But as a result
of our perception of change and motion in the exterior universe
of space, it becomes necessary to extend the concept of duration
throughout space, so that all external events are thought of as having
occurred at a definite instant in time as well as at a definite point
in space.[22]


Now, when discussing space, we saw that the concept of the same
point in space, considered at different times, was ambiguous; it was
necessary to specify the frame of reference by which space was defined,
and according to the frame selected, an object would continue to occupy
the same point or else manifest motion. The analogous problem in the
case of time would be to conceive of the same instant in time at two

different places, i.e., of the simultaneity of two spatially
separated events.


If we allowed ourselves to be guided by our analysis of position
in space, we should be inclined to say that a determination of the
simultaneity of spatially separated events must necessitate the choice
of a frame of reference. The observer who was to pass an opinion on the
simultaneity of the two events would then select that particular frame
in which he stood at rest. But from this it would follow that a change
in the motion of the observer, hence a change of frame, might bring
about a modification in his understanding of simultaneity. Simultaneity
would thus manifest itself as relative, just like position.


Although these possibilities cannot be discarded a priori on any
rational grounds, classical science and common-sense philosophy refused
to entertain them. The fact is that this thesis would have tended to
surround with ambiguity the concept of time in physics, since the
duration of the same event would vary with the motion of our frame of
reference. It had always been felt that although, through an act of our
will, we might change our motion through space, yet on the other hand
the flowing of time transcended our action. These views were confirmed
by the behaviour of physical phenomena known to classical science;
hence the uniqueness of time and the absolute character of simultaneity
had been accepted. In other words, the simultaneity and the order of
succession of two spatially separated events were assumed to constitute
facts transcending our choice of a system of reference.


This stand was fully justified in Newton’s day; for inasmuch as
a priori arguments could not decide the question, so long
as experiment did not compel us to recognise the relativity of
simultaneity and the ambiguity of duration there appeared to be no
good reason to hamper science with an unnecessary complication. But
the point we wish to stress is that if perchance experiment were ever
to suggest that simultaneity was not absolute, no rational argument
could be advanced to prove the absurdity of this opinion. As we shall
see, Einstein’s interpretation of certain refined electromagnetic
experiments consists precisely in recognising the relativity of
simultaneity and the ambiguity of duration.


Let us now pass to the problem of congruence for time. As is the case
with space, mathematical time is an amorphous continuum presenting
no definite metrics. The concept of congruence or of the equality
of successive durations has no precise meaning; and a definition
of time-congruence can be obtained only after we have imposed some
conventional measuring standard on an indifferent duration. We might
define as equal the durations separating the rising and the setting of
the sun, or, again, the durations separating successive rainstorms,
etc. Theoretically, all such definitions would be legitimate, since in
the final analysis duration, just like space, presents no intrinsic
metrics.


In common practice, however, we find that just as in the case of
space, a definite species of congruence appears to be imposed on
human beings and animals alike. For instance, so long as we are in a
conscious state, we all agree that the successive tickings of the

clock correspond to what our psychological sense of duration would
qualify as congruent intervals. In other words, we appear to be gifted
with a species of psychological time-keeping device which allows us to
differentiate between durations which we have come to call “seconds”
and those which we have come to call “hours.” What is commonly called
the sense of rhythm, which manifests itself in the primitive music of
drum beats and in the dances of savages, is nothing but a consequence
of this intuitive understanding of time-congruence.


A superficial analysis of the situation might lead us to assume that,
contrary to our previous assertions, a definite species of congruence
was intrinsic to duration. This opinion, however, is quite untenable
unless supplemented by additional explanations. The problem with which
we are confronted is in all respects similar to the one we mentioned
when discussing space. Of itself, space, or at least mathematical
space, is amorphous. In spite of this fact, we have no difficulty
in agreeing that a coin is round while an egg is oval. But we saw
elsewhere that our unreasoned predilection for a definite type of
congruence in space was imposed by the behaviour of material bodies
when displaced. Visually these bodies could be made to present us with
the same appearances, whether situated here or there, and for that
reason they imposed themselves as defining congruent space intervals.
Furthermore, our own human limbs, the steps we take, the ground on
which we walk, all suggest the same definition of congruence.


Likewise in the case of time-congruence. The human organism is replete
with rhythmical motions such as the beating of the heart, the periodic
contractions of the arteries, or the respiratory motions of the lungs.
Again, an infant feels the pangs of hunger at periodic intervals. Quite
independently of these internal processes and changes, certain external
mechanical motions affecting our bodies must be considered. Thus, when
we walk with our normal gait, our successive steps follow one another
in time in a certain definite way, and the same applies to the swinging
of our arms. By an effort of our will we might vary the rhythm of
our steps, alternating short steps with long ones, now tarrying, now
hastening. But we should soon be aware that something was wrong, for
we should find that our irregular motions demanded additional effort,
so that on relaxing our will we should relapse automatically into our
normal gait. It may be that in addition to these periodic motions we
have mentioned, cyclic processes occur in our brains, conferring on
our consciousness direct norms of time-congruence. This, however, is
a point for physiologists to decide. At any rate, when it is realised
that these various methods, whether they appeal to our respiratory
motions or to our successive steps when walking normally, all issue
in the same definition for time-congruence, there is no cause to be
surprised at a definite sense of time-congruence imposing itself
naturally upon us, and this in spite of the fact that pure duration of
itself possesses no metrics.


Thus far we have been considering time-congruence from the standpoint

of the savage and the animal. For the most rudimentary purposes, a
definition of equal durations obtained in this crude way would suffice;
yet it is obvious that no great precision could thus be arrived at. Our
crude psychological clock is subject to variations according to our
mental and physical condition; furthermore, though it can differentiate
between what we have come to call “one second” and “one minute,” it
would be incapable of differentiating between fifty-nine minutes and
one hour. In the case of animals this imprecision in their sense of
duration is manifested when shepherd dogs lead the flocks back during
an eclipse or hens lay eggs under the influence of artificial light,
believing that day has come. However, as these last illustrations
permit of other interpretations, we need not dwell on them and may
confine ourselves to the well-known fact that our human sense of
duration varies between one individual and another, and between one
psychological state and another.


In addition to these difficulties, our understanding of equal durations
is entirely subjective and can give rise to no common knowledge. We
must needs objectivise it, hence appeal to some objective phenomenon
which all men can observe. Let us assume, for the sake of argument,
that the monotonous dripping of water drops falling on a pan may have
served as a primitive clock. Still, something would be lacking. We
should not be completely satisfied, for we might sense now and then
an irregularity in the successive thuds of the drops falling on the
pan. Furthermore, if we were to establish two such water clocks we
should observe that the drops sometimes fell in unison and sometimes in
succession. We should wonder then which of the clocks was most reliable
and be in a quandary to know to which to appeal. Just as in the case of
space, where we substituted wooden rods for the lengths of our steps,
then metallic rods maintained at constant pressure and temperature,
so now, in the case of time-keeping devices, we must find some way of
selecting clocks which will satisfy all our requirements.


We thus arrive at more scientific methods of time-determination. The
psychological clock, water clock, sand clock and burning of candles,
which had served men in the earlier days of civilisation, have now been
discarded in favour of more precise mechanisms. These, as we shall see,
will not differ perceptibly in their indications from our psychological
clock, but their measurements will be given with increased refinement.
We are thus led to examine what are the conditions that must be
satisfied for a time-keeping device to be considered perfect.


In a general way we obtain a definition of time-congruence by appealing
to the principle of causality. The following passage, quoted from Weyl,
expresses this fact:


“If an absolutely isolated physical system (i.e., one not
subject to external influences) reverts once again to exactly the same
state as that in which it was at some earlier instant, then the same
succession of states will be repeated in time and the whole series of
events will constitute a cycle. In general, such a system is called a
clock. Each period of the cycle lasts equally long.”





We shall obtain a more profound understanding of the nature of the
problem by considering the various methods of time-determination that
have been contemplated by physicists.


We remember that Newton refers to absolute time as “flowing uniformly.”
But of course this allusion to time does not lead us very far, for a
rate of flow can be recognised as uniform only when measured against
some other rate of flow taken as standard. Obviously some further
definition will have to be forthcoming. Now both Galileo and Newton
recognised as a result of clock measurements that approximately
free bodies moving in an approximately Galilean frame described
approximately straight lines with approximately constant speeds. Newton
then elevates this approximate empirical discovery to the position
of a rigorous principle, the principle of inertia, and states
that absolutely free bodies will move with absolutely constant speeds
along perfectly straight lines, hence will cover equal distances in
equal times. When expressed in this way as a rigorous principle, the
space and time referred to are the absolute space and time of Newtonian
science. In other words, it is the principle of inertia coupled with
an understanding of spatial congruence that yields us a definition of
congruent stretches of absolute time.


In practice, a definition of this sort entails measurements with rods;
that is to say, we measure off equal distances along the straight path
of a body and then define as congruent, or equal, the times required by
the body to describe these congruent spatial distances. It is obvious
that, however perfect our measurements, errors of observation will
always creep in. Furthermore, a body moving under ideal conditions
of observation can never be contemplated; hence all we can hope to
obtain is the greatest possible approximation. But although physical
measurements become inevitable as soon as we wish to obtain a concrete
definition, an objective criterion of equal durations, we are able
to proceed in our mechanical deductions in a purely mathematical
way without further appeal to experiment. The principle of inertia,
together with the other fundamental principles of mechanics, enables
us, therefore, to place mechanics on a rigorous mathematical basis, and
rational mechanics is the result.


It will be observed that science, in the case of mechanics, has
followed the same course as in geometry. Initially our information is
empirical and suffers from all the inaccuracies of human observation
and all the various contingencies that characterise physical phenomena.
But this empirical information is idealised, then crystallised into
axioms, postulates or principles susceptible of direct mathematical
treatment. To be sure, as we proceed in our purely theoretical
deductions, unless we are to lose all contact with reality, we must
check our results by physical experiment; and this necessity is still
more apparent in rational mechanics than in geometry. If peradventure
further experiment were to prove that our mathematical deductions in
mechanics were not borne out in the world of reality, we should have
to modify our initial principles and postulates or else agree that
nature was irrational. With mechanics, the necessity of modifying the
fundamental principles became imperative when it was recognised that

the mass of a body was not the constant magnitude we had thought it
to be; hence it was experiment that brought about the revolution. On
the other hand, in the case of geometry, it was the mathematicians
themselves who foresaw the possibility of various non-Euclidean
doctrines, prior to any suggestion of this sort being demanded by
experiment.


And now let us revert once again to the problem of time. Theoretically,
the law of inertia should permit us to obtain an accurate determination
of congruent intervals, but as it was quite impossible to observe
freely-moving bodies owing to frictional resistances as also to the
gravitational attraction of earth and sun, it was advantageous to
discover some other physical method of determination. This was soon
obtained. The principles of mechanics enable us to anticipate that if
a perfectly rigid sphere, submitted to no external forces, is rotating
without friction on an axis fixed in a Galilean frame, its angular rate
of rotation will be uniform or constant, as measured in the frame. By
“constant,” we mean constant as measured in terms of the standards
of time-congruence defined by a free body moving under ideal conditions
according to the principle of inertia. Hence we are in possession
of a method of measuring time, more convenient than that afforded by
the motions of free bodies along straight courses. It may be noted that
the definition of congruent durations as given by the rotating sphere
is in perfect accord with the definition in terms of causality as
formulated in the passage quoted from Weyl.


Unfortunately, here again, ideal conditions can never be established,
for we can never obtain perfect isolation, perfect rigidity and
complete absence of friction. But a near approach to ideal conditions
would appear to be given by the phenomenon of the earth’s rotation.
And so the rotation of the earth, defining astronomical time, was
regarded as furnishing science with the most reliable objective
criterion of congruent time-intervals that it was possible to obtain.
Nevertheless, it was well known that a definition of this sort was
still far from perfect, since the rate of rotation of the earth
could not be absolutely uniform, when “uniform” is defined by the
standards of the principle of inertia. This realisation was brought
home when the frictional resistance generated by the tides was taken
into consideration.[23] The tidal friction would have for effect the
slowing down of the earth’s rate of rotation (when measured against
the accurate mathematical definition given by a perfectly rigid
and isolated body rotating without friction). In addition to this
first perturbating influence, our planet is suspected of varying in
size, expanding and contracting periodically, a phenomenon known as
breathing. According to the laws of mechanics, a change in
shape of this sort would entail periodic fluctuations, successive
retardations and accelerations in the rate of the earth’s rotation.


It is instructive to understand how this discovery of the earth’s
breathing was brought about. It was noticed that the moon’s motion
exhibited variations which it seemed impossible to account for under

Newton’s law, even when due consideration was given to the perturbating
effects of the sun and other planets. Not only did the moon’s motion
appear to be gradually increasing, but in addition, superposed on
this first uni-directional effect,[24] periodic accelerations and
retardations had been observed. The gradual slowing down of the earth’s
rate of rotation under the influence of the tides accounted for the
apparent acceleration of the moon’s motion, but the other periodic
changes in the velocity of our satellite could not be explained away in
so simple a manner. Yet everything would be in order were we to assume
that the earth’s rate of rotation was subjected to appropriate periodic
changes; and the principles of mechanics then showed that a phenomenon
of this kind could only be brought about by periodic variations in the
earth’s size.


In all these corrections we are dealing with highly complex phenomena
involving Newton’s law of gravitation and the laws of mechanics. Our
astronomical time-computations have thus been adjusted so as to satisfy
the requirements of these laws, regarded as of absolute validity. We
may recall that it was this belief in the accuracy of Newton’s law that
led Römer in 1675 to the discovery of the finite velocity of light. He
noticed that Jupiter’s satellites appeared to emerge from behind the
planet’s disk several minutes later than was required by the law of
gravitation. Rather than cast doubts on the accuracy of this law, he
ascribed a finite velocity to the propagation of light. Needless to
say, his previsions have since been justified by direct terrestrial
measurements. The calculations leading to the discovery of the planet
Neptune were also based on the assumption that Newton’s law was correct.


And now let us suppose that we had elected to define time by entirely
different methods. We might, for instance, appeal to the vibrations of
the atoms of some element, such as cadmium. Then the intervals of time
marked out by the successive beats of the atom at rest in our Galilean
frame would be equal or congruent by definition. These successive
congruent intervals of time would be measured by the wave length of the
radiation, since a wave length is the distance covered by the luminous
perturbation during the interval separating two successive vibrations.
We might again proceed in still another way in terms of radioactive
processes. It is well known that, when measured by ordinary clocks,
the rate of disintegration of radium appears to follow an exponential
law. And it is a remarkable fact that this rate of disintegration does
not appear to be modified in the slightest degree by the surrounding
conditions of temperature or of pressure. Thus the phenomenon may be
regarded as being in an ideal state of isolation. Curie had therefore
suggested defining time in terms of this rate of disintegration.


We see, then, that a great variety of methods for determining time
have been considered. Some were mechanical, others astronomical,

others optical, while still others appealed to radioactive phenomena.
In each case our definitions were such as to confer the maximum of
simplicity on our co-ordination of a certain type of phenomena. For
instance, if in mechanics and astronomy we had selected at random
some arbitrary definition of time, if we had defined as congruent the
intervals separating the rising and setting of the sun at all seasons
of the year, say for the latitude of New York, our understanding of
mechanical phenomena would have been beset with grave difficulties.
As measured by these new temporal standards, free bodies would no
longer move with constant speeds, but would be subjected to periodic
accelerations for which it would appear impossible to ascribe any
definite cause, and so on. As a result, the law of inertia would
have had to be abandoned, and with it the entire doctrine of
classical mechanics, together with Newton’s law. Thus a change in our
understanding of congruence would entail far-reaching consequences.


Again, in the case of the vibrating atom, had some arbitrary definition
of time been accepted, we should have had to assume that the same atom
presented the most capricious frequencies. Once more it would have been
difficult to ascribe satisfactory causes to these seemingly haphazard
fluctuations in frequency; and a simple understanding of the most
fundamental optical phenomena would have been well-nigh impossible.


Since we realise that the definitions of time-congruence we ultimately
adopt are governed by our desire to obtain the maximum of simplicity in
the co-ordination of some particular group of phenomena, considerable
divergences in our definitions might be expected when we considered
in turn phenomena of a different nature. Why, indeed, should a
determination arrived at in terms of the vibrations of atoms agree
in any way with the astronomical definition issuing from the earth’s
rotation? Even when restricting our attention to the vibrations of the
atoms of the same element, it might have been feared that different
atoms of cadmium would have beaten out time at different rates,
since, after all, even though identical in many respects, yet their
life-histories must have differed greatly. Instead of this we find that
all the methods of time-congruence mentioned lead to exactly the same
determinations so far as experiment can detect. It would appear as
though a common understanding existed between the rates of evolution
of the various phenomena mentioned. The situation is similar to that
presented in the problem of space. There we saw that rods, whether of
platinum or of wood, whether situated here or there, appeared to yield
the same geometrical results (provided they were maintained at constant
temperature and pressure). Again, it seemed as though some common
understanding existed among the various rods.


Just as this same mysterious situation in the case of space suggested
that the uniformity of our spatial measurements was due to the presence
of an all-embracing physical reality, the metrical field of space,
regulating the behaviour of material bodies and light rays, so now, as
we shall see in later chapters, the general theory of relativity will

compel us to extend the same ideas to time. We shall find that there
exists a space-time metrical field which splits up into a temporal and
a spatial field. The temporal metrical field will then be responsible
for that apparent understanding which seems to exist among the various
spatially separated phenomena.


These new ideas modify the position of the problem of time-congruence.
While it is still correct to state that pure duration as a mathematical
continuum is amorphous and possesses no intrinsic metrics, yet from the
standpoint of the physicist we must concede a certain physical reality
to this temporal metrical field which controls the processes of all
isolated phenomena.


We may summarise the preceding statements by saying that we define
time-congruence so as to introduce the maximum of simplicity in our
co-ordinations of physical phenomena, regardless of the particular
type of phenomenon we may be considering. That a unique definition of
time-congruence should be possible, one holding for mechanics, optics,
electromagnetics and astronomy, is a fact that could scarcely have been
anticipated a priori; hence we must recognise its undeniable
existence as establishing the presence of unity in nature.


And here we may mention a type of objection which is often encountered
in people who do not trouble to differentiate between physical time and
psychological duration. It has been claimed, for instance, that it is
absurd to maintain that our sense of time was originated from a desire
to retain harmony between the planetary motions and the requirements
of Newton’s law, since men possessed an intuitive understanding of
equal durations long before Newton’s law or any other natural law was
discovered. We trust that those who have taken the trouble to follow
the course of this analysis will realise that the criticism is quite
beside the mark. No scientist has ever contended that we have derived
our sense of time from astronomical observations, for we know that even
savages are not lacking in a sense of rhythm. All that is claimed is
that the accurate determination of time-congruence must be based on
physical processes or laws, since our crude time-sense is too vague to
be of any use in the precise problems with which science is concerned.
The fact that our crude appreciation of time agrees in a more or
less approximate way with the more refined methods of scientific
determination offers no great mystery, for, after all, the laws which
govern material processes in the outside world would in all probability
also govern that which is material in our organisms. Regardless of our
ultimate views as to matter and mind, we cannot banish matter from our
anatomy.


At any rate, once the existence of a universal type of time-congruence
is conceded, the problem is to select some particular phenomenon
which can be studied with a minimum of contingency and a maximum of
certainty. Now, when we consider the astronomical definition in terms
of the earth’s rotation, we realise that were it not for the fact that
we had started by assuming the absolute accuracy of Newton’s law, the
corrections we made in order to account for the peculiarities of the

lunar motion would have to be discarded or replaced by others. If,
therefore, any doubt were to be cast on the accuracy of Newton’s law
or on those of mechanics, corresponding modifications would ensue for
our definition of time-congruence. But it is obvious that we have no
right to assume that Newton’s law or those of mechanics are above all
suspicion. The laws of physical science present no a priori
inevitableness; and our sole reason for accepting them is because
they appear to be borne out to a high degree of approximation when we
compare their rational consequences with the results of observation.
Approximation is thus all we can aspire to in physical science;
and even classical scientists recognised the possibility that more
precise observation might prove Newton’s law and those of mechanics to
stand in need of correction. All that could be asserted was that the
corrections would certainly be very slight, far too slight to entail
any perceptible change in our understanding of time-congruence when
applied to the processes of commonplace observation.


We now come to Einstein’s definition. As we shall see, it does not
differ in spirit from the definitions of classical science; its
sole advantage is that it entails a minimum of assumptions, and is
susceptible of being realised in a concrete way permitting a high
degree of accuracy in our measurements. Einstein’s definition is, then,
as follows: If we consider a ray of light passing through a Galilean
frame, its velocity in the frame will be the same regardless of
the relative motion of the luminous source and frame, and regardless
of the direction of the ray. It follows that a definition of
equal durations in the frame will be given by measuring equal spatial
stretches along the path of the ray, and asserting that the wave front
will describe these equal stretches in equal times.


As can be seen, the definition is simple enough, but the major question
is to decide on its legitimacy. Classical science would have rejected
the definition. Why? Because it would have maintained that Einstein’s
definition was equivalent to defining time in terms of a rigid body
rotating round an axis, but submitted to frictional forces. It
would have claimed that the velocity of the frame through the stagnant
ether would have introduced complications entailing anisotropy, that is
to say, a variation of the speed of light according to direction. It
would then be necessary to take this perturbating effect into account
just as it was necessary to take into consideration the frictional
effect of the tides on the earth’s angular rate of rotation.


But when it was found that contrary to the anticipations of classical
science not the slightest trace of anisotropy could be detected even by
ultra-precise experiment, the objections which classical science might
have presented against Einstein’s definition lost all force. Henceforth
it was not necessary to take into consideration the velocity of the
frame through the stagnant ether, since this ether drift appeared to
exert no influence one way or the other.


Now, it may not be easy to understand how isotropic conditions could

be demonstrated by experiment, for isotropy signifies that the velocity
of light is the same in all directions. And how can we ascertain the
equality of a velocity in all directions when we do not yet know how to
measure time? Experimenters solved the difficulty by appealing to the
observation of coincidences.
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The following elementary example will make this point clear. Consider
a circle along which two bodies are moving in opposite directions.
We shall assume that the two bodies leave a point  at the same
instant of time, hence in coincidence, and then meet again at a
point  halfway round the circle, hence diametrically opposite
. There is no difficulty in ascertaining that the point 
is diametrically opposite , since we know how to measure space.
All we have to do is to verify the fact that the length of the
curve  is equal to the length . Neither does the
observation of a coincidence, that is, of the simultaneous presence
of two objects at the same point of space, entail any knowledge of a
measure of duration. Hence, although we know nothing of the measurement
of time, we cannot escape the conclusion that the two bodies have taken
the same time to pass from  to  by different routes. But
these spatial routes are of equal length; hence we must assume that
the speeds of the bodies along their respective paths have been the
same. In all rigour, we may only claim that the mean speed has been
the same, since one body may have slowed down, then spurted on again,
making up for lost time. But if we repeat the experiment with circles
of different sizes, and if in every case the bodies meet one another
at the opposite point, we are justified in asserting that not only
the mean speed, but also the instantaneous speed at every instant, is
the same for either body. In short, thanks to spatial measurements
coupled with the observation of coincidences, we have been able to
establish the equality of two velocities, even though we knew nothing
of time-measurement.


A more elaborate presentation of the same problem would be given as
follows: Waves of light leaving the centre of a sphere simultaneously
are found to return to the centre also in coincidence, after
having suffered a reflection against the highly polished inner surface
of the sphere. As in the previous example, the light waves have thus
covered equal distances in the same time; whence we conclude that

their speed is the same in all directions.


Inasmuch as this experiment has been performed, yielding the results we
have just described, even though the ether drift caused by the earth’s
motion should have varied in direction and intensity, the isotropy of
space to luminous propagations was thus established. (The experiment
described constitutes but a schematic form of Michelson’s.) It is to
be noted that in this experiment the observation of coincidences is
alone appealed to (even spatial measurements can be eliminated).[25]
When it is realised that coincidences constitute the most exact form
of observation, we understand why it is that Einstein’s definition is
justified.


The optical definition presents a marked superiority over those of
classical science. Whereas, with the rotation of the earth, we had
to assume the correctness of Newton’s law and of those of mechanics
in order to determine the compensations necessitated by the earth’s
breathing or by the friction of the tides, in the present case we
assume practically nothing, and what little we do assume issues from
the most highly refined experiments known to science.


Now, the importance of Einstein’s definition lies not so much in
its allowing us to obtain an accurate definition of time in our
Galilean frame as in its enabling us to co-ordinate time reckonings
in various Galilean frames in relative motion. So long as we restrict
our attention to space and time computations in our frame, we may, as
before, appeal to vibrating atoms for the measurement of congruent
time-intervals and to rigid rods for the purpose of measuring space.
It is when we seek to correlate space and time measurements as
between various Galilean frames in relative motion that astonishing
consequences follow. We discover that the concepts of spatial and
temporal congruence of classical science must be modified to a very
marked degree. They lose those attributes of universality with which
we were wont to credit them. It is then found that congruence can
only be defined in a universal way when we consider the extension of
four-dimensional space-time.


As we have mentioned, any change in our concepts of space and time
congruence is not merely a local affair. Owing to the unity of nature,
we shall be led to modify our entire understanding of the relatedness
of phenomena, and must not be surprised to learn that a totally new
science is the necessary outcome of Einstein’s new definitions. Old
laws are cast aside, new ones take their place; and Einstein, by
following his mathematical deductions with rigorous logic, without
introducing any hypotheses ad hoc, proved that if his new
definition of space-time congruence was physically correct, a whole
series of hitherto unsuspected natural phenomena should ensue and
should be revealed by precise experiment. Wonderful as it may appear,
Einstein’s previsions have thus far been verified in every minute
detail.








CHAPTER VII

SYSTEMS OF CO-ORDINATES AND DISTANCE





WE HAVE mentioned in a general way the significance of congruence and
of spatial distance. It now remains for us to find a means of defining
these concepts in a rigorous mathematical form. We remember that the
equality or congruence of two spatial distances between two point pairs
 and  was an indeterminate concept, depending essentially
on the behaviour of our measuring rods. An alternative presentation of
non-Euclideanism (in the case of two-dimensional geometry) was then
found to be afforded by assuming that the distance between points could
in all cases be determined by measurements with rigid Euclidean rods;
but that, whereas in the case of Euclidean geometry all the points
should be considered as existing in the same plane, in the case of
non-Euclidean geometry it would be as though the points were situated
on a suitably curved surface. Thus, in the case of the earth, the
non-Euclidean distance between two points, say New York and Paris,
would be given by the Euclidean length of a great circle extending
between these points, hence by a curved line following the contour of
the earth’s surface. On the other hand, the Euclidean distance between
these two same points would be given by the Euclidean length of the
straight line joining them and passing, of course, through the earth’s
interior.


We now propose to investigate the mathematical expression of distance
in two dimensions; we will assume that we are discussing it from the
standpoint of Euclidean measurements conducted on surfaces. Let us
first consider the case where the surface is an unlimited plane. If
we wish to define the position of a point of the plane, we must refer
it to some system of reference. Three centuries ago Descartes devised
a method whereby this result could be accomplished. He considered two
families of Euclidean straight lines which we may call horizontals
and verticals, respectively. The lines of these two intersecting
families are equally spaced (Euclideanly speaking), so that they form a
mesh-system or network of equal Euclidean squares. The scientific name
for a mesh-system is co-ordinate system, but the appellation
“mesh-system” introduced by Eddington has the advantage of giving a
more graphic picture of what is involved. The type of mesh-system
constituted by horizontals and verticals introduced by Descartes is
called a Cartesian co-ordinate system.


If to each vertical and to each horizontal of the mesh-system we assign
consecutive whole numbers from zero on indefinitely, we see that the
point of the plane which happens to coincide with the intersection of
some particular horizontal and some particular vertical is defined by
the numbers which represent the two lines, respectively. In this way

every point of intersection is defined by two numbers, and these
numbers are called the Cartesian co-ordinates of the point. Of
course, by this method we are unable to define the positions of points
which do not happen to coincide with the corners of our squares. But
there is nothing to prevent us from assuming that between the verticals
and horizontals we have mentioned there lie an indefinite number of
other similar lines, to which intermediary fractional numbers will
be assigned. Henceforth every point of the plane can be regarded as
defined by the intersection of some particular horizontal and some
particular vertical.


To what extent is it permissible to say that points on the plane have
been defined by this method? If we disregard the existence of the
co-ordinate system, nothing has been defined, but if we consider the
co-ordinate system as given, then every point of the plane
can be considered as defined unambiguously. In short, the points are
defined not in the abstract, but in relation to the co-ordinate
system. There is nothing mysterious about this method of defining
the positions of points. Thus, in everyday life, when we agree to
meet a friend at the corner of Fifth Avenue and Forty-second Street,
we are inadvertently locating our point of meeting in terms of the
Cartesian co-ordinate system defined by the avenues and streets. In the
present case the co-ordinate system is not strictly Cartesian, since
the streets and avenues may not enclose perfectly equal Euclideanly
square blocks, but the general principle involved is the same.
Needless to say, the definition of our point of meeting would convey
no significance were the avenues and streets non-existent. Hence once
again we see that it is only relative to the co-ordinate system that
points can be defined.


Now, the essential characteristic of the Cartesian procedure is its
use of a system of reference represented by separate families of
intersecting lines. The fact that the lines we have considered are
mutually perpendicular straight lines forming a network of Euclidean
squares is of no particular importance. It would be just as feasible,
in place of our horizontals and verticals, to select two families of
intersecting curves, which we might call the  and  curves.
Of course, our mesh system would now be curvilinear and the spaces
enclosed by the meshes would no longer be Euclidean squares, nor even
necessarily equal in area. This generalization of Descartes’ method was
introduced by Gauss, and for this reason curvilinear mesh-systems are
also called Gaussian mesh-systems. As before, every point will
be defined by the numbers designating the two curves of either family,
that is, by the numbers designating the  curve and the  curve
which intersect at this point; and these two numbers will be called the
Gaussian numbers or co-ordinates of the point.


The necessity of generalising Cartesian co-ordinates by introducing
Gaussian ones arises from the fact that Cartesian mesh-systems of equal
squares can be traced only on a plane and could never be drawn on a

curved surface, like that of a sphere, for example. Hence, were we to
ignore the use of Gaussian mesh-systems, it would be impossible for
us to localise points on a curved surface, by means of a mesh-system
applied on the surface. The nearest approach to a network of squares on
the surface of a sphere would be a network of meridians and parallels,
and such a network is not one of equal Euclidean squares; it is a
curvilinear or Gaussian mesh-system tapering to points at the North and
South Poles.


As a matter of fact, we also make use of Gaussian co-ordinates in
everyday life. Such is the case when we state that the position of a
ship is so many degrees of latitude and so many degrees of longitude;
our mesh-system, being one of meridians and parallels, is a Gaussian
one, and the latitude and longitude of the ship constitute its Gaussian
co-ordinates.


Having determined how the positions of points may be defined on
any surface in terms of some mesh-system, let us now see how it is
proposed to express the distance between two points, as measured over
the surface with rigid Euclidean rods. Here we must proceed with the
utmost caution. Let us recall exactly what is involved. Any definite
 line is one along which  remains constant while  varies
continuously, and inversely any definite  line is one along which
 remains constant while  varies continuously. In much the
same way, on the earth’s surface a latitude line or parallel is one
along which the latitude remains constant and the longitude varies,
whereas a longitude line or meridian is one along which the reverse is
true.
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Suppose, then, we wish to express the distance between two points
 and , defined by the intersections of a certain  line
with two successive  lines (Fig. II). The co-ordinates of the two
points are () and (), respectively, where
 represents the increase in the value of  as we pass
from  to  on the  line.


On no account may we say that the distance  (which we shall call
) is given by the value , for  is
nothing but a difference between numbers serving to localise points;
it has nothing in common with a distance. In order to dispel any
doubts on this score, we may notice that if we compare the  lines
to parallels and the  lines to meridians, the points  and
 will be given by the intersections of two consecutive meridians

with the same parallel. In this case  would correspond
to the difference in longitude between the two points; and obviously
a difference in longitude is no criterion of a distance, since for
the same difference in longitude the distance decreases from equator
to pole. In short, the distance  between  and 
cannot be fully determined by .


Yet, on the other hand, just as the distance between two points lying
on the same parallel is affected by their difference in longitude,
so now the distance  between  and  must be a
function of the co-ordinate difference . A sufficiently
general expression of a quantity  when defined in terms of
another quantity  on which it depends is given by

where , ,  are appropriate magnitudes. If, however,
we consider points exceedingly close together,  becomes
exceedingly small in value, and as a result  and
, etc., are many times smaller still. At the limit,
therefore, when the two points are at an infinitesimal distance apart,
the higher powers of  become so insignificant that
they can be neglected in comparison with . We thus obtain
, and in order to specify that we are considering
infinitesimal distances we replace the symbol  by  and
obtain

It is customary to designate  by  so that, using
squares, our formula becomes






And now we have to consider an important question. What is ?
What does it represent? We do not propose to enter into its full
mathematical significance, but we may mention certain of its important
characteristics. In our illustration of meridians and parallels,
let us consider the various points of intersection defined by the
intersections of the successive parallels with two fixed meridians.
The difference in longitude between these various point pairs
will, of course, be constant and will be given by the same
invariable quantity . Inasmuch as the distance 
between these point pairs varies from pole to equator, we see from

that  must vary in an appropriate way as we consider various
portions of the sphere’s surface. In fact, owing to the constancy of
, we must have  proportional to . If, then,
the meridians were parallel lines instead of tapering together towards
the poles,  would remain constant. Whence it follows that a
knowledge of the way  varies from point to point yields us
information on the shape of the mesh-system, and inversely the lay of
the mesh-system yields us information as to the value of 
from place to place.


Then again, if, leaving our two points  and  fixed, we
select some new mesh-system,  may change in value, and in fact a
difference  may also appear, since with a change of mesh-system
there is no reason why  and  should still lie on the same
 curve. Hence we must conclude that even at a fixed point of our
surface the value of  will be subject to change when we vary
our mesh-system.


Precisely the same arguments would apply were we to consider the
expression of the distance between two infinitely close points on the
same  curve. We should then obtain , where
 is a magnitude generally differing from .
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We must now consider the more general case where our two points lie
on different  and  curves (Fig. III). From what precedes we
know that the squared distance  is given by  and
that the squared distance  is expressed by . But
this information is obviously insufficient to tell us what the squared
distance  will be, since this distance will also be affected
by the slant of the lines  and . Some new magnitude will
obviously have to be introduced in order to specify the value of this
slant; and the new magnitude considered will be called 
and . Under the circumstances, the squared distance of the
infinitesimally near points  and  can be written

but as  and  are found to be always identical we
have

We may write this formula more concisely by referring to  as
 and to  as . In this case our formula becomes

where  indicates summation and where for  and  we
substitute the values 1 and 2 in all possible ways. This most important
mathematical expression was discovered by Gauss; it is destined

to play a part of paramount significance in the physical theory of
relativity.


In order to understand the geometrical meaning of , let
us consider the special case of a diamond-shaped mesh-system, where
the co-ordinate lines make an angle  (Fig. IV). Elementary
geometry teaches us that
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The lines being always equally spaced,  and  remain
constant throughout the mesh-system; hence we may put them equal to
unity and write

In this formula we have

from which we see that  represents the cosine of the angle
formed by the  and  lines, at the point where  is
calculated.[26] Inasmuch as , we see that
where the  and  lines are perpendicular,  vanishes.
Hence, whenever we have an expression of , such as

from which  is absent, we may be certain that the  and
 lines are orthogonal at the point for which  has been
calculated.


If the  and  lines remain perpendicular throughout the entire
mesh-system,  will vanish not only for one particular point,
but for all points of the surface.


Let us now consider the particular case of a Cartesian mesh-system of
equal squares. In this case, the  and  lines being orthogonal

and equally spaced, we have  and  constant, with
 vanishing. Hence we may replace  and  by
unity, and we obtain

a result in complete agreement with the Pythagorean theorem of the
square of the hypothenuse.



i005

Fig. V






Suppose, now, that on this same plane we were to trace another type
of co-ordinate system, one known as a polar system (Fig. V). It is
constituted by symmetrically disposed v lines radiating from a central
point . The  lines are then given by equally distanced concentric
circles having  as centre. Under the circumstances the expression
for  becomes

In other words, we have

proving once again that the values of the ’s vary with our choice
of a co-ordinate system. As before,  vanishes for the
same reasons as previously stated, namely, because the lines of our
mesh-system are orthogonal at their intersections.


Finally, we may consider the mesh-system defined by the parallels and
meridians on a sphere, where we may assume that 
gives a parallel and  gives a meridian. Here we
have

so that



From these various examples the following conclusions may be drawn:


1°. When a definite mesh-system has been traced on a surface and
its lines numbered consecutively, every point of the surface is
defined unambiguously by its two numbers (its two Gaussian numbers
or co-ordinates). These numbers represent, of course, those of the

respective  and  curves at whose intersection the point
stands. A variation in the shape or in the numbering of the  and
 lines entails a change in the co-ordinate numbers of any given
point on the surface.


2°. Alongside of these two Gaussian numbers at every point defining
the positions of points in the mesh-system, there exist four 
numbers, at every point, namely , , ,
. But as  and  are always identical, we
have only three of these  magnitudes to consider. The values of
these ’s at a point vary when we change our mesh-system. In the
majority of cases they also vary from place to place throughout the
same mesh-system. If, however, the meshes are always orthogonal at
their points of intersection,  vanishes at every point of
the surface. If the  and  lines always have the same slant
over the surface and are always equally spaced, the three ’s
will remain constant throughout; their values being given by 1,
, 1. If the mesh-system is Cartesian, hence forms equal squares
, of course, vanishes while, as before,  and
 remain constantly equal to unity.


3°. The value of the square of the distance between two infinitesimally
distant points is given by

where the values of the ’s and of  and  will vary when
the mesh-system is changed or when we consider different regions of
the same mesh-system. The only case in which the ’s will remain
constant is when the mesh-system is of the uniform type, that is, a
network of two families of parallel lines intersecting one another.


It is a remarkable fact that although everything entering into the
expression of  varies when we change our mesh-system, yet the
value of  as defining the value of the square of the distance
between two infinitesimally distant points remains unchanged. In other
words,  is a scalar, an invariant. This allows us
to place a new interpretation on the  numbers; they appear to act
as correctives counterbalancing the variations of  and .
If we compare the variations in the values of  and  when
the mesh-system is changed, to the advance of a squirrel in a drum, we
see that the action of the ’s is similar to a backward revolution
of the drum, offsetting the squirrel’s advance, so that the squirrel
remains motionless in space.[27]





Now, up to this point we have been considering the expression of a
distance between infinitely close points, but in practice we also wish
to establish the length of an extended curve traced on the surface. In
this case we proceed from point to point along the curve, computing the
successive infinitesimal distances , then summating them, or, as
it would be more proper to say, integrating them. We thus obtain
. Also we may state that the area  of an
infinitesimal parallelogram formed by two-line elements  and
 is given by

Here again we may calculate any finite area by a process of
integration, so we see that the finite geometry of the surface can be
studied by concentrating our attention on infinitesimal portions and
then extending our results from place to place. In short, the method
reduces to an application of the differential calculus to geometrical
problems, and for that reason is named differential geometry.


Powerful as this method of differential geometry has proved to be,
there are cases in which it cannot be applied. However, as in the
problems of physics with which we shall be concerned, difficulties
do not arise, we need not dwell on a number of special cases which
in the present state of our knowledge are of interest only to the
mathematician.[28]


And now we come to the main body of Gauss’ discoveries. We have seen
that on a given surface the values of the three ’s at any point,
or, more correctly, their variations in value from point to point, are
defined by our choice of a mesh-system. But we know that a mesh-system,
though in large measure arbitrary, is yet not completely independent
of the nature of the underlying surface. For instance, a Cartesian
mesh-system of equal squares, or again a diamond-shaped one, both of
which hold on a plane, cannot be traced on a sphere. Neither can a
network of meridians and parallels which holds on a sphere be traced

on a plane. For this reason the representation of the disposition of
oceans and continents is necessarily distorted in some way or other
when given on a flat map.


In short, every species of surface possesses an infinite aggregate of
possible mesh-systems, but those systems which are applicable to one
type of surface are never applicable to surfaces of any other type.
Inasmuch as the Cartesian mesh-system and the diamond-shaped variety
are the only ones that entail the constancy of the three ’s
throughout the surface, and inasmuch as such co-ordinate systems can
be traced only on a plane or on surfaces derived therefrom without
stretching (cylinder, cone), we see that the constancy of the three
’s is characteristic of Euclideanism. This does not mean, of
course, that all co-ordinate systems traced on a plane yield constant
values for the three ’s; it simply means that on a plane it is
always possible to trace a Cartesian mesh-system, whereas on all other
types of surfaces the task is impossible.


All this goes to prove that the curvature of a surface must exert a
modifying influence on the -distribution, since when the surface
is curved no constant distribution is possible. We must infer,
therefore, that the -distribution is governed by two separate
influences; first, by the lay of the mesh-system over the surface;
secondly, by the intrinsic curvature of the surface from place to
place. Gauss realised the importance of separating these two influences
and of determining in what measure respectively they affected the
-distribution.


Obviously, if it were possible to discover some mathematical expression
connecting the ’s at one point with the ’s at neighbouring
points, and if this mathematical expression remained invariant in value
to a change of mesh-system in spite of the variations of the individual
’s which must accompany the change of mesh-system, we should be
in the presence of a magnitude which, transcending our choice of a
mesh-system, would refer solely to the shape of the surface itself,
i.e., to its curvature at the point considered. But before
we investigate the nature of Gauss’ discoveries, certain elementary
notions must be recalled.


We know that the curvature of a circle at every point of its
circumference is a constant given by , where  is
the radius of the circle. But if in place of a circle we trace any
arbitrary curve on our plane, the curvature will vary from point to
point along the curve. The curvature of the curve at given point 
is then defined by the a certain circle which is tangent to the curve
at the point . As a matter of fact there exist an indefinite
number of circles of varying radii lying tangent to the curve at ;
but among these circles one stands out prominently in that it is, so to
speak, more perfectly tangent than all the others. Whereas the tangent
circles intersect the curve in two points coinciding at , this
privileged circle intersects it in three such points. It is called

the osculating circle (osculare meaning to kiss in
Latin). The curvature of the curve at  is defined by the curvature
of its osculating circle at . Calling  the radius of this
osculating circle, the curvature of the curve at  is thus given by
 (Fig. VI).
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We must now pass to the curvature of a surface. At a point  on the
surface where the curvature is to be computed we trace a normal to the
surface. Then through this normal we trace a plane, which of course
intersects the surface along a plane curve. We assume this normal plane
to revolve round the normal as axis and we thus obtain a series of
plane curves of intersection defined by the normal plane and surface.
Each one of these curves passing through the point  possesses a
definite curvature at , and this curvature can be computed through
the medium of the corresponding osculating circle.


Here a geometrical fact is evidenced. It is found that in the general
case there exist two remarkable positions of the intersecting normal
plane, perpendicular to one another and therefore sectioning the
surface along two curves (1) and (2) orthogonal to each other at .
The curvature of one of these curves, say, the curve (1), is less than
that of all other curves obtained by revolving the plane round the
normal at , while the curvature of the second curve (2) is greater
than all others. These two curvatures are called the two principal
curvatures of the surface at the point  and are designated by
and  respectively.


We then define the total curvature or the Gaussian
curvature of the surface at the point  by the product
. If our surface is a sphere we have ,
hence the Gaussian curvature becomes  or more
simply , where  is the radius of our sphere; but
in the general case,  and  are unequal. According to

the nature of the surface the two principal curvatures may be of the
same or of opposite signs. When of the same sign, the total curvature
 is obviously positive; hence the surface is said
to manifest positive curvature at the point considered. The sphere and
ellipsoid are illustrations of surfaces presenting a positive curvature
throughout. When, however, the surface is saddle-shaped, the two
principal curvatures are of opposite sign; the total Gaussian curvature
is then negative, and we have a surface of negative curvature at the
point considered.


And now let us return to Gauss’ discoveries. We saw that the
distribution of the ’s over the surface was affected both by our
choice of a mesh-system traced on the surface and by the intrinsic
nature or curvature of the surface from point to point. Then we also
mentioned that if it were possible to discover some mathematical
expression connecting the ’s at a point  with the ’s
at neighbouring points, and that if this mathematical expression
remained invariant in value to a change of mesh-system in spite of
the variations of the individual ’s which accompany the change
of mesh-system, we should be in the presence of a magnitude which,
transcending our choice of mesh-system, would refer solely to the shape
of the surface itself, i.e., to its curvature at the point
considered. This important mathematical invariant, built up with the
’s, was discovered by Gauss; it is generally designated by the
letter  and is referred to as the scalar or invariant of
curvature at the point . Gauss then proved that this scalar
of curvature  was none other than minus twice the total curvature
defined previously. Hence we may write:


Aside from a constant factor, these two curvatures are thus the same,
so that we shall often refer to  as the Gaussian curvature, even
though the appellation is not strictly accurate.[29]


Before proceeding farther, we must recall that the method we have
followed of investigating the geometry of surfaces and using Euclidean
rigid rods for the purpose of conducting measurements over the surface,
leads to the same geometrical results as would be obtained by an
exploration of a two-dimensional space (of a plane, for example) by
means of non-Euclidean rods. If, therefore, we conducted measurements
with non-Euclidean measurements over a plane, we should of course
obtain a non-Euclidean geometry; and the Gaussian curvature of the
plane would no longer vanish, as it would were we to make use of the
Euclidean measuring rods.[30]


In terms of our non-Euclidean measurements the same plane would be
curved. We see, therefore, that the non-vanishing of the Gaussian
curvature does not necessarily represent curvature in the usual
visualising sense. It represents more truly a relationship between
the surface and the behaviour of our measuring rods; in other words,
it represents non-Euclideanism, and the word “curvature” is apt to be
misleading. In a general way, therefore, we may state that the type of
geometry of our two-dimensional space from place to place is defined
by the value of the Gaussian curvature from point to point, hence by
the law of -distribution throughout the space; and that when the
space is Euclidean, the -distribution is always such that the
Gaussian curvature vanishes at all points, regardless of the particular
mesh-system selected.


Now all these discoveries of Gauss relating to a two-dimensional space
were extended by Riemann to spaces of any number of dimensions. Riemann
found that for spaces of more than two dimensions the results became
very much more complex. In the case of a space of  dimensions we
of course require  Gaussian co-ordinates to define the position
of a point in our mesh-system, which now becomes -dimensional.
As before, we can conceive of Cartesian and Gaussian mesh-systems,

the former being a generalisation to  dimensions of our network
of Euclidean squares. As for the invariant mathematical expression of
the square of a distance between two points, it now contains a greater
number of terms. In the case of three-dimensional space we have no
longer three separate  quantities at every point; this number
is increased to six. In the case of a four-dimensional space it is
increased to ten, and in the case of an -dimensional space to
.


Owing to the importance of a four-dimensional extension in the theory
of relativity, we shall write out the expression of the square of the
distance for a four-dimensional space. If we call , ,
,  the four differences between the four Gaussian
co-ordinates of our two infinitely close points  and 
and designate the ten  numbers at every point by ,
, etc., we have

or, more concisely,

where we give to  and  all whole values from 1 to 4,
permuting them in all possible ways. Accordingly, in what follows, we
shall refer to the ’s as the ’s.


Proceeding by the same method as we did in the case of two dimensions,
we find that there now exist several invariant types of relations
between the ’s at every definite point and their variations
in value at all points near this one. The values of these expressions
remain unchanged when we alter our mesh-system; hence, as in the case
of the Gaussian curvature for two-dimensional space, they refer to the
geometry of the space itself and not to our choice of mesh-system. One
of these invariant expressions is the generalisation of the Gaussian
curvature  extended to four dimensions. The others refer to new
types of curvatures which appear only in spaces of more than two
dimensions. It is impossible to represent these curvatures with a
two-dimensional surface because they then become identified with the
ordinary Gaussian curvature.[31] For this reason it was only when
curved spaces of more than two dimensions were studied that these new
forms of curvature were brought into prominence.





From what has been said we may anticipate marked complications when
we wish to study the geometry of a space of more than two dimensions.
Thus, we saw that in a two-dimensional space the Gaussian curvature
 fully defines the geometry of the space. For instance, if the
Gaussian curvature vanishes throughout, the surface is Euclidean or
at least flat.[32] In the same way, if the Gaussian curvature is an
invariable positive or negative number throughout, the surface is one
of constant curvature, either positive, as with a sphere, or negative,
as with a pseudosphere.


But when we consider spaces of more than two dimensions, a knowledge
of the generalised Gaussian curvature throughout the space is no
longer sufficient to fix its geometry. While this curvature may
vanish or present the same non-vanishing value throughout, we cannot
infer therefrom that the space is necessarily flat or of constant
curvature. Thus, whereas the vanishing of the generalised Gaussian
curvature  is a necessary condition for the space to be flat, it
is by no means sufficient. There is still room for a large measure of
indeterminateness in the actual geometry of the space.


For the geometry of a space of more than two dimensions to be
determined fully, we must state the values of the components of the
tensor  (mentioned in the note); there being twenty such
components at every point for a four-dimensional space. We may note
that, contrary to the Gaussian curvature ,  is not
invariant. It splits up into components each one of which may vary
in value when the mesh-system is changed. Yet, in spite of this
variability,  still defines the curvatures of the space,
hence still refers to something that is intrinsic and irrelevant to
our choice of mesh-system. Such is one of the characteristics of
a tensor. This particular tensor of twenty components (in
a four-dimensional space) is known as the Riemann-Christoffel
tensor.[33] Curiously enough, it was discovered by Riemann, not
when investigating the geometry of space, but when considering a
problem in heat.


Only when every one of these twenty components of the tensor
 vanishes at every point is it possible to assert that
the four-dimensional space is Euclidean, or at least flat. Thus,
whereas for two dimensions Euclideanism was ensured when one condition
was satisfied at every point, namely, the vanishing of the Gaussian
curvature, , on the other hand, when we step up to four
dimensions, twenty conditions are needed, and these are given by the
vanishing at every point of the twenty expressions which in their
aggregate constitute the Riemann-Christoffel tensor .


We may also mention that in addition to the Riemann-Christoffel tensor
, Einstein has made use of the other tensor 
(previously discovered by Ricci), which in four-dimensional space
is defined by ten separate relations between the values of the

’s at a point and their values at neighbouring points. The
vanishing of this other tensor  at every point, that is
to say, the vanishing of the ten new component expressions at every
point, is insufficient in itself to ensure the Euclideanism of the
space; although, of course, this vanishing imposes certain restrictions
on the space’s non-Euclideanism. These restrictions are less severe
than those defined by the vanishing of the twenty components of the
Riemann-Christoffel tensor, which ensures perfect flatness; on the
other hand, they are more stringent than those imposed by a mere
vanishing of the Gaussian curvature .[34]


Turning to the physical significance of the  numbers, we
may note that it is these  magnitudes which enter into the
expression of a distance, hence which serve to define congruence.
If we are dealing with a purely amorphous continuum in which no
particular definition of congruence or distance is pressed upon us
by nature, there can exist no particular distribution of 
numbers inherent in the continuum. But if, on the other hand, as in
the case of space, or, better still, of Einstein’s four-dimensional
space-time, a precise definition of practical congruence is imposed
upon us by nature—if, in other words, our continuum, in place of
being amorphous, possesses a definite metrics or structure—there will
exist a -distribution inherent in the continuum, and this
distribution will define its metrical field.


The same arguments would apply to the structural tensors of curvature
of the continuum, namely, to , to  and to .
If the continuum is amorphous, these structural tensors, together
with the ’s that compose them, are meaningless until we
have decided upon some theoretical type of congruence of geometry;
and even then they represent characteristics of structure that are as
conventional as the geometry we have selected. But if, on the other
hand, a definite metrics exists in the continuum, then these structural
tensors represent curvatures of the continuum, which we may regard as
physically existent and no longer as purely conventional.








CHAPTER VIII

THE MEANING OF THE WORD RELATIVITY





ALL our previous discussions and explanations have been made in order
to prepare the ground for Einstein's theory of relativity. However,
before we proceed to discuss Einstein’s theory proper, it may be useful
to reach a more precise understanding of the scientific meaning of the
words “relativity” and “absoluteness.”


In traditional philosophy an absolute reality is the primary,
self-existing reality, the substance, the true being or the
metaphysical reality, whereas a relative reality is a secondary,
dependent reality owing its form of being to a relation of the
genuinely real.[35]


Now, so far as scientific philosophy is concerned, absolute reality
is a myth. All we can ever become cognisant of in nature reduces in
the final analysis to structure, that is, to relationships. Hence, if
we adopt this very general understanding of the word “relativity,”
we may anticipate even at this stage that Einstein’s theory can add
nothing to our belief in the fundamental relativity of all knowledge.
Obviously, then, when physicists speak of absolutes and relatives,
they are referring to categories of a nature differing from those of
philosophers.


Consider, for instance, the length of an object, or again the
comparison of two lengths situated in different parts of space. We
have seen, when discussing mathematical space, that according to our
measuring standards, which were conventional, these lengths might be
equal or unequal; and it was this aspect of relativity which expressed
the fundamental mathematical relativity of length. But we also saw that
although in theory the definition of congruence was conventional, in
practice, if we wished to define congruence so as not to enter into
conflict with our sense perceptions, a definite type of congruence
(practical congruence) was imposed upon us by nature. We saw further
that bodies which were thereby defined as congruent constituted what
are known as Euclidean solids, and that these were assumed to remain
absolute in length, regardless of the observer’s motion.


Under these circumstances, when a physicist such as Einstein, in
contradistinction to a mathematician, asserts that length is relative,
he is referring to the actual length measured out by a so-called
rigid body; and he wishes to imply that this length will turn out
to be indeterminate and to depend essentially on our conditions of
observation. We see, therefore, that the relativity of the physicist
is not inevitable, as is that of the mathematician. It is not an
a priori type of relativity expressing a trivial relativity to

standard. It is essentially an empirical type of relativity, always
subject to proof or disproof by precise empirical tests. The two
following illustrations may be helpful:


Consider a telegraph pole rising vertically from the ground. The visual
angle under which this pole will appear to us is essentially relative,
since it varies in value with the distance of the observer from the
pole. Of course, this visual angle is fundamentally relative, since
its value depends on the system of geometry we may adopt, but we are
no longer discussing this mathematical aspect of relativity. We are
assuming that our system of measurements has been fixed according
to the requirements of practical congruence, i.e., that our
measurements are performed with ordinary rigid rods and hence are
Euclidean. In this event the visual angle under which we perceive a
given pole is perfectly determinate when our distance from the pole
is specified. But, on the other hand, it is relative, inasmuch as it
is not immanent in the pole; it varies with our relative distance
and thereby reduces to a mere relationship between the pole and our
distance therefrom.


In contradistinction to the relativity of the visual angle, classical
science considered that the length of the pole itself was absolute,
being irrelevant to our relative position as observers. Once again,
if we argue as mathematicians, we may claim that this length in turn
is relative, since it depends on our measuring conventions. But if
we assume that our measuring conventions have been fixed by the
requirements of practical congruence, this type of relativity is
excluded. Such being the case, classical science believed that the
length of the pole was an absolute, inasmuch as its numerical value
was so many feet or so many metres regardless of our position and
regardless of our motion. It is this last assumption that is contested
by Einstein. The absolute magnitude is not the length of the pole; for
this, analogously to visual angle, is relative. The absolute magnitude
is rather a something which transcends space and time, and relates to
the absolute world of space-time.


A second illustration may be given by the concepts of mass and
weight. As a result of Newton’s discoveries, the weight of a body was
realised to be relative, since its value varied with the proximity and
distribution of matter. On the earth’s surface the value was so many
tons, on the surface of the moon it was considerably reduced, and in
interstellar space it vanished completely. A body of itself had no
weight. Weight was not immanent in the body; it reduced to the mere
expression of a physical relationship between the position of the body
and that of surrounding matter.


In contradistinction to the relativity of weight, classical science
assumed that mass was absolute. The mass of a body, wherever situated
and in whatever circumstances observed, was supposed to be an invariant
remaining always the same. For this reason, mass, in contrast to
weight, was assumed to be immanent in matter. It was not the result of
a physical relationship, but was a reflection of the very existence of
matter.


True, when Bucherer’s experiments had shown that the mass of an
electron appeared to increase with its velocity, mass unquestionably

appeared to be relative. But it was assumed that this apparent increase
in the mass of the electron was to be ascribed not to any variation
in the mass of the electron itself, but to a deformation of its
electromagnetic field brought about by motion through the ether. It was
as though the ether was dragged along by the electron in its motion,
just as a ship moving through the ocean carries along a more or less
considerable volume of surrounding water according to the speed with
which it is moving. In other words, there had been no real change in
the mass of the electron itself, and this belief of classical science
was expressed by the principle of the conservation of mass.


The preceding examples teach us two things: First of all, it is not
sufficient to state that a concept is a relative; we must complete our
statement by stipulating with respect to what surrounding conditions
this concept happens to be relative: whether it be, e.g., to the
distance of the observer, to his motion, or to the distribution of
matter. Secondly, we see that the only experimental means we have of
distinguishing a relative quantity from an absolute is by varying
surrounding conditions and by modifying the nature of the motion and
the position of the observer. Were the value of the quantity to vary
under these conditions, we should be assured that it was a relative.
But obviously it may be impossible for us to vary all surrounding
conditions; we cannot vary, for instance, the star distribution.
Inasmuch as in this universe the whole influences the part and the
part influences the whole, it would appear that our differentiations
between absolutes and relatives might reduce to a mere expression of
our limitations.


This view is undoubtedly correct in theory, but it must be remembered
that physics can proceed only by successive approximations. For
example, experiment proves that the action of a certain phenomenon
on another decreases with the distance. The physicist is therefore
perfectly entitled to assume that if the disturbing cause is far enough
removed its influence can be neglected. In this way, by a process
of progressive elimination, he is enabled to conceive phenomena to
proceed in complete isolation from all foreign disturbing influences.
Henceforth it will be these ideally isolated phenomena which he will
subject to the tests of relativity by submitting them in succession to
those foreign influences over which he can exercise some control. Under
these conditions the question of the absoluteness or the relativity of
a given concept or magnitude acquires a definite physical meaning.


In classical science it was always assumed that a distance in space,
a duration in time and a simultaneity between distant events were
absolute concepts. Regardless of the relative motion or position of
the observer, regardless of the distribution of matter, these concepts
remained unchanged. Einstein succeeded in proving that these opinions
must be erroneous, since they were incompatible with certain refined
optical experiments. He showed that the relative motion of the observer
could not help but exert a modifying influence. Henceforth, distance,
duration and simultaneity become relatives expressing relationships

between the magnitudes measured and the relative motion of the
observer. Just as the visual angle under which an object appeared to an
observer was in no wise immanent in the object itself, since it varied
with the observer’s position, so now length, duration and simultaneity
are in no wise immanent in the real world, since they vary with the
observer’s motion.


Once more we must draw attention to the fact that the relativity we are
discussing is essentially physical; it is posterior to our definitions
of practical congruence. It follows that this relativity of distance
and duration must correspond to variations which would be seen and
felt. These variations are not due to mere arbitrary changes which we
may introduce into our mathematical systems of measurement. They are
not merely conceptual; they are perceptual.


The fact is that the systems of measurement are imposed upon us by
nature, and by that we mean that they translate what we actually see
and feel and not that which we might see and feel if the world happened
to be such as some nebulous mathematician might posit it to be. In a
similar way, Einstein in the special theory proved that mass, which
classical science had considered absolute, was in reality relative,
since it depended on the relative motion of the observer. The general
theory of relativity went still farther, proving that mass was relative
in yet another sense. It established that not only the relative motion
of the observer, but also the distribution of surrounding matter, would
influence the mass of a given body. In this way Mach’s premonitions
were vindicated. Following the relativity of mass, a number of other
concepts, such as temperature, pressure, electric and magnetic forces,
and gravitational force, were in turn proved to be relative, depending
on the motion of the observer.


Now, although the epithet relative in its widest sense implies
relative to surrounding conditions, we shall find that in Einstein’s
theory it is employed most generally with reference to the observer’s
motion. A magnitude which is relative will, therefore, mean one
whose value depends on the relative motion of the observer; a magnitude
which is absolute will imply one whose value remains unaffected by
this motion. The major aim of the theory will be to separate
those magnitudes which are relative from those which are absolute.
The absolute magnitudes will then be representative of the absolute,
common world of which the various observers will obtain but private
perspectives. This absolute world will be the world of space-time
standing in contrast to the relative world of space and time.


Among the absolutes which the theory has discovered, we may mention
electric charge, entropy, the velocity of light in vacuo (in
the special theory, at least) and the length of what is known as the
Einsteinian interval between any two points in four-dimensional
space-time; this latter type of absolute holding throughout the entire
theory, both special and general.









CHAPTER IX

THE PRINCIPLES OF RELATIVITY





MUCH of the difficulty which philosophers and laymen experience in
understanding Einstein’s theory arises from a confusion between the
different meanings that may be attributed to the concepts “relativity
of space and motion.” For the student who already possesses some
knowledge of classical science, confusions of this type, of course,
are not to be feared. But in view of the general misconceptions on the
subject we will mention briefly the various principles, elucidating
them further as we come across them in the course of this book. We must
name here:


1. The primordial mathematical relativity of space and time.


2. The kinematical or visual principle of relativity.


3. The dynamical or classical Galilean and Newtonian principle of
relativity.


4. Einstein’s special principle of relativity.


5. Einstein’s general principle of relativity.


6. The radical Mach-Einstein principle of relativity.


Let us consider these various principles in their order. The
mathematical type of relativity is the one we have already had
occasion to mention when discussing mathematical space and time.
It implies that a distance in space, even after the space has been
referred to the observer’s frame, has a purely relative magnitude;
so that two distances in space may be congruent or unequal according
to our measuring conventions. Even after we have decided upon our
measuring conventions, the magnitude of a spatial distance can only
be expressed by the magnitude of our measuring rod; and if during the
night all lengths were to contract in the same way, no difference could
be detected when we awoke on the following day. Similar conclusions
would apply to time.


Now, this mathematical aspect of the relativity of space and time
would appear to be in conflict with everyday experience; for if during
the night all things were to move twice as fast, there is not the
slightest doubt that certain very apparent physical changes would
be manifest. For instance, a rapidly rotating flywheel might burst
under the tremendous strain of centrifugal stresses. However, it must
be remembered that the mathematician is discussing pure amorphous
mathematical space; and even though Weyl’s theory throws a new light
on the relativity of magnitude by referring it to the radius of the
universe as a whole, the entire question is still somewhat obscure.
We need lose no more time over these purely mathematical conceptions,
but shall concern ourselves with the principles of relativity which

relate to the real universe of physics, to real space, together with
its metrical field.


The kinematical or visual principle of relativity, which is
at least as old as the Greeks, states that a body can be considered
in motion only when referred to some other body. For instance, if we
consider the particular case of the earth and sun, we would conclude,
according to whether we referred motion to the earth or sun, either
that the sun was rotating round the earth every twenty-four hours, or
else that the earth was rotating on its axis.


The two methods of presentation would be equivalent. Again, it would
be impossible for us to state whether a body was approaching us faster
and faster with some accelerated motion or whether it was we who were
travelling with accelerated motion towards the body, visual appearances
being the same in either case. Obviously this kinematical or visual
principle would connote the complete relativity of all motion and rest,
hence the complete relativity of space.


But a closer study of the dynamics of material systems proves the
visual principle to be untenable. It was found that the behaviour of
material systems, and thus the results of mechanical experiments,
were influenced by absolute acceleration and rotation through space,
although they remained totally unaffected by absolute velocity.


The Newtonian or Galilean or classical or dynamical principle of
relativity expresses this elusiveness of absolute velocity or
Galilean motion through space so far as mechanical experiments are
concerned, while it stresses by contrast the physical significance
of absolute acceleration and rotation. As is well known, it was this
absoluteness or physical significance of acceleration and rotation
which compelled Newton to recognise that space could not be relative.
That the Newtonian principle of relativity will considerably restrict
the scope of the visual principle can be gathered easily from the
following example:


If a body were moving with respect to our frame of reference with a
relative velocity, but with no relative acceleration, we should
be justified according to the Newtonian principle in maintaining that
it would be impossible to decide by mechanical experiments
whether it was we who were moving towards the body or the body that was
moving towards us. To this extent the visual principle is satisfied.
But, on the other hand, if a relative acceleration of rotation existed
as between ourselves and the body, mechanical experiments would
enable us to ascertain what fraction of the relative acceleration or
rotation was due to our own absolute acceleration or rotation in empty
space, hence also what fraction was due to the body’s motion.


We now come to Einstein’s special principle of relativity.
It is an exact replica of the Newtonian principle, upholding the
relativity of velocity and the absoluteness of acceleration.[36] The
sole difference between the two principles is that in Einstein’s, the

elusiveness of absolute velocity through space is no longer restricted
to mechanical experiments and to material systems; electromagnetic and
optical experiments are now placed on exactly the same footing.


While we are on the subject of the various principles of relativity,
we may discuss two further types which play an important part in that
extension of Einstein’s special theory known as the general theory
of relativity. Here we are introduced to the General Principle of
Relativity. This principle states that the mathematical expressions
of the laws of nature must maintain the same form regardless of
our choice of a frame of reference, be it Galilean (i.e.,
unaccelerated through empty space), accelerated, or even squirming like
an octopus, while our clocks situated throughout the frame may beat
at the most capricious rates. The classical principle of relativity
conceded this invariance of natural laws in the case of Galilean
frames, and synchronised clocks alone, and then only in the case of
the laws of mechanics. The special principle recognised that this
invariance held true even for the electromagnetic laws, but, as before,
only for Galilean frames. The general principle of relativity, by
extending the invariance of the laws of nature to all types of motions
of the frame of reference, marks the starting point for the possible
relativisation of acceleration, which had heretofore stood out as aloof
and as distinctly absolute.


The radical Mach-Einstein principle of relativity is the result
of a natural desire to bring about the complete relativisation of all
manner of motion, rotationary and accelerated, as well as uniform. This
is achieved by ascribing all the dynamical effects which accompany the
acceleration and rotation of material and electrodynamic systems, to
motion with respect to the material universe as a whole. According to
this principle, which is still highly speculative, there can exist no
observable difference between the rotation of a body with respect to
the universe of stars and the rotation of the stars round the body;
exactly the same dynamical effects of centrifugal force would be set up
in either case, so that no trace of absolute motion through empty space
would be left. We see that Mach’s principle constitutes an attempt
to vindicate the kinematical principle in spite of the difficulties
of a dynamical nature which had been the cause of its rejection. It
was in part with a view to satisfying Mach’s principle that Einstein
elaborated the hypothesis of the cylindrical universe. The principle
would fall if astronomical observation should prove this form for the
universe to be unacceptable.









CHAPTER X

CLASSICAL MECHANICS AND THE NEWTONIAN PRINCIPLE
OF RELATIVITY





WE mentioned, when discussing amorphous mathematical space, that
position and hence motion could have no meaning other than that
of expressing conditions with respect to some particular frame of
reference. In short, the visual principle of relativity would have to
be adhered to.


We will accordingly select some arbitrary system of reference, which
we will assume to be defined by three mutually perpendicular planes
meeting at a common point . The instantaneous position of a
body will henceforth be defined when we have measured with rigid
rods its distances from the three planes of our frame; and the only
type of position and of motion of the body which we can define in an
unambiguous way will be its position and motion as referred to our
frame.


The measurement of the velocity of the body with respect to our frame
necessitates the addition of a clock. We will assume that this clock
beats out congruent intervals of time, where congruence is, of course,
defined by the requirements of practical congruence for time, that is,
by the beatings of some isolated periodic mechanism.


Now, it is perfectly apparent that unless referred to some particular
frame, the path followed by a body and its motion along this path can
have no determinate meaning. Thus, if in a uniformly moving train we
throw a ball into the air and catch it again in our hands, then, as
referred to the train, the ball will have followed an up-and-down
motion along the same vertical; on the other hand, as referred to
the embankment, the ball will have described a parabola. Again, if a
stone is allowed to fall from a great height, its motion with respect
to the earth will be accelerated, whereas, with respect to a frame of
reference falling together with the stone, it will have remained at
rest.


It would thus appear that we might credit to the path followed by
a body any arbitrary shape we wished; all we should have to do
would be to select some appropriate frame of reference. The same
indeterminateness would, of course, apply to the motion of the body
along its path. Thus the shape of a path in space (rectilinear or
curved) or the species of a motion (uniform or accelerated) could have
no absolute significance. From the standpoint of mathematical space
these would all be essentially relative to the reference frame we had
selected.


But it is obvious that this attitude into which our understanding of
mathematical space has forced us presupposes that all the frames of
reference we might select were on exactly the same footing, that is,
were indistinguishable from one another. Galileo and Newton noticed
that such was not the case. In certain frames we were pulled hither

and thither by strange forces unsymmetrically distributed, and objects
placed on the floor did not remain where they had been put. Space
around us appeared to be in a chaotic condition, as, for example, on a
rotating disk or in a train rounding a curve. In other frames no such
forces were apparent (excluding the force of gravitation), and space
appeared stagnant and quiet, the same everywhere. These latter frames
are called Galilean or Inertial.


Now, a Galilean frame did not manifest itself as unique. So far as
the most delicate mechanical experiments could detect, there appeared
to exist an indefinite number of such frames, all moving in respect
to one another with various constant speeds along straight lines,
without suffering any relative rotation during their motion. Mechanical
experiments conducted in any one of these Galilean frames showed that
free bodies followed straight lines with constant speeds (Newton’s law
of inertia), and when referred to these frames, mechanical phenomena,
including the planetary motions, were susceptible of being formulated
by very simple laws. As viewed from Galilean frames, the other frames,
the non-Galilean ones (those filled with strange forces), were found to
be moving with accelerated or rotationary motions.


Mechanical experiments conducted in the non-Galilean frames proved that
the disposition of the strange unsymmetrical so-called inertial
forces bore a close relationship with the apparent motions of these
frames as viewed from the Galilean ones. It was possible, therefore,
for an experimenter situated in one of these strange frames to
anticipate, without looking outside, exactly how his frame would
appear to be moving when viewed by a Galilean observer (i.e.,
an observer in a Galilean frame), at least so far as acceleration and
rotation were concerned. Thus, in a non-Galilean frame moving with
respect to a Galilean frame along a straight line with some definite
acceleration, the forces of inertia would be disposed in a parallel
way, pulling in the direction opposite to that of the relative
acceleration. In a non-Galilean frame rotating with respect to a
Galilean observer, the disposition of the inertial forces would be much
more complicated. There would be the centrifugal force pulling
outwards and the so-called Coriolis forces pulling sideways.


As viewed from all these non-Galilean frames, the laws of mechanics
would appear hopelessly complex. Free bodies would no longer appear
to follow straight lines with constant speeds, but would describe
capricious curves with varying velocities. Newton’s Law of Gravitation
would no longer account for the planetary motions as observed from
these frames, and a study of mechanics would present tremendous
difficulties. In short, all the simple laws observed from Galilean
frames would have to be compounded with the effects of these strange
inertial forces when we wished to formulate laws controlling phenomena
as viewed from the non-Galilean frames.


No surprise need be felt, therefore, when it is said that classical
science selected the Galilean frames as standard frames. All the laws
of mechanics and of physics were referred to them, and this, indeed,

was the essence of Copernicus’ discovery. Incidentally, we see that we
are in possession of another definition of a Galilean frame; for we
may say that a Galilean frame is one with respect to which the laws of
classical mechanics (law of inertia, Newton’s law, etc.) hold true.


We may also mention that the very possibility of there being definite
laws of mechanics, such as the law of inertia, is contingent upon
the existence of certain fundamental differences between the various
frames. If all frames were identical, as the complete relativity of
motion would demand, the law of inertia would express nothing at all.
In every case we might make the motion of a body appear anything we
wished by selecting our frame suitably; and if we had no means of
distinguishing one frame from another the straight path of a body
through empty space would convey no physical meaning.


We may now give still another definition of a Galilean frame. It
follows from the law of inertia, according to which free bodies,
when viewed from Galilean frames, will describe straight lines with
constant speeds, that the stars, being presumably free bodies, will
obey this law and, owing to their remoteness, appear to suffer very
slight displacements even in the course of a century This fact led to
a more easily obtainable definition of a Galilean or inertial frame,
namely, a frame with respect to which the stars would appear fixed.
This definition is not meant to supplant the one given previously of a
frame in which no forces of inertia are experienced, for theoretically
both definitions are equivalent. Its sole advantage is that it leads to
a more accurate empirical determination of a Galilean frame and shows
us immediately that our earth does not constitute such a frame, since
the stars appear to circle round the Pole star. As viewed from a true
Galilean frame, our earth would therefore be rotating round the polar
axis every twenty-four hours.


Had we sought to discern the non-Galilean nature of the earth frame by
endeavouring to detect traces of inertial, centrifugal and Coriolis
forces, the task would have been more difficult owing to the minuteness
of these forces. Nevertheless, the forces have been detected, and
they account for the protuberance of the equator, the clockwise
and anti-clockwise motions of cyclones, the rotation of the plane
of Foucault’s pendulum, the directions of trade winds and of ocean
currents, etc.


Now, thus far we have not attempted to draw any general conclusions
from the existence of these various frames. We have merely stated that
they undeniably exist, since they have been revealed by experiment,
and that it is simpler to refer the laws of physics, and particularly
those of mechanics, to Galilean or inertial frames. When it comes
to interpreting the deeper significance of all these facts, various
alternatives present themselves, and in this chapter we will discuss
Newton’s solution at some length.


The problem to determine is, “Why do different types of frames exist
when our understanding of amorphous mathematical space would seem

to preclude any such differences?” Here we may make one of two
assumptions. Either we may assume that the differences in conditions
which exist in the various frames (differences which are exemplified
by varied distributions in the lay of the inertial forces, or again in
their total absence) are intrinsic, or else we may assume that they are
due to foreign influences. Newton adopted the first alternative, Mach
and Neumann the second.


If we follow Newton we must assume that the peculiarities existing in
our frames are not to be attributed to causes existing beyond them.
We may therefore assume that the inertial forces would be exactly the
same were the balance of the universe to be annihilated, so that to all
intents and purposes we might consider our frames isolated from all
external influences. We assume, then, that the various distributions of
the inertial forces manifesting themselves in our various frames must
be attributed to the conditions of rest and of motion of these frames,
not with respect to the remainder of the universe, which would be as
good as annihilated, but with respect to those limited portions of the
ether or of space in which the frames are situated.


Newton thus objectivises space and, owing to the symmetrical conditions
which endure in Galilean frames, assumes these latter to be at rest in
space, whereas the non-Galilean ones are assumed to be accelerated or
rotating. If, then, we remember that a strict correspondence exists
between the centrifugal and Coriolis distribution of forces in a
non-Galilean frame, and its rate of rotation as viewed from a Galilean
one, we may assume that the space in which a Galilean frame is at rest
is also that in which a non-Galilean frame is accelerated or rotating.
There is, then, but one space, an absolute space with respect to which
motion and rest have a physical significance. Galilean frames are
those which are non-accelerated; non-Galilean ones are those which
are accelerated or rotating in this absolute space. This was Newton’s
solution, and provided we accept his postulate of isolation there
appears to be no way of escaping it.


Under the circumstances Newton’s law of inertia, according to which a
free body follows a straight course with constant speed in relation to
a Galilean frame, acquires a more determinate significance. The law
now implies that this motion is being described in absolute space—in
a space, therefore, that possesses a definite structure and which is
thereby able to guide the body along its straight course. Had space
been entirely amorphous and relative, as we assumed originally, there
would have been nothing to guide the body; and even had the latter
possessed enough intelligence to guide itself, there would have been
nothing in amorphous space for it to direct itself by.


A number of philosophers attacked the Newtonian hypothesis of absolute
motion and absolute space. For instance, some of them remarked that
this so-called absolute space might well be assimilated to a bubble of
ether floating and rotating in a more embracing space, this other in
yet another, ad infinitum; so that Newton’s absolute rotation

would be meaningless. Needless to say, arguments of this sort are
totally irrelevant to Newton’s stand and to science generally.


Classical science, by absolute space, meant one with respect to which
motion, or at any rate accelerated motion and rotation, appeared to
manifest themselves dynamically; and experiment proved conclusively
that such a space existed. There was no use, and in fact no sense,
in wondering whether this absolute space should be conceived of as
rotating in some other space; for even if a hypothesis of this sort
were ever to be vindicated, the fact remained that rotation appeared
to be absolute in a certain space regardless of whether or not this
space was the super-space par excellence. This was all that was
meant by the absoluteness of rotation so far as science was concerned.
In short, as scientists clearly recognised, there was only one way to
refute Newton’s absolute space and motion, and that was to deny his
postulate of isolation. Such, indeed, was the course adopted by Mach.


If we follow Mach and Neumann and assume that the various internal
dynamical conditions which distinguish the various frames are due
to influences of an extrinsic nature, we shall no longer be able to
subscribe to Newton’s conclusions; for we shall no longer be able to
assume that were the entire outside universe to be annihilated, the
internal conditions in our frames would endure as before. Henceforth,
when ascribing the appearance of centrifugal and Coriolis forces to the
rotation of the body, we should have to imply that this rotation was
relative to a something in the universe that was not the empty
space in which the frame was situated. The natural conclusion was that
this rotation was relative to that other form of existence, namely, to
matter. Neumann suggested a mysterious body called the “Alpha Body,” to
whose dynamical influence he ascribed the rise of inertial forces; but,
as Poincaré remarked, “Of this mysterious Alpha Body all we can ever
know is its name.” A hypothesis such as Neumann’s, which is incapable
of verification, reduces to a mere metaphysical speculation of no
scientific value whatsoever.


Mach adopted a much more plausible alternative. He assumed that the
rotation of the frame which appeared to accompany centrifugal and
Coriolis forces was a rotation with respect to the remainder of the
physical universe, hence to the totality of the matter of the universe.
As the vastest agglomeration of matter in the universe is given by
the totality of the star masses, we are led to Mach’s conclusions,
namely, that the forces of inertia arise from a relative rotation or
acceleration of the frame with respect to the universe of stars. Were
the stars, then, to be annihilated, centrifugal force and all forces
of inertia would vanish, a rotating mass of water would not splash
over the sides of a bucket, and so forth. It is, of course, scarcely
necessary to mention that the actual visibility of the stars or our
mere ability to imagine their existence has nothing to do with the
problem; it is solely the causal influences produced by their masses
and relative acceleration which are relevant.


As a matter of fact, there is no very essential difference between the
solutions of Mach and Newton. Even if we follow Mach, unless we are

to believe in action at a distance, we must assume that the stellar
influences can reach us only as a result of a propagation from place
to place through space. We may perfectly well assume that as a result
of this influence space receives a definite structure, so that in fine
the physical reality of rotation may still be ascribed to a rotation in
space. There is a difference, however; for with Newton this structure
of space is intrinsic to space itself and has nothing to do with the
contingent presence of matter generally, whereas if we follow Mach
this structure of space must be conceived of as extrinsic and caused
by the matter of the universe. In the absence of matter, the structure
of space would automatically disappear and the various frames become
indistinguishable.


As we can see, Mach’s views lead to a partial vindication of the visual
or kinematical principle of relativity. But the vindication is only
partial, since in all cases the relativity of acceleration and rotation
exists only as between the totality of the stars and a body, and not
between any two bodies taken arbitrarily, as in the visual principle.


Against Mach’s solution there is the argument that the stars are
too remote to produce any such palpable effects as the bursting of
a rotating flywheel or the splashing of a revolving mass of water
over the sides of the bucket. But, still more important, it appeared
impossible for classical science to account for these dynamical actions
attributed to the stars. Nevertheless, with the tremendous advance in
our understanding of nature which the general theory of relativity has
given us, Mach’s ideas become highly probable, though not completely
vindicated at the present time. Astronomical observations conducted on
the globular clusters may eventually solve the problem.


Let us now return to Newton’s solution of the problem, since it
constitutes the embodiment of classical mechanics. As we have seen,
Newton, by positing his postulate of isolation, rendered inevitable a
belief in some real absolute medium, space or the ether, from which
rotation and acceleration would derive a real meaning. But here we must
recall that mechanical experiments, though clearly differentiating a
Galilean frame from a non-Galilean frame, were totally incapable of
differentiating one Galilean frame from another. It appeared impossible
to discover, therefore, which particular Galilean frame was to be
considered at absolute rest in stagnant absolute space and which ones
were to be regarded as moving through space with uniform translationary
motions. In other words, when we confined ourselves to mechanical
experiments, velocity through space was relative, the only velocity
susceptible of mechanical detection being relative velocity, that
is, velocity of one frame with respect to another. Acceleration and
rotation, on the other hand, were absolute, and could be detected and
measured mechanically without our having to appeal to a Galilean frame
taken as term of comparison.


Were we to appeal to a Galilean frame in order to check up our
computations, it would be a matter of complete indifference which
particular Galilean frame we might select. As referred to any one
of these Galilean frames, a body would manifest exactly the same
acceleration and rate of rotation, whereas its velocity would, of

course, vary with the Galilean frame to which it was referred. This
is what is meant by the absolute character of acceleration in
contradistinction to the relative character of velocity.


Of course, even an accelerated body could be made to appear at rest
or to be moving with uniform motion if we selected a suitable frame.
But the frame would have to be non-Galilean or accelerated in order
to ensure this result, and we have seen that non-Galilean frames can
never (at this stage, at least) be regarded as being at rest in space.
It follows that the appearance of a body’s motion relatively to any of
these non-Galilean frames could never be considered representative of
the real motion of the body in space.


The Principle of Relativity of Classical Science merely summarises
these discoveries by stating that it is impossible for an observer
situated in a Galilean frame to ascertain by any mechanical experiment
whether he is at rest in space or in a state of uniform translationary
motion. A simple illustration will clarify the meaning of these
statements.


Consider a train moving with constant speed along a straight course;
obviously there is no trace of acceleration in the train’s motion,
since no forces of inertia are felt in its interior. In common
practice, we should speak of the train as having a definite speed
of so many miles per second. But if we reflect we shall see that
this constant speed is computed with respect to the earth’s surface,
considered as defining a Galilean frame of reference. Were the earth
suddenly to become invisible, we should have no physical means of
determining the exact speed of the train through space. But suppose,
now, that the train were slowing down, speeding up or rounding a curve.
In this case, even if the earth were invisible, the train would still
possess at each instant a definite acceleration and this acceleration
would still be perceptible, and would be measured by the forces of
inertia pulling and pushing the passengers about in the train. We
see, then, that acceleration has an existence per se and that,
in contrast to velocity, it is determinate even in the absence of a
frame of reference. Now, it follows from the classical principle of
relativity that, absolute velocity being meaningless (at least so far
as mechanics is concerned), the only type of uniform translationary
motion which can be detected by mechanical means reduces to relative
uniform translationary motion of matter with respect to matter; that
is, motion with respect to something observable. The magnitude of this
relative motion depends essentially on the Galilean frame we may select.


Relative uniform translationary motion can, of course, be detected
visually, but it can be detected also in a number of other ways. Thus
the relative motion of a razor blade on a strop causes heat due to
friction. The relative displacement of a knife between the two poles of
an electromagnet produces induced currents which manifest themselves by
rendering it difficult to cut through the lines of force of the field.
The relative motion of an incandescent atom produces a shift in the

spectral lines (Doppler effect), and it is thanks to this shift that
astronomers are able to determine the radial velocities of the stars
with respect to the earth. In other words, though absolute velocity
can never be detected by mechanical experiments and is therefore
meaningless in mechanics, yet relative velocity of matter with respect
to matter can be detected in a number of ways; so that this
relative type of velocity is the only one that has any physical
significance, or at least any mechanical significance.


We have now to consider a number of difficulties that arise from
Newton’s conception of absolute space. In the first place, although
Newton had postulated absolute space and motion, the fact remained
that of all the absolute motions, absolute acceleration and rotation
were the only ones that had ever been detected, at least by mechanical
means. It seemed strange, if absolute velocity were to have a meaning,
as indeed it must if space were absolute, that it should be so
obstinate in refusing to reveal itself. We could not hold that our
inability to discover which one of the Galilean frames was truly at
rest was due to the crudeness of our mechanical experiments; for the
entire structure of Newtonian mechanics would have come crashing down
had any such suggestion been proved correct.


The reason for this statement is easily understood. The fundamental law
of Newtonian mechanics states that the force acting on a body is equal
to the mass of the body (an invariant) multiplied by the acceleration.
Now, the acceleration of a body as computed in any Galilean frame is
always the same; for the various Galilean frames differ only in their
velocity through absolute space, and a velocity added to or subtracted
from an acceleration can never modify an acceleration. The mass of the
body being an invariant according to classical mechanics, the force
must also measure out the same in all Galilean frames. In other words,
it was essential to classical science that the fundamental law of
mechanics should remain the same in all Galilean frames, and similar
conclusions would have to apply to all the mechanical laws. But then no
mechanical experiment, however precise, executed in one Galilean frame
or another, could ever yield varying results; so that absolute velocity
could never be known. In short, if Newtonian science were to stand,
the failure of mechanical experiments to detect the absolute velocity
of our Galilean frame through space could never be attributed to their
lack of refinement, since any positive results would have overthrown
the entire structure of Newtonian dynamics.


Here, then, was an absolute velocity which was a reality since space
was absolute, but which on no account could ever manifest itself!


It was, of course, possible to suggest that space had a dual structure,
partly absolute and partly relative; absolute for rotation and
acceleration, but relative for velocity. But this intrinsic duality
in the nature of space and motion was hard to accept; it seemed as
though space and motion should be one thing or the other: either
entirely absolute or else entirely relative. Moreover, it was extremely
difficult to conceive of a duality in the structure of space, so the

entire situation was most mysterious.


There was, however, a possible way out of the difficulty, and that was
to assert that absolute velocity was real, truly enough, and that it
might perfectly well be detected provided we appealed to other types
of physical experiment—to electrodynamic and optical experiments, for
instance, and not solely to mechanical ones. But we shall see that
precise experiment has since proved that these expectations were also
doomed to disappointment; hence it appeared perfectly clear that no
manner of experiment, mechanical, optical or electrodynamic, would ever
reveal this elusive absolute velocity.


Even had optical and electromagnetic experiments succeeded in detecting
absolute velocity, everything would not have been plain sailing. It
would then always have been possible to assert that the absolute
velocity detected in this way was not absolute velocity through space,
but velocity through the ether floating in space. But we may point out
that this last objection carries very little weight. For reasons which
we shall explain in the next chapter, it does not appear legitimate
to dissociate the ether from space. Had optical experiments detected
velocity through the ether, we should have had to assume that they had
also disclosed the long-sought-for absolute velocity through space; and
the Newtonian belief in absolute space would have been considerably
strengthened.


However, it is unnecessary to dwell on what might have happened, seeing
that optical and electromagnetic experiments have failed to reveal
the slightest trace of absolute velocity. Accordingly we are led to
Einstein’s special principle of relativity, which states that
not only mechanically, but in every way, absolute velocity through
space must escape empirical detection. Under the circumstances,
unless we wish to retain in science an absolute velocity which can
never be detected and which is therefore any one’s guess, there is no
alternative but to state that space together with its ether has a dual
structure: relative for velocity, absolute for acceleration. Einstein
appears to have thrown us back on the extremely difficult task of
conceiving of this dual nature for space. But the solution of this
particular problem was forthcoming as soon as Minkowski discovered
space-time. With four-dimensional space-time the reason for the duality
becomes apparent; for the absoluteness of space-time (as will be
explained in a later chapter) accounts for the relativity of velocity
and the absoluteness of acceleration.


Thus in Einstein’s theory, in its original form at least, velocity
remains relative and acceleration remains absolute, as in classical
science,[37] the only difference being that the relativity of velocity
is now more thorough, applying as it does to all manner of experiments
and not merely to mechanical ones. It is only when we consider the more
speculative part of the theory, that pertaining to the form of the
universe, that the complete relativisation of all motion in the Machian
sense occurs. Space-time is then found to be no longer an absolute

existing per se but to be conditioned entirely by the matter of
the universe. But, as we have already had occasion to mention, this
part of the theory is still highly speculative, and in order to avoid
unnecessary confusion, we would strongly advise the reader to eliminate
it entirely from his mind until such time as he has acquired a proper
understanding of the special and of the first part of the general
theory. Accordingly we will ignore it for the present; and we may state
that in Einstein’s theory motion possesses a dual nature, just as was
the case in classical science.









CHAPTER XI

THE ETHER





CLASSICAL science assumed that, those manifestations we called
electricity, magnetism, and light were nothing but strains,
compressions and wavelike motions in an imponderable medium, the
stagnant ether, floating in space. This belief was not altogether blind
guesswork. In view of the stresses and strains that clearly appeared to
surround electrified bodies, electric currents and magnets, and in view
of the well-established wave nature of light propagation, some medium
had to be postulated in order to give these stresses, strains and waves
physical significance. Of this mysterious ether itself, practically
nothing was known; but from what scant information could be gathered,
it appeared to possess strange and contradictory properties.


Its resistance to motion was practically nil—far less than that
of a gas like the atmosphere; since the frictional effects due to
the atmosphere are sufficient to cause shooting stars to become
incandescent, while no such effect was observed in those regions of
ether-filled space extending beyond the limits of the atmosphere.
Besides, if motion through the ether generated friction, mechanical
phenomena should be influenced by the velocity of our Galilean frame
through space and hence through the ether; but so far as experiment
was able to decide, no such influences had ever been detected. (This
was indeed the essence of the Newtonian principle of relativity.)
It appeared, therefore, that the ether must be assimilable to some
ultra-rarefied gas. On the other hand, the transverse vibrations of
light waves were compatible only with the existence of a rigid medium;
but between the properties of rigidity and of extreme rarefaction there
was an obvious contradiction. Yet, however baffling and artificial the
ether appeared to be, it was extremely hard to banish it from science
owing to the great mass of experimental evidence that appeared to lend
support to its existence.


At any rate, once the existence of a semi-material ether was accepted,
it was natural to suppose that the motion of our optical and electrical
apparatus through its substance should exert a perceptible influence on
the results of experiment. Just as the velocity of the wind adds itself
to the velocity of sound waves propagated through the atmosphere, so
was it logical to anticipate, in view of our understanding of light
waves and of electrical phenomena, that an ether wind should carry the
light waves and ether strains along with it. Optical and electrical
experiments conducted with sufficient refinement should therefore be
susceptible of detecting the velocity of our planet through the ether;
so that in contradistinction to the relativity of Galilean motion for

mechanical phenomena with which the ether was not concerned, Galilean
motion would be anything but relative were electromagnetic or optical
experiments to be attempted.


Now this duality which was thus assumed to exist in the nature of
Galilean motion or velocity, making it relative for mechanical
phenomena and absolute for electrodynamic ones, was perfectly
acceptable, provided it was permissible to draw a sharp distinction
between mechanics and electrodynamics, between space and the ether.
But the entire trend of recent research had been to show that this
distinction was unjustified. In the first place, matter seemed to
be constituted by electrons and protons, hence to be reducible to
phenomena of an electromagnetic nature. Then again, electromagnetic
phenomena were known to develop mechanical forces. Where, then, was the
essential difference between mechanical and electromagnetic phenomena?
Under the circumstances how could we account for this anticipated
duality in the palpable effects caused by a velocity through the ether,
relative or physically meaningless for mechanical experiments, and
capable of producing physical effects in electromagnetic ones?


It appeared as though mechanical and electromagnetic phenomena should
be susceptible of being placed on the same footing. We should then have
to assume that mechanical phenomena together with electromagnetic ones
would be affected by velocity through the ether, hence through space,
or else to recognise that both electrodynamic and mechanical phenomena
could never be influenced by this type of motion. If we should accept
the first hypothesis, the Newtonian or mechanical principle of
relativity would be overthrown, and with it the entire structure of
Newtonian mechanics; and if we should accept the second hypothesis,
our understanding of electromagnetic processes and of the ether
would have to be modified profoundly. In either case, whether or not
electromagnetic and optical experiments succeeded in detecting absolute
Galilean motion, science seemed to be faced with a difficult situation.


Classical physicists held to the view that optical and electromagnetic
experiments would surely reveal absolute Galilean motion, and they were
not perturbed by the fact that as a result Newtonian mechanics might
have to be abandoned. Indeed, doubts as to the validity of Newtonian
mechanics already presented themselves when Kaufmann and Bucherer
showed that electrons in very rapid motion appeared to increase in
mass—a phenomenon which was of course incompatible with the Newtonian
belief in the invariance of mass, unless some hypothesis ad hoc
was to be invoked. It is true that Michelson’s very refined test
attempted in 1887 failed to detect any influence of absolute Galilean
motion in a certain optical experiment; but it was always assumed
that an explanation for this failure would be forthcoming sooner or
later, and that other experiments would be successful where Michelson’s
had failed. When, therefore, Einstein suggested as a principle of
nature that, regardless of whether or not the ether was a necessary
hypothesis, Galilean motion through the ether or through space would

never be detected by any type of experiment, whether optical or
electromagnetic or mechanical, the majority of physicists paid little
heed to the new doctrine.


It must not be thought that this hostility of classical physicists
to the Einstein theory in its initial stages was due solely to
their belief in the absolute and objective nature which it appeared
inevitable to credit to the ether. It was due also to other reasons
which we shall now proceed to investigate.


From a mathematical point of view, a physical phenomenon reduces to
the systematic variation in intensity and in orientation from place
to place and from time to time of a number of magnitudes. A physical
phenomenon as referred to some arbitrary frame of reference can
therefore be expressed by mathematical equations in which the space
and time co-ordinates with respect to the frame figure as variables.
Now a fundamental problem of theoretical physics is to determine
how the equation of a phenomenon referred to a frame , which
is in motion with respect to a frame , can be obtained from
its equation referred to the frame , by purely mathematical
means without any further appeal to experiment. The solution of this
problem would enable us to anticipate the change in appearance of a
phenomenon when observed, first from the frame , then from the
frame . Obviously some kind of mathematical operation would have
to be performed on the equation as referred to . This operation
is called a mathematical transformation; and the equation
operated upon is said to have been transformed. In the type of problem
we are considering, where one frame of reference is followed by
another, the transformation will bear on the space and time variables
or co-ordinates present in the equation; and transformations of this
character are termed space and time transformations. The entire
problem reduces, therefore, to the discovery of those space and time
transformations which hold in this world of ours. These transformations
cannot be guessed at a priori; and a study of the behaviour of
physical phenomena is a prerequisite condition for their determination.
Inasmuch as all the experiments known to classical science appeared to
corroborate the impression that a distance in space and a duration in
time were absolutes, remaining unaltered when we changed our frame of
reference, a certain definite species of space and time transformations
followed as a matter of course.


Consider, for example, a train moving with constant speed along an
embankment. If an event occurs in the moving train at any instant of
time, say at two o’clock, this event will obviously have occurred
at precisely the same instant (two o’clock) when referred to the
embankment, since time is assumed to be absolute, the same for all. In
other words, time and duration for the observer in the moving train are
identical in all respects with time and duration for the observer on
the embankment. This fact is expressed by , where  is
the time for the train, and  the time for the embankment.


Now suppose that a ball is rolling along the moving train with a speed

, and suppose that owing to the train’s motion the train observer
is carried past the embankment observer at the instant of time when the
clocks mark noon. If the ball leaves the train observer at this precise
instant of time, its distance from the train observer at a
time  (i.e.  seconds after the noon instant) will be
 (since  and  are identical). But then its
distance from the embankment observer will be the sum of the distance
between the two observers, and of this distance  we have
just expressed (distances being absolute). It will be, therefore,
 (where  is the velocity of the train along the
embankment).[38] This last deduction is obvious provided we assume
that a distance is an absolute concept which would turn out the same
whether measured by one observer or another, and such was precisely the
assumption that classical science always made. In short, knowing the
point  where an event takes place at a given instant as referred
to the train we can deduce immediately the point where the same event
takes place when referred to the embankment. All we have to do is to
replace  by , and the trick is done.


These space and time transformations permitting us to pass from
one Galilean frame to another were the celebrated Galilean
transformations of classical science, and they were, as we have
seen, the necessary consequences of our belief in absolute duration and
distance. They were given by:

or again by

Applying them to particular problems, as, e.g., to the change in
the shape of the trajectory of a falling body when viewed successively
from a moving train and from the embankment, or to the change in the
colour of a monochromatic source of light, or in the pitch of a musical
note, the anticipations of the transformations were always found to be
verified, to the order of precision of our experiments. Corroborations
of this sort, among others, were considered to prove the correctness
of the transformations, hence also of our traditional belief in the
absoluteness of duration and distance.


Now if, instead of restricting ourselves to any particular phenomenon,
we consider all phenomena of the same type, such as all mechanical
or all electrodynamic phenomena, we know that these phenomena in
their aggregate satisfy the requirements of certain general laws or
equations: the laws of mechanics or the laws of electrodynamics, as the
case may be. To say, therefore, that Galilean motion or velocity is
relative so far as a certain type of phenomenon is concerned means that
the general laws governing such types of phenomena remain unchanged

in form when we pass from one Galilean frame to another. Expressed
mathematically, this means that when the space and time transformations
are applied to the general laws, these laws or equations are
transformed into equations possessing exactly the same mathematical
appearance; they are then said to have been transformed into themselves.


When the transformations were applied to the general laws of mechanics,
these laws suffered no change in form; and this fact constituted the
mathematical expression of the Newtonian or mechanical principle of
the relativity of Galilean motion. But when the transformations were
applied to the equations or laws of electrodynamics, a distinct change
in form was noted; the laws or equations lost their simple appearance.
This suggested that the electrodynamical laws as accepted by classical
science held only in their simple form for a privileged Galilean frame,
which for reasons of symmetry was naturally assumed to be one at rest
in the stagnant ether. But then, the laws changing in form according
to the Galilean frame to which they were referred, it followed as a
necessary consequence that electromagnetic experiments should pursue
a different course and yield different results according to the frame
in which the observer and his instruments were placed. It should then
be possible to discover the magnitude of the velocity of the frame
through the ether by means of electromagnetic or optical experiments,
so that once again, independently of any particular ether hypothesis,
mathematical reasoning as well as commonplace reasoning confirmed the
physical reality of velocity through the ether.


Of course these mathematical anticipations were dependent on a twofold
hypothesis: first, that the classical transformation-formulæ based on
absolute distance and duration were accurate; and, secondly, that the
equations or laws of electrodynamics were correct. To question the
first assumption appeared unjustified, and to question the validity
of the mathematical expression of the laws led to conflict with
experiment. True, we could modify the laws of electrodynamics (by
suppressing those mathematical terms which were the cause of their
variability), rendering them thereby invariant under the Galilean
transformations, but these terms turned out to be those responsible for
the phenomenon of electromagnetic induction. To suppress them would
have been equivalent to denying the existence of induction, hence of
wireless, radio, dynamos and light propagation. Obviously, a solution
of this kind could not be accepted, since dynamos, etc., were known to
exist.


In view of all these facts, not the slightest doubt was entertained by
scientists that experiments sufficiently precise in nature would yield
us the velocity of our instruments, hence of our planet, through the
stagnant ether.


We must now pass on to a rapid survey of those so-called negative
experiments which were primarily responsible for all the trouble. Let
us recall once more the point at issue. We wish to ascertain to what
extent the velocity of our Galilean frame through the ether is capable

of modifying the results of our electromagnetic and optical experiments.


First in order among these tests we must mention the well-known
phenomenon of astronomical aberration, according to which the direction
of incidence of a ray of starlight varies annually as the earth
circumnavigates the sun. The obvious analogy of this phenomenon is the
slanting direction followed on the window pane of a moving train by
raindrops which to an observer stationed on the embankment would appear
to be falling vertically. This analogy might tempt us to assume that
inasmuch as the slant of the raindrops on the pane permits us to deduce
the speed of our train through the stagnant atmosphere, so now the
slant of the ray of starlight resulting from the earth’s motion should
yield us our velocity through the stagnant ether. But the conclusion
would be faulty; for if we reflect we shall see that we were able to
deduce our motion through the atmosphere, solely because we had reason
to assume that had our train stood motionless in the atmosphere the
raindrops would have appeared to fall vertically. But in the case of
astronomical aberration we have no means of basing our deductions on
any such preliminary information. We cannot tell from what directions
the rays of starlight would appear to issue were we at rest in the
ether; for we ignore the true positions of the stars. And so all that
astronomical aberration can yield us is the annual variation
in our velocity through the ether, hence our velocity relative to the
sun.[39] In short, astronomical aberration does not enable us to detect
our absolute speed through the ether, and we must rely on other means.


In all the experiments we shall have occasion to mention, the velocity
through the ether which we shall seek to determine will be that of our
earth; for, attached as we are to the earth’s surface, this will be
the speed we shall best be in a position to determine. Unfortunately,
the earth does not constitute a truly Galilean frame on account of its
acceleration or rotation round its axis. However, this acceleration of
the points on the earth’s surface is very small and the centrifugal
force to which it gives rise is scarcely perceptible. Calculation
shows that, so far as optical and electromagnetic experiments are
concerned, we may regard a frame attached to the earth as constituting
a Galilean frame, possessing velocity but no acceleration, at least as
a first approximation. Nevertheless this statement is not altogether
correct. Experiments can be devised both in mechanics and in optics
which would reveal the earth’s acceleration or rotation. Of course this
is only natural, since acceleration, in contradistinction to
velocity through space, is known to be absolute.


A proper understanding of Einstein’s theory requires that this point be
fully understood, so we must be excused for repeating once more that
all we are concerned with at present is to reach a decision on the

relativity or the absoluteness of velocity or Galilean motion through
the ether. In the case of the earth there is no danger of our confusing
any possible effects of acceleration with those due to velocity
because, owing to the comparative slowness of the earth’s rotationary
motion, any effects that might arise from acceleration would in any
case be far feebler than those arising from velocity through the ether.


Summarising, we may say that a veritable ether hurricane must be
blowing over the earth, varying both in intensity and in direction at
the different points of the earth’s surface and also at the various
times of the day and year. It is this ether hurricane or ether drift
that we must proceed to detect. Now all experiments, whether optical
or electrical, obstinately refused to detect the slightest trace of
this ether drift; so that one of two things was obvious. Either there
was no drift; or else, if drift there was, it was completely concealed
by compensating phenomena of which as yet nothing was known. Stokes
adopted the first alternative and suggested that the earth in its
motion round the sun might possibly drag the ether along with it, in
its immediate vicinity at least. It would follow that there could never
be any drift on the earth’s surface; and all the negative experiments
which had failed to detect the drift would be explained. The obvious
objection to Stokes’ hypothesis was the existence of astronomical
aberration, which seemed to imply that the earth was moving through a
stagnant ether. Stokes, however, proved mathematically that aberration
was no argument against his hypothesis; that this phenomenon would
still be in order, provided the earth’s motion did not set up
whirlpools in the convected ether.


In addition to a number of other difficulties to be explained
shortly, we may mention that for the motion of the ether to be such
as to satisfy Stokes’ requirements, hence the observed phenomenon of
astronomical aberration, calculation proved that the ether could not be
incompressible. In fact, Planck showed that on the earth’s surface the
ether would have to be 60,000 times denser, and thus correspondingly
more compressed than in distant regions; and it would seem strange
indeed that this considerable increase in the density of the ether
should fail to manifest itself when we compared the results of optical
experiments performed on the summit of a high mountain and at sea
level. Moreover, light vibrations being transversal, the hypothesis
of a rigid ether appeared to be inevitable, so long as we wished to
conceive of light as due to vibrations in the ether. Here again the
Stokes-Planck theory was difficult to accept.


Lodge endeavoured to subject Stokes’ hypothesis to a direct
experimental test. He argued that if the earth were capable of dragging
the ether along with it in its motion, the same should be true of other
moving bodies. But when he investigated this anticipated drag effect
in the case of rapidly revolving disks of steel, he found it entirely
absent.


Even if we ignore these contradictions and assume that the terrestrial
atmosphere is able to drag the ether along bodily, a new series
of difficulties awaits us. A total drag of this sort would be
incompatible with a general phenomenon predicted by Fresnel and

verified by Fizeau according to which dielectrics in motion (electrical
non-conductors), such as water, glass and air, drag the ether along
only in a partial way; the percentage of drag increasing with the
refractivity of the dielectric. Inasmuch as the refractivity of the
atmosphere is comparatively feeble it would be impossible to credit the
total drag of the ether to the atmosphere.


A quite recent experiment of Michelson (not to be confused with the
celebrated experiment of Michelson and Morley) also renders Stokes’
hypothesis extremely unlikely. The essence of this particular
experiment is to send two light rays round the earth in opposite
directions. Its result was to prove that the ray travelling eastward
required a longer time to complete its circuit than the one travelling
westward. Such would not be the case were the earth to drag the ether
around with it in its rotation on its axis. True, this experiment did
not prove that the ether was not dragged along by the earth’s motion
along its orbit, but, on the other hand, it did prove that the earth’s
rotationary motion produced no such drag. This, of course, rendered
extremely improbable the hypothesis that the earth’s motion along its
orbit should be any more successful in producing an ether drag. The
aforementioned experiment of Michelson is an apt illustration of the
type of experiment which enables us to detect by optical means the
earth’s rotation or acceleration through the ether, and is therefore
irrelevant to the problem we are here investigating, namely, that
of its velocity through the ether. The only reason we mentioned the
experiment was because of its bearing on Stokes’ hypothesis.


Stokes’ hypothesis was thus discarded, and the most satisfactory
explanation of all negative experiments that had been suggested was
given by Fresnel. It must be realised that up to this stage all the
experiments attempted were of an optical nature, and related to
the transmission of light rays through dielectrics (glass, water,
etc.). Such experiments had been performed by Foucault, Airy, and
Arago. Fresnel succeeded in proving by mathematical analysis that if
dielectrics carried the ether along in their interior in a partial
manner, increasing in a definite degree with their refractive power,
all the negative results attained up to his day would be explained,
provided they were not pursued to too high an order of accuracy. This
required percentage of drag of the ether by dielectrics was called
Fresnel’s convection coefficient.


Fresnel’s hypothesis was subjected to a direct experimental test.
Fizeau discovered, exactly as had been anticipated by Fresnel, that
when a ray of light was propagated through running water, the total
speed of the light ray with respect to the tube was equal to its
speed through the water, when the water was stagnant, plus only
a fraction of the water’s velocity in the tube; and that this
fraction was precisely equal to the convection coefficient predicted by
Fresnel.


In view of this remarkable confirmation, Fresnel’s hypothesis was
considered fairly established, so that the situation confronting
science was the following: The ether was stagnant in that the earth
moved through it without disturbing it in any way. Velocity through

the ether had therefore a definite physical significance, and a real
ether hurricane must be blowing over the earth’s surface in various
directions according to the time of day. Experiments had failed to
detect it, not because it did not exist, but on account of this
compensating effect of the partial drag of the ether by dielectrics in
motion. Such a failure, however, could only be regarded as temporary;
for Fresnel’s hypothesis specifically showed that this compensating
effect was but partial, and that experiments of a still more refined
order ought certainly to detect the ether drift on the earth’s surface,
revealing thereby the earth’s absolute velocity.


Obviously Fresnel’s hypothesis would fall if more refined experiments
should also fail to detect the ether hurricane. Furthermore, even to
the order of precision contemplated by Fresnel, if in our experiments
we should appeal to phenomena in which dielectrics played no part,
his showed that this compensating effect was but partial, and that
experiment of Michelson and Morley was of this type. Not only was it
far more precise than the ones hitherto attempted, but in addition
refraction played no part in it. Yet, in spite of all, the Michelson
and Morley experiment again gave a negative result.


The next great advance in our understanding of the problem was due to
Lorentz. He, however, like all his predecessors, dared not take the
great step, but still endeavoured to explain the negative results of
experiment while holding to the view of a real stagnant ether. As might
have been expected, Lorentz was compelled to appeal to new compensating
influences. But before going farther it appears indispensable to devote
a few pages to the general subject of electrodynamics; for as we
proceed, we shall see that theoretical considerations are destined to
play a part of ever-increasing importance.









CHAPTER XII

THE EQUATIONS OF ELECTROMAGNETICS AND LORENTZ’S
THEORY





WHEN amber is rubbed, it develops the peculiar property of attracting
small bodies, such as bits of paper, particles of dust and the like.
This phenomenon, which was known to the Greeks, was described by
saying that the amber had become electrified (electron meaning
amber in Greek). To-day, however, we should say that it had received
an electric charge. Soon it was found that electrified bodies did not
always attract one another, but that in many instances they appeared
to exert a repulsive action. For this reason it was assumed that there
existed two different species of electricity, the positive and the
negative; and the laws governing the phenomena involved were compressed
into the statement that like charges repelled whereas opposite charges
attracted. Similar conditions were found to endure between magnetic
poles, so that the existence of two different types of magnetism was
also assumed. But magnetism and electricity remained entirely distinct;
no reciprocal action appeared to exist between an electric charge and a
magnetic pole.


We may illustrate these phenomena of attraction and repulsion in a more
concrete way by assuming that invisible fields of electric and magnetic
forces surround electrified bodies and magnetic poles. To these fields
we may ascribe the mechanical actions of attraction and repulsion
detected by experiment; the electric fields act on electrified bodies,
and the magnetic ones on magnetic poles. It was not until the early
years of the nineteenth century that Coulomb submitted the mutual
attractions and repulsions of charged bodies to a quantitative test.
He found them to be expressed by a law (Coulomb’s law) which was of
the inverse-square variety; the same as Newton’s law of gravitation,
except that the electric charges took the place of masses, and that the
actions could be either attractive or repulsive.


But with the invention of the electric cell by Volta a new
manifestation of electricity presented itself for study and experiment,
in the form of the electric current. Oersted discovered that an
electric current was able to deflect a magnetized needle placed in its
vicinity. This was of great significance, as showing that electricity
and magnetism were closely allied phenomena. The nature of their
relationship became better understood when, by placing iron filings
round a wire, it was shown that an electric current was surrounded by a
magnetic field. The deviation of the magnet in Oersted’s experiment was
accordingly ascribed to the existence of the magnetic field surrounding
the current. In the following year Ampère gave an exact quantitative
formulation of the laws involved.


Now the fact that an electric current generated a magnetic field
rendered it legitimate to suspect that conversely a varying magnetic
field should generate an electric current. If this were the case,

a magnet displaced near a closed wire should generate or induce an
electric current in the wire. This most important phenomenon, known as
electromagnetic induction, was discovered by Henry and Faraday,
and as a result the connection between magnetism and electricity
became still more pronounced. Our present-day dynamos and generators
are nothing but machines constructed with a view to utilising this
phenomenon of induction to generate electric currents on a commercial
basis.


Faraday was the first scientist to realise the enormous importance of
the electromagnetic field. He saw in it a reality of a new category
differing from matter. It was capable of transmitting effects from
place to place, and was not to be likened to a mere mathematical
fiction such as the gravitational field was then assumed to be. In
his opinion, the phenomena of electricity and magnetism should be
approached via the field rather than via the charged bodies and
currents. In other words, according to Faraday, when a current was
flowing along a wire, the most important aspect of the phenomenon lay
not in the current itself but in the fields of electric and magnetic
force distributed throughout space in the current’s vicinity. It is
this elevation of the field to a position of pre-eminence that is
often called the pure physics of the field. Faraday was not a
mathematician and was unable to co-ordinate the phenomena he foresaw in
a mathematical way, and derive the full benefit from his ideas. Before
dying, however, he entrusted this task to his colleague Maxwell; and
one of the most astounding theories of science, eclipsed only in recent
years by Einstein’s theory of relativity, was the outcome.


In order to appreciate the nature of Maxwell’s contributions, let
us recall how matters stood in his day. If we confine-our attention
to regions of space where no electric currents, no charged bodies
or magnets are present, so that solely the electric and magnetic
fields need be considered, the fundamental law of electromagnetism is
Faraday’s law of induction. This law states that a variable magnetic
field generates an electric field.


Maxwell, however, considered that this law, standing alone, lacked
symmetry; so he formulated the hypothesis that conversely a variable
electric field should generate a magnetic one, and proceeded to
construct his theory with this idea in view.[40] In the particular
case of free space in which only fields but no charges or currents
are present, Maxwell’s equations of electromagnetics, termed
field-equations (since they describe the state of the electromagnetic
field), can be written:


where  represents electric field intensity,
 magnetic field intensity,  denotes time,
and  a most important constant about which we shall have
much to say later. As for “div” and “curl,” they represent mathematical
operations of a peculiar sort. At any rate, the reader need
not be alarmed at these equations, for it is not necessary
that we understand them. Suffice it to say that (2) represents
Faraday’s law of induction, while (4) constitutes the hypothetical
law postulated by Maxwell in order to ensure symmetry. Prior to
Maxwell’s investigations the fourth equation would have been written
“”; hence it is the adjunction of the
term 
which constitutes the originality of the theory.


From his field equations, Maxwell by purely mathematical means was able
to deduce the two additional ones:

where  represents a particular species of mathematical
operation. In ordinary language, these last two equations connote
that varying electric and magnetic intensities will be propagated
through the ether in wave form with a velocity , where  is a
magnitude yet to be determined. This discovery removed all possibility
of action at a distance, since the field perturbations now appeared to
be propagated from place to place with a finite velocity. It was, of
course, of interest to determine the precise value of . The most
obvious means would have been to create electromagnetic disturbances
and then measure their speed of propagation directly. Physicists,
however, were unable, in Maxwell’s day, to devise a means of performing
such delicate experiments. But there existed another way of determining
the value of . Maxwell remarked that it would be given by the
ratio of the magnitude of any electric charge, measured successively
in terms of electrostatic units (based on electricity) and then of
electromagnetic units (based on magnetism).[41] Precise measurements
conducted on electrified bodies and magnets then proved that the value
of this ratio was about 186,000 miles per second; whence it became
necessary to assume that periodic perturbations in the strains and
stresses of the field would be propagated in the form of waves moving
through the ether with this particular speed. But this velocity was
precisely that of light waves propagated through the luminiferous
ether.





The conclusion was obvious. Unless we were to assume that this
extraordinary coincidence in the values of these two characteristic
velocities, that of electromagnetic induction and that of light
waves, was due to blind chance, there was no other alternative but to
recognise that what we commonly called a ray of light was nothing else
than a series of oscillations in the electromagnetic field, propagated
from point to point. Electromagnetic waves and luminous waves were
thus all one. Henceforth the two ethers, the electrical ether and the
luminiferous ether, were seen to be the same continuum; electricity,
magnetism and optics were merged into one single science.


Now, although experimenters had attempted by various means to submit
Maxwell’s views to a test, the technical difficulties were so great
that no success had been achieved. It appeared clearly from Maxwell’s
equations that no appreciable effects could be anticipated unless
 was very great; and this
meant that the electric intensity  would have to vary
with extreme rapidity. The simplest means of obtaining a result of this
kind would be to produce an oscillating field of electric intensity in
which the oscillations were extraordinarily rapid, several billions
a second. But no mechanical contrivance could yield such results,
and apart from mechanical contrivances no other methods suggested
themselves. For these reasons a number of years passed before Maxwell’s
views could be put to the test.


In 1885 Helmholtz directed the attention of his pupil, Hertz, to
the problem. Hertz was one of the most remarkable experimenters of
the nineteenth century; he succeeded at last in vanquishing the
technical difficulties and in generating by purely electrical means an
oscillating electric field of extremely high frequency. Electromagnetic
waves of sufficient intensity were thus produced; and after having
been sidetracked for a time by a secondary phenomenon whose nature
was elucidated by Poincaré, Hertz verified the fact that the waves
advanced with the speed of light and indeed possessed all the essential
properties of light waves other than those of visibility to the human
eye. Thus, as a result of Hertz’s experiments, the foundations were
laid for the commercial use of wireless and radio; but, more important
still, Maxwell’s electromagnetic theory of light establishing the
intimate connection between electricity and optics had at last been
vindicated.





Just as Hertz had proved that electromagnetic waves were of the same
nature as light waves, so now, conversely, Lebedew succeeded in
showing that light waves were of the same nature as electromagnetic
ones. It is, indeed, a necessary consequence of Maxwell’s theory that
electromagnetic waves should exert a definite pressure on bodies
upon which they impinge, and this pressure was verified and measured
by Lebedew and again by Nichols and Hull in the case of light waves
falling on matter.[42]


Yet it must be realised that marvellous as were Maxwell’s equations,
so far as the field phenomena in empty space were concerned, they led
to conflict with experiment in the presence of matter. The conflict
was notably apparent when the phenomenon of dispersion was considered;
and by dispersion we mean the splitting up of white light by a prism
into a rainbow of colors. Maxwell’s equations proved that on entering
a transparent dielectric such as glass, the electromagnetic vibrations
which constitute light would be slowed down; and this slowing down,
as had long been known, would account for refraction. But dispersion
demands that the angle of refraction, hence the slowing down, should
depend on the frequency, hence on the colour of the light vibrations;
and this is what Maxwell’s theory failed to account for. His equations
showed that the slowing down would be the same for all frequencies.
A similar difficulty was encountered when the phenomenon of the
magnetic rotation of the plane of polarisation was considered. Faraday
had discovered the existence of this phenomenon, and any theory of
electromagnetics would have to account for it. Nevertheless, it will
be seen that all these difficulties which beset Maxwell’s theory arose
solely when experiments involving matter were taken into consideration.
It appeared, therefore, that the fault resided not in the field
equations themselves, but in the too crude assumptions that had been
made with respect to the constitution of matter.


Furthermore, Maxwell had considered more especially the case of matter
at rest in the ether, and it was necessary to investigate the general
case of matter in motion. This extension of Maxwell’s theory, known
as the electrodynamics of moving bodies, was attempted by Hertz,
who assumed that matter in motion through the ether would drag the
ether along with it in its interior—a hypothesis not so radical,
but somewhat in line with that of Stokes. So long as conductors
were contemplated, Hertz’s hypothesis seemed to be in accord with
experiment; but when we came to consider dielectrics in motion, Hertz’s
anticipations were contradicted. Fizeau’s experiment in particular,
proving that the velocity of running water did not compound with the
velocity of the light in stagnant water, was incompatible with Hertz’s
hypothesis of a total drag. Also, in an experiment of a totally
different nature, dealing with the motion of a dielectric through a
magnetic field, Wilson proved the existence of the same partial drag,
given once again by Fresnel’s convection coefficient. It appeared,
therefore, that Fresnel’s convection coefficient was a fact which would
have to be fitted into any theoretical scheme of the electrodynamics of
moving dielectrics.


Now, Fresnel’s partial drag hypothesis, though seemingly confirmed
by experiment, had yet to be accounted for theoretically, and this
appeared impossible so long as we remained in such utter ignorance of
the ultimate constitution of dielectrics and of matter in general. At
this stage Lorentz started his theoretical investigations which were
to lead him to a refinement of Maxwell’s equations, extending their
application to cases where matter was present, either at rest or in
motion through the ether. As we have mentioned, Maxwell’s equations

had proved themselves incapable of accounting for dispersion. It
appeared necessary to conceive of some structure for dielectrics which
would act selectively, imposing different degrees of retardation on
light waves of different frequencies. Lorentz achieved this result by
assuming that electricity was atomic and that matter was constituted
by more or less complicated groupings of these electric atoms or
electrons.


In the case of dielectrics or non-conductors such as glass, the
electrons were assumed to be tied down to their atoms by elastic
forces. When disturbed they would vibrate with some characteristic
frequency depending on the magnitude of the elastic forces which held
them in place. If, then, a wave of light were transmitted through
the transparent dielectric, the electrons would be set into forced
vibration and the retarding effect these vibrations would impose on the
incident light would depend on the relative frequencies of the incident
light and of the natural frequencies of the electrons. In this way it
was possible to obtain a mathematical interpretation of dispersion.


Further phenomena were accounted for by taking into consideration the
frictional resistances that would interfere with rapid vibrations of
the electrons. When these frictional resistances were weak, oscillatory
disturbances, such as rays of light, could be propagated through the
dielectric, which was then termed transparent (glass). When these
frictional forces were considerable, the light ray was unable to set
the electrons into vibration; its energy was consumed in the attempt,
and as a result it could not proceed; the dielectric was then opaque
(ebonite, sulphur).


In the case of conductors such as metals, the electrons were assumed to
be very loosely held to their atoms so that the slightest difference
of potential would tear them away and cause them to rush in the same
direction, thereby producing an electric current. It was precisely
because electrons in conductors were not tied down to fixed positions
by elastic forces that they were incapable of vibrating; and so
conductors were necessarily opaque to electromagnetic vibrations or to
light. Conversely, it was because the electrons were all tied down to
fixed positions in dielectrics, that they could not rush along in one
direction. As a result dielectrics were opaque to currents, and hence
were non-conductors. According to these views of Lorentz, an electric
current passing through matter was nothing but a rush of electrons.
If this were the case, we should expect the motion of a charged body
to generate the magnetic field of a current. Rowland had established
the existence of this effect many years previously, so that Lorentz’s
theory conformed to facts in this respect. This same effect is
illustrated in a more vivid way by the magnetic field which surrounds
cathode rays. These are constituted by streams of electrons travelling
with enormous velocities through a partial vacuum; and for this reason
the cathode rays have much in common with a current passing through a
metal wire.


In perfectly empty space no electrons were assumed to be present; and
the propagation of electromagnetic disturbances through space was
credited entirely to the oscillations of the field which stood out

as a manifestation of energy differing radically from the substantial
electrons.


In contradistinction to Hertz, Lorentz assumed that the ether was never
disturbed by the motion of matter; and just as in Maxwell’s theory, a
luminous source in motion through the ether would never communicate its
velocity to the light waves it emitted. With the constitution of matter
postulated in this way, Lorentz set out to extend Maxwell’s theory of
electromagnetics in the free ether to cases where matter was present,
either at rest or in motion. As already mentioned, he succeeded in
giving a theory of dispersion, one of the phenomena which Maxwell had
been unable to explain. Furthermore, such highly complicated phenomena
as abnormal dispersion, absorption, metallic reflection, selective
reflection, body colour and many others were accounted for by the
theory with great precision.


The apparent partial drag of the ether verified in Fizeau’s experiment
and also in Wilson’s (Fresnel’s convection coefficient) was proved to
be a necessary consequence of the theory. It had nothing to do with a
partial dragging of the ether, since the ether was in no wise disturbed
by the motion of the matter; the apparent drag was accounted for solely
in terms of the electronic constitution of the moving matter. In this
way Fresnel’s convection coefficient received the rational explanation
which it had thus far lacked. The most refined experiments confirmed
Lorentz’s theory in a number of minute details; and when the electron
was finally isolated and studied, all doubts appeared to be removed, at
least as to the general correctness of the doctrine.


Theories, however, are especially convincing, not so much when they
account for what has been observed but has not been explained, as when
they allow us to foretell phenomena which no one has anticipated.
Triumphs of this sort were soon forthcoming in the case of Lorentz’s
theory. For instance, the theory required that light waves be produced
by electrons vibrating in the interior of the atom. Inasmuch as the
presence of a magnetic or an electric field affects the motion of
electrified bodies, the vibrations of the electrons in the luminous
atom should be modified by the presence of a strong magnetic field.
Calculation then showed Lorentz that a magnetic field would cause an
atom normally emitting a monochromatic light to emit two or three
separate lights, according to the relative inclination of the magnetic
field to the line of sight of the observer. This totally unexpected
effect was soon verified by Zeeman, one of Lorentz’s colleagues, and is
now known as the Zeeman effect. It has since been observed in the light
emitted by sunspots, proving that very intense magnetic fields must
there be present.


It is quite unnecessary to dwell on a number of further verifications
of Lorentz’s theory. All that we have wished to show is that the
empirical discoveries that lend weight to Lorentz’s electronic theory
are so numerous that it can certainly not be cast aside lightly.
Although no achievement in theoretical physics can ever claim to
be permanent, yet in view of the wonderful accuracy of Lorentz’s
previsions it would require some reason of a truly imperative nature

for us to feel justified in tampering with it in any essential detail.


Lorentz’s electronic theory is also perfectly consistent with the
negative experiments we have heretofore mentioned, since it explains
the existence of the Fresnel convection coefficient; and we have seen
that this coefficient in turn accounts for the negative results of
experiments conducted to the first order of approximation in dielectric
media moving through the ether. But Lorentz’s theory as it now stands
suggests that experiments conducted to a higher order of precision, to
the second order, for example, would cease to yield negative results;
so that with experiments of this sort our motion through the ether
would be detectible.[43]


Now, the Michelson and Morley experiment is precisely of this type.
It is a second-order experiment. It is assumed that the reader is
sufficiently familiar with it to render its detailed description
unnecessary. Stated briefly, the experiment proves that if waves of
light leave the centre of a sphere simultaneously, they will return in
perfect unison to the centre of the sphere after having been reflected
against the sphere’s inner surface, no matter in what direction through
the ether, or with what constant velocity, the sphere attached to the
earth may be moving. An explanation was suggested by both FitzGerald
and Lorentz, and was to the effect that the sphere had contracted in a
definite degree in the direction of its motion through the ether. The
sphere accordingly became an ellipsoid, and Michelson’s negative result
was explained.


More generally, any body, a yardstick, for example, when lying in the
direction of the earth’s motion through the ether, would be contracted
and become shorter than when placed perpendicularly to the ether
hurricane. However, we should never have any means of detecting this
contraction, for all things, the human body included, would participate
with it, whence observationally, at least, nothing would be changed.


This Lorentz-FitzGerald contraction hypothesis was a hypothesis
formulated ad hoc for the sole purpose of explaining the null
result of Michelson’s experiment; and like all such hypotheses, it
could be accepted only provided it was justified by a wide variety of
experiments. At the time this hypothesis was suggested, scientists
were busying themselves, with the study of the electron when in
motion through the ether. Abraham assumed that an electron moving at
high speed through the ether would remain spherical and rigid; and

he worked out mathematically the path a rigid electron would pursue
when acted upon by electric and magnetic forces. Lorentz, holding to
his view of the FitzGerald contraction, attacked the same problem,
assuming the electron to contract more and more as its speed through
the ether increased. Experimenters were called upon to decide between
the hypotheses of the rigid and the contractile electron.
Accordingly, highly refined experiments were conducted on the electrons
emitted by radium ( rays). Kaufmann, by photographing the
paths followed by the electrons, came to the conclusion that Abraham’s
rigid electron corresponded to reality. But, still more precise
experiments conducted by Bucherer reversed the verdict, and little
doubt remained that the electron suffered the FitzGerald contraction in
the precise degree demanded by Lorentz.


Inasmuch as matter was assumed to be electronically constituted, these
experiments of Bucherer lent weight to the FitzGerald contraction of
matter, hence to the Lorentz-FitzGerald explanation of Michelson’s
null result. This contraction being seemingly established, attempts
were made by experimenters to detect it in bodies which were attached
to the earth. Could this result be achieved, we should have a means
of ascertaining the earth’s velocity through the ether; and it was
confidently expected that this time success would attend us.


Now, as we have mentioned, if in our frame of reference, on the earth’s
surface, for instance, all things, including our measuring rods and
our own bodies, contracted in exactly the same way owing to the motion
of our planet through the ether, it would, of course, be idle for us
to expect this contraction to be observable by direct measurement.
But although not observable in a direct way, it was argued that
this contraction of a body should modify its optical and electrical
properties so that a study of the variations in these properties
when the body was placed successively in different directions should
yield us the earth’s motion through the ether. In particular the
contraction of a solid transparent body, owing to its motion through
the ether, should give rise to a phenomenon of double refraction, much
as would follow from an ordinary physical compression of the body.
The experiment of Rayleigh and of Brace was based on this idea, but
the result was a complete disappointment. The FitzGerald contraction
gave rise to no such effect, and a negative result was registered.
The experiment of Trouton and Rankine aimed to detect a variation in
the electrical conductivity of a strip of metal as a result of the
FitzGerald contraction. Once more a negative result was the outcome.
These experiments having failed, still another was suggested and
carried out by Trouton and Noble. The essence of this experiment
was based on the well-known phenomenon verified by Rowland, that an
electrified body in motion produces all the effects of an electric
current. If, therefore, two electrified bodies were placed side by
side, the motion of the earth through the ether should produce two
parallel electric currents; and since parallel electric currents
attract one another, a very sensitive torsion balance should be able
to detect this attraction. Again, the result of this experiment

was negative; the velocity of the earth through the ether evaded us
completely.


Now, it should be noticed that the last two experiments pertain purely
to electricity and electrodynamics; there is nothing of an optical
nature about them. Hence, it would appear that all electromagnetic
phenomena behave in exactly the same way, regardless of the velocity of
the ether hurricane. In other words, they, too, yield negative results.
But there is yet another aspect to these experiments.


If we regard the FitzGerald contraction as physically real—and we
must do so in order to explain Michelson’s negative result—we must
recognise that it is certainly compensated in a miraculous way; since
no experiments, whether optical or electrical, appear to be capable of
revealing it. Furthermore, in the last experiment, that of Trouton and
Noble, we are not dealing primarily with the FitzGerald contraction;
we are here in the presence of an experiment of electrodynamics, and
we are endeavouring to detect a purely mechanical force arising as a
result of the motion of our electrified bodies through the ether. The
laws of electrodynamics require that such a force be generated, and
yet no force can be observed; so we must assume that the mysterious
compensations that conceal our motion through the ether are of so
perfectly general a nature that they affect mechanics as well as
electromagnetics and optics.


True, none of the experiments we had been able to execute exceeded the
second order in precision; and there was nothing in Lorentz’s theory,
even when the FitzGerald contraction was taken into consideration,
to suggest that all experiments, whatever their nature and however
precise they might be, would fail to detect our velocity through the
ether. A very simple hypothetical experiment will make this point
clear. Suppose, for instance, that the earth were rushing through
the ether with a speed approximating that of light; and suppose that
we suddenly stepped in front of a mirror. All that the FitzGerald
contraction hypothesis would ensure would be that the time required
by the light rays to leave our body and be reflected back to our eyes
should be independent of the orientation of the mirror with respect to
the earth’s motion. But the actual duration which the light rays would
require, hence the time it would take for our image to appear to us,
would depend essentially on the earth’s speed through the ether; so
that theoretically, at least, a measure of duration should reveal this
mysterious speed.


However, in view of the fact that the highly precise experiments
that had been performed were incapable of detecting this velocity
through the ether, it appeared legitimate to extrapolate, to assume
that something deeper was at stake, and that in all probability
this velocity would remain undetected, however far we might extend
the precision of our electrodynamic or optical experiments, and
however much we might vary their nature. Lorentz accepted what
appeared to him as the inevitable, and asserted that the time had
come to recognise that nature seemed to have entered into some giant
conspiracy to defraud us of a knowledge of our velocity through the
ether. Accordingly, he laid down his celebrated principle of

correlation, according to which adjustments were so regulated in
nature that the velocity of our planet through the ether could never be
detected, however precise our experiments.


Lorentz applied his mathematical talents to the discovery of the
necessary adjustments which would have to exist in nature for this
correlation to be satisfied completely so far as electrodynamics and
optics were concerned. In order to understand the significance of his
investigations, we must recall what we have said of the laws of nature
and of the space and time transformations.


We remember that Newtonian relativity expressed the fact that
mechanical phenomena, hence the laws of mechanics regulating these
mechanical phenomena, remained unchanged when we passed from one
Galilean frame to another. The significance of this statement is as
follows:


To begin with, when we wish to fix the position of a body in our
frame, it is also necessary to specify the instant of time at which
the body occupies this position. We thus have four co-ordinates to
take into consideration: three for space, , , ; and
one for time, . If, now, we change our frame of reference,
taking our stand in some other Galilean system, which is in motion
with respect to the first, these co-ordinates will change in value or
will be transformed. For instance, if a body remains at rest at the
meeting point of the three axes of our first frame, its co-ordinates
will always be , ,  in this frame for all
values of the time . But computed with respect to our second
frame, the new co-ordinates represented by , ,  will
vary with time, since with respect to this second frame the body is
moving—i.e., is adopting successive positions in time.


The classical Galilean transformations had for their object to tell
us exactly how these co-ordinates would vary when we passed from one
Galilean frame to another. As it was always assumed by classical
science that time was absolute, the same for all systems, the only
co-ordinates susceptible of variation as we changed frames were the
space co-ordinates , , . As for , it had the same
value in all frames, and this was expressed by writing .
Now the laws or equations which govern phenomena contain in their
expression, among other quantities, these co-ordinates, , ,
, . Hence, in the general case it is only to be expected that
the laws will change in form when we refer them first to one Galilean
frame, then to another; or again, when we replace , , ,
 by , , , . When we say that the laws
suffer no change in form or are transformed into themselves we mean
that this substitution of the new co-ordinates for the old does not
modify the form of the equations or laws.


We can now understand what mathematical condition will have to be
satisfied for Lorentz’s principle of correlation to hold. The principle
asserts that all things are so adjusted in nature that absolute
velocity through the ether must ever elude us. In other words, all
electrodynamic experiments will yield negative results. But this
obviously makes it necessary that the laws of electrodynamics which
govern all electrodynamic phenomena, hence all electrodynamic and all
optical experiments, should remain unchanged in form when we pass from

one Galilean system to another. In mathematical language, the laws of
electrodynamics will remain invariant when we submit them to the space
and time transformations.


Now we have said that when submitted to the classical space and time
transformations, the invariance of the equations of electrodynamics
does, not hold. It appeared then that, contrary to the negative results
of experiment and contrary to Lorentz’s principle of correlation,
velocity through the ether should be detectible by electromagnetic
experiments. Science was thus placed in an exceedingly difficult
position; the equations of electrodynamics had been so strongly
confirmed by extremely accurate experiment that we could scarcely
question their accuracy. There remained, but one alternative, namely,
to suspect the accuracy of the classical transformations.


This was indeed the course followed by Lorentz. He succeeded in
establishing the transformations which would be in harmony with the
invariance of the electrodynamic equations, and he found these to
differ perceptibly from the classical ones; although reducing to
the latter in the case of low velocities. The new transformations
constitute the celebrated Lorentz transformations.[44]





Translated into ordinary language, these transformations expressed the
existence of two separate phenomena: first, the FitzGerald contraction
of bodies moving through the ether, a phenomenon with which we are
already acquainted; and, secondly, a new phenomenon consisting in the
slowing down (with increase of velocity through the ether) of the rate
of time-flow as applying to electromagnetic processes. Thus, contrary
to the classical transformations, where time was absolute (),
we see that in the Lorentz transformations this absoluteness of time
begins to be questioned. For psychological reasons, however, imbued
as he was with the spirit of classical science, Lorentz was unable to
realise the importance of his discovery; and he never, succeeded in
ridding himself of his belief in the absoluteness of time. For him, as
also for Larmor, who contributed to these discoveries, this new species
of variable duration, depending as it did on the motion through the
ether of the Galilean frame, was not real time. It was a species of
“local time”—a distortion of real time—and it was not assumed that
this local time corresponded in any way to the time which the observer
in the moving frame would live and sense.


And so Lorentz assumed that these new transformations applied only to
purely electromagnetic quantities, and no reference was made to their
being applicable to mechanical phenomena as well. Though, as a result
of these transformations, the velocity of light proved to have always
the same invariant value through all Galilean frames when measured
by the observer in the frame, no suspicion was cast on the classical
formula for the composition of the velocities of material bodies; and
this in spite of the fact that these two circumstances were mutually
incompatible.


It appeared then as if Lorentz still considered the classical
transformation-formulæ to be the real ones, the new transformations
being merely of limited application and referring solely to the
electromagnetic quantities. When, therefore, in such experiments as
that of Trouton and Noble, mechanical and purely electromagnetic
effects were indissolubly connected, a large measure of obscurity was
involved. Lorentz, however, succeeded in extricating himself from
his difficulties and in accounting for all the negative experiments;
but he was compelled to appeal to additional hypotheses, such as a
modification in those elastic forces which cause the electrons to
vibrate in transparent bodies (Rayleigh and Brace experiments). In
a similar way it was possible to explain the negative result of the
Trouton and Noble experiment. Nevertheless, we can understand the
numerous difficulties into which Lorentz’s theory was leading us.
We knew very little about the constitution of matter, and here, in
Lorentz’s theory, we were compelled to account for negative experiments
by taking this unknown constitution of matter into consideration.


Taking Lorentz’s theory as it stands, one cannot help but recognise
that this accumulation of hypotheses postulated ad hoc makes
it painfully artificial. According to the theory, the ether must be
regarded as stagnant and the earth as moving through it with some
definite velocity. This velocity must, however, remain eternally
unknowable to us. Its elusiveness arises from the slowing down of
time and the FitzGerald contraction, in the case of the simplest
electromagnetic experiments; in the case of experiments dealing with
dielectrics and conductors, we have to appeal to still more complicated
adjustments pertaining to the constitution of matter. But although
forever indiscernible, our velocity through the ether was a reality; it
was there, and had it not been for all these compensating effects, it
would have been observed. All the forces of the cosmos appeared to have
conspired to deprive us of a knowledge we were so anxious to obtain,
namely, the velocity of our planet through the ether.


The existence of the FitzGerald contraction, holding in exactly
the same degree for all bodies, was an instance of this marvellous
conspiracy of nature. Even if we admitted that all matter were
electronically constituted, and that the constituent electrons
became flattened as a result of their motion through the ether, it
was still impossible to conceive of an identical flattening for all
bodies, whether rigid or soft, unless we assumed that an appropriate
adjustment had also taken place in the other factors entering into
the constitution of matter (elastic forces, etc.). The whole theory

was unsatisfactory in the extreme. If Nature was blind, by what
marvellous coincidence had all things been so adjusted as to conceal
a velocity through the ether? And if Nature was wise, she had surely
other subjects to attend to, more worthy of her consideration, and
would scarcely be interested in hampering our feeble attempts to
philosophise. In Lorentz’s theory, Nature, when we read into her system
all these extraordinary adjustments ad hoc, is made to appear
mischievous; it was exceedingly difficult to reconcile one’s self to
finding such human traits in the universal plan.


Possibly more space than was needed has been devoted to a discussion of
these difficulties of pre-Einsteinian physics, but the purpose of these
lengthy explanations has been to show that science was confronted with
an exceedingly difficult situation. Before proceeding to a study of
Einstein’s solution, we must mention a tentative hypothesis put forward
by the Swiss physicist Ritz.


Ritz remarked that Michelson’s experiment could be explained by
assuming that, contrary to the requirements of the electromagnetic
theory of light, waves of light were shot out from the luminous source
just as bullets are shot out from a gun. With this species of ballistic
theory, the speed of the light ray with respect to the observer would
be given by the constant speed  of the ray with respect to its
source, compounded with the relative speed of the observer and source.
Now, there is not the slightest doubt that Ritz’s hypothesis affords an
explanation of Michelson’s negative result, but, on the other hand, it
leads us into serious difficulties when we wish to interpret a number
of other experiments, Bucherer’s, for example. This can be understood
when we realize that the Ritz hypothesis compels us to deny the
existence of the FitzGerald contraction, since were the contraction to
subsist in addition to Ritz’s assumption, Michelson’s experiment would
no longer yield a negative result. But, as we have said, the FitzGerald
contraction permits a very simple explanation of the moving electron’s
increase in mass in Bucherer’s experiment. This difficulty would not
be insuperable, but still it would constitute an argument adverse to
the acceptance of Ritz’s idea. Other experiments which it would be
extremely difficult to account for are those connected with the Fresnel
convection coefficient, e.g., Fizeau’s experiment.


Furthermore, with Ritz’s conception of the velocity of a light wave
through the ether being compounded with the velocity of the source,
the frequency of light issuing from a source, moving towards us
through the ether, would be increased, whereas the wave length would
remain unchanged. Now, it so happens that the angle of refraction
of a monochromatic light ray passing through a prism depends on
the frequency of the incident light, whereas the dispersion caused
by a grating depends on the wave length. It should, therefore,
be possible to determine whether frequency and wave length truly
behaved like independent variables as demanded by Ritz’s hypothesis.
Experiments conducted by Stark in 1910 on canal rays disproved Ritz’s
anticipations. Subsequently other experiments led to the same results.





Besides these objections to Ritz’s views, it must be realised that
Michelson’s experiment was only one of many. Here it cannot be
emphasised too strongly that the gravity of the situation arose from
the fact that as a result of a large number of different experiments
(many of which we have not mentioned), the entire structure of
classical electrodynamics seemed to be crumbling on every side.
Ritz’s hypothesis consists in shoving one individual brick back into
place. Lorentz, thanks to his mathematical knowledge, realised that
something much deeper was at the root of all the trouble and that more
radical means would have to be adopted. Accordingly, he proceeded to
tackle the very foundations of science, namely, the space and time
transformations which had endured for centuries. But Lorentz only
proceeded in a half-hearted way and did not have the courage to push
his discoveries to their logical conclusion, contenting himself with
patching up rather than reconstructing. Einstein, as we shall see, took
the bull by the horns, abandoned the classical structure, and proceeded
to build up an entirely new edifice, superbly coherent and free from
all artificial support and scaffoldings. Thus it was that even before
Ritz’s hypothesis was disproved by numerous direct investigations
(experiments of Majorana and of Sagnac, and astronomical observations
on double stars by de Sitter), scientists had ceased to give it serious
consideration.
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THE SPECIAL THEORY OF RELATIVITY











CHAPTER XIII

EINSTEIN’S SPECIAL THEORY OF RELATIVITY





HOWEVER unsatisfactory, for the numerous reasons already discussed,
Lorentz’s theory might appear, it constituted for some years the only
possible explanation of the negative results of all electromagnetic
experiments performed on the earth’s surface. But in 1905 Einstein
published a paper on the “Electrodynamics of Moving Bodies,” a document
destined to prove one of the most epochal events in the history of
human thought. In this paper, all the cobwebs of electrodynamics were
swept aside.


The essence of Einstein’s position was that the difficulties which had
beset the study of electrodynamics (we have mentioned only a small
number of them) had arisen from our retention of the stagnant ether as
a fundamental frame of reference; but that in view of the anomalies
this attitude had brought about, the time had come to submit it to
a critical analysis. After all, we knew little or nothing about the
ether; why then start by stating it to be an absolute medium floating
in space and hampering thereby all future progress? Why state that
velocity through the ether must have a physical significance, then
under the evidence of the negative experiments proceed to postulate
complicated hypotheses in order to explain away the absoluteness we had
ourselves introduced? Would it not be simpler to adopt a more cautious
attitude, deriving knowledge from experiment rather than trying to
reconcile experiment with a series of a priori beliefs which,
for all we knew, might be totally erroneous?


If with Einstein we follow this line of argument, we must assume that
the large number of negative experiments prove conclusively that
velocity through the stagnant ether or through space is physically
meaningless, not only from a purely mechanical point of view, as was
the belief of classical science, but from every point of view.
If we accept this relativity of the ether and space for Galilean
motion as a fundamental fact of nature, holding for all manner of
experiments, our past difficulties are seen to be of our own making.
We had endeavoured to discover that which was meaningless, and then
blamed nature for tricking us and hiding it from us. Instead of saying
that velocity through the ether appeared meaningless because it was
meaningless, we had complicated matters by saying that velocity
appeared meaningless but of course was not meaningless.


Quite apart from the negative experiments, Einstein lays special stress
on another type of phenomenon. Thus, whether we displace a magnet
before a closed circuit or the closed circuit before the magnet, the

current induced in the wire is exactly the same in either case, so far
as experiment can detect. That which appears relevant is the relative
motion between magnet and circuit; the respective absolute velocities
of magnet and circuit through the ether, which are of course different
in both cases seem to be totally irrelevant.


In view of the importance of the question, let us mention another
example. We remember that when discussing electrical phenomena in the
first pages of the preceding chapter, we mentioned that an electrified
body was surrounded by an electric field of force, whereas a current
was surrounded by both an electric and a magnetic field. Subsequent
experiments performed by Rowland confirmed the view that a charged body
in motion generated the same electric and magnetic fields as a current
flowing along a wire, so that we had to agree that a charged body in
motion developed a magnetic field by the sole virtue of its motion.


Now here again we are in a quandary to understand what is to be meant
by motion. Classical science assumed that motion in this case meant
motion with respect to the stagnant ether, and that an electric current
was constituted by the rushing of electrons through the ether. Numerous
difficulties beset this view. Owing to the earth’s motion through the
ether, every charged body on the earth’s surface would constitute
an electric current; so that around every electrically charged body
a magnetic field should be present. Yet experiment failed to detect
this magnetic field. Was it due to the crudeness of our experiments?
This solution was scarcely possible; for if we displaced our charged
body before a magnetised needle (Rowland’s experiment), the needle was
deflected, proving that experiments were perfectly able to detect the
magnetic field when it was truly produced. It appeared as though the
type of velocity that constituted a current was not velocity through
the ether at all, but velocity relative to the recording instrument
or, more generally, to the observer. Once again, the only type of
velocity which appeared to have any significance in nature was relative
velocity, and never velocity through the stagnant ether or absolute
space.


Hence, Einstein postulated his special principle of relativity,
according to which Galilean motion through the ether or space is
meaningless. This principle is, as we see, merely an extension of the
Newtonian mechanical principle to the case of the ether, or in other
words to electromagnetic and optical experiments.


What is called the special theory of relativity concerns the
rational consequences that must follow from the special principle.
These consequences may be anticipated as follows: If Galilean motion
through the ether is meaningless, the laws of electrodynamics must
remain invariant in form when we change our Galilean system of
reference. But this implies that the space and time transformations
which the co-ordinates of all points undergo, when we change systems,
must be given by the Lorentz transformations.


In Einstein’s theory, however, the significance of the transformations
is entirely different. It will be remembered that in ordinary
language these transformations implied the FitzGerald contraction

and the slowing down of time. In Lorentz’s theory these modifications
arose as a result of a real velocity through the ether; and though
it was impossible for the observer in the moving frame to detect
their presence, yet in spite of all they were physically real. In
Einstein’s theory, on the other hand, velocity through the ether
being meaningless, the modifications arise only as a result of the
relative motion of one frame with respect to the other, and are thus
due to conditions of observation and not to any intrinsic change.
For instance, if in any two Galilean frames originally at relative
rest, two identical clocks and two identical cubes are placed, and if
then the two frames are set in relative motion, either observer would
discover as a result of his measurements that the other man’s clock had
slowed down and that his cube had become flattened in the direction
of the relative motion. Nothing would have happened to the cubes and
clocks; only the conditions of observation would have been changed.


Expressed mathematically, this means that the variable  which
enters into the Lorentz transformations now stands for the relative
velocity of one frame with respect to the other, and no longer for
velocity through the ether. In this measure the transformations
of Einstein’s theory, though identical in appearance with those
of Lorentz’s, are far different in meaning. To avoid confusion,
the appellation Einstein-Lorentz or Lorentz-Einstein
transformations is accordingly often made use of.[45]


There is still a further difference, a most important one,
distinguishing the implications of the transformations in the two
theories. In Lorentz’s theory there was a privileged observer situated
in the frame at rest in the ether. In Einstein’s theory there is no
such privileged observer; for since a privileged state of rest in the
ether is meaningless, all observers in Galilean frames are on the same
footing. Hence, Lorentz’s distinction between the true time of the
frame at rest and the distorted, local or electromagnetic times of the
frames in motion through the ether loses its significance. Henceforth,
all these so-called local times given by the Lorentz transformations
constitute the true times lived, sensed and experienced by the
respective observers in their respective Galilean frames.


There being no longer any reason to subordinate one frame to another,
the descriptions of all phenomena in terms of space and time
are on the same footing in all Galilean frames; and there is
no longer any reason to follow Lorentz in limiting the validity of
the transformations to the sole case of electromagnetic phenomena.
Henceforth, these transformations appear of universal application,
holding for mechanics, for the composition of velocities, and indeed

for the entire universe of physical phenomena. This belief is not
dependent on the fact that, matter being constituted electronically,
all mechanical experiments must be regarded as electrodynamic
experiments viewed microscopically. Rather is it due to the fact that
these changes in space and time are absolutely general. They arise
from the relative motion of the observer and not from the peculiar
microscopic constitution of the phenomena observed.


The method of presentation of Einstein’s theory we have followed up
to this stage is not the one usually adhered to, but it has appeared
preferable to proceed as we have done in order to bring into prominence
certain important features which are obscured in the customary
presentation (these features will be better understood later). We will
now fall in with the usual procedure.


As Maxwell proved many years ago, a necessary consequence of the
laws of electromagnetics was that light waves in vacuo in the
stagnant ether should travel with a velocity of 186,000 miles per
second. This was the celebrated law of light propagation of classical
science. Now we have seen that the laws of electromagnetics (and
with them their immediate consequence, the law of light propagation)
held only for privileged observers, those situated in any frame
at rest in the stagnant ether. As referred to all other Galilean
observers situated in frames moving through the ether, an application
of the classical transformations showed that the equations of
electromagnetics, and with them the velocity of light propagation,
would be modified. But since the essence, of the relativity of Galilean
motion is to deprive any particular Galilean observer of his privileged
position, the laws of electromagnetics must now maintain the same
form for all Galilean observers. Hence the law of light propagation,
which is a mathematical consequence of these electromagnetic laws,
must likewise hold in exactly the same way for all Galilean observers.
Whence the new result: “Light waves must travel with the same
invariant speed of 186,000 miles through any Galilean frame when this
speed is measured by the observer located in the frame.” It is
this statement which Einstein has called the principle or the
postulate of the invariant velocity of light.


If we combine this principle with the relativity of the ether for
Galilean motion and endeavour to construct the transformations
which will be compatible with these two principles, we are again
led to the Lorentz-Einstein transformations.[46] This should not
surprise us since, as we have seen, the principle of the invariant
velocity of light is but a direct consequence of the invariance of
the electrodynamical equations; so that the transformations ensuring
invariance will be the same in either case.





In short, we see that without appealing directly to the equations of
electrodynamics, we can deduce the Lorentz-Einstein transformations
merely by taking one of their consequences into consideration, namely,
the invariant velocity of light, and combining it with the relativity
of Galilean motion. From a mathematical point of view, this procedure
is the simpler. Hence, Einstein posits as his fundamental assumptions:


1. The relativity of space or of the ether for Galilean motion, or,
more simply, the relativity of Galilean motion without particular
reference to the ether or to space.


2. The postulate or principle of the invariant velocity of light.


This procedure followed by Einstein offers a number of advantages. In
the first place, as we have said, the mathematical discovery of the
Lorentz-Einstein transformations is considerably simplified. Secondly,
as the classical law of light propagation, though a consequence of
the laws of electromagnetics, insusceptible of being tested by direct
experiment without any reference to the laws of electromagnetics, there
is no necessity for dragging in these highly complex laws. In fact,
even had the laws of electromagnetics been unknown, the relativity
of velocity and the classical law of light propagation are all that
would have been required to construct the theory. Hence, from the
standpoint of mathematical elegance, the procedure is certainly one
of extreme simplicity. Furthermore, inasmuch as in Einstein’s theory
the Lorentz-Einstein transformations are of general application and do
not concern only electromagnetic phenomena, it is preferable to avoid
conferring on them an exclusively electromagnetic aspect. This aim is
achieved by deducing them from a general law of propagation, such as
that of light.


On the other hand, this method of presentation, by appealing to the
propagation of light, is likely to confuse the beginner, who is apt
to assume that Einstein postulated the invariant velocity of light
as a hypothesis ad hoc for the sole purpose of accounting for
Michelson’s negative experiment. In this way the entire theory is
supposed to hinge on Michelson’s experiment, and the critic assumes
that could Michelson’s experiment be explained in some other way,
Einstein’s theory would be obviated. This assumption appears all the
more natural to the critic as Michelson’s experiment is, nine times out
of ten, the only negative experiment he is acquainted with. The result
is that he assumes Einstein’s theory to be nothing but a wild guess
grafted on one of those highly delicate experiments where the chances
of error are always great. As a matter of fact, by reasoning in this
way, the critic loses sight of the entire raison d’être of the
theory. It is safe to say that even had Michelson’s experiment never
been performed, Einstein’s theory would have been forthcoming just the
same (though, of course, had Michelson’s experiment given a positive
result, enabling us to measure our velocity through the ether, the
theory of relativity would have been untenable).


This explains why, in presenting the theory, we started by showing how
it arose as a necessary consequence of the irrelevance of absolute
velocity in all electromagnetic experiments, hence sprang from the
invariance of the equations of electrodynamics, which expresses

mathematically the aggregate of all the negative results. If the reader
has grasped the significance of these Lorentz-Einstein transformations,
we may proceed to examine certain of their particular consequences,
and to show how, quite apart from the negative experiments, the
theory of relativity has cleared up a number of obscure points in our
understanding of electromagnetics.


For instance, we mentioned that a charged body at rest was surrounded
by an electric field of force, whereas the same body in motion (or an
electric current) was surrounded both by an electric and a magnetic
field. Ampère had given a formula describing the distribution and
intensity of the electromagnetic field surrounding an electric current
of any given intensity. But this formula was purely empirical, and it
was felt that we should have been able to anticipate the existence
of this electromagnetic field and derive an exact expression of its
disposition and magnitude by purely rational methods. These hopes were
disappointed; for there appeared to be no rational connection between
the field developed by an electrified body when at rest and its field
when set in motion.


Contrast our ignorance on this score with our ability to understand the
nature of other problems attendant on relative motion. For example, a
monochromatic source of light at rest appears yellow, whereas, when
moving towards us with a sufficiently high speed, it appears greenish.
But there is nothing mysterious about this change in colour; we could
have foreseen it, knowing what we do of the wave nature of light. The
situation was much more obscure in the case of electromagnetics.


Einstein’s theory solves the entire problem. Consider the simple case
of a charge in uniform motion. We have said that owing to its motion
it develops a magnetic field (just like a current), in addition to its
electric field. But in Einstein’s theory velocity through the ether is
meaningless; hence there is no such thing as a charge in uniform motion
in any absolute sense. If we were to rush after the electrified body
and accompany it in its motion, it would cease, according to Einstein,
to be a moving charge and would become a charge at rest in our frame;
but then its erstwhile magnetic field would necessarily have vanished,
the electric field alone remaining. We must assume, therefore, that the
appearance of the magnetic field arises only because we have changed
our Galilean frame of reference by passing from one fixed with respect
to the charge to one in relative motion.


Now, the Lorentz-Einstein transformations tell us how our space and
time measurements change under these circumstances; and by applying
the transformations to the equations of electrodynamics we are able to
ascertain how an electric field which is purely electric when viewed
from one frame should appear to us when viewed from another Galilean
frame. Proceeding in this way, we do in fact find that the electric
field of the electrified body at rest will appear as an electromagnetic
field when the body is set in relative motion. Likewise, the precise
mathematical formula for the new field is obtained, proving

incidentally that our classical empirical formula was only approximate.
Thus a rational justification for the appearance of a magnetic field
round an electrified charge in motion is finally obtained, and this
field is seen to be a direct consequence of the variations in those
fundamental space and time forms of perception—variations which are
expressed by the Lorentz-Einstein transformations.


In exactly the same way a magnetic pole in motion develops an electric
field around it in addition to its magnetic field when at rest,
and it is this phenomenon that gives rise to the electromagnetic
induction on which we base our generators and dynamos. Here again
the Lorentz-Einstein transformations throw complete light on the
subject.[47]


In a general way the transformations show us that a field which appears
to be exclusively electric or exclusively magnetic in one Galilean
frame will appear to be electromagnetic in another frame, thereby
compelling us to recognise the relativity of electric and magnetic
forces. We shall see in due course that this relativity of force is
general.


Let us consider another type of phenomenon which is also explained by
the transformations. We refer to the Fresnel convection coefficient
illustrated by Fizeau’s experiment. Experiment proves that the ray
of light progressing through the running water is not carried along
bodily by the water; it lags behind a little. Lorentz who, though he
had discovered the transformations, did not recognise their general
validity, sought to explain this phenomenon by postulating a suitable
electronic constitution for the water. But Einstein by merely applying
the transformations, without having to appeal to our highly problematic
knowledge of the precise electronic constitution of matter, found
that they anticipated Fizeau’s result with marvellous precision; for
according to the transformations, velocities do not add up like
numbers, as they did in classical science. It follows that the velocity
of the light with respect to the tube must necessarily be less than the
velocity of the light through the water plus the velocity of the water
in the tube.[48]


Consider again the FitzGerald contraction. Here Lorentz thought it
permissible to apply the transformations; but owing to the slight
difference in their significance in his theory, he concluded that
a body in motion was really contracted owing to its real motion
through the ether. Although the observer carried along with the body
could not detect the contraction, yet it was physically real and
would be observed by the observer at rest in the ether. A similar

interpretation would have to be placed on the slowing down of
phenomena. In Lorentz’s theory the difficulty consisted in accounting
for an identical contraction manifesting itself in exactly the same way
for all bodies, soft or hard. Lorentz again appeals to the electronic
and atomic constitution of matter and has to take into consideration
elastic forces.


With Einstein the explanation is simple. The contraction is due solely
to a modification in our space and time measurements due to relative
motion, and is completely irrelevant to the hardness or softness of
the body, whose atomic or electronic structure need not be taken into
consideration at all. In much the same way an object appears magnified
under the microscope, and this magnification is independent of the
body’s nature.


In short, the modifications are due to variations (as a result of
relative motion) in our space and time measurements and perceptions,
and in every case they are irrelevant to the microscopic constitution
of matter. We see, then, that so far as all these curious modifications
are concerned, Einstein s theory does not require any particular
knowledge of the microscopic constitution and hidden mechanisms that
are assumed to underlie matter. Herein resides one of the principal
advantages of Einstein’s theory over that of Lorentz; for we know very
little about the mysterious nature of electricity and matter, and were
all progress to be arrested until such knowledge was forthcoming, we
might have to wait many a day without result.


One of the chief difficulties attendant on an atomistic theory such
as Lorentz’s was due precisely to this interpretation of observable
effects in terms of invisible ones about which practically nothing
could be known and where hypotheses ad hoc had to be invoked
at each stage. As for the mathematical difficulties, they, of course,
grew in proportion to the complexity of the hidden mechanisms which
we had to postulate. Einstein’s theory is thus a return to universal
principles induced from experiment, and in this respect is analogous
to the physics of the general principles which appeared in the course
of the nineteenth century. There again such comprehensive universal
principles as those of entropy, of least action, of the conservation
of energy, mass and momentum, took the place of the hidden mechanisms
whereby the atomists had endeavoured to account for observed phenomena.


These periodic swings in the scientific viewpoint have always been
necessitated by the continuous advance of knowledge. Both attitudes
are fruitful and have yielded important results. In the present case
Lorentz had progressed about as far as it was possible to go in his
speculations on hidden mechanisms, and a theory such as Einstein’s
was the necessary antidote to the increasing difficulties which were
hampering further developments.


We have now to consider certain important consequences of Einstein’s
theory which affect our traditional concepts of space and time. The
FitzGerald contraction is no longer a real physical contraction, as it

was assumed to be in Lorentz’s theory. It no longer arises as a result
of a perfectly concrete motion of a body through a stagnant ether; the
stagnant ether with respect to which velocity acquired its significance
having been banished by Einstein. The FitzGerald contraction is now
solely due to the relative motion existing between the observer and the
body observed.


If the observer remains attached to the body, there is no contraction;
if the observer is moving with respect to the body, or the body
moving with respect to him, the FitzGerald contraction appears. If
the observer once more changes his velocity relative to the body, the
FitzGerald contraction of the body will likewise change in magnitude.
Nothing has happened to the body and yet its length has altered.
Obviously, physical length is not what we once thought it to be; it can
in no wise be immanent in the body, since a body has no determinate
length until the relative motion of the observer has been specified. A
length is therefore but the expression of a relationship between the
observer and the observed, and the two partners of the relationship
must be specified before the length can have any meaning.


In the same way the colour of an opal has no meaning. It is red from
here, green from there, blue from elsewhere, and yet the opal has not
changed. It is our position with respect to the opal which has changed,
and the colour of the opal is indeterminate until such time as we have
specified our relative position. In other words, length and the colour
of the opal both express relations and not immanent characteristics.


Similar considerations apply to the slowing down of time. Duration,
and time are mere relatives, mere expressions of relationships, and
have no absolute significance per se. This does not mean that
the duration we sense is a myth; for as our consciousness always
accompanies our human body wherever we go, we always experience the
same flow of time. All that is implied is that this rate of time-flow
cannot be credited with any unique significance in nature, and a
comparison of time-flows characteristic of various Galilean frames will
reveal differences in the rate of flow.


We have mentioned elsewhere a further illustration of relativity,
when discussing electric and magnetic forces. We showed how it was
that an electric field, as such, was indeterminate; how according to
the observer it would present itself as a purely electric or as an
electromagnetic field. As all these conditions of observation are
on the same footing, there is no sense in distinguishing between
apparent fields and real fields, or apparent lengths and real lengths,
or apparent durations and real durations. All these concepts, of
themselves, are mere phantoms, to which substance can be given only
when the conditions of observation are specified.


A certain number of lay philosophers have been confused by this
continual reference to the observer in Einstein’s theory, and have
assumed that all things occurred in the observer’s mind, the outside
common objective world of science playing no part.[49] But this

extreme idealistic interpretation cannot be defended.


The word “observer” is a very loose term and does not necessarily
mean a living human being. We might replace the observer’s eyes by a
photographic camera, his computation of time-flow by a clock—in fact,
all his senses and measurements by recording instruments of a suitable
nature, whose readings any man situated in any frame could check later.
The results would still be the same.


Now it might be feared that, with this vanishing of the absoluteness
of such fundamental forms of perception as duration and distance, the
entire objective world of science would sink to a shadow; and without a
common objective world, science would be impossible. However, we need
have no fear of any such catastrophe; for, as will be explained in
later pages, a new common objective world of space-time will take the
place of the classical one of space and time. But even at the present
stage, without appealing to space-time, we can see that objectivity is
not denied us for the following reasons:


When two different Galilean observers measure the same object, or
time the duration of the same phenomenon, their computations will
differ according to the rules specified in the Lorentz-Einstein
transformations. It follows that the observers may infer that they
are discussing the same objects, not when their respective
measurements agree according to the classical standards of absolute
distance and duration, but when they agree with the new standards set
by the Lorentz-Einstein transformations. Thus a definite criterion of
objectivity is still possible, though its form differs from that of
classical science. So in spite of the indefiniteness of the concepts
on which classical science was founded (space, time, force, mass),
Einstein’s theory does not deprive us of the possibility of conceiving
of the existence of a common outside world.


Enough has been said even at this stage to show that Einstein’s theory
cannot be considered a mere mathematical dream. The extraordinary
difficulties with which classical science was confronted owing to
the negative results of the experiments we have mentioned (and to
numerous other problems) have disappeared. With them have vanished the
miraculous compensations which Lorentz was compelled to invoke in order
to explain these negative results. The complete relativity of Galilean
motion explains all our troubles. Nature is no longer mischievous,
but the ether or space is relative for Galilean motion. We had failed
to recognise this relativity which was staring us in the face; in so
doing we ourselves were the creators of our difficulties. Yet rather
than abandon the classical concepts of space and time, physicists in
general refused to follow Einstein. To-day criticisms have subsided
(on the part of the great majority of scientists) as experiment after
experiment has confirmed Einstein’s previsions. The majority of
experiments, however, concerned the consequences of the theory and not

its foundations. The experiments of de Sitter and Majorana have filled
this gap by proving that a ray of light always passes the observer
with the same invariant speed regardless of the relative velocity of
observer and source.


Now one of the most important criticisms that has been directed
against Einstein’s theory is that it deprives us of the possibility
of conceiving of an objective ether. There is not the slightest
doubt that Einstein’s theory compels us to abandon our conception
of the stagnant ether of classical science, with reference to which
motion could be measured. But this is not quite the same thing as
holding that the theory banishes the ether entirely. Nevertheless,
upon first inspection, the fact that whatever our Galilean motion
may be, experiments conducted in our frame will always yield exactly
the same results, would seem to relegate the ether to the realm of
ghosts, making it a useless hypothesis. If this were the case we
could no longer conceive of electromagnetic fields and light rays as
expressing states of the ether, but should have to regard these fields
as constituting independent realities of some new category, differing
from matter but susceptible of existence in space without the support
of a carrier, or without being the mere manifestations of its states.
However, in the general theory which we shall discuss in the second
part of this book we shall find that the ether is reinstated in the
guise of the metrical field of space-time. But as this new ether has
only its name in common with the stagnant Lorentzian ether, there does
not appear to be much advantage in retaining the older appellation.


If, then, we wish to emphasise the great distinction between the
classical view and the relativistic view, we must say: “According to
classical science, the speed of light waves, and of electromagnetic
waves generally, is constant in all directions with respect to the
stagnant ether, hence also with respect to that particular observer
who happens to be at rest in the stagnant ether. According to the
relativistic point of view, the speed of light waves is constant
throughout empty space when measured by any Galilean observer; that
is, by any observer in any non-accelerated frame” (such frames being
recognised by the absence of all centrifugal or inertial pushes and
pulls).


For the present we are in no position to predict what would happen
if the observer, instead of being posted in a Galilean frame, were
situated in a non-Galilean, i.e., accelerated or rotating,
frame. All the statements we have made up to this point concern only
Galilean observers. Such are the restrictions which the special
principle and the special theory of relativity impose upon us. It is
most important to understand this fact, as many of the criticisms
levelled at Einstein’s theory are due to a failure to grasp the point.
As the theory now stands, acceleration and rotation remain absolute and
are therefore excluded from the special principle of relativity, which
refers solely to motions in space that are relative. These are Galilean
motions.


Perhaps a definite illustration will make these points clearer.
Consider, for example, Michelson’s latest experiment (not the
celebrated one), or, again, consider Sagnac’s experiment. The essence

of both these experiments is to show that a ray of light travelling
round the earth in the direction of the earth’s rotation requires a
longer time to return to its starting point than would be the case for
a ray travelling in the opposite direction. Obviously the velocity of
the light waves with reference to the earth is not the same in all
directions, so that we are able to detect the rotation of the earth on
which we stand. The critic then infers that Einstein’s principle of
relativity is upset by experiment. But the critic fails to realise that
the motion that has been detected is a rotation, hence an acceleration,
and that Einstein’s special principle confines itself to denying any
significance to absolute velocities, that is, to motions which are not
accelerated. Had this not been the case, Einstein’s principle would
have been untenable since it is a fact of common knowledge that a large
number of experiments (Foucault’s pendulum, the gyroscope, etc.) are
capable of revealing the earth’s rotation. It is absolute velocity
and not acceleration that experiment has ever obstinately refused
to reveal.


A very similar criticism consists in stating that inasmuch as the speed
of light with reference to the earth’s surface is greater from east to
west than from west to east, the postulate of the invariant velocity
of light is refuted. But once again the same error is involved. The
postulate states that the velocity of light is invariant through any
Galilean frame when measured by the observer in the frame. The
postulate ceases to be true in an accelerated frame, and the rotating
earth does constitute an accelerated frame. True, in the negative
experiments, the earth was treated as a Galilean frame; but it was
always stated that this attitude was only approximately correct, and
that experiments could be devised to detect the earth’s acceleration.
However, the effects due to the earth’s absolute velocity (which was
then assumed to exist) would have been so much more pronounced than
those due to acceleration that as a first approximation we could afford
to neglect these weaker effects of acceleration.


There is still another point on which we must insist, as it has given
rise to a number of criticisms. The Newtonian principle of relativity
stated that the velocity of matter through empty space was meaningless
or relative. Einstein’s special theory of relativity, on the other
hand, compels us to consider the velocity of light as an absolute.
How, then, can Einstein’s special principle be a mere extension to
electrodynamics or to the ether of the Newtonian principle?


To answer this question we must realise that although velocity was
a relative in Newtonian science, yet there did exist one definite
velocity which was assumed to be absolute. This was the infinite
velocity. It was assumed that a velocity that was infinite or
instantaneous for one observer would remain infinite or instantaneous
for all other observers. So far, therefore, as velocity is concerned,
the sole difference between Einstein and Newton is that with Einstein
the absolute or invariant velocity is no longer infinite. Though
very great (186,000 miles a second), it is now finite. It is this

difference between the invariant velocities of Newton and Einstein
which is responsible for all the major differences between classical
and Einsteinian science, as will be explained more fully in a following
chapter. In particular, it is this finiteness of the invariant velocity
which precludes us from attaching any absolute value to shape and
distance.


Viewing the question in another way, we should notice that as a matter
of fact the Newtonian principle of relativity merely states that
velocity of matter with respect to matter alone has physical
significance. Velocity of matter through empty space is physically
meaningless. It is the same in Einstein’s special principle. Einstein’s
theory proves (see next chapter) that molar matter can never move with
the absolute speed of light. We are therefore perfectly justified in
saying that the velocity of matter remains essentially relative, since
it can never attain that critical velocity (i.e. that of light)
which is absolute.








CHAPTER XIV

RELATIVISTIC MECHANICS





WE saw in the preceding chapter that the time and space variables
which entered into the Lorentz-Einstein transformations should be
considered of absolutely general validity. They were assumed to
represent the duration actually sensed and lived by the observer and
the spatial measurements actually determined by his rigid rods in his
Galilean frame. It was no longer a case, as in Lorentz’s theory, of
supposing that these space and time variables applied only in certain
electromagnetic cases and not in others. They were now of absolutely
general application, and in particular should hold for all mechanical
phenomena.


But this realisation brought us face to face with a peculiar
difficulty. Einstein’s fundamental postulate was that Galilean
motion was meaningless, or at least could never be detected by
experiment—whether of a mechanical or electromagnetic nature. Now the
complete relativity of Galilean motion is expressed mathematically
by the invariance of form of the laws of nature for transformations
corresponding to that type of motion. The classical laws of mechanics
satisfied this requirement in classical science, since they remained
invariant when submitted to the classical transformations. But if we
accept Einstein’s views, these laws must remain invariant no longer to
the classical transformations but to the Lorentz-Einstein ones.


The classical laws of mechanics did not fulfil this new condition
of invariance. From this it would appear that the relativity of
Galilean motion which Einstein had succeeded in establishing for
electrodynamic and optical experiments could be maintained only at
the price of abandoning this same relativity for mechanical ones.
What had been gained on one side had been lost on the other. Inasmuch
as the laws of mechanics would certainly have to remain invariant to
the Lorentz-Einstein transformations if absolute velocity were to
remain meaningless, and inasmuch as the classical laws did not satisfy
this condition, there was only one way out of the difficulty. It was
necessary to assume that the classical laws were incorrect.


Accordingly Einstein was compelled so to modify the classical laws
of mechanics as to ensure their invariance to the Lorentz-Einstein
transformations. This modification was then found to entail the
relativity of mass. By this we mean that the mass of a given body
could no longer be regarded as an invariant, independent of the body’s
relative motion. On the contrary, it was now found to increase with
the relative velocity of the body, becoming infinite when the velocity
of light was reached. In the same way the relativity of force was

established, and classical Newtonian mechanics, with its invariance of
mass and force, was proved to be incorrect, and acceptable only as a
first approximation for slow velocities.


It also followed that no material body could ever move with a speed
greater than or even equal to the speed of light, since it would
require a force of infinite magnitude to give it this critical
velocity. A number of paradoxes associated with the theory are due to
the critic’s initial assumption that the observer is moving with the
speed of light. But all these paradoxes may be dismissed at the outset,
since no observer could ever move with such a speed.


When the mathematical expression of the mass of a body in relative
motion was considered, it was found to be decomposable into several
parts. First of all we had the mass of the body as at rest (this was
the mass which classical science assumed to be invariant, i.e.,
independent of the body’s motion). To this was added the vis
viva, or energy of motion of the body with respect to the observer,
as well as a number of other terms depending on the relative velocity.
These last terms were, however, of very minor importance unless the
relative motion of the body was considerable. Thus the mass of a body
in relative motion was increased over its mass at rest by its energy
of motion or vis viva, so that the distinction between mass and
energy became obscured.


Since part of the mass of the body when in motion was due to its
vis viva, it appeared probable that the entire mass of the
body, whether at rest or in motion, was due to its energy of one kind
or another. Now matter even at rest was known to contain energy, as
exhibited by radioactive phenomena and by the thermal effects produced
by chemical combinations. So it was natural to assume that the mass of
the body at rest was due to its contained or bound energy, which would
be released were the body to disintegrate into nothingness. The formula
connecting this energy of constitution of the body with its mass was
obtained from the mathematical expression of the mass, and it was
found that in C.G.S. units the contained energy was equal to the mass
multiplied by the square of the velocity of light. From this formula
it is easy to realise the tremendous liberation of energy and the dire
consequences that would result from the complete disintegration of even
a small parcel of matter.


Another consequence of these discoveries was that any variation in the
internal energy of a body maintained at rest, such as would result from
compressing it, heating it or electrifying it, would be accompanied
by an increase in its mass at rest.[50] This discovery enabled us
to account for a curious discrepancy in the comparative masses of

the helium and of the hydrogen atom, a mystery which had never been
accounted for by classical science.


To illustrate: The nucleus of the hydrogen atom is composed of one
proton; and the nucleus of the helium atom is composed of four protons,
held together by two electrons. The protons alone having a mass of
any importance, it seemed logical to assume that the mass of the
helium atom would be four times that of the hydrogen atom. Accurate
measurements proved, however, that there was a slight deficiency, and
that the mass of the helium atom was less than four times that of the
hydrogen atom. Classical science had recognised that the closer the
electrons and protons were packed together in the nucleus, the smaller
would be the electric energy of the atom, but it appeared impossible
to account for the deficiency in mass. The theory of relativity by
its identification of mass and energy gave an obvious solution to the
problem. The deficiency in mass of the helium atom was to be ascribed
to the loss of energy radiated under the form of heat and light when
the electrons and protons were being packed together. At the same time
it became possible to calculate with precision from the loss of mass
the precise amount of energy that had been liberated. It followed that
in regions of the cosmos where the helium atoms were in process of
formation owing to the grouping together of the protons and electrons,
enormous amounts of heat and light would be radiated continually.
This consequence of the theory enabled astrophysicists to account for
the enormous temperature of the sun, maintained through thousands of
millions of years in spite of incessant radiation in a frigid space.
Helium atoms are in constant process of formation in the sun, and in
this fact resides the source of its apparently inexhaustible supply of
energy.





Through this constant radiation of energy, the sun and stars would be
gradually losing in mass; for light was of course a form of energy. As
such, light should possess mass and momentum and exert a pressure over
bodies on which it impinged. This pressure, indeed, was not unknown,
since it resulted from Maxwell’s equations and had been verified
experimentally by Lebedew and by Nichols and Hull. As a matter of
fact it was to this pressure of light that the apparent repulsion of
comets’ tails away from the sun was supposed to be due. Nevertheless,
though not a new discovery, the fact that Einstein’s theory entailed
momentum for light constituted one of the many indirect confirmations
of the theory.


An objection which has often been raised by non-mathematical students
is the following: They argue that since energy moving with the velocity
of light must possess an infinite mass, we should be crushed under
the tremendous impact of light rays falling on our bodies. In an
elementary book of this sort we cannot go into mathematical details,
but we may say that the argument is fallacious. It is only ponderable
matter constituted by bound energy which would become infinite
in mass when moving with the velocity of light. Light rays represent
another type of energy, known as free or loose energy,
and calculation shows that the momentum produced by this form of energy
moving with the velocity of light is not infinite, but exceedingly
minute.


Of course the theory of relativity is not one of pure mathematics.
Einstein was not solely interested in juggling with equations and
laws to make them fit into his scheme. The final verdict of the
correctness of a theory of mathematical physics must always rest with
the experimenter, and it remained to be seen whether the Einsteinian
equations of mechanics corresponded more accurately to facts than did
the classical ones. We may state that the most precise experiments have
proved the correctness of the Einsteinian laws of mechanics and that
Bucherer’s experiment proving the increase in mass of an electron in
rapid motion is a case in point.[51]





It should be clear by now that very important differences distinguish
the theory of Einstein from that of Lorentz. Lorentz also had deduced
from his theory that the mass of an electron should increase and
grow infinite when its speed neared that of light; but the speed in
question was the speed of the electron through the stagnant ether;
whereas in Einstein’s theory it is merely the speed with respect
to the observer. According to Lorentz, the increase in mass of the
moving electron was due to its deformation or FitzGerald contraction.
The contraction modified the lay of the electromagnetic field round
the electron; and it was from this modification that the increase in
mass observed by Bucherer was assumed to arise. In Einstein’s theory,
however, the increase in mass is absolutely general and need not be
ascribed to the electromagnetic field of the electron in motion. An
ordinary unelectrified lump of matter like a grain of sand would have
increased in mass in exactly the same proportion; and no knowledge
of the microscopic constitution of matter is necessary in order to
predict these effects, which result directly from the space and time
transformations themselves.


Furthermore, the fact that this increase in mass of matter in motion
is now due to relative motion and not to motion through the stagnant
ether, as in Lorentz’s theory, changes the entire outlook considerably.
According to Lorentz, the electron really increased in mass, since its
motion through the ether remained a reality. According to Einstein,
the electron increases in mass only in so far as it is in relative
motion with respect to the observer. Were the observer to be attached
to the flying electron no increase in mass would exist; it would be
the electron left behind which would now appear to have suffered the
increase. Thus mass follows distance, duration and electromagnetic
field in being a relative having no definite magnitude of itself and
being essentially dependent on the conditions of observation.


Owing to the general validity of the Lorentz-Einstein transformations,
it becomes permissible to apply them to all manner of phenomena.
In this way it was found that temperature, pressure and many other
physical magnitudes turned out to be relatives. On the other hand,
entropy, electric charge and the velocity of light in vacuo
were absolutes transcending the observer’s motion. Later on we shall
see that a number of other entities are found to be absolutes, the
most important of which is that abstract mathematical quantity called
the Einsteinian interval, which plays so important a part
in the fabric of the new objective world of science, the world of
four-dimensional space-time.








CHAPTER XV

CONSEQUENCES OF THE NEW SPACE AND TIME
MEASUREMENTS—SIMULTANEITY





IN the preceding chapters we endeavoured to show how Einstein’s
fundamental premises—the relativity of Galilean motion through space
or the ether and the postulate of the invariant velocity of light—had
been posited as a result of induction from ultra-precise experiment.
Once these postulates are accepted, all the strange consequences of
the special theory are obtained deductively by elementary mathematical
reasoning.


In view of the extreme importance of the problem let us recall that
the postulate of the invariant velocity of light assumes that a ray of
light, in vacuo, will pass through any Galilean frame whatever
with the same invariant speed  in all directions, provided
this speed be measured by the observer at rest in the frame, and
not by some other observer in some other frame, whether Galilean or
accelerated.[52] And here we must recall that classical science,
believing in the absoluteness of time, assumed that events which
occurred “now” anywhere throughout space would continue to occur
in the same simultaneous fashion regardless of the motion of the
observer. This belief was equivalent to assuming that a propagation
moving with infinite speed with respect to one observer would also
advance with infinite speed when measured by any other observer. In
other words, an infinite speed was an absolute; it constituted the
invariant speed of classical science. No such physical propagation was
known to science, though it was suspected that gravitation might be
of this type. At any rate, classical science accepted the existence
of this infinite invariant velocity in a conceptual way. This implied
the existence of the Galilean transformations, hence of the ordinary
laws for the addition of velocities. Inasmuch as all measurements with
rigid rods, and with clocks such as vibrating atoms, appeared to bear
out the anticipations of classical science, at least so far as crude
observation could detect, the classical stand appeared to be vindicated
a posteriori even though the hypothesis of absolute time
presented no a priori justification.





Now, in the theory of relativity, Einstein asks us to agree that
a certain finite invariant velocity which turns out to be that of
light in vacuo must be considered invariant for all Galilean
observers.[53] We are thus led, as explained previously, to the
Lorentz-Einstein transformations, an immediate consequence of which is
that molar matter can never move with a velocity greater than or even
equal to that of light. This in itself is sufficient to exclude our
taking into consideration observers moving with any such speeds.


But suppose that for argument’s sake we wish to consider, even though
it be in a purely conceptual way, a velocity greater than light—in
particular, a velocity which would constitute infinite speed for any
definite Galilean observer. How would a velocity of this sort manifest
itself to some other Galilean observer in motion with respect to the
first?—The sole point it will be necessary to stress is that this
erstwhile infinite velocity could never be invariant without coming
into conflict with the invariance of the velocity of 186,000 miles
per second. This becomes obvious when we consider that, according to
classical science, if we added any speed—say, the speed of light
—to the infinite speed, we should obtain the infinite speed;
whereas, in Einstein’s theory, we should obtain the speed of light.
From this it follows that the premises of classical science and of
relativity are incompatible. Inasmuch as it is Einstein’s theory that
we propose to discuss, we shall abandon the classical belief in the
invariance of the infinite velocity.


Henceforth the invariant velocity of the universe is to be , or
186,000 miles per second. As for an infinite velocity, this will now
become a relative, infinite for one observer, finite for another. Now
it is obvious at first sight that if our space and time measurements
were such as classical science believed them to be, it would be
impossible for a ray of light to pass us with the same speed regardless
of whether we were rushing towards it or fleeing away from it. A
simple mathematical calculation shows us, however, that we can make
our results of measurement compatible with the postulate of invariance
provided we recognise that our space and time measurements are slightly
different from what classical science had assumed. This is purely a
mathematical problem and can be solved by mathematical means. It leads
us, of course, to the Lorentz-Einstein transformations; and from these
transformations it is easy to see that rods in relative motion must be
shortened, durations of phenomena extended, and the simultaneity of
spatially separated events disrupted.





Einstein’s premises being consistent (as can be proved mathematically),
no question can arise as to the consistency of Einstein’s conclusions;
premises and conclusions must all stand or fall together. The
major problem, then, is to analyse the legitimacy of the theory
from the standpoint of its ability to portray the real world of
physical phenomena. Some lay critics, such as Bergson, alarmed by
the revolutionary nature of Einstein’s discoveries and animated by
a desire to retain their classical belief in the absolute nature of
simultaneity remaining the same for all observers, have endeavoured to
uphold this intermediary view. They have maintained that from a purely
mathematical standpoint the systems of measurement of relativity might
confer greater simplicity on the purely mathematical treatment of the
equations of electrodynamics; but that in no case was it permissible to
assume that the anticipations of the theory could ever correspond to
what we should actually measure with rigid rods and ordinary clocks. We
may dismiss this view summarily. Were it correct, none of the physical
anticipations of Einstein’s theory would have been verified by physical
experiments.


Furthermore, a theory such as Einstein’s is one of mathematical
physics, not one of pure mathematics. It is not merely necessary
that the deductions of the theory be mathematically consistent with
the premises. They must also lead us to anticipations which will be
verified by experiment. If they failed in this respect, they would
still portray the workings of a possible rational world; but the theory
itself, yielding erroneous physical previsions, could never allow
us to foresee and to foretell, and no scientist would ever dream of
upholding it. In short, we must recognise that if Einstein’s premises
are accepted, we must assume that measurements conducted with natural
rods and natural clocks would yield the previsions of the theory. We
must also remember that by natural clocks we do not mean clocks
arbitrarily adjusted. We mean clocks such as vibrating atoms, or,
more generally, all periodic physical processes evolving in a state of
isolation. Likewise, by natural rods we mean our ordinary material rods
maintained in the same conditions of temperature and pressure.


The type of measuring instruments is thus exactly the same as in
classical science; and all that relativity tells us is that if our
classical measurements had been pursued with greater precision, we
should have realised long ago that the classical anticipations were
belied by experiment. There is no use in pursuing the study of the
theory any farther unless we succeed in understanding its physical
significance. So far as the mathematician is concerned, with the
Lorentz-Einstein transformations issuing as they do from ultra-precise
experiment, their mathematical consequences must be deemed to
correspond to the workings of the real world; and these consequences
indicate clearly that length, duration and simultaneity must be
relatives in a real physical sense. However, in view of the importance
of the new ideas, we may consider the problem in an indirect way and
thereby throw additional light on the concrete significance of these
transformations.


Accordingly we shall have to discuss what the physicist means by an
“event.” An event is exemplified by a something happening in a certain
region of space at a certain moment of time. It matters not what
actually happens. It may be a thought flashing through our minds, a
bird bursting into song, or two billiard balls colliding; what is
essential is a specification of position in space and in time.





When we try to think of an event, we are compelled to credit it with
more or less extension in space, and more or less duration in time.
But in all problems where accuracy of localisation is demanded, we
must conceive of an event as ideally restricted to an instantaneous
point in space; or, if we prefer, to a mathematical point in space at
a mathematical instant in time. We then get what has been called by
Minkowski a Point-Event. This procedure of restricting events
ideally is of course purely a mathematical abstraction and is in every
way similar to the procedure followed by the geometrician when he
speaks of points without dimensions, lines without width, or surfaces
without thickness.


Even in ordinary life we are obliged to follow this same method
of restricting dimensions ideally, in order to render a precise
localisation possible. For instance, when we say we are so many miles
from New York our assertion is extremely vague. What part of New York
are we referring to? Even when we specify a definite building in the
city, it could always be asked: “What part of the building?” We see,
then, that to obtain any degree of precision we must select a definite
point, and our statement that we are fifty miles from New York is
equivalent to regarding New York as reduced to a point. Of course we
know full well that a city is not reduced to a point; but arguments of
this sort are irrelevant to the problem of localisation with which we
are faced.


It is the same for time. An event lasts, it manifests duration; but in
order to obtain precision we must conceive of it as ideally restricted.
We thus obtain an instantaneous event occurring at a definite point of
our space.


We may say, then, that a billiard ball, subsisting motionless at a
point of the space of our frame, constitutes a continuous succession
of point-events all located at the same point of our space (where the
point-event itself would be represented by the instantaneous existence
of the ball considered as reduced in size to a spatial point).
Likewise, a billiard ball moving through the space of our frame would
be represented by a succession of points in space at a succession of
instants in time; hence by a chain of point-events.


It is not absolutely necessary to conceive of an event as something
objective, actually occurring or existing. We may conceive of events
and point-events as empty. Thus, a point of our space a million miles
away in a definite direction at six o’clock constitutes a point-event.
In the same way it is not absolutely necessary to designate a point on
our sheet of paper by a pencil mark; for we can define its position
by numbers. In physics, however, we are more generally interested
in discussing events that are observable; so although in theory a
point-event is merely the localisation of an abstract entity at a point
of space at an instant of time, in practice the majority of events
to which we shall refer will serve to localise observable existents.
For similar reasons we usually tint the colourless liquid in the
thermometer so as to render it observable; though by so doing, nothing
is changed, of course, in the reading of the instrument.





Let us now pass to the problem of determining the simultaneity of
events. As a fact of common experience it is possible to localise
our various thoughts and sense impressions in the time-stream of our
individual consciousness; and the judgment that two sensations are
simultaneous or follow in succession is essentially a priori, in
that it cannot be analysed further. Science, however, could never have
existed had we restricted ourselves to registering sense impressions
without attempting to co-ordinate them and account for them. To these
attempts of co-ordination we are indebted for the conception of the
outside universe of space and time (or space-time according to the
modern view)—the common objective world of science in which events
occur. It is objective in that we are enabled to conceive of it as
presenting the same relationships of structure for all men, hence as
pre-existing as a concrete existent to the mind that discovers it and
explores it bit by bit. Whether this objective universe represents a
reality in the metaphysical sense (a reality which has merely been
discovered by us) or whether, as the majority of scientists would
assert, it reduces in the last analysis to a mere mental construct, the
product of a synthesis of the mind, is a problem that need not detain
us in the present chapter. In either case the physicist may speculate
on this objective universe as though it were a reality pre-existing to
the observer who discovers it.


Commonplace reason, or rudimentary science, was thus led to conceive of
a common external objective universe in which external events occurred,
occupying definite positions in space and in time. These external
events, such as the explosion of a barrel of gunpowder, were assumed
to be the causes responsible for our immediate sense perceptions of
light and of sound. Until some three hundred years ago it was thought
permissible to identify the instant of time at which an external event
occurred with the precise psychological instant at which the event
impressed itself on our consciousness in the form of a sound or of
a visual sensation. But this very crude view led to inconsistencies
when it was realised that an explosion which occurred at our sides and
which appeared to us as a simultaneous occurrence of light and sound
impressions would have appeared as a sequence of two separate events, a
luminous one followed by a sonorous one, had we been situated elsewhere.





If we were to retain our belief in the possibility of conceiving
of a common objective universe in which a single event remained a
single event regardless of the position of the observer, it became
imperative to account for these discrepancies by assuming that sound
transmission from place to place was not instantaneous. It was still
thought, however, that light propagation was instantaneous, so that
at least the instants of our visual perception of external events
could be identified with the instants of their occurrence in the
objective world. For example, it was usual to claim three hundred
years ago that when we beheld a sudden red brightness in a star we
were witnessing a stellar catastrophe occurring there-now. It
appeared, then, as though men were gifted with the same a priori
intuitional understanding of the simultaneity or succession of events
throughout space which experience had shown to exist in the case of
sense impressions located in the individual streams of consciousness.
But, as Eddington points out, “This crude belief was disproved in
1675 by Römer’s celebrated discussion of the eclipses of Jupiter’s
satellites; and we are no longer permitted to locate external events
in the instant of our visual perception of them.” Following Römer’s
discovery, scientists were compelled to discriminate between the
instant an external event occurred and the instant we became cognisant
of its occurrence. This discovery led them to recognise that pure
intuition could yield us no reliable information on the order of
succession and on the simultaneity of external events throughout space.
For instance, when we suddenly perceive some stellar conflagration
through the telescope, we have no means of deciding by direct intuition
whether the stellar catastrophe was simultaneous with the signing of
the Armistice, the battle of Waterloo or the building of the Pyramids.
In the same way, were we to perceive two stellar catastrophes, it would
be impossible for us to decide a priori which had preceded the
other.


Now it is the problem of locating external events in a common space
and time, or a common space-time according to the modern view, that
is the one of paramount importance for the student of nature. Direct
intuition failing him, if duration and simultaneity as between external
events in the outside world were to have any meaning at all, they
could be defined only as a result of some convention similar to that
selected for the measurement of space with rigid material bodies. The
aim of physics was therefore to decide on some conventional means of
determining the simultaneity and succession of external events in a
manner compatible with the existence of a common objective universe.


The most obvious method of arriving at some consistent determination
of the simultaneity of two external events was to appeal to physical
propagations, such as those of light or sound waves, by taking into
consideration the times these propagations required to reach us.


Of course, in everyday life, the distinctions the scientist is
compelled to consider are very often of scant importance. When, for
instance, we bark both our shins and are conscious of a psychological
simultaneity of painful impressions, we are perfectly justified in
practice in assuming that we have barked our shins simultaneously. It
is only when we subject an example of this sort to the rigorous logic
of scientific thought that the crude view becomes untenable in theory
though of course still permissible as an approximation.





The fact is that the barking of each of our two shins constitutes an
external event,[54] and our awareness of each of the two pains that
ensue constitutes in turn a psychological event. Thus we have to take
into consideration two external events and two psychological events.
We have no more right to muddle up these two species of events than we
have to confuse the firing of a shot with the hitting of the target.
In any case, a certain period of time, however short, must elapse
between the instant we bark one of our shins and the instant we
become aware of the pain. Physiologists who have measured the speed
of nerve transmissions could tell us exactly what the lapse of time
would be, as measured by a clock. Unless we have reason to assert that
the nerve transmissions proceed at the same speed along both legs, and
unless the bruised spots on our two shins are situated at the same
distance from the seat of our consciousness, our intuitional sense of
the psychological simultaneity of the two sensations of pain does not
permit us to decide on the simultaneity of the two external events
(the barkings of our shins against some object). In practice, however,
as we have mentioned, we may neglect all these subtleties; for as our
psychological awareness of simultaneity is after all extremely crude,
there would be no advantage in submitting our results to corrections of
comparatively insignificant importance.


Nevertheless, although the differentiation we have established is of
no practical interest in the case we have discussed, it possesses
a vast theoretical importance, as will be seen from the following
illustration: If we were to confuse the external events with our
awareness of them, we might argue that a human giant with legs
extending to the stars and touching, for an instant, the sun with his
left knee and Sirius with his right foot, would be aware by direct
intuition of the simultaneity of these events; since all he would
have to do would be to register the simultaneity of his two conscious
impressions—the two burns. But the argument would be faulty; for
in a case of this sort, where the external events occurred at such
vast distances from the seat of his consciousness, the giant could
no longer afford to neglect possible variations in speed of the two
nerve propagations and the difference in distance of the two points on
his legs at which the external events had occurred. The only reason
the popular mind retains a lingering belief in some vague intuitional
understanding of the simultaneity of external events, however
distant, is because when the events are near us their simultaneous
perception justifies our belief in their simultaneous occurrence. We
then extrapolate these results unconsciously from place to place, and
fall into the erroneous belief that we possess this same intuitional
understanding of the simultaneity of external events throughout space.





The significance of the preceding discoveries can be summarised as
follows: When considering the simultaneity or order of succession of
events, we must differentiate sharply between events which reduce to
our awareness of sense impressions, and those which refer to external
occurrences. Our recognition of the simultaneity or order of succession
of sense impressions or of thoughts flashing through our mind is
fundamental in that it cannot be analysed further. For this reason a
physical theory cannot be called upon to give a physical definition of
judgments which it recognises as a priori. In contradistinction
to the temporal position of sense impressions, we have to consider the
simultaneity or order of succession of external events. In this case
direct recognition fails us. All we can do is to note the instants
at which we became conscious of these external events, and then by
appealing to physical propagations deduce therefrom the instants at
which the events occurred in the outside world. In order to avoid any
confusion we shall therefore refer to the simultaneity of external
events throughout space as physical simultaneity, reserving
the name psychological simultaneity for our awareness of the
simultaneity of two sense impressions.


Now all the conclusions we have reached up to this point are quite
irrelevant to Einstein’s theory proper. They embody the discoveries
of classical science and, while they still hold in the relativity
theory, we shall see that Einstein’s contributions to the problem of
simultaneity lie in another direction entirely. If these points are
understood we may pass to a definite example and investigate how the
physicist will proceed when he wishes to determine whether or not two
external events occurring in different places are simultaneous in the
physical sense.


Suppose that two instantaneous flashes of light occur at two points,
 and , on the road; and that we wish to discover whether
or not the two flashes were produced simultaneously (always in the
physical sense). The mere fact that we might perceive the two flashes
simultaneously or in succession would not of itself permit us to settle
the question, for the order of our perceptions would be found to vary
with our position (of course only to a very small degree in the case
of visual perceptions). But suppose now that we stood at the midpoint
 between  and , as measured with our rigid rods. If we
perceived the two flashes simultaneously (in the psychological sense),
should we be justified in asserting that the two flashes had occurred
simultaneously in the physical sense? Classical science answered no;
for we were not at all certain that the wave of light was propagated
from  to  with the same speed as the wave propagated in the
opposite direction from  to . Classical science assumed that
the unknown velocity of the ether drift caused by the earth’s absolute
velocity would interfere with our determinations, so that nothing
definite could be said.


But the entire situation changes as soon as we accept Einstein’s
principle of relativity and his postulate of the invariant velocity
of light. We are then in a position to assert that the ether drift,
whether it exists or not, can have no physical significance; and that
we are therefore justified in assuming that the rays of light are
propagated with the same speed in all directions. If this is the case,
we have a right to conclude that the simultaneity of our perceptions
of the two light flashes (in the psychological sense) ensures the
simultaneous occurrence (in the physical sense) of the two external
events, namely, the two flashes on the road.





Now, in the particular example we have considered, the observer was
able to station himself at a midpoint between the two points  and
. But situations may arise where a procedure of this sort would be
impossible. Suppose, for instance, that we wish to ascertain whether
two events occurring one on the sun and the other on the earth by our
sides are simultaneous or not. How shall we proceed?


We will note on our watch the precise instants at which we perceive
both events. Then we will take into consideration the time required
for the light message from the solar event to reach us; we will deduct
this duration from the instant at which the solar event was perceived,
and we thus obtain the instant at which the event actually occurred on
the sun. If this instant of time is identical with the psychological
instant at which the earth event at our sides was perceived, we will
assert that the two events occurred simultaneously. And now let us
notice that by subtracting the time that light has taken to reach us
from the solar event and by noting the instant thus defined, we are in
effect re-establishing matters as they would have presented themselves
had the news of the solar event been propagated to us through our
frame instantaneously with infinite speed, so that we may present our
definition of simultaneity in the following conceptual way:


We will say that if a perturbation (say, a telepathic one) is
propagated with infinite speed from the surface of the sun,
coincidently with the occurrence of the solar event and carrying
the news of the solar event, and if this perturbation reaches us on
earth at the precise psychological instant at which the earth event
is perceived at our sides, then the two events will be simultaneous.
Likewise, always considering the hypothetical case of instantaneous
transmission, if the solar perturbation reaches us prior or subsequent
to our perception of the earth event occurring at our sides, we will
conclude that the solar event has preceded or followed the earth event.
Of course this definition by means of a propagation moving through our
frame with infinite speed is purely conceptual, since no such type of
propagation is known to physicists; but as it would lead to exactly the
same determination of simultaneity, we may retain it provisionally,
as it will facilitate our understanding of the nature of Einstein’s
discoveries.


Now, according to classical science, simultaneity having been defined
in this conceptual way, any other observer, regardless of his motion,
would have agreed that the perturbation had travelled from sun to
earth with infinite speed, i.e., in zero time; so that in all
cases the two events could be regarded as simultaneous in an absolute
sense. By this we mean that they would be simultaneous not merely from
the local point of view of the observer on earth, but also for all
observers. In other words, physical simultaneity would be absolute;
likewise, the stretch of physical time separating two successive pairs
of simultaneous events occurring in different regions of space would be
absolute; in other words, physical time itself would be absolute. This
indeed was the belief of classical science.





But if now we view the same problem in the light of Einstein’s theory,
and if we remember that an infinite speed is a relative depending on
the frame of reference or relative motion of the observer, we find that
these opinions are no longer tenable. As before, the observer on the
earth will be perfectly justified in believing that the two events (the
solar one and the one occurring at his side) are simultaneous; but, on
the other hand, another observer in relative motion would discover that
the earth observer was wrong, for as referred to his own frame, the
perturbation would not have spanned the sun-earth distance in zero time
with infinite speed. According to him, therefore, the two events would
not be physically simultaneous.


In short, physical simultaneity and duration, which were considered
absolutes by classical science, must now be considered relatives having
no absolute, universal significance, since they vary when computed
in frames moving at various relative speeds.


But it is most important to realise that this relativity of
simultaneity holds only for events occurring in different places and
does not apply to events occurring in the same place. The reason for
this distinction is easily understood. Suppose that two instantaneous
events occur at the same point and at the same time in our frame of
reference. The events, being simultaneous and copunctual in our frame,
are said to constitute a coincidence of events. If now we change
our frame of reference, will the two events as referred to this new
frame also be simultaneous and copunctual? Obviously yes. The principle
of sufficient reason itself should satisfy us on this score, since
whatever disruption in copunctuality or simultaneity a change of frame
might bring about, as there is nothing to distinguish one event from
the other, either in position or in time, there is no reason why one
event should precede rather than follow the other, either in position
or in time, when the frame is changed. A concrete illustration would
be given by a collision between two automobiles. Here we have two
bodies situated at the same point of the road (or thereabouts) at the
same instant of time; hence the observer on the road is witnessing
a coincidence of events in the road-frame. Obviously, were he to
view these happenings from some passing train, the collision would
occur just the same; hence, so far as the train-reference-system was
concerned, the two events would continue to constitute a coincidence.
From this we see that, in contradistinction to the simultaneity of
events occurring in different places, which is essentially a relative
depending on the choice of our frame of reference, a coincidence of
events is an absolute, that is, remains a coincidence or a simultaneity
in all frames of reference.


We may note that in a world in which coincidences were relative,
that is, in a world in which two cars would appear to collide and all the
passengers killed when viewed from the road whereas no such collision
would take place when viewed from the train, science would be quite
impossible; for the opinions of the various observers would be relative
to the point of being inconsistent. In the squirming world of relativity
something at least must be absolute, and one of these absolutes is found
to reside in the coincidences of events.





We may contrast the teachings of classical science and of relativity
in the following way: Just as classical science recognised that
there was no physical significance in speaking of the same point of
space at different times until, by selecting a frame of reference,
we had objectivised, as it were, the space we were discussing, so
now relativity compels us to add: “There is no meaning in speaking
of the same instant of time in different places until we have
objectivised time, as it were, by specifying our frame of reference.”
In both sciences, however, the classical and the relativistic, the
coincidence of events remains an absolute, transcending the choice
of a frame of reference. From a philosophical point of view, this
discovery of the relativity of simultaneity marks a date of the same
momentous importance as did the discovery of the Copernican system in
astronomy.[55]





Having established the relative nature of physical simultaneity, we
find it an easy matter to rediscover that other consequence of the
theory, namely, the contraction of length. Consider, for example, an
observer at rest on a track observing a train also at rest. What is the
length of the train as referred to the observer’s frame, namely, to the
earth? Obviously it is the difference in his distance from the engine
and from the rear car. But if now we consider the more general case
where the train or the observer with his reference frame is in relative
motion (either choice comes to the same thing, so long as the motions
are Galilean), it becomes imperative to state that the measurements
must be performed at the same instant of time. It would be
absurd to measure our distance from the rear car at one o’clock, then
our distance from the engine at two o’clock; for we might find that
the train had a length of over sixty miles owing to its displacement
during the interval. But whereas in classical science the significance
of the same time in two different places was absolute, the same for all
observers, in relativity it becomes indeterminate. According to the
relative motion of the observer, different simultaneity determinations
will be obtained, and as a result the length of the same train will
vary in value. This is what is meant by the relativity of length.
Calculation proves that the greater relative velocity, the shorter will
the train measure out.


In short, classical science recognised that apart from our intuitional
understanding of the succession or simultaneity of the awareness of
two sense impressions, such as two impressions of pain for instance
(i.e., the here-now type of simultaneity), the succession
or simultaneity of events could be determined only indirectly
by physical means. And even so, there always remained a certain
indeterminateness owing to our ignorance of the velocity of the ether
drift. Assuming, however, a spread of simultaneous events to have been
determined by any given observer, it was thought that these same events
would remain simultaneous for any other observer. In other words, time
and simultaneity were absolute.


Einstein’s theory compels us to revise the classical views. It still
permits us to retain our belief in the absolute nature of a coincidence
of events, that is, of events which are copunctual and which occur at
the same time in any given frame. But it denies the absoluteness of the
simultaneity of spatially separated events. Thus, if two observers pass
each other, the events which are simultaneous with one another and with
this passage according to one of the observers would be recognised as
unfolding themselves in succession for the other observer. It follows
that a simultaneity of events, or a sameness of time throughout space,
becomes an indeterminate concept until an observer or a frame of
reference has been specified; in much the same way, the weight of a
given brick situated anywhere in space will be indeterminate until such
time as the distribution of the surrounding masses has been decided
upon. So far as the special theory is concerned, this is the sole
difference between classical science and relativity.


We may say that in the general theory, where large masses of matter are
in relative motion, the entire concept of the simultaneity of external
events becomes obscured, for space and time determinations over
extended areas become impossible. In the general theory, therefore,
relativity breaks away completely from classical science. And here
we may mention a number of criticisms directed against Einstein’s
selection of optical signals for the purpose of defining simultaneity.


Thus, Dr. Whitehead writes: “The very meaning of simultaneity is made
to depend on light signals. There are blind people and dark cloudy
nights and neither blind people nor people in the dark are deficient
in a sense of simultaneity. They know quite well what it means to bark
both their shins at the same instant.”[56]





In this illustration, Dr. Whitehead, by referring somewhat loosely to
a sense of simultaneity, is confusing the two species of simultaneity
which physicists have found it imperative to treat separately. We
may recall that these two types were exemplified by a simultaneity
in our awareness of two impressions (psychological simultaneity) and
by a simultaneity in the occurrence of two external events (physical
simultaneity). Of course, in the illustration selected by Whitehead,
all the events considered, namely, our awareness of the two pains and
the actual coming into contact of our shins with the rail, are so close
together both in space and in time that for all practical purposes the
confusion would be legitimate. Nevertheless, inasmuch as a confused and
obscure illustration is liable to generate confused conclusions, it is
necessary to clear up the matter from the start and specify the type of
simultaneity we propose to discuss.


First let us assume, for argument’s sake, that it is the psychological
type of simultaneity which is at stake. The criticism would then
amount to this: Einstein has sought to render our immediate awareness
of the simultaneity of two sense impressions contingent on the
results of optical measurements executed a posteriori. In
other words, if we should ask our friend whether he had sensed two
sounds simultaneously or in sequence, he would answer: “I cannot
tell you before I have looked up Einstein’s rules for simultaneity
determinations and performed certain optical measurements.” It would
follow that were no light rays obtainable or were our friend blind,
he would never be able to give us an answer. Einstein would thus have
made our immediate recognition of a simultaneity or of a sequence of
sensations contingent on the accidental circumstance that we were
gifted with eyesight. This seems to be Dr. Whitehead’s contention, as
would appear from his reference to “blind people” in his criticism.


It seems scarcely necessary to state that neither Einstein nor any
other scientist has ever attempted to defend so paradoxical an
assertion. Quite the reverse. Both classical and relativistic science
are fully agreed that our ability to recognise the simultaneity of two
impressions (be they visual, tactual or auditory) is in the nature
of a fundamental recognition which cannot be analysed further. We
know that we feel two pains at the same instant, or that two
thoughts flash through our mind simultaneously, and that is all there
is to be said about it. Any discussion as to why we know or
how we know does not concern the physicist. It is a problem
which must be left to the brain specialist or psychologist. So far as
the physicist is concerned, it constitutes a form of a priori
knowledge over which it is useless to argue. On no account, then, can
it be claimed that the theory of relativity professes to interpret this
psychological species of simultaneity in terms of optical measurements
or, for that matter, of physical measurements of any kind.


But there is another way to view the problem. We might claim that
though Einstein has never sought to render psychological simultaneity
contingent on the performance of optical measurements, yet, on
the other hand, his theory fails to take this fundamental type of
simultaneity into account.





But any one at all conversant with physical science would perceive
the fallacy of this contention at first blush. He would realise that
physical science would be quite impossible were we to disregard the
data furnished us by our fundamental recognitions. Consider, for
instance, the manner in which Einstein defines the simultaneity
of external events, e.g., of two flashes occurring on the
embankment. He tells us that this simultaneity will be realised if the
observer standing at a midpoint between the two flashes becomes
aware of the two luminous impressions simultaneously. Obviously,
for this definition to convey any meaning, it is essential that we
credit the observer with the ability to recognise the simultaneity of
these two luminous impressions. Had this fact been ignored or denied by
the theory, Einstein would never have suggested his definition.


Summarising, we may say that in relativity, as in classical science,
the sophisticated rules given for the determination of a simultaneity
of external events presuppose that we possess the innate ability
to differentiate between a simultaneity and a succession of sense
impressions. These fundamental recognitions then serve as a basis
for future discovery; and the sophisticated rules are used merely to
allow us to pass from the recognition of a simultaneity which is a
priori to those which cannot be determined a priori. As for
the rules themselves, those suggested by relativity constitute but a
refinement of the ones entertained by classical science. Aside from
this purely quantitative difference, no change in method is involved.


It is therefore obvious that Dr. Whitehead’s criticism, when
interpreted as referring to psychological simultaneity, appears to be
totally unwarranted. Let us see whether it would possess any greater
merit when interpreted as referring to a simultaneity of external
events. The criticism would then have the following significance: Our
recognition of the simultaneity of external events is fundamental.
We know that two events, one on the sun and the other on the earth,
are simultaneous, when we perceive them simultaneously. Physical
measurements are irrelevant to the problem. Einstein’s theory fails to
recognise this fact.


Now there is no doubt that the theory of relativity does fail
to recognise the type of simultaneity presented in this last
interpretation of Dr. Whitehead’s criticism. Hence the man who might
have this understanding in mind would be perfectly justified in
dissenting from a theory which would characterise his conception of
simultaneity as altogether indefensible. But, for that matter, so would
classical science. Both sciences refuse to agree that we possess any
a priori means of determining a simultaneity of external events.
Both sciences claim that in all such cases we are compelled to appeal
to physical measurements of one kind or another. In other words, both
sciences refuse to accept that bizarre doctrine known as “neo-realism”
which consists in confusing the event that, occurs with the event that
we sense.





According to neo-realism as championed by Whitehead, and by a number
of other philosophers, vision is a matter of direct apprehension[57]
Events would thus be simultaneous with the instants of their
perception. In the same spirit, the neo-realist speaks of events
occurring behind a mirror, or of the space he sees behind the mirror,
or of the convergence of the rails on the embankment. No distinction in
terminology is made between the status of such perspectives and that
of the physical entities existing in the objective world of science.
In ancient times Æsop warned his countrymen against the dangers of
neo-realism when he composed his fable of the dog mistaking the bone
for its reflection in the water. Indeed, for the plain man there
appears to be no difference between the attitude of the neo-realist
and that of the unsophisticated infant or primitive savage who views a
mirror for the first time.


In order to extricate himself from the paradoxes in which he
finds himself involved, the neo-realist is finally compelled to
agree that the objects behind the mirror, etc., are not quite the
same things as physical objects. So he calls them sensa or
sense-objects. When requested to justify his belief in these
mysterious, shadowy existents, he tells us that sensa and sense-objects
certainly exist, for otherwise how could a round coin ever be seen
as an ellipse? Obviously (so he maintains) in addition to the round
physical object, there must be an “elliptical sensum” present, and it
is this that we are sensing.


It is scarcely necessary to say that no scientist could be in sympathy
with such loose arguments, and accept as sound this arbitrary
materialisation of qualities. Forms and colour sensations are all that
we are conscious of visually. It is only by inference, as a result of a
co-ordination of sensations, that we are finally led to believe in the
existence of a round coin in the objective world. After we have reached
this stage of knowledge it is a simple matter to account for the
elliptical impression we receive of the coin, since an image of this
shape can be proved to have been formed on the retina. An application
of the laws of geometrical optics, and a slight knowledge of the
eye’s structure, suffice; and the “sensa” and “sense-objects” of the
neo-realist can be discarded as perfectly useless hypotheses.


A more detailed study, which we shall spare the reader, would convince
us that neo-realism, when taken literally, rests on a confusion between
inferences and direct recognitions, and leads to contradictions when
an attempt is made to conceive of an objective world transcending
our private views. On the other hand, if taken with a grain of salt,
mitigated, as occasion demands, by such palliatives as “pseudo” or
“peculiar sort of” or “not quite the same as,” it resolves itself into
a mere play on words, into a giving of the same name to things which
even the neo-realist would concede to be essentially different.





Physical science, it must be remembered, deals with a common objective
world. This world is not apprehended directly, but issues from a long,
laborious, ever-widening synthesis of private views. Primarily, all
we are aware of is a complex of sensations. Even the crude knowledge
of the savage is therefore itself the result of a highly complex
synthesis. But science must pursue the synthesis still farther,
taking the results of previous syntheses as the elements of its more
sophisticated ones. And so what was formerly the synthetic view
becomes the private one when we rise to a higher plane. Thus, if
we consider the aspect of the earth’s surface, viewed from any one
spot, our private view would suggest that the earth was flat. Only a
synthesis of a number of private views and experiences can lead us to
assert that the earth is round; and science accordingly speaks of the
rotundity of our planet and ignores its flatness. To put it in more
technical language, the search for the objective world is similar to
that of the search for the invariants or invariant equations of a
group of transformations. In this illustration, each transformation
corresponds to the passage from one private perspective to another,
whereas the invariants correspond to the entities of the objective
world with which science deals. The discovery of the space-time
universe, to be discussed in a future chapter, illustrates the
procedure.


To be sure, in many instances the private view may be of greater
interest than the collective one. This will be the case if an artist
wishes to paint a landscape on his canvas. He will, of course, draw
distant objects on a smaller scale and make the rails converge. But,
in contradistinction to the artist, the scientist is not particularly
interested in the private view except as a means to an end. His
ultimate goal is the common objective world.


The only charge that might be directed against the scientific attitude
(which in this case is also that of the man in the street) is that this
objective world resolves itself into a series of inferences, a mere
mental construct, hence cannot possess the same measure of reality as
the impressions we experience directly. The majority of scientists
would grant the justice of this charge if by “what we experience
directly” we mean our awareness of sensations. But they would
strenuously oppose the claims of the neo-realist who endeavours to
extend the meaning of these words so as to embrace the existence of his
sensa and sense-objects; these represent nothing but inferences which
he has drawn from his awareness of sensations. And this is precisely
the error into which the neo-realist falls when, on perceiving a
red flash in the sky, he talks of a star bursting into prominence
“there-now.” If he wishes to avoid inferences, he should confine
himself to saying: “I experience ‘here-now’ a luminous impression on
a dark background.” For all he knows, the luminous impression may be
due to an aviator’s light, or to a firefly, or to a purely subjective
hallucination.





At any rate, the point we wish to stress is that while it is correct
to say that the objective world is a synthesis of private views or
perceptions, we should not forget to add that the private views are
themselves the product of a synthesis of sensations. But inasmuch as
science must deal with the general, and not merely with the particular,
and inasmuch as it is the common objective world that renders this
general knowledge possible, it will be this world that the scientist
will identify with the world of reality. Henceforth the private views,
though just as real, will be treated as its perspectives. We must
recognise, therefore, that the common objective world, whether such
a thing exists or is a mere convenient fiction, is indispensable to
science, if in no other capacity than as a working hypothesis. And
neo-realism, as we have said, when pursued consistently, renders
a collective view impossible. Furthermore, from the standpoint of
science, whether it be classical physics, relativity, physiology or
psychology, neo-realism is untenable, for under no circumstances can
vision and our knowledge of nature in general be considered a matter
of direct apprehension. In much the same way, we know that 7 times
8 is 56, and we obtain this result immediately, without reflection
and without having to count on our fingers. Were it not for the fact
that the neo-realist recollects the difficulty he experienced in
learning the multiplication table, he would presumably be telling us
that our knowledge of the properties of numbers was also a matter of
direct recognition. From the standpoint of science, there is very
little difference between the alleged immediacy of perception and our
knowledge of the product of 7 times 8. Neither of these two forms of
knowledge can be viewed in the light of direct recognitions. At any
rate, regardless of our attitude towards neo-realism, in scientific
discussions we must define the meaning of our words clearly and
cease to apply the same word, “simultaneity” to a simultaneity in
the scientific sense, as holding for the objective world, and to a
simultaneity in the neo-realistic sense, as assumed to be apprehended
directly. It is remarkable that Dr. Whitehead, who has coined such
a profusion of new words when the necessity was scarcely apparent,
should have missed this splendid opportunity when it happened to be
imperative.[58]





However, it is not our intention to discuss neo-realism further, for
the doctrine is of no interest to science. All we wish to point out
is that in any scientific theory, whether it be due to a Newton, a
Maxwell or an Einstein, we can make up our minds from the start that
the author will deal with the objective world of science, treating
the private views as mere perspectives, and will frame his concepts
and definitions accordingly. It would appear, then, that if Dr.
Whitehead wishes to defend a doctrine which stands in conflict with the
views of every scientist from Newton to Einstein, it would have been
conducive to greater clarity had he restricted his attacks to classical
science. For when we attack a new theory such as Einstein’s, which has
introduced such a wealth of revolutionary ideas into our understanding
of nature, it is to be presumed that the reasons for our dissent arise
from those ideas and not from the classical ones which the theory has
left intact. Thus, if it were to be proved that matter was continuous
and not atomic, we should not hold Einstein’s theory responsible for
our past belief in the atomicity of matter. Rather would we challenge
the experiments and theories of those classical physicists who thought
they had established atomicity. On the other hand, if we objected to
the view that the simultaneity of external events was relative to
the observer’s motion, claiming it to be absolute, then of course we
should be justified in criticising Einstein’s theory proper, since the
relativity of simultaneity is peculiar to it.


To be sure, Dr. Whitehead appears to be under the impression that he is
merely attacking the new revolutionary ideas introduced by Einstein.
Thus, he tells us that he is merely defending “the old-fashioned
belief in the fundamental character of simultaneity,” but one may well
wonder to what period of human thought he is referring. Classical
science, some three hundred years ago, had recognised the error of this
confusion between external events and the instants at which they were
perceived, precisely because this attitude was found to lead to results
in utter conflict with experience.


As Weyl expresses it, referring to Römer’s discovery in 1675: “The
discovery that light is propagated with a finite velocity gave the
deathblow to the natural view that things exist simultaneously with
their perception.” Needless to say, that which applies to luminous
transmissions applies in exactly the same measure to the propagation
of nerve excitation through the body and to all other species of
transmissions.





The general conclusions we have reached from a discussion of
simultaneity in different places apply without great change when we
consider a number of other concepts which in a dim way we half feel
and half comprehend. Thus, consider the case of temperature. Why does
the scientist have recourse to thermometers rather than trust to the
immediate disclosures of his senses? Merely because the thermometer
furnishes an objective definition of the equality of two temperatures,
and because it can discern differences which our senses would be
unable to detect. The result is that when his thermometer indicates
differences in temperature of several hundred degrees centigrade—say,
temperatures of -200° and +400°—he maintains that such a difference
exists, even though to our senses a scalding sensation would result
in either case. But, however imprecise and unreliable our direct
appreciation of temperature may be, our direct recognition of a
simultaneity of spatially separated events is vaguer still. For whereas
men may have no great difficulty in agreeing that one room is warmer
than another, even without the aid of a thermometer, they will express
the most conflicting opinions when asked which of two explosions
occurred first. Their answers, unless governed by the results of
physical measurements, will vary with their relative positions.


Now, because the scientist measures temperature by the thermometer,
no one would accuse him of wishing to imply that the concept of
temperature would cease to exist were his thermometer to fall to the
ground and be broken. Why, then, should the fact that we determine
simultaneity in different places by means of light signals imply that
we are making the concept of simultaneity dependent on the behaviour of
light, and that simultaneity could have no meaning for blind people?


The sole purpose of all these measurements is to render precise and
to clarify concepts which we understand only in a dim, indefinite
way. In the majority of cases these concepts have arisen from crude
experience. There are instances, however, where they have arisen in a
more sophisticated manner. Suppose, for example, that our bodies were
insensible to heat or cold. The behaviour of our thermometers would
still suggest an abstract concept which we might call “temperature.”
In fact, even were no thermometers at our disposal, the concept of
temperature would be introduced eventually into physics for theoretical
reasons. “Entropy” affords us an illustration of a concept introduced
in this way. Our senses cannot detect it and our instruments do not
record it directly. Nevertheless, it has imposed itself on science. A
difference in entropy can be measured indirectly, just as temperature,
duration and space can be measured, but always by physical means; and
this is indeed the only way we can increase our understanding of these
concepts, and agree on what we are talking about. Incidentally, we may
recall that it was through the medium of physical measurements that
Einstein was able to demonstrate the relativity of simultaneity, which
our so-called direct apprehension of nature had never even led us to
suspect. Hence, to accept the relativity of simultaneity, which issues
from highly sophisticated physical measurements, and then to cling to
the theory of a direct apprehension of nature, is a course which, to
any logical mind, must appear to be the height of inconsistency.


We have now to consider a second criticism also advanced by Dr.
Whitehead. In it he appears to have abandoned momentarily the doctrine
of direct apprehension, recognising (presumably for the sake of
argument) that a determination of simultaneity at spatially separated
points may require the introduction of physical propagations, but he
objects to Einstein’s exclusive appeal to optical transmissions for
this purpose. Thus, he tells us:


“Also there are other physical messages from place to place; there
is the transmission of material bodies, the transmission of sound,
the transmission of waves and ripples on the surface of water, the
transmission of nerve excitation through the body, and innumerable
other forms which enter into habitual experience. The transmission of
light is only one from among many.”





Inasmuch as these arguments are advanced in a spirit of criticism,
we must presume that according to Dr. Whitehead, had transmissions
other than optical ones been considered, determinations differing from
Einstein’s would have ensued.[59] But a contention of this sort would
be fundamentally untrue. Einstein’s determinations would have yielded
exactly the same results had sound transmissions been substituted for
optical ones; and the only reason optical ones are continually referred
to is because they permit observations of greater accuracy. We shall
now consider the reasons for these statements.


The problem of time determination may be divided into two parts:
First, we wish to define equal successive durations at the same point
of space, for instance, at the point where we happen to be standing.
Secondly, we wish to co-ordinate our time reckonings with those
computed by other observers situated at different points of space.


As we have already considered the problem of time-congruence at a
point, we will not dwell on it unduly. Suffice it to recall that our
direct intuition of time-congruence is far too vague and uncertain to
be of any use in scientific investigation. Accordingly, throughout
the course of history we find men relying on physical processes of
one sort or another, the burning of candles, sand clocks, mechanical
clocks, rotation of the earth, vibrations of atoms, etc. Newton gave
a theoretical definition of time-congruence when he formulated the
law of inertia, according to which a perfectly free body described
equal distances in equal times. According to this definition, by
measuring equal distances along the body’s path, we were enabled to
mark out successive equal durations. But in common practice it was
more convenient to appeal to chronometers regulated ultimately by the
earth’s rotation. We may now pass to the problem of synchronisation in
classical science.


Let us assume that we are in possession of a number of chronometers
which, when placed side by side, beat out their hours, minutes and
seconds in perfect unison, hence advance at the same rate. Suppose now
that having drawn a circle of, say, ten miles’ radius, we maintain
one chronometer at the centre and carry the remaining chronometers to
various points distributed on the circumference of the circle. If some
one were to play a prank and displace the hands of the chronometers
located on the circumference, we should be faced with the problem
of re-establishing synchronism. Classical science suggested various
methods for obtaining this result.





First, we might transport our centre chronometer to each of the
circumference chronometers in turn, and thus re-establish synchronism.
But this method was open to the objection that by displacing a
chronometer back and forth we might in some way disturb its working.


A second method was to appeal to the earth’s rotation on its axis. By
ascribing a value of 24 hours to the complete rotation of our planet,
we could divide its surface with equally distanced meridians, and then
assert that the passage of the same star from one meridian to the
next would always take the same time. Suppose, then, for argument’s
sake, that the earth’s surface had been divided by 24 half meridians,
all equally spaced. Then if a star passed a certain meridian at 
at a certain time , it would pass the contiguous meridian  one
hour later. In order to synchronise two clocks situated on these
two meridians  and , all that would be necessary would be
to set the first clock  at “zero” hour as the star passed its
meridian , then set the second clock  at the hour “one”
as the star passed over the second meridian . The clocks would
then be synchronised, so that an event occurring by the first clock
as its hands marked a time , would be simultaneous with an event
occurring by the second clock as its hands also marked . But this
method again was open to certain objections which it is unnecessary
to recall since we have discussed them in a previous chapter. They
deal with the retarding influence of the tides and with the earth’s
“breathing.” To be sure, these objections are of a hair-splitting
nature, but they are theoretically valid just the same since they do
not reduce to mere errors of observation.


A third method of synchronisation considered by classical science was
obtained by appealing to propagations, which would serve to establish
communications between the spatially separated clocks. The propagation
of sound waves suggested itself in this capacity. According to this
method we should operate as follows: At noon, sharp, as marked by our
chronometer at the centre, we should fire a gun. All the observers
standing by their clocks on the circumference would then be instructed
to set their clocks, the instant they heard the report, at the hour
“noon plus the time required by the sound to progress from centre to
circumference.” Given the velocity of sound in air, and given the
distance from centre to circumference, this lapse of time could be
computed, and the clocks synchronised. But here again we should have
to make sure that no wind was blowing; also, even in the case of a
stagnant atmosphere, we should have to assume that the speed of sound
was constant and remained the same in all directions, i.e.,
that its propagation was isotropic. We knew that this was the case
to a first approximation, but no highly refined experiment had ever
established the fact.





Finally, for sound waves we might substitute light signals or radio
signals. This was the method most generally employed by classical
science; it permitted greater accuracy than sound signals and was
of wider applicability than determinations in terms of the earth’s
rotation. When, for instance, the astronomer wished to determine the
present position of a comet, the optical method was the only one
possible. Accordingly, he was compelled to take into consideration
the time required for the comet’s light to reach him. In other words,
simultaneity was determined by optical signals. In much the same
way, the Eiffel Tower in Paris sends out a radio message at noon
every day, and ships at sea can regulate their clocks accordingly.
(Needless to say, all this has nothing to do with the Einstein theory.)
Nevertheless, while recognising that a determination of simultaneity
via optical signals was the most precise method possible, classical
science had certain misgivings as to its theoretical accuracy. The
effect of the ether drift, generated by the earth’s motion, was assumed
to produce an anisotropy in the propagation of light, much as the wind
would do in the case of sound, causing it to proceed more rapidly in
one direction than in another. Inasmuch as the velocity of this ether
drift was unknown, there was no means of introducing the necessary
corrections.


Now, what Einstein urges us to recognise, as a result of the negative
experiments in electromagnetics, is that these misgivings of classical
science were unfounded. Whether it exist at all or whether it be a
myth, the ether drift exerts no effect on the propagation of light. The
space of a Galilean frame is isotropic so far as the propagation of
light is concerned; that is to say, light proceeds with the same speed
in every direction. These results having been established by the most
accurate experiments known to science, there is every reason to accept
them until such time at least as their validity is disproved by further
experiments still more precise in nature. Under the circumstances,
the optical method of fixing simultaneity, which was already the
one followed prior to the theory of relativity, becomes, in view of
Einstein’s discovery, the most perfect method at the command of science.


From this rather long discussion we see that in the determination of
simultaneity Einstein’s theory does not suggest any essentially new
method. With either science, the measure of time and the determination
of simultaneity in different places can be arrived at only by an
appeal to physical processes of one sort or another. If we wish to
discard physical determinations, and define things in the abstract, the
concept of simultaneity in different places degenerates into a mere
verbal expression. The following passage quoted from Einstein, in his
Princeton lectures, may clarify the matter:


“The theory of relativity is often criticised for giving, without
justification, a central theoretical rôle to the propagation of light,
in that it founds the concept of time upon the law of propagation of
light. The situation, however, is somewhat as follows: In order to
give physical significance to the concept of time, processes of some
kind are required which enable relations to be established between
different places. It is immaterial what kind of processes one
chooses for such a definition of time.[60]





“It is advantageous, however, for the theory, to choose only those
processes concerning which we know something certain. This holds
for the propagation of light in vacuo in a higher degree
than for any other process which could be considered, thanks to the
investigations of Maxwell and H. A. Lorentz.


“From all these considerations, space and time data have a physically
real, and not a mere fictitious significance.”


Let us return to Whitehead’s criticisms. It must be admitted that from
the standpoint of experiment and observation, optical determinations
are amenable to greater accuracy than all other methods of observation
based on the propagation of sound, etc. Not only are they easier to
observe, but they are also less contingent on variations in surrounding
conditions (e.g., velocity of wind). Now, as we have remarked
previously, when the critic attacks the theory of relativity on the
ground that it defines simultaneity by optical methods, it must be
presumed that he attributes the strangeness of Einstein’s theory to its
exclusive use of light signals. Were this opinion correct, it would
certainly appear rather arbitrary to found a theory of the universe
on one particular choice of time determinations, when other methods
would have yielded our classical results. Why, indeed, define time in
terms of light rather than of sound or moving bodies? But, as mentioned
elsewhere, the opinion is not correct, for regardless of the
type of propagation to which we appeal, exactly the same determinations
of simultaneity would ensue under ideal conditions of observation.
Every experimental test which has verified the anticipations of the
theory proves this last statement indirectly.


In order to make this fundamental point clearer, let us consider the
following concrete example: Suppose we stand at a midpoint between two
guns. According to Einstein’s optical criterion, the two guns would
have been fired simultaneously were we to perceive the two flashes
at the same instant of time. Classical science would have dissented
from this view on the ground that the ether drift would have vitiated
our results in a minute degree; but even classical science would have
granted that had the physical effect of the ether drift been proved
inexistent, there was nothing further to dissent from in Einstein’s
definition. If, then, with Einstein, we assume that the negative
experiments have proved the irrelevance of the ether drift, both
classical science and relativity would recognise that a simultaneity in
the perception of the two flashes would have entailed a simultaneity in
the hearing of the two reports (assuming no wind was blowing). Also,
both bullets would pass us at the same instant (assuming the guns,
charges and bullets were identical).


It follows from this that Einstein’s theory, since it has started out
by claiming the effect of the ether drift to be nil, must inevitably
lead to the conclusion that however we elect to define simultaneity
(whether by the optical, acoustic or bullet method), exactly the same
simultaneity determinations will ensue. Dark, cloudy nights or the
accidental circumstance that we are gifted with eyesight have therefore
nothing to do with the matter; and blind men would not be debarred,
since they could always synchronise their clocks by means of sound
signals.





We see, then, that the strangeness of Einstein’s theory arises not
from his use of optical signals, but from his fundamental premise
that the ether drift is incapable of affecting the course of physical
phenomena. Those who wish to dissent from the theory should therefore
concentrate their attention on the ether-drift problem. Einstein’s
preference for optical signals is a mere side issue which could
perfectly well be discarded in favour of sound transmission were it not
for reasons of practical convenience and accuracy. No change in the
theory would ensue on this score. We have established this point in the
case of simultaneity, but in view of its importance we may consider the
problem in a more general way.


As we have noted, once the irrelevance of the ether drift is admitted
and the equations of electromagnetics accepted as accurate, we are led
to those space and time transformations known as the Einstein-Lorentz
transformations. When we assert that duration might just as well have
been defined in terms of moving bodies or sound transmissions (under
ideal conditions of observation), our statement is equivalent to
asserting that the Lorentz-Einstein transformations, though obtained
from a study of electromagnetic and optical phenomena, are yet of
universal applicability to all manner of phenomena. Here the critic
may object that this is a gratuitous assumption. Maybe it is, but
we must understand that were its validity to be contested, were the
classical transformations to hold for mechanics and acoustics, while
the Lorentz-Einstein ones were valid for electromagnetic processes, we
should be faced with insufferable contradictions. Thus, according to
the Lorentz-Einstein transformations, as applied to electromagnetics,
a ray of light proceeding in vacuo will pass any two different
Galilean observers with the same speed . But according to the
classical transformations, as applied to mechanics, a body which is
moving with the velocity  with respect to one observer will be
moving with a different velocity relatively to the second observer.
If, then, a body were moving along with the crest of a light wave in
the opinion of one observer, it would either outstrip the wave or
fall behind it in the opinion of the second observer. A coincidence
for one would no longer be a coincidence for the other. Coincidence
would thus cease to be absolute, and it is doubtful whether any
science could exist, since all unity in nature would be lacking.
Furthermore, the coexistence of two conflicting species of space and
time transformations appears very improbable when we remember that it
is impossible to establish a clear-cut distinction between mechanics
and electrodynamics, since matter seems to be in large part an
electromagnetic phenomenon.





Hence it is only natural that the scientist should assume that the
Einstein-Lorentz transformations, though deduced from electromagnetic
or optical processes, should yet hold in all domains of physical
science, even in the interior of the atom. It is true that
these transformations were obtained from a study of optical and
electromagnetic phenomena, not from acoustics or mechanics; but this
is merely because experiments as sensitive as those of Michelson and
Fizeau could scarcely have been performed with sufficient accuracy
had sound waves, nerve excitations or ripples on the water been
contemplated. And yet, had Fizeau’s experiment been performed with
sound waves, there is every reason to suppose that the curious
composition of velocities would have been observed.


The arguments thus far presented show that the space and time
determinations derived from electromagnetics and optics are in all
probability also those holding for the entire physical universe.
Such is indeed Einstein’s attitude when he unhesitatingly applies
the relativistic transformations to all manner of phenomena. But
it is precisely because as a result of this application he has
anticipated phenomena at variance with those deduced from the classical
transformations, and it is precisely because his anticipations have
been verified by highly accurate experiments, that his assumption of
the universal validity of the relativistic transformations must be
considered justified.


On no account, therefore, may we regard time and simultaneity, when
defined by optical signals, as constituting a special kind of optical
or electromagnetic time and simultaneity, at variance with equally
justified determinations issuing from mechanical processes or sound
transmissions.


In short, if we wish to co-ordinate natural phenomena with simplicity,
we must thus conceive the various time-flows and simultaneities defined
by Einstein, to represent the times imposed upon us, not by the caprice
of a mathematician, not by optical transmissions alone, but by the
entire physical world. The times of relativity are therefore those
which will govern all physical processes, not merely optical ones; and
for this reason we must regard them as representing the real time-flows
of the universe.


An understanding of this point is essential. For instance, in the
general theory we shall see that Einstein’s law of gravitation
necessitates a slowing down of time in the proximity of large masses
of matter. If we accept the general significance of this fact as
affecting all physical phenomena, it will entail the slowing down in
the rate of vibration of an atom located in a gravitational field.
This is the celebrated Einstein shift-effect, which has since
been verified. Before it was detected, however, and while it was still
considered doubtful, some thinkers had argued that it might perfectly
well prove to be non-existent on the ground that the atom might not
act like a perfect clock and might fail to adjust itself to the local
rate of time-flow. Einstein, however, refused to accept this means of
escape and stated that the entire theory would have to be rejected if
the effect were not verified, for the times of relativity should be of
universal significance or else worthless.


We may conclude by saying that it appears unjustified to refer to
Einstein’s time and simultaneity determinations as depending on the
behaviour of light. They depend on the processes of nature of which the
behaviour of light is but a particular illustration. We must therefore
amend Dr. Whitehead’s criticism of relativity, as making the very
meaning of simultaneity depend on light signals, by replacing the words
“light signals” by the words “physical processes.” But when amended

in this way, the criticism loses all its force. For we may speak of
simultaneity throughout space, of an instantaneous space, as much as
we please, but until we know enough about these evasive concepts to be
able to distinguish events that are simultaneous from those which are
not, we cannot claim to have any definite idea of what we are talking
about. On this score, both classical science and relativity are in
perfect agreement.








CHAPTER XVI

PRACTICAL CONGRUENCE IN RELATIVITY





IN a preceding chapter we mentioned certain of the most important
aspects of the problem of physical space. We saw that the concept of
spatial equality or congruence was deemed to have arisen from the facts
of experience. Certain objects appeared to maintain the same visual
aspect wherever displaced, provided we modified our own positions as
observers in an appropriate way. But such fundamental recognitions were
too vague to be of any use to science; hence congruent bodies were
defined as those which, when maintained at constant temperature and
pressure, coincided when placed side by side.


Congruence, as thus defined, involved physical measurements with
material bodies; and, as Poincaré remarked, all we could ever discover
in this way would reduce to the laws of configuration of solid bodies,
space itself transcending our experiments, since the bodies might
behave one way or another in the same space. Poincaré’s attitude
drives us to complete agnosticism so far as the geometry of space is
concerned. If physical measurements are denied us, there is no means of
solving the problem of space, for we have no a priori means of
deciding that the structure of space is this or that. Logical arguments
are of no avail, for they do not lead us to any definite solution, only
to a variety of possibilities. We are thus thrown back on Poincaré’s
main contention, i.e., “space is amorphous.” In it we can define
congruence in any way we please (theoretical congruence), although
for reasons of practical convenience it is necessary to be guided by
the properties of so-called rigid bodies. Thus we obtain a physical
definition of practical congruence, which permits us to determine the
geometry that for all practical purposes is to be called the geometry
of real physical space.


When we consider Poincaré’s arguments, there is very little to be
said against them. Nevertheless, the physicist must concentrate his
attention on the space with which he can cope, with the one that can be
explored by physical methods. This attitude defended by Einstein (which
was also the attitude of Gauss and Riemann) leads us to the space whose
geometry is defined by the paths of light rays, by the laws of nature
when expressed in their simplest form, and again by the numerical
results of measurement obtained with material rods maintained under
constant conditions of pressure and temperature. It is with this space
that we shall be concerned.





But before proceeding, let us make it quite plain that according to
the present view the office of our rods is to reveal the pre-existing
structure of space much as a thermometer reveals the pre-existing
differences of temperature throughout the house. On no account,
therefore, may it be claimed that the rods are assumed to create space
any more so than the thermometer creates temperature or the weather
glass creates the weather. The rods permit us to explore space because
they adjust themselves or mould themselves to its structure, or
metrical field. The origin of this structure is still very mysterious.
For Riemann it was created by matter; but by matter he did not mean the
matter of our rod: he meant the total aggregate matter of the entire
universe. Einstein’s cylindrical universe confirms Riemann’s views.
At all events, regardless of the mysterious problem of the ultimate
origin of the metrical field, regardless of whether this structure of
space exist per se as a characteristic of physical space or
whether it be generated by the masses of the cosmos, in either case it
pre-exists to our local exploration with rods, whose masses are far too
insignificant to modify it to any perceptible degree.


Also let us recall that when we discuss space, we must specify it by
referring it to a frame of reference, in particular to a Galilean frame
(one in which no forces of inertia are experienced). We then proceed to
consider the laws of disposition of our congruent bodies in this frame,
and the nature of the geometrical results obtained will define the
geometry of space. As we know, Euclidean geometry is the outcome (at
least to a first approximation).


Now classical science had never thought it necessary to stipulate
that our rods should stand at rest in our frame, but in view of the
disclosures of relativity we see that it is essential to specify
this condition. For two rods whose extremities would coincide when
at relative rest would cease to coincide when in relative motion, so
that a square traced on the floor of our frame would turn out to be
an elongated rectangle when measured by a rod in relative motion. To
be sure, similar results would have been expected even in classical
science, had it been assumed that the moving rod was compressed or
distorted owing to its motion through the ether. In a case of this
sort, the modified readings of the rod would not have involved space
and its geometry, any more than when by heating or crushing a rod we
alter its readings. The blame for the discrepancy would have been
placed solely on the disturbing conditions affecting the rod.





Under Lorentz’s theory this interpretation could be entertained,
since the FitzGerald contraction would have been explained in terms
of the pressure generated by the rod’s motion through the stagnant
ether. But under the theory of relativity this interpretation can no
longer be defended. For when relative velocity exists between 
and  (not relative acceleration), there is no sense in
enquiring whether it is  or  which is in motion. This,
indeed, constitutes the essence of the special principle of relativity.
Hence, when we consider the moving rod, we can ascribe no absolute
significance to its motion. Whatever motion exists between frame and
rod might with equal justification be attributed to the motion of the
frame gliding beneath a motionless rod, there being no absolute term
of comparison like the stagnant Lorentzian ether to decide the issue.
And so we cannot claim that the so-called moving rod has suffered a
physical change by reason of its motion, a change rendering it unfit
for measurement purposes.


And yet, if we retain all our rods as equally valid, whether in
motion or at rest, we obtain conflicting results which are such as to
deprive the geometry of space of all significance. When we analyse
this anomalous situation we find that the following facts stand out
clearly: Rods remain unmodified whether in motion or at rest, and
yet their length varies. The truth is that length is not a definite
characteristic of a body; it appears as a shadow of a something else
projected into the space of our frame. When the rod is at rest in
our frame, its length, or the shadow, presents a maximum; it is as
though the something and its shadow coincided. But when relative
motion is present, the something becomes tilted—tilted along a fourth
dimension out of the space of our frame; and its shadow is shortened
in proportion. Yet this rod which is moving in our frame is at rest in
some other frame, and in this other frame, therefore, the something
again coincides with its shadow. And so we must assume that the various
Galilean frames and the spaces they serve to define are variously
tilted, rotated in a fourth dimension with respect to one another.


There is then no longer one all-embracing Euclidean space which may be
defined with respect to one Galilean frame or another. In its place we
must conceive of an indefinite member of Euclidean spaces variously
tilted, yet fused together.[61] To each separate Galilean frame one of
these spaces will correspond, so that when we change our motion we are
also changing our space.


The situation is analogous to that which arises when we consider
various verticals drawn to the earth’s surface.


John, in London, will assert that his vertical is truly vertical
and that Peter’s at New York is slanting, and Peter will return the
compliment. Owing to these discrepancies, we cannot regard the two
verticals as defining one same direction, though they both may be truly
vertical for John and Peter respectively. Rather must we say that there
exist an indefinite number of different vertical directions, no one of
which is more truly vertical in any absolute sense than any other. Now
replace the concept of vertical by that of three-dimensional space, and
we have a picture of the spaces of relativity.





Very similar conclusions apply to time. Thus, consider two observers
 and  in their respectively moving frames. Each observer
holds a watch in his hand, and these watches, when at rest with respect
to each other, beat the same time; they define congruent stretches
of time. The classical idea of practical time-congruence, founded on
approximate observations, led us to maintain that these conditions
would still endure regardless of the positions of the clocks in space
and regardless of their relative motions.


But it now appears that the time-stretches defined by the ticking of
a clock at rest in the frame of reference  would appear to an
observer  in relative motion to be longer than they would appear
to . The result is quite general and applies to all processes.
Thus, the duration of the revolution of a top will be possessed of
varying values according to the relative motion of the observer.
Arguments similar to those we elaborated in the case of space go to
show that time is no longer unique. A multiplicity of different time
directions, variously tilted, must coexist, each one referring to some
particular frame of reference, hence to some particular observer. As a
result, the simultaneity of two events occurring at different points of
space can no longer be absolute, since simultaneity depends essentially
on the time which we select, and therefore on our frame of reference.


Just as each frame had its own space, so also would it now have its
own time and its own definition of simultaneity. We may summarise
these various discoveries by stating that there can exist no universal
definition of practical congruence either for space or for time; there
can exist, therefore, no geometry for a universal space or for a universal
time.


The philosophical consequence of these new points of view is to deprive
universal space and time of the objective significance with which they
were formerly credited. Henceforth, in the words of Minkowski, “space
and time, by themselves, sink to the position of mere shadows.”


Thus, consider a yardstick. If this same yardstick is measured by
various observers passing it with different velocities, it will be
possessed of different lengths. The space this rod occupies can
then be credited with no particular magnitude, since this magnitude
itself depends as much on the point of view of the observer as on the
characteristics of the rod. This is what is meant by the relativity of
distance. We must not confuse this discovery of Einstein’s with the
fundamental relativity of all distance in conceptual space. For while
classical science recognised that there was no such thing as absolute
distance in conceptual space, yet it believed that in the real space
of the physicist the distance between two given points in a frame of
reference could be defined unambiguously for all observers, by means of
rigid rods. It is this last opinion which is shattered by Einstein’s
discoveries.


It is the same for duration when we remember that the duration of
any phenomenon will be possessed of varying values according to the
relative motion of the observer; and it is this fact which is expressed
by the statement that time or duration is relative.





Thus, neither space nor time by itself can exist in the real phenomenal
world which the physicist explores. Space and time appear as mere
modes of perception, mere relations, varying and changing according to
the conditions of relative motion existing between the observer and
the observed. With the disappearance of the objectivity of space and
time regarded as absolute and universal forms of our perception, the
objectivity of the entire physical world seemed to sink into a mist.
If, then, any kind of objectivity was to be retained, it was necessary
to effect a synthesis of all the individual points of view of all
the different observers, to mould into one sole representation the
multiplicity of individual spaces and the multiplicity of individual
durations.


Could this result be accomplished, the relativity of practical
congruence for both space and time would give way to some universal
definition of practical congruence holding for all observers regardless
of their relative motion, and connoting, therefore, the existence
of some absolute continuum no longer a mere shadow. In place of the
individual point of view varying with the relative motions of the
observers, we should obtain an impersonal and hence common objective
understanding of nature.


The achievement of this supreme synthesis of the points of view of
all observers was accomplished by Minkowski in 1908. He succeeded
in obtaining an invariant definition of congruence by combining any
given observer’s definitions of practical congruence for space and
for time, and by showing that this combination possessed an invariant
value holding equally for all other observers. Of course, the type of
congruence obtained was one neither of space nor of time. It was a
combination of both. But its existence showed us that, transcending
space and time, there existed an impersonal and fundamental
four-dimensional metrical continuum which Minkowski called space-time.
The definition of congruence obtained by him for this mysterious
continuum proved it to be Euclidean (more properly, semi-Euclidean).


The elusiveness of space and time, or rather the ambiguity of these
concepts, depending as they do on the observer who measures and senses
them, is replaced by the common objectivity of this fundamental
continuum, which is the same for all and transcends the particular
conditions of motion of the observer. This continuum, though of itself
neither space nor time, yet pertains to both in that the observer is
able to carve it up into that particular space and that particular
time which are characteristic of the frame of reference in which he is
stationed, and which constitute the space and time in which he lives
and experiments.





From now on, the real extension of the world has a fourfold order,
and the geometry of relativity is necessarily four-dimensional. What
we call the space of our Galilean frame at an instant, is but a
cross-section of this four-dimensional space-time world; and what we
call the time of our frame lies along a perpendicular to this section.
As we pass from one Galilean frame to another, we change our space
and we change our time. Our new instantaneous space, though still a
three-dimensional cross-section of the four-dimensional space-time
world, is tilted with respect to our former cross-section; and the same
tilting ensues for the perpendicular direction called time. In fact,
the situation presents a striking analogy with the various directions
of the verticals to the earth’s surface. They, also, manifest different
directions because the various two-dimensional portions of the earth’s
surface are variously tilted in three-dimensional space. The great
change in our understanding of the spatio-temporal background, the
great difference between space-time and the separate space and time of
classical science, resides, therefore, in this tilting process which
accompanies a change of relative motion.


In order to make these points clearer, let us understand that when we
speak of the instantaneous spaces of two observers in relative motion
as being tilted one with respect to the other, hence as lying outside
of each other (except for their common two-dimensional cross-section),
we do not mean that the space of one is some incomprehensible entity in
the opinion of the other. The tilted instantaneous spaces will enter
into our perception, but not as spaces alone: they will appear as a
succession of two-dimensional surfaces moving with uniform speed.


All these spaces are equally justified. No one of them stands out more
prominently than any other on the ground of symmetry with respect to
the four-dimensional world. Only when we specify the frame of the
observer will one particular space and one particular duration be
allotted. Hence we may say that practical congruence exists for space
and for time, as in classical science, provided the Galilean observer
effects his measurements with rods and periodic mechanisms, such as
clocks, which do not move about in his Galilean frame while performing
measurements. There is thus a perfectly definite physical meaning in
stating that the distances between two point-pairs at rest in the frame
are congruent or unequal; but we must specify that this distance is
measured according to the standards of the frame; and the same applies
to time-stretches. Likewise, as in classical science, the Galilean
observer will discover upon measurement with his congruent rods that
his space is Euclidean. It is only when the rods and clocks are in
relative motion or when, while at rest in our frame, the frame happens
to be accelerated or submitted to gravitational action, that they cease
to measure congruent stretches. It is only, therefore, when we reason
in an impersonal way, without specifying any particular frame, only
when we reason from the standpoint of all possible observers, whatever
be their motion, that space and time fade away into shadows; and it is
only then that we are compelled, whether we like it or not, to reason
in terms of the common objective world of relativity, that is, in terms
of four-dimensional space-time.








CHAPTER XVII

THE MATHEMATICAL EXPRESSION OF EINSTEIN’S FUNDAMENTAL
PREMISES





CONSIDER a Galilean system, and two points  and  in this
system. If a ray of light is propagated from  to , the
postulate of the invariant velocity of light demands that the distance
 measured by us in the frame, divided by the duration required
(according to the time of our frame) for a light wave to cover this
distance, be always equal to , the velocity of light. If, now, we
had viewed the same phenomenon from some other Galilean system, the
points  and  of the first system at the instants when the
ray of light passed them would have corresponded to some other points
 and  of our second system. But, just as in the first case,
we should have been able to measure the velocity of light between the
two points  and  of our second system. The principle of the
invariant velocity of light states that in whatever Galilean system we
might have operated, the measured velocity of light in vacuo
would always be the same.


Of course this velocity may be positive or negative, according to
whether the light ray is directed to the right or to the left; but we
can obviate this ambiguity of sign by considering squared values.


The mathematical translation of this principle of physics yields us the
following equation, which must remain invariably zero in value for all
Galilean frames:

When we pass from one Galilean frame to another, , ,
,  may vary in value; but the variations must be so
connected that the sum total of the above mathematical expression
remains invariably zero. Such is the mathematical condition which
expresses the principle of the invariant velocity of light.





Now it is our object to determine exactly in what measure these
different magnitudes , , ,  must vary in
value when we pass from one Galilean frame to another, moving with a
constant velocity  with respect to the first, if the previously
written mathematical condition of invariance is to remain satisfied.
From a purely mathematical standpoint problems of this type form part
of a branch of mathematics known as the theory of invariants. Such
problems had been studied many years before, and it was known that
the relations between the variables , , , ,
or, what comes to the same thing, the transformations to which it
was necessary to subject these variables (in order to satisfy the
condition of invariance set forth above), were given by a wide group of
transformations known as conformal transformations.[62]


But when, in addition, the relativity of velocity is taken into
consideration it is seen that conformal transformations
are far too general. We must restrict them; and when the required
restrictions are imposed we find that the rules of transformation
according to which the space and time co-ordinates of one Galilean
observer are connected with those of another depend in a very simple
way on the relative velocity  existing between the two systems.
These rules of transformation are given by the Einstein-Lorentz
transformations.[63]


Now these transformations are, as we have said, more restricted than
the conformal transformations; and this lesser generality of the
Einstein-Lorentz transformations has, as a consequence, the further
restriction of the conditions of invariance of the mathematical
expression mentioned previously. Not only will this expression have a
zero value for all Galilean frames when it has a zero value for one
particular Galilean frame, but in addition, if it does not happen to
have a zero value in one frame but has some definite non-vanishing
numerical value, it will still maintain this same definite
non-vanishing value in all other Galilean frames. In other words,
Einstein’s premises are represented mathematically by the invariance
of the total value of 
for all Galilean frames, regardless of whether this value happens to be
zero or non-vanishing.


The deep significance of this condition of invariance was first noted
by Minkowski, and it led, as we shall explain in the next chapter, to
the discovery of four-dimensional space-time.








CHAPTER XVIII

THE DISCOVERY OF SPACE-TIME





THE discovery of this invariant

whose value we shall designate by , marks a date of immense
importance in the history of natural philosophy. The fact is that with
Einstein’s discoveries such familiar absolutes as lengths, durations
and simultaneities were all found to squirm and vary in magnitude when
we passed from one Galilean system to another; that is, when we changed
the constant magnitude of the relative velocity existing between
ourselves as observers and the events observed. On the other hand, here
at last was an invariant magnitude , representing the square
of the spatial distance covered by a body in any Galilean frame, minus
 times the square of the duration required for this performance
(the duration being measured, of course, by the standard of time of the
same frame). It mattered not whether we were situated in this frame
or in that one; in every case, if  had a definite value when
referred to one frame, it still maintained the same value when referred
to any other frame.


Obviously, we were in the presence of something which, contrary to a
distance in space or a duration in time, transcended the idiosyncrasies
of our variable points of view. This was the first inkling we had
in Einstein’s theory of the existence of a common absolute world
underlying the relativity of physical space and time.


Minkowski immediately recognised in the mathematical form of
this invariant the expression of the square of a distance in a
four-dimensional continuum. This distance was termed the Einsteinian
interval, or, more simply, the interval. The invariance
of all such distances implied the absolute character of the metric
relations of this four-dimensional continuum, regardless of our motion,
and thereby implied the absolute nature of the continuum itself. The
continuum was neither space nor time, but it pertained to both, since
a distance between two of its points could be split up into space and
time distances in various ways, just as a distance in ordinary space
can be split up into length, breadth and height, also in various ways.
For these reasons it was called Space-Time, and the interval
thus became synonymous with the distance between two points in
space-time.





And here certain aspects of the problem must be noted. In the first
place, it may appear strange that measurements with clocks can be
co-ordinated with measurements with rods or scales. This difficulty,
however, need not arrest us; for although  is a time which can
only be measured with a clock, yet , being the product of a
velocity by a time, is a spatial length since it represents the spatial
distance covered by light in the time . For this reason we may
consider our four-dimensional continuum to possess the qualifications
of an extensional space.


Our next problem is to determine the nature of the geometry of this
mysterious continuum. The mere fact that it has been possible to write
the expression of this square of the interval with squared magnitudes,
such as , , etc., without having recourse to
terms such as , , etc., would of itself imply that
the continuum was flat and free from all trace of non-Euclideanism or
curvature. Furthermore, it implies that the mesh-system to which we
refer this distance is one of straight lines, and is not curvilinear
(see Chapter VII).


The only flat continuum we have studied so far is the Euclidean one,
but in the present case we see that though flat, our continuum is not
strictly Euclidean owing to the minus sign preceding ; or,
again, owing to the fact that , instead of , as in a four-dimensional Euclidean space. Yet, because of the
constancy in the values of the ’s throughout the mesh-system,
hence because of the flatness or absence of non-Euclideanism or
curvature of the continuum, the analogy with a Euclidean continuum is
very great, and for this reason it is called semi-Euclidean.[64]


We say, therefore, that space-time is a four-dimensional semi-Euclidean
continuum, and that it is differentiated from a truly Euclidean
four-dimensional one solely because it has one imaginary dimension and
three positive ones in place of four positive ones. In this continuum,
time represents the so-called imaginary dimension, and the three
dimensions of space represent the three positive ones; though it must
be remembered that all we wish to imply by this statement is that there
exists a difference between the dimensions of space and that of time.
We should be equally justified in calling time a positive dimension,
and the three dimensions of space imaginary dimensions.





Now we have also seen that the mathematical form of the expression
which gives the square of the distance depends not only on the geometry
of the continuum, but also on the system of co-ordinates we may have
adopted. In the present case the form of the mathematical expression
tells us that our co-ordinate systems or mesh-systems are necessarily
Cartesian, that is, are constituted by mesh-systems of four-dimensional
cubes. Hence we see that all our different Galilean mesh-systems, when
taken as frames of reference, correspond to differently orientated
Cartesian mesh-systems in four-dimensional space-time.[65]


In short, space-time must be regarded as the fundamental continuum of
the universe. Of itself it is neither space nor time. Any Galilean
observer splits it up into four directions by means of his particular
Cartesian mesh-system; one of these directions corresponds to his
time measurements, while the three others correspond to his space
measurements.


Henceforth an instantaneous event occurring at a certain point of
our Galilean system and at a definite instant of our time will
be represented by one definite point in space-time, a point in
four-dimensional space-time being called a Point-Event.
Space-time itself appears then as a continuum of point-events, just
as ordinary space was considered to be a continuum of points, and
time a continuum of instants. Of course point-events, like points and
instants, are mere abstractions; for a point without extension and
an instant without duration are mathematical fictions introduced for
purposes of definiteness; they are mere abstractions from experience.


Now just as an instantaneous event is represented by a point-event,
so a prolonged event, such as a body having a prolonged existence and
occupying therefore the same point or successive points in the space
of our frame at successive instants of time, will be represented by a
continuous line called a World-Line. If this line is straight,
the body is at rest in our Galilean system, or else is animated with
some constant motion along a straight line. If the world-line is
curved, the motion of the body is accelerated or non-rectilinear in our
Galilean system; hence it is accelerated or curvilinear in space (owing
to the absolute character of acceleration). In this way all phenomena
reducible to motions of particles are represented by absolute drawings
in space-time.





According to the Galilean system of reference we may adopt, we divide
space-time into space and time in one way or in another. Hence
the resolution of the drawings of phenomena into space and time
components is effected in various ways. We thus obtain variations in
the spatio-temporal appearances of phenomena. Notwithstanding these
variations, dependent on our relative motion, the absolute space-time
drawings themselves, with their intersections, remain unchanged, and a
direct study of the absolute world would consist in a study of these
absolute drawings without reference to their varying spatio-temporal
appearances.


It should be noted that inasmuch as space-time appears as an absolute
continuum, existing independently of our measurements, there is no
reason to limit ourselves to Cartesian mesh-systems when we wish
to explore it. The mesh-system is, as we know, a mere mathematical
device facilitating our investigations; and from a purely mathematical
point of view we may always with equal justification split up a given
continuum with one type of mesh-system or another. However, it must
be remembered that in the case of space-time, when we wish to express
the results of our measurements in terms of the space and time proper
to our frame of reference, the mesh-system we must adopt is no longer
arbitrary.


All Galilean observers, as we have seen, must split up space-time
with their particular Cartesian mesh-systems. Certain curvilinear
mesh-systems will correspond with more or less precision to the
partitioning of space-time by accelerated or rotating observers. But
in the most general case, arbitrary curvilinear mesh-systems do not
correspond to the space and time partitions of any possible observer,
though this fact does not detract from their utility.


So far as the essential characteristics of space-time itself are
concerned, these Gaussian mesh-systems are just as legitimate as the
Cartesian ones. As a matter of fact, when space-time becomes curved,
owing to the presence of gravitation, Cartesian co-ordinates cannot be
realised, being incompatible with the curvature of the continuum.


Yet, regardless of the mesh-system we use, certain general
characteristics of our space-time drawings remain absolute. Thus, we
have seen that the interval between two space-time points has a value
which is invariant to a change of mesh-system. While it is true that a
world-line which measures out as straight from a Cartesian system may
appear curved when referred to a curvilinear or Gaussian one, yet, on
the other hand, intersections or non-intersections of world-lines are
absolute and are in no wise affected by our choice of a mesh-system. It
is for this reason that phenomena such as coincidences are absolute,
in contrast to simultaneities of events at spatially separated points.
These are relative.





Thus, if two billiard balls kiss in the observation of one man, they
will continue to kiss in the observation of all other men, regardless
of the relative motion of these men. The kissing of the balls
constitutes a coincidence, an intersection of the world-lines of the
two balls; hence it is an absolute. On the other hand, if two billiard
balls hit different cushions simultaneously in the observation of one
man, they will not in general hit the cushions simultaneously in the
observation of a man in motion with respect to the first. The reason
is that our second observer will have adopted a new mesh-system,
oriented differently from the first; and in this new mesh-system the
two space-time point-events represented by the instantaneous impacts of
the two balls against the two cushions will no longer lie necessarily
at the same distance along the new time direction.


Owing to the common use of curvilinear mesh-systems in the general
theory, we must recall that in a curvilinear mesh-system the square of
the interval adopts the more complicated form

expressed more concisely by



The ’s are no longer constants, as when we had
 and ,
with all other ’s vanishing; they now have variable values
from place to place, and as for , , , 
these no longer necessarily represent space and time differences; they
are mere mathematical Gaussian number differences. In spite of all
this, the numerical value of , the square of the interval,
remains the same regardless of the mesh-system selected.


Psychological duration, or aging, can also be represented in
space-time. By psychological duration we mean the flow of time which
the observer experiences; or, more precisely still, the duration that
would be marked out by a clock held in his hand. Psychological duration
is measured by the length of the space-time world-line followed by the
observer. When we keep this point in mind the paradox of the travelling
twin to be discussed in a later chapter loses much of its paradoxical
appearance.





We can also understand how it comes that the discovery of space-time
permits us to account for the duality in the nature of motion,
relative when translationary and uniform, absolute when accelerated
or rotationary. As long as we were endeavouring to account for this
duality by attributing an appropriate structure to three-dimensional
space, we were met by a peculiar difficulty: If we assumed space to
have a flat structure, that is, one of planes and straight lines, it
would be possible to understand why a free body, when set in motion
with any definite velocity, should be guided along one of these
straight lines or grooves in space. It would be following its natural
course and there would be complete symmetry all around it; everything
would run smoothly and no forces would arise. Then, if we attempted
to tear the body away from its straight course, compelling it to
follow a curve, we should be forcing it to violate the laws of the
space-structure, tearing it away from the space-groove which it would
normally follow. It was not impossible to assume that the groove would
react and that antagonistic forces would arise. Thus the fact that
curved or rotationary motion was accompanied by forces of inertia,
hence manifested itself as absolute, did not constitute a difficulty of
an insuperable order. But a real difficulty arose when we considered
the other species of accelerated motion, i.e., variable motion
along a straight line. In this case, the paths of the bodies being
straight (hence in harmony with the flat structure of space), no
violation of the laws of this spatial structure was evidenced. And yet
forces of inertia were again present. It was difficult to interpret
their appearance in terms of the space-structure.


When, however, we substitute four-dimensional space-time for
separate space and time, the difficulty vanishes. For now we
notice that all accelerated motions, regardless of whether they
be rectilinear or curvilinear, are represented by curved world-lines
in space-time. All these accelerated motions violate, therefore, the
flat space-time structure; and for this reason forces of inertia will
always be generated by them. On the other hand, when we consider
Galilean or uniform or translational motions, we see that, as in the
case of three-dimensional space, they will be represented by straight
lines. These motions will then stand in perfect harmony with the flat
space-time structure, and no forces of inertia will arise.


In this way, thanks to space-time, one of the outstanding difficulties
which confronted classical science, namely, the dual nature of space
and of motion, is accounted for.








CHAPTER XIX

VARIOUS POSSIBLE WORLDS





WE have seen that the great distinction between Einstein’s theory
and classical science arises from the value to be attributed to the
invariant velocity of the world. In the belief of classical science,
this velocity was infinite, and we were thus led to a world of separate
space and time. According to relativity, the value of the invariant
velocity is finite and is given by , the constant which enters
into Maxwell’s equations; this constant being illustrated physically by
the velocity of light in vacuo.


From a purely mathematical standpoint, however, if we disregard
the relations of reality, we may consider other purely formal
possibilities. Suppose that the invariant velocity, though finite,
were some number  differing from Maxwell’s constant .
Obviously , being a maximum velocity, would have to be greater
than or equal to the highest velocity known to physicists, hence would
have to be equal to or greater than , velocity of light. Let us
therefore suppose that  is greater than . As in Einstein’s
theory, we should still be faced with a world of four-dimensional
space-time, but this world would differ from that of relativity, owing
to the discrepancy existing between the invariant velocity  and
Maxwell’s constant . This would indicate that the equations of
electromagnetics would no longer maintain the same form when we changed
Galilean frames. As a result, the erstwhile negative experiments in
electromagnetics should now yield positive results, and absolute
velocity through space would be detected. The theory of relativity
would have to be abandoned.





But we may consider still another case. Suppose that the invariant
velocity of the world were some imaginary quantity , where 
stands, as before, for , and  for some arbitrary
finite number. The square of this imaginary velocity being a negative
number, the square of  would now assume the form

Thus  would be given by a sum of four squares instead of by
a sum of three squares and a difference. This would prove that the
space-time continuum was Euclidean, having its four dimensions of the
same category, instead of semi-Euclidean, as in Einstein’s theory,
with an imaginary dimension for time. Time would now fail to be
differentiated from space. It is difficult to realise how a world of
this sort would manifest itself to us. The only reason we mention this
case is in order to show with greater clarity that the classical belief
in the separateness of time and space was equivalent to the classical
assumption that the invariant velocity was infinite, and not a finite
magnitude, whether real or imaginary.


A point that appears to have misled a number of persons relates to the
meaning to be given to a four-dimensional space and time continuum.
In all the cases mentioned in this chapter, it would be permissible
to speak of the world as a four-dimensional continuum of events. But
with the separate space and time of classical science the statement
was artificial, owing to the absoluteness of time, which stood out
by itself as distinct from space; and so the four-dimensional aspect
of the world was never stressed. It is different with space-time.
For now this aspect can no longer be disregarded, since it becomes
impossible to divorce space from time in any absolute way holding for
all observers. Thus we see that the four-dimensional nature of the
world is a fact which has been disclosed by the theory of relativity.
Prior to Einstein’s discoveries, any reference to space and time as
one continuum would have been an unjustified extension of the accepted
meaning of words.


Now let us return to the various types of worlds we have discussed
in the preceding paragraphs. It is possible to give an alternative
presentation of the results mentioned. Thus, we start from the
mathematical expression of :

where  represents the invariant velocity without any specification
as to its value. (It may be infinite, as in classical science, or equal
to Maxwell’s constant , as in Einstein’s theory, or even equal
to some imaginary number, as in the case last discussed.) Then it can
be shown that by dividing this equation by  and equating the
result to zero, we obtain an equation which corresponds to relations
holding in three-dimensional space. This equation is given by

where the ’s are the components of this velocity along the three
mutually perpendicular directions of space. When a mathematical
expression of this kind is given as invariant or absolute, the theory
of groups enables us to determine the nature of the geometrical rules
according to which the variables entering into the expression may
be added together. In the present case these variables represent
velocities, so that we are on the way to discover the rules governing
the addition of velocities. From this equation the following results
are obtained.





1°. If , the invariant velocity, is infinite, as in classical
science, it is found that the composition of velocities must be
Euclidean; so we should be able to combine velocities graphically by
the well-known rule of the parallelogram or of the Euclidean triangle.
In this case, of course, velocities which lie in the same direction
can be added up and subtracted like numbers.


2°. If , the invariant velocity, is no longer infinite but
finite, and if it is a real number, as in Einstein’s theory, the
rules according to which velocities combine are found to be those of
Lobatchewskian geometry. If, therefore, in Einstein’s theory, we wish
to compound velocities, we must operate no longer on a Euclidean but on
a Lobatchewskian triangle. We might, for example, trace our triangles
on the surface of a pseudosphere, since the geometry of this surface
is, as we know, Lobatchewskian. In this case velocities lying in the
same direction will no longer add up like the numbers of arithmetic.


3°. In a similar way we should find that if the invariant velocity
, while finite, happened to be an imaginary number, the
composition of velocities would follow the rules of Riemann’s geometry.
In this case we saw that four-dimensional space-time would be Euclidean
and not semi-Euclidean.[66] We merely mention this third type of
universe for motives of symmetry. Obviously it does not correspond
to the world we live in, hence we will not refer to it in future,
confining ourselves to the classical world and to that of relativity.





When we are called upon to decide which of the two alternatives is
correct (space-time or separate space and time), which one corresponds
to reality, a priori speculations are futile, since both
solutions are conceivable and satisfy the facts of crude observation.
Our only recourse is then to appeal to experiment, and by experiment
we mean observations that are more reliable than our crude perceptions
unaided by ultra-precise instruments. It is only thanks to such
experiments that we may succeed in ascertaining whether or not a finite
invariant velocity is demanded by the world-structure. Should our
experiments point to the existence of a finite invariant velocity, our
problem would be settled in favour of a world of space-time as against
one of separate space and time.


Now, experiment suggests that the propagation of light in vacuo
furnishes us with a concrete example of this critical velocity. It
follows that a measure of the speed of light propagation will yield
us the precise numerical value of the critical velocity. For this
reason, the propagation of light assumes a position of vast theoretical
importance. Needless to say, this importance of light is due solely
to its physical behaviour in vacuo, solely to the fact that it
moves with the invariant speed, not to the fact that because
of some accidental circumstance it happens to be visible to the human
eye. For light passing through glass or water is also visible, but its
speed, being reduced, is no longer invariant. Hence light propagation
through matter can no longer serve to define the invariant velocity
directly. Besides we can get away from light as a visible propagation
by considering an invisible electromagnetic propagation in its stead.


If we wish, we can do better still and obviate electromagnetic waves
entirely. For when account is taken of the negative experiments in
electrodynamics, we realise that the invariant velocity is none other
than the constant  which enters into Maxwell’s equations, whence
any experiment capable of measuring  would automatically yield us
the invariant velocity. In particular, we might measure the ratio of
an electric charge when computed in terms of electrostatic, then of
electromagnetic units; this again would yield us the value of Maxwell’s
constant , hence of the critical invariant velocity. We might also
appeal to the necessary consequences of the existence of a critical
velocity, for instance, to the peculiar Lobatchewskian law which it
would entail for the additions of velocities. We should then check
these consequences by experiment, discover whether they were justified
by facts, and deduce therefrom the existence and value of the invariant
velocity.





Fizeau’s experiment permits this verification and proves that the
composition of velocities is Lobatchewskian, not Euclidean, and
corresponds to the existence of a critical invariant velocity of
186,000 miles per second. It is true that in Fizeau’s experiment we
are again dealing with the propagation of light, though no longer
in vacuo, where its speed is invariant, but through water.
It is precisely because its speed through water is reduced that the
velocity of the water will affect the velocity of the light, thereby
permitting us to test out the relativistic law of the composition of
velocities. But once again the reason why light propagations enter
into the majority of these tests is due solely to the fact that
optical experiments permit of greater accuracy. Apart from this,
there is no need to limit ourselves to experiments dealing with the
propagation of light, whether in vacuo or through material
bodies such as water. Any speed, be it the speed of sound or of a
bullet shot from a passing train, should enable us to detect the same
law of Lobatchewskian composition and thus allow us to demonstrate the
existence of space-time.


At all events, one point should be clear by now. Whatever method we
follow, we can never get away from performing physical measurements of
one kind or another. It is therefore meaningless to speak of defining
the invariant critical velocity without reference to a measurement
of the speed of light in vacuo, or more generally, without
reference to physical measurements bearing on the phenomena which the
existence of a finite invariant speed in the universe would necessarily
entail. From this it follows that without physical measurements of one
kind or another we have no means of establishing whether the world is
one of separate space and time or one of space-time.


In theory even crude observations should have led us to a decision on
this score, for crude observations differ from those of the physicist
only in the matter of precision. Theoretically, therefore, prior to
Einstein we should have known of the incorrectness of the Euclidean
composition of velocities and hence known of space-time. The reason
for our failure to make the momentous discovery is easily understood
when we realise that owing to the very great magnitude of the
invariant finite velocity , the Einsteinian rule can scarcely be
differentiated from the classical rule unless very great velocities
are involved. From this it is seen that the reason why the effects
anticipated by Einstein’s theory are so difficult to detect is because
of the very high value of the invariant velocity . Had this
finite invariant velocity happened to be small, say a mile a second,
the classical conception of a world of separate space and time would
have been abandoned years ago; for the curious effects predicted by
Einstein would have become perceptible without effort. Again, were we
to conceive of this invariant velocity as becoming greater and greater,
the distinguishing features of the Einsteinian universe would gradually
fade away, until finally, if the invariant velocity became infinite,
space-time would give way to the separate space and time of classical
science, and all the peculiarities of Einstein’s universe would vanish.





A direct study of the Lorentz-Einstein transformations would lead to
the same conclusions; for if in these transformations we make 
infinite, we find that they degenerate into the classical Galilean
ones. And here a rather delicate point must be noted. The constant
—invariant velocity of the universe—has been identified in
Einstein’s theory with the velocity  of light in vacuo.
This identification was inevitable, as we explained when discussing the
equations of electromagnetics. But while it is correct to state that
Einstein’s theory would degenerate into classical science were ,
the invariant velocity of the universe, infinite instead of finite,
it would be wrong to infer therefrom that were the velocity of light
infinite we should be faced with the world such as classical science
thought it to be. As we know, in classical science the velocity of
light was not infinite; it was only the invariant velocity that
was infinite; and these two velocities had nothing in common.


If we wished to conceive of a world in which both the velocity of light
and the invariant velocity were infinite, we should have to make 
infinite in the equations of electromagnetics, since in these equations
 represents the velocity of light. But then all the terms in these
equations in which  entered as denominator would disappear. Since
these terms are those responsible for induction, in a world in which
the velocity of light was infinite, no such phenomenon as induction
could exist. There would be no dynamos, no radio; in fact, there would
be no light rays, since light is itself a phenomenon of electromagnetic
induction. Obviously such a world would not be the one in which we live.


Summarising, we must say that in classical science the velocity of
light  is finite and that the invariant velocity is infinite.
In relativity, , the velocity of light, is finite, as before,
but is identical with the invariant velocity, which is therefore also
finite. We also understand the deep-seated reason for the curious
complicated form of the relativistic space and time transformations
when we pass from one Galilean frame to another (the Lorentz-Einstein
transformations) as contrasted with the classical transformations. We
realise now that this more complicated form is due to the fact that the
real world is one of space-time, and not of separate space and time, as
was formerly believed.


Before closing this chapter, there is a point which we feel it
advisable to discuss more fully. It deals with purely formal
definitions in physics, and in particular with that of the critical
velocity. We have mentioned that definitions which profess to dispense
with the use of the rod, clock and physical measurements in general,
are recognised as impossible. Einstein has repeatedly stressed this
fact.


Possibly these points will be best understood if we discuss an
illustration of a purely formal definition given by Dr. Whitehead.
Thus, he writes:


“Experiment shows that this critical maximum velocity is a near
approximation to the velocity of light in vacuo, but its
definition in no way depends upon any reference to light.”[67]


Now any physicist would readily agree with this statement were it Dr.
Whitehead’s desire merely to obviate an appeal to light propagation
in the definition of the critical velocity of relativity. For, as we
have seen, the critical or maximum velocity can be defined and has
been defined by other physical means. Indeed, so far as we know, the
existence of the critical velocity is not contingent on that of light.
But Whitehead’s idea, it would seem from his writings, is to eliminate
physical measurements entirely from the basic definitions of physics;
whence his definition, or at least the nearest approach to a definition
we have been able to find in his writings:





“The physical meaning of  is also well known; namely, any
velocity which in any time-system is of magnitude  is of the same
magnitude in every other time-system. No assumption of the existence
of a velocity with this property or of the electromagnetic invariance
has entered into the deduction of the kinematical equations of the
hyperbolic type.”


Note that in this definition Dr. Whitehead has failed to identify 
with either Maxwell’s constant or any other physical magnitude. Thus
 is some unspecified magnitude; and we may express Dr. Whitehead’s
definition in more familiar language as follows:


“The critical or maximum velocity is a velocity of undetermined value
which may or may not be demanded by the world-structure. If, however,
it should exist, it will be given by the same invariant in every
Galilean frame, whatever the value of this invariant may be.”


In this definition no reference is made to any physical phenomena
or laws, and this is the aspect which appears to constitute its
superiority in Whitehead’s opinion. But the trouble is that if physical
measurements or the existence of physical laws established empirically
by the use of rod, clock, etc., are to be discarded, the definition
turns out to be no definition at all. For what sort of definition
is one which fails to apprise us of the magnitude of the velocity
it proposes to define? The definition of the velocity of sound, for
example, is that of a velocity of so many feet a second under specified
conditions of observation. A definition which failed to give us this
information would be no definition of the velocity of sound.


Now it might be contended that the precise magnitude of the invariant
velocity is a matter of minor importance, and that its property of
invariance (mentioned in the definition) is the fundamental point. We
may safely say, however, that no physicist could ever subscribe to this
view. Our entire outlook on nature depends essentially on the value of
this invariant velocity.


If it is finite, and if, in addition, it is equal in value to Maxwell’s
constant , hence to the velocity of light in vacuo, we must
conceive of a world of space-time in which the laws of nature will be
subject to certain rigid conditions. Also, simultaneity, length and
duration will be relative.


If the invariant velocity is a finite magnitude greater than the value
of Maxwell’s constant , we shall still have a world of space-time
in the extended sense, but the relativity of velocity will not hold and
we should be able to determine our absolute velocity through space.
The rigid restrictions placed on the laws of nature would no longer
be present, since the laws of electromagnetics would certainly be in
conflict with those restrictions. The entire structure of Einstein’s
theory would be overthrown.


Finally, if this invariant velocity were infinite, we should have the
separate space and time of classical science entailing the absoluteness
of simultaneity, length and duration. There is nothing in Dr.
Whitehead’s mathematical deductions to suggest which of these values
the invariant velocity is to have; it might even be an imaginary number.





At all events, we see that the precise magnitude of the invariant
velocity is not a matter of any small importance; hence it should
inevitably be defined by the definition. Yet this essential piece of
information Dr. Whitehead’s definition fails to give, by reason of its
being compatible with a whole class of possible invariant velocities
ranging from zero to infinity, just as a definition of New York as “a
city by the sea” gives us a whole class of possible cities. Definitions
of this sort are ambiguous, they are indefinite, and therefore are no
definitions at all. The best that can be said of them is that they
constitute partial descriptions.[68]


Up to this point we have discussed Whitehead’s definition in the light
of a self-supporting mathematical definition that would necessitate
no appeal to physical measurements in order to acquire a determinate
significance. Such appeared to be his intention. Thus interpreted, the
definition is a failure, as we have seen.


It should therefore be obvious that our only means of rendering it
determinate must be to establish the existence, then the magnitude of
this elusive critical velocity. But this can be done only through
the medium of physical measurements. It matters not whether the
measurements be accomplished with rods, clocks, light rays, or by
electromagnetic means. In every case they will be physical; hence, when
finally the value of the invariant velocity is obtained, this magnitude
will be fixed, determined or defined by means of physical measurements.
Dr. Whitehead’s purely formal definition cannot emancipate us from this
restriction. It seems strange, therefore, that he should criticise in
Einstein a procedure which he himself is unable to avoid.


At any rate, inasmuch as scientists convinced themselves years ago
that in the matter of physical definitions, physical measurements could
not be avoided, their aim has always been to select a definition which
would define the unknown quantity in terms of magnitudes already known.
If this method fails them, they attempt to present their definition in
a form which will be of aid to the physicist, directing him towards his
goal.


When these requirements are considered, it is seen that Einstein’s
definition of the invariant velocity as that of light in vacuo
cannot easily be improved upon. To understand this point, we shall
contrast the situation of an experimenter to whom Dr. Whitehead’s
definition, then Einstein’s, would be given.





As we remember, Dr. Whitehead’s definition informs the experimenter
that he may recognise the critical speed when his measurements have
succeeded in detecting a velocity which is invariant. Failing this, he
may also fix its value as soon as his measurements succeed in detecting
a trace of non-Euclideanism in the law of composition of velocities.
But this is obviously a very roundabout way to help him. The
experimenter will now be compelled to fire bullets with various speeds
and endeavour to detect traces of non-Euclideanism. If his attempts
are unsuccessful, he can draw no conclusions, since it might always be
supposed that the invariant velocity was too great to exert perceptible
effects on the velocities at his disposal. Even were he to detect what
might appear to be non-Euclideanism, how would he know that the effect
had not arisen from secondary causes? We remember, in this connection,
that neither Fresnel nor Lorentz ever thought it necessary to attribute
the result of Fizeau’s experiment to a non-Euclidean composition of
velocities.[69] Fresnel ascribed this result to interactions between
ether and matter, whereas Lorentz attributed it to the electronic
constitution of matter. In short, Dr. Whitehead’s definition places the
experimenter in the unenviable position of a man looking for a needle
in a haystack without having the consolation of knowing that the needle
is really there. From this we see that the definition, when interpreted
in a purely formal sense, is ambiguous and tells us nothing, and, when
interpreted in a physical sense, is of very little use to the physicist.


And now let us consider Einstein’s definition. First we may note that
had the bare invariance of the critical or maximum velocity represented
a proper definition in his opinion, he would have given it twenty years
ago, seeing that this invariance constitutes the A B C of his theory.
Yet, as we know, though he often refers to the maximum velocity as
the invariant velocity, and vice versa, he considered it necessary to
complete this partial description by a proper definition.


For Einstein, the important point was not so much to furnish a physical
illustration of this invariant velocity, which might conceivably never
be found to be realised in nature as a physical existent. (In the
same way, the infinite velocity of classical science was never given
by any physical propagation.) The important point was that he should
justify his belief that the world-structure demanded the existence of a
critical velocity of this sort; and by its existence we mean that were
it ever to be realised, it should prove to be an unsurpassable maximum
and an invariant.





We are now in a position to understand the advantage of Einstein’s
definition. First, he states that the electromagnetic experiments
have established the relativity of velocity. This in turn entails the
maintenance of form of all natural laws—in particular, Maxwell’s laws
of electromagnetics. Hence it follows that there must exist a critical
invariant velocity that is given by the constant c which enters into
Maxwell’s equations. Inasmuch as Maxwell had proved that  and the
velocity of light in vacuo were one and the same, the invariant
velocity is defined by this velocity of light. Thus, with Einstein’s
definition, we know that the world-structure demands the existence
of a finite invariant velocity, and not of an infinite one, as was
believed by classical science. And, in addition, we know that this
velocity is given by Maxwell’s celebrated constant , a constant
whose value had been determined with accuracy long before the advent of
the relativity theory. In other words, Einstein defines the unknown in
terms of the known, not in terms of the ambiguous.


To return to our illustration of the needle in the haystack, not only
has Einstein given us the assurance that the needle is there, but
he also tells us exactly where to look for it. For this reason his
definition, in contradistinction to Dr. Whitehead’s, satisfies the
requirements demanded by physical science.


In these pages we have discussed Whitehead’s definition at some length
because it illustrates the danger there is in confusing mathematics
and physics. Thus, whereas in mathematics we may postulate anything
we please (with certain reservations) and then proceed to reach our
conclusions deductively, in physics this procedure is impossible.
We must take our cue from experiment and formulate our premises
accordingly. The result is that whereas in mathematics we are concerned
with formal possibilities, in physics we are limited to an analysis of
actual facts. And in every case the transition from the possibilities
of mathematics to the actualities of physics necessitates the
introduction of physical measurements.


In this connection it is most important to understand the difference
between a physical and a mathematical definition. Take a number
like n in mathematics. We can define it as the ratio of the length
of a circumference to its diameter in Euclidean geometry. Without
performing physical measurements, we can deduce from this definition,
by purely mathematical means, the precise value of  to any
order of approximation we please. Thus the definition does not lead to
ambiguity, hence is a valid one.


On the other hand, try to give a physical definition by some similar
method—say, the definition of the “gram” or of the “dyne.” The purely
logical type of definition breaks down, and we are compelled to resort
to physical determinations. Accordingly, we define the gram as the mass
of a cubic centimetre of distilled water under specified conditions of
temperature and pressure.


And why was the purely logical definition possible in mathematics and
a failure in physics? Merely because in mathematics—in the case of
, for example—the laws of Euclidean geometry were accepted from
the start, whereas in physics preliminary information of this sort is
denied us. And it is the same with all the magnitudes and constants of
physics. It is impossible to predetermine by logical means the value
of the invariant velocity, or of the gas constant, or of the size of
the earth or of an electron. In every case, we must have recourse to
physical measurements of one sort or another, for the constants of
physics present no character of rational necessity.


Much of the criticism directed against Einstein’s use of rods, clocks
and light propagation arises from a failure to understand this

fundamental point. Purely logical, non-empirical definitions in
physics can only lead to ambiguity. As for the theory of relativity, it
is one of physics; it does not claim or aspire to be anything else; and
a theory of physics which would avoid physical measurements is about as
reasonable a conception as a forest without trees.








CHAPTER XX

THE IRREVERSIBILITY OF TIME





WE saw, when discussing the existence of a finite invariant velocity in
nature, that the presence of this velocity was going to work havoc with
our belief in absolute simultaneity. Thus, if two events take place in
different places, we can no longer attribute any universal meaning to
the opinion that these two events have taken place at one and the same
instant of time or at two different instants. In other words, there
exists no absolute clock giving us the correct time at all points of
the universe. According to the motion of the observer, two events which
are simultaneous for one may follow in sequence for another.


At this point we must guard against possible confusion. It might be
argued: “There is nothing very new in this relativity of simultaneity
and of the order of succession of our perceptions; for we encounter
such examples even in classical science. For instance, if two
explosions occur at different spots, by adjusting our position as
observers it may be possible for us to perceive the two noises
now simultaneously and now in succession.” But such arguments
would indicate that the revolutionary notion of the relativity of
simultaneity had not been grasped.


Thus, in the example of the two explosions happening in different
places on the earth’s surface, while it is perfectly true that the
order of succession in which we hear or see these explosions will
depend on our position as observers, yet, on the other hand, if we
take into consideration the time which sound or light waves require
to cover the distances separating us from the two explosions, we can
always decide without ambiguity whether the two explosions occurred
simultaneously or in succession. It was never the order or the
simultaneity of our perceptions which was considered absolute in
classical science; it was solely the simultaneity or order in which
these explosions or events had taken place in the outside world.


Now, according to the theory of relativity, not only is the
simultaneity of our perceptions relative, but in addition, even when we
take into consideration the speed with which the sound waves or light
waves advance towards us, it is still impossible to decide whether the
two events (regarded as existing in the outside world independently
of any observer) are simultaneous or not; for our calculations would
show that this simultaneity in the outside world would vary from one
observer to another.





The relativity of simultaneity leads us to the kindred subject of
the relativity of the order of succession of two events occurring in
different places. Here it is impossible to lay down a rigid rule; for
we shall see that the theory compels us to recognise that in certain
cases the order of succession is indeterminate or relative to our
motion, while in others it is absolute, remaining the same for all
observers.


The problem is of sufficient importance to warrant a more detailed
explanation. Our awareness of the passage of time constitutes one
of the most fundamental facts of consciousness. Not only is time
continuously passing, but it is ever flowing in the same direction.
To this mystery of the uni-directional passage of time, the theory
of relativity contributes no new information, so that we may discuss
the problem from the standpoint of classical science. Suppose, then,
that in a bottle we place two layers of powder, one white and one
black. If we shake the mixture long enough, we know that the final
result will be a uniform grey mixture. Now we might have anticipated
this result without actually performing the experiment. For if we
consider the various ways in which the particles of the powders could
be distributed in the bottle, sufficient reason would urge us to assert
that all distributions were equally probable. But it so happens that
by far the greater number of these possible schemes of distribution
would yield the appearance of a uniform grey mixture. Probability
would suggest, therefore, that on shaking the bottle long enough, the
uniform grey mixture would finally appear. When this homogeneous state
had been obtained, only once in æons of time would the black and white
separation reappear, and then but for an instant. We may express these
facts by saying that the general tendency would be a passage from the
heterogeneous (black and white layers) to the homogeneous (uniform grey
mixture).


The example we have considered is one of extreme simplicity, but
inasmuch as the arguments involved appear to be of universal validity,
we may say that natural phenomena present a uni-directional sense of
advance, passing from the states of lesser probability to those of
greater probability. We may therefore identify the states of lesser
probability with the past and those of greater probability with the
future. The direction of time’s passage can thus be defined physically
in terms of probability considerations, entailing a mere appeal to
sufficient reason and to operations of counting.


This was the definition suggested by Boltzmann (the founder of the
kinetic theory of gases). According to him the universe was passing
from states of lesser probability to that of maximum probability, and
the direction of this passage defined that of time. As can be gathered
from the preceding explanations, a uni-directional passage in the
course of phenomena is to be ascribed to the fact that phenomena are
irreversible, i.e., that the various states are not equally
probable.





It is true that there also exist types of phenomena for which all
states present the same probability. In this case no privileged
direction exists, and the phenomena are called reversible. An
adiabatic transformation under ideal conditions, and the rotation of
a body in the absence of friction, are illustrations of reversible
processes; such phenomena would of course be incapable of defining the
direction of time.


But by far the greater number of phenomena in nature are of the
irreversible type; with these a definite direction of change is
privileged. When we wish to force the phenomenon against its natural
trend, work must be furnished. All phenomena entailing friction are
of the irreversible sort, for whereas motion generates heat through
friction, the heat cannot be used to regenerate the motion. The
example of the two powders also presented us with an illustration of
the irreversible type of phenomenon, since the natural evolution was
from heterogeneity to homogeneity. To be sure, it would be possible to
reverse the process, but only through the medium of some intelligent
activity sorting out the particles and distributing them according
to states of lesser probability. The action of a demon of this sort,
Maxwell’s demon, would cause the direction of the irreversible
phenomena to be reversed, so that the direction of time would appear to
change. Needless to say, however, Maxwell’s demon is but a fiction.


In the illustration of the two powders we can readily understand the
reason for the irreversibility, but it was not by this method that the
principle involved was first discovered. We must go back to Carnot
and to his investigations on the cycle of the steam engine in order
to trace the origin of what was to become one of the most fundamental
principles of science. Carnot’s celebrated principle relating to the
efficiency of the steam engine was shown by Clausius to be a special
case of a general physical principle which may be stated thus:
“Heat cannot flow unaided from a colder to a hotter body, but tends
invariably to seek lower levels of temperature.”


By introducing a new concept called Entropy, defined as the
ratio of a quantity of heat to a temperature, Clausius was able to give
a more general form to this principle. It then became the Principle
of Entropy, according to which, in any irreversible change, the
entropy of a system was increased; only in the case of a reversible
change would it remain constant. Under no circumstances, however, would
the total entropy decrease. Thus all natural processes involve an
increase of entropy since none are ideally reversible.


Now when we consider the principle of entropy in its bearing on
the concept of energy, we find that it implies a continual loss of
potentiality in the energy of the system. The energy is thus constantly
dissipated, or, more properly speaking, degraded into that
lowest of forms, namely, disorderly molecular agitation, i.e.,
heat; whence the name, Principle of the Degradation of Energy,
under which it is often referred to.


The principle is of such extreme importance that it has been named the
Second Principle of Thermodynamics; the appellation First
Principle of Thermodynamics being reserved for the principle of
the conservation of energy. It is important to note that these two
principles, that of degradation and that of conservation, do not
conflict. In quantity the energy is conserved; it is solely in quality,
or in potentiality, or in its ability to perform work, that it is
degraded.





We now come to Boltzmann’s contributions. Entropy as defined by
Clausius was an exceedingly abstruse thermodynamical concept.
Boltzmann, by basing his deductions on the kinetic theory of gases,
succeeded in giving a more concrete representation of entropy,
defining it as the logarithm of a probability. Thus, if we admit the
correctness of the kinetic theory, the principle of entropy becomes
one of maximum probability, losing thereby its status of absolute
validity and assuming a statistical significance. The representation
of entropy in terms of probability permits an easy application of the
principle to the problems of molecular physics and to atomistic physics
in general. We may note that it was by following this method, or rather
by combining the two definitions of entropy, that Planck established
his quantum radiation formula, and was thus led to his quantum theory.
Needless to say, the principle holds only when exceedingly large
numbers are considered. In other words, it is a principle governing the
chaos, or, again, it is a statistical principle.





It will be seen that the principle of entropy, by stating that the
world is ever passing from states of lesser to states of greater
probability, indicates that when the state of maximum probability or
entropy is reached, no further change can take place. There will then
be silent immobility or death. Under the circumstances it might appear
that the principle was inconsistent with the existence of an original
state of minimum probability. But here it should be remembered that the
principles of science do not aspire to any absolute measure of value.
All we can demand is that they be satisfied in the very restricted
domain which science can explore. In the case of the principle of
entropy, however, there is no reason to fear any conflict with the
possibility of rebirth or re-creation. For instance, when shaking the
powders, we saw that a uniform grey mixture would be the outcome; but
were we to go on shaking the bottle for trillions of centuries, at some
time or other the black and white separation would reoccur, and the
cycle begin all over again. In short, the entropy would continually
increase, but once every trillion years it might suddenly decrease, and
then start to increase once more. We may mention that although there is
no reason to assume that vital phenomena are in any wise inconsistent
with the principle of entropy, it is safer to restrict the principle to
the physical world. With biological phenomena, questions of probability
are far too complex to be treated with any measure of assurance in
the present state of our knowledge. Only in certain special cases,
such as those connected with Mendel’s observations, have probability
considerations been introduced with any profit.[70]


Now the two points we wish to stress are as follows: First, the
uni-directional progress of time is imposed by common experience.
Secondly, the principle of entropy is suggested both by experience and
by arguments of a rational order. We do not assert thereby that the
principle of entropy, even when reduced to the rank of a statistical
principle, can be claimed with assurance to be of universal validity.
It is far from impossible that in certain phenomena, of which as yet
nothing is known, some counterbalancing activity may be at work.
Nevertheless, it may be pointed out that a denial of the principle of
entropy, at least as regulating those physical phenomena with which
science deals, would arrest further progress.


For instance, we can readily understand in what an embarrassing
situation we should be placed were a reversal of time to occur. Quite
aside from such trivial examples as that of a hen becoming a chick
and disappearing into an egg, or from effects becoming causes, a
number of more scientific considerations must be mentioned. Phenomena
would now pass from states of maximum probability to those of minimum
probability; we could not merely interchange the meanings of the words
“maximum” and “minimum,” for these are given by purely numerical
considerations, which are quite irrelevant to the direction of the
time-flow. Hence phenomena would pass from the homogeneous to the
heterogeneous. But whereas a homogeneous state is unique, and can
be predetermined, a heterogeneous one is more or less arbitrary,
and baffles prevision. Thus, in the case of the two powders, the
homogeneous state is a uniform grey mixture; whereas a heterogeneous
state might be a succession of alternate layers, or only two layers,
or a juxtaposition of black and white cubes. In fine, prevision would
become well-nigh impossible.


From this we may readily anticipate that should Einstein’s theory
render the direction of time’s progress indeterminate, should past and
future be interchangeable according to our circumstances of motion, the
utmost chaos would ensue. However, we need have no fear on this score,
for as we shall see, the theory of relativity leads to no reversal of
causality. Let us now consider the space-time theory in greater detail.





When we consider the four-dimensional space-time continuum, where
space and time are on the same footing, there is nothing to suggest
either a flowing of time or a privileged direction for this flow.
In order to conform the theory to the facts of experience, it is
therefore necessary to postulate that our consciousness rises along the
world-line of our body through space-time, discovering the events on
its course. Obviously, we might reverse the presentation by assuming
that it was space-time that was moving past our consciousness; we
might also claim that the very texture of space-time possessed dynamic
properties urging our consciousness along time directions. But in
view of the vagueness of the subject, not much is to be gained by
speculating on this score.


Now when, along the world-lines which each one of us follows, a common
direction from past to future has been specified, we find that an
absolute past and an absolute future (though not an absolute present)
are demanded by the theory of relativity. To be more explicit, we find
that whereas, according to the nature of our relative motions, certain
events may appear as simultaneous, or as antecedent and consequent, or
as consequent and antecedent, others will invariably present themselves
in the same order of temporal sequence regardless of our motion.


This division between events whose order of occurrence is absolute and
those whose order is relative is obtained as follows: Whenever it is
possible for a ray of light to pass from one event to a second event,
leaving the first event at the instant it is produced and reaching the
second event before or even at the instant at which it is produced, the
time sequence of the two events cannot be reversed by relative motion;
it is absolute.


On the other hand, if it is impossible for the ray of light to satisfy
the preceding requirements, owing to the too great distance or the too
small period of time separating the two events, the time sequence of
the two events becomes indeterminate. One observer may claim that 
precedes , whereas the other may claim that  precedes ,
and yet another may assert that  and  are simultaneous. If we
remember that in Einstein’s theory no active influence, no propagation,
can be transmitted with a speed greater than light, we see that when
a ray of light cannot proceed from  to , leaving  when
 is produced and reaching  when or before  is produced,
it is quite impossible for us to suppose that  has influenced
. No causal connection can exist between these two events. Hence
we see that when two events are causally connected, their order of
occurrence will remain the same for all observers. Only when no causal
connections could possibly exist can the temporal sequence of the
events be reversed by an appropriate motion of the observer.





It is not because a causal connection happens to exist between two
events that the order is non-reversible; the non-reversibility is due
entirely to the spatio-temporal separation of the events. As for the
causal connection, it may or may not exist. The only reason we mention
causal connections with reference to this problem is in order to show
that there is nothing in the relativity theory to suggest a reversal
of causality; hence, though Einstein’s theory entails the relativity
of simultaneity and in certain cases that of temporal sequence, there
is no danger of a cause appearing as an effect or vice versa. In
particular, no relative motion of the observer could ever lead him to
believe that the glass we had let fall had in reality leaped up from
the floor into our hand. No danger of the black and white powders which
we had shaken into a grey mixture, appearing to separate back into
black and white, as a result of a change in our relative motion. In
short, no danger of the principle of entropy being overthrown.


We may also add that whereas, in classical science, owing to the
possible existence of influences transmitted with infinite velocity,
any two events happening in space might have been conceived of as
causally connected or at least as related, Einstein’s theory, by
requiring the velocity of light to be unsurpassable, permits us to
restrict the cases of possible causal relationships and thereby to gain
a better understanding of the cross influences which may be active in
the universe.








CHAPTER XXI

THE REALITY OF THE CONTRACTION OF LENGTHS AND OF THE
LENGTHENING OF DURATIONS





LET us now pass to the question of lengths and durations. Consider a
rigid rod placed on a table, and suppose that both table and rod are
drawn away from us with constant speed along a straight line. The
contraction of lengths implies that both rod and table will appear to
us to be contracted, owing to their relative motion with respect to us.


Here we must emphasise the fact that this contraction has nothing to
do with the motion of the rod through space or the ether. As we know,
motion, or at least Galilean motion, through space has no meaning. It
is purely a relative; so that exactly the same effects of contraction
would ensue were we to conceive of the table and rod as at rest and
of the observer as moving away from them. It follows that an observer
attached to the rod would perceive no contraction, although his friend
in motion with respect to him would assert that a contraction had taken
place.


The nature of this contraction is obviously rather mysterious, and
the question is to decide as to its reality. Here we are met with the
difficulty of defining what we wish to convey by the word “reality”;
in some respects the contraction of the rod is a physical reality, in
others it is a fiction, but in no case is it an illusion.





Let us consider the problem of illusions. For instance, we experience
an aggregate of visual impressions which we unhesitatingly ascribe to
the presence of a table situated “there in the room.” Yet all we have
any right to be positive about is that certain visual impressions have
been experienced; our belief in the existence of the table situated
“there” results from an inference, a judgment formulated in an attempt
to ascribe a cause to our visual sensations. By an association of ideas
and by recalling past experience, we feel justified in claiming the
existence of the table “there” as we see it. In the majority of cases
our judgment will be correct, but in a certain number of instances
it will be erroneous. Such would be the case were we to be viewing
the reflection of a table in the mirror. An illusion is therefore an
error of judgment. And what prompts us to state that our belief in the
object behind the mirror is an illusion? Obviously, the bare fact that
on testing the matter out in a variety of different ways it appears
impossible to credit the table with any existence at the spot where
we claim to see it in the common objective world of science. In much
the same way we see a mirage and interpret our sensations as connoting
the presence of water. Yet were a meteor to fall into the water it
would not appear to be extinguished by the waters of the lake. Kindred
observations of an indirect order would finally compel us to recognise
that our initial judgment was at fault, and that no water lay before us.


And now let us consider the FitzGerald contraction. Is it an illusion?
To this question our reply must unhesitatingly be in the negative.
Not only should we perceive the contraction were our eyes capable
of yielding a snap-shot picture of a rapidly moving object, but in
addition every conceivable physical experiment performed in our frame
would indicate that the contraction was physically present. And yet
we have said that the contraction differed essentially from the
one contemplated by Lorentz, generated as was the latter by a real
compression caused by the motion of the object through the stagnant
ether. The explanation of the dilemma is as follows:


In Einstein’s theory, the rod is contracted, but we must add that this
contraction holds only in the space of the frame with respect to which
the rod is in motion. In the space of the frame accompanying the rod
in its motion, no contraction would occur. We see, then, that as there
exists no privileged space, only “my space,” “your space,” “his space,”
there is no particular length to the rod, only a length “for me,” “for
you” and “for him.” The contraction is thus embodied in a two-term
relationship extending between the observer and the observed; it is a
“relative.” But, once again, for a given observer it is as physically
real as a chair or a table. Only when we consider the contraction from
an impersonal standpoint, from that of space-time, without mentioning
the conditions of observation, is the contraction not an
illusion, but downright meaningless. It is, as we see, the concept of
spatial magnitude, of primary qualities, which is at stake, in a form
entirely different from anything science or philosophy had ever dreamed.


Now although length, size and duration are relatives, the theory of
relativity has discovered absolutes which transcend the observer,
remaining the same for all. They are to be found in the absolute
world of space-time; and it is this thought that Minkowski desired to
convey when he said: “Henceforth space and time by themselves are mere
shadows.” In the absence of some specified observer, space and time
become indeterminate, and with them length and duration; that which
endures and transcends the observer is a something in space-time,
and this is neither a length nor a duration. Or, again, lengths and
durations are the projections of something in absolute space-time on
to the space and time directions of the observer. These latter are
indeterminate (until the frame of the observer is specified), since no
one space and no one time exists above all others. Space and time being
indeterminate, the same will apply to those projections which we call
length and duration.





Although we may be repeating ourselves unnecessarily, we cannot
help but feel that the easiest way for the layman to grasp these
difficult concepts will be to return to the well-known illustration
of the relativity of a visual angle. When we perceive an object,
say a telegraph pole, we see it under a certain angle, which we may
call the visual angle. Is this visual angle real? Of course it is;
we can measure it and define it physically as the angle subtended by
two Euclidean straight lines extending between our eye and the two
extremities of the pole. It is real but it expresses a relationship—a
relationship between the positions of the observer and pole. It is
certainly not inherent in the pole, since as the observer changes his
position the visual angle changes in magnitude, though nothing happens
to the pole in the meantime.


Visual angle in classical science is analogous to distance in
Einstein’s theory. Our rod has no true length any more than the
telegraph pole has any true visual angle. The whole significance of
relativity is precisely to deprive length and duration of the absolute
characteristics which classical science attributed to them. In short,
when we are asked whether the rod has really been contracted and lost
part of its length, we might counter by asking whether the telegraph
pole has really been modified and lost part of its visual angle. Just
as, if we omit to stipulate the position of the observer, the visual
angle of the pole has no meaning and can teach us nothing about the
pole, so now, in relativity, the length of the rod has no meaning in
itself and can teach us nothing about the rod.


All these arguments developed on the score of length apply in similar
fashion to duration. Both length and duration are relatives having no
absolute significance in the universe.


The critic will generally balk at these statements and be inclined to
say: “What nonsense! The length of the rod is immanent in the rod and
can in no wise be affected by the observer’s motion or by the frame’s
existence. The observer might die, the frame might disappear; what has
all this to do with the length of the concrete entity we call the rod?
The length of the rod may appear longer or shorter according to
its relative motion; but we must not confuse appearance and reality.
Thus, a man standing 100 yards away appears to us shorter than
when he is close up, but it would never enter our minds to say that
he was really reduced in stature. Just as the height of the man is
independent of our position and of our existence as observers, so is
the length of the rod independent of our relative velocity.”





Now we might readily concede to the critic the right to maintain
that the existence and absolute characteristics of the rod are in no
wise dependent on the motion or the existence of an observer. But the
critic is begging the question when he assumes without further ado that
these absolute characteristics are expressed by the length of
the rod. This length enters into existence only when a definite space
is specified; till then it is meaningless. And in the absence of an
observer there is no such thing as a space, but merely four-dimensional
space-time. The absolute characteristics of the rod thus refer to
space-time, and this eliminates all primary qualities such as length.
The situation is of course not easy to grasp at first blush and is
still less easy to explain, but in view of the extreme importance of
the matter we shall do our best to clarify it by slightly varying the
presentation.


Let us first examine the problem from the standpoint of classical
science. Consider an observer who walks away from a point  on the
surface of the earth. He finally comes to a stop after having walked
a distance  from the point . He turns round, looks back and
sees a black line sticking up from the earth at the point , whence
he started. The height of the line appears to him to have a certain
magnitude; and in order to register this magnitude accurately, he
measures with an instrument the precise visual angle under which he
sees the black line. He then continues his journey, stops, turns round
again and finds that the black line is now seen under a smaller visual
angle, hence appears to him to be reduced in height. His first impulse
would be to assume that the black line was due to some squirming mirage
and, while a reality in so far as it affected his eyesight, yet could
be endowed with no objective existence in any impersonal way. Yet,
without even returning to the point  and investigating the matter
more closely, our observer could soon find out that the black line must
be produced by some existent entity. He would make this discovery in
the following way: By combining the visual angle  under which
the black line appeared to him with his distance  from the point
, he would find that wherever he stood, a certain mathematical
expression (i.e., ) representative of a
length maintained the same invariant value. Something truly objective
would have been discovered since, in contrast to visual angle and
distance which varied with his position, here was a length which was an
absolute since its value transcended his position. He would immediately
attribute this absolute to the objective existence of a real rigid
pole of length  standing at the point . In short, the test
of objectivity is invariance for all observers, and this illustration
has enabled us to separate the absolute length  of the pole from
the relative visual angle  and distance . Classical
science assumed that this test of objectivity would hold in all cases,
regardless of whether our observers were stationary or in motion.
The theory of relativity tells us that this is not so. The observer
in relative motion would always perceive the pole under a smaller
visual angle, so that the mathematical expression purporting to give
the length of the pole would no longer be an invariant.[71] Under the
circumstances we should again be thrown back on the perplexing problem
of whether there could exist any kind of universal objectivity holding
for all observers in this universe.





One thing is certain. We could no longer attribute an invariant length
to the pole. This length would no longer be immanent in the pole,
since it is impossible to discover an invariant expression of spatial
length holding for all observers, hence independent of their existence.
We cannot, therefore, escape the conclusion that spatial length by
itself can have no more universal existence than the apparent height
or visual angle of classical science. Unless we abandon all hope of
discovering a something universally objective, we much search for
some substitute for that absolute spatial distance in which classical
science believed.[72]


Minkowski found that such an absolute could be constructed; but it
was made up of the relative length and duration under which every
observer perceived any two instantaneous events. In exactly the
same way as classical science had constructed the absolute spatial
magnitude, so now Minkowski constructed the absolute space-time
magnitude, i.e., the Einsteinian interval. Objectivity is at
last rediscovered, though this objectivity refers neither to space
magnitudes nor to durations, but to a combination of both. In other
words, the analogue of the absolute objective length of the pole in
classical science is now given by the absolute objective space-time
interval. The analogue of the relative visual angle, or apparent height
of the pole, of classical science is given by its relativistic length
as measured by the observer; and this length is no more an illusion
than was the visual angle. By omitting to analyse the meaning of his
words, the critic has argued as though the visual angle, or apparent
height, in classical science were an illusion. But the visual angle is
not an illusion. The illusion arises only from faulty inferences, when,
having identified visual angle with apparent height, we then proceed to
confuse the apparent height with the real height of the pole, thereby
crediting it with too short a length. It is this last confusion that
is unjustified, for it amounts to confusing visual angle, or apparent
height (which, though real for the individual, has no universal
significance, hence which is relative) with real length (which is
absolute in classical science).


In the same way the FitzGerald contraction is not an illusion. It can
be measured, and manifests itself physically in every conceivable
manner. But again it is a relative for the very concept of spatial
magnitude is essentially a relative, since, according to our motion,
it will have one value or another. That which is absolute, that which
endures unchanged, is the Einsteinian interval; and unless we wish
to continue to talk about such shadows as space and time, it is in
the space-time world and there alone that we shall obtain universal
objectivity.


Let us now state the precise nature of those modifications in lengths
and durations which will arise as a result of relative motion. The
Einstein-Lorentz equations show that a rigid material object, say a
yardstick, which, when at rest in our frame, would measure out as one
yard in length, would appear to contract more and more in value in
the direction of its relative motion (FitzGerald contraction) as this
relative velocity increased. Could the relative velocity reach that of
light, the rod would become completely flattened down to nothing.





Likewise, an observer fixed to a clock would note that the durations
between the successive second-beats of the clock were truly seconds.
But with an increase in the relative motion existing between clock
and observer, these beats would measure out as lengthened; and for
a relative speed equal to that of light an infinite duration would
separate two successive beats.


It must be noted that this lengthening in the durations defined by
the tickings of the clock must not be attributed to the fact that the
observer is moving farther and farther from the clock and therefore
that longer and longer periods of time are necessary for him to take
cognisance of these tickings. The results mentioned are those which
would be found to hold after all the necessary corrections had been
performed. It is solely the relative motion of the observer and the
clock which is involved, and not the variations in their mutual
distance. Our results would be exactly the same whether we were
approaching or receding from the clock, so long as the same magnitude
of our relative motion was maintained.


It is customary to designate by the names proper length and
proper duration the length and duration obtained by an observer
at rest with respect to the rod or clock. Beginners appear to have
considerable difficulty in convincing themselves that all these
durations, whether proper or elongated, are equally real. We have
already explained in what measure they are so, but it may be helpful to
give the following additional illustration: Suppose we are suffering
from a headache and that this headache lasts an hour when timed by
our watch. This will be the proper duration of the headache.
Now we might be inclined to claim that inasmuch as we alone
are suffering from the headache, we alone are in a position to
determine its duration; and when some rapidly moving observer tells
us that we have held our watch in our hand for one week and that our
headache has therefore lasted a week, we might be tempted to tell him
to mind his own business. But it must be realised that although the
headache is ours and ours alone, and nobody else can feel it for us,
yet the duration occupied by the headache is common property,
and any other observer is just as much entitled to live it and to
measure it as we ourselves are.








CHAPTER XXII

AND THE TRIP TO THE STAR





THE inevitable rational consequences which follow with mathematical
certainty when once the existence of space-time as a model of the
universe is conceded, are often puzzling to beginners, who feel that
these consequences are too paradoxical to be acceptable. Of course,
we must distinguish between a paradox of feeling, and a paradox of
logic or an inconsistency. Any inconsistencies would be fatal to a
rational construction and would denote either errors of reasoning or
the presence of some fundamental contradiction in our basic premises.
If, therefore, when analysing any given example in Einstein’s theory,
we proceed to follow our deductions by adopting successively two
different alternatives in our point of view, both of which would be
consistent with the premises of the theory, and if we finally compare
the results thus obtained and find them to be contradictory, hence
inconsistent, the theory of relativity could never survive. However,
it is scarcely probable that any such inconsistencies will ever be
discovered by the layman, inasmuch as the theory of relativity is the
work of mathematicians, for whom, more than for any one else, accurate
and consistent reasoning is the indispensable condition of research.


On the other hand, though no inconsistencies or paradoxes of logic can
exist in Einstein’s theory, this does not mean that the conclusions of
relativity may not appear strange and lead to paradoxes of feeling.
But once more it is important to differentiate between strangeness or
paradoxes of feeling, and inconsistency or paradoxes of reason.





The important point which must be settled, therefore, is whether
our habitual notions of time, space and simultaneity are rational
necessities, or whether they are merely feasible notions among a number
of equally feasible ones. The question we have to decide is analogous
to that which Kant proposed to solve when he stated that Euclidean
geometry and three-dimensional space were the a priori forms
of pure perception. Kant was wrong, as the discovery of non-Euclidean
geometries proved without doubt. To-day Einstein has done for space,
time and motion what Riemann and Lobatchewski did for the geometry of
space alone. He has furnished us with a model just as rational as the
model of classical science; and this model has the additional advantage
of being in accord with empirical observation to a high order of
precision, instead of being a mere approximate construction as was the
classical structure. Indirectly, then, Einstein has proved that our
innate classical conceptions of space, time, simultaneity and motion
were by no means rational necessities.


Many people, however, are of the mistaken opinion that the theory of
relativity leads to paradoxes of logic or inconsistencies. But when
we analyse their arguments we are always confronted with the same
erroneous method of reasoning. In many cases the critics seem to
have a very hazy idea of the premises on which the theory is built.
Others, while stating that for the sake of argument they are willing to
recognise the validity of these premises, appear to forget their good
intentions before reaching the end of their discussion. Inadvertently,
in the very middle of their demonstrations, they relapse into the
premises of classical science and, of course, are led to insufferable
contradictions; whereupon they conclude that the theory of relativity
leads to inconsistent results.


Let us consider, for example, the relativity of duration. A number of
clocks or atoms which beat at the same rate and mark the same time
when placed side by side are displaced along different routes to the
same terminal point. The relativity theory then demands that when set
side by side once again they shall be marking different times. The
critic immediately exclaims: “This is inconsistent!” But where is the
inconsistency? There would be inconsistency, indeed, had Einstein
started out by positing as an axiom that time was absolute. This, in
fact, is precisely what the critic has done. But then, when, as a
result of this uncalled-for presupposition, he finds that the theory
leads him into inconsistencies, he should not blame Einstein; for the
theory is inconsistent not with itself as a logical structure,
but solely with the critic’s own presuppositions.


Of course, the source of all the trouble lies in the fact that a
belief in the absoluteness of duration has become second nature to
us; and it requires a certain effort of introspection on our part for
us to realise that this belief presents no rational justification.
Eventually, however, our ideas become clarified, and we concede that
we have no means of figuring out a priori whether time will be
absolute or relative. We realise that it is impossible to lay down the
law at the start one way or the other, unless we wish to force nature
into a preconceived mould—which may not fit.


Our sole means of settling the problem is, then, to appeal to
experiment; to ultra-precise experiment in the present case, since the
crude variety would not enable us to reach a decision. The experiment
of the clocks, could it be performed with sufficient refinement,
would constitute one of these. Obviously it would be unwise to assume
that its result could be known with certainty in advance; for were
men to labour under any such belief, there would be no need for
them to experiment. We may, of course, question the likelihood of a
certain result occurring, basing our opinion on previous experiments
of a similar nature; but in the final analysis our understanding of
nature will issue from an accurate observation of facts and not from
a-prioristic metaphysics.





Unfortunately, as we mentioned previously, this experiment with
clocks or atoms cannot be performed with sufficient accuracy, so that
indirect methods must be considered. But it is precisely because all
the indirect experiments thus far attempted have yielded results
incompatible with the absoluteness of duration and distance that
Einstein was compelled to reject these secular beliefs of mankind.
Accordingly, we have every reason to anticipate that the clock
experiment would bear out Einstein’s views; in fact, were this not the
case, the entire theory would collapse.


Let us abandon these generalities, and consider the clock experiment
in a more vivid form. We refer to what is known as the problem of
the twins. In this we consider twin brothers one of whom remains on
earth, while the other steps on to a magic carpet and visits distant
Arcturus. On his return he finds that his brother has grown old and
decrepit, while he himself has preserved his youth.


This particular consequence of the theory has been one of the stumbling
blocks of practically every lay writer who has devoted his time to
criticising the theory of relativity. Some have stated that Einstein
never upheld any such absurdity, and that the whole trouble must
be ascribed to his too enthusiastic followers. Others have stated
that the conclusions violated the rules of logic in that they led
to inconsistencies; and that if Einstein’s theory necessitated such
results, it should be regarded as a gigantic hoax from beginning to end.


Now, in order to avoid any misconception, we may mention that in our
example both twins hold in their hands clocks which, when placed
side by side, beat out their seconds and minutes in perfect unison.
Einstein’s theory indicates that the clock carried by the travelling
twin will be behind time when brought back to earth and compared
again with the clock that has been left there, in the keeping of
the stationary twin. Some critics, such as Bergson, while accepting
the postulate of the invariant velocity of light, deny that this
slowing down in the beatings of the moving clock is required by the
theory in any real sense. It is a mere appearance, Bergson maintains;
a mathematical illusion. Just as the gradual shrinking of a man’s
apparent size as he moves away from us would not connote any real
decrease in his stature, so now, when the travelling twin returns with
his clock to his brother on earth, the illusion would vanish, and both
twins would recognise that their respective clocks were still marking
the same time in perfect agreement, one with the other.


Now, it cannot be stressed too strongly that this interpretation of
the problem is worse than incorrect. Not only is it incorrect from
the standpoint of Einstein’s theory, but it denotes on the part of
the critic a colossal ignorance of the significance of a theory of
mathematical physics. Here it must be recalled that the comparative
retardation of the travelling twin’s clock is an inevitable consequence
of the Lorentz-Einstein transformations. To deny, therefore, that these
transformations correspond to what would actually occur, to what would
be detected and measured by the most accurate instruments, would be to
deny that the transformations possess any physical basis. If this be
the stand we wish to take, well and good; but the logical outcome of
this attitude will be to deny the legitimacy of the entire theory;

it would be quite impossible to retain the theory while contesting
the real significance of the transformations. Once again a theory of
mathematical physics is not one of pure mathematics. Its aim and its
raison d’être are not solely to construct the rational scheme of
some possible world, but to construct that particular rational scheme
of the particular real world in which we live and breathe. It is for
this reason that a theory of mathematical physics, in contradistinction
to one of pure mathematics, is constantly subjected to the control of
experiment. If, therefore, the Lorentz-Einstein transformations failed
to yield the results that would be actually measured, Einstein’s theory
as a means of physical discovery, as a co-ordination of physical facts,
would be not only useless, but entirely incorrect, and we should have
to abandon it.


Furthermore, it should also be noted that every precise physical
experiment that it has been possible to accomplish has verified the
anticipations of the Lorentz-Einstein transformations; it is owing to
this fact that the theory was not abandoned years ago. This in itself
should warn us against asserting that the transformations possess no
physical significance.


Thus far we have been concerned with generalities and have merely
attempted to show why Bergson’s solution of the problem must be
discarded on first principles. Leaving aside this aspect of the
question, it is instructive to consider the formal proof which he
presents in support of his contentions.


He appears to realise that the entire matter hinges on the measure
of physical reality which should be credited to the Lorentz-Einstein
transformations. Accordingly, he attempts to prove that these
transformations do not represent reality, but possess a mere fictitious
mathematical significance having nothing in common with the physical
world. He calls them “phantasmatical,” contending that mathematicians,
not being trained in philosophy, are severely handicapped when
they attempt to interpret their equations, and are incapable of
distinguishing mathematical fictions from physical reality. So
Bergson proceeds to demonstrate the fictitious significance of the
transformations.


He first serves us with a series of arguments based on the principle
of the relativity of motion itself. In the very first paragraph,
however, he confuses the relativity of Galilean motion with the
complete relativity of all motion, Newtonian and special relativity
with visual relativity, velocity with acceleration. All these errors
relate to classical science itself; and it is obviously quite
impossible to discuss Einstein’s theory intelligently until we have
acquired at least an elementary knowledge of classical mechanics.
Following this philosophical demonstration, he goes on to give us a
mathematical one; but all he succeeds in proving is that he has not the
slightest conception of the most elementary properties of mathematical
transformations.


Now, without going into mathematical details, let us make an effort to
see why it is that the clock of the travelling twin must necessarily
have suffered retardation. To understand the reason, we must revert
to Einstein’s premises, and in particular to the postulate of the

invariant velocity of light. This postulate, as we have explained on
several occasions, states that all Galilean observers situated in their
respective Galilean frames will discover, as a result of measurement
with rigid rods, that waves of light invariably pass through their
frames with the same constant speed of 300,000 kilometres per second.
If this postulate be accepted, we must infer that in every Galilean
frame, time can be measured by the distance in space covered by a
wave of light (the distance being measured with rigid rods at rest in
the frame). As a result the postulate allows us to construct a sort
of optical clock. We may, for example, consider two parallel mirrors
situated at a fixed distance apart of 1.5 kilometres in our Galilean
frame, and we may suppose that a wave of light is reflected back and
forth from one mirror to the other. These oscillations of the ray of
light, covering always the same distance, require equal durations; and
in the present case 100,000 such double oscillations would be seen
to define a duration of one second for that Galilean frame in which
the optical apparatus was situated. We must henceforth consider every
Galilean frame as possessing an optical clock of this kind defining the
passage of time for its own frame.


Let us now analyse the problem of the two twins; and let us suppose
that we as observers are stationed on the earth, say, at
the North Pole. To a high degree of approximation we may consider
ourselves, therefore, as at rest in a non-rotating or Galilean frame.
The moving observer is also situated in a Galilean frame, moving away
from us with a speed which we shall assume to be about four-fifths that
of light. He visits a distant star which we should recognise as being
sixteen light years distant[73] from us, then reverses his velocity and
returns to earth.


Both we and the traveller carry optical clocks, of precisely
the same dimensions when placed side by side; so that for either
one of us, 100,000 oscillations of our respective light rays in our
respective optical clocks correspond to one second of our respective
times. Let us assume that the optical clock of the travelling observer
is placed crosswise to his motion with respect to us, so that his light
days oscillate back and forth in a direction perpendicular to his
relative motion. So far as the traveller is concerned, the light rays
of his optical clock will oscillate along one same straight line 1.5
kilometres in length; and if during his entire trip back and forth he
finds that his clock has oscillated  times, he will be justified
in saying that according to his optical clock his trip has lasted
 seconds. This, in the precise numerical example
we have chosen, would turn out to be twenty years.


Now let us examine the problem from our own point of view; that is to
say, let us refer all measurements to our own Galilean system attached
to the earth. In this Galilean frame of ours the oscillating wave of
light of the traveller will not follow a to-and-fro motion along the

same straight line. It will follow a zigzag line analogous to a series
of ’s placed end to end. The total length of this path followed
by the light wave must therefore be longer than when referred to the
frame of the traveller; in the present numerical example it would
be just twice as long. The question then arises: “How long will it
take for the traveller’s wave of light to describe this zigzag line
back and forth when time is measured according to the standards of
our Galilean frame attached to the earth?” The postulate of the
invariant velocity of light gives us the answer immediately. Since
the zigzag line followed by the light wave in our frame is just twice
as long as the succession of superposed up-and-down lines which it
follows in the traveller’s frame, and since, whether referred to one
frame or the other, the velocity of the light wave along its path must
be the same (invariant velocity of light in all Galilean frames),
then the immediate conclusion is that the total duration of the 
oscillations will be twice as long when measured by us as when measured
by the traveller.


As these  oscillations start and end with the beginning and end
of the trip, we must assume that the trip, which lasted twenty years
according to the traveller, will have lasted forty years in our own
estimation. In other words, any registering device would show when both
optical clocks were again placed side by side, that our earth clock had
performed  oscillations during the trip, whereas the moving clock
had performed just half that number, namely, . Obviously, there is
no illusion about the matter; for, as we have said, the oscillations of
the two clocks could perfectly well be registered graphically, so that
we should be dealing with a definite enumeration of registrations which
any third party could verify.


It is quite easy to understand why these extraordinary results must
take place. The cause is to be ascribed entirely to this invariant
velocity credited to any light wave in all Galilean frames. Were it
not for this postulate, the mere fact that the total length of the
zigzag line was twice that of the up-and-down line would not connote
any such difference in duration. Classical science would have assumed
that since the path was twice as long, the velocity of the light wave
along this path would have measured out twice as great; so that finally
both durations would have been the same, in full accord with the
classical belief in the uniqueness of time. In short, the comparative
retardation of the moving clock follows as an inevitable necessity when
once we agree to accept the validity of the postulate of the invariant
velocity. On no account is it permissible to accept the postulate and
then deny its mathematical consequences. If, therefore, the example
of the trip to the star is too great a tax on our credulity, we must
reject the postulate of invariant velocity and be faced with all the
difficulties which surrounded electrodynamics prior to Einstein’s
discoveries.


And now we may discuss another type of criticism, not quite so
misplaced as that of Bergson, but still utterly erroneous. It has
been argued, for instance, that all we have succeeded in proving is

that if each Galilean observer measures time with the help of his
optical clock, it is true that the duration of the trip will measure
out differently according to the observer, but that if, in place of
optical clocks, each observer had defined duration in terms of the
usual mechanical watches, these strange discrepancies would never have
arisen. In other words, the so-called slowing down of time in the frame
of the travelling twin would be due entirely to the slowing down,
not of time, but of the optical clock wherewith he proposed to
measure time. Always according to this same criticism, the optical
clock measured duration only in virtue of an artificial convention, and
its readings could not be claimed to represent true lapses of time.
Real time would flow independently of any clock; and to assert that
an arbitrarily postulated clock defined true time would be about as
reasonable as claiming that we should be dead were we to forget to wind
up our watch. In other words, we might adjust our clock as we pleased,
accelerate its motion, retard it, and even stop it completely, but we
should go on living just the same.


The only way to refute this fallacious argument is to examine once
again the premises of the relativity theory. Einstein starts with the
assumption that Galilean motion through the ether is relative. From
this it follows that no observer attached to a Galilean frame can by
any means whatsoever ascertain whether his frame is in a state of
uniform rectilinear motion or in a state of rest (special principle of
relativity). Then he lays down his famous postulate on the invariant
speed of light (300,000 kilometres per second) through any Galilean
frame when measured by the observer attached to the frame. This
postulate, as we have seen, enables any Galilean observer to construct
an optical clock and to measure duration as referred to his clock,
hence to his frame.


Now, in order to answer the criticism which charges Einstein’s
selection of optical clocks with being artificial, we must proceed to
investigate whether the definitions of congruent durations marked out
by the optical clocks are justifiable. And, first, what do we mean by
a justifiable definition of the equality of two successive durations?
Would it have been justifiable to define equal durations by the
durations a body falling vertically towards the earth would require to
cover equal Euclidean distances in space? Obviously not.


We saw, when discussing congruence generally, that mathematical
analysis by itself afforded us no means of exalting above all others
one particular definition of congruent stretches either for space
or for time; but that when we combined physics with mathematics,
certain precise methods of defining congruence imposed themselves
immediately in any given Galilean frame of reference. In the case of
time-congruence we found it necessary to assume that any periodic
phenomenon at rest in our frame, in a complete state of isolation
from all external influences, would have to be regarded as passing at
regular congruent intervals of time through the same initial state.
This assumption was demanded by our belief in causality, and by a

justifiable definition of time-congruence we mean to imply one which
would satisfy these consequences of causality.


When, therefore, we stop to consider whether Einstein’s optical clocks
yield us a justifiable definition of equal successive durations, the
whole question simmers down to deciding whether or not the oscillations
of a ray of light in an optical clock constitute an isolated
phenomenon, or whether, according to the motion of the Galilean frame
in which the clock is situated, certain perturbating influences may not
interfere with the state of isolation we credit to the working of the
clock.


Until such time as the effect of the ether on an object moving through
it had been settled, there was every reason to suppose that in the
case of a Galilean frame moving through the ether, the effect of the
ether wind would be to disturb the free oscillations of the light
rays between the mirrors of the clock. And so the clock could not be
considered isolated, and its readings would be valueless, or at least
in need of correction. But Einstein’s special principle of relativity
has precisely for its object to inform us that the ether behaves as
though it were non-existent, so that any perturbative effect which
classical science had suspected was ipso facto eliminated.
In other words, if we accept the special principle of relativity,
the optical clocks may be regarded as perfectly isolated; and their
readings must therefore afford us with perfectly reliable measures of
congruent time-stretches, as required by the principle of causality.


It follows that if in a Galilean frame we place side by side, at rest,
an optical clock, a vibrating atom, a piece of radium gradually losing
its mass, and a top revolving without friction, the time determinations
defined by all these phenomena will be identical, since all these are
perfectly isolated from external influences. To be more precise, if
a sodium atom vibrates so many times per second, as measured by the
optical clock of its Galilean system, it should still vibrate exactly
the same number of times per second (as measured by the clock of the
frame) even if the constant velocity of the Galilean frame (with
respect to some standard Galilean frame) has been changed to some other
constant velocity. In short, all physical phenomena at rest in a frame
would evolve at exactly the same rate in terms of the optical clock of
the frame, regardless of the magnitude of the Galilean motion of the
frame; since, according to the special principle of relativity, this
absolute Galilean motion is entirely meaningless.


If observation, by any chance, should prove that the relative rates
of vibration of the atom and the clock were to vary according to the
Galilean frame in which we set them, we should have a physical means of
differentiating one Galilean frame from another, hence of determining
the velocity of our frame through the ether; and the special principle
of relativity would have to be abandoned. Assuming, therefore,
Einstein’s premises to be correct, we must agree that the vibrations
of the optical clock constitute as perfect a means of determining
congruent intervals of time as it is possible for physicists to
obtain. Finally, we see that in any Galilean frame exactly the same

time-determinations would be obtained whether we made use of an optical
clock, a top spinning on its axis without friction, a vibrating atom,
or a mechanical clock, provided all these bodies were at rest as a
whole in our Galilean frame.


Consider, then, two Galilean frames, each containing an optical clock
and a top spinning without friction on its axis. If, when the two
frames are brought to relative rest, side by side, the two tops are
spinning at exactly the same rate, both executing  rotations per
second when measured in terms of their respective clocks, then exactly
the same correlation must exist when the Galilean frames are moving
apart. It is therefore a matter of indifference whether the observers
in the frames measure time by means of their optical clocks or by means
of the rotations of their tops.


Now a planet revolving on its axis in space is nothing but a huge
top; and if, for instance, we stand at the non-rotating point of a
planet, say the North Pole (so as to be in a Galilean frame), we
should be perfectly justified in measuring our unit durations by the
successive rotations of our planet with respect to the fixed stars.
Consider, then, two planets rotating at exactly the same speed when
held side by side, and let us call one of these planets the earth.
Regardless of whether these two planets be set flying apart or held
together, the observer on either planet will be justified in measuring
his unit time-stretches in terms of his own planetary rotations.
Classical science assumed that since time was one and universal, both
planets would always beat out exactly the same unit time through
their rotations, whether they were in relative motion or at rest, so
it mattered little which particular planet was selected. Under the
circumstances, from motives of convenience, the earth was chosen as
standard.


The novel point of Einstein’s theory consists in proving that this
attitude is untenable. Assuming the various planets to rotate with
the same speed when their axes are at relative rest, each different
observer must henceforth abide by the rotations of his own planet and
not by those of the other planets when relative motion is present.
Only thus can the special principle of relativity be maintained. In
particular, if we assume one rotating planet to be transferred to a
distant star, then returned near the rotating earth as in the example
of the two twins, it would be found that, owing to the solidarity
between the optical clocks and the rotations of the planets, the
wandering planet would have revolved less often during its trip than
would have been the case with the earth. So we see that the slowing
down we have mentioned is absolutely general, and must indeed be so if
the special principle of relativity is to endure.


Furthermore, we see that the great difference between classical science
and relativity consists, not in having substituted an optical clock for
the earth’s rotation, since both these determinations of time would
be identical, but in having proved that the earth’s rotation or the
earth’s optical clock is valid only as a measure of time for an earth
observer or for one at rest with respect to him.





Having established the solidarity of the evolution of all physical
phenomena at rest in the same Galilean frame as an inevitable
consequence of the relativity of Galilean motion, we must now enquire
whether this general solidarity should be assumed to extend to vital
phenomena and to our consciousness of the flight of time. Of course we
cannot deny that aging is accompanied by a physiological alteration of
our bodies; hence, on this ground alone, there can be no doubt that
physiological aging will proceed in terms of the general solidarity of
all physical phenomena. But there exists another aspect of the passage
of time, and that is our consciousness of its stream.


Our awareness of the flight of time is probably the most fundamental
fact of consciousness; and it remains an ever-mysterious enigma. If we
credit it to certain physiological processes occurring in the brain, it
must of course accompany the general evolution of physical processes;
but if we wish to regard this flight of time as a vital or spiritual
phenomenon different in its essence from anything physical, there can
be no a priori reason for assuming that it would accompany the
general physical processes. Of course our awareness of the flight of
time is an extremely vague feeling; nevertheless, so long as we retain
a conscious state, we have no difficulty in differentiating a duration
of twelve hours from one of one second.


If, then, in the example of the two twins, we assume that the length
of the trip and the velocity of the travelling twin have been so
selected that when the twins meet again, the clock of the traveller
marks an advance of only one second, whereas that of his stationary
brother marks an advance of ten years, our differentiation between
physiological time and our consciousness of the time-flow would lead
to the following result: The travelling twin would not have aged,
physiologically speaking, but he would be fully aware, in his inner
consciousness, that a stretch of time far in excess of one second had
elapsed during his trip. However, we cannot fail to observe that if
such were the case, if there existed two crates of aging for the same
man, one physiological and the other corresponding to a psychological
sensing of the flow of time, the special principle of relativity, and
with it Einstein’s theory, would have to be abandoned.


The reason for this last statement is easy to understand: If the two
species of time-flow varied independently, the rate of evolution of all
processes would appear to vary according to the frame in which we might
be situated—a tortoise would appear to crawl or to be galloping madly
through space. Theoretically, therefore, it would be possible to detect
a difference as between Galilean frames, hence to discover absolute
velocity through the ether or through space. And this would be contrary
to the principle of relativity.


When one places in the balance the mass of empirical evidence which
lends support to the special principle of relativity, and the total
lack of evidence of any sort or kind which would encourage the belief
that the time sensed and lived is different from the time of physics
and of physiological aging, one cannot be surprised at the total lack

of interest the mathematicians of relativity must take in such vague
hypotheses of certain philosophers.


Moreover, there is yet another aspect of the question. The fundamental
reason for all the criticisms we have mentioned, is that deep down
at the bottom of his heart the critic wishes to preserve, in spite
of all, his hereditary belief in the absoluteness of time. Even when
convinced that as a result of Einstein’s physical discoveries any
such belief is incompatible with the evolution of things physical,
he endeavours to assert that absolute time must continue to endure
when the sensing of the flow of time and our consciousness of being
alive are contemplated. In this way he proceeds to draw a distinction
between time actually lived and time as measured by our optical clock.
But the critic overlooks the fact that this belief in an absolute
time which he refuses to abandon is in no wise a rational necessity,
any more than is the hypothesis of the plurality of times. Experiment
alone can yield us a clue; and granting that physical experiment may
not be capable of throwing light on the spiritual, nevertheless, if we
are to be eternally ignorant of things spiritual, there is surely no
reason to state a priori that they must be governed by absolute
time or that time itself should have any meaning so far as they are
concerned. Thus the trouble with the critic who wishes to understand
the significance of Einstein’s discoveries is that in spite of himself
he remains obsessed by this unwarranted belief in the absoluteness
of time. This conviction is undoubtedly hard to eradicate, and only
prolonged introspection can gradually rid us of an obsession which is
so thoroughly ingrained in the species. Then, and only then, will the
so-called paradox of the two twins cease to be a paradox.


For all these reasons, if we accept Einstein’s premises there is no
alternative but to recognise that the duration marked out by an optical
clock in a Galilean system will give us the same measures of duration
as will any other isolated periodic physical phenomenon; and that our
aging, our awareness of the flow of time, and the time we are conscious
of living accompany the oscillations of the optical clock. In short,
therefore, if the optical clock in our Galilean system indicates that
one year has elapsed, we must have aged by one year. We shall have gone
to sleep and we shall have risen from bed on 365 different occasions,
and we shall have had enough time to perform all those duties which
usually occupy the space of one year.


Under these circumstances, to what does the example of the two twins
finally reduce? Simply to this: The departure of our twin brother
and his return to earth constitute two definite events. The duration
separating two events being robbed of any definite value by the theory
of relativity, there is no cause to be surprised that this duration
should manifest different magnitudes to different observers.


Again let us put the paradox in the following alternative form: Our
twin brother covers a distance of thirty-two light years (when he
goes to the star and then returns), and the duration of his trip is
forty years; hence his speed along the distance is four-fifths that

of light. How, then, could he ever be misled into believing that he
had required only twenty years to cover this total distance? Would not
this belief suggest to him that his speed had been greater than that
of light, and would not this fact conflict not only with relativity
but also with the assertion which he would voluntarily offer, that his
speed with respect to us was only four-fifths that of light?


But here, again, the criticism is occasioned by another erroneous
obsession, that of absolute distance. The critic does not grasp
the fact that the distance from earth to star, just like any other
distance, is indeterminate and has no meaning in itself. While it is
true that, so far as we are concerned, this distance is sixteen light
years, yet in the opinion of the traveller it is only eight light
years; and his opinion expresses exactly the same measure of reality as
does our own. We can only repeat once more that absolute duration and
distance are incompatible with Einstein’s premises; and if we insist
upon preserving our classical obsessions, a study of Einstein’s theory
will be little better than a nightmare.


Let us now pass in review a totally different order of criticism. It
is contended, for example, that the principle of relativity permits us
to interpret any problem of relative motion between two bodies in two
different ways: by considering either one body or the other as being at
rest. Then, according to the critic, since in the problem of the two
twins it is the twin’s motion that is the cause of the slowing down of
his time, all we need do is to consider him at rest and his brother in
motion, in order to reach the ridiculous conclusion that either twin is
younger than his brother.


This argument is radically incorrect for two separate reasons. In the
first place, the special principle of relativity does not state
that, in the general case, when two bodies are in relative motion we
can consider either one of them as being at rest. The special principle
emphasises the fact that a reversibility of this kind is possible
only when the motions of both bodies are Galilean.


In the present case the state of the twin remaining on earth is truly
Galilean (if we neglect the earth’s rotation and the curvature of its
orbit); but this Galilean condition no longer applies to the twin who
reverses his course when he reaches the star. In this latter case there
is acceleration, and the well-known symptoms of accelerated motion,
namely, forces of inertia, would make their appearance and would bring
about well-defined physical disturbances.


As a matter of fact, we can amend the problem of the two twins so as
to eliminate acceleration by assuming that the so-called travelling
twin passes both earth and star without ever stopping or reversing
his course. In this case the motions of both twins are Galilean; and,
true enough, the special principle of relativity allows us to consider
either one of the twins as at rest and the other as in motion. But,
again, we should see that exactly the same relative agings followed,
whether we considered one twin or the other as being at rest; hence the
critic’s statement that motion produces a slowing down of time is a

loose one unless explained more fully.


We may make these points clearer by examining the slightly modified
example we have suggested. First, suppose that the earth twin, the
earth and the star are all at rest; and that the so-called travelling
twin travels without a stop past earth and star. We will further
suppose that a rod extends from earth to star. To return to the
numerical values selected at the beginning of the chapter, calculation
would show that the duration of the passage of the travelling twin
from earth to star would be twenty years in the opinion of the earth
observer and only ten in the opinion of the wanderer. Why this
difference?


Because, as we have already mentioned, since a relative motion exists
between the so-called wanderer and the rod, the distance from earth to
star, or the length of the rod, is contracted to half its length when
computed by him. And here we must note that this contraction is not due
to the so-called wanderer’s motion (for motion, unless accelerated,
has no absolute significance). It is due to the relative motion
between the wanderer and the rod, or the earth-star distance. If,
therefore, the wanderer were to consider himself at rest and the
earth-twin, together with the earth and star, travelling past him,
exactly the same conclusions would endure; since once again the rod,
or earth-star distance, would be animated with exactly the same
relative velocity in respect to the so-called wanderer, and it is
relative velocity, and not absolute velocity, that counts. We
see, therefore, that no inconsistencies can arise whether we consider
one twin or the other as at rest.


Let us now revert to the complete problem where the wanderer returns to
earth. In this case, the wanderer has led an entirely different life
history from his brother, since he, and he alone, has
suffered acceleration.


It would not be legitimate to attempt to apply the special principle
of relativity, and to argue as though the wanderer had always been at
rest; for by so doing we should be assuming that he had never suffered
acceleration, and we should therefore have to credit his brother with
having experienced this acceleration. The problem would be completely
modified; and, indeed, the relative aging would then be reversed. But
no argument against the theory could be invoked, for the simple reason
that we should be considering a totally different problem, one in which
the circumstances of acceleration were no longer the same.


For the sake of completeness let us assume that it is now the wanderer
who remains at rest, while the earth twin, the earth and the star
execute a backward-and-forward motion, being of course subjected, in so
doing, to acceleration when their velocity is reversed. Retaining the
same numerical values, we should find that the erstwhile wanderer had
waited twenty years, as before, for the return of his brother, but this
earth brother would now conclude that his absence had lasted ten years
instead of forty. So even from a purely numerical standpoint conditions
would not have been completely reversed. Thus, in a general way, we see
that when two observers leave each other, then meet again, one of the

two, if not both, must have been submitted to acceleration; otherwise
they could never meet again but would wander farther and farther apart
ad infinitum.[74] If we consider twins separating, then meeting
again, the younger of the two will invariably be the one who has
suffered acceleration.


We need not be surprised at these very real effects produced by
acceleration, for we must remember that acceleration is an absolute and
not a relative like mere velocity. A body has one velocity or another,
according to our point of view or choice of a frame of reference; but
when a body is accelerated the choice of our frame of reference is
irrelevant for the simple reason that acceleration betrays itself by
physical forces and stresses which may exert palpable influences.


We must not allow ourselves to be misled by a further generalisation
of Einstein’s, known as the Postulate of Equivalence, according
to which even an accelerated observer may be considered at rest.
This new postulate modifies to a certain degree the position of the
problem of the two twins. Whereas the special principle did not allow
us to consider the accelerated wanderer as at rest, the postulate of
equivalence permits us to adopt this alternative view. However, those
who hope to discover by this means a logical inconsistency in the
theory, will again be disappointed; for the postulate states expressly
that an accelerated observer may be considered at rest only if we
assume that a field of gravitation takes the place of the field of
inertial forces to which the accelerated observer was submitted.
Then, in virtue of the postulate of equivalence itself, exactly the
same relative rejuvenation will take place except that it will now be
ascribed to gravitation instead of to acceleration.


It is hoped that the paradox of the two twins has been presented in a
sufficient number of ways to enable the conscientious student to master
the difficulty. The problem requires a certain effort of introspection;
but once we have succeeded in ridding ourselves of our prejudiced ideas
regarding space and time, the paradox will vanish of itself.


And now let us mention another type of so-called paradox which
appears to cause considerable trouble to beginners. We refer to the
Einsteinian addition of velocities. Thus, the critic begins by stating
that according to the dictates of common sense , so that
it is only natural to assume that a velocity of one mile per second
plus another velocity of one mile per second equals a velocity of two
miles per second. Einstein’s contention that the resultant velocity is
slightly less than two miles per second is therefore an absurdity on
the face of it. But if we examine these arguments carefully we shall
see that they again are based on a faulty understanding of the problem.


Even in classical science it is not necessarily correct to state
that velocities add up like the numbers of arithmetic. Consider, for
instance, the following illustration: If, while we are standing on
an embankment, a train moves away from us with a speed  and if
a rifle bullet is shot from the train with a speed , it is not
always correct to state that the velocity of the bullet relatively

to us on the embankment is . This statement is true only
when the velocities of the train and the bullet lie along the same
straight line. If we neglect to specify this restriction, our statement
is incorrect. In Einstein’s theory the problem is very similar.


If a Galilean frame moves away from us with a speed  and if,
with respect to this frame and in the direction of its motion, a
bullet speeds with a velocity , the resultant speed of the bullet
might be  only provided our methods of measuring a velocity,
and those of the observer in the Galilean frame, were identical; that
is, provided our measurements of space and time were identical. This
was always tacitly assumed to be the case by classical science; but
we know that in Einstein’s theory the identity of our standards of
measurement no longer holds, since such a state of affairs would be
incompatible with the invariance of the velocity of light.


We may therefore assimilate the conditions surrounding the various
space and time measurements in Einstein’s theory to those which would
endure in classical science if by reason of some law of nature it
were impossible for the observer in the train to fire a bullet in the
precise direction of the train’s motion. In other words, in Einstein’s
theory, velocities lying in the same direction add up like algebraical
numbers, provided the velocities we propose to add and subtract are
computed under exactly the same conditions, that is, by the same
Galilean observer. It is when one observer computes one velocity
and a second observer, in relative motion, computes the second velocity
that the classical law of addition is at fault.


Very similar to this problem of the addition of velocities is that
of simultaneity. Thus, Einstein’s theory implies that if two events
 and  occur simultaneously for one observer, John, and if
in the opinion of another observer, Peter, in motion with respect to
John, the event  and another event  occur simultaneously,
it is not correct to assume that  and  will be simultaneous
in the opinion of either of the two observers. Here the critic
assumes, without further ado, that the symbolic expression of these
relationships would be as follows: ; ; .
Therefrom he infers that the theory of relativity is contrary
to logic and is a manifest absurdity. And yet, if we examine these
statements carefully, we shall have no difficulty in seeing that the
error in logical reasoning lies not with Einstein but with the critic
himself.


In order to dispel any doubt on this score, let us ask the critic what
he intends to convey by the symbol =. Suppose, for example, that we
are considering two objects,  and , of the same size. Are we
entitled to write ? The answer should be: Yes, if the symbol =
stands for “is of the same size as”; or No, if it stands for most other
types of identity. In order to avoid confusion let us then represent
the symbol by  ( standing for size) and let us
write .


And now consider a third object, . We will assume that  is
of the same colour as . Beyond that we know nothing of it. Once
again, are we entitled to write ? The answer is: Yes, if the

symbol = stands for “is of the same colour as”; No, if it stands for
some other type of equality. In order to avoid confusion let us then
write our symbol:  ( standing for colour).


Our two equalities now become ;
; and obviously there is no reason for us to
infer that  should equal  either in size or colour, since the
symbols  and  do not convey the
same meaning.


It may be assumed that even the most careless of critics would grant
the correctness of the preceding argument. But in the case of his
criticism of Einstein’s theory he would argue: “All this is very fine,
but in the relativistic absurdity which I am pointing out to you I am
perfectly entitled to write ;  and .
For in the present case the symbol = between  and , and
between  and , stands for exactly the same concept, namely,
that of identity in time; it does not refer to such different concepts
as ‘size’ in the first instance and ‘colour’ in the second.”


Obviously, it is easy to detect the petitio principii
unconsciously introduced into this argument. By stating that the two
symbols = must mean the same thing since they both connote identity
in time, the critic is accepting a priori as self-evident that
there can be only one time-stream, or, in other words, that time
is absolute. Of course, if he wishes to introduce his own private
assumptions, he may do so; but he must not blame the theory if as a
result thereof he is faced with a logical contradiction. He should
realise that the contradiction arises solely as a result of his own
initial unwarranted assumption, and that were he to withdraw this
initial assumption the contradiction would automatically disappear.
Then, indeed, he would have to recognise that the two symbols =
need not have the same meaning; that the first, which we may write
, would represent “at the same time according to
John,” whereas the second one, , would represent “at
the same time according to Peter.” As a result the relations would be
written:

and just as in the case of colour and size, he would recognise that the
first two equalities in no wise compelled the equality of  and
.


But we may wonder why it is that the critic does not realise that all
the trouble that has arisen is of his own making. The answer appears
perfectly clear. It would be somewhat as follows:


“At no time does he realise that he has introduced an arbitrary
assumption and has thereby begged the entire question. The traditional
belief in absolute time so dominates his mind that he thinks in terms
of it even when he knows that the theory of relativity is not based on
any such a priori belief.”





Once again, the theory of relativity as a theory of mathematical
physics may survive or may succumb. It is for experiment to give
the answer. If the anticipations of the theory should not conform
to experiment, if, for instance, the recent experiment of Miller
were considered conclusive as detecting velocity through the
ether, it would be impossible to save the theory, at least in its
present form.[75] But we must not confuse the ability of the theory
to portray the workings of nature with its legitimacy as a perfectly
consistent and rational doctrine of thought. On this last point no
doubt exists. The theory has been scrutinised by the greatest of living
mathematicians and not the slightest error of mathematical reasoning,
nor therefore of logic, has been found in it.
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As a final illustration of this same problem of the relativity of
simultaneity we may present a geometrical analogy. We have only to
consider two points  and  at the same distance above a line
, and then to consider the points  and  at the same
distance above another line . We have only to look at the figure
to realise that  and  are at the same distance neither from
 nor from . Only should the two lines  and 
coincide would they be so.


It is much the same in relativity. The straight lines  and 
correspond to the time directions of the two different observers.
Classical science, assuming time to be absolute, considered the two
lines coincident. Relativity has proved the error of this belief.








PART III

THE GENERAL THEORY OF RELATIVITY











CHAPTER XXIII

POTENTIALS AND FORCES





ACCORDING to classical science, force may be defined as the product of
mass by acceleration. When no force is acting, the motion of a body is
always Galilean; only when a force is acting will the motion of a body
become accelerated.[76]


Now it must be noted that when a body is subjected to some definite
muscular pull the magnitude of this pull or force depends solely on the
muscular effort which we are willing or able to produce. On the other
hand, when a body is situated in the gravitational field of the earth,
the gravitational force which acts upon it and which is commonly known
as the weight of the body not only depends on the mass of the earth
but likewise varies with the mass of the body. In order to remedy this
indeterminateness, it is usual to specify that the body on which the
force is acting is one of unit mass; it is then called a test-body.
Under these circumstances, we can explore a field of force by placing
our test-body in successive regions of space and determining the
magnitude and direction of the force which is acting on the body. When
we have mapped out the magnitude and direction of the force for every
point of space, we are in a position to state that we have determined
the lay of the field of force.


In physics we are often concerned with fields of force. The
gravitational field surrounding the earth constitutes only one
particular illustration. We may also consider the electric field
surrounding an electron, or the magnetic field surrounding the poles
of a magnet, or even combinations of these two fields, such as the
electromagnetic fields produced by electric currents.





When the direction and magnitude of the force are the same throughout
space and do not vary with time, the field of force is called
uniform. Uniform fields of force are very difficult to obtain;
the simplest illustration we can think of would be that given by a
river flowing with constant speed along a rectilinear course. The force
exerted by the current would of course remain the same in magnitude and
in direction at all points in the river; and for this reason the field
of force produced by the current would constitute a uniform field.


Now, if we rest satisfied with this type of description of a field
of force, we see that in the case of a uniform field, at any rate,
there is no means of differentiating a region of the river or field
that is upstream from one that is downstream. All parts of the river
are identical. But it is obvious that this apparent identity between
the different parts of the river is very superficial. It is a fact of
common experience that whereas a boat will float downstream of its
own accord, it will need the expenditure of a considerable amount
of work to force it upstream again. Mathematicians were therefore
compelled to take into consideration a new type of abstraction called
a potential. Thanks to the introduction of this new concept, it
became possible to differentiate between the various regions of the
river (upstream or downstream) by stating that these regions differed
in potential. The regions upstream were called the regions of higher
potential, and the regions downstream were termed those of lower
potential. Hence, it was possible to state, in the form of a general
law, that bodies left to themselves would move of their own accord from
regions of higher to regions of lower potential.[77]


So far we have been dealing with generalities, and it remains to be
seen in what precise manner forces and potentials will be connected.
The mathematical connection is expressed as follows:


Potentials are defined in such a way that the expression of the
projection of the force along any given direction at any specific point
of the field is given by the change in the magnitude of the potential
when we pass from this point to the neighbouring point along this same
direction. Just as an acceleration projected along a given direction
is the time rate of change of the velocity projected along this same
direction, so now a force is the space rate of change of the potential;
and just as the acceleration is directed towards the increasing
velocities, so a force is directed towards the lower potentials.


The existence of these potentials applies generally to all fields
of force, regardless of whether these fields are of the uniform or
non-uniform variety.[78] It is, as we have said, the variations in
value of these potentials from point to point that are associated
with the existence of forces. When this variation is uniform in one
direction and no variation exists in directions at right angles, we
are in the presence of a uniform field of force. When the variation is
irregular, we have a non-uniform field of force. When the potential has
the same constant value throughout space, so that it does not change in
value from place to place, no forces can be present; there is then no
field of force.


From this we see that a certain degree of indeterminateness surrounds
the precise numerical value of a potential, since it is only its
variation from place to place, and not its absolute value, that defines
the force. This indeterminateness can be removed in the case of a
non-uniform field of force by stipulating that in those regions of
the field where the force vanishes (such as would be the case with
the gravitational force at an infinite distance from matter), the

potential itself vanishes. A definite value having been attributed to
the potential in one part of the field, we can determine its precise
value from place to place in all other parts of the field.


Let us now give a few concrete illustrations of fields of force and of
potentials in classical science. We have already mentioned the field
of force surrounding matter. This was the gravitational or Newtonian
field, and the potential at every point derived therefrom was called
the Newtonian Potential at the point. The distribution of the
field of force was known in a perfectly definite manner when the
potential distribution was known. In fact Newton’s law, which tells
us how the field of force is distributed around matter, can also be
expressed in an equivalent form by Laplace’s Equation, in which
it is the potential distribution, and no longer the force distribution,
that is described.


Let us now consider another type of field of force known as the
inertial field. In perfectly free space, far from matter, there exists
no field of force so long as we refer our observations to a Galilean
frame. But if now we step into an accelerated or a rotating frame, we
shall experience the effects of a field of force which we will ascribe
to forces of inertia. Not only our own human bodies, but, in addition,
all free bodies, will be subjected to the actions of these forces.
Thus, consider a disk that is rotating, and a ball rolling without
friction on the disk’s surface. If the ball is sent from the centre
of the disk to its periphery it will of course follow a straight line
at constant speed with respect to the earth or to any other Galilean
frame. But then, with respect to the rotating disk itself, its course
can no longer be rectilinear and uniform. Instead of following one of
the radii of the rotating disk, it will follow a curve as though it had
been pulled sideways by some force.


This result is general. If we ourselves tried to advance along
one of the radii of the rotating disk we should experience a real
physical force pulling us sideways. To all intents and purposes, when
we referred events to the rotating disk and not to the non-rotating
earth (the rotation of the earth being so slow that we may neglect it
as a first approximation), the physical existence of a field of force
would have to be taken into consideration. The precise type of force we
have mentioned is called the Coriolis force; in addition, there
also exists another type of force, the better-known centrifugal
force. Both these types of force are called forces of inertia.
It is their ensemble which constitutes the field of inertial force
existing in a rotating frame.


If, in place of a rotating frame, we had considered an accelerated
railway compartment, the field of inertial force would have been
disposed in a different manner. In the case of a train moving with
constant acceleration along a straight line, the field of inertial
force generated would have been of the uniform variety, disposed
longitudinally through the train.


All these different illustrations show us that whereas, in a Galilean
frame, no field of force exists, yet a field springs into existence
automatically as soon as we place ourselves in any accelerated frame.

It is for this reason that accelerated frames can be distinguished
physically from Galilean frames; and it is owing to this generation of
physical fields of force that accelerated motion must be regarded as
absolute, whereas velocity, giving rise to no such fields, yields us no
means of distinguishing one velocity from another, hence is relative.


Now we have seen that fields of force are accompanied by potential
distributions. Hence it follows that, whereas, with respect to a
Galilean frame, the inertial potential is zero at every point, or at
least maintains some constant value, in the case of accelerated frames
this inertial potential must vary from place to place in the frame. The
magnitude of the force at any point of an accelerated frame is given,
therefore, by a mathematical expression involving the variations in
value of the potential in the neighbourhood of the point considered.


All we have explained so far pertains to classical science, but it
appeared necessary to mention these results briefly before proceeding
to a more systematic study of Einstein’s theory. We shall now see how
all these results find a natural place in the space-time theory.


Consider a Galilean frame and an object moving freely in this frame.
Its path will of course be rectilinear and its speed uniform, hence
it will possess no acceleration, in accordance with Newton’s law of
inertia. If we interpret these results in terms of space-time, we
see that the world-line of the body is a straight line in space-time
as referred to our mesh-system of equal four-dimensional cubes. If
we now examine the motion of this same free body from some definite
accelerated frame, all we have to do is to change our four-dimensional
space-time mesh-system in an appropriate way. This change of
mesh-system does not affect the world-line of the body, since this line
remains a straight line or geodesic through flat space-time; but, on
the other hand, it will certainly alter the appearance of the straight
line when we refer our measurements to our curvilinear mesh-system. The
erstwhile straight world-line will now appear curved in a definite way,
and its precise mathematical equation as referred to our new curved
mesh-system can be obtained without difficulty.


The physical significance of this apparent curvature of the world-line
of the body will be that the body will now appear to possess
acceleration with respect to our new non-Galilean frame. The precise
magnitude of this acceleration will therefore be given by the apparent
curvature of the world-line followed by the body, and this curvature is
of course expressed implicitly by the equation of the world-line when
referred to our curvilinear mesh-system. But for a given test-body the
acceleration is related to the force acting on the body. From this it
follows that the mathematical expression of the force can be obtained
immediately.


This mathematical expression of the curved world-line, hence of the
force of inertia at any particular point, is seen to be built up with
the variations in value of the ’s around this point. Were the
’s to remain constant in value throughout, as would be the
case in a Galilean frame, this mathematical expression would vanish in

value. It follows that the ’s, of which this expression of
the force is built, must correspond to the potentials of inertia. We
have thus discovered the physical significance of the ’s of
space-time: they define potentials.


We see, indeed, that this identification is legitimate in every
respect. Thus, in a Galilean frame, there are no forces of inertia, so
that the potentials of inertia must be constants; and we know that in
a mesh-system of equal four-dimensional cubes, which corresponds to a
Galilean system, the ’s are all constants and are given by
, all
other ’s being zero. Again, in an accelerated frame, a field
of inertial forces appears; hence the potential must vary from place to
place; and we know that in a curvilinear mesh-system (corresponding to
an accelerated frame) the ’s lose their constant values and
vary from place to place.


So far the reason for the existence of forces of inertia has been
made apparent. They arise owing to the uneven spread of 
numbers which accompanies all curvilinear mesh-systems (accelerated
frames).[79] When this occurs, the mathematical expression of the force
of inertia assumes a definite numerical value at each point, whereas,
when the ’s are constants, as in a Cartesian mesh-system,
this expression of the force maintains a zero value.


From this we see that forces of inertia arise from an attempt on our
part to cut up space-time with curvilinear mesh-systems instead of
Cartesian ones, just as they arise from our substitution of accelerated
frames for Galilean ones. We cannot help but feel, however, that
having proceeded thus far, a further generalisation is required. To
be more explicit, it should be understood that the scheme of physics
we have developed has compelled us to attribute a fundamental rôle
to space-time. But Newton’s great law of universal attraction is
expressed in terms of the separate space and time of classical science.
If space-time is indeed as fundamental as Einstein has led us to
believe, it appears incredible that Newton’s law should remain outside
its scope. Yet this it certainly does, for if Newton’s law were a
space-time law, it would preserve the same form in spite of any change
in our space-time mesh-system. And this it fails to do.


Einstein’s next attempt was therefore to weld Newton’s law
into the general fabric, a result he achieved about 1914. The
mathematical generalisation which would allow this result to be
obtained seems almost obvious to-day, since (as will be explained in
Chapter XXV) it reduces to assuming that
in the neighbourhood of matter, four-dimensional space-time loses its
flatness and becomes non-Euclidean or curved. However, it appears to
have been through the medium of physical observation that Einstein was
led to his superb generalisation, so we shall proceed to follow the
historical order by explaining the significance of his postulate of
equivalence.








CHAPTER XXIV

THE POSTULATE OF EQUIVALENCE





EINSTEIN’S Postulate of Equivalence consists essentially in an
identification of forces of gravitation and forces of inertia. This
identification he considered permissible because of certain well-known
empirical facts which we shall discuss presently.


Let us first recall that a field of force is exemplified by a region of
space, at each and every point of which a definite force would be found
to be acting on a test-body with which the field might be explored.
Several different types of fields were known to classical science.
Electric fields acted on electrified bodies, magnetic fields acted on
magnets, and both inertial and gravitational fields acted on material
bodies in general, whether electrified or not. For the present we shall
be concerned solely with the inertial and gravitational fields.


These two species of fields of force were regarded by classical science
as of a totally different nature. There appeared to be very good
reasons for this distinction. Suppose, for instance, that a train is
slowing down. If we are standing in the train, we shall feel a force
pulling us towards the engine and it may require a certain effort on
our part to resist its pull. As such, the force is obviously real,
in that it is experienced. But suppose now that an observer on the
embankment views these same happenings. He will argue as follows: No
force is pulling the passenger; but as the train is slowing down and
as the passenger’s body tends to maintain a constant velocity along
a straight line, in conformity with the laws of motion (law of
inertia), the net result is that he will overtake the engine unless
he holds on to the seat. Thus we see that according to whether we
judge these same happenings from the standpoint of the train or of the
embankment, the force exists or becomes a fiction.


Similar conclusions would apply were we to consider those other species
of inertial forces called centrifugal and Coriolis forces. From the
standpoint of an observer who selects a rotating platform as frame of
reference (just as prior to Copernicus men were wont to take the earth
as frame of reference), centrifugal and Coriolis forces are real. But
the moment we refer events to a Galilean frame, these forces become
fictitious, and can be interpreted in terms of the law of inertia, just
as the force in the train became fictitious when events were viewed
from the embankment.


Contrast this situation with that of a stone falling towards the
ground. Here, we may refer events to any frame we please, but in any
case the law of inertia can never be made to account for the stone’s
motion towards the earth. The situation appears to be entirely
different from that of the passenger in the train. And so it follows

that we are compelled to conceive of a real force, a force of
gravitation pulling the stone towards the centre of the earth.
Thus it would appear that gravitational force, in contradistinction
to inertial force, could not be ascribed to mere conditions of
observation. It was assumed, therefore, by classical science that
there existed around a body like the earth a real absolute field of
force distributed radially through space, whereas in the accelerated
enclosure the forces were merely fictitious or relative.


There is yet another way of bringing out the difference between forces
of inertia and forces of gravitation. Forces of inertia are generated
by motion, whereas forces of gravitation are generated by matter. Thus,
if we arrest the rotation of a disk, the observer, fixed to the disk,
will note that the forces of inertia have vanished. But to remove
the force of gravitation, it would be necessary to annihilate the
entire mass of the earth, and this would constitute an operation of an
entirely different nature.


Now, in every type of field of force, the magnitude of the pull which
is exerted on a body susceptible to the influence of the field is
governed by a certain definite characteristic of the body. Thus, in a
given electric field, the magnitude of the pull exerted on a body at
a given point of the field is proportional to the electric charge of
the body. Likewise, in an inertial field, the magnitude of the pull
is proportional to what is known as the inertial mass of the
body, and in a gravitational field the pull is proportional to the
gravitational mass of the body. Every material body was assumed,
therefore, to possess two types of masses, the inertial and the
gravitational, corresponding to the two types of fields to which the
body would react.


A concrete illustration of the difference between inertial and
gravitational mass is given by the following example: Consider a
billiard ball at rest on a table. We should discover that the more
massive the ball, the greater would be the effort necessary to set
it in motion, as also to arrest its motion once started. The type of
mass with which we should here be concerned would be inertial mass;
and we may say that it is inertial mass which opposes a departure from
rectilinear uniform motion or rest, hence which opposes acceleration.
If, now, we were to lift the ball from the table and hold it at arm’s
length, the effort we should have to exert to prevent our arm and ball
from falling would again vary with the mass of the ball. This time,
however, the mass whose effects we were seeking to resist would be
the gravitational mass, i.e., the mass which is responsible
for weight. It is this same gravitational mass which enters into the
expression of Newton’s law of attraction.


There is no a priori reason why any connection should exist
between these two different types of masses. Thus, if a billiard
ball is found to weigh twice as much as another, there is no logical
necessity to anticipate that its inertial mass will also be twice
that of the other. Yet it so happens that the most refined physical
experiments have invariably proved the strictest proportionality
between these two types of masses; so that by choosing our units

suitably it was always possible to represent both the inertial and
the gravitational mass of a given body by the same number. Classical
science had accepted the equality of the two types of masses as an
empirical fact, but had found itself incapable of suggesting any
theoretical justification for it. It appeared to be due to some
miraculous coincidence.





This equality in the numerical values of the two types of masses will
entail important consequences. For suppose, indeed, that the equality
did not hold. This would imply that two billiard balls might present
exactly the same gravitational mass, yet differ in the value of their
respective inertial masses. If, then, the two balls were to be released
simultaneously and allowed to fall from the same height towards the
earth, their gravitational masses being equal, both balls would be
subjected to exactly the same pull by the earth. But their inertial
masses being assumed unequal, the ball whose inertial mass was greater
would oppose the acceleration of the fall more strenuously than would
be the case with the ball of lesser inertial mass. As a result, the
balls would not reach the earth’s surface simultaneously. On the other
hand, if the two types of masses are identical, we may be assured that
any two objects released from the same point will reach the earth’s
surface at the same instant (provided we operate in vacuo so
that the resistance of the air does not interfere with their fall). It
was precisely because experiment had demonstrated the existence of the
same rate of fall for all bodies released from the same height, that
Galileo was led to recognise the equality of the two masses. It may
be mentioned, however, that ultra-precise experiments (notably with
Eötvös’ torsion balance) have since verified these results with extreme
accuracy.[80]


We see, therefore, that the equality of the two types of masses allows
us to anticipate that an observer situated in a falling elevator would
have no weight. He might be standing on a weighing machine, but the
needle would always register zero. The fact is that both observer and
weighing balance would be falling with the same motion towards the
earth; hence the observer’s feet would never press against the balance.


These anticipations may appear to be self-evident; but it is important
to note that they are in no wise self-evident until we have recognised
the perfect equality of the two types of masses. If such an equality
did not exist, the observer in the elevator might still press against
the scales of the weighing machine or might hit the ceiling of the
elevator, and it would no longer be correct to anticipate that
elevator, scales and observer would all fall with exactly the same
velocity and acceleration.





We may illustrate the example of the falling elevator in a more general
way by considering an observer situated in the interior of a hollow
projectile describing its parabola under the influence of the earth’s
attraction. The observer would detect no manifestation of weight in
his enclosure. He might tip a glass full of water upside down: the
water would not spill. If he threw a handful of pebbles into the air,
each pebble would follow a straight course with rectilinear motion
through the projectile, just as would be the case in a Galilean frame.
In short, no mechanical experiment could ever reveal the presence
of the earth’s field of gravitation in the interior of any frame of
reference moving freely under the action of this field of gravitation.
Experiments conducted inside such falling bodies are very difficult
to perform, but since the results we have mentioned are the immediate
consequences of the equality of the two types of masses, which
highly refined experiment has established, we are able to anticipate
indirectly the results of such experiments.


So far we have considered the cancellation of a field of gravitation,
but we may also consider the creation of a field of force in empty
space far from matter. Thus, if a hollow chest be subjected to a
variable acceleration through empty space, a variable field of force
(inertial force) will be experienced by an observer in the chest’s
interior. If now we consider a second chest at rest in a varying
gravitational field distributed throughout the chest in exactly the
same way as were the forces of inertia and with the same intensity, the
equality of the two masses proves that mechanical experiments conducted
in either of the two enclosures would yield exactly the same results,
and hence that bodies would fall towards the floor of the enclosure in
exactly the same way. And so it would be impossible, on the basis of
mechanical experiments conducted in the interior of the enclosure,
to decide whether we were in a field of inertial force generated
by acceleration or in a field of gravitational force generated by
matter. These are the conclusions which the equality of the two masses
urges upon us. Inasmuch as the equality of the two types of masses
constitutes a fact established by experiment, we may also regard as
established empirically the inability of mechanical experiments to
differentiate between a field of inertia and one of gravitation.[81]


Now, up to this point, all the facts we have mentioned were perfectly
well known to classical science. It is solely in the interpretation of
these facts that Einstein suggests highly original views. Let us first
examine what classical science had to say. Its arguments ran somewhat
as follows: Our inability to differentiate between a field of inertial
forces generated by acceleration and one of gravitation generated by
matter is due solely to a miraculous coincidence, that of the equality
of the two masses. Again, when, in the elevator falling in the earth’s
gravitational field, we experience no feeling of weight, it is not
that the gravitational field has vanished; it is solely that the field
of gravity has been counteracted by an equal and opposite field of
inertia generated by the elevator’s accelerated motion. The equality
in the intensities of these two opposing fields is due once more to
the equality of the two masses. Thus, according to classical science,
there existed a very decided difference between the two types of fields
of force, and it was always assumed that this difference would be
detected when we performed non-mechanical experiments such as optical
or electromagnetic ones.


It is this classical interpretation which Einstein challenges. He
maintains that the field of force generated in an enclosure is of
exactly the same nature regardless of whether it has been generated
by acceleration or by gravitation. Also, in the case of the falling
elevator, we should not say that the field of gravitation had been
counteracted; we should say that it had vanished. Thus interpreted, the
miraculous equality of the two types of masses is no miracle at all.
There are no two types of masses which react to two types of forces.
Since there is but one type of force, there is but one type of mass,
to which classical science had erroneously given two different names,
and then marvelled at the fact that whatever name was given, its value

remained the same. In this way Einstein succeeded in accounting for a
miraculous equality which had baffled classical science.


But, of course, Einstein’s idea was susceptible of experimental proof
or disproof. For if we assume that the two types of fields of force are
all one, we must assume that not alone mechanical experiments, but also
all manner of experiments, will fail to detect the slightest
difference. This is indeed Einstein’s attitude, and he upholds it in
the postulate of equivalence.


This postulate states that there can exist no difference in the
conditions prevailing in the interior of an enclosure, regardless of
whether the field of force experienced be generated by acceleration or
by gravitation.


Now, when all is said and done, it might appear that when Einstein
stated his postulate of equivalence he was taking a leap in the dark.
The equality of the two masses proved that so far as mechanical
experiments were concerned, conditions existing in a falling elevator
would be identical with those enduring in an enclosure floating in free
space far from matter. These anticipations were based on experience.
But what justification was there for generalising these results and
extending them without hesitation to all manner of non-mechanical
experiments? At first sight the generalisation might appear somewhat
hasty, and most certainly such generalisations should not be encouraged
at the hands of those who do not possess any profound scientific
knowledge. But with Einstein the case is different. On this occasion,
as on many others, his generalisations are those of a man who seems
to be able to read the secrets of nature as no one else has ever done
before. It is not his knowledge of mathematics or of physics that
causes admiration; it is his insight into the philosophy of nature,
which is stupendous. As a matter of fact, a similar generalisation on
his part was encountered in the special theory. There he generalised
from electrodynamics to mechanics; here it is the reverse. But, in
either case, a desire to find unity in nature appears to have been his
guiding motive.


There is a great analogy between Einstein’s interpretation of
the problem we are discussing and his explanation of Michelson’s
experiment. In the latter, we remember that Galilean motion through
the ether appeared to generate no ether drift. Lorentz explained this
absence of an ether drift by assuming that a physical drift was really
present, but that it was automatically cancelled in a miraculous way by
the trickiness of nature working through the compensating influences
of a real physical contraction of bodies moving through the ether and
of a real physical slowing down of the duration of events. Einstein,
as we have seen, preferred to assume that if no ether drift could be
detected, it was because no ether drift was present. Classical science
demanded the ether drift and attempted to explain why in spite of its
expectations none could be detected. Einstein, by refusing to patch up
classical science so as to explain the miraculous, was led to declare
that classical science was wrong in attaching any credence to the

existence of an ether drift, and that its belief in this ether drift
was attributable to mistaken premises.


If we now pass to the problem of gravitation we see that the situation
is very similar. Gravitational force vanishes in a falling elevator;
this is the physical fact. Classical science took the stand that the
force did not really vanish, but that it was compensated. Einstein
prefers to assume that if the gravitational force appears to
vanish, it is because it really does vanish.


With these new views, the force of gravitation acting at a point loses
its attributes of absoluteness. Just like a force of inertia, a force
of gravitation betrays a relationship existing between the frame of
reference selected and the surrounding conditions of the world. Just as
a force of inertia can be annulled by changing the motion of our frame,
so now can a force of gravitation be annulled. This does not mean that
a force of gravitation is unreal. It is perfectly real, since it can
be detected and measured. But it is no longer an absolute; it is a
relative, like a force of inertia, for its value varies with our choice
of a frame of reference. Henceforth no intrinsic difference exists
between a force of gravitation and a force of inertia; these forces
are of the same essence. When, therefore, we are in the presence of a
force acting on mass, we may refer to it as a force without specifying
whether it has been generated by the acceleration of our frame (field
of inertia) or by the proximity of matter (field of gravitation).[82]


Einstein maintains the appellation of a gravitational field of force.
But he applies it indifferently to fields which classical science
would have considered due to the acceleration of the frame, and to
the fields which classical science would have recognised as generated
by the proximity of matter. By classing both types of fields as
gravitational, his object is to differentiate these identical types of
fields from fields of other types, such as fields of electric, magnetic
or electromagnetic forces.


However, it is well to caution the beginner against a misunderstanding
which might cause him some trouble. In classical science the word
“gravitational” was always associated with the attraction caused by
matter. In Einstein’s theory, when we identify an inertial field with a
gravitational one and call both these species of fields gravitational,
it is not meant to imply that an exact replica of the inertial field
could be reproduced by disposing matter in a suitable way with respect
to our frame of reference. Inversely, a field of force produced
by matter cannot be duplicated in every detail by communicating a
suitable accelerated motion to our frame of reference in free space
far from matter. In spite of the complete identification of forces of
gravitation and forces of inertia, there still exists a difference in
the spatial distribution of the field of force, according to whether
it is produced by the proximity of matter or by the acceleration of
our frame. In consequence, although all fields of force may be called
gravitational fields, regardless of whether they be generated by matter
or by acceleration, we must remember that the actual lay of these

fields through space will vary with their origin.


A few precise illustrations will make this point clearer. Consider a
hollow chest pulled by some unseen hand through interstellar space
far from matter. If we suppose that the chest is rising vertically
with constant acceleration, we know that as a result of this constant
acceleration a uniform field of inertial force will be present in
the interior of the chest. The postulate of equivalence consists in
asserting that the observer in the interior of the chest might with
equal justification consider the chest to be unaccelerated or at rest
in space, while the field of force he perceives would be assimilated
to a field of gravitation. All that it is meant here to imply is that
the physical nature of fields of gravity and of inertia is one and the
same. It is not meant to imply that any actual distribution
of matter could ever produce a perfectly uniform field of force in
the chest’s interior such as existed under the influence of constant
acceleration. We know, indeed, that a distribution of matter under the
chest would produce a somewhat similar field of force, but the field
would be non-uniform, the magnitude of the force being smaller at the
top than at the base of the chest. Thus, although the physical nature
of both types of fields would be the same, the precise distribution of
these fields through space would be different.


These, at least, are the conclusions by which we must abide at the
present stage of the theory. We shall see that when we come to consider
the universe as a whole, there may be grounds for modifying our
opinions. But at the present stage of the discussion we must admit that
fields of force produced by matter can never be distributed in exactly
the same way as fields produced by acceleration, and vice versa.


Another example is afforded by the field of force generated on a
rotating disk. This field of force can be split up for purposes of
analysis into two separate fields: a centrifugal field constituted
by forces directed away from the centre of the disk, and a Coriolis
field pulling bodies sideways as they approach or move away from the
centre. Now, no distribution of matter around the disk can be conceived
of at this stage which would produce a field of gravitation on the
disk distributed in exactly the same way as this field of inertia.
Nevertheless, the inertial field on the disk can be called a field of
gravitation for the reasons previously set forth in this chapter.


Again, just as matter cannot produce a field of force distributed in
exactly the same way as a field generated by acceleration, so also is
it impossible to produce by the sole virtue of acceleration a field of
force distributed in exactly the same way as the gravitational field
around matter. From this it follows that it is impossible, by merely
selecting some suitably accelerated frame, to cancel in its entirety
a field of force produced by matter. This statement may appear to be
in conflict with the example of the falling elevator, in which it was
explained that owing to the motion of the elevator the field of force
produced by the earth vanished in its interior. However, there is

no conflict between the two statements, if we are careful to express
ourselves with precision.


In the falling elevator no field of force is experienced in the
interior of the elevator, provided the extension of the elevator is
small in comparison with the size of the earth. If the elevator
were very large, if, for instance, it were a gigantic box completely
surrounding the earth, no conceivable motion of the box could ever
cause the gravitational field of the earth to vanish everywhere in the
box’s interior. Suppose, for instance, that the roof of the box were
accelerated towards the North Pole, its floor would then be moving with
accelerated motion away from the South Pole. Hence, whereas an observer
attached to the roof of the box would perceive no force of gravitation,
an observer attached to the floor would experience a force of doubled
intensity. In other words, it would be impossible to banish the force
of gravitation in all parts of the box. Only when the box or elevator
is small in comparison with the earth, so that within its confines the
field produced by our planet is practically uniform, is it possible to
cancel the earth’s field in the whole interior of the box. Even then,
however, this cancellation would be rigorous only at a point, and would
decrease in thoroughness as we moved away from this point.


It follows that a falling elevator cannot be assimilated in all
rigour to a Galilean frame, since in a Galilean frame, wherever we
might be stationed, no forces would be experienced. Nevertheless, as
in practice, the frames we consider are not supposed to extend for
great distances in all directions, conditions enduring in a falling
elevator would be identical to a very high order of precision with
those existing in a Galilean frame. For this reason, rigid frames of
small dimensions falling freely in a gravitational field are termed
semi-Galilean.


If we summarise the conclusions reached in this chapter, we may say
that the postulate of equivalence has allowed us to identify forces of
inertia with forces of gravitation. But this identification applies
solely to the nature of the forces, not to their spatial distribution.
And so it is not correct to say that it would be impossible for us
to ascertain whether the field of force experienced in our enclosure
was due to the acceleration of the enclosure or to the proximity of
gravitating masses. Even without peering out and discovering whether
large masses were present, we could always, at least in theory, by
a mere exploration of the field distribution, ascertain the true
conditions.


We see, then, that whereas velocity was relative in that it was quite
impossible for us to ascertain the absolute velocity of our enclosure,
acceleration still remains absolute in spite of the postulate, since
(theoretically at least) it can always be detected and its effects
separated from those due to matter. In fact, as we shall see later,
the complete relativity of all motion can be established only if the
universe is finite. Under the circumstances, we must be careful not to
overestimate the philosophical significance of the postulate in its
bearing on the relativity of motion.


Now it might be thought that owing to this fundamental difference
in the spatial distribution of fields of force (inertial and
gravitational), the postulate would not be of much use in its

physical applications. But this view would be erroneous. From a purely
qualitative standpoint the postulate permits us to assert that any
phenomenon whose behaviour should be affected by the acceleration
of the enclosure, must also be sensitive to the presence of a
gravitational field due to matter. Inasmuch as it is often easy to see
that the acceleration of our frame of reference must inevitably modify
the observed behaviour of a phenomenon, we are able to infer therefrom
that the same phenomenon will also be affected by a gravitational field
generated by matter.


It was by following this method that Einstein was able to anticipate
a number of gravitational effects which classical science had never
even suspected. Chief among these are the bending of a ray of light
in a gravitational field, and the Einstein-shift effect, since
observed on the companion of Sirius.


We may understand without difficulty how the bending of a ray of light
was anticipated. For consider an enclosure floating in empty space
far from matter. A wave of light enters by a crack in the wall and
travels through the enclosure along a line parallel to the floor. But
if now the enclosure be uniformly accelerated, the floor advances
with accelerated motion across the ray. As referred to the enclosure,
the ray of light will thus assume a bent path, just as the course of
a bullet would appear bent under similar circumstances.[83] Then the
postulate of equivalence allows us to assert that exactly the same
results would have ensued had the enclosure been at rest in a uniform
gravitational field; so that regardless of whether or not uniform
gravitational fields generated by matter can exist, we are led to
the general conclusion that a gravitational field will bend the course
of light waves and modify their velocity.


It is this qualitative discovery that is of importance and that
constitutes a fact which was unknown to classical science. What the
precise course of a light ray will be in a non-uniform gravitational
field generated by matter, is a question of another order.


The postulate, however, enables us to answer this question, provided
we know how the gravitational field is spatially distributed around
matter. We may understand this point as follows: Owing to its gradual
variations from place to place, even a non-uniform field may be
regarded as uniform if we restrict our attention to very small regions

of space.[84] It follows that we can decompose a non-uniform field
into a series of contiguous volumes of space, each one of which may be
assimilated to the spaces in enclosures possessing appropriate uniform
accelerations. If, therefore, the spatial distribution of a non-uniform
gravitational field is given, we may deduce (according to the methods
of differential geometry) the path of a ray of light from place to
place over contiguous infinitesimal distances. In this way, assuming
Newton’s law to be correct, Einstein deduced the curvature of a ray of
light in the sun’s gravitational field. He found that for a ray grazing
the sun’s limb the deflection would be 0".87, just one-half of what he
was to establish subsequently, after he had recognised that Newton’s
law could not be correct.


In other cases, we are not concerned with the study of a phenomenon
extending over large areas; its behaviour in a small area, say in our
room, suffices. In this case, of course, the earth’s gravitational
field may always be regarded as uniform; so that by considering the
effect arising from the introduction of a constant acceleration of
suitable magnitude, the action of gravitation on our phenomenon can be
anticipated.


In a general way, the postulate of equivalence led Einstein to the
following conclusions: Inertial mass and gravitational mass being one
and the same thing, all forms of existence which possess inertial mass
must also manifest weight in a gravitational field. Hence, as all forms
of energy possess inertial mass, we see that energy has weight. A hot
brick weighs more than a cold one, an electrified body more than a
neutral one; possibly, also, a living animal more than a dead one, and
so on. Conversely, all forms of energy must develop a gravitational
field.


In the following pages we shall show that the postulate of equivalence,
which in the present chapter was derived as a generalisation from the
equality of the two masses, can also be deduced in a purely rational
way from the existence of space-time. We shall thus be in a position
to understand how all these discoveries dealing with forces and
gravitation can be woven into the common space-time fabric.








CHAPTER XXV

THE INCLUSION OF GRAVITATION IN THE MODEL OF
SPACE-TIME





IN the preceding chapter the following results were established:


1. No essential difference exists between a field of gravitation
produced by matter and a field of inertia produced by the acceleration
of our frame of reference (postulate of equivalence).


2. Although these two types of fields of force are essentially of the
same nature, yet the actual spread of the gravitational field around
matter is never quite the same as that of the field generated by the
acceleration of a frame in free space far from matter. As a result of
this feature, whereas it is always possible to cancel a field of force
entirely by changing the motion of our frame in a suitable way when
the field contemplated exists in regions remote from matter, on the
other hand, in the neighbourhood of matter, the field of force can be
modified, and even cancelled in a small region, but never cancelled
over any wide extension. It is like a protuberance which can be
flattened out in one place, only to reappear with increased intensity
elsewhere.


These are the results which we must weave into the general model of
space-time, unless we reject Einstein’s postulate of equivalence, and
maintain that fields of gravitation produced by matter have no more
in common with fields of inertia than they have with electromagnetic
fields, for instance. The postulate of equivalence, as we have
seen, appears to be justified owing to the empirical fact that the
two types of masses are identical. But we now propose to show that
quite independently of this empirical fact, even if the postulate of
equivalence had never been stated in a specific manner, a natural
mathematical generalisation of the geometry of space-time would have
led us indirectly to exactly the same identification of forces of
inertia and gravitation. Accordingly, let us recall briefly the results
we arrived at in Chapter XXIII when we
examined the origin of forces of inertia in our space-time model.


We remember that space-time was assumed to be perfectly flat, so
that its geodesics were Euclidean straight lines when referred to
Cartesian mesh-systems of equal four-dimensional cubes. These Cartesian
mesh-systems, splitting up space-time into mutually perpendicular
rectilinear directions, constituted the geometrical representations of
our methods of breaking up space-time into space and time for purposes
of referring our measurements to Galilean systems of reference. In
these Cartesian mesh-systems the ’s of space-time maintained
constant values throughout, and the numerical values of these
’s represented the potentials of the field of inertial force.
These potentials being constants, remaining unchanged in value from

point to point in our Cartesian systems, no field of force could be
present; and this was in full accord with what we know of Galilean
systems, since these systems are characterised by the total absence
of all such fields. Furthermore, as all free bodies and light waves
followed geodesics in space-time according to the requirements of Least
Action, and as these geodesics when referred to Cartesian systems were
straight lines, free bodies and light waves would always appear to
follow straight lines with constant speeds when observed from Galilean
frames. This was in accord with Newton’s law of inertia.


Subsequently we saw that accelerated frames moving in interstellar
space would be represented by curvilinear or Gaussian mesh-systems.
In these systems the values of the ’s of space-time were no
longer constant, but varied from place to place. This variation in
the values of the ’s connoted the variation in value of the
potentials; and as a result the mathematical expression of a force
(given as it was by relations between these variations) no longer
vanished. These curvilinear mesh-systems represented, therefore,
systems in which fields of force would be present. This again was in
perfect accord with what we knew of accelerated or non-Galilean frames.
Further, as referred to these curvilinear mesh-systems, the geodesics
of space-time would appear to be curved. The physical significance of
this fact would be to imply that the motion of free bodies and light
waves would appear to be accelerated when viewed from accelerated
frames. Once more the complete accord with experiment is apparent.


Now let us proceed to the natural generalisation of these results. So
far, we have assumed space-time to be flat. Indeed, we could not escape
this assumption if we were to admit that Galilean frames, free from
all fields of force, could exist in space far from matter, and that
as observed from these frames the geodesics of space-time would be
Euclidean straight lines. Only thus would Newton’s law of the motion of
free bodies in interstellar space be verified. But suppose now that,
for some reason or other, space-time were to develop non-Euclideanism
or curvature, and so depart from its flatness. How would such a
condition manifest itself physically?


In the first place, it would be impossible to split up this curved
space-time into the straight directions which define a Cartesian
mesh-system. Physically speaking, this would imply that in those
regions where space-time was curved no Galilean systems could exist.
We might, of course, conceive of mesh-systems less curved than others;
but even the straightest of these systems would at best be only
approximately Cartesian within a restricted region. As we considered
parts of the mesh-system farther and farther removed from this special
region, the meshes would become more and more widely spaced or more and
more closely gathered together.


An elementary illustration of this would be given by considering a
curved surface of two dimensions, such as that of a sphere. On a
sphere we can trace an infinite variety of mesh-systems, but none of
these mesh-systems is made up of equal Euclidean squares. The nearest
approach to a network of squares would be afforded by a mesh-system

of meridians and parallels. But even a mesh-system of this sort
could be likened to a network of equal squares only in the immediate
vicinity of the equator. As we examined our mesh-system at regions
farther and farther removed from the equator, we should notice that
the meridians had a tendency to run closer and closer together, so
that the quadrilaterals bounded by the meridians and parallels would
depart more and more in shape from those of Euclidean squares. In the
general case, where we consider an arbitrarily curved surface and no
longer a uniformly curved one, such as a sphere, it could be shown that
the straightest type of mesh-system compatible with the surface was
assimilable to one of squares only around a point, and not, as in the
case of a sphere, along a line (such as the equator). The point could
be selected arbitrarily, and our pseudo-straight mesh-system drawn
around this point accordingly.


We see, therefore, that if space-time is unevenly curved or unevenly
non-Euclidean, the nearest approach to a Cartesian mesh-system around
any given point could be approximately Cartesian only in a restricted
region around this point. As we moved away from this point in our
mesh-system, its curvilinear characteristics would become more and more
pronounced. So far as the ’s of space-time are concerned,
this would imply that in a region where curvature was present these
’s could maintain constant values only in the more or less
immediate neighbourhood of a point. Expressed in terms of fields of
force, this assertion is equivalent to stating that in a region of
space-time curvature it would be quite impossible to rid ourselves of a
field of force throughout space. We might annul it at the point and in
its immediate neighbourhood, but the field of force would reappear for
more distant regions.


It is easy to see that these physical conditions are precisely those
which we have found to exist in a gravitational field produced by
matter. The straightest type of mesh-system around a point (namely, a
semi-Cartesian mesh-system) would correspond to that of the observer
in the falling elevator or in the hollow projectile, since for an
observer in a frame of this type the force of gravitation disappears
in the immediate interior of his frame, but reappears at more distant
points. Further, space-time being curved, its geodesics would no longer
be Euclidean straight lines. They would still appear approximately
straight when referred to a semi-Cartesian mesh-system in the immediate
neighbourhood of the point for which the mesh-system was approximately
one of equal four-dimensional cubes; but their curvature would
become more and more apparent when we surveyed them from this same
mesh-system in more distant regions. The physical interpretation of
this geometrical fact would be afforded by the seemingly uniform and
rectilinear motion of free bodies and rays of light in the immediate
neighbourhood of the falling elevator when viewed by an observer
situated in this falling frame, and by the apparent acceleration of
these bodies in regions more distant from the falling elevator.


It is therefore obvious that the existence of a non-Euclideanism of

space-time around matter would betray itself physically in exactly the
same way as a field of gravitation produced by matter.[85] Assuming
this generalisation to be correct, we see that no essential difference
can exist between a field of gravitation and one of inertia. Both types
of field arise from a relationship between the mesh-system adopted
by the observer, and the fundamental structure of the space-time
continuum. The only difference that exists is that in interstellar
space far from matter, space-time being flat, it is always possible
to select a Cartesian mesh-system corresponding to a Galilean system
in which no field of force is present, whereas in the neighbourhood
of matter, owing to the inherent curvature of space-time, the nearest
approach to Galilean frames is given by semi-Cartesian or semi-Galilean
frames (falling elevator). In such frames the field of force cannot
vanish throughout the frame at more or less distant points.


It follows that these same ’s whose values in a given
mesh-system represented the potentials of the field of inertia can
now with equal justification be considered to yield the potentials
of the field of gravitation. The mathematical expression comprising
the variations of the ’s from point to point, which was
formerly proved to represent the force of inertia, can now with equal
justification be deemed to represent the force of gravitation. As
was the case with the force of inertia, this mathematical expression
of the force, depending as it does on the variations in the values
of the ’s from point to point, varies with our choice of a
mesh-system; in exactly the same way, the magnitude of a gravitational
force in our frame of reference varies with the acceleration of
our frame (as was established when we discussed the postulate of
equivalence). Furthermore, the value of the mathematical expression
of this force will vanish completely throughout a mesh-system when
this mesh-system is Cartesian, whereas it will vanish only around a
definite point when, owing to the curvature of space-time, a Cartesian
mesh-system is impossible, so that we have to be content with a
semi-Cartesian one. We see that the analogy is complete in all respects.


Here it must be noticed that, identifying as we are the ’s
in a given mesh-system with the gravitational potentials in the frame
corresponding to this mesh-system, we find ourselves in the presence
of as many different gravitational potentials as there are separate
’s. That is, we have ten different potentials. Newton knew
of only one of these, the Newtonian potential, which turns out to be
—the one directed along the time-axis of the mesh-system.
It is the presence of these other potentials ignored by Newton and
discovered by Einstein which is responsible for the major differences
distinguishing Newton’s law of planetary motions from that of Einstein.
We see, therefore, that this natural generalisation of the geometry
of space-time, by compelling us to recognise forces of gravitation
and inertia as of the same nature, leads us to exactly the same
conclusions as were obtained by Einstein when he started from the
postulate of equivalence. So although we laid stress on the postulate
of equivalence as a separate discovery in order to abide by the

historical sequence of Einstein’s investigations, we see that when
we view the problem from a loftier standpoint the postulate does not
add anything to what would normally have been discovered, or at least
suspected, as a result of the more philosophical generalisation we have
discussed.


Of course, if the postulate of equivalence should prove to be
unjustified, as it would were experiment to detect a difference between
inertial and gravitational mass, the generalisation would also be
unjustified and gravitation could never be ascribed to a curvature of
space-time. However, as the most refined experiments have invariably
disclosed the complete identity of the two types of masses, the
space-time generalisation appears to be in order.








CHAPTER XXVI

TENSORS AND THE LAWS OF NATURE





WE have now reached a point where further progress would appear to
require at least a few elementary notions on tensors and the absolute
calculus. We shall endeavour to present these matters in as clear a way
as possible by considering, first of all, tensors from the standpoint
of pure mathematics, without any reference to their applications in
Einstein’s theory.


Let us suppose that we are dealing with the ordinary three-dimensional
Euclidean space of classical science. We remember that it is often
convenient to refer the positions of objects situated in space to some
definite system of reference or system of co-ordinates. This procedure
is equivalent to drawing an imaginary three-dimensional mesh-system
with respect to which we locate the points of space. The precise shape
of this mesh-system is arbitrary. It may split up space into equal
cubes (in which case it is called Cartesian), or again it may be
curvilinear and split up space into irregularly shaped volumes. In all
cases, however, we shall assume that these mesh-systems remain fixed
and do not vary in shape or orientation once they have been drawn.


Now, though we have stated that the precise shape of the co-ordinate
system, or mesh-system, is arbitrary, there are mathematical reasons
which render the use of Cartesian systems especially convenient. So
long as we are dealing with Euclidean space, in which, as we know,
Cartesian mesh-systems are always permissible, we need not be concerned
with Gaussian co-ordinate systems. It was for this reason that
classical science, when dealing with physical problems, confined itself
to Cartesian co-ordinates; and by a change of co-ordinate system it
meant a rotation or a displacement of the Cartesian frame of reference
from one position to another.


Nevertheless, we always had to view the possibility of having to
investigate problems in which Cartesian co-ordinate systems would
be impracticable, owing to the curvature or non-Euclideanism of
the continuum. Accordingly, even before the advent of the theory
of relativity, mathematicians had endeavoured to perfect a form of
calculus which would free them from all dependence on any particular
type of co-ordinate system. This task was accomplished chiefly by
Levi-Civita and Ricci, and the mathematical instrument evolved was
called the absolute calculus. And so, when in the general
theory Einstein was led to his conception of a curved or non-Euclidean
space-time, in which Cartesian co-ordinate systems were impossible, the
mathematical instrument he required was at hand. All he had to do was
to put it to practical use.





Although, in the Euclidean space of classical physics which we
now propose to discuss, there was no need to consider Gaussian or
curvilinear co-ordinate systems, yet, in view of the greater generality
of the method, we shall treat the subject matter of this chapter from
the standpoint of all systems of co-ordinates, whether Gaussian or
Cartesian. The conclusions we shall reach must, however, be construed
as holding for all manner of co-ordinate systems. If these preliminary
points are understood, we may proceed to a more detailed discussion of
the problem.


Let us consider a straight rod situated in this space. If we agree on
a unit of measurement, we can assign some definite length to the rod.
Obviously, this length, whatever it may be, will remain unaffected by
a change in our co-ordinate system in space. Magnitudes of this sort,
which transcend in every respect our choice of a co-ordinate system,
are known as scalars, numbers or invariants.


But suppose now that we wish to determine the exact orientation of our
rod. Orientation, in contrast to length, has no meaning until some
mesh-system has been prescribed; for we can define a direction in
empty space only by referring it to some accepted system of standard
directions at each point. The meshes of our mesh-system at each
point will, of course, define such standard directions for us. When,
therefore, we attempt to determine the orientation of the rod, our
procedure will be to project its length upon the three meshes that pass
through one of its extremities. We thereby obtain what are known as the
three components of the rod; and when these three components are known,
the orientation and the length of the rod are fully determined.[86]


From this example we see that a considerable difference exists between
the directed magnitude we are here considering and the invariant one
which was given by the mere length of the rod irrespective of its
orientation. Whereas the invariant magnitude possessed no components,
the directed one has as many components as the space has dimensions,
three in the present case. A directed magnitude of this sort is termed
a vector.


Suppose now that we change our system of reference, rotate it slightly,
for instance. We shall thereby obtain three new components for our
vector in the new co-ordinate system, and these new components will
differ in magnitude from our former ones. However, the change in the
value of the components for a definite change of frame of reference
is not arbitrary, but will be submitted to well-defined mathematical
rules.[87] This fact enables us to discover a criterion of objectivity.





For, suppose that in a first co-ordinate system certain components,
, , , are revealed by measurement, and that in a
second co-ordinate system new components , ,  are
obtained. If under these circumstances we were to find that the two
trios of components , ,  and , , 
were not linked together by the stringent mathematical rules
we have referred to, we should have to recognise that we could not
have been contemplating the same vector when we passed from the first
co-ordinate system to the second. Conversely, if the mathematical
rules were found to be satisfied by the components, we should realise
that we were indeed dealing with the same vector. In this way the
vector would no longer be some indeterminate magnitude. It would be
a definite and precise one to which we might attribute an objective
existence transcending our choice of a mesh-system of reference. The
components themselves have no absolute existence; they do not transcend
our mesh-system. They represent but partial aspects of the vector, mere
modes or shadows, varying, as they do, with our system of reference.
But to the vector itself an objective existence can be conceded.


Now, mathematical investigation soon showed that there existed two
different types of vectors, distinguished by two different rules of
mathematical transformation when we passed from one co-ordinate system
to another. As these two rules of mathematical transformation, known as
the contravariant and the covariant rule, respectively,
appeared to be the only consistent ones, it was recognised that there
existed only these two different types of vectors, the so-called
contravariant vector and the covariant vector. In a
certain sense this distinction is somewhat artificial, for we may
always regard a given vector as contravariant or covariant, as we see
fit. All that we mean to imply by this terminology is that we intend
to subject the components of the vector to the contravariant or the
covariant rule of transformation when we change our co-ordinate system.


So far we have considered two types of magnitudes, invariants or
scalars, and vectors. Mathematicians discovered, however, that there
existed a vast array of other types of magnitudes named tensors,[88]
whose components likewise obeyed rigid rules of mathematical
transformation when we passed from one co-ordinate system to another,
and which for this reason could be credited, just as truly as
vectors and invariants, with an objective existence transcending our
mesh-system. Tensors differed from vectors owing to the greater number
of their components. Whereas a vector possessed only as many components
as the space had dimensions, a tensor could have a much greater

number. According to the number of their components in a space of a
given number of dimensions, tensors were grouped into tensors of the
second order, of the third order, of the th order.


In a three-dimensional space a tensor of the second order has nine
components instead of three, as has a vector. A tensor of the third
order has twenty-seven, and so on. Just as in the case of vectors,
the components of a tensor situated at a point in space vary in value
with the choice of our mesh-system, and, again, just as with vectors,
the values of the components in one mesh-system are connected with
their values in another mesh-system by rigid mathematical rules
of transformation. In the present case, however, these rules of
transformation are more complex. They are seen to be generalisations
of the rules regulating the transformations of vector components. As
an immediate sequel, tensors appear to be mere generalisations of the
older known vectors.


In particular, a vector was found to be nothing else than a tensor
of the first order, while an invariant appeared to be a tensor of
zero order. The general name “tensor” expresses, therefore, all
those types of mathematical magnitudes which possess an objective
significance transcending our system of co-ordinates, although it will
often be convenient to reserve the name “tensor” for tensors of the
second and higher orders, retaining thereby the classical appellations
“vector” and “invariant” for tensors of lower order.


Now we shall see that the distinction we have made between the two
different types of vectors (contravariant and covariant) will extend
automatically to tensors. Let us consider, for instance, a tensor of
the second order. When we change our co-ordinate system, the nine
components of this tensor will vary, and to obtain their values in the
new co-ordinate system we apply a rule of transformation which is, so
to speak, the vector rule taken twice in succession. As there are two
vector rules, one contravariant and one covariant, we get, in the case
of tensors of the second order, a twice contravariant rule, a twice
covariant one or a mixed rule both contravariant and covariant. In this
way we are led to distinguish three different types of second-order
tensors: the twice contravariant, the twice covariant and the mixed
variety.





Here it must be stated that the two rules, the contravariant and the
covariant, are in certain respects the antitheses of each other.
What one rule does the other undoes. If, therefore, we combine any
vector considered as contravariant with any vector considered as
covariant, the result will be similar to what happens when a squirrel
runs in a drum which is rotating backwards. The forward motion of the
squirrel is counteracted by the backward motion of the drum, so that
finally the squirrel does not move at all. The result of combining a
contravariant and a covariant vector will be, therefore, to obtain a
scalar or invariant. In the same way, a covariant tensor of the second
order combined with two contravariant vectors, or a covariant tensor
combined with a contravariant one of the same order, will each yield an
invariant.


Let us now pass to one of the most important characteristics of
tensors and vectors. The fact that the components of all contravariant
vectors are submitted to the same rules of change when we pass from
one co-ordinate system to another, proves that if two contravariant
vectors situated at the same point of space are equal, that is, if
the components of the one are equal to the components of the other in
our co-ordinate system, this equality will inevitably endure in any
other co-ordinate system. In other words, the equality of two vectors
at a point of space constitutes an equality which a change in our
co-ordinate system can never destroy; the equality is thus an absolute.
Similar conclusions apply to the equality of two tensors at the same
point of space.


It must be noted, however, that this equality endures only because the
components of either vector or of either tensor on the two sides of
the equation are submitted to the same rules of transformation when
our co-ordinate system is changed. This implies that we are dealing
with vectors of the same nature (covariant or contravariant), or
with tensors of the same nature and order. If these conditions are
satisfied, we see that equations between vectors or tensors, often
called vector equations and tensor equations, exhibit the
remarkable property of remaining unaffected by a change of mesh-system.


In a certain sense, then, vector equations and tensor equations
constitute invariant or absolute equations. This last appellation
would, in fact, be perfectly justified were we to argue in terms of
the absolute vectors and tensors which exist independently of our
mesh-system. But in practice it is very difficult to dispense with
a mesh-system. As a result, what we come into contact with—what we
measure in reality—is not the vector or the tensor itself, which is
absolute, but its components in the mesh-system that we have selected.
These components are relative, since they change in value when we
change our mesh-system. True, these changes being the same on either
side of the equation, the equality endures regardless of our choice of
mesh-system. But, on the other hand, a definite numerical change has
taken place in the value of either side of our equation. The form of
the equation as a whole has remained unaltered, but the contents of the
two sides has changed.


Let us explain this point more fully. Consider two vectors which are
situated at the same point and which are equal to each other. In
three-dimensional space, this equality is expressed by the respective
equality of the three components of the first vector with the three
components of the second vector in our co-ordinate system; hence we
have three equations, such as



If, now, we change our mesh-system, the components of either vector
change in exactly the same way, so that our equations subsist. In
the new mesh-system, however,  becomes  and 
becomes , etc., so we now have






Obviously, although the equations subsist, yet the expressions on
either side of our three equations have varied; for  is
different from  and so on. Thus we see that it would not be
quite correct to state that our equations remained completely unchanged
when we passed from one mesh-system to another.


For these reasons it is customary to speak of the covariance
rather than of the invariance of vector or tensor equations. The
word “covariance” expresses the fact that both sides have varied in
exactly the same way. The appellation “invariance” would tend to make
us believe that neither side had varied at all, which would, of course,
be incorrect. In short, we must remember that it is the relationship
of equality between the two sides, and not the individual terms
themselves, that remain unaffected by a change of mesh-system.[89]


Now, there exists still another type of vector and of tensor equation.
If, for instance, a vector or a tensor vanishes, this means that all
the components vanish individually. A simple glance at the rules of
transformation shows that in this case all the components will continue
to vanish in any co-ordinate system, so that the equating of a tensor,
a vector or an invariant to zero at a point of space will endure in all
co-ordinate systems if it endures in any particular system.


Summarising, we find that there exist two types of covariant equations:


The first type is given by the equality of two vectors (the vectors
being both covariant or both contravariant) or, more generally, by the
equality of two tensors, these tensors being of the same order and same
nature (i.e., covariant, mixed or contravariant). A limiting
case would be given by the equality of two invariants; we should then
have an invariant equation.


The second type is given by the vanishing of a vector or a tensor at a
point in space. A limiting case would be given by the vanishing of an
invariant.


All these deductions obtained mathematically are in a certain sense
self-evident physically when we recall that a tensor, a vector and an
invariant represent magnitudes to which an objective existence may be
conceded. It is obvious, indeed, that if two such magnitudes are equal
to each other at a point in space, a mere change of our co-ordinate
system can never disturb this intrinsic equality. In the same way, if
a concrete entity, such as a tensor, has vanished at a point in space,
a mere change of our co-ordinate system is incapable of bringing it
into existence. Once again, we realise the strict dependence which
exists between physical representations of this sort and the fact that
invariants, vectors and tensors must be recognised to have an objective
existence transcending the particular point of view of our co-ordinate
system.


If these mathematical considerations have been grasped, we may pass
to physical applications of these purely mathematical discoveries.
We will restrict ourselves for the present to the three-dimensional

Euclidean space of classical science; hence by a change of co-ordinate
system we again mean a mere change in shape, position and orientation
of our mesh-system. We do not mean the passage from one system to
another in relative motion thereto.


In classical science we often come upon invariants and vectors.
Examples of invariants are given by the mass and the density of mass
of a body. Vectors are illustrated by a velocity, an acceleration, a
force, a displacement; and we may say that in a general way a vector
can be represented by an arrow. The simplest physical illustration of a
tensor at each point of space is afforded by the state of compression
and tension at each point of an elastic medium which has been distorted.


It is impossible to express this state of tension and compression at
a point by means of three components in our three-dimensional space.
Owing to lateral wrenching effects at each point, nine components
are necessary; and we realise that we can no longer appeal to a
vector. We are now in the presence of a tensor. The physical origin
of the appellation “tensor,” coined by Willard Gibbs, thus becomes
apparent. In the present case the tensor is a second-order tensor, and,
furthermore, it is what is known as a symmetrical tensor. The
characteristics of a symmetrical tensor are defined by the identity
of certain of its components two by two; this reduces the number of
independent components of a second-order tensor in three-dimensional
space to six in place of nine.


It can be proved that the  numbers which we have often
mentioned constitute symmetrical second-order covariant tensors.
The tensor nature of the ’s means nothing else than that
the components of the ’s in our co-ordinate system vary
according to the rules of tensors when we pass from one co-ordinate
system to another. The ’s being second-order covariant
tensors, we may infer that by combining them with two displacements,
or vectors, of opposite nature (i.e., contravariant
vectors), we shall obtain an invariant. It is for this reason that
 yields an invariant,[90] which,
as we know, is nothing but the square of the length .


In three-dimensional space there are nine of the  components,
but, the tensor  being symmetrical, this number is
reduced to six. Thus
.
For this reason we may in the case of three-dimensional space write out
 as follows:

instead of

[91]





When we come to examine the concrete significance of the ’s,
we find them to be expressive of the angles between our co-ordinate
meshes, and of the general shape of our mesh-system from place to
place. Since, however, the shape of our mesh-system, though arbitrary
in large measure, is nevertheless restricted to certain types
compatible with the structure of the space in which we trace them,
these ’s are also representative of the structure or geometry
of our space. For this reason they are called structural or
fundamental tensors.


Let us recall once more that we are not yet dealing with Einstein’s
discoveries or with space-time; we are discussing three-dimensional
space, and all we have said refers to pre-Einsteinian science.


Other illustrations of tensors are afforded by an angular velocity
and by a magnetic force. The tensor nature of these two magnitudes is
less obvious because it so happens that these second-order tensors
are of a special type known as anti-symmetrical. In tensors
of this type, certain components are always zero in all systems of
co-ordinates, and the remaining ones are of the same magnitude but of
opposite sign. The result is that in the case of three-dimensional
space anti-symmetrical tensors of the second order possess only three
independent components just like vectors, and for this reason are often
represented by arrows and confused with vectors. As a matter of fact,
this confusion need not arise; for it is obvious that a rotation,
for example, is better represented by a corkscrew curve than by an
arrow, and the same applies to a magnetic force when we realise that
it is generated by a whirling of electrons. At all events, had it not
been for the accidental fact that space had three dimensions, the
confusion could never have occurred at all; for, in a four-dimensional
space, anti-symmetrical tensors of the second order have a number of
components greater than four (which is the number of components of a
vector in a four-dimensional space). Still another illustration of an
anti-symmetrical tensor of the second order is furnished by an element
of a surface.


In short, we see that the magnitudes in which classical science was
chiefly interested were either invariants, vectors or tensors. At
this we need not be surprised, seeing that the magnitudes to which
physical science pays greatest attention are always those to which
we may concede an objective existence transcending our choice of
a mesh-system. Thus, an object itself appears to be of greater

significance than the shape of its shadow; for the shadow will change
as we alter the orientation and shape of the surface on which it falls,
whereas the existence of the object will transcend any such changes.


If now we consider the laws of nature, we can anticipate, for two
different reasons, that they must be vector or tensor equations.
First, because all those physical magnitudes to which we attribute an
objective existence and which enter into the expression of the laws
of nature are invariants, vectors and tensors; and, secondly, because
a law of nature must obviously remain unaffected by a mere change of
orientation or shape of our frame of reference.


It is, indeed, evident that a mesh-system is a mere artifice of
calculation. It can have no intrinsic significance, and, as a matter
of fact, we might dispense with it altogether. Such an absolute
condition of the world as the equality of two vectors at a point or the
vanishing of a vector or of a tensor would endure even had mesh-systems
never been invented by Descartes and Gauss. Suppose, then, that a law
appeared to hold when we selected some particular mesh-system, but no
longer when our meshes were squeezed together or rotated to some new
position. Obviously our law would possess no generality; it could refer
to nothing objective and would be no law at all.


We may summarise these discoveries by saying that all the laws of
classical science were vector or tensor laws. They remained covariant
or unchanged in form when we changed the orientation or shape of our
mesh-system while maintaining it fixed in space. This last
point is important; for in classical science, time being absolute and
separate from space, it was solely from the point of view of a spatial
change in the shape and orientation of our mesh-system that the laws
remained covariant.


We may also mention that in addition to the covariance of all natural
laws to a spatial change of mesh-system, there existed a second
requirement which all natural laws had to obey. We refer to the test of
dimensionality. A brief discussion will make this point clear.


The numerical values of all physical quantities depend on our choice
of standard units for the measurement of distance, duration and mass.
If, therefore, we change our units, if we adopt the minute instead of
the second, or the foot instead of the metre, or the pound instead of
the kilogramme, the numerical values of both sides of the equation
representing the law will be affected accordingly. For the equation
to endure in spite of the change in value of its two terms, it is
necessary that a change in our unit of time or of length or of mass
should affect the numerical values of both sides of the equation in
exactly the same way. This condition is expressed by saying that both
sides of the equation must possess the same dimensionality. It is
perfectly obvious that a law of nature must constitute an equation
of this type. It would be ridiculous to suppose that a change in
our units from the avoirdupois to the metric system, for example,

could ever upset the validity of a law of nature. This test of
dimensionality was often useful in determining the second side of the
equation representing some unknown law. We might ignore the exact
form of the second side, but we could always tell in advance that its
dimensionality would have to be the same as that of the first side.
In this way a certain amount of a priori information was often
obtained.








CHAPTER XXVII

THE PRINCIPLE OF GENERAL COVARIANCE, OR THE
GENERAL PRINCIPLE OF RELATIVITY





WE have endeavoured to show that the great change in our views
of the world brought about by the theory of relativity arises
from the discovery that four-dimensional space-time and not the
three-dimensional space and the independent time of classical science
correspond to reality. It might seem but a natural generalisation to
extend to space-time the conclusions we arrived at in the last chapter
when discussing the covariance of the natural laws to a change of
mesh-system in space. We should then expect the laws of nature to
express relationships between vectors and tensors in space-time, hence
to remain covariant to a change in our space-time mesh-system.


Although this generalisation would turn out to be perfectly legitimate,
its validity is by no means self-evident a priori. We can accept
it only after we have convinced ourselves that the laws of physics,
such as experiment has revealed them to be, can indeed be regarded as
expressing relationships between entities (vectors and tensors) in
space-time. Now, from a purely formal standpoint, it is conceivable
that such might not be the case. Suppose, for instance, that the
four-dimensional spatio-temporal background were characterised by
some finite invariant velocity  greater than Maxwell’s constant
, which is given, as we know, by the velocity of light in
vacuo. In an extended sense we could still regard our universe as
a four-dimensional space-time, since, the invariant velocity being
finite, and not infinite, the fusion of space and time would hold, just
as it did in Minkowski’s space-time.


But, on the other hand, owing to the discrepancy between  and
, the laws of electromagnetics would cease to be covariant to a
change of Galilean frame, hence to a change of space-time mesh-system.
And so we could not view these laws as expressing relationships between
the absolute entities of the fundamental space-time continuum.


The situation changes when we find, as a result of experiment,
that the laws of electromagnetics remain covariant to a change of
Galilean frame. This discovery results, of course, from the negative
experiments in electromagnetics and from others of a similar nature.
The first consequence of this discovery is to prove that , the
invariant velocity of space-time, and , Maxwell’s constant, must
be one and the same, since only on this condition will the laws of
electromagnetics remain covariant.


Einstein then extended this property of covariance to all physical
laws. We thus obtain the special principle of relativity, according to
which the laws of nature remain covariant when we refer them to one
Galilean frame or another. In short, the special theory deals solely

with Galilean frames.


From the standpoint of mesh-systems, let us recall that Galilean frames
are given by Cartesian mesh-systems in space-time, the differences
in their orientations representing the relative velocities existing
between the frames. When we pass from measurements performed in one
of these Cartesian mesh-systems to those executed in some other one
of these frames, we must apply the transformations corresponding
to a rotation in space-time; and these are the Lorentz-Einstein
transformations. We may say, therefore, that in the special theory the
principle of covariance entails the covariance of all natural laws when
submitted to the Lorentz-Einstein transformations.


Now the fact that the laws of nature maintain the same form regardless
of the orientation of our Cartesian space-time mesh-system, or frame of
reference, suggests that they must be the expressions of relationships
between such entities as vectors and tensors in space-time. If this
be the case, the laws should remain covariant not merely to a change
of Cartesian mesh-system, but also to a change to any species of
mesh-system, whether Cartesian or curvilinear. In other words, they
should be expressible as vector or tensor equations in flat space-time.


This discovery permits us to advance a step farther. For let us suppose
that this erstwhile flat continuum manifests curvature in certain
regions. Einstein assumed that in this case its curvature would curve
along with it the entities embedded in its substance. Under the
circumstances, the covariance of the laws of nature should continue
to hold regardless of the flatness or curvature of space-time, hence
also of the species of mesh-system we might appeal to. It is this
generalisation of Einstein’s which constitutes the principle of
general covariance, or the general principle of relativity.
We see that it represents an extension of the special principle of
covariance, or of relativity, extending as it does to all regions of
space-time, whether flat or curved, and to all mesh-systems, whether
Cartesian or curvilinear, the covariance established originally only
in a special case. Henceforth it becomes permissible to say that all
the laws of nature express relationships between entities of space-time
(vectors and tensors); and as a result we are able to extend to
space-time the conclusions we arrived at when discussing space in the
previous chapter. After this preliminary discussion, we may investigate
the objectivity of our physical magnitudes.


In classical science these magnitudes were required to be invariants,
vectors or tensors in space. In the light of the new discoveries, we
must now substitute space-time for space. The result is that both
gravitational force and potential energy turn out to be deprived of
all objective significance, for by merely changing our mesh-system in
space-time we can annihilate or bring into existence the components
of these magnitudes at a point. Potential energy entering as it does
into the expression of the law of conservation, it became apparent that
this law of classical science was obviously of an artificial nature.
We shall discuss the principles of conservation in greater detail in a
later chapter.


Let us now examine the subject of the general laws of nature. In

classical science these laws had to remain covariant to a change in the
shape and orientation of our mesh-system in three-dimensional space.
The new requirement is that these laws shall remain covariant to a
change of shape and orientation of our mesh-system in four-dimensional
space-time. This new condition will obviously exert an additional
restrictive influence on the formulation of our laws, for it comprises
as a special case all the classical restrictions as to covariance in
space, supplementing them with the added restriction of covariance in
space-time. When, therefore, we consider the laws of classical science,
we shall be able to accept them without modification only provided they
happen to satisfy the restrictive condition imposed by the space-time
theory.


It must be kept in mind, however, that the space-time tensor test
cannot aspire to tell us with certainty what the laws of the real world
will be. Its action is merely one of elimination; it tells us what
these laws can never be. When it comes to deciding which one of the
many possible laws is to be accepted as the true law, experiment must
be our guide. We can also foresee that the classical laws, though they
may appear impossible in the light of the new test, must nevertheless
be approximately correct since classical science had considered them
to be borne out by experiment. We must not be surprised to find,
therefore, that from a practical point of view very slight differences
exist between the new laws and the old ones when crude experiments
at least are considered. But from a theoretical point of view the
difference is of momentous importance. The new laws pass the test; some
of the classical ones do not.


It was soon noted that the classical equations of electrodynamics
satisfied the new theoretical requirements, for they could be expressed
as tensor laws in space-time. Inasmuch as they were in perfect harmony
with experiment, they were left undisturbed. On the other hand, the
classical equations of mechanics and, with them, Newton’s law of
gravitation were certainly incorrect, for they did not remain covariant
to a change in our space-time mesh-system.


Accordingly, Einstein had no difficulty in writing out the correct laws
for mechanics by modifying ever so slightly the classical ones so as
to make them conform to the restrictive space-time condition. We have
stated elsewhere that in this way mass was proved to be a relative,
no longer an invariant, its value varying according to our space-time
mesh-system. We have also mentioned that the most exacting experimental
tests have proved the correctness of the new laws and the fallacy of
the classical ones.


In the preceding chapter we stated that classical science never
paid much heed to the tensor notation, because it so happened that
three-dimensional space was assumed to be permanently Euclidean and
flat, and hence a standard mesh-system of the Cartesian variety
was applicable everywhere throughout space. In the special theory,
space-time is also considered flat, so here again the tensor symbolism
can be dispensed with. We have seen, indeed, that the special theory
was concerned only with Galilean observers in space far from matter,

and we know that observers of this type always split up space-time
into space and time through the medium of Cartesian mesh-systems.
These mesh-systems differ from one another merely by their various
orientations in space-time; and we pass from one mesh-system to another
by means of the Lorentz-Einstein transformations.


On the other hand, when we come to consider accelerated observers,
we are dealing with observers who split up space-time with curved
mesh-systems. Again, when masses of attracting matter are present,
space-time assumes an intrinsic curvature which renders the
utilisation of Cartesian mesh-systems impossible. Certain particular
observers, such as those who are falling freely in a gravitational
field, adopt mesh-systems which are approximately Cartesian in the
immediate neighbourhood of the observer; but were we to prolong these
mesh-systems sufficiently, we should soon discover that they became
curvilinear, hence varied in shape from place to place, owing to the
intrinsic curvature of space-time. In much the same way, a network of
parallels and meridians on the surface of a sphere can be assimilated
to a Cartesian one of equal squares only in the neighbourhood of the
equator, since the meshes taper together as we near the poles. Thus,
in a general way, we see why it is that when we leave the special
theory, where space-time is flat and where the observer, being
Galilean, abides by Cartesian mesh-systems, and when we investigate
the general theory, where the observer is accelerated or space-time is
curved, the Lorentz-Einstein transformations must give place to a more
general type. Under these circumstances the tensor calculus becomes a
mathematical instrument of great power.


While it is true that in the early days of the special theory Einstein
never made use of this form of calculus, with which he was probably
unacquainted, most modern treatises on relativity appeal to it from
the very start, since it brings out the beautiful unity of the entire
theory and shows that the special theory is merely a particular
limiting case of the general one. This allows us to treat both forms of
the theory simultaneously. We lay stress on this point, because some
non-mathematical critics are of the mistaken opinion that the tensor
calculus applies only to the general theory. From this belief they
derive the equally erroneous opinion that the two theories constitute
separate creations, having little in common. We have seen that such is
not the case.


In this presentation of Einstein’s theory, we have emphasised the
absolute characteristics of space-time, showing how the covariance of
the natural laws followed as a necessary consequence as soon as we
regarded them as expressing relationships between space-time entities
(tensors, vectors) transcending the mesh-system of the observer.
Viewed in this way, the theory has sometimes been referred to as “the
quest of the absolute.” But we must remember that it is only as a
result of the principle of relativity, necessitated by the negative
experiments, among others, that space-time and the laws of nature can
be viewed in this light. Were it not for the principle, hence for the
identity of , invariant velocity, and , Maxwell’s constant,

though there might still be an absolute four-dimensional world, the
physical laws such as we know them could no longer be conceived of as
expressing relations between its tensors and vectors. We might conceive
of space-time entities, in this new type of space-time, as entering
into laws that would remain covariant to any change of mesh-system,
but these entities and laws would not be represented by the physical
entities and laws that experiment has revealed. From the standpoint of
the physicist, they would be mere fictions, foreign to the world of our
experience. It would be as though the entities and laws revealed to us
by experience differed from the laws that would normally be expected
had the world a unity of structure and of content. In this event the
great beauty of Einstein’s space-time theory would be lost, and with
it the wonderful unity and harmony it has shown to exist in nature.
Thus, although the absolute viewpoint is the one we have stressed in
this chapter, we should bear in mind that it was the disclosures of
relativity that rendered this absolute viewpoint possible.


Furthermore we may very easily confer a relativistic aspect on
the theory if we recall that by selecting curvilinear or Gaussian
mesh-systems in space-time, we are merely placing ourselves in the
position of an accelerated observer, who refers his measurements to
some frame of reference, squirming like an octopus and who times events
with clocks running wild. So far as can be gathered, Einstein was
guided originally by a desire to prove that all motion was relative;
it was thus the relativistic view that preceded the absolute viewpoint
in the elaboration of the theory. There is no cause to be surprised at
this precedence, seeing that we are referring to days when space-time
was as yet unknown. But when space-time was discovered by Minkowski,
the theory received an added impetus (though we can realise full well
that even before this discovery a theory which aspired to prove that
certain permanencies endured regardless of the observer’s motion would
obviously lead us to suspect the underlying presence of some absolute
world in which these permanencies would be situated). This absolute
world could not be one of separate space and time; for in the absolute
space of classical science the laws changed in form when our motion was
modified. Obviously something more was needed, and space-time was the
answer.


It is imperative, however, not to misinterpret the significance of the
covariance of natural laws. The mere fact that all observers, whatever
their motion, will discover the same laws, does not mean that all
observers are alike in every respect. Even in Einstein’s theory, a
rotating observer will realise full well, owing to centrifugal forces,
that he does not stand in a Galilean frame. The complete relativity of
all motion from every point of view is not by any means embodied in the
covariance of the laws; and we shall see that this complete relativity
of motion, leading to Mach’s mechanics, is far from being accepted by
all scientists. The discussion of this subject will have to be left
aside for the present, as it is intimately connected with the difficult
problem of the shape of the universe, concerning which we shall have
something to say in a later chapter.









CHAPTER XXVIII

THE DISCOVERY OF THE EINSTEINIAN LAW OF
GRAVITATION





IN the two preceding chapters we have discussed in a very general way
the subject of tensors and of the laws of nature. It now remains to
be seen how Einstein, guided by the requirements that accompanied all
general laws, succeeded in formulating with mathematical precision the
true law of gravitation.


In order to understand what is to follow we must revert to Newton’s
law. This law defines the intensity and distribution of the field of
gravitational force in the empty space which surrounds matter. Also,
it enables us in turn to ascertain how the field of force would be
distributed in the interior of matter, in the interior of the earth,
for instance. Thus, in its most general aspect, Newton’s law of
gravitation defines the intensity and distribution of the gravitational
field both inside and outside of matter.


Now we have seen that the presence of a field of force connotes
the existence of an uneven distribution of potentials in the space
where the field exists,[92] since any perfectly even and constant
distribution of potentials would correspond to the complete vanishing
of the field. Hence, Newton’s law of gravitation can also be written as
a law of potential distribution inside and outside of matter. Expressed
in this form, it is known as Poisson’s equation and is written

In this celebrated equation,  represents the potential at each
point;  a complicated mathematical expression linking
the potential at a point and its value at all neighbouring points;
 expresses the density at each point of the matter producing
the field, and  is a constant of proportionality known
as the constant of gravitation. And since the equation
 gives us the law of potential
distribution at each point of space where the density of matter is
, in regions outside matter we obviously have


since outside matter , is of course zero. Expressed in this
latter form (), in which it gives us the potential
distribution outside matter, the Newtonian law of gravitation is known
as Laplace’s equation.


Thus, we may say that Newton’s law of gravitation inside and outside
of matter is given by ,
in which  is zero or has some definite non-vanishing value
according to whether we are considering a region outside matter or
in its interior. Now, this potential distribution in Newton’s law
refers to the distribution through space of one same potential, an
invariant in space, known as the Newtonian potential. But we
know that if Einstein’s ideas are correct, if gravitation is to be
attributed to space-time curvature, Newton’s single potential 
(an invariant) will have to be replaced at every point by the ten
separate ’s of space-time. These, as we know, are no longer
invariants, they are second-order tensors;[93] and Newton’s invariant
potential  turns out to be none other than one of the
’s, namely, the time one, .[94]


According to Einstein’s views, therefore, the expression of the
gravitational potential distribution in the interior of matter will be
given by an equation between some complicated expression connecting the
ten ’s at every point and at neighbouring points, and some
quantity representing the characteristics of matter at every point.
This equation will then constitute Einstein’s law of gravitation in the
interior of matter, and will represent the Einsteinian substitute for
Poisson’s classical equation.


Now Poisson’s equation was an equation between two invariants in
space. Einstein’s law, on the other hand, in accordance with
the requirements that must be satisfied by all general laws in the
space-time theory, will have to be an equation between invariants or
tensors in space-time. By analogy with Poisson’s equation we
see that the left-hand side of Einstein’s law will be a space-time
invariant or tensor which will represent the potential distribution,
or -distribution, from point to point, while the second side
will be given by an invariant or a tensor representing matter.





A tensor representative of matter and describing it fully had already
been discovered by Einstein. It was a second-order symmetrical tensor
generally written  and its ten separate components, as
referred to any definite space-time mesh-system, defined such physical
magnitudes as the density of matter at a point, its internal stresses,
vis viva, and momentum in that mesh-system. Matter, as a source
of gravitation, was obviously described much more completely by this
tensor than was the case in classical science, where the mere mention
of its density of mass was considered sufficient to determine its
gravitational field. Thus, Einstein was in possession of the right-hand
side of the equation of gravitation in the interior matter, that
corresponding to  in Poisson’s equation (neglecting
constants).


It remained to discover the left-hand side of the equation. Owing to
the condition of covariance, this left-hand side had to be represented
by a tensor of the same order and nature as the right-hand side, hence,
in the present case, by a symmetrical tensor of the second order.
Further, it would have to be built up of the ten ’s or
potentials, expressing a relationship between these ten ’s at
every point and at the neighbouring points. It is here that Riemann’s
discoveries fit in with Einstein’s requirements; for Riemann and
his successors had discovered tensors built up from the fundamental
structural tensors of a continuum, namely, from the ’s. All
these tensors served to represent various possible types of structure,
geometry or curvature.


In a previous chapter we mentioned these tensors. First, there was the
Riemann-Christoffel tensor . It was a tensor of the fourth
order, as is indicated by the four indices underlying the letter .
Then there was a second-order symmetrical tensor . Lastly,
there was an invariant of curvature , no longer a tensor in the
ordinary sense of the word. By differentiating and combining these
magnitudes, we could of course obtain others, but the ones we have
mentioned are the simplest.


Einstein had still one further clue to guide him. Classical science had
assumed that at an infinite distance from attracting matter the law of
inertia would hold rigorously; that is to say, a body moving freely
would follow a rectilinear course with constant speed when referred to
a Galilean frame. Expressed in the language of space-time, this would
imply that at an infinite distance from matter, space-time would become
rigorously flat, as we had assumed it to be in the special theory.
This condition necessitated the vanishing of the Riemann-Christoffel
tensor , at infinity. If this condition is maintained, the
curvature of space-time around matter will have to be of a type which
is capable of dying down to perfect flatness at infinity, degenerating
to .


Now the law of curvature  was precisely of such a type;
hence Einstein, in his original paper, found it natural to select
the tensor  for the left-side term of his gravitational
equations. Accordingly he wrote:



Outside matter, this law would of course reduce to ,
since, outside matter, , representative of matter, would
vanish. It is easy to see that these gravitational equations satisfy
all the requirements we have mentioned. First, we are in the presence
of covariant equations, since  and  are tensors of
the same nature and order. Secondly,  is built up from the
’s or potentials, as it should be. Thirdly, outside matter,
our equations reduce to , and the curvature connoted by
this relation is compatible with the existence of perfect flatness at
infinity, i.e., with  at infinity.


Nevertheless, Einstein soon recognised that his equations could
not correspond to reality. The fact was that matter appeared to be
conserved in nature. By this we mean that matter disappears from here
only to reappear there.[95] It followed that the tensor of curvature

which would be identified with the presence of matter in the law of
gravitation should likewise possess the attributes of conservation. Now
the tensor possessed no such attributes; but a very similar tensor,
also symmetrical and of the second order, namely,

fulfilled all the previously mentioned requirements. Henceforth, the
law of potential distribution, or of gravitation inside matter, would
have to be (neglecting constant factors)

(analogous to Poisson’s equation); and outside matter, as 
disappeared, there was left

which reduces to

(analogous to Laplace’s equation). From this we see that Einstein’s
initial error affected the law of space-time curvature only in the
interior of matter. Outside matter, we had, as before, .
[96]


Let us recall that in all examples where tensor equations are
discussed, the indices  and  (in the present case) are to
be replaced by all manner of arrangements of the integers from 1 to 4
(since space-time has four dimensions). An equation such as

or as

represents therefore ten separate equations. As a matter of fact,
sixteen equations would be obtained were we to substitute all possible
arrangements; but as the tensors are symmetrical, only ten out of
sixteen art independent, hence need be retained; the other six are
mere repetitions We see, then, that in Einstein’s theory ten separate
equations are necessary in order to define the distribution of the
gravitational field in the interior and around matter, whereas in
classical science one equation, i.e. Poisson’s equation
(), was sufficient.


Here we may mention that if we abandon the restriction that the law
of inertia holds rigorously at infinity, hence if we abandon the
condition of perfect flatness at infinity, we may build up other

tensors satisfying all the remaining requirements. This can be done
by adding a further tensor  (where 
represents an arbitrary constant) to the left-hand side of our
equation. The presence of this additional term will imply that even
for very distant regions, space-time would still manifest a trace of
residual spherical curvature so that the universe would close round
on itself and be finite. In the first development of his theory,
Einstein rejected this additional term, but the fact remains that
so far as the mathematical requirements of the theory of relativity
are concerned there is no reason to exclude it ab initio. At
all events, we can assert that if the  term exists
at all,  must be exceedingly minute; for even though
finite, the universe is certainly of gigantic proportions, and its
curvature therefore exceedingly slight. For the present we shall
ignore the  term since in any case its influence would be
too insignificant to affect perceptibly such phenomena as those of
planetary motions. Only when we come to consider the shape of the
universe as a whole and its bearing on the Mach-Einstein principle of
the relativity of all motion will the presence of 
assume a vast philosophical importance.


Now the methods whereby Einstein was led to the discovery of his
law of gravitation might appear rather piecemeal, much like the
fitting together of a jig-saw puzzle in which the structural tensors
constituted the pieces. But this, in itself, can scarcely be regarded
as a drawback to the theory. It is rather the reverse, since it proves
that just as the pieces of a puzzle can only be fitted together in
certain ways, so now the universe can scarcely be otherwise than
it is. In this respect, there is a marked contrast between the
present situation and that which endured in classical science, where
practically any law of gravitation might have been expected.


Nevertheless, from the standpoint of mathematical elegance, something
more was needed. When, therefore, Einstein had cleared the ground
and his ideas were more fully understood, the greatest of the pure
mathematicians, such as Klein, Hilbert, Weyl and subsequently Einstein
himself, undertook to discover the law of gravitation by more general
methods. They found that if we accepted the existence of space-time
and if we agreed that the gravitational field around matter was due to
a curvature of space-time, the Principle of Stationary Action showed
that a large number of laws of gravitation could be entertained. If,
however, it was specified that by analogy with Newton’s law, the
law of curvature should contain no derivatives of the ’s
or potentials to an order higher than the second, Einstein’s law of
gravitation with or without the  term was the only
one possible. Furthermore, all these possible laws of gravitation were
found to verify the mathematical condition expressing the conservation
of matter; hence, by proceeding in this way through the principle of
action, it was possible to obviate the rather artificial condition of
conservation which would otherwise have had to be introduced as an
additional hypothesis.








CHAPTER XXIX

THE GENERAL LAWS OF MOTION





IN classical science, when we wished to describe a body’s motion, it
was of course insufficient to describe its spatial course in our system
of reference. It was necessary, also, to define its motion along this
course. As soon, however, as we reason in terms of space-time instead
of in terms of separate space and time, all the particularities of
motion are fixed by the single space-time world track of the body.
This opens up the possibility of describing the laws of motion of free
bodies in a purely geometrical manner in four-dimensional space-time,
so that kinematics becomes a four-dimensional statics. Let us now pass
to a more precise determination of the problem.


According to Newtonian mechanics, free bodies in interstellar space far
from matter, moving under no constraint, always described rectilinear
courses with constant speeds. This law was known as Newton’s law of
inertia. We remember, of course, that a law of motion of this type
remained completely indeterminate until we had defined the frame of
reference to which this motion would be referred, and we saw that any
Galilean frame answered our requirements. Now it was assumed that
Newton’s law of inertia was universally valid in the case of free
bodies moving under no constraint; when, therefore, the law was found
to be at fault in the neighbourhood of large masses of matter, the
discrepancies were ascribed to a real force of gravitation emanating
from matter and compelling the erstwhile free bodies to move under
constraint. In other words, in a field of gravitation, bodies were
no longer free; so the validity of the law of inertia, applying to
perfectly free bodies, was not overthrown thereby. The motions actually
followed by bodies in a gravitational field would thus result from a
compromise between the courses the bodies would have followed had no
gravitational field been present, and the perturbating influence due
to the field. These laws of motion were expressed by Kepler’s three
laws of planetary motion, according to which planets described ellipses
round the sun (Kepler’s first law), with variable velocities determined
by the law of areas (Kepler’s second law) and by the dimensions of the
ellipses described (Kepler’s third law).


As in the case of the law of inertia, Kepler’s laws of planetary motion
held only for a Galilean or inertial frame and, in particular, for
the Galilean frame attached to the sun’s centre. Thus there existed a
complete duality between the two types of law and motion, those for
free bodies and those for bodies moving under gravitational constraint.





In Einstein’s space-time theory this duality is removed. There is now
but one law of motion, namely: All free bodies pursue geodesics, or
the straightest of paths, through space-time, regardless of whether
we are considering regions in the neighbourhood of matter or remote
regions in interstellar space. This law is in full accord with
the Principle of Least Action, and may be regarded as a direct
consequence of this fundamental principle.[97]


True, owing to the curvature of space-time around matter and its
flatness in distant regions, the actual courses and motions will vary
according to the more or less great proximity of matter; and we might
be tempted to say that we had succeeded in removing a duality in the
laws of motion only by introducing a new duality referring to the
structure of space-time—curved around matter and flat for distant
regions. But this line of argument would be incorrect. There is but
one law of space-time curvature or gravitation; for this law, which
ascribes a definite curvature to space-time in the presence of matter,
tells us also how this curvature dies away to perfect flatness at
infinity. The existence of flat space-time far from matter is thus
comprised in the one statement of the law of space-time curvature or
gravitation. Thus, a precise determination of the motions of bodies,
whether near matter or far from matter, is given by the one law of
space-time curvature together with the law of least action, which
states that the space-time courses or world lines of the bodies will be
geodesics.


Let us now examine another aspect of the question. We have seen
that according to Einstein’s ideas it was no longer necessary to
differentiate between free bodies (those moving in interstellar space)
and bodies moving under constraint (those moving in the vicinity of
attracting matter). Henceforth, a planet moving round the sun is just
as much a free body as one moving in interstellar space. If it moves in
a different way, in these two cases, it is simply because the structure
of space-time is curved around matter, instead of being flat as in
interstellar space. There is, therefore, no justification for invoking
a physical pull or force of gravitation in the proximity of matter;
this so-called physical pull is inexistent so long as the planet
moves without any additional interference. In all cases the planets
and bodies in interstellar space are guided through space-time by the
intrinsic structure of the space-time wherein they are situated.


Now structure implies geometry, and space-time, like any other
mathematical extension, is amorphous per se; hence this

structure of space-time must be attributed to a foreign cause, to the
presence of the four-dimensional metrical field of space-time similar
to a magnetic field. It is this four-dimensional field which acts as a
guiding influence on bodies, constraining them along the geodesics of
space-time. When, therefore, the observer partitions space-time into
his space and time mesh-system, the effect of the guiding field is
to direct bodies along certain paths in space and to determine their
motions along these paths. Were there no guiding field, or metrical
field, were space-time completely amorphous, there would be no space
and time partitions, motion would be meaningless and inconceivable;
even were it conceivable, the bodies would not know how to move.


It would appear, then, to be more correct to state that there can exist
no such thing as freely moving bodies, since all bodies are subjected
to the influence of the guiding field. We can, however, retain the
usual terminology by remembering that by a freely moving body we mean
one submitted to the action of the guiding field and to nothing else.
The important point to understand is that as regards freedom of motion,
all bodies in empty space, whether situated in a gravitational field or
far from matter, are on the same footing. In all cases their actions
are controlled by the guiding field, and by the guiding field alone.
The sole difference is that in the neighbourhood of matter, the lay
of the guiding field is curved slightly. It is incorrect, therefore,
to invoke a real physical pull acting on the body when it moves near
matter, and to deny the existence of such a pull when the body is
moving in interstellar space.


And yet it might be said: “We experience a real physical pull when we
stand on the earth, whereas we should experience no such pull were we
floating in interstellar space.” Let us see why it is that this real
physical pull appears to arise in one case and not in the other.


A freely moving body follows, as we have explained, a geodesic of
space-time, regardless of whether space-time be curved by the proximity
of matter or whether it be flat. So long as the body is not interfered
with, it will continue to follow its geodesic, allowing itself to be
guided by the space-time structure or field. But suppose now that the
motion is interfered with, so that the body is torn away from the
geodesic which it would normally have followed. The guiding field will
immediately react and oppose this foreign interference. It is as though
the geodesic were a groove from which the body could not easily be
diverted.


Consider then a body moving uniformly in interstellar space, according
to the law of inertia. If we interfere with this body’s motion,
accelerate it along its straight line or compel it to describe a curve,
we shall, in effect, be tearing it away from its space-time geodesic.
The guiding field will react and we shall experience a physical pull
which we call a force of inertia or a centrifugal pull. In exactly the
same way we may explain the appearance of the physical pull which we
ascribe to gravitation when we stand on the earth’s surface.


Thus, a body which is falling freely towards the earth is following a

geodesic in the curved space-time that surrounds the earth. But if, for
some reason or other, the free fall of the body is interfered with,
if, for instance, the rigidity of the earth’s crust prevents the body
from falling farther along the geodesic, the geodesic will react and
will strive to force the body through the earth’s crust. It was this
force which we formerly ascribed to the pull of gravitation. But we see
once again that this force has exactly the same origin as the forces
of inertia we discussed previously, so that there exists no essential
difference between a force of inertia and one of gravitation. They are
both real physical forces in that they will produce physical effects;
and they will both disappear in exactly the same way when we cease to
interfere with the natural motion of the body. In short, they are both
of them but manifestations of the four-dimensional metrical field or
guiding field of space-time.








CHAPTER XXX

THE VERIFICATION OF EINSTEIN’S LAW





EINSTEIN’S law, as we have expressed it, is one of space-time curvature
around matter and in the interior of matter. It is also the law
of distribution of the ten potentials or ’s throughout
space-time, or, again, the law of distribution of the four-dimensional
metrical field or guiding field of space-time. But in order to study
the implications of the law we may discuss it from yet another angle.


Being a law of space-time curvature or structure, we are able to
derive from it the precise lay of the geodesics of space-time around
matter. These geodesics, or paths of least resistance, are, we
remember, the paths which planets, light rays and all free bodies will
pursue. A knowledge of the lay of the geodesics around the sun will
therefore allow us to determine the precise courses in space and the
precise motions along these courses of all free bodies moving in a
gravitational field. When these geodesics are submitted to mathematical
analysis, it is found that the courses and motions of the planets
should be very nearly identical with those required by Newton’s law.


There would be slight discrepancies, however, between the requirements
of the two laws. In particular, Einstein’s law of gravitation would
predict that the courses of the planets should be very nearly
elliptical, but not exactly so; there should be a slight precession of
the perihelion of the planet, increasing in magnitude with the velocity
of the planet on its orbit. Now the most rapidly moving planet of the
solar system is Mercury; and Leverrier had observed nearly a century
ago that Mercury’s perihelion displayed a precessional motion which
Newton’s law was unable to explain. Einstein’s law accounts for this
precessional motion, not only qualitatively, but quantitatively as
well. Hence, a first verification of Einstein’s law was obtained.


Here it must be noticed that, in the preceding example, Mercury’s
curious motion was already known to astronomers. But we have said
enough of Einstein’s methodology in his discovery of the law of
space-time curvature to realise that he did not adjust his law of
space-time so as to account for Mercury’s hitherto unexplained motion.
We saw, indeed, that the law of gravitation, as formulated by him,
was practically inevitable if the principle of action, the most
fundamental pillar of science, was to endure. However, in the following
verification, we shall see that Einstein’s law was able to foretell the
existence of a phenomenon totally unsuspected by classical science. We
refer to the deviation of a light ray in a gravitational field.





Classical science had always assumed that a gravitational field, such
as that of the sun, would attract material bodies, but that it would
be without effect on light rays, which were considered to be immune
from gravitational attractions. Had classical science been thoroughly
convinced of the identity of the two types of mass, it would have
realised that light waves must be possessed of gravitational mass,
since they were known to manifest the characteristics of inertial mass.
This inertial property of light rays had been foreseen theoretically
by Maxwell and proved experimentally by Lebedew, who detected the
pressure exerted by rays of light on a body on which they impinge. It
is a pressure of this type which is supposed to be responsible for the
apparent repulsion of comets’ tails away from the sun. It would have
been, therefore, only a step to assume that light rays must manifest
gravitational mass, and hence must be attracted by the sun.


Classical science, however, had never felt justified in taking this
step. As a result, it was thought that light rays would proceed in
straight lines through a gravitational field just as they would
through free space far from matter. When, therefore, the first eclipse
observations prompted by Einstein’s predictions revealed an undeniable
bend in the course of a ray of light emitted by a star and grazing
the sun’s limb, classical scientists did not consider it necessary to
abandon Newton’s law on this account. They merely recognised that light
was attracted by a gravitational field in common with all other forms
of matter, and calculation showed that assuming Newton’s law to be
correct, the angle of this deflection would be 0".87 for a ray grazing
the sun’s limb. The first eclipse observations were conducted under
very unfavourable conditions, and all that could be ascertained was
that a certain amount of bending was present. The precise degree could
not be determined in any reliable way, so that Newton’s law still had
its defenders.


Let us now pass to Einstein’s attack. Of course, in Einstein’s theory,
even prior to his discovery of the new law of gravitation, a ray of
light would certainly have been bent in a gravitational field in virtue
of the postulate of equivalence. It is easy to see how this would
arise. Consider a chest, floating vertically in interstellar space,
and a ray of light traversing it horizontally. If now the chest be
accelerated upwards along the vertical, the floor of the chest will
move with acceleration across the ray and, as a result, the light ray
will follow a curved path through the chest. But in this case the
postulate of equivalence allows us to regard the chest as unaccelerated
but permeated by a gravitational field; we may infer, therefore, that
the ray of light would bend downwards under the action of this field.
Hence, the mere qualitative bending of a ray of light in the sun’s
gravitational field would not vindicate Einstein’s law of gravitation
and dethrone Newton’s; it would merely prove the correctness of the
postulate of equivalence and the identity of the two species of masses.
It is the precise quantitative bending of the ray, as determined by
Einstein’s law of gravitation, that constitutes the crucial test of
the correctness of Einstein’s law. This bending, as computed from

the lay of the geodesic which a light ray grazing the limb of the sun
would follow, turns out to be 1".75; that is, just twice as great as
the Newtonian deflection 0".87. When this precise angle predicted by
Einstein was observed during the subsequent solar eclipse of 1919,
interest in relativity became widespread; for it was recognised at last
that the theory was not a mere mathematical dream.


But even this verification of Einstein’s law of gravitation would have
been insufficient to establish the theory. As we shall see in the next
chapter, other very curious phenomena were suggested by the new law of
gravitation; and if these new phenomena should not be verified in turn,
the theory, in spite of its wonderful achievements, would have to be
abandoned.








CHAPTER XXXI

THE SEPARATION OF SPACE-TIME INTO SPACE AND TIME
IN A GRAVITATIONAL FIELD





WE must remember that the one fundamental continuum of the world is
space-time; space and time considered separately, varying as they do
with the observer’s motion, have no absolute significance. The law
of curvature, or of gravitation, which we have discussed is one of
space-time curvature. It is the law giving the distribution of the
four-dimensional metrical field of space-time in the interior of matter
and around matter to infinity. It is true that we may be able to
effect some sort of separation of space-time into the space and time
of some particular observer; and this may enable us to represent the
law of curvature of space-time as two separate laws of curvature, one
affecting space and the other affecting time. But for the reasons we
have just mentioned, no absolute significance could be attached to the
curvatures we should obtain. Thus, in interstellar space, an observer
situated in a Galilean frame would contend that neither space nor time
manifested any trace of curvature, whereas an observer on the rim of a
rotating disk would recognise that both space and time were curved. On
the other hand, regardless of his frame of reference, either observer
would always recognise that space-time possessed no trace of curvature.


It is because space-time transcends the observer that its curvature or
flatness, as the case may be, can be considered absolute; whereas a
curvature of space or of time alone can never represent anything but a
mere relationship between the intrinsic condition of space-time and the
observer’s motion or frame of reference.


Of course, if we wish to split up space-time into the particular
space and time directions of some particular observer we may always
attempt to do so. But in the majority of cases this procedure will be
impossible.





If these considerations are properly understood, there is no harm done
in trying to separate the curved space-time which endures around the
sun into the space and time of an observer at rest with respect to the
sun and viewing the solar system as a whole. This separation, however,
is possible only in the event that the masses of the moving planets can
be ignored, so that the only field we have to consider is that of the
sun, remaining unchanged as time passes. It is owing to this permanent
condition of the gravitational field that the separation into space and
time is possible. Fields of this type are called stationary.
For non-stationary fields, such as those where the distribution of the
field changes with time, the separation into space and time becomes
impracticable.


We will assume, therefore, that the gravitational field of the sun is
stationary; that is, that the masses and motions of the planets do
not modify the field to any appreciable extent. We may then proceed
to split up curved space-time into the space and time of an observer
at rest with respect to the sun and non-rotating with respect to the
stars. By so doing we shall be splitting up into two separate fields
the metrical field of space-time, that four-dimensional field which
pertains neither to space nor to time. In this way we shall obtain,
first, a purely spatial metrical field, which will be responsible for
the measurements of our rods when these are maintained at rest in our
frame; and, secondly, a purely temporal metrical field, which will
determine the behaviour of our clocks or vibrating atoms while these
are at rest in various regions of the space around the sun.


When Levi-Civita and Schwarzschild had performed this separation, it
was found that the curvature of the observer’s space along a plane
section through the centre of the sun would be identical with that of
the surface of a paraboloid of revolution disposed around the sun; and
that the observer’s time direction would also be curved in a definite
way. Both curvatures would die down gradually for regions of space
farther and farther removed, to infinity. We must not forget, however,
that this separation and the curvatures we have mentioned hold solely
for the observer at rest with respect to the sun when surveying the
solar system as a whole.


The advantage of this separation of space-time into space and time is
that it allows us to express the purely formal results deduced from
Einstein’s space-time gravitational equations in terms of our familiar
notions of space and time. It thus becomes possible to describe the
world lines of the planets under Einstein’s law by representing them
as spatial orbits and motions along these orbits; hence we are enabled
to check up Einstein’s previsions with astronomical observation.
Furthermore, this splitting up of space-time enables us to study
separately those effects which must be attributed to the respective
curvatures of space and of time, considered by themselves and
independently of one another.


We will first consider the curvature of time alone. Let us assume that
for some reason or other the curvature of space were to disappear, so
that all we should be concerned with would be a more or less curved
time direction. In this case, it is found that the motions of the
planets would be in perfect accord with Newton’s law. The precessional
advance of Mercury’s perihelion would be non-existent, and the bending
of a ray of light grazing the sun’s limb would be 0".87, as required
by Newton’s law, and no longer twice that amount, as required by
Einstein’s law. From this we see that it is the additional curvature
of space around the sun (and around matter generally) that is the
distinguishing feature of Einstein’s law of gravitation.


Here it might be asked: “Since a peculiar type of space-time curvature
(curved time and flat space) would lead us to Newton’s law, why should
Einstein have rejected the classical law a priori and urged
his own more complicated type of space-time curvature in its place?

It could not have been for the purpose of accounting for the double
bending of a ray of light, since this effect was unknown at the time.
Was it for the sole purpose of explaining the motion of the planet
Mercury?”


The answer must be decidedly in the negative. When Einstein was led
to his law of space-time curvature , he never could
have recognised in advance that this law would account for the motion
of Mercury. He may have suspected the fact, convinced as he was that
he was on the right track; but in order to establish the nature of
the planetary motions when governed by this law, it was necessary to
submit the law to a mathematical integration. It was only after the
integration had been performed that the motion of Mercury, as required
by the law, was found to be in agreement with previous astronomical
observations. Hence we must discard all ideas of a law patched up for
the sole purpose of harmonising with the planetary motions.


In order to understand Einstein’s procedure more fully, we must recall
that the general principle of covariance requires that all natural laws
be expressed in the form of space-time tensor equations. This criterion
alone, however, does not permit us to decide a priori on any
particular law of space-time curvature. But Einstein, as we remember,
introduces a second restriction, according to which, in the empty space
surrounding matter, none but the structural tensors of space-time, the
’s, should enter into the law of curvature.[98] This second
restriction is a natural one to set, for were foreign tensors to be
introduced at each point of space-time, the space could no longer be
empty.


When these two restrictions are taken into consideration, we find
that the law  is practically the only one that can
be constructed; at all events, it is the simplest. Theoretically,
 could also be countenanced; but this law, indicating
perfect flatness, would connote the absence of gravitation. Then again,
we might suggest , and this would lead to
de Sitter’s finite universe, a possibility which has not yet been
discarded.


But in any case, with the restrictions imposed, Newton’s law is barred,
so that unless we wish to introduce foreign tensors, acting in the
capacity of hypotheses ad hoc, it is hard to see how Einstein’s
law can be escaped.[99] If we convince ourselves on this score, we
can see that it is quite impossible to think that we may adjust the
curvatures of space and of time to suit ourselves. These curvatures
are determined in advance by the law of space-time curvature, itself
imposed by considerations of a rational order.





Let us revert to our separation of curved space-time into curved space
and curved time. We have seen that if the curvature of space were
non-existent, the curvature of time alone remaining, the motions of
planets and free bodies would be in accord with Newton’s law. We may
understand the reason for this by following a different line of thought.


If space is flat, the ’s which refer to space remain constant
(in a Cartesian mesh-system at least).[100] The only , or
potential, that can vary is therefore the time one . This
last potential is therefore the only one that can be responsible for a
field of force. It follows that by considering space to be flat, we are
preserving only one of the ten potentials of space-time; and we find
ourselves in exactly the same position as under Newton’s law, where
only one potential was present, i.e., the Newtonian potential.
This allows us to identify the time-potential  with the
Newtonian potential , and the proof of the statement we made in
a previous chapter is given thereby.[101]


It now remains to be seen how this curvature of time may be detected
directly. Here we must recall that the curvature of time is expressive
of the repartition of the temporal metrical field obtained by splitting
up the metrical field of space-time into one of space and one of time.
The repartition of this temporal metrical field in the space and time
separation we are discussing shows that its curvature will increase
as we consider regions of space nearer and nearer the sun, indicating
thereby a slowing down of time as we approach the sun. Now it is this
temporal metrical field which controls the rate of evolution of any
isolated periodic phenomenon from place to place, hence which defines
practical time-congruence as given by perfect clocks. In the present
case, therefore, the action of this field would be to slow down the
temporal evolution of all phenomena when these have their spatial locus
nearer and nearer the sun. This effect was anticipated by Einstein and
is known as the Einstein shift-effect.


Of course, if we, as conscious beings, were to be situated at
any particular point of the sun’s gravitational field, we should never
appreciate this slowing down of time and of the evolution of all things
in our immediate neighbourhood; for our consciousness would participate
in the same slowing down that was active around us. It would only be
when we viewed distant phenomena occurring in other parts of the field
of gravitation that discrepancies in their speeds of evolution would

become apparent. Thus, although we should not be directly conscious of
aging at various rates in the different parts of a gravitational field,
we should discover eventually, either by direct vision or by meeting
again, that our friend who had lived in the proximity of the sun had
aged less than ourselves, who had lived farther away from its mass.
Gravitation would thus preserve youth, and, more generally, two men
living on two different stars of unequal mass would not age at the same
rate.


It is to be noted that it is not the force of gravitation itself which
is responsible for this slowing down of time as we near the sun. It is
rather the decrease in the value of the potential; and in the present
case we have seen that the only potential which enters into account is
, or the Newtonian potential.


All these phenomena predicted by Einstein were entirely new to science,
and it was most important to verify their correctness before accepting
Einstein’s theory. The method suggested was that of exploring a field
of gravitation with vibrating atoms, these being assumed to behave like
perfect clocks marking correct time. For instance, if Einstein’s law of
space-time curvature was correct, atoms of sodium placed in different
parts of the solar field would appear to be vibrating faster or slower
than the atom in our immediate neighbourhood, according to whether they
were farther removed from or nearer the sun than we happened
to be situated. These variations in the rates of vibrations of the
atoms would be betrayed physically by variations in the colour of the
light they emitted or absorbed. It would follow that while the atom of
sodium by our side would always emit a yellow light in our estimation,
those atoms nearer the sun would appear redder, and those farther away
from the sun would appear greener. In particular, an atom of sodium
situated in the sun’s atmosphere would beat more slowly and appear
to us redder than an identical atom examined in our laboratory (the
earth’s gravitational field being insignificant compared with that of
the sun).[102]


For a number of years it was questionable whether this effect really

existed, because the difficulty in detecting so minute a displacement
of the spectral lines was very great. Quite recently, however, the
phenomenon has been observed on a star of enormous density, the
companion of Sirius.[103] This is perhaps the most beautiful of all the
verifications of Einstein’s theory, since the effect contemplated was
totally unsuspected by classical science—even more so than the bending
of light in a gravitational field.


Now the postulate of equivalence, by assimilating gravitational fields
to fields of inertia, requires that similar phenomena should occur
in an accelerated enclosure (allowing, of course, for the slight
discrepancies in the actual field-distribution when produced by matter
or by acceleration). Thus, consider a train pursuing a Galilean motion,
and two identical sodium atoms or clocks placed on the engine and
rear car, respectively. So long as the motion of the train remains
Galilean, an observer at rest in any point of the train would detect
no difference in the rates of vibration of the atoms,[104] hence in
the colours which they emitted. On the other hand, were the train to
be accelerated, moving faster and faster, a field of inertial force
directed from engine to rear car would now be present; and as a result
the atom on the rear car would appear to the train observer to be
vibrating more slowly than the atom on the engine.


We must realise, therefore, that whereas in the special theory a
slowing down of time was always due to relative motion, in the present
case, the slowing down of time takes place in spite of the absence
of relative motion between the atoms and the train observer. In the
same way, there was no relative motion in the example of the Einstein
shift-effect in the sun’s gravitational field, and yet we had to
accept a slowing down of time. So we see that acceleration, even when
unaccompanied by relative motion, will produce a variation in the
flow of time; and the same variations would also ensue in the case of
distance.


Instead of considering an accelerated enclosure pursuing a rectilinear
path, we could of course consider a rotating enclosure, and the
argument would be the same. Atoms situated at greater distances from
the centre of rotation would appear to vibrate more and more slowly;
and a parcel of radium, for instance, placed on the rim of a rotating
disk, would be slowed down in its rate of disruption, so that the
effect of the inertial field would be to decrease the radioactivity of
the atom.


Now that we have discussed the effects due to the curvature of time
and have seen that this type of curvature accounts for all the major
effects of gravitation, let us consider the additional effects due to
the curvature of space. The presence of this curvature of space, so

far as the motions of bodies are concerned, will modify the effects
due to the curvature of time. It will therefore be responsible for the
small discrepancies that differentiate Einstein’s law from Newton’s.
However, so long as the motions of bodies in the gravitational field
are small compared with that of light, the curvature of space will not
affect their motions to any appreciable extent.


Among the planets, Mercury alone is animated with a speed (with respect
to the inertial frame of the sun) sufficient to render observable the
influence due to the curvature of space; and it is this influence
which is responsible for the slight precessional advance of Mercury’s
perihelion. In the case of light waves, which move with a speed many
times greater than Mercury, the influence of the curvature of space
will be marked to a still greater degree. It will cause an increased
bending of the ray of light equal to that already produced by the
curvature of time alone, which, as we know, would correspond to the
bending required by Newton’s law. In this way the double bending is
accounted for.


In order to exhaust this discussion, we must mention that there exists
still another case, in which the curvature of space would exert a
perceptible influence, even in the case of slowly moving bodies. This
would be in the event of a very intense field of gravitation, many
times greater than that of the sun. In such a field, even slowly moving
bodies would deviate perceptibly from the course required by Newton’s
law of gravitation.


It may appear strange that this curvature of space should seem to be
of such minor importance as contrasted with that of time, and produce
observable effects only for bodies moving with great velocities with
respect to the sun. The solution of this puzzle will be found, however,
when we consider some of the peculiarities of the space-time continuum
of relativity. In an ordinary continuum like space, where all the
dimensions are of exactly the same nature, we have no difficulty in
specifying some unit of length which will apply in exactly the same way
to measurements computed along the dimensions of height, length and
breadth. In space-time, however, the situation is somewhat modified,
since the fourth dimension (time) represents something different from
the other three. Thus, whereas our measurements along the spatial
dimensions will be conducted with material rods, our time measurements
will require time-rods, or clocks. The question is, then, how are we
to co-ordinate our measurements with clocks and our measurements with
rods; or, in other words, how shall we be able to establish any sort
of comparison of magnitude between these measurements so different in
nature?


The answer to this question is that the variable which represents
measurements along the time direction is not t but ct. This means that
one second in time corresponds in our formulæ to the distance which
light covers during one second, namely, 186,000 miles. It follows,
therefore, that if we measure time in seconds we must, in order to
co-ordinate results, measure space in terms of unit rods 186,000 miles
long.





Obviously there exists a vast discrepancy in actual practice between
the magnitudes of our temporal and spatial units; for the great
majority of bodies with which we come in contact cover far less than
a unit of space (186,000 miles) in a unit of time (one second). Only
in the case of bodies approaching the velocity of light in our frame
are the two progressions, that in space and that in time, in any way
comparable. Thus, consider our own earth. It moves in relation to the
sun with a speed of some eighteen miles a second, which is equivalent
to approximately one ten-thousandth part of a unit of space per unit
of time. This emphasises the fact that to all intents and purposes the
motions of bodies with which we are concerned reduce to a motion in
time, the displacement in space being insignificant in comparison.


Now when we come to investigate the respective effects of the
curvatures of time and space, taken separately, in the gravitational
field of the sun, we must remember that for a curvature to manifest
itself we must survey relatively large areas on the curved surface
(large as compared with the intensity of the curvature). Thus, on the
curved surface of the earth, for example, if we content ourselves
with surveying restricted areas, no effects of its curvature will be
apparent. It is only when we conduct measurements over large areas,
say over a few hundred miles, that the direction of the vertical
will change perceptibly and that geodesical surveys will render the
curvature manifest. It is much the same with the curvatures of space
and of time in a gravitational field. Only when we consider planets
moving through the sun’s inertial frame with a speed approaching
that of light (hence covering large distances in unit time) will
the space-curvature produce effects comparable to those produced by
the curvature of time. We understand, therefore, how it comes that
the curvature of time alone is able to produce the major effect of
Newtonian attraction, such as weight, whereas the effects due to the
curvature of space remain imperceptible until we consider the motion
of Mercury, which is moving fairly fast with respect to the inertial
frame of the sun. When we consider the propagation of light rays, the
effects due to the curvature of space reassert themselves fully, and
as a result the double bending of a ray of light can be attributed in
equal proportion to the curvature of time and to the curvature of space.


In short, we now understand why it is that Einstein’s law of
gravitation deviates appreciably in its effects from Newton’s only
when we consider bodies moving with velocities approximating to that
of light. Once again we realise that if this invariant velocity of
the universe had happened to be much smaller, the deviations between
Einstein’s law of gravitation and that of Newton would have been far
easier to detect; and, conversely, had the invariant velocity happened
to be much greater than 186,000 miles a second, had it been infinite,
for example, there would have been no discrepancies left between
the two laws. Thus, once again we reach the same conclusions that
we mentioned when discussing space-time. The fundamental difference
between Einstein’s theory and classical science arises from the

discovery that the invariant velocity of the universe is finite and not
infinite.


We may summarise all these results by stating that the major effects
of gravitation are produced by the curvature of time, i.e., of
the time component of the metrical field of space-time; the curvature
of space exerts perceptible effects only when the velocities of the
moving bodies are very great or when the gravitational field is of very
great intensity. Hence, for weak fields such as that of the sun, and
for slow motions, Einstein’s law of space-time curvature leads us to
results practically identical with those necessitated by Newton’s law
of gravitation.


It now remains to be seen how the curvature of space could be detected
by direct measurement, without our having recourse to moving bodies. It
can, of course, be detected indirectly, since we have seen that it is
responsible for the advance of Mercury’s perihelion and for the double
bending of a ray of light passing near the sun. But we now propose to
detect it by direct spatial measurements.


We have said that our separation of space-time into space and time
was equivalent to splitting up the metrical field of space-time into
a metrical field of time and a metrical field of space. It is this
metrical field of space with which we are now concerned. To this
metrical field of space must be ascribed the structure of our space
(curved in the present case). Were the metrical field non-existent,
space would, of course, have no structure, no geometry whatsoever. As
the geometry of a continuum is revealed by measurement, we see once
again that it is the metrical field of space which will control the
behaviour of our measuring rods at rest in our frame, hence which will
determine practical congruence.


The obvious method of verifying the anticipated lay of this metrical
field of space, or, what comes to the same thing, this curvature of
space would be to explore space with measuring rods; we should, of
course, obtain non-Euclidean results. Calculation shows that the
results should be identical with those which would be obtained were
we to apply rigid Euclidean rods on an appropriate paraboloid of
revolution. The type of curvature, or non-Euclideanism, implied thereby
is of the Riemann variety, since a paraboloid of revolution is a
surface of positive curvature. Hence, we should expect the ratio of the
circumference to its diameter to be smaller when some massive body such
as the sun was situated at the centre of the circumference.


But here again we are met with the same difficulty. In order to
detect a curvature of this sort, we should have to survey vast areas
of space, much greater than that of the solar system; and it is
scarcely probable that even in future years our measurements will be
sufficiently refined to permit a proper test. The situation would have
been different had the earth to which we refer our measurements been
moving with great speed through the sun’s gravitational field. The
inhabitants of the planet Mercury, for example, would be in a much
better position to verify the curvature of space by direct measurement,
owing to the greater velocity of their post of observation through
the inertial frame of the sun. Once more we see how it comes that

the finite invariant velocity of the universe, though most important
from a philosophical viewpoint, in practice loses much of its palpable
influence by reason of its incredible magnitude. As a result,
ultra-precise experimentation must always be resorted to when we wish
to test the Einstein theory.


Incidentally, we are now in a position to understand another erroneous
assertion that has often been upheld. As soon as Riemann’s discoveries
were known, the possibility of interpreting gravitation in terms
of a curvature of space had been suggested (chiefly by Clifford).
But the great obstacle to this attitude was that the most refined
spatial measurements obstinately refused to reveal the slightest
trace of non-Euclideanism. Assuming, for the sake of argument, that
it had been possible to interpret the curved orbits of the planets
and of projectiles in terms of guided motions along curved grooves
threading their way through a curved space,[105] even then, in view
of the tremendous degree of non-Euclideanism that it would have been
necessary to invoke, the scheme would have had to be abandoned; the
chief reason being, of course, the incompatibility of this hypothesis
with the Euclideanism given by measurements with rigid rods. It was
only after Minkowski had discovered space-time that a modified form
of Clifford’s premonitions could be vindicated; only then was it
possible to reconcile the Euclideanism of our spatial measurements
with that non-Euclideanism of space-time which was the source of
all gravitational phenomena. In this respect it cannot be urged too
strongly that the general theory and the special theory are but two
chapters of one same theory. In so far as the general theory cannot
work without space-time, any experiment which would conflict with the
special theory would thereby conflict with the general theory.


Let us now examine another point. The velocity of light in a
gravitational field is no longer an invariant, as it was in the special
theory. However, if we were to measure the velocity of light from point
to point, displacing ourselves from one point to the next, we should
find that wherever we might be placed, this velocity would always
appear the same everywhere, owing to the progressive modification in
the behaviour of our rods and clocks. It would only be when viewing
distant points that we should recognise variations in the velocity of
light.


Thus we see that the principle of the invariant velocity of light
is accurately true only in free space far from matter, and, even
then, only when computed with reference to our Galilean frame. In an
accelerated frame, as in the neighbourhood of matter, the cornerstone
of the special theory of relativity no longer applies.


It follows that in the general theory the law of the invariant velocity
of light must be replaced by some more general principle, comprising
the invariant-velocity principle as a particular case. This more
general principle can be expressed by saying that a ray of light moves

along a world-line which is a very particular kind of geodesic called a
null-line or minimal geodesic. This holds regardless of
whether space-time be flat or curved.


Thus far we have studied the curvatures of space and of time outside
matter in those particularly simple stationary cases where it is
feasible to split up space-time into a separate space and time. Under
similar conditions we may investigate these curvatures in the interior
of matter. Consider a homogeneous incompressible fluid at rest in our
Galilean frame. Conditions being stationary, that is, not varying
with time, we can again split up space-time into space and time and
study the two types of curvatures separately. We find that the time
direction is curved, and this curvature once more is connected with
the gravitational forces which exist in the interior of the fluid. We
next find that the three-dimensional space inside the fluid possesses
a curvature at every point which is proportional to the density
of the fluid at every point. Assuming this density to be the same
throughout, we see that the curvature of space is constant, and we
obtain a spherical space of three dimensions analogous to a cap on the
two-dimensional surface of an ordinary sphere in three-dimensional
Euclidean space. This curvature of space inside the sphere has nothing
to do with the dimensions of our fluid sphere; the curvature is
governed solely by the density of the fluid.


Now, in our ordinary three-dimensional Euclidean space, when the
curvature or the radius of a sphere is given, its total area is thereby
fixed. In a similar way, the density of the fluid predetermines the
curvature of space and hence fixes the total volume of the spherical
space. Obviously, it would be impossible for us to increase the volume
of our fluid indefinitely, for there would come a time when there
would be no more room for it to occupy in the spherical space which it
had itself created. In the case of a fluid of the density of water,
calculation shows that when the sphere of water had attained a radius
of about 400 million kilometres, it would be impossible to increase its
size further by adding more water to it. When this critical volume was
reached, the fluid would fill the spherical space entirely. Moreover,
calculation shows that the flow of time would be arrested altogether at
the surface of the fluid, so here again we have another reason which
would prevent the sphere from growing any larger. Reverting to our
two-dimensional analogy, it would be as though the entire surface of
the two-dimensional sphere were occupied by the water.


As a matter of fact, this critical volume could never be reached; for
even before it could be attained the pressure at the centre of the
sphere would have become infinite, and calculation shows that this
condition, too, would be accompanied by an arrest in the flow of time.
In fine, we discover that the greatest possible volume our fluid sphere
could ever occupy would be about  of the volume
mentioned previously.





It follows that the fluid could never fill completely the spherical
volume its density had created in space. Using a two-dimensional
analogy, it would be as though on the surface of an ordinary sphere the
entire surface could not be covered; an uncovered portion like a cap
would always remain. On this account it is sometimes said that space
would not close round on itself, since part of the spherical space
created by the fluid could never be filled.


Just as a fluid of given density can never increase in volume beyond
a certain point, so, conversely, a fluid of given mass could never be
compressed into a volume which would cause its density to increase
beyond a certain limit. The argument would be the same. The pressure
would become infinite, time would stop, and nothing further could
happen. A sphere of fluid possessing the same total mass as the earth
could never be compressed into a volume less than that of a thimble.


The numerical values mentioned show that there is only a very slim
chance of putting these anticipations of the theory to an experimental
test. Even in the case of a giant star such as Betelgeuse, its density
is so small that the critical volume is well beyond the actual size
of the star. Nevertheless, from a theoretical point of view, it is
interesting to note that there must exist a definite limit to the
size of a star of given density. If these critical limits should ever
be reached, time would be arrested, and it is difficult to foresee
what the consequences might be. Einstein has called these critical
conditions the “catastrophes.” When pressed to give his opinion as to
what would happen were they ever to be reached, he is said to have
replied that very possibly we should witness the disruption of matter
into radiant or electromagnetic energy. However, he preferred not to
venture an opinion, as anything he might say would be little better
than a guess.








CHAPTER XXXII

THE PRINCIPLES OF CONSERVATION





CLASSICAL science had assumed that the mass of a body was an invariant,
which would not change in value when the relative motion of the body
was changed. It is true that highly refined experiments on electrons
moving at enormous speeds (Bucherer’s experiment) had shown that the
mass of an electron increased with its velocity; but it was assumed
that this increase in mass was due to other causes, either to a
modification in the electromagnetic field of the electron, or possibly
to the mass of the ether which the electron in its rapid motion would
drag along with it.


One of the first triumphs of the special theory of relativity was to
prove that mass, just like time and space, must be a relative; and that
a body in motion with respect to the observer would suffer an increase
in mass in all ways identical with that disclosed by Bucherer’s
experiment. This increase could no longer be attributed to the drag of
the ether, since in the special theory of relativity exactly the same
increase would have to be expected, regardless of whether it was the
observer or the electron that was in motion through the ether. As in
all previous examples, the essential factor was the relative motion
between observer and observed. The ether played no part.


Calculation then showed that the mass of a body would become infinite
when the velocity of the body reached that of light; for this reason no
material body could ever move faster than light, since it would require
an infinite force to increase its velocity any further.


When Einstein had discovered this influence of relative velocity over
mass, it was suggested that the curious motion of the planet Mercury
might be explained without our having to abandon Newton’s law of
gravitation, but merely by taking into consideration the variations of
the mass of this fast-moving planet at different times of the year.
Calculation proved that under the circumstances a perihelial precession
in Mercury’s orbit would indeed be in order, but that it would be
considerably smaller than that actually observed. Only when the general
theory compelled Einstein to abandon Newton’s law was the precise
motion of Mercury accounted for, as has been explained in a previous
chapter.


On the other hand, this variation of mass with velocity was soon to
lead to the discovery of very important phenomena in the realm of
intra-atomic motions. The atom, we must remember, is a miniature
solar system, with electrons revolving round a central nucleus just
as the planets revolve round the sun. Sommerfeld, by taking into
consideration the relativistic variation of mass with velocity, proved

that if Bohr’s conception of the atom was correct, the spectral lines
emitted from an incandescent atom should be in the nature of bundles
of very fine lines closely packed together. Very refined optical tests
soon proved that these anticipations were correct; the thick spectral
lines formerly observed turned out, upon more refined investigation,
to be formed by a number of fine lines in the precise manner predicted
by Sommerfeld. This discovery had therefore a twofold effect. It
vindicated Bohr’s theory of the structure of the atom, while at the
same time it supported Einstein’s special theory of relativity.


By affording a further empirical proof of the correctness of Einstein’s
views, these experiments, in conjunction with Bucherer’s, proved
conclusively that the mass of a body was a relative and not an
invariant, so that the mass of a billiard ball in motion through our
frame of reference would have to be considered greater than its mass
when at rest. Nevertheless, as was shown by Einstein, it was still
possible to adhere to the classical belief in the principle of the
conservation of mass, provided that by mass we understood the relative
mass as now formulated, and not the mass of the body at rest. Imagine,
for instance, two billiard balls colliding and then rebounding in the
space defined by our Galilean frame. After their rebound the masses of
the two individual balls will have varied, since their velocities with
respect to the observer will have changed; but the relativity theory
proves that the sum total of both these masses will remain the same for
all Galilean observers, after as before the impact. This is what is
meant by the conservation of mass.


Were we to conceive of only one billiard ball, first at rest in our
Galilean frame and then in motion, its mass, of course, would vary,
according to relativity. But it must be realised that in order to set
the body in motion we should have to submit it to the action of a
force, so that we should be introducing a foreign influence which would
have to be taken into consideration.


Now, this expression of the mass of a body, varying as it did with the
relative motion of the body, was proved by Einstein to be equal to
the mass of the body at rest, plus a certain mathematical expression
which for slow velocities became identical with the vis viva,
or classical energy of motion, of the body in our frame. Accordingly,
the energy of motion of a body could be regarded as identical with the
increase of its mass in motion over its mass at rest. It became, then,
highly probable, for a number of reasons, that what we called the mass
of a body at rest was itself due to the contained energy of the body.
In a general way, therefore, a body, when heated or electrified or
compressed, would increase in mass.


This identification of the mass of a body at rest with its contained
energy, and of its mass when in motion with its contained energy plus
its generalised vis viva, or energy of motion, allows us to
assert that the principle of the conservation of mass is none other
than the principle of the conservation of energy. Hence, Einstein’s
special theory is also in harmony with the latter principle. In

a similar way, the principle of the conservation of momentum, or
Newton’s law of action and reaction, would be found to stand in full
harmony with Einstein’s special theory, provided that by momentum we
meant relative mass multiplied by velocity, instead of mass at rest
multiplied by velocity.


In short, the principles of conservation endured only when we enlarged
our understanding of mass, momentum and energy; and Newtonian mechanics
had to be amended as a result of Einstein’s discoveries in the special
theory of relativity.


Let us now study the problems of conservation in the general theory
when we make use not merely of a Galilean frame of reference, but of
any frame whatever, hence when our space is permeated with a field
of inertial forces or, again, with a field of gravitation. We shall
discover once more that conservation is required by the general theory;
though, as we shall see, it will not be the type of conservation to
which we were accustomed in classical science.


In order to make these points clearer we must revert to Einstein’s
law of gravitation. We remember that assuming the correctness of
Einstein’s views of gravitation as being due to space-time curvature,
the principle of stationary action led us to the law of gravitation:



Now the tensor on the left possesses the remarkable mathematical
property of expressing a form of curvature which is preserved
regardless of our mesh-system. It follows that in virtue of the
equations of gravitation written above, the same conservation must hold
for , hence for mass, energy and momentum.


The mathematical identity that expresses this property, let it
be noted, does not depend on Einstein’s theory; it is a purely
mathematical property between the ’s of a continuum, which
had been discovered by the mathematician Ricci before the theory of
relativity was born. But in view of the physical relationships which
Einstein had established between the curvatures of the space-time
continuum and the presence of matter, it now followed as a necessary
consequence of the theory that the right-hand side of the gravitational
equations must present the same characters of conservation as the
left-hand side. If we interpret this result physically, we see that it
implies the conservation of mass, momentum and energy.


We thus reach the remarkable conclusion that the principles of
conservation, which in classical science were of an empirical nature
and were totally unconnected with the law of gravitation, now appear as
immediate and necessary consequences of Einstein’s law of gravitation.
In other words, granting the correctness of the law of gravitation,
conservation cannot help but exist in this universe. To many thinkers
this is one of the most beautiful aspects of Einstein’s theory, showing
as it does the wonderful unity and relatedness of nature.





Nevertheless we must be careful to understand the deeper significance
of conservation in relativity. We shall see that the type of
conservation we are now discussing is somewhat different from the
classical conception of conservation, under which matter, for instance,
disappeared from here only to reappear there. In the present case
conservation is more ethereal and abstract. We may explain these
points better by examining conservation in classical science. Here,
when fields of force are present, the principles of the conservation
of energy and momentum would appear at first sight to be contradicted
by experiment. Thus, a body falling freely towards the earth can
certainly not be said to possess a constant vis viva, or energy, since,
originally starting from rest, it acquires an increasing speed as it
falls towards the ground. Rather than recognise the breakdown of the
principle of the conservation of energy, classical science preferred to
assume that the body possessed two types of energy: a kinetic energy
given by , and a potential energy depending on the
position of the body in the field of gravitation. It was the sum total
of these two types of energy that remained constant and was therefore
conserved during the fall of the body.


It must be noted that the necessity for introducing potential energy,
as an additional requirement in order to ensure conservation, exists
only when we are considering a phenomenon occurring in a gravitational
field or in an inertial field of force, such as would be present were
we to take our stand in an accelerated frame. In the absence of such
a field, potential energy would become completely meaningless, and
conservation of energy would endure without it.


If now we take into consideration Einstein’s discoveries, in the
special theory where mass is identified with energy, we see that in
the general case of a gravitational or inertial field being present,
conservation of both mass and energy can be upheld, but only provided
we introduce the concept of potential energy. It remains to be seen
whether potential energy possesses any intrinsic significance in the
world, or whether it represents a mere mathematical artifice introduced
for the purpose of saving the principles of conservation. The general
theory proves that this last alternative is the correct one and that
conservation in the classical sense must be abandoned. The reason is
that when we express this space-time equation of conservation in a
semi-Cartesian mesh-system of space and time (a strictly Cartesian one
being impossible, owing to the intrinsic curvature of space-time round
matter), we find that it expresses true conservation in space and time,
in the sense of the special theory, without the adjunction of potential
energy; but when we select an arbitrary curvilinear mesh-system of
space and time, the mathematical expression we are studying splits
up into two terms, and the conservation of this expression implies,
therefore, the conservation of the sum total of these two terms. The
first term refers to the mass, vis viva and momentum of the
matter, while the second term refers to the energy and momentum of the
gravitational or inertial field. It would thus appear that conservation
could be maintained provided we extended it so as to include the

energy and momentum of the gravitational field as well as that of the
matter. This, indeed, was Einstein’s original stand. Later, he seems to
have abandoned it for the following reasons:


The second term, which represents gravitational or potential energy in
our equations of conservation, is given by a mathematical expression
which is not a tensor. It expresses, therefore, merely a relationship
between the motion of the observer and the structure of space-time; it
does not describe the structure of absolute space-time itself. We must
realise, then, that potential energy represents nothing inherent in the
absolute world, and we must exclude it as a fundamental entity in the
formulation of our laws.


As soon, however, as we refuse to take gravitational or potential
energy into consideration, conservation breaks down in a field of
force. Hence, it follows that conservation of mass, energy and momentum
holds only for Galilean observers. Conservation is not, therefore, a
true law of nature, valid for all observers. In the light of these
discoveries, the permanent nature of mass and matter can no longer
be upheld. Lavoisier’s principle of the conservation of mass must be
abandoned, and the conception of matter as a substance is shown to be
fundamentally incorrect.


But then if the ordinary laws of conservation are discarded, by what
shall we replace them? Obviously, they will now give way to the more
general principle of relativistic conservation, a sort of space-time
principle. This type of conservation cannot in the general case be
expressed in terms of the conservation of our habitual physical
quantities in space and time. Its significance will be deeper,
referring as it will to space-time uniformities existing in the
absolute world of space-time.


Only when the observer adopts a Galilean or a semi-Galilean system
of reference will physical conservation endure; only then will it be
possible for a man to conceive of a universe of permanent spatial
entities. As Eddington remarks, it is only when these Cartesian or
semi-Cartesian mesh-systems are used that the separation of space-time
into four directions yields the habitual space and time of men. Thus
there appears to be a relationship, between the natural separation of
time and space by our consciousness, and the insistent demands of the
mind to seek out the permanent rather than the transient in order to
construct an edifice of knowledge.








CHAPTER XXXIII

OTHER ASPECTS OF THE GRAVITATIONAL EQUATIONS





WE remember that in classical science the Newtonian law of gravitation
was expressed by Poisson’s equation,

where  represented the density of the matter exciting the field
at each point of space. It followed that it was solely the mass of a
body which was active in creating a gravitational field. Likewise, it
was the mass of a body which was the sole cause of its being attracted
in a gravitational field, so that the weight of a body at a given point
near the earth was fully determined when we knew the mass of the body
and the mass of the earth.


Now, in Einstein’s theory, the gravitational equations become

where  and  refer to the curvatures of space-time,
or, if we prefer, to the potential or -distribution, while
 represents the characteristics of the matter exciting the
field. There are ten of these gravitational equations corresponding
to the various values from 1 to 4 which we must assign to the indices
i and k (space-time being four-dimensional). And here we must note
that the tensor  represents matter much more fully than
does the  of classical science, for the various components of
 refer to such additional characteristics as the momentum,
the vis viva and the conditions of stress existing in the
interior of matter. We may infer, therefore, that whereas in classical
science the mass of the matter was solely responsible for the creation
of a gravitational field, in the present case all the additional
characteristics mentioned above contribute their share.


Similar considerations would hold for the gravitational field outside
matter, and as a result, were the sun to be rotating with greater
speed on its axis, the gravitational field it would produce would be
slightly different. In the case of the planet Jupiter and its moons,
it would appear possible to submit to an observational test this
additional disturbance caused by the rotation of the central mass on
the satellites moving around it. As yet, however, no checking up of the
theory has been possible on this point.


Thus far we have considered the gravitational field, or space-time
curvature, produced by matter, but it should be apparent that owing

to the identification of mass and energy, space-time curvature is a
necessary consequence of the presence of energy. The electromagnetic
field should thus be susceptible of giving rise to a gravitational
field. Briefly, we may present the problem as follows:


Minkowski and Einstein had succeeded in establishing that electric and
magnetic forces were the components of the same tensor . From
this tensor it was possible to build up another tensor ,
representing the energy and characteristics of the electromagnetic
field, just as  represented the energy and characteristics
of matter. These two types of energy, which are not identical,
are designated as loose energy and bound energy,
respectively. If, now, we wish to discover the precise type of
space-time curvature, or gravitational field, which the presence of an
electromagnetic field would produce, all we have to do is to replace
 by  in the gravitational equations. We thus obtain

We can see at a glance that the type of curvature generated by an
electromagnetic field must differ from one due to matter, since
 and  are different magnitudes. A more conspicuous
difference is illustrated when we manipulate the gravitational
equations according to the permissible mathematical rules. We then find
that whereas the gravitational equations for matter yield

where  represents the density of mass of the matter, the
gravitational equations for electromagnetic fields yield

for  happens to be a quantity which vanishes in all
electromagnetic fields. Hence, we realise that in regions of space
where electromagnetic fields are present, but all matter is absent,
the Gaussian curvature  of space-time always vanishes; whereas in
regions occupied by matter it is equal to the density of the matter,
and does not vanish.


Before proceeding to compare these various types of curvature, let
us recall that there exist three types of tensors of curvature of
especial importance: the Riemann-Christoffel tensor , the
contracted tensor  and the invariant . If we write
these three magnitudes in line: , , , we
find that the vanishing of  over a region signifies the
complete flatness of the continuum over this region. As a result,
both  and  will certainly vanish everywhere within the
region. If it is  that vanishes,  will automatically
vanish but  will not necessarily vanish. Hence ,
while comprising perfect flatness as an extreme case, permits a
certain degree of curvature. Finally, if it is  that vanishes,

 need not vanish; and if  does not vanish, neither
will ; whereas if  vanishes, we are thrown back
on the previous case, i.e.,  may or may not vanish.
Hence, , while compatible with perfect flatness as a special
case, connotes a law of curvature still less stringent than .


We may now contrast the various types of space-time curvature produced
by matter and electromagnetic energy. By writing the gravitational
equations in a slightly different though equivalent way, we obtain, in
the interior of matter,

whence

Thus, in the interior of matter, none of the curvatures need vanish,
and hence no limitation is imposed on the curvature of space-time.


In regions where there are electromagnetic fields but no matter, we have

whence

The curvature is thus less thorough, since  vanishes.


In regions outside matter, where no electromagnetic fields are present,
the curvature is still less pronounced, for there

, however, vanishes only for points infinitely distant from
matter (in the hypothesis of the infinite universe).


In absolutely free space, remote from matter and where there is no
electromagnetic energy, all the tensors and invariants vanish.


We thus find that there exists a progressive curvature of space-time as
we pass from empty space-time far removed from all matter and energy to
empty space-time in the neighbourhood of matter, then to regions where
there are electromagnetic fields but no matter, and finally to regions
filled with matter or electrons. If we regard the successive gradations
of curvature of space-time as corresponding to successive grades of
materialisation, starting from emptiness, we must place electromagnetic
fields, or loose energy, at a stage of materialisation preceding that
of matter proper, or bound energy.


Still another discovery which Einstein was able to deduce from his
gravitational equations refers to the propagation of a gravitational
force. Classical science had held to the view that gravitation must
be propagated with a speed much greater than light, perhaps even
with infinite speed. But Einstein, by integrating the equations of
gravitation, proved that in a weak field gravitational waves would be
propagated with the speed of light. In a strong field, of course, the
presence of the field itself would influence the speed of propagation
of the waves, and the problem would assume much greater complexity.








CHAPTER XXXIV

THE FINITENESS OF THE UNIVERSE





IN classical science, space, the fundamental continuum, was thought to
be Euclidean and flat throughout, hence infinite in extent. As soon,
however, as Einstein was led to believe that the fundamental space-time
continuum of the universe was not rigorously flat, but manifested
various degrees of curvature from place to place around matter, the
possibility of its turning out to be curled round on itself, and hence
finite, had to be investigated further before any definite opinion
could be expressed. True, this fundamental continuum was no longer
three-dimensional space; it was four-dimensional space-time. But, apart
from this difference, the same major problem still presented itself,
and we were permitted to ask: “Is the universe of space-time infinite
or is it finite?”


More precisely, if we appeal to a two-dimensional analogy, must
we regard the universe of space-time as curved locally around the
individual masses of the universe, but as flat or quasi-Euclidean on
the whole over an infinite area, much like the rippled surface of an
infinite pond of water? Or must we suppose that the rippled surface
of the water is more akin to that of the rippled surface of a liquid
sphere closing round on itself?


Now, if we consider the theory in its present state, we must agree
that a finite universe is excluded. We can understand this point by
considering the law of gravitation, which in Einstein’s theory is also
a law of space-time curvature. We remember that the gravitational
equations were given by

where the ’s represented the curvatures of space-time at a point
and where  represented the characteristics of matter at the
same point. Outside matter  vanished and the gravitational
equations reduced to

or, what comes to the same thing, to

this last equation being compatible with perfect flatness of space-time
(). Einstein had assumed that this condition of perfect
flatness existed at infinity, and it was when this supplementary
condition was taken into consideration that Einstein’s law of

gravitation became determinate. This was the law which enabled him
to anticipate the double bending of a ray of light, the Einstein
shift-effect, as also to account for the curious motion of the planet
Mercury.


It is obvious that a law of gravitation which entails the existence
of perfectly flat space-time at infinity must of necessity lead to
an unclosed space-time universe; and so we see that with Einstein’s
original gravitational equations, a finite self-contained universe
cannot exist. We are thus led to consider how it would be necessary to
modify these equations for a finite universe to be realised.


Now we mentioned, when discussing the law of gravitation, that the
inclusion of an additional tensor  ( being
any arbitrary constant) in the equation of curvature would not destroy
the tensor nature of the law; hence, so far as the requirements of all
general laws are concerned, this modified law of space-time curvature
is acceptable. If it is accepted, the universe can no longer be
quasi-Euclidean and infinite; it will have to be closed, hence finite.
In order to understand the reason for this statement, we must examine
the law of curvature with the  term included. It will be
convenient to write the term: ; and in
this case, the law of space-time curvature in the interior of matter
becomes

Outside matter, we obtain

or its equivalent,

Thus the inclusion of the  term changes the law of
space-time curvature outside matter from  to
. Now this new law of
curvature is no longer compatible with perfect flatness
(), but with

which yields a closed spherical, space-time extension. We thus obtain
a four-dimensional spherical Riemann space-time as a possible
model of the universe. From these equations we may also deduce
, which shows us that  is proportional
to the curvature of the universe.


Inasmuch as in any case the universe, whether finite or infinite,
is certainly of huge proportions, its curvature must be practically
insignificant. We may infer, therefore, that , if it

exists at all, is undoubtedly a small, a very small, quantity; so
that in problems relating to the dynamics of the solar system, for
example, we may continue to ignore its existence. Theoretically, of
course, this omission would be unjustified, for the presence of the
 term, by modifying the law of curvature, will inevitably
modify the lay of the space-time geodesics. As a result, the orbits
and motions of the planets round the sun should be affected by its
existence, and it should be possible to settle the question of its
presence empirically by observing the planetary motions with increased
refinement. Practically, however, owing to the extreme minuteness of
 (assuming it exists at all), empirical observations of this
sort would be insufficient to detect it. The only means we may have
of establishing its existence directly (and, with it, the finiteness
of the universe) will be to observe the motions of the stars in the
globular clusters or in the Milky Way (as we shall explain later). All
we can say at present is that the existence of a finite universe is
proved to be a possibility, so far as the mathematical requirements of
the theory of relativity are concerned.


We might attempt to settle the question by appealing to the principle
of action. But, here again, both hypotheses, that of the infinite and
of the finite universe, would reveal themselves as possible; hence we
shall have to consider some other method of solving the problem.


All we have done up to this stage has been to show that Einstein’s
gravitational equations (or space-time curvature equations) are
incompatible with the existence of a finite universe. If, however,
some very small  term were assumed to be present, far too
small to affect the observed planetary motions, a finite universe would
ensue. In short, a finite universe is theoretically possible. But
before giving any further consideration to the problem, we may well
enquire what is to be gained by this additional complication.


The original gravitational equations, those entailing perfect flatness
for space-time at infinity, appeared to have yielded satisfactory
results. Furthermore, when Einstein assumed that space-time would
degenerate to perfect flatness at infinity, he was merely expressing
the validity of the principle of inertia in regions far removed from
the influence of matter. In other words, at infinity, far from matter,
free bodies would pursue straight courses with constant speeds (as
measured in a Galilean frame). Of course, the principle of inertia
might be incorrect, but still, until such time as its validity was
questioned seriously, it was natural enough to accept it. With the
finite universe, on the other hand, we should have to assume that
space-time always retained a residual trace of curvature, so that the
straight courses of free bodies would be impossible. Free motion would
be in circles of huge radius.


Here, however, we must recall that Einstein’s theory is not one of
loose, unsupported guesses. Had Einstein merely been interested in
making the universe this or that, without taking into account the
totality of facts at the scientist’s disposal, his cosmological
speculations would be no more worthy of consideration than those of
the Greeks, or of Dante, or of the philosophers of the seventeenth

and eighteenth centuries. We may be quite certain, however, that with
a conscientious scientist like Einstein the methodological procedure
will be very different. And so, when we find that the theory he
advocates entails a finite universe, we may anticipate that there
will be very strong reasons for his choice. Indeed, as we shall see,
a number of separate considerations lead to this solution. First of
all, there is the apparent stability of configuration of the star
distribution. Then again, we have such philosophical considerations
as the probable physical relativity of all motion and of inertia in
accordance with Mach’s ideas; the intrinsically amorphous nature of
all empty continuous extensions as demanded by Riemann; the desire
to discover unity in nature by proving that matter can be reduced
to electricity and gravitation. All these facts, together with many
others, can be satisfied only provided we assume that the universe is
finite. Unfortunately, a proper understanding of the problems involved
requires an appeal to mathematical analysis. However, we shall attempt
to proceed in a very crude way without introducing mathematical symbols
to any great extent.


There exist two major solutions for the finite universe. The first
is the Spherical, Elliptical, or, more rigorously,
the Hyperbolical universe of de Sitter; the second is the
Cylindrical universe championed by Einstein. We will consider
de Sitter’s universe first. But before discussing these difficult
subjects, there are certain peculiarities about the laws of nature
which it will be necessary to mention.


In the majority of cases, the laws of nature are expressed in the form
of laws of contiguous variations in space and in time. Mathematically,
this is equivalent to saying that the laws are expressed by
differential equations. Now differential equations give us the law of
variation of magnitudes from place to place or from time to time, but
they do not yield us the precise values of these magnitudes.


Consider, for example, a differential assertion such as the following:
“A train is moving away from us with a constant acceleration of one
mile per second.” Now this differential law, though it specifies the
nature of the motion, does not enable us to deduce the position the
train will occupy at any specific instant. To solve the problem we
must be informed of the train’s position, and also of its velocity,
at some initial instant. This illustration gives us an idea of the
limitations of differential assertions or equations. In order to render
them determinate, we must always supplement them with additional
information by stating the value of the variable quantity at some
definite point or time. In particular, when we consider a magnitude
which may vary according to some differential law from point to point
throughout a region of three-dimensional space, we must state the value
and other characteristics of the magnitude, or variable, over a closed
surface bounding this region of space. In mathematical terminology, we
must know the boundary conditions before the law can be regarded as
perfectly determinate.


Let us apply these considerations to the differential law which
expresses the Newtonian law of attraction. It is given, as we have

seen, by Poisson’s equation , and
expresses the law of distribution of  (the Newtonian potential)
in a gravitational field around matter and in the interior of matter
(where  is the density of matter from place to place). But,
written in this form, the law is indeterminate; for it yields a
number of laws differing from Newton’s law of the inverse square.
Mathematicians have proved that in order to obtain Newton’s law, we
must supplement our differential equation by specifying that the
potential  tends to a constant finite limit at spatial infinity.


Now, in Einstein’s theory, the analogue of Poisson’s law is the law of
space-time curvature,

Just as Poisson’s law was the differential law of the Newtonian
potential distribution, so now Einstein’s law is the differential
law of distribution of the ten potentials, the ten ’s;
and  is the energy and momentum of matter at every point.
Again, as in the case of Poisson’s equation, we must supplement these
differential equations of the gravitational field by specifying the
values of the ’s at the boundary at infinity.


Of course the ’s are not numbers or scalars like ;
they are tensors. Hence their values at a point will vary with the
mesh-system, or frame of reference, we may select. Nevertheless, if we
specify our choice of a frame of reference and decide on the values
the ’s are to have in this frame, their values in all other
frames will be determined automatically. This is, of course, owing to
the fact that the ’s are tensors.


In the theory, as we have described it up to this point, Einstein
selected a Cartesian space-time mesh-system, that is to say, a Galilean
frame, and he assumed that as measured in this mesh-system the
’s at infinity were to be given by

all other ’s vanishing. These boundary conditions implied
that space-time was perfectly flat at infinity, hence satisfied the
equation . It may be realised that we are merely
expressing in another way what was said at the beginning of the
chapter; the boundary values written above and the flatness of
space-time at infinity being equivalent statements. Under these
circumstances we saw that the universe could not be finite; we should
have the quasi-Euclidean infinite space-time universe.


Now, in the opinion of both Einstein and de Sitter, this assumption of
perfect flatness at infinity was too drastic. For though this perfect
flatness is in harmony with the law of inertia, it appears rather
arbitrary to assume that the law must hold at infinity, even were we
to agree that it holds in less distant regions, a conclusion which
is by no means certain. In Einstein’s own words: “It is certainly
unsatisfactory to postulate such a far-reaching limitation without any
physical basis for it.”


In addition to this first reason for doubting the perfect flatness of

space-time at infinity, we must remember that the ’s do not
retain their standard boundary values (1, 1, 1, -1) when we change our
mesh-system. In any frame other than a Galilean one, say in a rotating
frame, these boundary values at infinity would be modified; this is, of
course, due to the fact that the ’s are tensors. It follows
that the extremely simple boundary values appear to single out a
privileged frame of reference (a Galilean one), and this, in Einstein’s
opinion, is contrary to the spirit of the theory of relativity. At
any rate, whatever may be thought of the force of these arguments, it
can easily be seen that if we wish to assign invariant values to the
’s at infinity, values which will remain the same in all
frames of reference, the simplest solution will be to assume that they
all vanish at infinity. Then, of course, owing to their tensor nature,
their vanishing in any one frame ensures their vanishing in all other
frames. This was indeed de Sitter’s solution; namely, that all the
’s vanished at infinity.


De Sitter presents another argument in defence of his solution. It
deals with the relativity of mass or inertia, but as I have been unable
to reconcile his views on this subject with the characteristics of his
universe, I may have misunderstood his idea; hence I cannot discuss it.
At all events, the relativity of inertia is a most important argument
in favour of Einstein’s cylindrical universe, so we shall consider it
when dealing with Einstein’s solution.


Now when we accept de Sitter’s vanishing values for the ’s
or potentials at infinity, the direct outcome is a finite space-time
universe. We see, then, that in this way the boundary conditions
have been obviated entirely, since in a finite universe, closed
round on itself, there is no longer a boundary. The precise form of
de Sitter’s universe is a spherical four-dimensional space-time.
When empty of matter, it is given by the equation . In other words, it is the type of universe
to which we are led when the  term is included in the
gravitational equations; hence, as we have seen, it is a type which is
theoretically possible.





The characteristics of de Sitter’s universe are thus those of
a spherical four-dimensional space-time of radius . As for , its magnitude is
proportional to the universal curvature. As a matter of fact, the
appellation hyperbolical universe would be more correct, for
it is space-time which is curved spherically, not space and
time. Here we must remember that in space-time, space is real and time
imaginary; and if we wish to express the shape of the universe in terms
of real time instead of imaginary time, the hyperbolical
form is the correct one.[106]


As we have explained in the note, de Sitter’s universe is open at both
ends in the time direction, so that time does not come back as it would
in a spherical universe. When we consider points farther and farther
removed from where we stand, all the ’s decrease and finally
vanish, as was demanded by the requirements discussed previously. In
particular, this decrease and this ultimate vanishing of the potential
 indicate, respectively, the gradual slowing down and the
complete arrest of time in the distant regions of the universe. This
arrest of time, however, is fictitious, for if we transported ourselves
to the point considered, we should find that things went on as usual.
It would now be where we had stood formerly that the arrest of time
would appear complete. Thus, for every observer there would exist a
locus of distant points where nothing would appear to change or move. A
ray of light could never circle round the universe, but would gradually
slow down and ultimately be arrested when this passive horizon of the
observer was reached.


We also see that the nearer an incandescent atom is situated to this
passive horizon, the slower would its vibrations appear; hence, in
the case of a sodium atom (emitting a yellow light under normal
conditions), the redder would be its light, till finally the light
would cease completely when the passive horizon was reached by the
atom. Now it happens that among the most distant luminous bodies known,
namely, the spiral nebulæ, the great majority actually do appear to
emit slowed-down light vibrations. Of course this effect might be
attributed to the general tendency of all spiral nebulæ to recede
from the solar system. But as no satisfactory reason can be advanced
to account for this general recession, Eddington considers that de
Sitter’s hypothesis of the hyperbolical universe has much to commend it.


A few further remarks must be made with reference to de Sitter’s
universe. We remember that in Einstein’s theory the perfect flatness
of space-time entailed the complete absence of gravitational or
inertial forces (so far as a Galilean observer is concerned).
Therefore, were it not for the curvature that matter itself imposes
upon space-time around it, two parcels of matter would never attract
each other. In de Sitter’s universe, however, there exists a residual
hyperbolical curvature of space-time at every point, regardless of

the additional curvature that would be superimposed by matter. This
universal curvature, as can be shown by calculation, would produce a
mutual repulsion between bodies. Unless these bodies were of minute
proportions, this universal repulsion would be counterbalanced and
overcome by the more important curvature generated by the bodies
themselves; so that, in spite of all, gravitational attraction would
be accounted for. Nevertheless, we should be led to a most displeasing
duality in our conception of gravitational action, since we should be
in the presence of two separate phenomena:


1. The universal repulsion which is totally foreign to matter;


2. The gravitational attraction between matter and matter.


Thus, it would be impossible to escape a duality in our conception of
gravitation, if by gravitation we imply the cumulative action of both
effects, yielding the one observable attraction of matter for matter.


We may summarise the chief characteristics of de Sitter’s universe as
follows: First, this universe can exist in the absence of all matter.
It then possesses a definite spherical structure and a radius of
curvature , where , which
is proportional to the universal curvature, is some constant which
bears no palpable relation to anything else in the universe.[107] We
must conceive of it as a constant of nature posited once and for all
by the Creator. Secondly, if matter is introduced into this empty
universe, it will produce local space-time puckers or curvatures around
it; and to these local curvatures the phenomenon of attraction between
matter and matter will be due. In the presence of matter, de Sitter’s
universe will not be stable, for the universal repulsion will tend to
cause matter to scatter if the mutual attractions are too feeble to
oppose it.


In the opinion of a number of thinkers, de Sitter’s universe presents
certain aspects which are most unsatisfactory. We shall discuss these
later. At all events, Einstein rejects it and is led, by following a
somewhat different line of attack, to a very different type of finite
universe, the cylindrical universe.


We shall now proceed to a more detailed study of Einstein’s
universe. First of all, we must mention certain general cosmological
considerations that directed Einstein to the formulation of a
finite-universe hypothesis.


Quite independently of the relativity theory, in the days when
space-time was unknown, astronomers had puzzled over certain
difficulties dealing with the universe as a whole. Two possibilities
appeared to suggest themselves. Either star-matter was present
everywhere, distributed more or less homogeneously throughout infinite
space, or else the stars were concentrated into a nucleus forming an
island of matter in an infinite ocean of space.


The first alternative entailed certain difficulties when we considered
the illumination of the heavens at night. Calculation showed that the

night sky should be many times more luminous than it is. Of course this
difficulty might have been overcome by assuming that as we wandered
farther and farther from the earth, the percentage of dark stars
increased; or, again, that vast quantities of cosmic dust intercepted
the light and obscured the heavens. It might also have been assumed
that light was gradually absorbed in its long journey from the distant
stars.


Over and above these first difficulties, it was shown that if the stars
attracted one another according to Newton’s law it would be impossible
for them to be spread more or less uniformly throughout infinite space;
rather would they concentrate into a nucleus. Precise calculation shows
that the density of matter, hence the number of stars per unit volume,
would vanish at infinity, decreasing progressively from a centre more
rapidly than , where  represents the distance
from the centre. It appears, then, that a nucleus of stars cannot
be avoided if Newton’s law is to hold.[108] The astronomer Seeliger
attempted to realise an infinitely extended universe of matter by
modifying Newton’s law in an appropriate way. But, as Einstein remarks,
the attempt had neither empirical nor theoretical foundation.


Finally, then, if we accept Newton’s law, we must assume that the
universe presents the form of a nucleus of stars lost in infinite
space. But here, again, a new difficulty awaits us. In the first place,
astronomical observation reveals no trace of any such nucleus. Of
course it might be contended that this was due to the limited range
of our astronomical observations. Nevertheless, this first argument
against the nucleus hypothesis cannot be passed over lightly, for we
must remember that in these speculations on the form of the universe,
we have to make the best of the flimsiest of clues; we cannot operate
as in a laboratory.


Then there is a second argument adverse to the nucleus hypothesis.
Calculation shows that the cumulative Newtonian gravitational
attraction of the stars would be insufficient to retain any individual
star and prevent it from escaping to infinity, leaving the nucleus
forever. Similar conclusions would apply to rays of light. It would
follow that our universe of stars was in a state of dissolution. It is
of course possible that such is indeed the case; yet, to a number of
thinkers, a universe in process of dissolution appeared most unlikely.
With Newton’s law of gravitation there was no escape. This was the

cosmological difficulty which classical science had to face.


Inasmuch as the justification for these statements does not involve
any very complicated ideas, we may proceed to explain them briefly.
Consider the hypothetical case of the earth situated in infinite space,
and isolated from all other bodies. If, then, a mass is abandoned at
spatial infinity, it will be attracted towards the earth, gradually
gathering momentum, and may finally hit the earth’s surface with a
certain velocity, which calculation proves to be about seven miles a
second. This particular speed  is given by the following formula:

where  represents the value of the Newtonian potential
at infinity and  its value on the earth’s surface.[109]
Conversely, if a body is shot out radially from the earth’s surface
with an initial speed smaller than this critical speed , it will
always return to the vicinity of the earth. On the other hand, were the
body’s initial speed to be greater than the critical speed , it
would never return. We see, therefore, that the value of this critical
speed depends on the difference in value of the Newtonian potential at
infinity and at the earth’s surface.


Now consider the case of a nucleus of stars. The stars will be
moving with various velocities under the influence of their mutual
gravitational attractions. Statistical mechanics shows that every now
and then the total energy of the stellar universe will be transferred
to one single star; this star will then be moving at a tremendous
speed. The total energy of the sidereal universe being finite, this
speed will never be infinite, so that there will exist a maximum finite
speed which no star of the nucleus can ever surpass. If, therefore, we
consider the Newtonian potential due to the entire nucleus of stars,
and if the difference in the value of this potential at infinity and
near the centre of the nucleus is sufficiently great, no star will ever
be able to tear away and be lost to infinity.


From this, it might appear that a nucleus of stars could endure
permanently under Newton’s law. Theoretically, this would be possible,
but astronomical observation proves that this possibility must be
rejected. For if there existed very great variations in the value of
the potential throughout the universe (as the preceding hypothesis
would demand), enormous star velocities would ensue. Now the
outstanding astronomical fact is that the star velocities are extremely
low, proving that the potential varies but slightly from place to place
throughout the universe even over vast astronomical distances. It
appears, then, that the nucleus is held together very loosely, and a
star would not have to be possessed of an inordinately high velocity to
tear away and be lost forever.





In addition to this first difficulty, when Boltzmann’s law of gas
equilibrium is applied to the stars, treating the latter as so many
molecules, the nuclear form of the universe appears to be utterly
impossible.


Now, thus far, we have been considering the problem of the universe
from the standpoint of classical science and Newton’s law. No great
change need be introduced into our arguments when we treat the same
problem in terms of Einstein’s law of gravitation and of the infinite
quasi-Euclidean universe. Once again, a continually impoverished
nucleus would appear to be in order. There is, however, a novel point
that may be mentioned. In classical science, we were concerned with
the Newtonian potential , and we explored its value throughout
the universe by observing the velocities of the stars. With the
space-time theory, the potential  (or, more precisely, a
certain mathematical expression into which  enters) usurps
the position of . Now  also affects the flow of
time, hence affects the rate of vibration of atoms (as in the Einstein
shift-effect); and so we can detect variations in the value of the
potential  from place to place through the medium of
spectroscopic observations. But when we undertake our observations
from a Galilean frame (the earth will do in this case), we notice
that lines in the spectra of the most distant nebulæ occupy positions
practically identical with those of terrestrial sources, whence we
may conclude that as far as the telescope can explore, the value of
 remains approximately constant. As for the velocities of the
stars, they would be affected by the values of all the ’s.
So here, again, we see that owing to the low velocities of the stars,
all the ’s vary but slightly from place to place throughout
the universe (when computed in a Galilean frame). Thus, with Einstein’s
theory, just as with Newton’s, there appears to be nothing to
prevent stars and rays of light from leaving the nucleus; the mutual
gravitational attractions would be insufficient to retain them.


In short, if there were to be a self-contained universe,
something would have to be modified somewhere.


We now come to Einstein’s final solution, that of the cylindrical
universe. He remarked that the low velocities of the stars,
together with their more or less uniform distribution throughout space,
suggested that they were in a state of statistical equilibrium.
A few lines will explain what is meant by this.


Suppose that on a billiard table containing a very large number of
identical balls we impart a rapid motion to one of them. Our ball
will eventually collide with some of the others. These others, in
turn, will collide with yet others, and finally all the balls will
be set in motion, if there is no friction of any kind, and no loss
of momentum when the balls rebound from the cushions, they will go
on moving forever. But as time progresses a gradual change will take
place. Little by little we shall find that the energy we imparted to
the first ball appears to have split itself up among all the balls
on the table, so that finally, on an average, all the balls will be
moving with approximately the same velocity. When this condition of
equipartition of energy is attained we shall have reached

stability of configuration, or statistical equilibrium. This
state of equilibrium will correspond to maximum entropy, and will
endure forever.[110] We see that it is characterised by the fact that
all the balls possess more or less the same energies or velocities.


Now, as we have said, astronomical observation would suggest that the
stellar universe has reached this condition of statistical equilibrium.
It is permissible, therefore, to neglect the trifling irregularities
and agglomerations in the distribution of star-matter, and to
assimilate the entire stellar universe to a vast cloud of cosmic dust
at relative rest, everywhere of the same density. It is then found that
for this cloud of dust to maintain a permanent, stable configuration,
the time direction of the universe as a whole, for an observer who is
non-rotating with respect to the stars, must be straight. It is
easy to see why this condition should arise.


If the stars can be considered at relative rest, inasmuch as their
world lines constitute geodesics of space-time, it is necessary that
these geodesics should not taper together but should lie along parallel
time directions through space-time. This is possible only provided the
structure of space-time is such that one same time direction endures at
every point of space for an observer at rest with respect to the star
distribution. We thus obtain one same straight time direction for the
universe. Of course, this does not mean that around each individual
star the space-time curvature, and hence the time direction, do not
suffer modifications. Far from it; since it is these local curvatures
which are responsible for gravitational attraction between matter and
matter. In the present case, however, we are concerned solely with
the structure of space-time as a whole, on a grand universal scale,
so that the star distribution can be treated as uniform and likened
to a gigantic cloud of dust. Stability, therefore, requires that this
ultra-macroscopic structure should be conditioned by a straight time
direction. This eliminates de Sitter’s universe, since in his model the
direction of time was curved, and his universe, in consequence, not
stable.


The net result of Einstein’s calculations was to show that if the
universe were a closed three-dimensional spherical (or elliptical)

space, not space-time, on which a straight time axis was erected,
stability would be possible, the star velocities would remain low, and
their distribution uniform. We should thus obtain the Cylindrical
Universe, where the time direction proceeding from minus to plus
infinity would represent the axis of the cylinder.


But here a most important point must be noted. For stability to
endure, a certain condition would have to be satisfied. Calculations,
based on the  formula mentioned on p. 314,
prove that the mean density  of matter would have to be equal to
. In other words, the total amount of matter in the world
would have to be proportional to the radius of the universe.


Assuming these conditions to be satisfied, it would be possible to
calculate the volume of the universe, provided we knew the mean density
 of the matter distribution. For since ,
and since the Gaussian curvature of space depends on , a
knowledge of this curvature would yield us the total spatial extent of
the universe. Now the value of the mean density of star-matter 
has been computed by astronomers. If we accept this value of ,
we obtain for the universe dimensions which are certainly too small,
for they conflict with the enormous distances credited to the spiral
nebulæ. It would appear, then, as though the cylindrical universe was
incompatible with the facts of observation. But, as Einstein remarks,
no reliance can be placed on the value of  commonly accepted by
astronomers. In his own words:


“The distribution of the visible stars is extremely irregular, so
that we on no account may venture to set down the mean density of
star-matter in the universe as equal, let us say, to the mean density
in the Milky Way. In any case, however great the space examined may be,
we could not feel convinced that there were no more stars beyond that
space. So it seems impossible to estimate the mean density.”


Einstein then suggests an indirect method for determining the value of
, hence of  and of the size of the universe. We shall
discuss this method on a later page; it refers to the motions of the
stars in the Milky Way.


It is easy to understand how it comes that in the cylindrical world no
nucleus of stars need exist. The two-dimensional analogue of a star
distribution spread out uniformly throughout the entire volume of a
three-dimensional spherical space would be given by a homogeneous
distribution of stars over the two-dimensional surface of an ordinary
sphere situated in three-dimensional Euclidean space.[111] It would be
the actual surface of the sphere which would be the analogue of the
space of the universe, and not the volume enclosed within the

sphere. Reasons of symmetry would show us at first sight that a uniform
distribution of matter on the spherical surface would be stable,
there being no reason for a nucleus to form here rather than
there.


In the same way, an observer moving through the three-dimensional
space of the universe would be represented by a perfectly flat being
moving over the surface of the two-dimensional sphere. Wherever this
imaginary being might move, the star distribution on the sphere’s
surface would appear to be the same. Likewise, in the spherical space
of the universe, wherever we might move, the distribution of the stars
around us would remain homogeneous.[112] Thus the cylindrical universe
obviates the displeasing necessity of believing in the existence of an
island of star-matter in an ocean of emptiness.


In Einstein’s universe, a ray of light, following a geodesic, would circle
round the universe and return to its starting point. This constitutes a
difference as against de Sitter’s universe in which the ray of light would
be arrested at the passive horizon. In the cylindrical universe, owing to
the straightness of the time direction, there is no horizon. For the same
reason there will be no slowing down of time in the remote regions of
space, so that the general reddening of the light emitted by the spiral
nebulæ would appear difficult to account for in Einstein’s universe. De
Sitter’s scheme, as we have noted, affords an immediate explanation of
this remarkable effect.


It has sometimes been held that the light rays emitted from a star
would circle round the universe of space in all directions, and then
meet again at the antipodes of space, forming the ghost of a star. It
would be well to point out that though theoretically this would be
possible, its chances of being realised in practice would be extremely
slight, to say the least. The fact is that the perfect sphericity of
the universal space can hold only provided matter is homogeneously
distributed and everywhere at rest. As this is only approximately
the case in the real universe, the spherical spatial universe will
be rippled and will deviate more or less from this simple form. As
a result, the rays of light emitted from a star will not converge
accurately at the antipodes; hence, ghosts of stars need not be
considered.


Next we must consider the restrictive condition, 
which had to be complied with if Einstein’s universe was to be stable.
We remember that  is proportional to the space-curvature of
the universe, whereas  represents the mean density of matter.
Now it appears extraordinary that the density of matter in the universe
should just happen to be equal to . Einstein, however, urges
that this equality of  and  is no coincidence at all;
according to him, there exists a causal connection between these two
magnitudes. The density of matter creates , or, again, the
total amount of matter in the universe creates the universe of space.

Were more matter to be created, the universe would expand; were matter
to be annihilated in part, the universe would contract. Indeed, were no
matter to be in existence, there would be no space; hence, a totally
empty universe would be quite impossible. Thus there is a marked
difference between Einstein’s universe and de Sitter’s universe, which
can exist without matter.


We may also mention another reason which directed Einstein to the
cylindrical universe. We remember that when discussing the boundary
values of the ’s we saw that de Sitter considered it
necessary to obtain boundary values which would remain invariant to a
change of mesh-system. In accordance with this requirement, he assumed
that all the ’s vanished at the boundary. As a result he
obtained his hyperbolical universe. Similar considerations prompted
Einstein. Here, however, it must be noted that in Einstein’s model,
while all the space-’s () vanish at
infinity in our mesh-system, the time- (), owing
to the straightness of the time direction, does not vanish. For an
observer at rest with respect to the stars it assumes the value +1. It
follows that when, instead of merely changing our space mesh-system, we
change our space-time mesh-system, the values of the ’s are
subjected to variations, so that de Sitter’s condition of invariance
is not completely satisfied. De Sitter maintains, in consequence, that
Einstein’s universe does not lead to a true theory of relativity.


Furthermore, it will be seen that the cylindrical universe introduces a
species of absolute time, and this again has been used as an argument
against its acceptance. But it should be noticed that this absolute
time appears only when we view the universe as a whole. For ordinary
problems restricted to smaller areas, the fusion of space and time
remains complete, as before.


It is, of course, apparent that by changing the boundary conditions,
as Einstein has done, by substituting a cylindrical universe for the
quasi-Euclidean one, the gravitational equations will be somewhat
modified. They will no longer be those which yielded the double
bending of a ray of light. For now the additional  term
will be included in their expression; though, so far as the planetary
motions are concerned, the presence of this additional term will not
modify our results. In de Sitter’s universe this introduction of the
foreign magnitude  into the law of gravitation was somewhat
unsatisfactory, marring the simple beauty of the equations; 
was some independent constant posited by the Creator. The same argument
could scarcely be directed against Einstein’s equations; for it
should be remembered that if, as Einstein suggests,  is to
be attributed to the matter of the universe, the circle is closed,
since indirectly, at least, nothing but matter enters into the law
of gravitation. According to this view, we might say that the total
amount of matter in the universe conspired to create a gigantic law of
gravitation. It is, then, under the cumulative action of matter that
rays of light and free bodies describe circles.


From a philosophical standpoint, the cylindrical universe is of great

interest; it justifies Riemann’s premonitions that matter must create
the metrics of the fundamental continuum. Riemann, of course, was
thinking of space alone, for space-time was unknown to him; but, apart
from this difference, Einstein’s results confirm Riemann’s profound
views. Indeed, quite aside from these speculations on the universe, the
general theory had already brought a partial confirmation of Riemann’s
ideas by proving that matter could influence the space-time structure.
Riemann’s attitude was, however, more radical. It was not merely a
question of matter modifying a pre-existing spatial structure, but of
its creating it in toto.


Both in the quasi-Euclidean infinite universe and in de Sitter’s, the
rôle of matter, though important locally, was of secondary importance
when the world was viewed on a cosmic scale, since the space-time
structure could exist independently of all matter. It followed that
matter would be accidental, and not essential. Eddington sees no
objection to these ideas. He suggests that it may well be in the nature
of empty space-time to curl round on itself and manifest a definite
metrics, curvature and size. But this attitude leads to a dualistic
conception when we remember that matter influences the structure
of space-time locally. On this account, both in de Sitter’s and in
the infinite quasi-Euclidean universe, the physical properties of
space-time, while conditioned in the main by characteristics immanent
in the extension itself, would still depend partly upon the presence of
matter. We could then scarcely avoid a dualistic conception of space,
which to many would be intolerable.


Eddington obviates this dualism by reversing the problem, and by
assuming that the physical properties and geometry of space-time arise
from the requirements of space-time itself. According to this view,
matter is not an active cause, but a symptom, and reduces to mere
regions of greater curvature or puckers in space-time or the metrical
field. These our senses would interpret as connoting the presence of
matter. However, it appears difficult to reconcile these ideas with the
complexity of matter, for matter is constituted, in large measure at
all events, by electric charges. Hence, to reduce matter to variations
in the geometry of space-time would be equivalent to reducing
electricity to the ’s. Thus far, at least, such attempts have
been unsuccessful. At any rate, Einstein rejects this view. He argues
that a perfectly empty continuum, a void—call it space-time, or space,
or anything else—must be completely amorphous; that is, can possess no
inherent metrics or structure of its own, for a void with a structure
is not a void at all.[113]


Furthermore, even if it were admitted that space was not really empty,

but was filled with an ether that conferred a structure upon it and was
responsible for its dynamical properties, it would appear incredible
that this structure should be other than homogeneous. Hence, it was
logical to assume that the local variations in curvature accompanying
the presence of lumps of matter should be attributed to the presence
of this matter itself, so that matter would again be a cause, and
not a symptom. The simplest way to escape the dual conception which
we mentioned previously was, then, to admit that Riemann was in the
right, and that the metrics or metrical field of the space-time of the
universe was conditioned in its totality, and not merely modified by
the presence of matter. At any rate, if these views are adhered to,
it is easy to see that the cylindrical universe is the only one that
can be accepted, since it is the only one in which the metrics of
space-time may be conditioned solely by the action of matter.[114]


It is interesting to note that it is within the realm of possibility
that Riemann’s views may be finally submitted to a test. For suppose
that astronomical observations should succeed in proving that de
Sitter’s universe or the quasi-Euclidean infinite universe was the
correct one: Riemann’s ideas would then have to be abandoned. We should
have to conclude that a metrics was inherent in an empty continuous
extension; though, of course, we might always avoid this attitude,
either by assuming that space was atomic or, again, by identifying the
metrical field with some subtle ether floating in space.


We now come to still another important consideration which drove
Einstein towards the cylindrical universe. We are referring to the
relativity of inertia. In the general theory of relativity,
prior to Einstein’s investigations on the form of the universe, there
existed a number of most displeasing dualities. In the first place, the
theory of relativity had succeeded in proving that velocity through
space was relative, but it had failed to extend this relativity to
accelerated motion. After having made a promising start towards the
relativisation of all motion, it had abandoned the attempt halfway
before the final goal was reached.


Then again, a similar duality existed in the case of mass and weight.
Here we have weight depending on the distribution of surrounding
matter, so that weight would be inexistent in a world containing but
one body. On the other hand, here was the inertial mass of the body
which would subsist even in an otherwise empty world. Thus, were we
to be transported far from all large masses, we could hold a ton of
bricks above our heads without the slightest effort, since the bricks
would have no weight. And yet, when we tried to push these same bricks
aside, we should encounter the same inertial resistance as on earth.
What rendered this duality particularly displeasing was the fact that
the general theory had proved that even mass was influenced in a minute
degree by the proximity of matter, so that the mass of a body appeared
to be due in part to the distribution of surrounding matter and in part
to the body itself. In other words, there existed a partial relativity

of inertia, just as there existed a partial relativity of motion.


These problems were intimately connected with that other type of
duality we mentioned in the preceding pages. There again we saw that
space-time was modified by the presence of matter, and yet that even in
the absence of matter it maintained a structure. Of course, all these
dualities are not equally objectionable to all thinkers; but it must
be admitted that for those who crave unity in nature, every effort to
remove them will be welcomed.


Einstein had attempted to render radical this relativity of inertia and
motion even before discovering his cylindrical universe. He had solved
the problem by postulating certain boundary conditions on the fringe
of the nucleus of stars in infinite space. Thanks to these boundary
conditions, the mass of a body would vanish at infinity, far from
matter. But these solutions were abandoned because they appeared to
conflict with the low star-velocities. With the cylindrical universe,
however, all these difficulties were overcome, and for this reason,
among others, it satisfies a natural philosophical craving. Inasmuch
as all these considerations present an intimate connection with Mach’s
mechanics, we will discuss the significance of Mach’s ideas at some
length.


As is well known, on account of the existence of centrifugal force, of
the inertial frame and of the rectilinear paths followed by free bodies
according to the law of inertia, Newton felt himself compelled to
postulate the existence of absolute space. Einstein summarises Newton’s
attitude in the following lines:


“In order to be able to look upon the rotation of the system, at least
formally, as something real, Newton objectivises space.... What is
essential is merely that besides observable objects, another thing,
which is not perceptible, must be looked upon as real, to enable
acceleration or rotation to be looked upon as something real.”


The opposite stand was taken by Mach, who endeavoured to account for
the dynamical manifestations of acceleration and rotation without
appealing to that suprasensible entity, “absolute space.” Instead of
holding, then, that centrifugal force was generated by a rotation in
absolute space, he urged that we should attribute it to a rotation
with respect to the material universe as a whole. Inasmuch as the
vastest agglomeration of cosmic matter is given by the totality of
the star-masses, it would follow that the dynamical effects would be
generated by the rotation of an object relatively to the stars, or,
what amounts to the same thing, by a rotation of the stars relatively
to the object. In fact, these two different alternatives would
represent but a difference in phraseology, since with absolute space
banished, apart from stars and matter generally, there would exist no
other terms of comparison.


To this rotation relatively to the star-masses would be due the
protuberance of the equator, the splashing of water in Newton’s
bucket, the bursting of a rapidly revolving flywheel, etc. In short,
all those dynamical effects which in Newton’s opinion betrayed
rotation in absolute space, are held by Mach to betray a rotation

relative to the star-masses of the universe. Now, it should be
apparent that Mach’s relativity of rotation entails more than a mere
kinematical representation. As he is careful to specify, this active
rôle of the stars is due not to the accidental circumstance that
they happen to be visible, but to universal gravitational actions
which would be generated between matter and matter when a state of
relative acceleration or rotation was present. In this way, forces
of inertia and centrifugal force are no longer to be attributed to
the intrinsic structure of absolute space; they now become akin to
gravitational forces. Were the stars invisible, no change in the
dynamical manifestations would be observed, but if their masses were
to be annihilated, if the stars ceased to exist (not merely ceased to
shine), all the telltale dynamical effects would disappear; a flywheel
would not burst, water would not splash, and so on. In much the same
way, the elliptical orbits of the planets are due to the gravitational
attraction of the sun’s mass; not, of course, to the accidental
circumstance that the sun happens to be luminous rather than dark.


From these conclusions further important consequences follow; in
particular, we must assume that the inertial mass of a body must be
generated solely by the mutual actions existing between this body and
the other bodies of the universe. We can understand the reason for this
statement when we realise that were all the stars to be annihilated,
all inertial forces would disappear; but it is precisely the existence
of inertial force which is responsible for the effort required to set
a body in motion or to arrest it when started. For this reason the
disappearance of inertial forces would automatically entail that of
inertia or mass. We may note the contrast with Newton’s views, for
in classical science the inertial forces arose from the structure of
absolute space itself, and mass was regarded as an intrinsic property
of matter. In the present case, mass joins weight in being a relative;
for just as a body has no weight in the absence of other bodies, so now
we see that, according to Mach, it would also present no inertial mass
if situated all alone in an otherwise empty world.


When we consider Mach’s mechanics, we see that its net result has been
to identify Newton’s absolute space with the space defined by the
stars; absolute space has become materialised, so to speak. We may
obtain a more concrete representation of the new ideas by imagining a
crisscross of threads extending between each individual star and all
the others. Rotation, which develops dynamical effects, is, then, the
rotation of an object with respect to this network of threads; and it
is obviously a matter of indifference to suppose that the object is
rotating among the threads and stars, or that threads and stars are
rotating around the object. Thus the inertial frame is any frame in
which the threads appear to be non-rotating.


Mach’s mechanics might seem to draw too much on our credulity. We can
grant that the sun exerts a gravitational effect on the earth, but
to assume that the bursting of a flywheel is due to the presence of
the stellar universe would appear to be stretching matters too far.
Nevertheless, it should be remembered that Newton’s introduction

of that suprasensible entity, absolute space, was also extremely
distasteful to a number of thinkers, so that it is a question of
choosing the lesser of two evils.


These ideas were upheld by Mach for a number of years; and although
they can lay claim to no special originality, they are always referred
to under his name. Mach’s stand has been so consistently misrepresented
by philosophers that we feel justified in warning the reader by
mentioning some of the erroneous assertions that have been made with
respect to it.


Two centuries ago, Berkeley had defended views which present a certain
superficial similarity to those of Mach. He argued that if there were
no stars, no permanent points of comparison in the heavens, we could
not even imagine the earth’s rotation, hence this rotation would be
deprived of all meaning. To this argument the Newtonian would reply
that it was, after all, not impossible to imagine absolute rotation as
a rotation in a rigid jelly-like substance called space. Furthermore,
he would add that it was the dynamical facts, the appearance of
unsymmetrically distributed forces, that seemed to confirm the absolute
nature of rotation. Absolute rotation was, then, totally irrelevant to
our perception of luminous reference points in the heavens, or even
to our ability to imagine their existence. So far as the Newtonian
was concerned, even were the stars to be annihilated entirely, it
would still be quite easy to determine whether or not the earth was in
rotation. A number of experiments, such as that of Foucault’s pendulum,
the gyroscope, and, more generally, the presence of centrifugal forces
on the earth’s surface, would demonstrate the existence of this
absolute motion. As against these arguments, Berkeley’s stand offers
no reply. Only when, with Mach, we maintain that were the stars to be
annihilated, these telltale effects would also disappear, only when we
conceive of the stars not merely in a visual capacity or as a support
for the imagination, but as producing causal gravitational influences,
can an argument be presented against Newton’s absolute space. In short,
according to Mach, it would be the gravitational action of the totality
of the material universe, including the stars, whether visible or dark,
the nebulæ, our sun, the planets and moons, that were responsible for
centrifugal force.


Before we proceed farther, a number of objections must be discussed.
It might be claimed that whereas the earth could be conceived of as
rotating among the stars, it would be quite impossible to consider
the stars as rotating round the earth, since in this case centrifugal
force would cause the stars to fly apart to infinity. A criticism of
this sort arises from a confusion between the Newtonian attitude and
the new one. With Newton’s ideas the argument would hold, for the stars
would indeed be describing gigantic circles in absolute space. But in
the present instance the space of the stars themselves has usurped
the position of absolute space, since it is in this star-conditioned
space that circular motion generates centrifugal forces. And in their
own space the stars are obviously at rest whether or not we regard
them as rotating, together with their space, around the earth. Hence,
centrifugal force does not arise on the stars, though it will be

felt on the earth’s surface. An equivalent way of explaining the same
point would be to say: The stars as rotating round the earth are not
subjected to centrifugal force, for they are rotating with respect to
nothing; the mass of the earth being insignificant in comparison with
the totality of the star-masses.


There exists also another type of objection which is based on causality
and on our consciousness of effort. For example, we may claim that
when, through an act of our will, we spin round on our heel, we
know perfectly well that it is our body that is rotating among the
stars, and not the stars that are rotating around us. In support of
our claim, we should point out that no feeble efforts of ours could
ever have started the stars and nebulæ rotating backwards. Curiously
enough, where objections of this sort are made, the critic is often
fully prepared to accept the relativity of velocity. But, as Einstein
points out, arguments of a very similar sort might also be advanced
against this simpler type of relative motion. For instance, would not
the engineer claim that it must be his train that is moving, and not
the earth that is gliding backwards? Could he not also support his
contention by pointing out that when he stops feeding the furnace, all
motion eventually ceases?


Possibly a more lucid illustration of the relativity of velocity
would be afforded by considering the case of a bird in flight. The
bird may be conscious of its efforts and realise that when it ceases
to beat its wings, its motion through the atmosphere is arrested. It
would therefore be entitled to assert that its velocity was maintained
through its own efforts, hence was of its own making.


But it is obvious that this velocity created by the bird would be,
not absolute velocity through space, but velocity through or relative
to the atmosphere. Knowing nothing of the pre-existing velocity of
the atmosphere through space, the bird could know nothing of its own
absolute motion; and this is all that the principle of the relativity
of velocity asserts. And so, were the velocity of the atmosphere
through space equal and opposite to the relative velocity of the bird
through the atmosphere, the bird’s efforts would result in maintaining
its body at absolute rest. Hence, the awareness of effort is no
criterion of the existence of absolute motion; relative motion alone is
involved.


Exactly the same arguments can be extended to the relativity of
rotation, except that in this case we are confronted with the peculiar
difficulty arising from the existence of centrifugal force. Mach’s
stand obviates this difficulty by introducing a definite physical
assumption. Our purpose is, of course, not to justify Mach’s mechanics
(for this can be done only through precise experiment, not by a general
line of talk), but merely to show that it does not lead to absurdities
when the argument based on causality is applied.


Let us consider, then, what is implied in the statement: “We know that
it is we who are rotating on our heel among the stars; not the
stars that are rotating around us.” When this distinction is made, the
critic is assuming tacitly that there exists a super-space acting as an
absolute frame of reference with respect to which rotation acquires

a meaning; for in the absence of an assumption of this sort, the
distinction he wishes to defend would, of course, be meaningless.


The statement, then, reduces to the following: “We know that the
material universe is non-rotating in the super-space; hence, when we
start rotating on our heel with respect to the stars, we know that
it is we who are rotating in the super-space, the stars remaining
at rest.” This was essentially Newton’s stand when he identified
the super-space with absolute space. But Newton at least had given
physical significance to this stand by ascribing centrifugal force to
a rotation in this absolute space. When, however, we follow Mach and
reject Newton’s physical assumption, the absolute space is deprived
of all possibility of manifesting itself physically. And so the
critic’s assertion loses all physical significance, since henceforth
the only space in which rotation can manifest itself physically is the
star-space.


The metaphysician might argue, however, that Mach’s interpretation of
centrifugal force does not obviate the existence of a super-space,
but merely denies us the ability to establish its existence by
physical means. Let us grant this contention and see where it leads
us. When we assert that it is we who are rotating on our heel, we are
assuming implicitly that prior to our rotation the universe and our
body were non-rotating in the super-space. Were we to cast any doubt
on the correctness of this initial assumption, no conclusions could
be drawn. For suppose that initially the universe, together with our
body, was rotating clockwise in the super-space; then, as a result of
an anti-clockwise rotation on our heel, it would now be we who were
non-rotating in the super-space, while the universe of stars persisted
in its state of rotation. Hence, the stars would be rotating around us.
So we see that according to our initial assumptions as to the state
of rotation of our universe in the super-space, we could derive any
conclusions we pleased. The problem reduces, then, to determining the
precise rotationary motion of our universe in the super-space. Now,
inasmuch as this rotation is precluded from manifesting itself in any
physical way, since centrifugal force has already been accounted for,
the problem can of course never be solved by the physicist. As for
the metaphysician, unless he can furnish us with some supra-physical
means of determining the true situation, he also will be incapable of
supplying us with the required information. It follows that if Mach’s
premises are accepted, the entire super-space conception becomes
meaningless, for any assumption whatever can be made in regard to it
with impunity.


In short, Mach’s views do not conflict with causality; for we may
always say that our efforts have been exerted on our body and not on
the stars. But we must recognise that our efforts have set our body in
rotation with respect to the star-space, and not with respect to a
space which transcends the existence of the material universe.


Now, although a number of thinkers were in sympathy with Mach’s
attitude, owing to their belief that all motion in a perfectly
empty universe must be meaningless, yet the physical difficulties

confronting his idea were so great that classical science had never
taken it seriously. Euler had discarded the possibility of any such
stellar action, and even quite recently Planck had criticised Mach
for his stand. It was not that in theory a possible stellar action
should be excluded on general principles; for physics had made us
acquainted with foreign actions of a similar nature, the best-known
of which would be illustrated by the gravitational action of the sun
on the planets. Then again, when we wish to cut through an apparently
empty space with a knife, we may experience considerable difficulty
if the space happens to be permeated by a powerful magnetic field. We
cannot, therefore, exclude the possibility that the stars might in
some way generate a field endowing space with a structure which we
had mistakenly taken to represent the absolute intrinsic structure of
space. Science, however, cannot content herself with vague qualitative
analogies; and before a mechanics such as Mach’s could be entertained,
it would be necessary for it to succeed in accounting for the existence
of centrifugal and Coriolis forces on a body in rotation with respect
to the stars. This accounting would have to be made, not merely in
some vague qualitative way, but quantitatively also, to a high order of
precision. Such, indeed, are the requirements that all hypotheses
in physics must satisfy. Now, all that Mach had done had been to
postulate a possible stellar influence; he had not even attempted to
justify his ideas rigorously. Indeed, even had he investigated the
problem more deeply, he would have failed; for in his day space-time
was unknown.


Furthermore, Mach’s ideas presented insuperable difficulties. Newton’s
law of gravitation stated that the attractions exerted between bodies
depended solely on their masses and mutual distances; the conditions
of relative motion or rest of the bodies being considered irrelevant.
But if Mach’s ideas are accepted, we must assume that in addition to
the ordinary Newtonian attraction, a supplementary field of attraction,
hitherto unsuspected, should arise if the bodies were in a state of
relative acceleration, as in the case of the stars rotating round the
earth, or the planets moving round the sun.[115] Mach’s mechanics would
entail, therefore, the downfall of the Newtonian law of gravitation.
Now, when Mach suggested his mechanics, Newton’s law appeared to be
justified indirectly by the accuracy with which it had permitted
mathematicians to foresee numerous astronomical occurrences (with the
possible exception of Mercury’s motion and certain lunar disturbances).
In addition, Newton’s inverse-square law of the attraction of matter
on matter had been verified by direct measurements in the laboratory,
in what is known as Cavendish’s experiment. So far as experiment could
detect, there was no trace of an increase in the mass of a body

when other bodies were placed in its proximity; hence, on this point
it appeared impossible to detect the variations in mass demanded by
Mach’s mechanics. As for attempting Cavendish’s experiment with masses
mutually accelerated, technical difficulties rendered its success
impossible. For all these reasons the majority of scientists viewed
Mach’s relativity of rotation with the utmost suspicion.


But when we come to consider the theory of relativity, the situation
changes. In the first place, Newton’s law of gravitation is seen to
be only approximate, and the relative motion existing between bodies
is found to modify their apparent mutual attractions. This in itself
is, of course, insufficient to substantiate Mach’s mechanics, but when
we examine the implications necessitated by Einstein’s cylindrical
universe, we find that Mach’s views may turn out to be correct after
all.[116] However, before discussing this aspect of Einstein’s theory,
we must mention that even in classical science the relativity of
accelerated and rotationary motion could be accepted in a restricted
sense for mechanical phenomena.


Consider, for instance, the earth rotating among the stars. The
space defined by a frame attached to the earth would be permeated
with a field of centrifugal and Coriolis forces. Now we were always
perfectly at liberty to regard the earth as non-rotating, and the
stars as rotating round it, provided we retained the existence of this
special field of force. If we consider this field to extend beyond
the stars, calculation shows that under the action of these forces
the stars would undoubtedly circle round the earth as they appear
to do. To this extent, therefore, the relativity of rotation, when
restricted to mechanical phenomena, could be defended in classical
science. The general principle of relativity goes one step farther by
permitting us to extend this relativity of rotation to all manner of
phenomena—optical and electromagnetic as well as mechanical. But, even
so, the relativity of rotation is not radical, for we have rendered
it possible only by retaining this curious field of force surrounding
the earth; and the query naturally arises: Whence does this field
originate? Newton replied: “From rotation in absolute space.” Einstein
would have replied: “From rotation in absolute space-time.” In other
words, the hypothesis of an absolute extension possessing dynamical
properties per se was adhered to both by classical science and
by the theory of relativity prior to Einstein’s speculations on the

form of the universe. Such being the case, to regard the earth as
non-rotating was a mere mathematical fiction.


Now, when Einstein formulated his postulate of equivalence, the
classical conception of centrifugal force as arising from a rotation
in absolute space gave rise to serious difficulties. The postulate of
equivalence asserted that forces of inertia and of gravitation were of
the same nature; but then it followed that they should be traceable
to one same origin. But gravitation, as we know, is due to matter;
hence in a world totally devoid of matter there could be no such thing
as gravitation. But then, according to the inferences deduced from
the postulate of equivalence, neither should there be any such things
as forces of inertia, centrifugal forces and inertial mass. It would
follow that if some tiny test-body were made to rotate in an otherwise
empty universe, no trace of centrifugal force would be observed at its
equator. Thus we see how the postulate of equivalence, which is deduced
from the well-established identity of the two types of masses and which
constitutes the starting point of Einstein’s theory of gravitation,
must inevitably tend to lead us towards views similar to those of Mach.


The equivalence postulate also appears to point to the cylindrical
universe; for if we accept the hypothesis of an infinite
quasi-Euclidean universe with its nucleus of stars, we shall have
to assume that the rim of a rotating disk of sufficiently large
proportions could be conceived of as extending well beyond the farthest
stars of the nucleus. Yet, the larger the disk and the more remote
the rim from the stars, the greater would become the centrifugal
force acting on the rim. It would appear as though the source of
the centrifugal force would have to be traced to the empty regions
at infinity, so that this force could never be attributable to the
star-matter concentrated in the nucleus. In other words, gravitation
would subsist only in and around the nucleus, whereas forces of inertia
would subsist everywhere and have their source at infinity. Not only
would such a conception be exceedingly unsatisfying by removing to
infinity the causes of forces which we observe at finite distances,
but it would also appear to be in utter conflict with the inferences
deduced from the postulate of equivalence, establishing, as it would, a
duality between the nature of inertia and gravitation.


There seems to be only one way to remove these difficulties; namely, to
accept the hypothesis of Einstein’s cylindrical universe conditioned
entirely by matter. In this self-contained universe the disk, if
extended indefinitely, would finally curl round on itself, enveloping
the universe; its rim would never extend to spatial infinity.
Calculation would show that as the disk was gradually extended, the
centrifugal force on the rim would at first grow, then decrease, and
finally vanish again. The displeasing necessity of having the cause
of centrifugal force removed to infinity would thus be obviated;
centrifugal force, just like gravitation, would be traceable to the
spatial structure of the universe and hence to the presence of matter
at finite distances.





It is to be noted that these views lead us to Einstein’s cylindrical
universe, and not to de Sitter’s. For de Sitter’s universe, contrary
to Einstein’s, can subsist devoid of all matter; centrifugal force and
inertia would be present in it, even in the complete absence of matter
and gravitation. It would thus fail to satisfy the requirements deduced
from the postulate of equivalence; since once again, as in the infinite
universe, centrifugal force and inertia generally would appear as
unconnected with matter, hence with gravitation.


All the arguments discussed in the preceding paragraphs tend to prove
that Einstein’s theory was leading us insensibly towards Mach’s
mechanics and the cylindrical form of the universe; these two, though
apparently disconnected, proving themselves to be intimately related.
But it would be a grave mistake to assume that Einstein had set his
mind a priori on justifying Mach’s views. Any one who has
followed the arguments outlined will perceive that Einstein is not
forcing nature into some preconceived mould. But, even at this stage,
we have not discussed the weightier reasons which finally compelled him
to feel sympathetic towards Mach’s mechanics. We shall now remedy this
omission.


Einstein’s gravitational equations without the  term,
i.e., the equations applying to the infinite universe, namely
, had received brilliant support in having enabled him
to account for the motion of the planet Mercury, and to anticipate
such unsuspected phenomena as the double bending of a ray of light
and the Einstein shift-effect. It was only natural, therefore, to
endeavour to extract from these equations all the remaining treasures
they contained. But here integrations of an extremely difficult nature
awaited mathematicians.


When the equations were treated in a very approximate way, they
yielded Newton’s law of gravitation and the Einstein shift. When the
approximation was increased, they yielded the double bending of a
ray of light. When the approximation was increased still further,
we obtained the precessional advance of Mercury’s perihelion. When
treated in a more general way, they enabled Einstein to predict that
gravitation would be propagated with the speed of light. Thirring
then attacked the equations, carrying his calculations to a still
higher degree of approximation, and at last, the effects necessitated
by Mach’s mechanics appeared. Thirring found that the rotation of a
central body would modify the nature of its attraction on the planets
or satellites circumscribing it. (These anticipations would appear to
be susceptible of astronomical verification in the case of Jupiter and
one of its satellites.) But, most important of all, he discovered that
Mach’s belief in the gravitational influence of the stars rotating
round a fixed body was finally justified. In particular, the equations
proved that even in the hypothesis of an infinite universe, a rotation
of matter would produce around a test-body a field of force disposed
in exactly the same peculiar way as are the centrifugal and Coriolis
forces in the space attached to a body in rotation. Furthermore, the
mass of a test-body would be affected by the proximity of surrounding

matter. This last consequence, however, can be obtained without
resorting to difficult calculations.[117]


Now the gravitational equations which have yielded these interesting
results have most certainly not been doctored up for the sole purpose
of justifying Mach’s ideas. As explained in previous chapters, they
were discovered by Einstein as a result of a totally different
train of thought, long before the relativity of rotation was even
considered. Hence, it cannot be denied that by vindicating, as they
did, the correctness of Mach’s ideas, a fact of the utmost importance
had been established. Mach’s mechanics received at last that rational
justification which until then had been lacking; and the first inkling
of a possible physical connection between the origin of inertia and
gravitation was obtained. However, it is important to note that
although from a qualitative standpoint the agreement was perfect,
yet when we view the problem quantitatively, calculation shows that
the increase of mass and the centrifugal forces generated by the
rotation of the stars would produce but an infinitesimal fraction of
the magnitudes observed in practice. In order to obtain magnitudes
corresponding with observation, it would be necessary to assume that
the stars were many trillion times more numerous than we believed them
to be, and this supposition would lead us into other difficulties.


The reason for this discrepancy is not hard to discover. Centrifugal
force, as we know, is produced when a body is torn away from the
space-time geodesic which the metrical field would compel it to follow.
To say, therefore, that a rotation of the firmament round a test-body
would affect the field of force surrounding the body is equivalent to
stating that a rotation of the stars would be capable of affecting
the distribution of the metrical field round the body and of dragging
the geodesics along. There is no reason to be surprised at some such
effect taking place, seeing that the phenomenon of gravitation connotes
that matter, whether at rest or in motion, must affect the curvature
of space-time, hence the lay of the metrical field. But, on the other
hand, until Einstein had discovered the cylindrical universe, the
action of matter could only modify the lay of a pre-existing metrical
field, and could not create such a field out of nothing. Space-time
of itself was assumed to be flat, and matter could only endow it with
a certain degree of curvature. The result was that the major part of
centrifugal force was due to the intrinsic texture of flat space-time,
and only an infinitesimal portion of this force could be attributed

to the additional action of the stars. Centrifugal force thus still
appeared, in the main at least, to betray absolute rotation in empty,
absolute space-time.


None the less, an important point had been established. Mach’s ideas,
though still refuted quantitatively, yet seemed to be acceptable
qualitatively, whereas in classical science they had appeared utterly
impossible from every standpoint. The thin end of the wedge had been
driven in. From then on, it became permissible to assume that with an
increase in our understanding of the universe the complete relativity
of all motion would be established, not only qualitatively, but also
quantitatively. In other words, not merely an infinitesimal portion of
centrifugal force and of mass, but their totality, might be accounted
for by appealing to the interaction of matter and matter. It is easy to
understand how this achievement would be realised.


All we should have to do would be to assume that the totality of the
metrical field, and not merely a portion of it, was created by the
distribution of matter throughout the universe. As we have seen, this
condition is precisely the one realised in the cylindrical universe; so
that with Einstein’s universe, Mach’s ideas may be vindicated and the
bugaboo of absolute rotation dispelled.[118]


Both de Sitter’s universe and the quasi-Euclidean one would be
incompatible with Mach’s mechanics, since in either universe the
metrical field and the geodesics of space-time would exist in the
complete absence of matter. This means that in the empty world of de
Sitter, and far beyond the nucleus of stars in the quasi-Euclidean
universe, bodies would be submitted to forces of inertia when torn
away from their natural geodesical world lines. In either case the
space-time void would appear to be endowed with dynamical properties
even in the absence of all matter.


The following passage quoted from Einstein’s writings expresses his
views on the subject:


“The idea that Mach expressed, that inertia depends upon the mutual
action of bodies, is contained to a first approximation in the
equations of the theory of relativity. It follows from these equations
that inertia depends, at least in part, upon mutual actions between
masses. As it is an unsatisfactory assumption to make that inertia
depends in part upon mutual actions and in part upon an independent
property of space, Mach’s idea gains in probability. But this idea of
Mach’s corresponds only to a finite universe bounded in space, and
not to a quasi-Euclidean infinite universe. From the standpoint of
epistemology it is more satisfying to have the mechanical properties of
space completely determined by matter, and this is the case only in a
space-bounded universe.”





Here, a number of objections may be urged. It might be claimed that if
we assumed the earth to be non-rotating, we should have to attribute
velocities greater than light to the stars. The answer to this
objection would appear to be similar to that given when the centrifugal
force acting on the rotating stars was discussed. We saw that the
stars, as a whole, may be regarded as rotating round the earth only
in a purely formal sense, for it is the agglomeration of stars which
creates the metrical field, hence which creates space; the earth is but
an incident in this star-created universe. Loosely speaking, we may say
that the stars are always at rest in the universal space which they
themselves have created; and this holds regardless of whether or not we
consider this space as rotating in some fictitious outer space.


But there is another objection which, to the writer at any rate,
appears to have some weight. Suppose all the stars were to be
annihilated at a given instant of our earth frame. The gravitational
disturbance produced by this annihilation would require a number of
years to reach us, since gravitational disturbances travel with the
speed of light. Hence, the metrical field, or space-time structure,
round the earth would persist for a considerable time. For a number of
years, therefore, centrifugal force would still continue to manifest
itself. In view of this fact, we should take into consideration the
present condition of the metrical field rather than the present
positions of the stars. We are thus led to a more dualistic outlook,
that of both field and matter. Such appears to be Weyl’s attitude when
he writes:


“The falling over of glasses in a dining car that is passing round
a sharp curve and the bursting of a flywheel in rapid rotation, are
not, according to the view just expressed, effects of ‘an absolute
rotation’ as Newton would state, but whose existence we deny; they are
effects of the metrical field. In so far as the state of the guiding
field does not persist, and the present one has emerged from the past
ones under the influence of the masses existing in the world, namely,
the fixed stars, the phenomena cited above are partly an effect of the
fixed stars, relative to which the rotation takes place.... We
say ‘partly’ because the distribution of matter in the world does not
define the ‘guiding field’ uniquely, for both are at one moment
independent of one another and accidental (analogously to charge and
electric field).”


At the present time all these questions relating to the shape of the
universe still remain highly speculative; and we need not be surprised
to find the most component authorities, such as Einstein, Weyl,
Eddington, Silberstein and Thirring, manifesting different tendencies
according to their respective temperaments. Eddington manifests a
preference for de Sitter’s universe. If this universe be adopted,
Mach’s ideas are refuted; for centrifugal forces would be generated in
empty space-time devoid of all matter, and the stars would have very
little to do with them. De Sitter, of course, defends his own model of
the universe and reproaches Einstein with having resuscitated a species
of Newtonian absolute space by materialising the inertial frame with
respect to which rotation and acceleration are measured. There is not

the slightest doubt that the cylindrical universe accomplishes this
result by linking the existence of the inertial frame to a permanent
star distribution. But, in the eyes of many, this is one of its
greatest advantages, since it leads to the physical relativity of all
motion. After all, we cannot deny the existence of centrifugal force
and forces of inertia; and surely it is more satisfactory to account
for these forces in terms of the acceleration of matter with respect
to matter, than in terms of acceleration with respect to that vacuum
which we call empty space-time. But these divergencies of opinion arise
from mere matters of sentiment, and it is important to note that they
concern chiefly the loftiest superstructures of the theory; they do not
invalidate in any way its essence and main achievements.


Of course, it would be of the utmost interest to decide the question of
the form of the universe by appealing to astronomical observation, and
it is highly probable that in a relatively short time the problem will
be settled.


Recapitulating, we have three possible hypotheses to consider:


1. An infinite universe of space with a nucleus of star-matter, in
which Mach’s mechanics would be impossible. We should then have to
consider the void as possessing dynamical properties and a structure,
independently of the presence of matter.


2. De Sitter’s universe, which would also be contrary to Mach’s ideas
and would present the same unsatisfactory features as the first
hypothesis. Furthermore, it would be unstable.


3. Finally, Einstein’s cylindrical universe, which would be stable and
whence all the displeasing features mentioned would be removed.


Could we but annihilate all the stars, we should have a means of
solving the problem; for in Einstein’s universe the result would be the
total disappearance of mass and centrifugal force. In fact, complete
chaos would result; for the metrical field of space-time would have
vanished, so that light rays and free bodies would no longer know how
to move. But as an annihilation of the stars is beyond the range of
possibility, we must have recourse to other methods. So we are led to
examine the question of stability. Is it true that the stars are in
a state of statistical equilibrium? Is it true that their velocities
are always small compared to that of light? Eddington casts some doubt
on this stability by remarking that the spiral nebulæ appear to be
animated with enormous velocities. This fact, coupled with the apparent
reddening of their light, leads him to manifest a preference for de
Sitter’s universe. But there exists still another method of settling
the question.


We remember that Einstein’s original law of gravitation in the case of
the infinite universe differed in certain respects from Newton’s, and
that these differences were important enough to be detected within the
limits of the solar system through their effects upon Mercury’s motion
and the double bending of a ray of starlight. But if now we assume
the universe to be finite, and hence include the 
term in the gravitational equations, calculation shows that a further
modification will ensue. It will be as though all space round a star

were filled with negative or repulsive matter of very low density, of
the same order as the curvature of the universe. The influence of this
factitious negative mass distribution would be to decrease the normal
value of the star’s attraction; the decrease, owing to the cumulative
effect produced by the distribution, becoming more and more apparent
as we considered points farther removed from the star. Needless to
say, this additional modification in the law of gravitation would be
incredibly small, owing to the minuteness of the world-curvature and
hence of the density of the negative mass distribution. It would be
idle to hope to detect it unless we studied gravitational phenomena
occurring over tremendous astronomical extensions. But the effect might
be observed in the following way:


Consider, for instance, gravitating masses such as the sun and its
planets. We know that the reason the solar system does not collapse
and all the planets fall on to the sun is because the planets are in
motion (as referred to an inertial frame attached to the sun). There
exists a definite mathematical relationship between the velocity of a
planet along a definite orbit and the force of gravitation to which it
must be subjected by the sun. The greater the velocity, the greater
must be the sun’s attraction in order to maintain the planet in its
orbit. Now the globular clusters of stars and the Milky Way constitute
precisely such permanent gravitating systems of enormous extent. The
individual stars attract one another, and their mean velocities allow
us to deduce the resultant gravitational forces to which they must
be subjected. If, therefore, on applying Einstein’s original law of
gravitation (that corresponding to the infinite universe),[119] we
found that the mean velocities of the stars in the Milky Way were
smaller than would be expected, we could consider it proved that the
law of attraction must fall off more rapidly than Einstein’s original
law indicated. This discrepancy would then justify our belief in the
finiteness of the universe. The value of , the cause of this
discrepancy, could be ascertained, and with it, of course, the value
of the universal curvature. Knowing the curvature, we could determine
therefrom the size of the universe, the average density of matter, and
finally the total mass of the universe. Einstein is of the opinion that
astronomical observations of this type will eventually settle this
question.


We have exhausted the principal points which prompted Einstein to
believe in the finiteness of the universe, but there are yet others
connected with the possibility of reducing matter to electricity and
gravitation. We shall touch on this additional aspect of the question
in a later chapter.[120] For the present, we may pass to a totally
different type of problem, also connected with the finiteness of the

universe. We refer to the standard of gauge.


As Eddington points out, when our equations prove to us that the
universe of space must be spherical and have a constant curvature, what
else can it mean but that if we measured the radius of curvature with a
material rod, we should obtain the same magnitude in every direction?
But then it follows that the radius of the universe in any direction
constitutes the gauge of length which nature imposes upon us; and that
all bodies in equilibrium adjust themselves automatically so as
to maintain some definite fraction of the length of this radius, in
whatever direction they be placed. This view suggests that for material
bodies to be on a definite scale of size, there must be a curvature
of the world. Eddington also suggests that inasmuch as the finite
universe is open in a time-like direction, whereas it is limited in
space, a possible explanation may be given of the apparent permanency
of existence of certain entities such as electrons and atoms, which are
limited in spatial extension but are everlasting in time. Weyl’s theory
throws further light on these rather hypothetical problems.


The finite universe introduces us to the difficult conception of a
spherical space. We have already discussed this type of space in a
previous chapter; but in view of its additional importance, now that
the real universe is suspected of being one, it may be worth while to
examine the problem afresh.


Let us first consider the two-dimensional analogy. If, on the
two-dimensional surface of a sphere, we perform measurements with tiny
rigid Euclidean rods, we obtain the numerical results, not of Euclid’s
but of Riemann’s two-dimensional geometry. Accordingly, we say that the
geometry of a spherical surface is Riemannian, and that a Riemann space
is curved and finite. But the word “curved” immediately evokes the idea
of a third dimension along which the surface or space is curved. In the
present two-dimensional case we have no difficulty in visualising this
third dimension, because the space of our actual experience happens
to be three-dimensional. And so we note that the spherical surface
possesses an outside and an inside, and that if we consider solely
the points on the surface, we are excluding from our investigation
an indefinite number of points of space both inside and outside the

sphere. This procedure is unfortunate; for when we generalise our
previous two-dimensional illustration to a three-dimensional spherical
space, we are inclined to reason by analogy and to conceive, or
endeavour to conceive, of a four-dimensional Euclidean space in which
our three-dimensional Euclidean universe must be embedded. The result
is that we think of points of space outside our universe, as though our
universe did not embody the whole of space.


In the present case this attitude would be entirely erroneous, but
the fault lies with the peculiar type of two-dimensional analogy we
chose to present. In order to eliminate this error, let us proceed as
explained in a previous chapter, and let us suppose that the sphere
rests at its south pole on an infinite Euclidean plane, while a point
of light is situated at its north pole. If the sphere is translucent,
our tiny rods displaced on the spherical surface will cast their
shadows on the plane; and, of course, if we effect measurements on the
plane by means of these shadows of our rods, we shall obtain exactly
the same metrical relationships on the plane as we obtained formerly
on the spherical surface. In particular, if a hundred tiny rods lying
along a meridian span the distance from the south to the north pole on
our sphere, the hundred shadows of these tiny rods will extend across
the plane to infinity. Likewise, just as a finite number of postage
stamps would cover the sphere’s surface, so now a finite number of
shadows, the shadows of these stamps, would cover the entire infinite
extent of the plane. Thus we see that when measured with our shadows
the plane will be finite and its geometry Riemannian, whereas it would
have been infinite and Euclidean had we effected our measurements by
displacing ordinary foot-rules over its surface.


The advantage of presenting the problem in this alternative manner is
that in the present case the introduction of a third dimension is no
longer necessary in order to explain curvature, or non-Euclideanism.
We realise that regardless of whether the space of the plane is to
be considered as finite and Riemannian or as infinite and Euclidean,
exactly the same points of space are included in either case. This
two-dimensional illustration can, of course, be extended to three
dimensions. By following the same line of reasoning, we will say that
the universe of three-dimensional space is infinite, if by placing
side by side, in rows, columns and superimposed layers, an indefinite
number of congruent cubes, we find it possible to go on piling them up
for ever and ever. On the other hand, we will say that the universe
of space is finite if this process cannot be continued indefinitely,
that is, if after a finite number of cubes have been superimposed,
further progress is impossible. This last case is, of course, similar
to the one discussed previously when we found it impossible to place an
indefinite number of shadows of our postage stamps over the plane.


From these examples it is apparent that the finiteness or infiniteness
of our space is contingent on the geometrical behaviour of the cubes

which we regard as congruent or equal. From a purely mathematical
standpoint, therefore, the problem of the finiteness of the universe
can possess no absolute significance, since congruence, or equality
of size, is incapable of being defined in any absolute way. Yet from
the standpoint of the physicist the problem assumes a very definite
significance, for whereas one unique rational definition of
congruence is impossible, an empirical definition is easily
obtained. By congruent cubes the physicist means those which visually
and tactually will appear the same in whatever region of space they
may be situated, provided the observer accompanies the cubes in their
displacements. He means cubes carved out of the substance of those
bodies which men have agreed, from time immemorial, to regard as
invariable solids, and which are illustrated by the bodies around us,
when maintained under conditions of constant temperature and pressure.


It is as referred to such bodies, therefore, or, again, to the courses
of light rays, that the universe, according to Einstein, would manifest
itself as finite. This is but another way of saying that our bodies
would behave like Riemannian solids (over vast areas at least) instead
of like Euclidean ones, as was formerly thought to be the case.


Summarising, we see that this same so-called finite universe would
manifest itself as infinite were our rods to behave Euclideanly, whence
we may conclude that the universe, whether finite or infinite, may
contain exactly the same regions of space, just as our plane contained
the same points whether measured with yardsticks or shadows. To assume,
therefore, that certain regions of space must necessarily be excluded
owing to the finiteness of the universe, would be to take a stand in no
wise demanded by the actual conditions of the problem.








CHAPTER XXXV

THE IMPORTANCE OF SPACE-TIME, AND THE PRINCIPLE
OF ACTION





IN the course of this book we have seen how a number of difficulties
were overcome as soon as we recognised the existence of
four-dimensional space-time in lieu of the world of separate space
and time of classical science. There are still other aspects of the
problem, however, and we shall now mention them briefly.


In the first place, all vectors such as velocities and forces, and
all tensors such as Maxwell’s stresses of the electromagnetic field,
erstwhile expressed in three-dimensional space, must now be extended
and supplemented with additional components so as to yield vectors
and tensors in four-dimensional space-time. These new components do
not define new physical magnitudes unknown to classical science; in
the general case they give us well-known magnitudes, such as work,
power, and so on. As a case in point, let us consider electric and
magnetic intensities. In classical science these were entirely
distinct magnitudes. But when we represent these intensities in terms
of space-time, we find that they are given by the various components
of one same space-time tensor ; the time components
give the electric force, while the space components yield the magnetic
force. The advantage of the new point of view is chiefly to show us
that what we once considered different entities now reveal themselves
as the different components of the same space-time existent. The reason
for the observed connections between these different entities then
becomes apparent.


In particular, let us examine the case of the equations of
electrodynamics. In the study of electricity and magnetism we may
consider phenomena in which conditions do not vary as time passes by;
the electric charges and the magnets remain at rest, and currents
flowing in fixed wires do not vary in intensity. Conditions are then
termed stationary; it is as though time played no part. The laws
which govern this type of phenomena were discovered empirically over
a century ago, and were expressed mathematically in terms of spatial
vectors. The problem of ascertaining how electric and magnetic
phenomena would behave when conditions ceased to be stationary was
one that could not be predicted; further experimental research work
was necessary before the general laws could be obtained. Even so, the
difficulties were considerable, and it needed Maxwell’s genius to
establish the laws from the incomplete array of experimental evidence
then at hand. All this work extended over nearly a century; it was slow
and laborious.


Yet, had men realised that our world was one of four-dimensional
Minkowskian space-time, and not one of separate space and time, things

would have been very different. By extending the well-known stationary
laws to four-dimensional space-time, through the mere addition of time
components to the various trios of space ones, we should have written
out inadvertently the laws governing varying fields, or, in other
words, we should have constructed Maxwell’s celebrated equations.
Electromagnetic induction, discovered experimentally by Faraday, the
additional electrical term introduced tentatively by Maxwell, radio
waves, everything in the electromagnetics of the field, could have been
foreseen at one stroke of the pen. A century of painstaking effort
would have been saved.[121]


It is also interesting to note that the four separate relations which
constitute Maxwell’s equations of electromagnetics are now merged into
two; and the cumbersome aspect of the equations gives place to forms of
great simplicity.


Still another simplification which the discovery of space-time has
conferred upon us is to be seen when we study the principles of the
conservation of energy and of momentum. We find that these two distinct
principles constitute in reality but one. Conservation of energy is
given by the time component, while conservation of momentum is given
by the three space components, of one same space-time tensor law of
conservation.


In a general way, all problems of dynamics or kinematics in
three-dimensional space can be treated as problems of statics in
four-dimensional space-time. All these advantages of space-time
appeal very strongly to the theoretical investigator who deals with
mathematical equations; but they all go to show how much simpler it is
to understand the workings of the universe when we realise that the
fundamental continuum of the world is space-time, and not separate
space and time.


We must now mention another most important conception of classical
science, namely, Action; and we shall see that this important
mathematical entity finds its place in a perfectly natural way in
the world of space-time. In order to understand the significance of
Action, let us consider any mechanical system passing from an initial
configuration  to a final configuration . Classical science
defined the action  of this system as the difference
between its total kinetic energy T and its total potential energy
, taken at every instant and then summated over the entire period
of time during which the system passed from the initial state  to
the final state .[122]


Now the total kinetic and potential energies of the system at any
instant are given by

 
where  and  represent the densities of the kinetic and
potential energies at every point throughout the space occupied by the
system. Accordingly, the expression of the action will be given by

In the second formula we have merely replaced () by a single
letter . Henceforth () or  will be referred to as
the function of action.[123]


Roughly speaking, action was thus in the nature of the product of a
duration by an energy contained in a volume of space. On no account
may this action be confused with the action dealt with in Newton’s
law of action and reaction, also expressible as the principle of the
conservation of momentum. Still less may it be confused with the term
“action” which appears in philosophical writings. The importance of the
conception of action arises from the fact that the laws of mechanics
can be expressed in a highly condensed form when the conception of
action is taken into account. We thus obtain what is known as the
Principle of Least Action, with which the names of Fermat,
Maupertius and Lagrange are associated. A more convenient form of
the principle was given by Hamilton; it then becomes Hamilton’s
Principle of Stationary Action. If we restrict our attention to the
very simplest case, we may state Hamilton’s principle as follows:


If we consider all the varied paths along which a conservative system
may be guided, so that it will pass in a given time from a definite
initial configuration  to a definite configuration , we shall
find that the course the system actually follows, of its own accord, is
always such that along it the action is a minimum (or a maximum).


Now the principle of action issues, as we have said, from the laws of
classical mechanics. Were these laws different, the principle of action
would cease to apply, at least in its classical form. A priori,
we have no means of deciding whether the laws governing physical
phenomena of a non-mechanical nature—those of electromagnetics, for
example—would also issue in the same principle of action.


But when Maxwell had proved that his equations of electromagnetics
could be thrown into a form compatible with the principle of action,
and when he had succeeded in amalgamating electricity, magnetism and
optics into one science, the universal validity of the principle
was accepted. Inasmuch as this principle includes that of the
conservation of energy, we can understand why the principle of action
was often referred to as the supreme principle of physical science.
Incidentally, we may mention that when the principle of action is
satisfied by a phenomenon, an indefinite number of different mechanical
interpretations of the phenomenon are theoretically possible. In the
case of electrodynamic phenomena, however, in view of the complicated

hypotheses which he was compelled to postulate, Maxwell abandoned all
attempts to discover the precise mechanical interpretation which would
correspond to reality.


Thus far, we have limited ourselves to stating the general validity of
the principle of action, as applying to all physical processes. It now
remains to be seen how the principle will be of use to us in furthering
our knowledge of the laws of nature. This we may understand as follows:
The principle, as we have seen, imposes the condition that the natural
evolution of any system must be such as to render the action a maximum
or a minimum. Could we but express this condition in terms of the usual
physical magnitudes, we should be enabled to map out in advance the
series of intermediary states through which the phenomenon would pass.
From this knowledge we should derive the expression of the laws which
governed the evolution of the phenomenon. Here, of course, a twofold
problem presents itself. First, we must succeed in finding the correct
mathematical expression for the action; and, secondly, we must be in a
position to solve the purely mathematical problem of determining under
what conditions the action will be a maximum or a minimum.


Now all problems of maxima and minima are solved by means of the
calculus of variations, a form of calculus we owe chiefly to
Lagrange. According to the methods of this calculus, we establish under
what conditions a magnitude is a maximum or a minimum by discovering
under what conditions it will be stationary.


Let us explain what is meant by the word “stationary.” When a stone
is thrown into the air, it ascends with decreasing speed, then seems
to hesitate for a brief period of time as it hovers near the point of
maximum height before it starts to fall back again towards the earth.
During this brief period of hesitation at the apex of its trajectory,
the stone is said to remain “stationary.” We can recognise a stationary
state by observing that when it is reached no perceptible changes take
place over a short period of time. In this way, we may understand
the connection which exists between the stationary condition and the
presence of a maximum or a minimum. In mathematics small variations are
represented by the letter ; hence the stationary condition of
the action, or again, the principle of action, is expressed by

The calculus of variations enables us to solve such purely mathematical
problems. Under the circumstances the problem of determining the laws
which govern any particular phenomenon reduces to discovering the
expression of the function of action  pertaining to the phenomenon
in question. Larmor applied this method to the phenomena of electricity
and magnetism and showed how Maxwell’s laws of electrodynamics could
be deduced from a suitable mathematical expression  defining the
electromagnetic function of action.





When the theory of relativity supplanted classical science, it was
recognised that the classical equations of mechanics were only
approximate, and it became necessary to reformulate the principle of
action so as to render it compatible with the mechanics of relativity,
hence also with space-time. This work was carried out by the pure
mathematicians—by Klein and Hilbert in particular. It was then found
that a principle of action differing but slightly from the classical
one could be obtained. But inasmuch as the difference involved presents
only a theoretical interest, we shall discuss the bearing of the
principle of action on the theory of relativity without taking the
slight aforementioned modification into consideration.


In classical science, it was strange to find that action, though
so important in its physical significance, should yet present the
artificial aspect of an energy in space multiplied by a duration. As
soon, however, as we realise that the fundamental continuum of the
universe is one of space-time and not one of separate space and time,
the reason for the importance of the seemingly artificial combination
of space with time in the expression for the action receives a very
simple explanation. Henceforth, action is no longer energy in a volume
of space multiplied by a duration; it is simply energy in a volume of
the world, that is to say, in a volume of four-dimensional space-time.
Designating a volume of space-time by , we have

so that our principle of action, , becomes

There is now perfect symmetry between the rôles of space and time.


Now there was still another aspect of the principle of action which
was extremely displeasing in classical science: By making the present
course of a phenomenon contingent on a condition which could be
determined only at some future date, it acquired a teleological
character. But, as Planck points out, with the action as given by an
energy in a volume of space-time, we may, by placing space and time on
the same footing, regard duration as static; and the unsatisfactory
teleological aspect of the principle may be obviated.


The space-time theory offers yet further advantages. It suggests that
the function of action  must be a space-time invariant. If,
then, we know the elementary physical magnitudes which must enter into
this invariant, purely formal mathematical considerations enable us to
construct all possible invariants, and one of these will represent the
function of action. Assuming the world to be built up of electricity
and metrical field, the possibility of obtaining the “function of
action”  of the universe would seem to be within our grasp. Could
this result be accomplished, a momentous discovery would have been

made, since all the laws of the physical world would be comprised in
the expression
 
The application of the principle of action, expressed in the preceding
formula, would enable us to derive all the laws of the physical
universe. We should understand many things that are still mysterious;
the elusive reason for the existence of two types of electricity in
nature would be revealed, and the strange tendency of matter and energy
to congregate into atoms and quanta would be explained. Unfortunately
we are far from being able to determine the “function of action” of
the universe, for there may be physical elements entering into its
constitution whose nature we as yet ignore. (Furthermore, we might
mention that the very validity of the principle of action is called
into question by the quantum phenomena.) The following passage quoted
from Weyl gives an idea of what is at stake:


“Whereas, in mechanics, however, a definite function  of action
corresponds to every given mechanical system and has to be deduced
from the constitution of the system, we are here concerned with a
single system, the world. This is where the real problem of matter
takes its beginning: we have to determine the ‘function of action,’ the
world-function , belonging to the world. For the present it leaves
us in perplexity. If we choose an arbitrary , we get a ‘possible’
world governed by this function of action, which will be perfectly
intelligible to us—more so than the actual world—provided that
our mathematical analysis does not fail us. We are, of course, then
concerned in discovering the only existing world, the real world for
us. Judging from what we know of physical laws, we may expect the 
which belongs to it to be distinguished by having simple mathematical
properties. Physics, this time as a physics of fields, is again
pursuing the object of reducing the totality of natural phenomena to a
single physical law: it was believed that this goal was almost
within reach once before when Newton’s Principia, founded on the
physics of mechanical point-masses, was celebrating its triumphs. But
the treasures of knowledge are not like ripe fruits that may be plucked
from a tree.”[124]


Whatever may be the ultimate fate of such speculations in revealing
to us the mystery of matter, it cannot be denied that they possess
a grandeur which is compelling. At all events, in more restricted
domains, the principle of action has led to important discoveries.


Hilbert, Klein, Weyl and later Einstein himself, by applying the
principle of action to the space-time metrical field, were led to the
law of space-time curvature in the interior of matter and outside

matter; that is to say, to Einstein’s law of gravitation.


The problem resolves itself into the selection of an appropriate
expression for the action; but in the case of the law of gravitation
a peculiar difficulty is encountered. We shall best understand the
nature of this difficulty by considering the simpler case of the
electromagnetic action. Electricity and magnetism present themselves
in a substantial form as electrons, magnets and electrons in motion,
or currents; and in a more ethereal form as fields, illustrated by
the electromagnetic field. Inasmuch as both these manifestations
of electricity and magnetism should enter into the laws of
electrodynamics, the total electromagnetic action will have to comprise
the two corresponding types of action. These can easily be determined,
and an application of Hamilton’s principle of stationary action yields
the laws of electromagnetics without further ado. But when we consider
matter, classical science knew of but one form, the substantial
form; the field form was lacking. To be sure, the gravitational
forces surrounding matter appeared to present a certain analogy
with the electromagnetic fields surrounding electrons and magnets.
But, mathematically, at least, the analogy was superficial, for in
contradistinction to the electromagnetic field, the gravitational
field was not expressed by differential equations indicating
continuous action through a medium. Only in name was it a field;
and it appeared impossible to determine its action. With Einstein’s
discoveries this difficulty was overcome. The gravitational field now
appeared as a field analogous to the electromagnetic field. It was the
metrical field of space-time, defined, as we know, by the 
potential distribution analogous to the potential distribution of the
electromagnetic field. It can also be regarded as representative of the
structure, or geometry, of space-time. Henceforth, the total material
or gravitational action will be given by the action of matter proper
plus that of the metrical field; the missing action has been found.


Thus the solution of the problem of gravitation reduces to establishing
the mathematical expression of these two separate actions. Now the
action of matter in a space-time region is the energy of matter
contained in a volume of space-time. According to Einstein’s
theory, therefore, it is given by the density of the mass of the
matter multiplied by a space-time volume. As for the action of the
gravitational field, inasmuch as it is now seen to be the action of
the metrical field, it can be discovered without much difficulty. In
this connection, we must recall that the relativity theory suggests
that the action in a volume of space-time must be an invariant; its
numerical value, whatever it may be, must be independent of our choice
of mesh-system. In other words, the action of the metrical field must
be an invariant built up from the fundamental tensors , whose
distribution defines the metrical field.


We mentioned, when discussing tensors, that several such invariants
exist, but that the simplest of all was represented by the Gaussian
curvature . To this  we may add any scalar or number
 without modifying its invariance, since numbers are, of

course, invariants. Hence, the simplest expression for the function
of action of the metrical field is obtained by writing it: . This was, indeed, the expression selected by Einstein.[125]


From now on, it is a mere question of mathematics (calculus of
variations) to express the stationary condition of the total action.
As a result, we obtain Einstein’s law of space-time curvature, inside
and outside of matter; that is to say, Einstein’s law of gravitation.
According to whether we assume that  is zero or has a
non-vanishing value, we obtain the infinite universe, or the finite
universe of either de Sitter or Einstein. In particular, Einstein’s
universe will be the outcome if we impose the condition of stability
upon the universe. We see, therefore, that the principle of action
proves that all three types of universe are possible. If we wish to
decide which type corresponds to the real universe, we must take other
facts into consideration, as was explained in the chapter on the
finiteness of the universe.


Now there remains one other important point which we must mention
before abandoning the discussion of the law of gravitation. We saw
that the principle of action alone did not enable us to decide whether
the constant , which was adjoined to the action  of
the metrical field, was zero or had some non-vanishing value. In other
words, it did not enable us to decide whether the universe was infinite
or finite. But this is not the only source of indeterminateness. We
mentioned that Einstein chose  for the function of action of the
metrical field because it was the simplest possible invariant made up
of ’s; but we have also seen that other more complicated
types of invariants could be constructed. Had these been substituted in
the expression of the action, we should have obtained alternative laws
of gravitation. But the point we wish to stress is the following:





Regardless of the precise invariant we may select in order to
represent the function of action of the metrical field, there is one
property which is common to all these invariants. Their mathematical
nature is such that when we apply to them the principle of action, we
find that the curvature of space-time which would be present in the
interior of matter must be of a type which would remain conserved.
Granting that a certain indeterminateness may exist in our choice of
the action, and hence of the law of gravitation, all these laws would
compel us to recognise that in our universe, permanent entities such as
matter cannot help but be present. To be sure, the type of conservation
necessitated by the principle of action is not altogether the classical
conception of conservation; but, as we saw in a previous chapter, the
new principle becomes that of classical conservation when a Galilean
reference system is adhered to.


Finally, we may note that by applying the principle of action to the
total action formed by the gravitational action and the field-action of
electricity, we should obtain the precise type of space-time curvature
which would exist in an electromagnetic field free of electrons and
magnets; for instance, in an empty region flooded with light. It is
then found (as was mentioned in Chapter XXXIII)
that the electromagnetic field also produces a curvature of space-time,
less pronounced than that reigning in the interior of matter, but more
pronounced than that existing in the empty space around matter (that is
to say, in a gravitational field due to ordinary matter).








CHAPTER XXXVI

THE MYSTERY OF MATTER





ONE of the greatest merits of the theory of relativity has been to
allow us to represent gravitation as a direct consequence of the
curvature of space-time. It would certainly be the crowning achievement
of this superb theory if it could enable us to interpret all the
manifestations of the physical universe in terms of the various types
of curvature of one sole fundamental continuum, space-time. But at
the present stage two separate reasons render this solution highly
improbable.


We remember that in the course of our wanderings we came across two
foreign tensors: , the matter-tensor, and , the
electromagnetic tensor. It seems impossible to express these tensors
in terms of the basic structural tensors of space-time, namely, the
’s. However, in the case of the matter-tensor , the
case is not yet quite clear; and we shall see that opinion is divided
on the subject. In order to understand the point at issue, let us turn
once more to the gravitational equations in the interior of matter: 




There are ten separate equations corresponding to the ten separate
components of the second-order symmetrical tensors  and
. If we assume that a certain definite mesh-system has been
chosen, or, again, that the observer is specified, each one of the
ten components of  will represent some physical magnitude
relevant to matter at each point (see Appendix II).
For instance,  will represent the density of mass of
the matter at a point; ,  and , the three
components of momentum of the matter at a point, measured in the frame
of reference specified; ,  and  will
represent the three components of vis viva, or energy of motion,
coupled with the stresses in the matter at the point considered,
etc.


The equations of gravitation thus signify that whenever we recognise
the existence of one of these physical magnitudes it is always
accompanied by corresponding curvatures of space-time. It is usual to
assume that the curvatures are produced by those concrete somethings
which we call mass, momentum, energy, pressure. In this way, we
must concede a duality to nature; there would exist both matter
and space-time, or, better still, matter and the metrical field
of space-time. Einstein, when he elaborated his hypothesis of the
cylindrical universe, attempted to remove this duality by proving that
it was possible to attribute the entire existence of the metrical
field, hence of space-time, to the presence of matter. This attitude

led to a matter-moulding conception of the universe, elevating matter
over the metrical field of space-time. And, as we recall, only when
this attitude was adhered to could Mach’s belief in the relativity of
all motion be accepted.


Eddington’s attitude is just the reverse. He prefers to assume that
the equations of gravitation are not equations in the ordinary sense
of something being equal to something else. In his opinion they are
identities. They merely tell us how our senses will recognise the
existence of certain curvatures of space-time by interpreting them as
matter, motion, and so on. In other words, there is no matter; there
is nothing but a variable curvature of space-time. Matter, momentum,
vis viva, are the names we give to these curvatures on account
of the varying ways they affect our senses.


Of course, Eddington’s attitude, which is reminiscent of that of
Clifford, is contrary to Riemann’s ideas, since, according to Riemann,
an extension could have no geometry, hence no curvature and no metrical
field, in the absence of matter, which would act as an active moulding
agent. Furthermore, Eddington’s views lead us into certain difficulties
when we attempt to apply the principle of action.


The reason for this is plain. If we regard a certain curvature of
the metrical field of space-time as being synonymous with matter,
there will be no reason to consider this curvature twice: once
as representative of the action of matter, and once again as
representative of the action of the gravitational field. By so doing,
we should be merely duplicating our results. Hence, according to
Eddington’s views, there would be but one action, that of the metrical
field; and we could no longer add together the two separate
actions in order to obtain a total action. Calculation then
shows that in regions where matter exists the principle of stationary
action would break down, so that a rigid application of the principle
would connote that the world must be empty of matter. Eddington feels
no objection to this limited validity of the principle of action, and
defends his attitude with technical arguments which we cannot reproduce
here.


Up to this point the motive that has guided us has been the desire to
discover unity in nature by reducing all things to some fundamental
form of existence. There is, however, another way to approach the
problem; and this time our guiding principle will be no longer solely
mathematical harmony, but also experimental facts.


We must realise that the tensor , whose components represent
those physical magnitudes which our senses perceive and our instruments
measure, can at best be considered to portray effects observed only in
a macroscopic way. Phenomena such as radioactive explosions and all
we have learnt indirectly from the exploration of the atom go to show
that matter in the final analysis is constituted by whirling electrons
around which intense electromagnetic fields are present. It follows
that a microscopic investigation of matter would yield a very different
picture from that which we construct from our crude sense perceptions,
and that could we but view the atom in an ultra-microscopic way it

would appear to us as a region subjected to intense electromagnetic
actions. It would seem, therefore, that our macroscopic tensor
 must comprise the electromagnetic one  in its
constitution.


But in order to remove the duality between matter and electricity, we
should have to prove that  could be built up exclusively
from some more or less complicated expression containing ,
together with tensors derived from it; tensors of any other kind being
barred. Physically speaking, this would indicate that atomic matter or
bound energy, and in particular those forms of matter called electrons
and protons, could be built up in terms of electromagnetic or loose
energy. Even were we to succeed in this attempt we should not have
banished all duality; for though we should have got rid of ,
there would still remain a duality between  and the metrical
field or ’s of space-time.


At any rate, all attempts to reduce matter to electromagnetic fields
have thus far presented insuperable difficulties owing to the
impossibility of accounting for those ultimate aspects of matter, the
electron and proton, in terms of  alone. The difficulty
consists in understanding how it is that the electron does not explode
under the mutual repulsion of its negatively charged parts. Some
kind of counterbalancing pressure, the Poincaré pressure, seems to
be necessary, and it appears to be impossible to account for this
mysterious pressure in terms of the electromagnetic Maxwellian stresses
 alone. Following Poincaré, Mie attacked the problem.
His procedure was to introduce additional electromagnetic-field
magnitudes which would be effective in the interior of the electron,
but whose action in outside space would be negligible. By this means,
he succeeded in building up matter out of purely electromagnetic
quantities. Einstein comments on Mie’s theory in the following words:


“In spite of the beauty of the formal structure of this theory, as
erected by Mie, Hilbert and Weyl, its physical results have hitherto
been unsatisfactory. On the one hand, the multiplicity of possibilities
is discouraging, and, on the other hand, those additional terms have
not as yet allowed themselves to be framed in such a simple form that
the solution could be satisfactory.”


Following this attempt, Einstein proved that it was possible to
obviate the introduction of Mie’s supplementary electromagnetic terms
provided the space of the universe were assumed to possess a slight
residual curvature, such as would exist in the cylindrical universe.
It would then be this residual universal space-curvature which would
act as a negative pressure preventing the electron from exploding.
If we note that the universal curvature concerns the metrical field,
hence the field of gravitation, we see that the energy of the electron
must be composed of an electromagnetic and of a gravitational
part. In Einstein’s own words: “Of the energy constituting matter,
three-quarters is to be ascribed to the electromagnetic field, and
one-quarter to the gravitational field.”


Einstein considers that these facts constitute a powerful argument
in favour of the finite universe. At all events, it must be conceded

that the hypothesis of the finite universe appears to impose itself
in a number of different ways. Not only astronomical considerations
bearing on the low velocities of the stars, not only mathematical
reasons connected with the boundary conditions, not only philosophical
urges concerned with the relativity of rotation and the relativity of
inertia, but also atomic or electronic phenomena, drive us towards the
same solution.


Let us now pass to a study of the electromagnetic tensor itself. We
can see that even if the preceding attempts had proved successful,
there would still remain a duality between gravitation and matter or
electricity, or, we might say, between the metrical field of space-time
and the tensor . This latter tensor would still appear as an
irreducible foreign entity present in space-time, marring the unity of
nature. It was the aim of Weyl’s theory to rid science of this duality.


In order to understand the nature of the problem, we must state
that just as the fundamental structural tensors of the metrical
field ,  and  at every point could be
reduced to highly complicated expressions between the ten fundamental
-potentials at every point, so now the electromagnetic
tensor  can be reduced to a complicated expression between
the four electromagnetic potentials, the four ’s
(namely  ,  and ).
The unification demanded by science was therefore to express
the ’s in terms of the ’s, or vice versa.
Unfortunately, not the slightest similarity appeared to exist between
the ten  potentials and the four ’s. The
’s appeared as foreign entities embedded in the metrical
field of space-time.


All attempts to overcome this duality were unsuccessful so long as
we confined our speculations to the space-time of Einstein’s theory.
But there always existed the possibility that space-time was of a
less simple category than had been assumed by Einstein. If, then,
we could conceive of a generalised type of space-time possessing a
more complicated metrical field, it might be possible to identify
the fundamental ’s of electromagnetics with certain
particularities of structure of this generalised space-time and of its
metrical field. Weyl’s theory is an attempt in this direction; and
though it is still in a highly speculative stage, everything seems to
suggest that Weyl is on the right track. Einstein himself has accepted
a modified form of Weyl’s theory to the extent of contributing to its
advancement.








CHAPTER XXXVII

THE THEORIES OF WEYL AND EDDINGTON





THE general theory of relativity reduces to an application of Riemann’s
purely mathematical discoveries, to the real world of space-time in
which we live. A further extension of the theory became possible when
Weyl had succeeded in carrying the geometrical study of manifolds
beyond the point where Riemann and his successors had left it. Weyl
describes the situation in the following words:


“Inspired by the weighty inferences of Einstein’s theory to examine the
mathematical foundations anew, the present writer made the discovery
that Riemann’s geometry goes only halfway towards attaining the ideal
of a pure infinitesimal geometry. It still remains to eradicate the
last element of geometry ‘at a distance,’ a remnant of its Euclidean
past.”[126]


In order to understand Weyl’s theory, which may be regarded as a
generalisation of Einstein’s, it will be necessary to enquire into
the nature of Weyl’s geometrical contributions. Let us recall that
when discussing the geometry of space, we said that the geometry we
attributed to conceptual space was defined by the numerical results
of measurement which were obtained when we had defined the type of
conceptual measuring rods which we intended to employ. The behaviour
of these measuring rods was arbitrary to a great extent, and according
to the behaviour we attributed to them, the space was Euclidean,
Riemannian or Lobatchewskian.


However, certain limitations were imposed by Riemann. Riemann assumed
that two unit rods which coincided at a point  would continue to
coincide when displaced to another point , regardless of whether
the two rods had followed the same or different paths through space
during their displacement from  to . Now it is possible to
remove this restriction imposed by Riemann without falling into any
logical inconsistency; and we may perfectly well assume that two unit
rods which coincide at a point  may cease to coincide when brought
together at another point , provided they have followed different
routes while moving from  to . From a purely mathematical
angle, such an assumption is by no means absurd; and it is this
generalisation of the possible behaviour of our conceptual measuring
rods which was studied by Weyl. It must be borne in mind, however,
that for the present we are not discussing the problem of real space;
we are not arguing about the actual behaviour of our rigid measuring
rods as defined by practical congruence. We are merely speculating, as

mathematicians, on a logical extension of geometry.


Let us therefore review our premises. We assume that two unit rods
which coincide at a point  cease to coincide when brought together
at another point , after having followed different paths of
transfer from  to . Obviously, if this be the case, the
statement that two lengths situated at different points  and
 of space are equal in magnitude is necessarily indeterminate.
The two lengths might measure out as equal if we displaced our unit
rod from  to  along a certain path, and as unequal if we
displaced our unit rod along some other path. In other words, length is
non-transferable. In view of the indeterminateness that surrounds the
comparison of lengths in different places, we must confine ourselves
to the comparison of lengths at any one place or at points separated
by infinitesimal intervals. We therefore agree to consider that at
every point in space there is fixed a rod which is to serve as unit of
length when we measure lengths situated by its side. The totality of
these unit rods constitutes what is known as a gauge-system.
These gauges may be selected arbitrarily; and it is not meant to imply
that they are necessarily of equal length with respect to one another,
since we have seen that comparison of lengths in different places is
ambiguous. Their sole utility is to serve as standards of measurement
for lengths situated by their sides, and thus to enable us to compare
lengths situated at the same point.


A gauge-system is the natural extension of a mesh-system, with which
we are already acquainted. Just as we may vary the shape of the
mesh-system, so now we may vary the nature of the gauge-system.


Let us endeavour to ascertain the significance of this non-transference
of length as relating to the nature of space itself. In particular,
let us suppose that two rods coincide at a point ; then, while
one rod remains fixed at , the other is made to follow a closed
curve, returning finally to its starting point. Owing to the difference
in routes followed by the two rods, one having remained fixed and
the other been made to describe a curve, the two rods will no longer
coincide when we place them side by side after the completion of the
circuit.


This non-transference of length is very similar to what is known as
the non-transference of direction which holds for the non-Euclidean
spaces that we have studied so far. Thus, consider a curved surface,
a sphere—for example. If at a point  on the sphere two rods
coincide in direction, and if, while one rod remains fixed, the other
is displaced from point to point along a closed curve, and displaced
in such a way that for each successive infinitesimal displacement the
rod maintains the same direction, it would be erroneous to suppose
that when the second rod had been returned to its starting point its
direction would still coincide with that of the first rod. A distinct
discrepancy would be found to exist between the directions of the
two rods, and the size of this discrepancy would depend on the area
contained within the closed curve which the second rod had been made
to follow over the surface. This discrepancy has nothing to do with

our choice of a mesh-system; it transcends this choice completely. On
the spherical surface we are discussing, it would vary with the closed
curve described by the rod; but if we had operated on a plane sheet of
paper instead of on a surface curved like a sphere, the discrepancy
would never have arisen at all. Its existence is due, therefore, to
the curvature, or non-Euclideanism, of the surface, and its magnitude
may serve as a means of determining the precise intensity of this
non-Euclideanism around every point of the surface.


Just as non-transference of direction is caused by the curvature,
or non-Euclideanism, of space (which we might also call
direction-curvature), and disappears with the vanishing of this
curvature, so in an analogous manner the non-transference of length is
caused by a new type of curvature (called Weylian curvature or
distance-curvature), and disappears completely when this type
of curvature is non-existent. In a general way we may call a space a
Weyl space when it possesses a non-vanishing distance-curvature;
the appellation classical spaces will be reserved for all
the categories of space which we have studied thus far (Euclidean,
Riemannian, Lobatchewskian, semi-Euclidean), since in all these spaces
a Weylian or distance curvature is non-existent.


We may note that just as ordinary non-Euclideanism, or
direction-curvature, transcended our choice of mesh-system, so now, in
similar fashion, the Weylian characteristics—the non-transference of
length, and, again, the presence of distance-curvature—transcend our
choice of a gauge-system.


Now we have seen that the Euclideanism or non-Euclideanism of a
manifold was ascribed to the metrical field which it contained. In
a similar way we must assume that the Weylian characteristics must
also be ascribed to the metrical field. However, the metrical field
due to the ’s which has been discussed so far, is incapable
of accounting for Weylian peculiarities. It is necessary to complete
the description of the field in order to render it accountable for
these new characteristics. When this is done, it is found that in
a four-dimensional continuum, in addition to the ten ’s
which suffice to describe the metrical field of a four-dimensional
classical continuum such as space-time, it is necessary to add four
new quantities which we may call the four ’s. The generalised
metrical field then contains fourteen separate magnitudes in place of
ten as in Einstein’s space-time. Just as the direction-curvature of
space characterising non-Euclideanism at a point could be expressed by
a tensor (the Riemann-Christoffel tensor), built up from the changes
in values between the ’s at a point and at the neighbouring
points in any mesh-system, so now the distance-curvature at a point
can be given by a tensor built up from the changes in values between
the ’s at a point and at the neighbouring points in any
gauge-system.


In particular, the Weylian curvature , at a point, is
given by the tensor equation

whence we may derive
 

If the space manifests no trace of distance-curvature, hence no Weylian
characteristics,  vanishes completely and the preceding
equations are superfluous; we are then in the presence of a classical
space, whether Euclidean, Riemannian or Lobatchewskian.


Now it is a remarkable fact that these purely geometrical relations or
equations which Weyl had discovered, expressing as they do the value
of the Weylian curvature, are none other than Maxwell’s equations
of the electromagnetic field, provided we identify the Weylian
curvature  with the tensor  whose components
represent electric and magnetic force, and provided we identify the
elements of structure, the ’s, with the electromagnetic
potentials, the ’s. To be sure, this unexpected parallelism
between the equations of electromagnetics and the curvatures of a
Weyl space might have been attributed to mere chance. But, as must
be admitted, the temptation to view matters otherwise was great.
Weyl assumed, therefore, that space-time was of the Weylian type
and not of the more restricted classical species, as Einstein had
supposed. The electric and magnetic field tensor , which in
Einstein’s space-time appeared to be a foreign entity intruding on the
continuum, was then in reality none other than the Weylian curvature
of this generalised space-time. These views led Weyl to assume that
when electromagnetic fields were present, hence when  did
not vanish, the Weylian characteristics of space-time manifested
themselves, whereas, in regions free of electromagnetic fields,
space-time resumed its classical characteristics and became once again
the space-time of Einstein’s theory. For similar reasons, the four
electromagnetic potentials, i.e., the four ’s were
identified with the four ’s of the Weylian structure. In this
way, electromagnetic phenomena, to the same extent as gravitational
phenomena, appeared to be necessary manifestations of the metrics of
the fundamental space-time continuum.


Let us consider the further modifications which these new views will
impose. First, we remember that in the classical spaces, hence in
Einstein’s space-time, it was possible to build up fundamental or
structural tensors (,  and ) from the
ten ’s. These magnitudes, being tensors, transcended, of
course, our choice of mesh-system. But now that we are considering
a Weyl space, we must superimpose the additional requirement that
our magnitudes should transcend a choice both of mesh-system and of
gauge-system. We thus obtain the magnitudes ,
, ,  which are built up from
the ten ’s and the four ’s (now identified with the
four ’s) and which in addition satisfy all our previously
mentioned requirements. In order to distinguish these magnitudes from
ordinary tensors, which transcend solely our choice of mesh-system,
Eddington calls them in-tensors and in-invariants, and
indicates them by asterisks. Henceforth it will be to these in-tensors

and in-invariants that we shall have to appeal in order to express
those magnitudes which (depending neither on mesh-system nor on gauge)
are intrinsic to the world itself.[127]


Now, assuming space-time to be a Weylian manifold, a change of
gauge-system will modify the expression of the fundamental tensors
of Einstein’s theory (except ), hence will modify the
aspect of the mechanical laws and of that of gravitation. A natural
extension compels us to assume that all the Einsteinian laws should be
generalised and expressed in terms of in-tensors and in-invariants, so
as to yield in-tensor equations instead of tensor equations. Only thus
can we render them indifferent to a change of gauge-system, just as
their original tensor form had already rendered them indifferent to a
change of mesh-system. This modification in the form of the Einsteinian
laws will affect only the mechanical and gravitational laws, since
the electromagnetic ones defining the Weylian curvature are already
in-tensor equations.


However, we may assume that the Einsteinian tensor laws, in the form in
which they were given by Einstein, are in harmony with some particular
gauge-system; and this Weyl calls the natural gauge. We shall
have to conceive of this natural-gauge system as one imposed upon us by
nature and defined by certain intrinsic properties of the universe. But
the only determinate magnitude which is offered us by nature at every
point appears to be the radius of curvature of the universe at every
point. Hence Weyl defined the natural gauge at every point as given by
a unit of length equal to the radius of curvature of the universe at
that point or to some definite fraction thereof. If these ideas are
correct, the universe cannot help but possess a curvature at every
point, and hence must be finite, since were it infinite there would be
no natural gauge whereby to measure distances.


Weyl’s theory, as outlined so far, represents the theory in its
original form; but we shall see that Weyl was led to modify his
original views in certain respects. The fact is that empirical results
would appear to conflict with his theory in its initial form. The
theory compels us to assume that in regions where electromagnetic
fields are present, in regions, therefore, where space-time is Weylian,
transference of length is an indeterminate process. Of course, when
we speak of a length in space-time, we are primarily considering
a space-time distance, that is, an Einsteinian interval. But an
Einsteinian interval, we remember, can be split up into a spatial
distance, or into a duration, or into both, as the case may be. This
result is achieved when the observer refers the Einsteinian interval
to his space and time mesh-system. It would follow, therefore, that

in a Weylian space-time not only would the transference of length of
an Einsteinian interval yield indeterminate results, but that the
same would apply automatically to the transference of spatial, as
also of temporal, magnitudes. Thus, two identical electrons situated,
first, at any one point then separated, would in general differ in
size and in charge when brought together again. Likewise, the same
indeterminateness would apply to duration. Hence, it would be quite in
order to suppose that two identical atoms situated at the same point
and beating with the same frequency would present different frequencies
of vibration after they had been separated and brought together
again. It would be as though the size of an atom and its frequency of
vibration depended on its previous life history. Incidentally, these
occurrences would deprive the Einstein shift-effect of all value, since
any slowing down in the rate of vibration of the solar atom could be
attributed to a difference in the previous life histories of the solar
and terrestrial atoms, and not necessarily to the influence of the
sun’s field of gravitation.


Now, all these anticipations of Weyl’s theory in its original form
are in conflict with precise observation. So far as can be detected
by experiment, the charges and sizes of all electrons are exactly
alike regardless of their past history; and this also applies to the
frequencies of vibration of atoms of the same chemical element.[128]
It would appear, therefore, that if space-time is a Weyl space, the
Weylian characteristics are, for some reason or other, completely
obliterated; so that, in fine, space-time, though Weylian, manifests
only the properties of the more restricted Riemann type of space.


Weyl was thus compelled to draw a distinction between adjustment
and persistence, and to assume that bodies adjusted themselves
automatically to the natural gauge, that is to say, to the radius of
the universe. If bodies followed the tendency of persistence, the
Weylian discrepancies would be observed; but with bodies adjusting
themselves afresh from place to place and from instant to instant
to the form of the universe, and with the frequencies of vibration
of atoms acting likewise, these discrepancies would be banished
automatically. We may note the similarity between these views and those
reached by Eddington in Einstein’s theory proper (see chapter on the
finiteness of the universe).


These views also enable us to attain a better understanding of the
significance of the natural gauge. Since objects in equilibrium, such
as rigid objects, electrons and atoms, all adjust themselves to the
radius of curvature of the universe, it is only natural that results of
greatest simplicity should be obtained when we select this radius or
some definite fraction thereof as a gauge at every point.


Now, with the restrictions we have imposed, it may appear that there
is nothing left of Weyl’s theory, since we have deprived the Weylian
space-time of all its characteristics by invoking the tendency of
adjustment in place of that of persistence. This view would, however,
be too extreme. It is true that Weyl’s identification of the

electromagnetic potentials, the ’s, with the ’s
or particularities of structure of the continuum, now appears more in
the light of a graphical representation; but as such it remains useful.
Indeed, we must remember that the original urge which rendered a theory
such as Weyl’s desirable was the necessity of reaching a more unified
understanding of nature by including at least the representation of
electrical manifestations in the structure of the fundamental continuum
of space-time, instead of having to regard them as foreign occurrences.
From this standpoint, Weyl’s theory appears secure.


But it is when we come to consider the problem of the Action
of the universe, that Weyl’s theory opens up the most interesting
possibilities. We remember that the action would constitute, so to
speak, the nucleus whence all the laws of nature would issue. In fact,
were the action known, all we should have to do would be to express
its stationary condition, and the laws of matter and electricity would
be revealed. But the trouble is, we do not know what the action may
be; we can only guess at it. In this respect Weyl’s theory proves of
help. For whereas Einstein’s theory restricts the action to being
a space-time invariant, Weyl’s theory allows us to narrow down the
choice by imposing the more stringent conditions of in-invariance. As a
result, the Gaussian curvature  or , which Einstein
had assumed to constitute the function of action of the gravitational
field, must be discarded and replaced by , an
in-invariant.[129] We are thus led to the law of gravitation with the
 term, that is to say, to the finite universe.


Furthermore, the ideal of unity towards which science tends
incessantly, demands that the action be built up from the structural
elements of the fundamental continuum. In Einstein’s theory this was
impossible, since the electromagnetic potentials (i.e., the
’s) were foreign to the space-time structure. It followed
that we were faced with two separate actions, the gravitational action
and the electromagnetic one. Weyl’s theory permits us to obtain a
unification of these actions, since the electromagnetic potentials,
the ’s are now represented by the ’s in the
generalised space-time structure. Accordingly, Weyl constructed an
in-invariant which he suggested tentatively as the function of action
of the world. In addition to the gravitational and electromagnetic
equations which were derived therefrom, the stationary condition of the
action (see Chapter XXXV) entailed certain
electromagnetic equations bearing on the constitution of matter. In
the light of these equations, and taking into consideration the fact
that matter is always of positive density, Eddington concludes: “It
would seem to follow that the electron cannot be built up of elementary
electrostatic charges, but resolves itself into something more akin to
magnetic charges.”


At this stage, a further generalisation of great elegance was given
to Weyl’s geometry by Eddington. Here let us recall that whereas in
Einstein’s theory the fundamental elements of space-time structure were

ten in number (the ten ’s), and whereas in Weyl’s theory
they were fourteen (the ten ’s and the four ’s),
in Eddington’s still more general manifold we are confronted with 40
quantities (the forty ’s). It is not that Eddington
has introduced new elements of structure into the manifold. Far from
it: these elements were present in all the types of manifolds we have
discussed. But they were crystallized by restrictions which removed
them from the mathematician’s control; and what Eddington has done
has been to loosen them. For instance, starting from Eddington’s
generalised manifold, if we impose certain restrictions on the forty
’s, we are led to Weyl’s manifold; by imposing still
others, we are led to the classical manifolds, of which Einstein’s
space-time was a particular instance. As a matter of fact, even in
Eddington’s manifold, certain restrictions of symmetry defining what
is known as the affine condition are still imposed upon the
’s; were it not for these restrictions, there would
have been 64 of these ’s. So far as is known to the
writer, the highly generalised manifolds which would result have not
been studied; but it is interesting to note that they can be conceived
of, and no one can foresee whether their introduction may not prove
necessary eventually. Since Eddington’s geometry is a generalisation
of Weyl’s, we may anticipate certain novel features in it. Thus, in
Weyl’s geometry, we have seen that the length of a rod would vary
were it to be displaced from one point to another. With Eddington’s
generalisation, we must assume that a change of length would also
arise if the rod were rotated round one of its points, hence if its
orientation were modified, even though the rod were not displaced as a
whole.


And here a few words may be said with respect to the purpose of these
successive generalisations. The ultimate goal is one of unification.
We wish to succeed in representing the entire physical universe in
terms of the relationships of structure of the fundamental space-time
continuum. Einstein’s space-time enabled us to account for gravitation
in this way, but the electromagnetic field appeared as a foreign
invasion. None of the known elements of structure seemed capable
of accounting for it. It seemed as though the world of space-time,
gravitating masses and energy might just as well have existed in the
absence of this electrical intrusion. Now, we have every reason to
believe that such cannot be the case, for since matter is built up of
protons and electrons, the annihilation of electricity would entail
that of matter, gravitation and energy, and possibly also of space
and time. In order to overcome this difficulty, it appeared necessary
to generalise our conception of space-time, obtaining thereby a
continuum presenting additional elements of structure which might be
identified with electric and magnetic forces. And so we were led to
Weyl’s generalisation, which permits the electromagnetic field to enter
into the general synthesis, no longer as a foreign adjunct, but as a
constituent element of space-time structure. But, besides the field,
there is the electron, and the field alone does not seem to afford us
the possibility of building up the electron; we cannot account for
atomicity or for the quanta of action. Therein resides the problem of
matter, and it remains to-day an outstanding challenge to science.

Neither can we understand the significance of the two different kinds
of electricity, the positive and negative. So long as all these
mysteries remain unsolved, it is only natural that we should seek new
elements of structure by proceeding with further generalisations.
Eddington’s theory was conceived of with this object in view.


There exist certain interesting features about Eddington’s theory
which we may mention briefly. Inasmuch as the intrinsic magnitudes
of the universe must be in-tensors and in-invariants, instead of
tensors and invariants, the ’s lose their position of
pre-eminence; for the ’s, while transcending our mesh-system,
fail to transcend our choice of a gauge-system. Accordingly, in the
expression of a distance, we must replace  by some in-tensor
of a similar nature. The only fundamental structural in-tensor
that presents itself is , or some definite fraction of
it such as  where  is an
arbitrary constant. Hence, we must put
 
in place of
 
The identification of the new expression with that employed
by Einstein leads to the tensor equation
, 
which, when no electromagnetic fields are present, reduces to
. This is the equation of a
finite universe, so we see that the finiteness of the universe appears
to constitute a necessary consequence of the theory.


A further point is also worthy of note. Gravitation, which involves the
’s, is given by a symmetrical tensor; electricity, on the
other hand, is given by an anti-symmetrical tensor . Now, in
the theories of both Weyl and Eddington, the in-tensor 
takes the place of Einstein’s tensor . But whereas 
is symmetrical,  splits up into a symmetrical and an
anti-symmetrical part; these two parts are given by  and
. In other words, the world tensor splits up of its own
accord into gravitation and electricity, showing thereby the deep union
between the two.


As late as 1922, Einstein did not show much enthusiasm for these new
generalisations, but subsequently he appears to have modified his
views, going so far as to investigate the problem of the world-action
in the light of Eddington’s geometry.


He first studied a possible mathematical expression for the action,
one which had already been suggested by Eddington. It was a strikingly
simple expression representing certain of the generalised space-time
curvatures; no longer a mere stringing together of the various actions.
When the principle of stationary action was applied to it, it fell
apart, yielding the law of gravitation on one side and the laws of
electricity on the other. The mathematical results obtained by

Einstein in this respect point to a general diffusion of electricity
throughout the world; and as in the case of Weyl’s treatment, magnetic
and not electric charges appear to lie at the basis of matter.
Subsequently, Einstein proved that other expressions for the action
would yield the same results.


Yet, in spite of all these remarkable successes, the outlook is none
too promising. The problem of matter is no nearer a solution than
before. Indeed, it is highly probable that some totally new departure
will have to be considered. Here it must be remarked that the attempts
we have been outlining follow the methods of field physics; that is
to say, the entire physical universe is assumed to be built up of the
’s and ’s or other magnitudes of the same kind.
But a number of facts and phenomena render the success of this attitude
doubtful.


In the first place, in the case of the electron, the ratio of its
charge to its mass is of the order of .[130] It follows that
the electrostatic repulsion which two distant electrons exert upon each
other is  times greater than their mutual gravitational
attraction. Now the existence of so high a number, constituting one of
the characteristics of the electron, seems to preclude the possibility
of our deducing the existence of the electron from the field equations.
It would appear as though some other controlling influence were active.
We might possibly have to seek for this influence in the total number
of electrons existing in the universe, a number determined, presumably,
by chance.


Field physics, together with the principle of action, encounters
further difficulties when we consider the quantum phenomena and the
existence of Bohr’s atom. In a number of cases, therefore, there
appears to be something deeper behind the field itself. If so, we
should have to limit the rôle of the field to a purely passive part,
to that of transmitting effects, not of engendering them. If, however,
we abandon all attempts at interpreting matter in terms of the field
quantities, this does not mean that we must relapse into the discarded
idea of substance. In the present state of our knowledge all these
problems are so confused that it seems useless to state anything
definite about them. All we can say is that we are faced with a
something which we do not understand. Weyl expresses these ideas in the
following words:


“If Mie’s views are correct, we could recognise the field as objective
reality, and physics would no longer be far from the goal of giving so
complete a grasp of the nature of the physical world, of matter and of
natural forces, that logical necessity would extract from this insight
the unique laws that underlie the occurrence of physical events. For
the present, however, we must reject these bold hopes. The laws of the
metrical field deal less with reality itself than with the shadow-like
extended medium that serves as a link between material things, and
with the formal constitution of this medium that gives it the power
of transmitting effects.” And elsewhere: “We must here state in
unmistakable language that physics at its present stage can in no wise

be regarded as lending support to the belief that there is a causality
of physical nature which is founded on rigorously exact laws.”


All in all, we must realise that the farther we go, the more
inextricable our difficulties become. The existence of matter still
remains a mystery.








PART IV

THE METHODOLOGY OF SCIENCE











CHAPTER XXXVIII

THE METHODOLOGY OF SCIENCE





AN opinion commonly expressed by philosophers is that the function of
physicists should be to weigh, measure, tabulate, discover new chemical
elements, new facts; and the aim of mathematicians, to solve equations.
That so long as the scientist restricts himself to investigations of
this sort, he is proceeding along strictly scientific lines and his
efforts should be encouraged, but that when he proceeds to discuss the
implications of his discoveries and to draw conclusions on the subject
of space, time, energy, laws of nature, he is getting beyond his depth,
and encroaching on the field of the metaphysician.


Bergson expresses this attitude very clearly in his book, “Duration and
Simultaneity.” He informs us that the reason mathematicians have been
so deceived by the significance of the theory of relativity, to the
point of wishing to substitute space-time for separate space and time,
lies in their lack of philosophical insight. They err by wishing to
attribute a metaphysical significance to a concept which (according to
Bergson) represents a mere mathematical fiction.


To these and kindred accusations, scientists (when they retort at all)
will answer, with Kelvin: “Mathematics is the only true metaphysics.”
Clifford, in his popular essays, voices the scientific attitude with
increased emphasis when he writes: “The name philosopher, which meant
originally ‘lover of wisdom,’ has come in some strange way to mean
a man who thinks it his business to explain everything in a certain
number of large books. It will be found, I think, that in proportion
to his colossal ignorance is the perfection and symmetry of the
system which he sets up; because it is so much easier to put an empty
room tidy than a full one.” These opinions prove that there exists
a definite misunderstanding between scientists and philosophers; a
misunderstanding which might easily have been avoided had philosophers
possessed a proper realisation of their inevitable limitations when
discussing scientific matters. The simplest way to approach the source
of the trouble appears to be to analyse the methods of scientists and
ascertain in what respect they differ from those of philosophers.


The development of all the branches of physical science has proceeded
roughly along the same lines. First we witness an accumulation of
experimental and observational facts, furnished by crude observation
and by the discoveries of the laboratory workers. Then, thanks to
the efforts of the theoretical investigators, this raw material
is co-ordinated into a consistent whole. In this way, out of a
disconnected series of facts, a coherent doctrine or science is born.

History proves that with very few exceptions (illustrated by such men
as Newton, Archimedes and also Hertz), the most brilliant experimenters
had but little theorising ability; and that, vice versa, the ablest
theoretical scientists made poor laboratory men. We are thus led to
differentiate between two distinct types of scientists: the practical
and the theoretical workers. For example, in physics, Maxwell,
Planck and Einstein must be placed under the heading of theoretical
investigators, whereas Hertz and Michelson are splendid illustrations
of able experimenters.


In modern science, at least in physical science, these works of
co-ordination can be attempted only through the medium of advanced
mathematical analysis; hence the theoretical physicists must
necessarily possess a profound knowledge of mathematics. Yet they are
not, properly speaking, great mathematicians. Mathematics, for the
theoretical physicists, constitutes but a tool, a means of arriving
at a co-ordination of the physical facts. These men have never
entered into the study of mathematics as an art in itself; they have
never forged new mathematical instruments, never made mathematical
discoveries. Thus, they cannot be classed with mathematicians of
the calibre of Lagrange, Gauss, Riemann or Poincaré, to whom modern
mathematics owes its existence. Just as we were compelled to make a
distinction between experimenters and theoretical physicists, so once
again we must make a distinction between theoretical physicists and
pure mathematicians. Again, with very few exceptions, as exemplified
by Fourier, Poisson, Poincaré, Minkowski and Weyl, pure mathematicians
have rarely contributed directly to the advancement of theoretical
physics, although indirectly, of course, their discoveries have
been made use of by the physicists. Since they are neither great
mathematicians nor able experimenters, what are we to call such men as
Maxwell, Lorentz and Einstein?


If we concede that the name philosopher should apply to those who
are concerned more especially with a harmonisation of the whole than
with the seeking of individual facts, or, again, with a general view
of things rather than with a restricted view, we must agree that the
theoretical physicists must be called philosophers. They are, then, the
philosophers of the inorganic world, just as the pure mathematicians
might be called the philosophers of abstract relations.


Now, as we have said, the facts which these scientific philosophers
are seeking to co-ordinate are of a restricted species; they are
mathematical, physical and chemical in nature; hence it is clear
that there is room for a more general type of philosopher—a
super-philosopher, as it were—whose facts would comprise all the
spheres of human knowledge, including consciousness, emotions and the
relationships between mind and matter. The traditional philosophers—or
shall we say the lay philosophers, since we are discussing scientific
matters?—aspire to be placed in this category of thinkers.


It would appear, then, that theoretical scientists, and lay
philosophers have much in common; they differ only in the scope of the
facts they are seeking to co-ordinate. But here is where the first

breach arises. The theoretical scientist proceeds with the utmost
caution and considers himself at liberty to theorise only after a
sufficient number of facts have been established by experiment and
observation; till then he remains silent. This cautious attitude is
evidenced even in the most revolutionary theories, such as those
of relativity and of the quanta. It was not one, nor two, nor even
three of the negative experiments in electromagnetics that drove
Einstein towards his revolutionary theory; it was the whole body of
electrodynamics. Even so, he formulated his solution only after a
number of more classical attempts to solve the same difficulties had
failed.


But when we examine the procedure of the lay philosopher who discusses
scientific matters, we see that his procedure is entirely different.
Taking examples at random, we find a contemporary philosopher telling
us that the spatio-temporal system has to be regarded as limited, since
“all existent things, as distinguished from pure forms or orders, are
finite.”[131] But the average scientist would retort that with the same
degree of plausibility we might say that the spatio-temporal system
must be infinite, since the concept of infinity exists. At all events,
it is instructive to contrast these loose arguments with Einstein’s
painstaking labours which led him to the finite universe.


Another example is afforded by Bergson’s comments on the invariant
velocity of light. He explains that inasmuch as the corpuscular
theory of light has been rejected, light is a propagation and not
a transference of matter. It is, then, only natural (according to
Bergson) that its speed should be invariant. In his own words: “Why
should it be affected by a certain too human way of perceiving and
conceiving of things?” Bergson apparently forgets that it is only light
in vacuo that moves with an invariant speed, and, even so, only
when far from matter. A ray of light passing through water is also a
propagation, and yet its speed is not invariant, as Fizeau’s experiment
proved seventy years ago. Also, we might with equal plausibility apply
Bergson’s arguments to sound waves. They also constitute propagations,
and yet, once again, their speed is not invariant. In short, it
would appear that the philosopher, even when he interprets the facts
correctly, appears to be ignorant of so large a number of other facts
that his philosophical conclusions rest on no solid foundation.


So much for the facts; but the facts are not all, since the theoretical
scientist’s chief aim is to co-ordinate these facts. But, here again,
the philosopher’s criticisms would suggest that, being unable to follow
the series of mathematical deductions which lead the theoretical
scientist to his conclusions, he fails to understand the necessity for
these conclusions, and accordingly considers them to be wild guesses
over which he will invariably suggest his own as an improvement.


Possibly a few definite illustrations will bring out with greater
clarity some of the points we are endeavouring to stress. Let us
revert, for example, to space-time, which proves itself so offensive
to Bergson. His position, as already stated, is that space-time
is a pure mathematical fiction in no wise demanded by the theory

of relativity, which he accepts as sound physically, provided its
interpretation is abandoned to lay philosophers. His arguments
proceed somewhat as follows: You physicists have performed certain
electromagnetic experiments; you mathematicians have deduced therefrom
the Lorentz-Einstein transformations on purely formal grounds. Then you
have plastered these transformations together and discovered a certain
mathematical invariant. So far, well and good; now you must stop. It is
for us philosophers to interpret these results. We will begin by ruling
out your faulty inferences as to the existence of a four-dimensional
continuum, space-time, of which space and time are mere abstractions.
Follow our arguments carefully and we shall convince you. Possibly you
mathematicians have not noticed that every observer is perfectly aware
of a separate space and time wherever he goes, just as he is aware of a
separate space and temperature. Were space-time one sole continuum, as
you maintain, we could never be aware of space and of time, but only of
space-time. This is contrary to the facts. Hence, space-time is a hoax,
and your mathematics has led you astray.—Q. E. D.


But it is obvious that arguments of this sort can never have any
merit, for the reason that they are based on a total misconception of
the significance of dimensionality and manifolds. These are highly
technical concepts which it requires more than a crude elementary
knowledge of mathematics to grasp. However, even without going
into details, we can easily convince ourselves of the fallacy of
Bergson’s argument by applying it to the three-dimensional space
of classical science. Thus, we know that wherever we are situated
in three-dimensional space, we can always split it up into height,
length and breadth; yet this does not preclude the fact that length,
breadth and height are but abstractions from one single entity, namely,
three-dimensional space. And, in the same way, as has been demonstrated
by Minkowski, length, breadth, height and duration are but abstractions
from four-dimensional space-time.


Another philosopher, Professor Broad, in his book, “Scientific
Thought,” informs us: “(a) No matter what frame we choose, we
shall need four independent pieces of information to place and date
any instantaneous point-event. This fact is expressed by saying that
Nature is a four-dimensional manifold; and nothing further is expressed
thereby. (b) In whatever frame we choose we shall find that our
four pieces of information divide into two groups; three of them are
spatial and one is temporal. Thus we must be careful not to talk, or
listen to, nonsense about ‘Time being a fourth dimension of Space.’”


Now it is agreed that whoever speaks of time as a fourth dimension
of space is expressing himself very loosely. What we should say is:
“Time is a fourth dimension of the space-time world.” But Broad’s
argument does not suggest that it is this looseness of phraseology
that offends him. His words would imply that it is the reference to
time as a fourth dimension that must be branded as “nonsense.”
His error in this respect is thus exactly the same as Bergson’s.
As for his contention that the four-dimensional structure which

relativity ascribes to nature means no more than that events need four
co-ordinates to be placed and dated, the statement is scarcely correct.
Were this trivial piece of information all that Minkowski was conveying
when he referred to the world as four-dimensional, his discovery
would have excited neither admiration nor criticism. It would have
passed unnoticed by scientists, as expressing a mere platitude that
could have been no news even to a child. The point that philosophers
so persistently fail to understand is the difference between an
amorphous continuum, such as a manifold of sounds or colours,
and a metrical continuum, i.e., one with which a definite
geometry is associated. What Minkowski did was to prove that, contrary
to the belief of classical science, the world was a four-dimensional
“metrical” continuum, i.e., one with which a four-dimensional
space and time geometry was associated. It was this novel aspect of
the world that implied the revolutionary conception of the fusion of
space and time. And it was this aspect that entitled Minkowski to speak
of time as a fourth dimension in a profound sense as well as in the
trivial sense which, though never disputed by classical science, was
never stressed on account of its artificial nature. Indeed, had it not
been for this interpretation placed upon his words by Minkowski himself
and by all scientists, the four-dimensional world would have appeared
to be as artificial as a four-dimensional space-temperature continuum.
It is granted that the various meanings attributed to the word
“dimension” by mathematicians may cause some trouble to beginners, but,
on the other hand, unless the four-dimensional aspect of nature in the
relativistic sense is understood, it is quite useless to philosophise
on the more advanced aspects of the theory. Before we try to run, we
should at least learn to stand on our feet.


To take another illustration at random, it is the same when
Professor Broad discusses the law of gravitation. Notwithstanding
his condemnation of the conception of space-time, as one sole
four-dimensional continuum, he sees no inconsistency in discussing
the geometry of this four-dimensional continuum. At any rate, after
telling the reader that a space may be flat or curved like an egg or
like a sphere, he decides (p. 224) that the law  denotes
a spherical curvature. Then, on a later page (p. 485), we are
informed that the curvature is homaloidal. This taxes the
imagination of the reader, for as “homaloidal” means flat, a space
cannot be both homaloidal and spherical at one and the same time.
However, it is to be presumed that Broad meant “homogeneous,” not
“homaloidal,” and we shall interchange the two words accordingly. But
even when amended in this way, his premises are totally incorrect,
since the law , which is to account for gravitation, is
neither spherical nor homogeneous nor homaloidal. This law represents
a heterogeneous species of curvature; indeed, were the curvature
spherical, it could never account for gravitation.


Starting from his mistaken premises, our philosopher soon falls into
further confusion. After telling us (p. 224) that the supposedly

spherical law of curvature, , is able to account for
gravitation, and for all the gravitational effects predicted by
Einstein, he next informs us (p. 485) that this law cannot be the
law of gravitation in the real world because the space round the sun
is never completely empty, but is filled with tenuous cosmic matter,
electromagnetic fields, and light waves. This casual presence of matter
and electromagnetic fields would (always according to Broad) modify
the law of spherical curvature, , causing it to become
heterogeneous. But all these statements are utterly erroneous, since,
as we have said, even in an ideally empty space-time, the law of
curvature, , round the sun would still be heterogeneous,
quite apart from the minute superadded effects that might be occasioned
by a casual matter distribution. In other words, the heterogeneity is
essential, not accidental.


We now come to the Professor’s philosophical conclusions. He notes that
this passage from a space-time which is spherical and homogeneous in a
gravitational field to one which is heterogeneous is brought about by
the casual presence of matter round the sun. Einstein never stresses
this point which Broad has brought to light, whence Broad concludes
that this important transition from homogeneity to heterogeneity
has been “slurred over.” As a philosopher he deprecates this loose
treatment, pointing out that a totally new conception of space is
involved, one that should be submitted to careful philosophical
scrutiny.


Of course, this charge is totally unjustified and issues solely
from our philosopher’s faulty understanding of the facts. The
heterogeneity was never introduced in the casual way Broad believes.
It was introduced by the front door the moment Einstein wrote out his
gravitational equations , as any one familiar with the
theory of spaces would have recognised immediately. Far from having
been slurred over, this heterogeneity of space-time constitutes the
very essence of Einstein’s general theory. Whereas in classical science
the sun developed a field of force around itself in a perfectly
flat space, in the general theory of relativity the sun develops a
heterogeneous space-time curvature. The field of force is then
but a manifestation of this curvature. As for the new conception
that this heterogeneity forces upon our understanding of the world,
it has been subjected to critical enquiry by Weyl and Einstein.
Furthermore, it is not so new a conception as Broad appears to believe,
for it is one we owe to Riemann following his epochal discoveries in
non-Euclidean geometry seventy years ago. As Weyl tells us:


“Riemann rejects the opinion that had prevailed up to his own time,
namely, that the metrical structure of space is fixed and inherently
independent of the physical phenomena for which it serves as a
background, and that the real content takes possession of it as of
residential flats. He asserts, on the contrary, that space in itself
is nothing more than a three-dimensional manifold devoid of all form;
it acquires a definite form only through the advent of the material
content piling it and determining its metric relations.”
 And
again, elsewhere:


“It is upon this idea, which it was quite impossible for Riemann in
his day to carry through, that Einstein in our own time, independently
of Riemann, has raised the imposing edifice of his general theory of
relativity.” (We may mention that the reason Einstein was able to
carry through Riemann’s ideas is because he applied them to space-time
instead of to space alone.)


Of course, it is granted that Riemann’s discoveries and non-Euclidean
geometry are not of easy access; yet, on the other hand, the man who
ignores at least the implications of non-Euclidean geometry, is in no
position to discuss Einstein’s theory or the problem of space even
from a purely philosophical point of view. Indeed, it may be said that
the philosophical importance of non-Euclidean geometry is even greater
than its scientific importance. Such has always been the contention of
Lobatchewski, Riemann and other great mathematicians.


So far as the writer is aware, the only philosopher who made any
reference to non-Euclidean geometry, prior to Einstein’s discoveries,
was Lotze; and Lotze expressed the hope that philosophy would never
allow itself to be imposed upon by it. But a perusal of Lotze’s
writings on the subject proves that he had a very superficial
understanding of what was meant by “curvature.” His opinions seem to
have been based on Helmholtz’s more or less successful attempts to
popularise the new doctrine by easy illustrations. Unfortunately, the
subject is too deep to be explained in any loose way. At any rate,
the effect of this negative attitude on the part of philosophers has
reacted to their disadvantage in that it has deprived them of a very
powerful insight into the problem of space.


Our sole purpose in mentioning these few examples (which we might have
multiplied ad infinitum) has been to show how wary we should
be of criticising the conclusions of scientists before proceeding to
acquire more than a superficial schoolboy knowledge of the physical and
mathematical facts which they are endeavouring to co-ordinate. If, as a
result of misinterpretation or ignorance on our part, we are acquainted
with only a small number of these facts, the conclusions of scientists
may well appear strange and unwarranted; but it should be remembered
that had not all these additional facts, which we ignore, been known to
the scientist, it is quite certain that he never would have been driven
to the conclusions that offend our natural views so deeply.


Unfortunately, in many cases, these facts are not of an elementary
character; they cannot be explained in an hour or so. More often than
not, an appreciation of what they represent would require years of
preliminary study, for they are often in the nature of conclusions
derived from other facts through the medium of laborious mathematical
analysis. These statements, of course, must not be construed as
applying solely to theories of mathematical physics. They apply with
equal force to the discussion of numerous concepts such as those of
infinity, continuity and atomism, dimensionality, number, measurement,
rigidity, etc. Discoveries in higher mathematics and in physics have
thrown a new light on all these subjects. Students of advanced

mathematics know only too well how crude was their understanding of
continuity and infinity before they were apprised of the mathematical
discoveries of Riemann, Weierstrass, Cantor, Dedekind and du Bois
Reymond. Furthermore, no one can have studied advanced mathematics
without realising its intimate connection with problems of psychology,
for mathematics has brought to light mind-forms of which we were only
dimly conscious.


The thorough remodelling of our ideas of the universe which the
discoveries of Planck and Einstein appear to be rendering inevitable,
makes an understanding of these fundamental points imperative. For
example, let us consider the quantum theory. As we shall see, its
necessity arises only when we take into consideration a number of
empirical discoveries pertaining to the various realms of physical
science. Here, for instance, is a heated enclosure. We make a pinhole
aperture in its wall and examine the colour and intensity of the light
rays streaming out. The experimenter notes that as the temperature
increases, the colour of the light rays passes gradually from red
to white. He then studies the density of energy of the radiation
emitted, and finds it proportional to the fourth power of the absolute
temperature of the enclosure, regardless of the material of the
enclosure. This empirical discovery is known as Stefan’s law.
Then, by splitting up the light through a prism, he finds that the
radiation which exhibits the maximum intensity is of a frequency
which is proportional to the absolute temperature. This discovery is
comprised in Wien’s displacement law. These are the facts of the
case; the physicist has accomplished his task and may now retire. What
is the significance of these facts? Were science to limit itself to the
bare discovery and cataloguing of facts, there would be nothing more
to do. But regardless of what philosophers may say to the contrary,
science should not and does not limit itself to any such humble rôle.
The discoveries of the experimenters are handed over to the theoretical
investigators, and it is these who are called upon to interpret their
significance.


In the present case, the outstanding names connected with the problem
of radiation are those of Boltzmann, Wien, Rayleigh, Jeans and Planck,
all of them theoretical physicists. Their object was to co-ordinate
the facts of radiation with what little was known of the phenomenon of
light emission. This task involved mathematical calculations which we
should be unjustified in criticising unless we possessed an extensive
knowledge of mathematics; hence we may assume that this part of the
work is not disputed by the critic.


As a result of these calculations, it was found to be quite impossible
to reconcile the existence of the facts disclosed by experiment with
any continuous emission theory of light. Whenever it was assumed
that the atoms in the heated enclosure emitted their radiations
continuously, it always followed that, for any given temperature, the
maximum intensity of the radiations should be found in the infinitely
high frequencies, and not in the visible spectrum; whence it followed
that a heated enclosure could never emit visible light. This
was, of course, contrary to common experience. The literature on the

subject extends over a number of years. Various explanations of the
discrepancy between theory and experience were suggested, but for one
reason or another none was found satisfactory.


Then Planck noticed that if, contrary to all previous opinion, we
assumed that the atoms in the heated enclosure emitted their radiations
by discrete quanta, it was possible to obtain a mathematical
formula of radiation in perfect agreement with experiment. According
to Planck’s calculations, it was necessary to assume that light was
emitted in bundles, or quanta, possessing an energy . In his
expression,  represents a universal constant called Planck’s
constant, and  represents the frequency of the light. Obviously,
the greater the frequency of the light, the greater the value of its
quantum of energy. These discontinuities in the light-energy emission
necessitated the introduction of probability and entropy considerations
into the theoretical treatment. Inasmuch as entropy is an abstruse
concept drawn from thermodynamics, we see that the facts entering
indirectly into the problem of radiation were considerably increased
in number. Obviously, it would be quite impossible either to justify
or to criticise Planck’s hypothesis by any general line of talk, for
without the aid of the mathematical instrument, and a knowledge of
thermodynamics and mechanics, no conceivable connection could be seen
to exist between a discontinuous emission and the facts disclosed by
experiment; hence the necessity of the hypothesis could not be gauged.


Thus far, however, nothing very revolutionary appeared to be involved.
All we had to do was to assume that the emission of light by a heated
atom was due to the breaking up of some intra-atomic structure.
Nevertheless, on deeper investigation, even assuming Planck’s emission
theory to be correct, a number of theoretical difficulties were noted.
These are of so technical a nature that we shall not dwell on them.
Suffice it to say that they relate in a general way to the exchange of
energy between the various atoms and to the conditions of equilibrium.
The names of Poincaré, Lorentz and Einstein are encountered at
this stage, and the final result was that somewhere, somehow,
discontinuities had to be introduced.


The next great advance was due to Einstein. He noticed that the
well-known anomalies in the specific heats of bodies at very low
temperatures could be explained, provided we assumed the discontinuity
of energy. As applied to solids, this would connote that the vibrating
systems could take up or emit energy only in definite quanta; and, as
applied to gases, we should have to assume that the molecules could
rotate only with definite frequencies. All these problems dealing with
specific heats bring us into contact with the kinetic theory of gases,
as also with other realms of physics, such as the problems of anomalous
dispersion and selective reflection in optics. Again basing his
deductions on the existence of quantum phenomena, Einstein deduced a
formula for the photo-electric effect, and this formula was found to be
in harmony with experiment. Finally, we may mention that Bohr’s atom,
which is also based on the same idea of discontinuity, allowed him to

account for certain spectral series.


We now get to the important point. From the expression for the atom
of energy or quantum , where  is a constant and 
is the frequency of the radiation, it is obvious that there exist as
many different types of quanta of energy as there exist different
frequencies of radiation. There is no one unique type of quantum of
energy in nature. That which is universal is not the quantum of energy
, but the constant . It can be shown that Planck’s
constant  is not a mere number; it represents some definite
abstract mathematical entity, and that entity is action.


We must assume, therefore, that there exist atoms of action in
nature, just as there exist atoms of matter. But what is the deeper
significance of this atom of action? First of all, has it any deep
significance, or is its discovery on a par with that of some new
variety of flower, or some new mineral? But to decide on a question
of this sort we must possess a fairly thorough understanding of what
is meant by action, as also of the part this important entity
plays in science. Now, action is a highly abstruse concept taken from
analytical dynamics. It would be absurd, therefore, to criticise the
conclusions of scientists, whatever these might be, unless we were in
a position to discuss the numerous facts which were involved in their
arguments.


The verdict of scientists is that the atomicity of action entails a
gigantic revolution in our understanding of nature. In the first place,
the laws of mechanics, whether those of classical science or those of
relativity, issue in a principle of action; so that by tampering with
action, we are tampering with the basic laws of mechanics. Hence, it
would appear that our insight into the laws of nature, even in spite of
the great advance due to relativity, was still far too crude. We should
have observed merely macroscopic average effects; the deeper laws,
the underlying microscopic ones, would have escaped us completely.
Conclusions of this sort had, of course, already been arrived at in
other ways, as, for example, in the kinetic theory of gases; but the
atomicity of action extends these views still farther. It suggests that
change is always discontinuous; that a system passes from one state to
another, not in a continuous way, but by a series of jerks or jumps.
When we wish to decide how the jumps will follow one another, no exact
laws can be formulated; and we are compelled to appeal to statistical
considerations and probabilities. No rigid deterministic scheme is
apparent in nature, or, in Weyl’s words, “no causality of physical
nature which is founded on rigorously exact laws.” In the realm of
the microscopic, we appear to be confronted with total chaos and
anarchy. The past does not entail the present, as it would in a purely
deterministic scheme. Free will appears to be rampant; and our sole
means of prevision is to establish averages, just as a life-insurance
company does when it fixes its premiums. Statistics and probability,
blind chance and uncertainty, take the place of rigid determinism. Of
course it may be that a further advance in our knowledge will enable us
to rediscover a deterministic scheme beneath the chaos which is now

confronting us. But the point we wish to stress is that in the present
state of our knowledge no definite stand can be assumed.


Even this is not all. There is every reason to suspect that the
atomicity of action is closely related to the atomicity of matter,
though what the precise connection may be remains a total mystery.
Furthermore, when we realise that “action” contains the product of
space and time, or, if we prefer, “elements of space-time,” and when
we realise that what mathematicians call “the domains of probability”
are now of finite extent instead of reducing to points, the possibility
of space-time turning out to be atomic suggests itself strongly. There
is no telling where we may be led, for our entire understanding of
nature is at stake. As Weyl expresses it: “Above all, the ominous
clouds of those phenomena that we are with varying success seeking to
explain by means of the quantum of action, are throwing their shadows
over the sphere of physical knowledge, threatening no one knows what
new revolution.” As we have mentioned, it may be that space and time
will turn out to be atomic, or, again, that we shall have to recognise
them as approximate concepts which will have to be abandoned when the
infinitely small is contemplated. In much the same way, the conception
of temperature as due to an agitation of molecules loses its meaning
when the molecules themselves are considered.


What the future may hold in store is any one’s guess at the present
time. But one thing is certain: we are faced with a gigantic
revolution; and the new ideas will undoubtedly conflict with the
common-sense instinct which the rationalist often erroneously
attributes to “reason.” But what if they do? Did not the existence
of men walking upside down at the antipodes conflict with the crude
common sense of our ancestors? Or, again, consider the less trivial
illustration of the wave theory of light. When Fresnel defended it,
Poisson pointed out that it would imply the existence of a bright
shadow behind a body of a certain size situated at a certain distance
from a wall. On the strength of this argument Poisson dissented from
Fresnel’s views. Yet when the experiment was actually performed,
the bright shadow was seen to be there. And why did Poisson regard
his argument as valid? Because it was based on common sense; but we
see that this common-sense instinct that was misleading him was by
no means the product of reason; it was founded merely on partial
and crude experience.[132] It is probable that the more we study of
nature, the more the common sense of our day will be submitted to
disagreeable jolts; and this is only natural, since the more refined
our investigations, the farther we shall be wandering from the familiar
world of common experience.


To revert to the new ideas that suggest themselves as a result of the
quantum theory, we see that starting from facts which by common consent
it is the function of the physicist to establish, we are gradually led
through a series of theoretical deductions to considerations which

border on metaphysics. But whereas the metaphysician will claim a
priori knowledge or else, whether he admits it or not, will be
deducing his knowledge from the crudest facts of daily experience, the
theoretical scientist will base his deductions on extremely accurate
observations embracing all the phenomena known to science.


For this reason, these deductions will constitute knowledge; for
knowledge springs from an accurate investigation of a large
number of facts, not excluding those revealed by ultra-refined
experiment. More precisely, a knowledge of nature consists in the
co-ordination of all known facts, and this co-ordination must be
performed so as to account for phenomena not merely in some vague
qualitative way, but with the utmost accuracy. Only after this
preliminary synthesis has been accomplished can general philosophical
conclusions be forthcoming. Until then all we can do is guess, and past
experience proves that ninety-nine times out of a hundred our guesses
will be wrong.


In short, it is in the accuracy with which the facts are studied and
co-ordinated, and it is in the number of facts considered, that the
scientific method differs from all other methods. Therein resides its
superiority. Had the great scientists confined themselves to a general
line of talk based on a crude survey of a number of conspicuous facts,
we might still to-day be defending Plato’s idea that earth, air, fire
and water constituted the four elements, or Aristotle’s contention
that the heavenly bodies described circles because circular motion was
the most noble of motions, or, again, Kant’s belief that the axioms of
geometry were in the nature of a priori synthetic judgments, and
so forth.


Thus it may be realised that a discussion of the philosophical
significance of the discoveries of physical and mathematical science
must be left to the theoretical physicists and to the mathematicians.
They alone, in view of their wide knowledge of facts and their mastery
of the rigorous mathematical mode of thinking, are in a position to
co-ordinate the apparently disconnected results furnished by experience
and by reason. If, then, a super-philosophy is to be attained, it
would appear that the most successful results would ensue from a
work of collaboration between the scientists of the various branches
of knowledge. Such collaborations are continually in progress. We
need only mention the contributions of physicists like Einstein and
Nernst to problems of physical chemistry; and physical chemistry is
closely allied to the chemistry of colloids, hence to that of the
living organisms. All these spheres of science, from mathematics to
psychology, dovetail into one another, as terms like bio-chemistry,
psycho-physics and physical chemistry indicate.


It might be urged that the results embodied in the special sciences do
not embody all of nature; that there is mind and consciousness, that
there are emotions, values in quality, religious instincts, and so on.
But here it should be remembered that whatever transcends the sphere
of the special sciences transcends it precisely because it is vague
and only dimly apprehended. And where facts are so vague and poorly
established as to be refractory to the scientific method, we generally
find that there are so many different ways of co-ordinating them

loosely that almost any opinion can be expressed with the same degree
of plausibility. As a result, the opinion of the wise man is on a par
with that of the ignoramus.


If we wish to advance at all, it would seem that the best method would
be to start by considering the facts we know something positive about,
rather than reverse the procedure. The results embodied in the special
sciences are so numerous and (relatively speaking) so well established,
that we cannot afford to consider seriously any system of philosophy
which would enter into conflict with them, or ignore them.


At any rate, granted that, in the present state of our knowledge, no
co-ordination of facts can be anything but extremely fragmentary,
it may be presumed that the theoretical scientists who have shown
such marked ability in their co-ordinations of natural facts are the
men best fitted to construct a philosophy of nature. We need not be
surprised, therefore, to find that their study of nature has yielded
them a philosophy which, with very few exceptions, they all share in
common.


In the present chapter, we shall discuss the methodology together
with the philosophic views that are accepted by the vast majority of
theoretical physicists. In particular, the philosophy expressed will
be exemplified by the attitude of the two leading scientists of our
generation: Poincaré as a mathematician, and Einstein as a physicist.


The problem of knowledge, though generally considered independently
of science proper, is yet so involved with scientific considerations
(some of which are by no means elementary) that it appears necessary
to approach it by the usual methods of scientific investigation. By
knowledge we do not wish to imply our bare awareness of sensations,
such as the worm and oyster probably share in common with human beings.
Sensations constitute one of the original sources of knowledge, but
knowledge entails considerably more; judgment and inference enter into
knowledge, and knowledge is a construct or co-ordination in which our
sensations enter merely as fundamental elements. For instance, when
as a result of our visual and tactual sensations we recognise that a
table is there before us, we are claiming knowledge; but the visual and
tactual impressions by themselves do not constitute knowledge.


The natural uncritical view would be to assume that knowledge was given
directly by the disclosures of perception. Thus, when we see the table,
we know it to exist “there-now” in the spatio-temporal background. But
if we analyse the situation, we cannot subscribe to this view, for our
recognition of the table’s existence and position in space and time
appears to have been brought about in a far more complicated manner
than a cursory examination might lead us to suppose. What we really
experience is an aggregate of colours with a well-defined contour. Only
when we wish to ascribe a cause to these sensations does the idea of
a table enter our consciousness. But here again, in this search for a
cause, it is only in view of past experience, in view of an association
of ideas, that we feel justified in postulating the existence of
the table situated there-now in the spatio-temporal background. Our
judgment may be correct, but it might also be erroneous, as it would

be had we been gazing at a skilful painting or at the image of a table
in the mirror. Quite independently of such possible errors of judgment,
the main point is that there is a decided difference between our
awareness of the visual sensations and our belief in the presence of
a table located there-now in space. Whereas the visual sensations do
not entail as an inevitable corollary the existence of the table, yet
our belief in its existence does presuppose our awareness of certain
sense impressions or our memory thereof, since otherwise there would
be no reason for us to postulate the table’s existence. For this
reason we must credit to our awareness of sensations primacy over the
so-called immediate disclosures of perception, just as we must concede
to the recognition of experimental facts priority over the scientific
theories constructed with a view to bringing about their co-ordination.
Accordingly we shall refer to our awareness of sensations as facts.


A further illustration may make this point clearer. For example, we
feel hot, and exclaim: “What a warm day!” Our awareness of a sensation
of hotness constitutes a fundamental fact, but our claim that the day
is warm is but an inference. We may test the warmth of the atmosphere
with a thermometer, hence we may test the validity of our inference,
but we cannot test our awareness of warmth. The feeling of warmth may
be due to the temperature of the air, to fever or to sheer imagination,
but, regardless of its cause, we know that we feel warm, and our
assurance of this fact can neither be disputed nor analysed.[133]


Then again, we experience very similar sensations when our skin comes
into contact with a substance at high temperature or with liquid air.
If from this similarity in our sensations we should infer the identity
of the temperatures involved, we should be led into error; but it would
be our inferences that were at fault, and not the sensations, which
subsist regardless of whether or not we choose to draw inferences
therefrom.


It is scarcely necessary to mention that those philosophers who deny
the legitimacy of the views just expressed, claiming our knowledge of
external reality to be a matter of direct apprehension, find themselves
in a very embarrassing position when such commonplace phenomena as
mirror-images are considered. It is all very well for them to say that
the results of visual perception may have to be corrected subsequently
by varying the conditions of observation and taking into consideration
all other perceptions. But the fact is that if this visual perception
is to be regarded as revealing reality directly, i.e., as
fundamental, its disclosures should be beyond dispute and it would

be meaningless to correct them. For we can correct a datum only in
virtue of other criteria, which are then automatically regarded as
more fundamental. In the present case the philosopher’s argument would
indicate that the result of a co-ordination of perceptions in general,
is to be taken as more fundamental than bare visual perception or bare
auditory perception, etc. But inasmuch as the disclosures of no one
of the individual perceptions that enter into the co-ordination can
be accepted without a possible danger of correction, we must go back
farther, behind the individual perceptions, to the sensations whose
recognition is untainted by any trace of inference. We then arrive
at our original conclusion, namely, that knowledge springs from a
co-ordination not of perceptions, but of sensations.


Let us consider another example. The neo-realist would probably state
that when we say, “I hear a bell,” no element of inference need enter
into this knowledge. But a contention of this sort would of course be
untenable, for the only reason the auditory sensation yields us any
knowledge of the bell is because, in view of an association of ideas
issuing from past experience, we have come to connect a certain class
of auditory sensations with the presence of a bell. A man who had seen
bells, but had never heard them clang would not attribute the sound to
the bell any more than a man who had never encountered rattlesnakes or
been told of their existence would ever say: “I hear a rattlesnake.”
On the other hand, a man who had previously come into contact with
these reptiles would be just as apt to say, “I hear a rattlesnake,” as
the philosopher to say: “I hear a bell.” Obviously, past experience,
and not direct recognition, is at the root of this knowledge. In the
absence of past experience, all we could say would be, “I sense a
sound,” and then try to describe the sound by reproducing it, as nearly
as possible, with our tongue and lips.


With visual perceptions our conclusions will be exactly the same, but
at first sight it might appear that the problem was slightly different,
for even had we never seen a snake before, we should still be able
to say, “I see a creature with a long, thin body,” and then proceed
to coin some name for it. But it should be remembered that although
we might never have seen a snake before, yet a snake is a particular
instance of an object, and unless we had always been blind we should
have seen objects ever since infancy. If, then, we wish to obtain a
parallel to the case of the rattlesnake (as we applied it to auditory
perceptions), we must start with a blind man who has felt objects but
never seen any. Then, assuming he were suddenly endowed with eyesight,
the question is whether he would identify immediately, by a mere act of
intuition, the colours and shapes he would now see, with the table he
had previously explored with his hands. This is precisely what we have
every reason to doubt. We may now proceed to a more detailed discussion
of the knowledge-problem.


Here it should be clearly understood that we are merely seeking
to establish a hierarchy of knowledge following the psychological
order according to which human knowledge appears to have arisen. We

may therefore consider the faculty of unreasoned sense-awareness as
furnishing the initial data which it is necessary to accept before we
are in a position to speculate any further. Together with our awareness
of sensations we have to consider our awareness of thoughts or ideas.
Whether, in the absence of sensations, thoughts would still have
originated, is a question which does not concern us. At all events, an
answer to it seems impossible, for we cannot study the thoughts of a
living corpse.


Next we have to consider our awareness of the passage of time. This
awareness appears to be closely allied with the faculty of memory.
Indeed, it is only thanks to the memory of sensations or ideas that we
can differentiate the present from the past. It is probable, therefore,
that to a being devoid of all trace of memory, to a being sensing but
the present, past and future would convey no meaning and the passage
of time would be unthinkable. Again, whether, in the absence of our
awareness of sensations or ideas, memory would have anything left to
remember, is a question which need not detain us. The reason for this
omission is, of course, that in the present survey we are considering
normal human beings; and with these an awareness of sensations, ideas,
and of the flowing of time is known to exist.


Our recognition of the simultaneity of two sensations is fundamental,
in that it cannot be analysed further. The same fundamental nature must
be credited to our recognition of a succession of sensations or ideas.
For this reason a sense of simultaneity and succession (when referring
to our awareness of sensations or ideas, and not, of course, to
a simultaneity of spatially separated events) must serve as a basis for
subsequent knowledge.


We have also to mention our judgments of constancy, invariancy or
sameness. Thus, we recognise two sensations or two groups of sensations
as identical, or, again, we judge them as subsisting unmodified through
time. Although all these seemingly a priori basic sources of
information are of a widely different nature, we may consider them as a
whole in our future discussions.


Now, had men confined themselves to registering sense impressions and
to sensing the flow of time, there could never have arisen such a thing
as scientific knowledge or even crude commonplace knowledge. Somehow
or other the initial facts had to be co-ordinated and interconnected.
Only thus could a coherent form of knowledge leading to prevision
become possible. It is to this synthesis of our sense impressions,
supplemented by the fundamental forms of recognition we have mentioned,
that we owe our belief in an external universe of space, matter,
force and colour. In this universe, time was assumed to be flowing,
events were regarded as exhibiting causal relationships; and our sense
impressions were attributed to common causes existing in a public
objective universe.


It is probable that a belief in causal connections arose from our
ability to produce and to arrest certain sense impressions at pleasure
through the conscious action of our will. Thus, we “will” a certain

effort (which turns out to correspond to the closing of our eyes), and
the luminous impression ceases. It was then but a short step to extend
our belief in causal connections to sequences of events in the outside
world, even though in this case the human will was known to play no
part. The same with force. Though suggested originally by our awareness
of effort, it was soon exteriorised and credited with an existence
in the outside world; and a similar process of exteriorisation would
appear to have been responsible for our belief in physical time (no
longer the “I” stream of our consciousness), in a time regarded as
enduring in the outside universe regardless of our presence.


It does not seem to be of great interest to question whether these
exteriorisations of the dehumanised concepts of causal connection,
force and time were justified or not. In any case it cannot be denied
that the exteriorisation of causal connections, for instance, has
proved of inestimable service in allowing us to account for the routine
of our experience. Therein resides its justification, since causality
appears to be an indispensable condition for the sequence of phenomena
to be intelligible, hence for prevision to be possible. But it would
seem scarcely correct to state that the understanding imposes causality
on an indifferent world; for, as we know, there are regions of science
where, although causal connections may be suspected, none have yet been
established.


Finally, we are led to enquire into the nature of this synthesis or
co-ordination of facts which seems to be a prerequisite condition for
knowledge to be possible. It is here that an analysis of the more
sophisticated syntheses of science will be helpful in enabling us
to understand how the mind proceeds. The reason for this is because
scientific knowledge can be traced back to crude commonplace knowledge
by a series of insensible gradations, the same incentives appearing to
be active in all cases.


Now, when we consider the procedure of the scientist, we find that it
consists in co-ordinating and linking together in a rational manner a
number of experimental facts, with the maximum of simplicity.
By “a rational way” we mean primarily “according to the rules of
logic.” Irrespective of whether these rules are assumed to have been
derived from experience or to reduce to a priori judgments, all
normal men appeal to them, and all scientific theories, even the most
revolutionary ones, are based on their acceptance. As for the criterion
of simplicity, which enables us to select one co-ordination rather than
another, it appears to be linked with our valuing of the expenditure
of effort. Thus, even a dog finds it simpler to enter a house by the
front door rather than clamber in through the back window. At any rate,
inasmuch as, with small variations, all human beings agree unanimously
on those co-ordinations which are to be regarded as the simplest, we
may assume the urge towards simplicity to be fundamental. There are, of
course, a number of other factors which enter into the construction of
scientific syntheses, but for our present purpose the ones mentioned
will suffice.


It will be noticed that in our list of fundamental facts, though our

awareness of the passage of time was considered to be unanalysable, no
mention was made of our awareness of space and of objects, including
our own human bodies, situated in space. The concept of space was
assumed to have been generated in an indirect way when we sought
to co-ordinate our sensory impressions with maximum simplicity. It
would thus be in the nature of a mental construct arrived at a
posteriori. By this we do not wish to imply that the concept of
continuity and of extension may not have pre-existed in the mind in a
latent form; all we wish to assert is that the necessity for appealing
to the concept of space seems to have arisen from the totality of our
sensory experience.


A co-ordination of our sensations will yield us at the same time empty
space and what we will interpret as filled space representing material
objects, including our own human bodies, which are then recognised
as being situated in space. We cannot attempt to justify these views
here, but those who are interested in the subject will find the ideas
expounded in Poincaré’s masterly discussion of the problem in his book,
“The Value of Science,” and more especially in “Last Thoughts.”


When it comes to differentiating and locating the portions of filled
space occupied by bodies as against the empty portions, we again
proceed in the same way, by co-ordinating sense impressions. Our
belief in the existence of a table, for instance, is attributed to
the fact that a simple co-ordination of the complex of our tactual,
visual and muscular sensory impressions is possible only when we
concede the existence of the table as a concrete reality, situated
in the space before us. It is true that in common practice we may
see a table and recognise it as such without touching it. But it is
to be presumed that at earlier stages of our life we have exercised
all our sensory faculties and have already recognised by a synthetic
process the existence of space and of material objects. The table is
then immediately recognised as existing, by a mere association of past
impressions, without our having to explore it tactually.


Up to this point we have restricted our attention to space as mere
extension. But space, as understood in common practice, implies
considerably more: it represents a three-dimensional Euclidean
continuum. When thus particularised, Kant’s arguments as to its a
priori character are no longer tenable in the light of modern
discovery; and we must assume that this special form we credit to
space arises entirely from our co-ordination of sense impressions
conducted in the simplest way possible. On no account may we consider
three-dimensional Euclidean space to be imposed a priori either
by sensibility or by the understanding.


These discussions on the empirical origin of space are not mere
philosophic fancies having no bearing on science. They are in many
respects vital; and it is generally conceded by scientists that the
a priori doctrine of three-dimensional Euclidean space is one
of the most pernicious teachings that philosophy has ever attempted
to impose upon science. Similar arguments hold for “time,” when by
“time” we are referring, not to our awareness of the time-stream in our
consciousness, not to the “I” time, but to physical time or duration
throughout the universe, which our consciousness has exteriorised

and projected into space. As Einstein remarks in a passage previously
quoted:


“I am convinced that the philosophers have had a harmful effect upon
the progress of scientific thinking in removing certain fundamental
concepts from the domain of empiricism, where they are under our
control, to the intangible heights of the a priori. This is
particularly true of our concepts of time and space, which physicists
have been obliged by the facts to bring down from the Olympus of the
a priori in order to adjust them and put them in a serviceable
condition.”


We may mention that these views on space as professed by the greatest
scientists are in large measure to be attributed to the discoveries
of non-Euclidean geometry supplemented by the investigations of the
psycho-physicists. Still, in view of the difficulty of imagining
hyperspaces and non-Euclidean spaces, the views presented might appear
difficult to accept, and it might be held that three-dimensional
Euclidean space imposes itself a priori regardless of
experiment. But it should be noted that by the time men are of an age
to philosophise, they have been subjected for so many years to beliefs
based on inferences from experience, that the beliefs have remained,
whereas the inferences, owing to the monotony of their repetition, have
become second nature and appear intuitive.


And yet a moment of reflection should suffice to convince us that were
three-dimensional Euclidean space an a priori condition of the
understanding, it would have been quite impossible for mathematicians
to wend their way through the non-Euclidean hyperspaces of relativity.
Neither can three-dimensional space be considered to be imposed by
sensibility, since, as Poincaré tells us, after a certain amount of
perseverance, he was aided to a considerable degree by sensibility when
investigating the problems of Analysis Situs of four dimensions.


This empirical origin of the spatial concept is stressed by Einstein in
the following lines:


“We now come to our concepts and judgments of space. It is essential
here, also, to pay strict attention to the relation of experience to
our concepts. It seems to me that Poincaré clearly recognised the truth
in the account he gave in his book, ‘La Science et l’Hypothèse.’ Among
all the changes which we can perceive in a rigid body, those are marked
by their simplicity which can be made reversibly by an arbitrary motion
of the body; Poincaré calls these, changes in position. By means of
simple changes in position we can bring two bodies into contact. The
theorems of congruence, fundamental in geometry, have to do with the
laws that govern such changes in position.”


When we realise that it is precisely these laws governing changes in
position which govern our choice of a space among all those which the
mathematician has to offer, we see how utterly dependent we are on
experience when the problem of space is considered.


We may present these problems in a more vivid form. Suppose all we
had ever seen of the world were given by its image in a reflecting
spherical surface, such as a large door knob. The world of our
visual perception would be very different from the one in which we

normally live; the shapes of objects would squirm in a variety of
ways as we displaced them before the curved mirror. And yet, however
different our world might appear from the one of common observation,
we should eventually succeed in co-ordinating our perceptions. We
should still conceive of an outside space, but this space would no
longer be Euclidean. If, then, all of a sudden the mirror were to
be removed, and we to behold the world as other men perceive it, we
should be completely at sea, accustomed as we were to the laws of our
non-Euclidean world. In fact, the situation would be very similar
to that of the man who tries to ride a bicycle through a crowded
thoroughfare while crossing his arms over the handle-bars. He probably
would come to grief; and yet had he always ridden his bicycle in this
peculiar way, he would find it just as hard to alter his habits and
ride it in the normal way.


Summarising, we may say that a belief in an outside universe of space,
matter and change is arrived at as a result of a synthesis of sense
impressions. These conclusions, which apply to commonplace knowledge,
will be substantiated further when we consider illustrations taken from
the more advanced fields of knowledge of the scientist. As mentioned
previously, it is impossible to draw a line and say: “Here scientific
knowledge begins and commonplace knowledge ends.” And since the methods
of the scientist are easier to dissect, a study of the scientist’s
procedure cannot help but shed light on the more obscure problem of the
genesis of commonplace knowledge.


In scientific syntheses we do not restrict ourselves to co-ordinating
mere sense impressions; we must also co-ordinate scientific facts. But
scientific facts are themselves the results of previous co-ordinations
of other scientific facts, and these in turn are traceable to a
co-ordination of sense impressions. A few examples taken at random from
science will make these points clearer. Why, for instance, does the
astronomer maintain that the sun is spherical?


It is, as we know, in order to account for the continued circular
aspect of the solar disk, for the passage of sunspots, for their
flattened appearance when nearing the sun’s edges, suggesting that they
are seen in perspective, for the protuberance of its equator, for the
Doppler effect exhibited on its equatorial rim, for the brilliancy of
the planets when illuminated edgewise. It is also in order to render
compatible the sun’s shape with its fluidic nature imposed by its high
temperature. In other words, the aim of the scientist is to frame
one single hypothesis which will permit him to co-ordinate this wide
variety of facts. We may note that all the facts that the astronomer is
seeking to co-ordinate presuppose a knowledge of space and of material
objects situated in space. But of course we are assuming that by the
time men began to worry about the shape of the sun, they had advanced
beyond the primitive stage of recognising the existence of objects
in space. Now, when we decide that the sun is spherical, our first
argument is based on its circular aspect. In order to account for this,
we appeal to probability, arguing that it is very improbable that the

sun should always turn the same face towards us. Of course the argument
in itself does not carry much weight, since it is refuted in the case
of the moon. Still, it serves as a suggestion, if nothing more.


Next consider the case of the planets. Were the sun a flat disk, it
would appear strange that their brilliancy should remain appreciably
the same regardless of their positions relatively to the sun. But this
argument, be it noted, is highly sophisticated, for the natural view
would be to assume that all bright points in the heavens shine of their
own accord; and there would be no reason to differentiate between
planets which reflected the solar light, and the stars which were in
no wise dependent on the sun’s presence. It was only at a later stage
that a differentiation between stars and planets became necessary. In
short, the facts the astronomer is seeking to co-ordinate are of a
highly sophisticated nature; it is only when we dissect them further
and further, analysing the previous syntheses of science, that we are
finally thrown back on our immediate awareness of sense impressions.
We see, then, that science appears as an unending series of syntheses
of other syntheses, but that in every case the synthetic method is the
same.


Let us now pass to a less simple example, namely: “We know that
molecules exist.” In the case of the existence of the table or the
chair, all we needed was to co-ordinate certain immediate sense
impressions. In the case of the shape of the sun, the procedure was
more complicated, since we could not explore its surface with our
hands and it was only by inference that we were led to believe we
were viewing a spherical object from various positions in the course
of a day or a year. But with molecules it is far worse, for no one
has even seen or felt them. The inferences which we are led to make
are based on others, these others again on others. The possibility
of our co-ordination being proved incompatible with future discovery
is therefore increased, and for this reason again our knowledge of
molecules loses much of its certainty. Apart from questions of degree,
however, this knowledge was arrived at in precisely the same way, by
conceiving the simplest rational synthesis capable of co-ordinating a
wide variety of facts of observation and experience.


It is probable that at a very remote stage in human history men noticed
the difference in texture which existed between sand, which was grainy,
and water, which appeared continuous and smooth. It would have been
natural for them to wonder whether water would not turn out to be
grainy if viewed microscopically. Some guessed one way, others another.
There existed, however, a number of elementary facts of observation
which had to be taken into consideration. For instance, a phenomenon on
which the Greek thinkers laid due stress was the ability of wine and
water to intermingle. The simplest manner of accounting for this was
to assume that water and wine were formed of discrete particles which
would exchange positions, much as two powders, one black and one white,
would yield to a uniform grey mixture, when shaken together.





But Democritus went farther. Democritus appears to have been a man
of exceptional scientific ability (as science went in those days);
the geometrical solution of the volume of the pyramid and cone are
attributed to him, and Pliny mentions that he spent his life among
experiments. At any rate, he appears to have been the first thinker
of antiquity (indeed, one of the very few) to display the scientific
spirit, that of seeking unity in the various manifestations of nature
by reducing quality to quantity. In this respect he initiated what was
to become the necessary method of scientific investigation. Accordingly
he suggested that all the elementary particles of matter were of the
same substance. The qualitative differences which bodies reveal would
then be due to differences in the shapes and sizes of their constituent
elements or atoms. In this way unity was conceivable; but for this
unity to endure, it was imperative that these elementary atoms should
themselves constitute imperishable units. They could not be microcosms
whose internal parts might suffer changes of position; hence they would
have to be indivisible plena. As for cohesion, it was attributed to the
atoms hooking on to one another.


As a scientific aspiration, Democritus’ scheme was perfect, but the
trouble was that the facts known to him were too few in number. And
so his theory was a crude guess at best; and it was only natural that
a wider survey of facts should render it untenable. The co-ordination
of facts known to modern science has proved, indeed, that atomism,
as understood by Democritus, was untenable; for whereas beyond the
atom of the Greeks there was no mystery, nothing further to look
for, the atoms of matter are now known to be divisible. They differ
qualitatively from each other, contain heterogeneities, are subject
to change and decay. In other words, the atoms of modern science are
new microcosms of baffling complexity, so that the appellation “atom”
(meaning indivisible in Greek), retained by custom, is no longer
appropriate. When we get beyond the atoms to the electrons and protons,
we are in no position to assert that these constitute imperishable
units. Further subdivision may be possible, and the existence of
sub-electrons has been suggested. We do not know what would happen were
it possible to cause a proton and an electron to coalesce—whether
or not the result would be a complete annihilation of electricity
and matter. Even if we adhere to the view that with these electrons
and protons the ultimate atoms have been reached at last, we know so
little about them that we cannot even be certain that they possess a
definite size or shape. They may extend to infinity, they may reduce
to mathematical points or singularities in the electromagnetic field;
and this field itself is in no sense a substance. And so we see that
atomism, as upheld by Democritus, is far from having been established
by modern science. In the present state of our knowledge all we could
do would be to guess, just as Democritus did in his day; but in view
of the paucity of facts there are to guide us, no interest could be
attached to our guesses.


Nevertheless, if by atomism we mean merely the tendency of matter and

electricity to congregate into entities of great stability, we are on
safe ground and we may consider the doctrine proved. When understood in
this more restricted sense, a wide variety of phenomena drive us to the
atomic theory. In addition to the mixing of liquids, mentioned by the
Greeks, we have to consider the diffusion of gases and of solutions,
the compressibility of gases and the phenomenon of osmosis. All these
phenomena appear to demand the existence of molecules or atoms. As an
illustration let us consider the phenomenon of the compressibility
of gases, studied by Boyle in the seventeenth century. We know that
when a gas is compressed its volume is decreased. Yet its mass or
weight remains unchanged. We cannot assume, therefore, that matter
has vanished through compression; hence the simplest alternative is
to suppose that the gas is made up of atoms floating or moving in
the void. Compression will then result in crowding these atoms into
smaller spaces while leaving their total number unchanged. Similar
arguments may be advanced in the case of liquids. Thus, when we mix
one pint of alcohol and one pint of water, we do not obtain two pints
of the mixture, but appreciably less. The simplest way to account for
this partial disappearance of volume is once again to assume that our
liquids possess a grainy constitution and that vacant spaces exist
between the grains or molecules. We may then assume that when water
and alcohol are mixed, some of the molecules of water squeeze into the
vacant spaces between the molecules of alcohol, or vice versa. Again,
we find atomism cropping up in chemistry when Dalton sought to account
for the empirical law of constant proportions. Nevertheless, although
the corpuscular nature of matter seemed to impose itself if we wished
to co-ordinate a large number of phenomena, something more was needed
for this hypothesis to be accepted without reserve.


The major reason for the present-day belief in atomicity arises from
the following considerations: A celebrated hypothesis due to Avogadro,
the legitimacy of which we need not discuss here, suggested that if
molecules existed, equal volumes of all gases maintained under the
same conditions of pressure and temperature should always contain the
same number. This number, called Avogadro’s number , was
taken for the case where the volume selected was one cubic centimetre,
the temperature zero centigrade, and the pressure that corresponding
to 760 millimetres of mercury. Then it was shown as the result of
highly complicated mathematical syntheses that, if molecules existed,
a wide variety of phenomena should be influenced by the precise value
of Avogadro’s number. The phenomena referred to deal with Brownian
movements in fluids (Einstein), the viscosity of gases (Maxwell,
Boltzmann, Einstein), the blue colour of the sky (Rayleigh, Keesom),
equilibrium radiation (Planck), the specific heat of solids (Einstein),
the phenomenon of critical opalescence (Smoluchowski), and many other
phenomena which it is not necessary to mention. Accurate observations
and experiments conducted on these phenomena should therefore permit
us to deduce the value of Avogadro’s number. The results of
all these experiments were in striking agreement, always

yielding the same value. As this number runs up into quintillions
(), it was scarcely feasible to attribute
the marvellous agreement to mere chance; hence we were forced to
conclude that our suppositions were correct and that the existence of
molecules had been established. It was then an easy matter to determine
their masses and to obtain information as to their sizes and other
characteristics.


Although we may be repeating ourselves unnecessarily, we must again
draw attention to the fact that this knowledge of molecules, which is
obtained through a co-ordination of experimental results, is in all
respects (other than in degree of certainty) of the same type as our
knowledge of the spherical shape of the sun or of our knowledge of
space and of the table. On the other hand, it is essentially different
from our awareness of feeling hot or tired.


Finally, let us consider a last example, namely, our belief that light
is atomic. In this case our knowledge is still more uncertain. The
justification for a belief in quanta was arrived at by Planck (as we
have explained elsewhere), and arose from the peculiar phenomenon of
black-body radiation. The mathematical treatment of problems of this
sort is based on the calculus of probabilities. When calculations
were conducted on the assumption of the continuous emission of light,
we obtained Rayleigh’s law of radiation, which was refuted by
facts. Planck noticed that by substituting discontinuous probabilities
for continuous ones, the results of observation would be anticipated
with great precision. When, a few years later, Nernst and then Einstein
showed that the extension of these same discontinuities to the energy
of molecular motions would account for the curious anomalies and
variations of the specific heats of gases and solids, and when in
addition Einstein succeeded in accounting with high precision for the
photo-electric effect, Planck’s ideas appeared to gain in probability.
The belief was enhanced still further when Bohr presented science with
his model of the quantum-emitting atom.


On the other hand, there were a number of phenomena which the quantum
theory was unable to explain. Light intensities inferior to a quantum
had been observed, and the interference of light waves seemed to
suggest continuity rather than discontinuity of emission. What is
required is a more general synthesis, combining these two conflicting
forms; and until a synthesis of this description has been formulated we
can scarcely maintain that the existence of quanta has been established
beyond dispute.[134]


The purpose of these different illustrations has been to show how
slight and gradual is the transition from our commonplace knowledge of
space and of the table to the loftiest forms of scientific knowledge.
The methodology is ever the same, consisting in the formulation of a
mental construct capable of co-ordinating in a rational and simple
manner the sum total of our sense impressions. With the child and his

knowledge of space and of the table, this co-ordination is so simple
that he obtains it without perceptible mental effort; whereas, in
the more sophisticated cases of scientific knowledge, the synthesis
is the result of abstruse mathematical speculations. Apart from this
difference in degree, however, there exists no essential change.


And now let us examine the significance of these co-ordinations
and investigate what they have revealed. We have seen that what we
call reality reduces to the simplest co-ordination of the facts of
observation, and that these facts, in the last analysis, represent
co-ordinations of sense impressions. Hence we may say that it is these
mind co-ordinations of sense impressions which yield us our knowledge
of the so-called external universe. This scientific interpretation
of reality may offend those who believe in the existence of some
more absolute type of reality, the reality of the world in itself.
To be sure, it appears natural enough for us human beings to assume
that there must exist some sort of real world representing a reality
of a more concrete category than the mental construct we have been
discussing; a world which subsists in the absence of all human
observers and in which the causes of our sense impressions originate.
But what the nature of this real world of things in themselves may
be, whether it could ever be described in human language, whether it
is identical with the idea we have formed of it, are questions which
are probably meaningless, and in any case are insoluble. As soon as
we start arguing on these problems, it is a case of every man for
himself; no one seems to be able to convince any one else. Fortunately,
discussions of this kind are of no interest to science. In this
chapter, the word reality will therefore be held to connote scientific
reality, which means the simplest co-ordination of scientific facts,
hence, ultimately, of sense impressions. That so restricted an
interpretation of reality is ample for the needs of science issues from
the following considerations:


The mere fact that men appear to understand one another when discussing
the external world is sufficient proof that they have reached some
common conception as to its nature. Hence, even if we assume that this
so-called external universe, which each one of us believes he has
discovered, represents but an individual dream which exists only in our
respective minds, the fact remains that we must conceive of this dream
as one shared in common by all men. As such, it manifests itself to all
intents and purposes as an objective reality which we may regard as
pre-existing to the observer who discovers it bit by bit.


It follows that the distinction between idealism and realism is purely
academic in science, for our rule of action will be the same whichever
of the two opposing philosophies we may prefer.[135] Thus the physicist
who studies the properties of matter will proceed in precisely the
same way, co-ordinating his results with the maximum of simplicity,
regardless of whether he believes in matter as a metaphysical reality
or as a mere mind construct. We have thus arrived at an understanding

of what is meant by the objective world of science.


Now it is obvious that had it been impossible to discover or create
a common objective world the same for all men, of which the various
observers would obtain private perspectives, science would have
been quite impossible; for science deals with the general, not with
the particular or the individual. Were it not for the fact that the
objective world of John is also that of Peter, John and Peter would
never agree on the most elementary subjects. An exchange of commonplace
knowledge, and, to a still greater degree, of scientific knowledge,
would be quite impossible. We must recognise, therefore, that the very
existence of science proves that the co-ordinations of the sensations
of John possess the same structure as those of Peter. This is all we
can say. We have no means of discovering whether what one man sees as
red the other might not see as blue were our observers to exchange
eyes and brains while retaining their memory of past sensations. On
the other hand, we can assert from experience that, for normal human
beings, two objects which appear to be of the same colour to one
observer will appear to be the same colour to the other.


When the importance to science of one same common objective world is
realised, the necessity of ridding it of all purely individualistic
appearances becomes obvious; and we are thereby led to the problem of
illusions or hallucinations. By an illusory object we mean one that
has only a private existence, yet whose appearance can be accounted
for scientifically, in terms of other phenomena, to which we may
concede a common objective existence. Thus, in the case of a mirage,
if we insist upon saying that water lies before us in the desert, our
objective world will differ from that of our friend who, standing where
we see the water, will claim that no water is present. The unfortunate
consequences of our error might be very great, as in the case of the
dog who dropped the bone for its image.


Hence, either we must abandon a belief in a common objective universe
and relinquish all attempts at framing a science, or else we must
succeed in interpreting the differences in our opinions by appealing to
some phenomenon, such as refraction, which all men will accept. In the
case of the mirage, for instance, the introduction of refraction saves
the objective universe, hence saves science. Finally, we may say that
the bright band in the desert is a reality from the point of view of
one particular individual, but that it is an illusion from the point of
view of the generality; whereas refraction is a reality from the point
of view of all.


In the case of hallucinations, we are dealing with delusions of another
kind. Consider the fever-stricken man who sees snakes around him. Of
course, the snakes, no more than the water in the desert, can have
a place in the common objective world; so that in this respect the
hallucination and the illusion appear analogous. Nevertheless, there
exists an important difference between the two. Thus, in the case of
the mirage, all we had to do was to stand at a given point to behold

the bright band in the desert as easily as any one else. A certain
community in the illusion would still subsist. The hallucination,
on the other hand, is essentially private. We cannot step into the
patient’s place and suffer from his hallucination. Something more
deep-seated is at stake than a mere change in our post of observation
in a common objective world.


While it is true that the physiologist and brain specialist may succeed
in accounting for a hallucination in terms of objective changes in
our organic condition (blood pressure, etc.), yet even so we should
be dealing with problems far more complex than those which the modern
physicist is required to investigate. For all these reasons, while
it is the aim of the physicist to account for illusions in terms of
the common objective world and the laws of physics, the study of
hallucinations belongs to another field of scientific research. In
many cases the distinction we have established between a hallucination
and an illusion lacks definiteness. For instance, the stars that we
see when punched on the nose would not be considered the result of a
hallucination, and yet, according to the division established above,
the phenomenon would be more in the nature of a hallucination than of
an illusion. Similar considerations would apply to dreams.


There exists a more popular interpretation of illusions. It results
from a confusion between ignorance and illusion. Suppose, for instance,
that we were to receive visual sensations which led us to assert that
a table was present, but that on approaching the table we were to find
that we could walk through it. If we, and we alone among
men, could see the table, we should be justified in assuming, in view
of past experience, that we were suffering from some hallucination,
since any other alternative would deny us the possibility of conceiving
of an objective world the same for all men. But if all who came into
the room perceived the same table and failed, as we had done, to derive
any tactual impressions from its presence, it would be taking too
much for granted to assert that we had all of us been the victims of
error. The mystery might be cleared up without difficulty were we to
find it possible to account for this appearance in terms of phenomena
already known; but if this procedure failed, the wiser course would be
to agree that some new mysterious manifestation had been discovered.
At all events, it would be wrong to maintain that the appearance must
necessarily be the result of a collective illusion on the ground that
its reality would conflict with the laws of matter. Our knowledge of
natural laws is obtained only by generalising from experience; and
where experience is incomplete, as it must always be, the laws can lay
claim to no measure of certainty. For example, a man knowing nothing of
atmospheric pressure might well assume that a balloon could never rise
in the air without coming into conflict with the law of gravitation, or
that a firefly could not emit light without getting burnt. The reason
why the theoretical scientist is compelled to approach problems of a
seemingly mysterious nature with great open-mindedness is because on

so many previous occasions he has been confronted with discoveries
which yield nothing in strangeness to the one we have mentioned; and
strangeness is not necessarily the product of illusion. More often than
not, it is the result of ignorance and prejudice. In this respect, we
have only to conceive of the surprise we should experience, had we
never heard of an electromagnet, on discovering that distant objects
flew towards it without being pulled by strings.


And now let us return to our objective world. We will assume that
illusions have been barred therefrom; and the world we have thus
obtained can be conceived of as existing in precisely the same way for
all observers. If we assume that there is a real world of things in
themselves, constituting the underlying cause of our sense experience,
the point we wish to ascertain is whether scientific procedure can
throw any light on its nature.


In the first place, when discussing the outside world as an existent
reality, we must differentiate between its substance and its structure,
or form. If, with science, we consider that our knowledge of the
external universe can be arrived at only by a rational synthesis of
facts of experience, we must recognise that substance escapes us
completely; all we can hope to approach is structure, or relationships.
Of course, a view of this sort presupposes that we are justified in
asserting that knowledge can be acquired only by means of rational
co-ordinations. If we dispute the legitimacy of this point the entire
argument collapses. Hence the scientific argument can constitute no
refutation of the views of the mystic. A man who “knows” of things
through intuition or faith, or a man who tells us that he knows that
in his previous incarnation he was Julius Cæsar, is a type of opponent
with whom the scientist cannot even argue; for whatever can be neither
proved nor disproved by observation or reason constitutes a form of
knowledge which is meaningless, or at least completely irrelevant
to science. If we did not place some kind of limitation on what we
were to regard as knowledge, there would be no reason to prefer the
opinions of a Newton or an Einstein to the ravings of an ignoramus or
a lunatic; and human knowledge would become so conflicting as to lose
all significance. It is not denied that intuition may often lead to
discovery. Even in mathematics examples are numerous; but the fact
remains that intuition alone has so often led men astray that unless
its disclosures can be submitted to some kind of test, no reliance can
be placed in them.


Furthermore, it is not asserted that intelligence is everything. We
know that with animals and, still more, with insects, instinct plays
a major rôle. But it is to be noted, first of all, that instinct is
scarcely apparent in human beings. And in the second place, with bees,
for example, which have selected the hexagonal shape for their combs,
a choice which mathematical calculation proves to have been the best
they could have selected, instinct has yielded exactly the same results
that intelligence would have done; so that aside from the lack of
consciousness which accompanies instinct, no difference is detected
in the results to which it leads. Hence, it can scarcely be deemed

to yield a new form of knowledge. If these points be granted, we may
return to our subject and enquire why it is that substance escapes us
completely when by “knowledge” we refer to a rational co-ordination of
facts and sense impressions.


Rational co-ordinations have their most perfect prototype in
mathematical co-ordinations—in those of mathematical physics, for
example. Not all co-ordinations can be constructed mathematically;
chemistry, and of course, to a still greater degree, biology, afford us
illustrations where mathematics is comparatively useless. Nevertheless,
as the methods of co-ordination are essentially the same in all cases,
the mathematical ordinations, in view of their greater clarity, can be
studied to advantage as typical instances in this respect.


Now mathematical equations are nothing but relations, and from initial
relations all we can deduce are other relations. In other words, our
equations can never yield us more than we originally put into them.
It follows that were all relationships in nature to be preserved and
the substances changed, no observable difference could be detected;
and we should never be able to differentiate between a whole class of
worlds identical in structure but differing in substance. If, then, we
discard the procedure of the mystic, or of the metaphysician who claims
a knowledge that cannot be submitted to the control of experiment,
we must recognise that substance escapes us completely and that our
knowledge of the real world can at best reduce to a skeleton or
structure.


An illustration given by Eddington presents the same problem in a
more concrete manner. He assumes that in some future age the game
of chess may be dead and forgotten; and he compares our position in
respect to the real world with that of archaeologists who will have
unearthed curious records of the game written in the usual obscure
symbolism. Eventually they would succeed in reconstructing the moves
of the different pieces, the two-dimensional ordering relation of the
partitions, and the rules of the game. To this extent they could claim
to have understood the game of chess. Yet certain aspects would escape
them completely. The shape of the partitions, whether square, round
or oblong, the aspect of the pieces, the nature of the board, whether
of wood or of stone, would remain unknown. But it is to be noted that
these elements of knowledge that escaped them would be irrelevant. The
board might be of wood or stone, the partitions of diamonds or squares,
and yet the game could be played as before. If, on the other hand, the
ordering relation of the partitions were changed, if the permissible
moves of the pieces were modified, the written records would make no
sense. It is the same with the real world. The substance may change in
nature, yet no difference will be perceived; but if the relationships
are modified, a new world will divulge itself to our observation. To
this extent, therefore, we are justified in saying that the most our
observations can reveal reduces to the structure of the real world.
As the French mathematician Bertrand once said, the age of the

captain, the number of the crew, the height of the mast can yield us no
information about the position of the ship.


Structure, as outlined above, resolves itself into those mathematical
relationships or equations which appear to account for the sequence of
phenomena. But structure in the more usual sense would apply to the
hidden mechanisms themselves, to the deep-seated, underlying causes.
When, however, we wish to attain this more concrete knowledge of
structure, we encounter a number of difficulties. As Poincaré points
out, every time conservation of energy and the principle of least
action are found to be satisfied (as is the case in electromagnetics,
for example), an indefinite number of different mechanical models
are possible; so that our knowledge of the structure of the world is
vitiated by the fact that the substructure remains indefinite. Clifford
expresses the same idea when he says:


“Whatever can be explained by the motion of a fluid can be equally
well explained either by the attraction of particles or by the strains
of a solid substance; the very same mathematical calculations result
from the three distinct hypotheses; and science, though completely
independent of all three, may yet choose one of them as serving to link
together different trains of physical enquiry.”


In a certain measure, difficulties of this sort may prove temporary. It
may happen that further experiment will enable us to determine which of
the various hypotheses corresponds to concrete reality. Such, indeed,
was the hope of the scientists of the eighteenth and early nineteenth
centuries. And in our days the practical isolation of electrons and
molecules is a proof that these hopes were not always unfounded. Yet,
even so, we should have advanced but a step, and should again be faced
with the problem of determining the structure of these electrons, and
so on ad infinitum. It would be of no avail to say that our
aim had been realised when the ultimate constituent elements were
isolated. For either these supposedly ultimate elements would possess
no structure, in which case we could never know anything further about
them, or else they would present a structure; but then they would
not constitute ultimate elements, since this structure would imply
relationships between their various parts, and we should not be at the
end of our journey.


With the discoveries of modern science, still other difficulties bar
the route to success. It would now seem that as we wended our way into
the microscopic, exact laws might vanish. If this be the case, the
microscopic structures must ever elude us. Yet, even if we waive these
latter difficulties, it is apparent that the scientific method can
yield no knowledge of substance; the structure of reality is all we can
approach.


But this reality, once again, is nothing but the expression of the
simplest co-ordination of scientific facts; no genuine metaphysical
reality is implied. If we discard the criterion of simplicity, we may
conceive of our world in as many different ways as we please. Consider,
for example, Einstein’s theory. One of the principal discoveries of

the theory has been to disclose unsuspected relationships between
space and time, leading to the four-dimensional space-time structure
of the universe. And yet, if we wished, we might account for all of
Einstein’s previsions while retaining our traditional belief in a
three-dimensional structure of space and in an unrelated time. Thus,
Michelson’s experiment would be accounted for by Ritz’s or Stokes’
hypothesis; Bucherer’s experiment, by the dragging along of a certain
mass of ether by the moving electron just as a ship drags along part of
the water surrounding it; Fizeau’s experiment, by a modification of the
ether in transparent bodies (and this was, in fact, Fresnel’s original
explanation). The double bending of a ray of light, and Mercury’s
motion, would be accounted for by a modification of the Newtonian law
of gravitation; the Einstein shift-effect, by a modification in the
intra-atomic structure of the solar atom, and so on. It is a pure waste
of time to consider the various hypotheses that might be suggested,
for we can invent as many different ones as we choose. Needless to
say, all the simple beauty and unity of nature revealed by Einstein’s
theory would be lacking; and prevision would be impossible, seeing that
new postulates ad hoc would be needed at all further stages.
But when all is said and done, what have simplicity, beauty, unity and
prevision to do with the reality of the metaphysician?


Thus the reality of structure which the metaphysician would defend
(quite aside from the reality of substance) presupposes his a
priori belief in the inevitable simplicity of nature. But
simplicity is, after all, but an expression of human appreciation.
Furthermore, even if this view were contested, there would seem to be
no reason to suppose that nature should prefer simplicity to complexity
in the first place. As a matter of fact, what little we know of nature
proves that the reverse is true when we cease to view phenomena in an
approximate macroscopic way and adopt a more microscopic standpoint.
To illustrate: There is no more simple law in physics than that of
perfect gases; and yet we know that this apparent simplicity is due to
our macroscopic observations and that it conceals the most bewildering
chaos and uncertainty. It is the same when we consider numerous other
phenomena, such as intra-atomic changes.


From this it follows that it is at least a questionable procedure to
identify reality with simplicity of co-ordination. And if we discard
this tentative identification, reality (even reality of structure)
escapes us completely. Of course, the type of reality which we have
been branding as elusive is the absolute reality, the “true being” of
the metaphysician. The scientist also appeals to the word “reality,”
but he employs it in a different sense. For him, reality is identified
with simplicity of co-ordination, and he states his views explicitly,
realising full well that a reality of this type is far from being
absolute and that it is essentially pragmatic. It is for reasons such
as these that the vast majority of scientists are agnostics at heart,
not on account of any a priori predilection, but because

a proper understanding of the limitations of scientific knowledge
leaves them no other alternative, refusing as they do to accept the
knowledge of the mystic or the metaphysician as of any significance
whatsoever. But scientific agnosticism must not be confused with that
extreme form of idealism which denies the existence of any world
apart from consciousness. It merely contents itself with stating that
the objective world of science (that of space, time, matter, motion,
in classical science, and of space-time, intervals and tensors, in
relativity) is nothing but the embodiment of the simplest co-ordination
of sense impressions, for which some unknowable supra-intelligible
world is assumed to be responsible.


If, therefore, our minds worked differently, there would be no reason
to assert that we should form the same conception of the world. We do
not know whether, in the event of a Martian stepping down on earth,
his mind would form the same mental construct of the universe as ours
has done. For a Martian, there might be no such things as space, time
and matter. Yet he might form a conception of the universe which
would be perfectly intelligible to him. Those who believe in the
metaphysical reality of space and time enduring in the world of things
in themselves, under the plea that we can only conceive of existence in
space and in time, appear to be guilty of the same error as those who,
never having heard of fishes, would assert that no such creatures could
exist, since they would be unable to breathe. Anthropomorphic arguments
of this sort have no place in science.


In short, it is not denied that there may exist a world of things in
themselves; all that is asserted is that a world of this sort defies
all description. A few quotations from the writings of the leading men
of science will make this attitude clearer. Thus, in Larmor’s book,
“Æther and Matter,” we find: “Laws of matter are, after all, but laws
of mind.” Again, in Poincaré we read: “Are the laws of nature, when
considered as existing outside of the mind that creates or observes
them, intrinsically invariable? Not only is the question insoluble; it
is also meaningless. What is the use of wondering whether laws can vary
with time in the world of things in themselves, when in a world of that
type time may have no meaning? Of this world of things in themselves we
can say nothing; we cannot even think of it. All we can discuss is how
it would appear to minds similar to our own.” And, again, elsewhere:
“The Bergsonian world has no laws. The world that may have laws is
merely the more or less deformed image that scientists have conceived
of it.” There is no need to give further quotations, for with slight
variations the same philosophy is expressed by all scientists.


However, it cannot be emphasised too strongly that from a practical
standpoint these questions are purely of academic interest. The
physicist and the mathematical physicist are compelled to operate and
reason as though they believed in the real existence of a real absolute
objective universe, one of space and time, according to classical
science; one of space-time, according to the theory of relativity.

In fact, as we have said, were it impossible to conceive of a common
objective world, one existing independently of the observer who
discovers it bit by bit, physical science would be impossible.


Incidentally, we may recall that such problems as the relativity or the
absoluteness of space and motion have nothing in common with idealism
and realism. Space may be subjective, yet absolute, or real and yet
relative. It is important not to confuse the meaning of the words,
“absolute,” and “relative” as used by physicists, with their meaning as
understood by philosophers. Much of the difficulty that philosophers
appear to have experienced in understanding the attitude of science
seems to have arisen from confusions of this sort.


Now, if we revert to that rational synthesis of our sense impressions
which yields us the objective world of science, there remains to
discuss the methodology whereby this synthesis is achieved. In the
more elementary cases, the procedure is one of commonplace, logical
and inductive reasoning; but in the more advanced cases, the process
is exclusively mathematical. There is a close resemblance between
the procedure of development pursued by pure mathematics and that of
theoretical physics. In either case the tendency has been a search for
unity through progressive generalisation.


Mathematics is, of course, so vast a subject that it is impossible
to expose even its characteristic aspects in a few pages; but for the
purpose we have in view it will be its generalising aspect which we
shall mention. Mathematics deals with generalities. It seeks to obtain
general laws and general theories as opposed to particular results.
For instance, the sum of the first two odd numbers is found to equal
the square of 2; the sum of the first three odd numbers is found to
equal the square of 3. This, however, does not tell us what the sum
of the first 10,000 odd numbers would be. We might proceed to add up
these numbers and discover the result; but the aim of mathematics is
to obviate a laborious undertaking of this sort. It succeeds in this
attempt by demonstrating the existence of a mathematical law according
to which the sum of the first  odd numbers is equal to 
however great  may be. When a general law of this sort is
established, we can apply its formula to any particular case and thus
obtain a solution without further ado.


The procedure whereby this law is obtained is that of mathematical
Induction. We verify the fact that the sum of the first two odd
numbers is ; then we prove that if this is the case, the sum of
the first three odd lumbers must necessarily be 32. Finally, we prove
that if the sum of the first () odd numbers is
(), then the sum of the first  odd numbers must
necessarily be . We assume that this law will hold however
great  may be, or, in other words, must always hold; and our
mathematical law is established. In short, mathematics aspires to give
us general laws in place of particular facts, or, again, to proceed
from the particular to the general. A search for generality and unity
constitutes the leit-motif of mathematics.[136] A few specific

examples may make this point clearer.


Suppose we start from the natural sequence of integers and labour under
the impression that these integers alone constitute true numbers. We
should notice that if we divided one of our numbers, say the number
10, by the number 5, we should obtain one of our integers, namely, 2.
On the other hand, if we divided 10 by 4, the result would not yield
one of our integers. Accordingly, we should be compelled to state
that the division of one number by another might or might not yield
a true number. In order to re-establish generality, mathematicians
were compelled to assume the existence of fractional numbers, just

as actual or true as the integers. Thanks to this introduction it
became possible to assert that the division of one number by another
would always yield a true number. Now suppose we attempted to extract
square roots. We should find that whereas the square roots of some of
our true numbers were themselves true numbers (i.e., ),
yet in the majority of cases we should obtain no such result
(i.e., ). Hence, we should have to say that in
certain cases the square root of a true number would be a true number,
whereas in other cases it would correspond to nonsense. Once again,
in order to obtain generality, we should have to incorporate these
seemingly nonsensical magnitudes along with the true numbers, obtaining
thereby the so-called irrational numbers. In a similar way negative
numbers would have to be introduced in order to confer sense in all
cases on the subtraction of one true number from another. Imaginary
numbers would follow when we wished to generalise the significance of
the square root of a number, whether positive or negative; then complex
numbers, when we wished to confer generality on the significance
of the addition of numbers, whether real or imaginary. A further
generalisation would yield quaternions and hyper-complex numbers
generally. Following still another line of generalisation, Cantor
introduced transfinite numbers into mathematics.


A further illustration would be afforded by geometry. Thus, if in
a plane we trace a straight line and a second-order curve (circle,
ellipse, parabola or hyperbola), it may happen that the line intersects
the curve in two points, but it may also happen that no intersection
takes place. Generality can be re-established, however, provided
we introduce imaginary points and consider them as true points.
With this extended concept of a point we may say that the straight
line always intersects the second-order curve in two true
points, whether real or imaginary. Further generalisations require
the introduction of ideal points, points at infinity,
imaginary lines and angles.


Also, when we consider a second-order curve, it is necessary to state
the positions of five of its points for the curve to be determined
without ambiguity. But a circle is also a second-order curve; yet,
in the case of a circle, when we state the positions of three of its
points the circle is completely determined. Hence, our rule lacks
generality and cannot be claimed to hold for all second-order curves,
whether ellipses, parabolas, hyperbolas or circles. Once again,
however, when imaginary points are introduced, this duality disappears
and our rule becomes general. It is found that all circles, without
exception, pass through the two same imaginary points called the
circular points at infinity. When we take these two imaginary
points into consideration we are able to state that all
second-order curves, whether circles or ellipses, etc., are determined
when five of their points are given. It is also interesting to note,
as Cayley and Klein have shown, that when imaginary points, lines
and angles are introduced, the various geometries (non-Euclidean

and Euclidean) can be treated in terms of projective geometry. We
see that in all cases mathematicians attempt to replace the word
sometimes by the word always, the particular by the
general, thereby revealing unity where diversity once held sway.


Let us mention yet another geometrical example. It is always possible
to draw a triangle circumscribed to a circle, that is to say, one whose
three sides are tangent to the circle. Also it is always possible to
inscribe a triangle in a circle; which means that the three summits lie
on the circle. Now, Euler noticed that if two circles were drawn at
random, it was impossible in the majority of cases to draw a triangle
which would be inscribed in one circle while circumscribed to the
other. When, however, one such triangle could be found, an indefinite
number of others could also be drawn.


Poncelet then gave a celebrated generalisation of this theorem, and
Jacobi showed its intimate connection with elliptical functions. We may
understand the nature of this generalisation as follows:


A circle is a particular instance of a conic, and a triangle a
particular instance of a polygon; whence Poncelet extended Euler’s
theorem, which deals with circles and triangles, to one dealing with
conics and polygons. In this illustration, again, we witness the same
tendency, progress towards generalisation.


Possibly it is in the theory of functions that the most beautiful
examples will be found. Mathematical functions are magnitudes whose
values vary with that attributed to the variable they contain. We can
construct as many different types of functions as we please by annexing
additional terms, and the functions thus constructed differ in their
behaviour from one another.


For instance, if we call  the value of the function and represent
the variable by , then

is a mathematical function ( and  being assigned constants).
For every value of  a definite value corresponds for . A more
complicated function would be given by




It was soon discovered that, if instead of annexing merely a large
number of successive terms to the expression of our function we added
an infinite number of terms selected in an appropriate manner, we
often obtained functions presenting exceedingly simple properties; so
simple, indeed, as to warrant our coining separate names for them.
These various functions may be likened to different beings, possessing
various peculiarities and tendencies. Certain mathematicians (Borel,
for instance) have gone so far as to differentiate between wholesome
functions and contaminated ones; and the appellation “pathology of
functions” has been introduced into mathematics. As an example of the

very simplest type of functions, we may mention those given by the
unending series

where 3! stands for  for
. These functions were
known, respectively as, “sine ” (or sin ), “cosine ”
(or cos ) and the exponential function .


It was then found that the functions sin  and cos  presented
very rigid relationships as though they belonged to the same family.
The name circular functions was given to the family; the
relation we have in view being given by

On the other hand, no such relationships appeared to exist as between
these circular functions and the exponential function . But the
entire aspect of the problem changed when Euler appealed to imaginary
magnitudes, such as ; where  stands for  and
 stands for any real number, as before. Of course an imaginary
number, as its name indicates, was conceived of by its inventors as
an unreal magnitude, a mere mathematical fiction having nothing but
a symbolic significance. And yet, as we shall see, without imaginary
numbers some of the most practical industrial problems could never have
been solved.


As we have said, Euler substituted imaginary numbers for the real ones
in the functions we have discussed, and discovered that when this was
done a surprising connection was found to exist between these erstwhile
unrelated functions. The relation was

In this formula we have only to make , and we obtain

Thus, not only has the introduction of imaginary numbers revealed an
unsuspected relationship between what were widely different types of
functions, but the two numbers  and , taken from totally
different regions of mathematics, from geometry and from logarithms,
are suddenly found to manifest extraordinary relationships.





But this introduction of imaginary numbers into mathematical analysis
was soon to lead to still more wonderful discoveries. Cauchy undertook
a general study of functions in which the variable would be a complex
number, that is to say, a real number plus an imaginary one. He
uncovered thereby a new universe of functions, called functions of a
complex variable, possessing the strangest properties; and it was seen
that our older functions were but particular instances of these more
general types. But for these new functions to possess the essential
attributes of our older ones, a certain mathematical restriction had to
be placed upon them. The restrictions turned out to be expressed by the
same mathematical relationship which defines the potential distribution
in Newton’s law of gravitation, namely, Laplace’s equation.[137] This
equation crops up again in the theory of conformal representation,
in the theory of heat, in the theory of elasticity, etc. Unsuspected
relationships thus appear to be springing up on all sides. Incidentally
we may note that Riemann’s great discoveries in the theory of functions
take their start from this analogy existing between the functions of
a complex variable and the laws of the potential distribution around
matter.


The theory of the functions of a complex variable constitutes one of
the most extensive domains of pure mathematics, with which the names
of some of the greatest mathematicians are associated, such as Cauchy,
Riemann, Weierstrass, Jacobi, Abel, Hermite and Poincaré. Numerous
problems pertaining to the ordinary functions receive a very rapid
solution when we consider these functions as restricted cases of the
more general functions of a complex variable. As time went on, a
number of these functions manifesting strange yet simple properties
were brought to light, always by the same process of successive
generalisation. First came the elliptical functions discovered
by Abel and Jacobi, then the modular functions of Hermite, and finally
the automorphous functions of Poincaré. Once again the discovery
of these new functions revealed unexpected relationships between
domains of mathematics which had appeared to be totally estranged; and
Poincaré established surprising relationships between the automorphous
functions, certain problems of the theory of numbers, and non-Euclidean
geometry.


Incidentally, the popular belief that mathematicians, by appealing
to imaginary magnitudes and the like, are abandoning the world of
reality for one of shadows, is belied by the fact that one of the most
elementary mechanical problems, namely, the oscillatory motion of an
ordinary pendulum, can be solved mathematically only by an appeal to
elliptical functions, in spite of the fact that imaginary quantities
are part and parcel of their make-up.[138] It is the same with a

number of electrical problems of widespread industrial importance;
likewise, with Einstein’s law of gravitation, the orbits of the planets
cannot be calculated unless we appeal to elliptical functions. Similar
considerations would apply to Poincaré’s automorphous functions.
However, this point being granted, it is of course obvious that the
mathematician is not primarily interested in knowing whether his
abstract speculations have any counterpart in the real objective world,
any more than the poet wishes to know whether his dreams will come
true. The sole object of his investigations is to explore all rational
possibilities and to co-ordinate into one consistent whole various
mathematical edifices which at first blush might appear to be totally
estranged from one another.


We have insisted particularly on this generalising tendency of
mathematics, as it is the one which will play a prominent part when
we consider the methodology of mathematical physics as applied to the
world of reality. Here we must recall that however mysterious it may
seem, nature appears to be amenable to mathematical investigation
and to be governed by rigid mathematical laws, at least to a first
approximation. So far as scientists are concerned, this belief is not
the outcome of religious or philosophical presuppositions. Rather
is it a belief which is forced upon our minds by the triumphs of
theoretical physics, the first grand example of which was afforded by
Newton’s celestial mechanics. As soon as this susceptibility to law was
recognised in nature, the avowed aim of science was to discover the
unknown laws and in this manner allow us to foresee and to foretell,
hence also to forestall, and to cease living in a world of unexpected
miracles. In those realms where laws were finally established, science
displaced superstition; and wherever, for one reason or another, laws
could not be found, superstition continued to reign supreme. A case in
point is afforded by meteorology, which in spite of recent progress
remains an extremely backward science. As a result an astronomer, who
would never think of praying for a solar eclipse, might still pray for
a cloudless day favourable for his observations.


Now, in order to render nature amenable to mathematical treatment, it
is necessary that we should succeed in reducing the various natural
phenomena to common terms. This is done by seeking differences of
quantity beneath differences of quality. When and only when this
quantitative reduction has been accomplished can science proceed with
its investigations, its deductions and inductions. In the case of
the objective universe of physics, this process of reducing quality
to quantity leads us to conceive of the objective universe as one of
electromagnetic vibrations and of molecules, atoms and electrons acting
on one another according to fixed laws, rushing hither and thither
in space or vibrating round fixed points. The objective universe of

science is thus noiseless, lightless, odourless. All the qualities
and values are conceived of as arising from the interactions existing
between our sense organs and the motions of the outside world, just as
the impact of a body would reveal itself as sound to a gong gifted with
consciousness.


This quantitative reduction is, however, but a first step; and even
after it has been accomplished, nature might still defy mathematical
investigation. The fact is that mathematics consists in compounding the
similar with the similar; wide heterogeneities even among quantities
would render an appeal to human mathematics useless. Thus, the game
of chess, where the various pieces can move in widely different ways,
is not subject to mathematical treatment. The fact that theoretical
science is possible proves that similarity and unity can be found in
nature.


Then again, nature must be simple, or at least simple to a first
approximation. Theoretically, simplicity cannot exist in nature, since
the whole influences the part and the part influences the whole. But
in certain cases it has been found permissible to neglect a number of
influences owing to their minuteness, and science has thus been able
to progress. It is because in meteorology this restriction of active
influences to a minimum appears impossible that long-range weather
prediction is any man’s guess.


But there is yet another condition which must be found in nature, and
that is continuity. Mathematics is capable of attacking problems where
discontinuities are present, but the technical difficulties are very
great; and this is the chief reason why the theory of numbers presents
such obstacles. On the other hand, where we are dealing with problems
of continuity the mathematician feels more at ease; and that superb
mathematical instrument known as the differential equation becomes
applicable. Incidentally we can understand why it was that Planck’s
discovery of quantum phenomena, or discontinuous jumps in the processes
of nature, was such unwelcome news to theoretical physicists; the
differential equation had lost its power.


Even now we are not at the end of our difficulties. Assuming that
nature manifests unity, simplicity and continuity, we can only
investigate her secrets provided we are faced with mathematical
problems that we can solve. Even such relatively simple problems as
that of the motion of four bodies attracting one another under Newton’s
law, have thus far defied all attempts. Again, our differential
equations are of a very simple species. They suffice only for the
simplest type of problems, when, for instance, the future position
of a body moving under the action of a given force depends solely on
its circumstances of motion in its initial position. But what if the
future position of the body were to depend on its entire past history?
Phenomena of this type, subjected as they are to hereditary influences,
are well known in physics, being illustrated by the hysteresis, or
fatigue, of metals; and of course in biology they are the rule. Such
problems can be attacked to-day, at any rate in the most elementary
cases, following Volterra’s discoveries in integro-differential
equations. This opens up a new domain of science, that known as

“hereditary mathematics.”


When we consider all these technical difficulties, and realise that
solutions of these problems have been obtained thanks only to the most
abstract speculations of pure mathematicians, to the invention or
discovery of mathematical entities which at first sight would appear to
be totally estranged from the world of reality, we must not belittle
the practical importance of these seemingly unreal entities.


As a matter of fact, it is little short of a miracle, in view of the
insignificance of our mathematical ability, that theoretical physics
should have been possible at all. Had our solar system contained two
suns such as are present in the double-star systems, or had one of the
planets been comparable in size to the sun, it is safe to say that
Newton, in spite of his genius, would never have discovered his law
of gravitation; for he would have been thrown back on the tremendous
problem of the three bodies.


Leaving aside these technical difficulties, the fact remains that in
a number of cases mathematics has been found applicable to nature at
least in an approximate way, and as a result mathematical laws have
been discovered. We shall now proceed to show how these theories of
mathematical physics have evolved. To begin with, a large number of
empirical facts are first discovered by the experimenter. These facts
are then co-ordinated into a consistent whole, general relations or
laws are established, and in this way we obtain various groupings
of phenomena, such as electricity, magnetism, optics, mechanics,
chemistry, biology, etc. In certain cases it may be impossible to get
beyond the initial stage; though experimental data are accumulated, the
co-ordination of facts and the discovery of general relations and laws
may defy analysis. In such cases we can scarcely regard our knowledge
as constituting a science.


The next task is to co-ordinate and establish relations between these
various realms of science. Confining ourselves to physics, we find
that, first of all, relationships were discovered between electric and
magnetic phenomena; then between light propagation and the vibrations
of elastic solids (Fresnel, MacCullagh); then between electromagnetic
phenomena and optical ones (Maxwell); then between heat and molecular
motion (Maxwell, Boltzmann). But in spite of these lofty syntheses, one
mysterious influence appeared to remain estranged from all the others;
this was gravitation. It has been one of the triumphs of the relativity
theory to succeed in establishing the connections between gravitation
and optics or electricity.


Finally, an amalgamation of all these various realms is sought for in
the expression of a gigantic universal law, the principle of action,
governing one unique mathematical world-function, the function of
action of the universe, which the theories of Weyl and Eddington appear
to suggest.


In short, we see that the development of theoretical physics has
followed that of pure mathematics in its generalising characteristics.
In either case the breaking down of barriers, the discovery of unity

in diversity, has been the guiding motive. And yet, in spite of this
mathematisation of physics exemplified in the works of the theoretical
physicists, physics is not mathematics, and truth in physics is not the
same as truth in mathematics.


In the first place, physics progresses by successive approximations
and does not attain its goal at one stroke, as is often the case with
mathematics. Thus, in the days of Galileo it would have been correct
to say: The centre of gravity of a projectile moving in vacuo
describes a parabola. Half a century later, Newton recognised that this
statement was only approximate. The correct statement then became:
Under ideal conditions of isolation, the centre of gravity of the
projectile will describe an ellipse, the earth’s centre being situated
at one of its foci. But, according to relativity, Newton’s statement in
turn is approximate. We must now say that the trajectory lies along an
ellipse whose axis is slowly rotating. There is every reason to believe
that even Einstein’s mechanics is but an approximation to truth;
and Schrödinger’s wave mechanics is already supplanting it in the
infinitely small. Indeed, there is every reason to suppose that however
far we go, we shall always be dealing with approximations. Here, then,
is an essential difference between physics and mathematics. Thus far,
it would appear that absolute truth might exist but that our present
means of investigation had not allowed us to attain it. But we shall
see that more is at stake than a temporary admission of failure.


Consider, for instance, the constants of physics, such as ,
the gas constant, or , Planck’s constant; and contrast them
with the constants of mathematics, such as  or . Whereas
the constants of mathematics can be calculated to any degree of
approximation we choose, the values we assign to the constants of
physics can never be considered absolutely rigorous. It is not merely
because physical observations are necessarily inaccurate or because
conditions of observation may not be perfectly ideal owing to the
presence of contingent influences; other reasons of a deeper order
are involved. The fact is that we are by no means certain that nature
is amenable to rigorous mathematical laws and that the so-called
constants of physics represent other than average values. The triumphs
of theoretical physicists suggest that a mathematisation of physics is
permissible as a first approximation; but a closer microscopic survey
might prove that this appearance of mathematical purity and simplicity
in nature was due to our crude macroscopic survey of phenomena. For
instance, it is a well-known fact that if conditions are sufficiently
chaotic, the chaos will generate simplicity when we view things from
a macroscopic standpoint; it is only when we wish to view things
microscopically that the chaos appears and mathematical methods become
impossible.


As we mentioned earlier in the chapter, the kinetic theory of gases
furnishes us with an apt illustration. The molecules are rushing
hither and thither, bounding off one another in the most capricious

way.[139] It would be quite impossible to foresee the history of a
given molecule; and yet, thanks to this very chaos, the macroscopic
laws of perfect gases are exceedingly simple. We may infer, therefore,
that the constants of physics which enter into our macroscopic laws
represent mere average effects and differ essentially from those of
pure mathematics. More generally, even under ideal conditions of
observation the world of physics can never be assimilated to the world
of pure mathematics.


The simplification which ensues from a macroscopic survey of nature
allows us to understand the reason for those periodic swings which
take place in theoretical science between the physics of the
general principles and the atomistic viewpoint. If we view nature
atomistically, it will be our desire to interpret phenomena in terms
of attractions and repulsions between molecules, atoms or electrons.
Following the success of Newton’s treatment of planetary motions, the
scientists of the eighteenth and early nineteenth century endeavoured
to pursue this method by reducing the entire world of physical science
to attractions and repulsions between discrete particles. All sorts
of laws were appealed to: inverse-cube laws and laws involving still
higher powers. But nature was not so simple as scientists had hoped,
and paid very little heed to the difficulties of mathematical analysis.
So there arose an opposing school of scientists, who substituted
general principles embodying wider concepts such as energy, entropy,
action, for the atomistic theories of their predecessors.


The argument of this new school of thought ran somewhat along the
following lines: “By concentrating more and more upon your world of
atoms and molecules you are losing sight of those general principles
which experiment has revealed. Would it not be better, therefore,
to abandon your hopelessly complex speculations, and accept as a
starting point these fundamental principles, which can be deduced
from macroscopic investigation? We grant that by so doing you will be
substituting a macroscopic for a microscopic view of nature; but by
reason of the mathematical difficulties into which you have been led
and the numerous hypotheses you have had to make in order to compensate
for your ignorance of the microscopic mechanisms, it might be the safer
course to content yourselves, for the time being, at any rate, with the
macroscopic viewpoint.”


We may illustrate the new viewpoint somewhat as follows: A
life-insurance company does not know and has no means of foretelling
when one of its clients will die; yet, when instead of considering the
case of an individual client (which would correspond to the microscopic
or atomistic viewpoint) we consider men as a whole (the macroscopic
point of view), certain general death statistics can be established.
By attaching too much importance to one individual, we should lose
sight of this general principle, and premiums could never be fixed.
The analogy is far from perfect; but it is helpful in that it shows

us that in certain cases, at least, the macroscopic point of view
can yield us the information we require. A better illustration would
be given in the following very free translation of a passage from
Poincaré. As he tells us:


“Suppose that we are in the presence of some machine. The primary and
terminal gears are alone observable, while the intermediary systems of
transmission are concealed. We have no means of knowing whether the
motion is transmitted by means of gears or straps, by means of pistons
or by other means. Does this signify that we can never understand
anything about the engine unless we take it to pieces? We know that
such is not the case, for the principle of the conservation of energy
enables us to determine the most important point. We observe, for
example, that the last wheel turns ten times more slowly than the
first, both these wheels being visible. We may infer therefrom that
if a couple is applied to the first wheel it will balance a ten times
greater couple applied to the last one. This information is obtained
without our having to consider the mechanism whereby this state of
equilibrium is realised and without our having to know how the various
forces will balance one another inside the machine. When we consider
the universe, similar arguments will apply. Most of its workings are
beyond the sphere of observation; but by observing those motions which
we can perceive, we can, thanks to the principle of the conservation
of energy, derive conclusions which will remain true regardless of the
structural details of those parts which are invisible.”


The tendency of science was therefore to lose interest in the
microscopic mechanisms and to concentrate on the general principles.
It was not long, however, before a return to the atomistic attitude
was again forthcoming; but this time our knowledge was more advanced,
and greater success was the result. We witness this return to the
atomistic procedure in Lorentz’s theory of the electronic structure of
matter and electricity. Marvellous anticipations resulted from this
epochal theory, and it seemed as though a great advance had been made.
But, once more, difficulties arose; and here we are referring to those
mysterious phenomena which were the original starting point of the
theory of relativity.


Einstein again reverts to general principles. Instead of endeavouring
to account for the mysterious negative experiments by ascribing all
kinds of curious properties to the electrons and to matter, he accepts
these negative experiments as significant of some general principle,
namely, the relativity of Galilean motion through the ether, entailing
the invariance of the velocity of light.


Recent theories on the nature of the atom furnish instances of a
similar sort. Thus, Bohr’s theory of the atom has atomistic tendencies
in that it ascribes definite paths and motions to the electrons moving
round the nucleus. In this way it was able to attribute to helium
certain spectral lines which before then had been ascribed to hydrogen.
Accurate experiments have since confirmed the correctness of Bohr’s
anticipations. But insuperable difficulties were soon forthcoming
when attempts were made to extend the theory to the heavier atoms.

Half-quantum numbers and spinning electrons were introduced with the
result of complicating the theory considerably.


So Born and Heisenberg abandoned the atomistic outlook, stressing
the necessity of following a strictly phenomenological procedure.
The motions and orbits of the electrons were disregarded entirely,
since these had never been observed, and nothing but the repartition,
polarisation and intensities of the spectral lines was taken into
account. This new departure, known as the matrix method, led to
remarkable results, removing many of the difficulties which had beset
Bohr’s atom.


Still more recently we have witnessed a return to the hidden-mechanism
viewpoint with Schrödinger’s wave mechanics. We can scarcely refer
to it as an atomistic method, since waves take the place of discrete
particles. Nevertheless, from the standpoint of methodology, the
general idea involved is the same—that of basing our deductions on
things that cannot be observed.


This dual tendency in science, that of atomism versus the general
principles, that of the microscopic versus the macroscopic, must not
be thought to arise from any peculiarities in the philosophies of the
various scientists. It is due to the circumstances under which they
happen to find themselves. Thus, we see a theoretical scientist such as
Einstein adopting a phenomenological attitude when investigating the
difficulties attendant upon the negative experiments; and we see the
same scientist, Einstein, adopting an atomistic attitude when studying
the problems of Brownian movements, the problems of radiation, or the
quantum theory of specific heats. In the same way, when we climb a
ladder we raise our left leg, then our right one. It is not because
we conclude we were wrong in raising our left leg; it is because we
cannot progress unless we allow the right leg to catch up with the
left one. So it is in science; and we may be quite assured that in
the years to come, as in the past, we shall continue to witness these
periodic swings from the macroscopic to the microscopic view, from
the general principles to atomism. We must realise, however, that as
each swing takes place we are advancing higher and higher towards that
unattainable ideal, perfect knowledge.


And now let us revert to the common objective world of classical
science, to the world of separate space and time in which molecules,
atoms and electrons move and vibrate, and in which other types of
realities, such as electromagnetic fields, are present. Let us
recall once again that this real objective universe is the world as
the scientist must assume it to be if he wishes to co-ordinate the
complex of his experiences (reducing in the final analysis to sense
impressions) in a simple and consistent manner. Whether or not this
objective universe can be identified with the real world of the
metaphysician is a subject we need not discuss further, since it is of
no interest to science. The point we wish to investigate is somewhat
different. It is to be noticed that the so-called secondary qualities,
such as colour, sound and smell, have been banished as self-supporting
entities. They are now ascribed to the reactions of our brain to the

neural disturbances which occur when our sense organs are submitted to
the action of the realities of the common objective world.


The criticism is often directed against the scientific attitude that by
reducing quality to quantity we are eliminating values, substituting,
for example, electromagnetic vibrations for the colour red. Of course,
it is scarcely necessary to state that, aside from all philosophical
considerations, the reduction of quality to quantity is a prerequisite
condition if science is to exist. To illustrate: In Newton’s day
the vibratory nature of light was unknown. Red light differed from
green light, but this qualitative difference manifested itself as an
irreducible fact for which it was impossible to account. Under the
circumstances, if the observer were to rush towards a red light or to
move away from it, it was quite impossible for science to anticipate
what effects would arise. As soon, however, as Fresnel discovered the
vibratory nature of light, red light was found to differ from green
light owing to its slower rate of vibration: prevision then became
attainable. It was possible to anticipate that were we to approach a
red lamp with sufficient speed it would appear green, that with greater
speed it would appear violet, and that with still greater speed it
would become invisible. Likewise, were we to recede from the light with
sufficient speed it would also cease to appear visible. This was the
celebrated Doppler-Fizeau effect, which astronomical observations soon
succeeded in detecting; it is thanks to this effect that we are able to
determine the radial speed of approach or of recession of the stars.


We may presume, therefore, that the practical utility of the
scientist’s constant endeavour to reduce differences of quality to
differences of quantity is not called into question by the critic,
and that his objections are directed solely against the supposedly
unjustified philosophical outlook which this reduction of quality
to quantity has exercised on the scientific mind. But, in order to
investigate the problem, we must proceed to a more detailed discussion
of the reasons that compelled scientists to differentiate between the
so-called primary and secondary qualities.


We shall first restrict our attention to the primary qualities of
classical science, and shall furthermore consider the matter solely
from the standpoint of visual perceptions. For instance, let us assume
that we are viewing what would commonly be called a cone. When we view
this supposedly conical object, we perceive it with various shapes
according to the relative position we may occupy: we may see it as
a circle, or as a triangle with a base which is either straight or
elliptical; and so, by calling the object a cone, we are giving it
a name which corresponds to none of its many perceived shapes. The
conical shape is thus never perceived directly, but is the resultant
of a synthesis of all the private views we may obtain when viewing the
object from various directions. Now the question arises: Which of the
various shapes should we call the real shape of the object? One
of the many shapes it manifests when viewed from successive positions?
Or that shape at which we have arrived in an indirect manner as a
result of a co-ordination of private views? Of course the answer to

this question will depend on the meaning we wish the word “reality”
to convey. If by “reality” we wish to refer to what we apprehend
directly, it would be absurd to refer to the conical shape as the real
shape, since this shape is never apprehended directly, but merely
inferred. The trouble, however, with this tentative interpretation of
reality would be that we could never attribute any definite shape to
an object, for there would be no reason to favour the shape as seen
from here rather than the shape as seen from there. On
the other hand, if we ascribe to the word “reality” the alternative
meaning, i.e., that pertaining to the entity issuing from a
synthesis of private views, it becomes possible (so classical science
believed) to attribute a definite shape to the object, a shape
transcending the relative situation and motion of the percipient. And
so, according to classical science, shape was no longer indefinite, no
longer a matter of point of view: it became impersonal, and we were
enabled to conceive of the object as having a definite shape even in a
world devoid of all observers. This was the objective space-and-time
world of classical science. It would appear, then, that if we wish to
retain the word “reality” in the two different capacities mentioned,
we should at least underline the difference in meaning by referring to
a “private reality” in the first case and to a “common or objective
reality” in the second.


We now come to the so-called secondary qualities—colour and sound.
Here, for instance, is what would commonly be called a red light. We
apprehend it as red wherever we may be situated, so that, in contrast
to the case of apparent shape, it might appear as though we were
justified in claiming that the light was really red, i.e., red
in an objective world devoid of all observers. But if now, instead of
occupying a succession of various positions at rest with respect to
the luminous source, we move towards or recede from the light with
sufficient speed, it will change colour. Colour, when considered
from an impersonal objective standpoint, is thus just as indefinite
as apparent shape. Can we at least combine these various colours, as
perceived by the various observers, into one common colour, of which
our private perceptions would constitute but different perspectives?
Needless to say, the task is quite impossible. In other words,
there exists in the case of colour no parallel to the objective
cone of classical science, no possibility of speaking of objective
colour: colour remains private. Here, then, is a first reason for
differentiating colour from real objective three-dimensional shape, or,
again, secondary from primary qualities.


In the preceding discussion of the primary qualities of classical
science, we have considered solely objective shape. But, in a more
extended sense, we must class with the primary qualities all those
which may be deemed to manifest an impersonal existence. With this more
general understanding, we find that the most important of the primary
qualities of classical science were given by such concepts as shape,
size, duration, mass, force and electric charge.


When we consider the new views that are forced upon us by the theory

of relativity, we find that certain refinements are necessary. The
special theory of relativity has shown that there was no reason
to dispute the status of those qualities thought to be primary by
classical science so long as we restricted our investigations to the
points of view of observers at rest with respect to the object; but
that when observers in relative motion were considered, it became
impossible to effect a synthesis of all the apparent shapes so as to
obtain one sole impersonal or real spatial shape. Real shape was thus
removed from the status of a primary quality, and there was no sense in
speaking of the shape of an object in a world devoid of all observers.
Similar conclusions applied to size, duration and all the other primary
qualities mentioned, with the sole exception of electric charge, which
retained its impersonal status. Of course, had the theory of relativity
deprived us of the possibility of conceiving of a sufficient number
of primary qualities, hence of an objective world, it would have led
us to a stone wall. But we know that such is not the case, and that
the theory has merely modified the list of the primary qualities of
classical science, assigning the same fundamental rôle to others in
their stead. These are given by the space-time intervals and, more
generally, by space-time configurations and tensors. In other words,
the objective universe disclosed by relativity is no longer one of
shape and duration, or space and time, but one of space-time.


Yet, regardless of the actual list of qualities that are to be classed
as primary, the significance of these qualities remains the same
in either science in that they are deemed to represent entities to
which an impersonal existence may be conceded, if for none other than
methodological reasons.


Sufficient information has been given in this book to enable the reader
to understand the similarity which exists between the comparative
status of the objective and the private view, on the one hand, and
between tensors and tensor components, on the other. Thus, to take an
illustration from electromagnetics, we know that what our instruments
detect at a given point in a given frame of reference are the electric-
and magnetic-field intensities. When the frame is changed, the measured
values of these quantities are modified. Hence here we have the
analogue of the various apparent shapes of the cone. And just as the
apparent shapes of the cone could be attributed to an objective or
real three-dimensional cone (in classical science) or to a space-time
configuration (in relativity), so now, in the theory of relativity, the
electric and magnetic intensities can be regarded as the six variable
components of a real space-time tensor, the electromagnetic-field
tensor  subsisting in the objective space-time world. When
we change frames, the tensor remains unaffected in the objective
space-time world, but its six components in the space-and-time frame we
happen to occupy are subjected to definite variations when our frame
is changed; and for this reason fields that appear purely electrical
when we are moving with a certain relative velocity will appear
electromagnetic when our relative velocity is modified.





The general classification of objective, absolute or public realities,
on the one hand, and of relative or private ones, on the other, might
yet appear to present none but a methodological interest and to have
no bearing on the problem of the genuinely real. But, assuming for
argument’s sake, that the concept of the genuinely real has a meaning,
it can scarcely be denied that if we ever hope to discover this genuine
reality, it is assuredly more reasonable to seek it in those realities
which we have cause to regard as public rather than in those which
remain essentially private. For, as we have seen, a private reality,
such as colour or apparent shape (or three-dimensional spatial shape
in relativity), is indefinite until such time as the conditions of
observation are specified; hence it is not self-supporting, but
entails the mention of a relationship to something else. On the other
hand, the generalised primary qualities transcend this specification
of relationships, that are always of a contingent nature. Hence,
quite aside from considerations of a methodological order based
on convenience, there appears to be every reason to assume that
the generalised primary qualities approximate more nearly than the
secondary ones to the unattainable ideal of the genuinely real, or the
metaphysical reality.


We have now to consider a further type of difficulty which would
confront the metaphysician who claims colour to be a reality having
an existence per se in a world devoid of observers. In the
preceding pages, when discussing the relativity of colour to the
percipient, we have dwelt on the relativity of colour to motion,
embodied in the Doppler effect. But it is well known that a distinction
between primary and secondary qualities had imposed itself long before
the Doppler effect was discovered. One of the reasons responsible for
this differentiation is to be found in the fact that colour, in many
cases, is also relative to position. Berkeley gave an illustration
of this type of relativity when he wrote of a cloud which, though it
looks crimson from here, is a dark mist when we penetrate its
interior. But his illustration was a poor one, for when we enter the
cloud we are no longer viewing its surface. It would not be difficult
to improve upon Berkeley’s example, but for our present purpose it
will not be necessary to dwell further on this type of relativity, so
we shall examine another species of relativity, namely, relativity to
gauge.


Suppose, then, that a green object is placed on the table. The
metaphysician who states that colours are realities which would exist
in a world devoid of percipients would presumably state that the
object’s surface was green in its very essence. But it might well
happen that, on viewing the surface with a powerful microscope, we
should find it to be made of a patchwork of blue and yellow spots and
that all appearance of green had vanished. Unless the metaphysician
proceeds to ignore the microscopic view entirely, he will be placed
in the dilemma of wondering whether the green quality or the
yellow-and-blue one is to be ascribed to the object in the real world.
Even so, his troubles would not be at an end, for we might conceive
of an ultra-microscopic vision compared with which our erstwhile

microscopic vision would be macroscopic, and so on indefinitely. Now
the change in colour that accompanies a passage from the macroscopic
to the microscopic suggests that changes of equal importance might
ensue from each successive passage to the following microscopic view.
Indeed, it might be that for organisms whose size was of the order
of wave-lengths no colour would manifest itself at all. Inasmuch as
it would be highly arbitrary to assert that the ultra-microscopic
vision is in any wise less worthy of consideration than the more usual
macroscopic one, it appears to be impossible to ascribe definite
colours to existents in a world devoid of all observers.


It is true that in the present discussion we started from an example
where the microscope enabled us to detect a difference in colouring;
and cases might arise where even under the microscope the object would
still appear green. But, as we said before, the microscopic vision is
itself ultra-macroscopic when contrasted with the infinite regress
of ultra-microscopic visions we can conceive of; hence, even in this
case, the difficulty would be only postponed, not obviated. After all,
our ability to pass from microscopic to macroscopic views is contained
within comparatively narrow limits. The microscope brings us to the
limits of microscopic vision; yet it does not even enable us to see
some of the tinier micro-organisms. As for the ultra-microscope, it
yields but a blur. Turning to the ultra-macroscopic vision, it appears
to be best exemplified when we view the Milky Way; but this vision in
turn would be microscopic as contrasted with others of which we might
conceive. The upshot of this discussion is that when the metaphysician
speaks of red as inhering in the flower of a geranium, he is making a
statement that cannot withstand scientific criticism.


Contrast these ambiguities and difficulties with the primary quality
of shape in classical science (not in relativity). For in classical
science, if a coin be recognised as round as a result of a synthesis
of certain microscopic points of view, it will remain round when
precipients situated in any position, moving with any velocity, and
observing it with any macroscopic vision co-ordinate their impressions.
Owing to this comparative irrelevance of the percipient, there
appears to be a certain justification (in classical science) for
speaking of a round coin existing in a world devoid of percipients,
whereas there is none for speaking in the same sense of the brown
colour of the coin.


The next stage we have to consider deals with the reduction of
secondary to primary qualities. Whereas, up to the present, our
arguments based on the relativity of perceptions applied solely to such
secondary qualities as colour and sound, we shall now be in a position
to advance arguments holding for the remaining secondary qualities,
such as heat and smell.


We said, when discussing the red light, that it was impossible to
effect a synthesis of all the colours perceived by the variously
moving observers and obtain therefrom one definite, impersonal colour.
Nevertheless, we may succeed in obtaining objectivity if we find it
possible to regard sensations of colour as due to certain specific

perturbations suffered by the retina as a result of the impact of
electromagnetic waves. According to the relative motion of the
observers, the objectively real electromagnetic waves will impinge upon
the retina with one frequency or another, and corresponding sensations
of colour will ensue. Colour would thus manifest itself as the result
of a relationship.


The realistic metaphysician might urge that this may be a convenient
way of accounting for colour, but that it is artificial and that, in
spite of all, colour should be considered a reality existing per
se. But if this stand were adopted it should also be permissible to
say that the fizziness of the Seidlitz powders already exists per
se in the powders, and results in no wise from a relationship,
i.e., from the chemical interaction of the two powders. Or, to
take Galileo’s illustration, we should say that the tickling quality
must be in the feather, since a feather passed over our skin may tickle
us.


The metaphysician’s stand appears untenable, for it is impossible to
deny the existence of relationships giving rise to effects which were
non-existent before the relationships were established, and which often
differ appreciably from their generating causes. And every time we
sense a colour or a sound or a smell, a relationship is established
between some objective entity and that particular sense-organ which
is affected. The fact is that the human organism is a highly complex
piece of workmanship and that as a rule it reacts differently (though
sometimes in the same way) to the various perturbating influences;
while at other times, so far as we know, it does not react at all and
no sensations are registered. To speak of colour and sound as existing
independently of the organism is thus as nonsensical as to discuss a
one-sided triangle.


To take an example at random, let us consider a problem of heat.
The sun emits rays which are commonly supposed to be luminous and
hot. If, then, as the metaphysician asserts, hotness is inherent in
the rays, we should expect the space between the earth and the sun
to be flooded with heat, hence warm. But such is not the case. The
temperature of interplanetary space is in the neighbourhood of absolute
zero. On the other hand, the atmosphere becomes warm under the sun’s
rays. Why this difference? Because the energy of the electromagnetic
waves is transformed into molecular agitation when the waves impinge
on matter, just as a spark is produced when two flints are struck
together. The more rarefied the matter on which the waves impinge,
the smaller will be the percentage of the electromagnetic energy
transformed or degraded into molecular agitation. It is partly for this
reason (owing to the progressive rarefaction of the atmosphere) that
the temperature gradually falls as we rise to high altitudes in an
airplane. Now science claims that on a hot day, when standing in the
shade, we experience a sensation of heat, our sensation results from
an interaction between the extremities of our sensory nerves and the
impacts of the molecules constituting the atmosphere. The metaphysician
will presumably balk at this statement, claiming that the heat we sense
exists independently of us in the air and that we merely detect its

presence. But if his contention were accepted, we should also have to
assume that the heat existed in the sun’s rays and had been transferred
directly from them to the air. And we have shown that this view is
untenable, since the light rays produce heat merely as a result of a
transformation of their energy into one of another type (molecular
agitation). And since it appears impossible to maintain that the heat
was already in the rays prior to their encounter with matter, what
justification is there for asserting that the heat was already in the
air prior to its encounter with our sensory organs? In every case we
are witnessing transformations of energy, and these transformations are
always accompanied by degradation (except in the ideally reversible
transformations). This fact is expressed by the law of entropy,
according to which, though the energy is conserved in quantity, its
potentiality, or quality, is lowered, i.e., degraded.


Now, to revert to the problem of colour, it is possible that when a
light-wave impinges on our retina some chemical change is produced (as
in the case of the photographic plate, where the molecule of chloride
of silver is loosened); possibly, too, a liberation of electrons
takes place by a photo-electric effect. At all events, it is more
than likely, on the strength of other phenomena of which we know
something definite, that by the time the energy of a supposedly red
electromagnetic vibration has reached our brains it has been subjected
to all sorts of transformations. Even if we feel justified in saying
that redness hits our eye, what right have we to maintain that,
contrary to all the known laws of physics, this redness is perceived by
our consciousness without any transformation having taken place? And
if we admit that physics is not a complete hoax, how do we propose to
assert that the redness we sense is already present as redness in the
electromagnetic radiations?


The metaphysician’s attitude will lead to still further difficulties
when a number of other examples are considered. In the first
place, science has discovered that the electromagnetic vibrations
accompanied by colour constitute an insignificant minority. There
exist electromagnetic vibrations of varying frequencies identical in
all respects with the luminous ones, except that they do not happen to
influence the human eye. If we adhere strictly to the ultra-realistic
viewpoint, we shall have to assume that these invisible radiations
contain no properties of colour. And yet, as we know, though invisible
to the human eye, they are detected by the photographic plate and, in
all probability, by a number of animals. Were the photographic plate
possessed of consciousness, or, again, were our eye provided with a
photographic plate in place of the human retina and optic nerve, etc.,
the colour red would be unknown; whereas a new colour, ultra-violet,
would be sensed with ease.


It thus becomes impossible to escape the conclusion that our precise
perception of colour is affected by the idiosyncrasies of the eye and
organism. We need not dwell on a number of well-known illustrations,
such as the effect produced by certain drugs. If, therefore, when
defending the reality of colour, the metaphysician is referring to
those colours which the human eye can detect, he is making the very

existence of his realities dependent on the accidental circumstance
that the human eye is sensitive to one particular range of vibrations
and to no other. He can emancipate himself from this difficulty only by
assuming that all electromagnetic waves possess colour, whether visible
or invisible. This would lead him to ascribe colour to radio waves.
But why stop even there? Why not attribute colour, sound and smell to
everything while we are about it, and talk of the colour of sound waves
and the sound or smell of electromagnetic ones? We should thus be led
into complete intellectual anarchy. Then again, consider interference
phenomena. Red light plus red light yields obscurity. If we consider
redness as an objective reality, we must at least concede that positive
redness and negative redness must exist, so that a mutual destruction
becomes possible. In similar fashion, there would be positive and
negative sound, and all kinds of other absurd notions.


That all these points should have appeared controversial in the days
of the Greeks is only natural, since they knew very little of the
transformations of energy, and nothing of the invisible radiations
or of the Doppler effect or of interference bands, etc. But nowadays
the ultra-realistic standpoint is quite untenable for the scientist.
The reader acquainted with scientific thought may feel that this long
discussion was quite unnecessary. Such would also have been our own
opinion had it not been for the profusion of contemporary philosophical
literature purporting to defend the reality of secondary qualities.
Were it not for a few scientific words interspersed here and there in
their writings, one would have no difficulty in believing that these
productions were those of men who had lived more than two thousand
years ago.


Another type of objection to the method of quantitative reduction
is that a philosophy of nature must be based on a consideration of
qualities as well as of quantities. But the critics overlook the
fact that by postulating too many conditions they may be rendering a
consistent philosophy quite impossible. The aim of a philosophy of
nature should be to increase our understanding of nature. Vagueness has
ever been an obstacle to knowledge; it prevents us from differentiating
between concepts which present but a superficial similarity, and
obscures the interconnection of phenomena. For this reason, science
has had to reduce qualitative differences whenever possible, since it
was they that interfered with the possibility of obtaining any precise
co-ordination.


In a similar spirit, science has ever endeavoured to eradicate
such statements as “nature abhors a vacuum” or “chemical elements
possess various affinities.” Statements of this sort, just like the
Aristotelian qualities, are worthless, for they lead nowhere. To clothe
our ignorance in the guise of a phrase may flatter our vanity, but it
does not advance us one iota. In short, although the scientist may not
have taught us much about colour and light, he has at least increased
our powers of prevision; and that is no mean achievement. Of course
prevision is not everything. The enjoyment of the present is also
of interest; and it might always be claimed that the quantitative

reduction had eliminated beauty and noble aspirations from the world.
However, if this were the case, why not add that it has also eliminated
filth and misery? But such considerations are quite beside the point.
There is no reason why a physicist should not derive just as much
pleasure from the beauties of music as a man ignorant of the laws of
acoustics. Hence, we must make up our minds once and for all and decide
whether in our quest for knowledge we intend to be guided purely and
simply by our feelings, or whether we intend to seek our inspiration
in the abstract intellectual ideal of unity and simplicity with which
theoretical science dwells.


Let us now return to a more scientific subject. We have seen that a
theory of mathematical physics reduces to a rational co-ordination of a
large number of facts and phenomena. The interconnections between these
phenomena permit us to pass by a continuous chain of reasoning from
one to another, and enable us thereby to anticipate the future or the
past from a knowledge of the present. We have also seen that various
syntheses of facts were possible; but that, in general, one particular
synthesis stood out prominently, owing to its greater simplicity and
to the smaller number of auxiliary hypotheses it contained. Thanks to
the absence of disconnected hypotheses ad hoc in this simplest
synthesis, we are able to find our way about without being bewildered
at each turn by gaps and hiatuses. Owing to our ability to foresee
and to foretell the future activities of nature, we feel that we have
succeeded in unravelling her hidden scheme and in understanding her
guiding motives. To this extent we consider ourselves justified in
assuming that the knowledge we have uncovered or created corresponds
to reality, although, of course, the reality contemplated remains
essentially pragmatic. This pragmatic conception of reality has been
stressed repeatedly by Poincaré. But it is by no means peculiar to
the great mathematician and philosopher. We find it in the teachings
of Euler and Riemann, and of all the great scientists of the last two
centuries; in short, it is the philosophy of science.[140]


Obviously, there is nothing in the nature of an explanation in a
scientific theory. Phenomena are not explained; they are merely
interconnected, or described in terms of their mutual relations. As
a matter of fact, there is no cause to be surprised at this failure
of science to explain phenomena, for the failure arises not from the
limitations of science, but from the limitations of the human mind
itself. All we can ever do is to interpret  in terms of ,
and  in terms of . However far we go, we can never avoid an

ultimate unknowable. This perfectly obvious contention is sometimes
obscured because the end of the series may be so far removed as to
escape our attention; but this is merely a mental subterfuge, a form of
mental laziness.


Thus, the Greeks wondered why the earth did not fall. An explanation
was soon forthcoming. The giant Atlas holds it on his shoulders. But
what, then, prevented the giant Atlas from falling together with the
earth he was carrying? The nether regions on which he stands give him
support. This is as far as the explanation went, for no theory seems
to have been advanced explaining why the nether regions did not fall,
together with Atlas and the earth.


We might consider more scientific examples; but we should find that the
case was always the same.  is described in terms of , 
in terms of , and so on. Consider the phenomenon of gravitation.
Does any one really imagine that Newton or Einstein has ever attempted
to explain gravitation? To say that gravitation is a property of matter
or a property of space-time in the neighbourhood of matter is just as
much of an explanation as to say that sweetness is a property of sugar;
for in the last analysis, what is matter—what is space-time? If we say
that matter is an aggregate of molecules, atoms, electrons, protons,
what of it? What are electrons? What are protons? We can only confess
our complete ignorance and, while attempting to reduce the number of
these unknown fundamental entities to a minimum, content ourselves
with describing the properties which appear to characterise them and
the relationships that appear to connect them. Clearly, those who
seek explanations will find no comfort in science. They must turn to
metaphysics.


And yet, as a matter of fact, these rather gloomy conclusions are
gloomy only because we are expecting too much. If we content ourselves
with what we can obtain, we shall find that the descriptions of science
are creative and fertile, and not sterile, as descriptions usually are.
As we have already explained, a scientific description is creative in
that it allows us to foresee and to foretell. A description that could
not confer this power on us would be of little use. Thus, we might
describe the petals and stamens of a flower, describe its colour, odour
and general appearance. A description of this sort would be useful
in enabling us to recognise the same plant when we came across it
again. But apart from this, it would teach us nothing new. It would
not tell us, for instance, whether the root was bulbous or fibrous. On
the other hand, if as a result of prolonged botanical study we could
establish certain recurrent relationships between the characters of
flowers and the other characteristics of the plants, we might be able
by a mere examination of the flower to anticipate the nature of the
root. In palæontology it is the same. The discovery of a fossilised
bone has often been sufficient to enable scientists to reconstruct the
entire skeleton of the unknown animal. It is in this respect that a
scientific description is creative and differs from the ordinary type
of description which we encounter in everyday life.


Now we have already attempted to explain that among all the syntheses

of experimental facts known to science some stood out prominently,
owing to their extreme simplicity. In these privileged syntheses simple
relationships were discovered, and the expression of these permanent
relationships constituted the laws of nature. If the experimental
facts we are seeking to co-ordinate are few in number, and if the
relationships between phenomena, as established by experiment, are
more or less crude and uncertain, we may be led to a certain definite
synthesis which will appear to be the simplest. But if ultra-refined
experiment leads us to more precise relationships at variance with our
former crude ones, or, again, if a wider array of facts has become
known, it may well happen that our original synthesis will be incapable
of co-ordinating all these results unless we appeal to a number of
artificial corrective hypotheses. In this case we may be compelled
to widen our synthesis or even to reconstruct it entirely. We must
realise, therefore, that a synthesis can never be considered final, for
we never know what the future may hold in store.


It is the same with our hypotheses and theories. Theories which
would appear plausible when a small number of facts are appealed to,
often become untenable when a greater number are taken into account.
Consider, for instance, Lesage’s theory of gravitation. Lesage
had suggested that gravitation might be accounted for by assuming
corpuscles to be rushing hither and thither with enormous speeds in all
directions through space. Under this hypothesis two bodies, say the sun
and earth, would screen each other mutually from the impact of some of
the corpuscles. The residual action caused by the impact of the other
corpuscles would then be to press the sun and earth together; in this
way gravitation would be accounted for mechanically. Needless to say,
Lesage’s hypothesis was nothing but a wild guess, but, even so, it was
felt that there might still be some truth in it.


The astronomer Darwin attacked the problem and proved that gravitation
might be accounted for in this way, not merely qualitatively (for
this would have been quite insufficient), but quantitatively as well,
provided the corpuscles possessed no elasticity whatever, hence did not
rebound after impact. Thus far, then, everything was in order, and the
theory was acceptable. But now let us take into consideration a few
additional facts. Gravitation, as we know, exerts its action even when
bodies are interposed. Hence we must assume that only an insignificant
percentage of the corpuscles would be arrested by the earth’s surface.
Now, when account is taken of the sizes of the molecules of matter
constituting the earth, and of the vacant spaces which separate them,
certain limitations are imposed on the size, mass and velocity of the
corpuscles. When, furthermore, we realise that the earth moves round
the sun without slowing down in any perceptible way, as though its
motion encountered no friction, we are compelled to conclude that the
density of the gas formed by the corpuscles cannot surpass a certain
limit. When all these facts are taken into account, we find that
Lesage’s theory cannot be countenanced, for calculation proves that
under the impact of the corpuscles, the earth would become white-hot
in a very short time. The same difficulty would arise were we to seek

to save the hypothesis by substituting for the impacts of material
corpuscles the pressure of invisible electromagnetic radiations
(possibly of the nature of the Millikan rays). Rather than introduce
further hypotheses ad hoc, for the sole purpose of saving
Lesage’s theory, Lorentz preferred to abandon it.


We see, then, that it is owing to the incessant accumulation of new
facts that scientific theories are constantly submitted to change and
revision. Until the advent of Einstein’s theory, however, although
theories of mathematical physics had to be subjected to incessant
modification, our basic concepts of space, time and matter had remained
unaffected. Indeed, there was no reason to deviate from the original
synthesis in this respect. Only when ultra-precise experiments
were performed was it found impossible to retain the classical
spatio-temporal foundation. As a result, Einstein was compelled to
construct a totally new synthesis built on an entirely different
foundation, that of space-time. Had it not been for our knowledge of
ultra-precise experiments, there would of course have been no reason to
modify the essential characteristics of the classical synthesis. From
this we see that the synthesis which we adopt depends on the extent
of our knowledge, or, what is more to the point, on the extent of our
ignorance of nature.


There is very little similarity between the erection of a building
and the creation of a scientific theory. When a building is erected,
we know beforehand the type of structure we propose to erect, and we
can lay our foundations accordingly. But in an empirical science such
as physics, the structure is never completed. The superstructures are
subject to incessant change as our experiments become more precise and
as new phenomena are revealed. The result is that we can never lay our
foundations once and for all with perfect security. At all times we
must be prepared to abandon our theory, remodel the foundations and
erect a totally new structure.


It would appear to be unnecessary to stress these points further, for
they must appear obvious to those who are at all familiar with the
achievements of science. Certain metaphysicians, however, hold that
similar reconstructions should never endanger the traditional concepts
of space and time. But an attitude of this sort is equivalent to
removing the study of space and time from the control of experience;
for all concepts which we approach empirically are necessarily subject
to change as our experimentation increases in precision. Furthermore,
if we adopt this attitude, why not go the limit and assert that the
discoveries of the laboratory can be figured out a priori? The
entire trend of modern science is hostile to the philosophy of the
a priori. Non-Euclidean geometry undermined its foundations a
century ago, and to-day the physical theory of relativity has completed
the work. To assert in the name of logic or of reason, as so many
philosophers have done, that space and time must be separate,[141]
or that space cannot manifest variations of curvature from place to

place,[142] or that space-time must always be flat,[143] or that
matter must be a substance which is conserved, is to impose narrow
philosophical doctrines which are likely to cramp the entire synthesis,
rendering a simple scheme of natural relations impossible. To quote
Weyl:


“Matter was imagined to be a substance involved in every change, and
it was thought that every piece of matter could be measured as a
quantity, and that its characteristic expression as a ‘substance’ was
the Law of Conservation of Matter which asserts that matter remains
constant in amount throughout every change. This, which has hitherto
represented our knowledge of space and matter, and which was in
many quarters claimed by philosophers as a priori knowledge,
absolutely general and necessary, stands to-day a tottering structure.
First, the physicists, in the persons of Faraday and Maxwell, proposed
the ‘electromagnetic field’ in contradistinction to matter,
as a reality of a different category. Then, during the last century,
the mathematician, following a different line of thought, secretly
undermined belief in the evidence of Euclidean geometry. And now, in
our time, there has been unloosed a cataclysm which has swept away
space, time and matter, hitherto regarded as the firmest pillars of
natural science, but only to make place for a view of things of wider
scope, and entailing a deeper vision.”


Summarising, we may say that in natural science it is essential to
beware of fundamental premises which are claimed to be forced upon us
by the requirements of logic or of crude perception.


Yet, on the other hand, it must be admitted that when we have succeeded
in constructing some lofty scientific synthesis which takes in the
facts of experience, our synthesis must always be such as to permit
us to account for the facts of crude observation; for these, to the
same extent as the results of ultra-precise experiment, constitute
facts which must be co-ordinated. A theory such as Einstein’s must
not go counter to the apparent separateness of space and time when
phenomena are investigated only in the usual crude way by commonplace
observation. In other words, the scientific synthesis must reduce
to the primitive synthesis when too great accuracy is not imposed,
so that the primitive synthesis must appear in the light of a first
approximation. Einstein’s theory satisfies this general condition
in every respect. As we have seen, for low velocities or for crude
observation the classical separateness of space and time reasserts
itself; hence no conflict exists between the relativity theory and
commonplace observation. Similar conclusions apply to the classical
addition of velocities. This also appears to be verified to a first
approximation.


Now it might be contended that since all finality seems to be denied a
scientific theory, it would be better to cease theorising and content
ourselves with a bare accumulation of facts. But an attitude of this
sort would be untenable, for scientific theories, though necessarily

inaccurate from a long-range point of view, are nevertheless inevitable
if knowledge is to exist. A bare accumulation of disconnected facts
would not constitute a science, precisely because, the facts being
disconnected, they would afford us no means of foretelling the future
sequence of events. Under the circumstances, it is better to be guided
by a faulty synthesis which we can improve upon as experience demands,
rather than be guided by nothing at all. Furthermore, co-ordinations
and theories which have since turned out to be patently inaccurate,
have yet been successful in leading to the discovery of new facts.


Thus, Newton’s law, to-day recognised as inaccurate, brought about
the discovery of Neptune; it permitted astronomers to assert that it
was the same comet which reappeared at definite intervals. Again, it
was thanks to Newton’s law that Römer, in 1675, discovered the finite
velocity of light, thereby exploding the belief that the existence
of an event and our perception of it were simultaneous occurrences.
All these discoveries would have been arrived at by other means at
some later date; yet it must be agreed that, owing to the law of
gravitation, they were considerably precipitated. Indeed, it was not
until the nineteenth century that the finite velocity of light was
established by direct terrestrial measurement.


In other cases, a scientific theory, whether true or false, directs
physicists towards crucial experiments of which they might never have
thought. Eddington’s astronomical expedition was prompted by Einstein’s
discoveries; had the theory been unknown, it is probable that the
bending of light, when finally observed, would have been regarded as
an error of observation or as due to some casual disturbing influence.
Under the circumstances it might never have become a permanent
scientific fact; and it is the same with the Einstein shift-effect.
Regardless, then, of whether Einstein’s theory will endure or be
scrapped to-morrow, it has led at least, to the discovery of new facts.


Furthermore, we must remember that each successive theory retains
certain elements of the one it has supplanted. It rises to a higher
plane, but it rises from a rung that has been set in position by its
predecessor. It is not in the physical hypotheses that we shall find
these elements of permanence, but in the equations themselves; for
it is these that constitute the relations of reality. The physical
hypotheses, as originally formulated, are but convenient scaffoldings
of a more or less temporary nature. This is especially noticeable
in the successive theories of electricity and magnetism. From the
initial theories of Coulomb and Ampère to the present ones of Larmor
and Lorentz, as modified by Einstein’s discoveries, we pass through
the intermediary ones of Maxwell, Helmholtz and Hertz. We may follow
the equations through these transformations and see how they were
supplemented by the adjunction of additional terms or by the refinement
of those already present. Thus, Maxwell’s equations differ from
Ampère’s by the adjunction of a new term. Lorentz accepts Maxwell’s
equation of the free ether without modification; it is only when

matter is present that refinements are superadded. Again, Einstein’s
gravitational equations degenerate into Newton’s when the field is weak
and the velocities are small.


When we realise that all these successive refinements in the theories
were brought about by a desire to co-ordinate an ever-increasing number
of facts, it would appear that the scientist has very little control
over the course his theory will follow, since in every case it is the
criterion of simplicity of co-ordination which guides him.


However, it may be of interest to examine whether, in addition to
these formal considerations, there may not exist other reasons which
prompt scientists towards their solutions. It might be claimed that
the various thinkers start from different initial philosophical
presuppositions, and that these presuppositions, rather than the
number of facts co-ordinated, are responsible for the differences in
the nature of the theories and conclusions. Opinions of this sort
have been expressed by numerous philosophers who have devoted their
attention to what they call the “metaphysics of science”; but we may
hasten to say that the opinion appears to be entirely unwarranted. It
is solely the criterion of simplicity of co-ordination which decides
on the orientation of science. Where the personal idiosyncrasies of
the thinker may come into play will be in the directing of his initial
attempts of co-ordination along certain lines rather than along others;
but if a simple co-ordination is found to be impossible along the lines
originally chosen, other attempts in totally different directions
will be undertaken in due course. The final result may issue in a
co-ordination presenting a philosophical import totally different from
the one preferred originally; and this change is due to the facts of
the case and not to a change in the philosophic fancies. Of course,
it is not easy for the layman to realise this state of affairs, for
scientists do not usually write a diary, mentioning all their abandoned
attempts. When a theory becomes widely discussed, it is generally
presented in its final form, and the numerous hesitations and partial
attempts that may have extended over a period of years are lost sight
of entirely. And yet, if we revert to the original scientific papers,
these hesitations and changes of attitude are apparent.


It would be tedious to give illustrations; they abound everywhere.
However, we may quote a few paragraphs of Einstein’s from his paper,
“Cosmological Considerations on the General Theory of Relativity.”
We shall see that he hesitated a long time between a number of
alternatives before even considering the finite universe. We read:


“In the present paragraph I shall conduct the reader over the road
that I have myself travelled, rather a rough and winding road, because
otherwise I cannot hope he will take much interest in the result at
the end of the journey. At this stage, with the kind assistance of
the mathematician J. Grommer, I investigated centrally symmetrical
gravitational fields, degenerating at infinity in the way mentioned.
But here it proved that for the system of the fixed stars no boundary
conditions of the kind can come into question at all, as was also
rightly emphasised by the astronomer de Sitter recently.... At any

rate, our calculations have convinced me that such conditions of
degeneration for the ’s in spatial infinity may not be
postulated.


“After the failure of this attempt, two possibilities next present
themselves.[144] ... From what has been said it will be seen that I
have not succeeded in formulating boundary conditions for spatial
infinity. Nevertheless, there is still a possible way out, without
resigning as suggested under (b). For if it were possible to regard the
universe as a continuum which is finite (closed) with respect to
its spatial dimensions, we should have no need at all for any such
boundary conditions.”


And it is the same in every other case. A number of attempts are made
to co-ordinate the facts, and the simplest solution is the one which
is accepted by the scientific world, until such time as some newly
discovered experimental result conflicts with it.


Of course, all these statements would suffer from an incurable
vagueness, were any argument to develop as to what constitutes
simplicity. But whatever the reason may be, we find that the agreement
among scientists is striking in this respect. There have never been two
highly developed theories co-ordinating the same number of facts, in
which by common consent one was not recognised as vastly simpler than
the other; just as a mathematical expression containing one term is
simpler than one containing two.


A case in point would be afforded by a comparison of Einstein’s
and Newton’s co-ordination of gravitation and mechanics. If we are
concerned solely with the facts of planetary motion and mechanics
known to Newton, then Newton’s laws of mechanics and his law of
gravitation are by far the simpler. But if we supplement the facts
known to him with those more recently discovered, Einstein’s synthesis
has the advantage, for Newton’s co-ordination would necessitate a
number of additional hypotheses ad hoc. In the same way, so
far as our everyday experience is concerned, a non-rotating earth is
the simpler solution, whereas, when the planetary motions are taken
into consideration, the reverse holds true. It may happen, of course,
that the simpler synthesis will conflict with certain philosophical
prejudices, but objections of this sort will always give way eventually
before the higher criterion of simplicity. Indeed, we know that men
finally accepted Galileo’s stand.


If, then, we may assume that the criterion of simplicity presents no
further difficulty, the problem reduces to determining whether or not
the theoretical physicist introduces presuppositions and assumptions
uncritically. We are here concerned solely with the physicist and
theoretical physicist, not with the pure mathematician, whose procedure
is entirely different. In order to clear up these points, we shall give
a rapid survey of some of the basic presuppositions that are common
to physicists. Although we fear that it will be impossible to avoid
a certain amount of repetition, yet the importance of the subject is
such that a mere matter of elegance of presentation will have to be
sacrificed.





The purpose of science is, as we have said, to co-ordinate facts and to
obtain thereby a common knowledge which will hold for all men. But our
co-ordinations, deductions and inductions must be conducted according
to rigid rules which all men will recognise. In the absence of such
common rules, two men starting from the same premises would arrive at
different conclusions; as a result, a common knowledge, and therefore a
science, would be impossible. We shall assume that the rules of logical
reasoning will serve our purpose in this respect.


Here, of course, it might be argued that we are unwittingly introducing
an assumption when we state that beings who neglected to conform to the
same rules of reasoning would fail to agree. Of course, if we adopt
so hypercritical an attitude, there is nothing left to argue about.
The instant we start to talk we are assuming from past experience that
sounds will be emitted and that our words will convey at least some
meaning to our neighbour. It is the same with the rules of logic.
Regardless of what the ontological status of these rules may be, we
may assume that in view of past experience it is convenient for men to
abide by them if they wish to construct a common science.


Let us consider now what scientists mean by the uniformity of
nature. The uniformity of nature may be interpreted in various
ways. It may mean that nature is regulated by universal laws. In this
form, it is obviously not a presupposition adopted uncritically. The
primitive man does not feel the necessity for it; he prefers to believe
in miracles. If the modern physicist accepts this uniformity it is
because it has been confirmed a posteriori in so large a number
of cases that it seems simpler to accept it than to reject it, at
least until further notice. Furthermore, it is an assumption which is
perfectly well recognised as of limited validity, and scientists are
the first to suspect that after a more microscopic survey of nature it
may prove untenable. Nature may not be rational and our logic may be
unable to cope with it. If this be the case, statistical knowledge may
be the only type possible, though even statistical knowledge may fail
us.


We can also understand the uniformity of nature in a different sense.
We may wish to imply that an experiment attempted on a Monday would
yield the same result if repeated on a Tuesday. In other words, the
passage of time, though affecting us in a number of ways (aging,
etc.), can be disregarded in certain important cases. Suppose, for
the sake of argument, that we were to dispute the legitimacy of this
assumption; what would be the result? Obviously science would become
impossible. A geometrical proof holding in Euclid’s time would no
longer hold to-day; knowledge would be intransmissible. There would
be no object in performing an experiment to-day, since to-morrow our
conclusions would have lost all value. In fact, it would be futile to
attempt any experiment at all, since every experiment is spread over
a certain time. In a world of this sort, prevision would be quite
impossible; a rule of action would be out of the question. Inasmuch as
one of the most important functions of science is to serve us with a
rule of action, we can realise that science would become unthinkable.

This brings out an important difference between science and history,
for example. History tells us of events past and gone which, for all
we care, may never reoccur; but in science a phenomenon which could
never occur again would be of little interest. In short, we must agree
that the very existence of a common science proves that our assumption
of the uniformity of nature, whether it be justified or not sub
specie œternitatis, is justified at least in that limited field
of experience which is ours. On no account, then, must our belief be
confused with a presupposition adopted uncritically.


As a matter of fact, even were we assured that the uniformity of nature
was a mistaken belief, we should continue to be governed by it just
the same. We know perfectly well that the uniformity of our stream of
terrestrial life does not hold; we know that though we have risen every
day, yet at any instant we may die. But unless we wish to exist in a
state of complete stagnation, we must act as though our life would
continue, and so we plan for the future. Under the circumstances, it
appears futile to seek any rational justification for the uniformity of
nature, basing our arguments on probability considerations. The fact
that things have existed until to-day does not prove they will exist
to-morrow; but it suggests that we act as though they would.


Among the principles, special mention must be made of the “principle
of sufficient reason.” In physical science, the application of this
principle is subject to all manner of difficulties. For instance, when
we assert that there is no reason for a body to move here rather
than there, we are assuming that we possess at least a general
knowledge of all the possible influences which happen to be present.


Obviously, our assumption is apt to lead us to erroneous conclusions.
We mentioned a case in point when discussing the problem of space.
Assuming space to be perfectly empty, the principle of sufficient
reason suggested that it should be homogeneous and isotropic; but as
we were by no means certain that physical space was truly empty, the
application of the principle was of no great value.


Difficulties of this sort are by no means restricted to problems of
physics. Even in pure mathematics it is not always easy to decide in
what way the principle should be applied. The mathematical problems
in which we are compelled to appeal to sufficient reason are those
dealing with probabilities; and the following elementary illustration,
discussed by Bertrand, will afford us a sample of the type of
difficulties which we may encounter. Suppose, for instance, we are
asked: “What is the probability that on tracing the straight line at
random, the line-segment contained within a given circle should be
greater than the side of the equilateral triangle inscribed in the said
circle?”


Now, if we conceive of all possible straight lines intersecting the
circle, sufficient reason tells us that any one of these lines is
as likely to be traced as any other. Hence, the probability we are
seeking will be given by the ratio of the number of different lines
that satisfy our stipulated condition, to the total number of different
lines that can be drawn to intersect the circle. Clearly, this last

number will be given by considering all the lines passing through a
given point of the circumference and then conceiving this point as
occupying in succession every position on the said circumference. Under
these conditions the probability turns out to be ⅓. But we might,
with equal justification, have proceeded in another way. We might
have considered all the straight lines parallel to a given direction
and then conceived of this direction as suffering in succession every
possible orientation. In this case, the probability would work out as
½. This example warns us that a large measure of arbitrariness lies
concealed even in the most elementary problems where sufficient reason
is appealed to.


As for the regulative norms which guide scientific discovery, we have
seen that they reduce to a search for unity in diversity; to a desire
to generalise, to detect uniformities or laws, and thus to economise
effort, as Mach has aptly said. These same regulative norms are just
as apparent in mathematics as in physics and have been heeded by all
scientists from Democritus to the moderns.


We might also mention the principle of continuity and the
principle of causality as understood by modern scientists. The
principle of continuity implies the eradication of all action at a
distance such as is exemplified in Newton’s law of gravitation. It is
probable that a belief in the principle of continuity arises from the
fact that in daily life all action seems to be transmitted by contact.
Again, an object moves from “here” to “there” through a continuous
series of intermediary positions, or at least when such is not the case
we cease to recognise it as the same object. Newton himself felt the
necessity of adhering to the principle of continuity, but in his day
the development of theoretical science was not sufficiently advanced
to permit a realisation of his hopes. For the same reason, physicists
during the eighteenth and nineteenth centuries paid little heed to the
principle. Particles were assumed to attract one another according
to certain laws, but how the attraction was transmitted was never
discussed.


Only when, as a result of Maxwell’s discoveries, electromagnetic
induction was found to be propagated by continuous action through a
medium, did the popularity of the principle increase. This leads us
to field physics, to the discovery of a new category differing
from matter, namely, the electromagnetic field. Einstein succeeded in
placing gravitation on the same field basis as electromagnetics, in
this way obviating Newton’s action at a distance. Even here, however,
it was not necessarily the principle which guided him to his equations;
it was the study of the facts co-ordinated in his theory which drove
him to the principle. With such signal initial successes of field
physics, it was only natural to seek to extend them still farther,
and to interpret matter in terms of the field. To-day, the attempt
seems to have been abandoned, but, once more, not owing to a change
in the philosophical viewpoint, but owing to the tremendous technical
difficulties that have been encountered. As Weyl tells us: “Meanwhile
I have quite abandoned these hopes, raised by Mie’s theory; I do not

believe that the problem of matter is to be solved by a mere field
theory.”


The principle of causality as understood by Einstein and modern
scientific writers refers to a phenomenological outlook. Thus, Newton’s
absolute space is regarded as contrary to causality. To-day we should
find that, generally speaking, the phenomenological outlook is the rule
among physical scientists; and there is a very good reason for this
preference. For so long as we can interpret sensible effects in terms
of sensible causes, there is no advantage in invoking suprasensible
ones about which anything can be postulated with impunity. True, it
may be impossible in many cases to discover sensible causes, and
it is not assumed that the whole world may be built up of sensible
entities alone. Still, whenever suprasensible causes can be escaped,
the procedure will always be to avoid them. It should be mentioned,
however, that this last principle does not appeal with equal force to
all physicists.


And now we come to a totally different type of assumptions, the
so-called scientific hypotheses. These are never imposed on us a
priori as inevitable; they constitute mere post-suppositions
conceived of with a view to co-ordinating the known facts of
experience. As such they are contingent on our knowledge of these
facts, are never adhered to blindly, and may vary from time to time
as this knowledge is increased or becomes more refined. Nevertheless,
if the phenomena to which they apply seem more fundamental than the
ones we happen to be studying, the hypotheses will automatically enter
into our further co-ordinations, and will then be present in the light
of assumptions. For instance, long before the kinetic theory of gases
(based on a physical hypothesis) was established as firmly as it is
to-day, all new phenomena pertaining to gases were interpreted in terms
of the kinetic theory.


As we have said, the primary object of these physical hypotheses
is to enable us to co-ordinate facts; the molecular hypothesis,
the kinetic theory of gases, the quantum hypothesis, the ether,
and the absoluteness or the relativity of space, are all cases in
point. In a number of instances, the formulation of these physical
hypotheses was arrived at as a result of highly technical theoretical
considerations bearing on the equations of mathematical physics. By
this we mean that their justification can be made clear only when a
mathematical representation of the phenomena under consideration has
been elaborated. In the absence of this mathematical representation,
they would never even have suggested themselves and their utility could
never have been anticipated. Planck’s hypothesis of the discontinuous
nature of light-emission is of this sort.


In a number of other cases, physical hypotheses suggest themselves in
a much simpler way, without our having to consider the mathematical
treatment of the problem. Fresnel’s ether hypothesis, for example,
was formulated as an obvious method of accounting for the wave nature
of light which his celebrated experiment of the two mirrors seemed to
render inevitable. Newton’s absolute space is another illustration of a
physical hypothesis which appears to impose itself almost immediately

when the dynamical facts of motion are taken into consideration.


It often happens that these physical hypotheses, conceived primarily
for the purpose of co-ordinating facts, are subsequently proved to
correspond to physical reality (atoms, electrons). In other cases
no subsequent experiment has appeared to corroborate them. As an
illustration, Ritz had imagined the existence of an atom of magnetism,
the magneton, in order to account for the spectral series. Weiss
also was led to a similar hypothesis when studying certain magnetic
phenomena. Thus far, however, all attempts to isolate the magneton
have failed, and it is quite possible that no such entity exists as a
physical reality.[145] Nevertheless, although physical hypotheses often
fail to be vindicated by further experiment, they may serve a useful
purpose. Fresnel’s ether has been discarded, yet it was of use to
Fresnel and his immediate successors.


To summarise, we see that a clear-cut distinction must be drawn between
such tentative assumptions as physical hypotheses and the more basic
assumptions that appear to be demanded by the very requirements of
scientific knowledge. This does not mean that the latter assumptions
present any absolute certainty; it simply means that they must
necessarily be accepted, at least tentatively, unless we agree to throw
up our hands and abandon all attempts at formulating a science. If,
then, we note what appear to be sweeping changes in the scientific
viewpoint, we must not attribute these changes to variations in the
metaphysics of science; quite the reverse is true. The changes in the
scientific viewpoint are necessitated by the discovery of new facts,
and it is then these changes in the scientific attitude which are the
cause of the variation in the scientist’s philosophical outlook upon
the world. For this there should be no cause for surprise. Men might
have philosophised about space, matter and infinity for ever and ever,
giving logical definitions to their hearts’ content; but unless they
had taken into consideration the facts which mathematics and physics
and the sciences generally had revealed, we of to-day should be as
ignorant of all these subjects as were our forefathers.


However, the writer realises full well that this general line of talk
is of no great interest. The only way to understand the subject is
to consider specific examples. For this purpose we have selected the
Copernican system versus the Ptolemaic one, and finally the entire
problem of the relativity of space and motion extending from Galileo
to Einstein. We shall see that the vast changes that took place in the
scientific outlook were brought about always in the same way—by the
advancing pressure of facts.


Suppose, for instance, that we were starting science all over afresh,
and that in conformity with our crude belief we assumed the earth to
be fixed and the stars to be circling around it. After centuries of
observation we should probably have discovered that the stars were
not fixed to one another, for successive charts of the heavens would

have shown that the shapes of the constellations were not immutable.
Probably we should have ended by assuming that the stars were luminous
bodies moving freely in infinite space. It would then have been only
natural for us to follow the Greeks, and to assume that free bodies
described circles, circular motion being the noblest of all motions.
But, on the other hand, when we watched a stone gliding over a smooth
surface of ice, it would become evident to us that the motion of free
bodies on the earth’s surface appeared to be rectilinear. So here
would be a duality in the laws of motion which would complicate our
understanding of mechanics and our synthesis of natural phenomena.


Eventually some thinker would assert that the free motion of bodies
was rectilinear, but that the stars, being attached to concentric
spheres of crystal, were compelled to move in circles. In this way the
duality in the laws of motion of free bodies would be removed; but it
is questionable whether the cure would not be worse than the evil. For
with our spheres of crystal an artificial hypothesis having no palpable
connection with any other of the known phenomena would have been
introduced ad hoc.


Experimenting still further, we might notice that on the surfaces
of bodies rotating with respect to the earth, strange forces would
make their appearance. We might eventually plot out the lay of these
forces, and divide them into centrifugal and Coriolis forces. Later,
a number of curious phenomena occurring on the earth’s surface would
be discovered. We should notice that the trade winds and sea currents
invariably followed slanting courses, that cyclones always whirled
anti-clockwise in the northern hemisphere and clockwise in the southern
hemisphere, that rivers flowing northward in the northern hemisphere
had a tendency to eat into their east banks. The protuberance of the
equator, and the decrease of weight, as we moved towards the tropics,
would also be detected. Later still, curious experiments such as
Foucault’s pendulum and the gyroscopic compass would be studied; and
all these separate discoveries would remain disconnected unless we
accumulated one hypothesis after another.


Finally, some genius would come along and say: “Why, all these
phenomena will be in order if we assume the earth to be in rotation,
the magnitude of this rotation being computed with reference to a
system of axes fixed with respect to the stars. This rotation will
entail the existence of a field of centrifugal and Coriolis forces on
the earth’s surface as on all rotating bodies; and, as a result, all
the strange, disconnected phenomena noted will fit quite naturally into
a perfectly simple and consistent synthesis.”


Thus far we have seen that by assuming the earth to be in rotation
and by referring motion to an extraterrestrial frame, a considerable
simplification was introduced into our synthesis when purely mechanical
experiments conducted on the earth’s surface were considered. But this
simplification will be still more apparent when account is taken of
the planetary motions. So long as in our description of these motions

we refer our measurements to the earth frame, the wanderings of the
various planets will appear very erratic. However, after long periods
of observation certain uniformities would be disclosed, and we might
succeed in constructing some highly complicated clockwork mechanism
which would portray the motions of the sun, moon and planets. Such was
indeed Ptolemy’s accomplishment. We might then, by accelerating the
motion of our mechanism, foretell the positions of the sun, moon and
planets at some future date. In this way the advent of eclipses might
be forecast in a more or less accurate way. But the point is that this
model could only yield us what we had put into it. We might predict the
future positions of the planets because we had detected uniformity in
their motions. But if perchance some stray comet were to wander into
the solar system, it would be utterly impossible for us to anticipate
its motion. Our powers of prevision would thus be extremely limited.


Then we have to consider another type of phenomenon first noticed by
Hipparchus. We refer to the precession of the equinoxes, according to
which the Pole Star appears to wander away gradually from the direction
of true north, finally returning after having described a circle in the
course of 28,000 years. To complete our model it would be necessary to
take this phenomenon into consideration by assuming that the entire
firmament was wobbling like a spinning top. All such phenomena and
many others would appear as so many separate empirical discoveries,
and no connection between them could be invoked unless one artificial
hypothesis were piled up on another, until nature was deprived of all
unity.[146] In short, we should merely have succeeded in describing
phenomena just as we might describe the patterns on a butterfly’s
wings, but our description would in the main be sterile. In a general
way, prevision would be impossible; and any such discovery as that of
Neptune by Leverrier, deduced from the peculiar motion of Uranus, would
be completely out of the question, since no mathematical connection
would have been found to exist between the motions of the various
planets.


But just as all the difficulties we encountered in mechanics vanished
when we substituted a description of motion in terms of the inertial
frame (a frame fixed to the stars), so now, once again, by taking
the same frame, we are enabled to overcome all the astronomical
difficulties we have mentioned, and re-establish harmony and unity in
nature. Kepler, as we know, referred the successive positions of the
planets (as obtained from Tycho Brahe’s observations) to an inertial
frame. He found that, as referred to this frame, each planet described
an ellipse round the sun, the sun being situated at one of the foci of
the ellipse. Kepler’s laws of planetary motions were then as follows:


1. The planets describe ellipses round the sun.


2. Their motions obey the law of areas, by which we mean that the

radius vector joining the sun to a planet sweeps over equal areas in
equal times.


3. The square of the time required for a planet to describe its orbit
is proportional to the cube of the major axis of the ellipse described.


These are Kepler’s laws. They constitute a distinct advance over
Ptolemy’s description, since in addition to the numerous advantages
entailed by the choice of the inertial frame in terrestrial mechanics,
these laws appear extremely simple and are capable of being expressed
in concise mathematical form. But the great importance of Kepler’s laws
is that they rendered Newton’s discoveries possible.


Newton argued that, since in an inertial frame free bodies appeared to
follow rectilinear courses with constant speeds, it was probable that
the planets were being acted on by forces which prevented them from
following their natural courses. Now, Kepler’s second law, the law of
areas, is compatible only with the existence of a force at all times
directed along the line joining the sun and planet. Inasmuch as the
planets described closed curves round the sun, this force was obviously
one of attraction towards the sun. Kepler’s first and third laws,
considered jointly, enabled Newton to determine the precise numerical
law of solar attraction, the law of the inverse square. Further, the
elliptical motion of the moon round the earth, as it appeared when
referred to the inertial frame, connoted the existence of a similar law
of attraction existing between moon and earth. It appeared probable,
therefore, that we were in the presence of a general action of matter
on matter, and Newton found that the phenomenon of weight could be
accounted for, not only qualitatively, but also quantitatively,
by assuming that matter always attracted matter. Hence, he was led to
the formulation of his law of universal attraction.


It is easy to see that Newton’s description is more creative by far
than Kepler’s, and still more so than Ptolemy’s. Thus, Kepler’s laws
merely enable us to foretell the future positions of the planets, and
nothing more. If we abided by these laws, we should probably assume
that elliptical orbits were the only ones that could exist. Newton’s
law, on the other hand, enables us to predict that other types of
orbits (parabolas and hyperbolas) are equally capable of existence, and
in this way the motions of certain comets are brought into the general
synthesis. All we have to do is to note the instantaneous position
and velocity of a body with respect to the sun, and we can foresee
immediately the precise orbit it will follow. Hence, our powers of
prevision, as deduced from Newton’s law, are much greater than they
were in Kepler’s day.


Again, consider the phenomenon of the precession of the equinoxes.
Prior to Newton’s discoveries this phenomenon was always a mystery,
unconnected with all other phenomena. Now its cause is clear. It is
due to the uneven pull exerted by the sun and moon on our planet,
brought about by its radially unsymmetrical shape (illustrated by the
protuberance of its equator). The result will be a periodic to-and-fro
oscillation of the earth’s axis with respect to the sun. Owing to the

earth’s, rotation this swinging motion will generate a gyroscopic
couple which will cause our planet to wobble like a top. The net
result is that even had the phenomenon of precession been unknown to
astronomers, mathematicians would have anticipated it as an inevitable
consequence of the earth’s unsymmetrical shape and of the law of
gravitation. And it is the same in innumerable instances. Newton’s
description has thus widened the scope of the general synthesis of
nature. It has shown the intimate connection which exists between
such apparently independent phenomena as the motions of cyclones, the
phenomenon of the tides, the feeling of weight, planetary motions, the
precession of the equinoxes, the annual variations of the angles of
aberration, etc. It has allowed us to anticipate the existence of one
phenomenon from that of another. All these discoveries were rendered
possible by our choice of the inertial frame for the reference of
motion; so we realise that a description in terms of the inertial frame
is creative, whereas one in terms of the non-rotating earth leads us
nowhere.


Of course, now that we have learned so much, thanks to the introduction
of the inertial frame, there is nothing to prevent us from interpreting
all our results and all our relationships backwards, as it were, in
terms of a non-rotating earth. But by transplanting, in this way,
all the results obtained from the first description into the new
description, no really new description would have been obtained; all
we should have accomplished would have been to obtain a parody on the
first one. In the same way, a record run backwards on the pianola
does not constitute a new tune, but merely a parody on the original
one. Obviously, this is not the method we must follow when we seek to
construct a new synthesis. We must not merely transpose the results of
the old synthesis in terms of the new one; we must operate directly.


But then, in the problem we are here discussing, had the description
in terms of the inertial frame been unknown, the motion of the sun
with respect to the fixed earth would in itself have been so complex
as to defy mathematical investigation. As judged from the earth,
the sun would appear to circle round it every 24 hours (neglecting
niceties); and as at different seasons of the year its distance from
the earth would vary, its course would be a spiral expanding, and then
contracting, every six months.


Under the circumstances, the law of areas would not be satisfied; that
is to say, if we considered the line joining sun to earth, it would
not sweep over equal areas in equal times. Now, a general theorem of
mechanics proves that whenever a body is moving under the attraction
of a central body, the law of areas is always verified; whence we must
conclude that the sun could never be considered as rotating round the
earth under the sole action of the earth’s attraction. Supplementary
forces would have had to be brought into play, but their introduction
would have been so arbitrary, and the mathematical difficulties so
great that even Newton might have been nonplussed; and we should have
remained as ignorant of the harmony of the heavens as were the Greeks.





In the examples discussed, we have limited ourselves to problems of
extreme simplicity; but even in these simple problems we have seen
that different descriptions, though equivalent in theory, were far
from equivalent in practice. When we come to consider problems of
greater complexity, such as those with which modern science deals,
the uniqueness of one particular type of description stands out with
increased definiteness, and it is this particular simple continuous
description where everything is harmonious and connected that is deemed
to constitute the real description. Only when we follow this unique
description do we find it possible to forestall nature by forecasting
her actions in advance, and as a result claim that we have discovered
reality.


The conclusions to be drawn from the preceding discussions are then
as follows: From a purely kinematical point of view, it is simpler
to take an inertial frame as frame of reference when the planetary
motions are considered; this is the essence of Copernicus’ discovery.
Also, when dynamical phenomena are considered, it is simpler to select
an inertial frame with respect to which rotation will be measured. In
short, the inertial frame imposes itself as conducive to the simplest
interpretation of all phenomena whether mechanical or astronomical, so
that we may say that there exists a privileged frame of reference in
space. Here we are merely stating facts which are in no wise subject to
controversy.


We might, of course, content ourselves with this discovery and neglect
to consider the “why” and “wherefore.” But if we wish to pass beyond,
if we wish to seek a palpable cause for the existence of a privileged
frame in space, we are driven to one of two conclusions. Either we must
say that the existence of a privileged frame arises from the nature of
space itself, in which case we are driven to a space which possesses
dynamical properties per se; and this is absolute space in which
an inertial frame is privileged because it is non-rotating. Or else
we must assume that space itself has nothing to do with the matter,
and that the existence of the privileged frame arises from extraneous
conditions, from the presence of the stars, the will of the Supreme
Being, the shape of the earth, the number of existing planets, or
anything else we may care to imagine.


There is not the slightest doubt that so long as we restrict our
attention to the limited number of facts known to Newton, the simplest
solution is the first, and its adoption constitutes the essential
characteristic of the Newtonian position. There is, however, no
necessity to conceive of this absolute space in the light of a
metaphysical reality. All we need say is: Everything occurs as though
there existed an absolute background of space, hence as though absolute
space existed. This was the attitude of classical science until the
advent of Einstein’s theory. We hope to make these vital points clearer
in the course of this chapter.


Prior to Newton, the problem of space and motion appears to have been
any one’s guess. To mention only two of Newton’s contemporaries,
Descartes guessed that motion was relative, while More guessed that
motion and space were absolute. These guesses were unsupported by

any kind of scientific evidence, one way or another. It is true that
More, for instance, seems to have realised the necessity of considering
scientific examples in support of his claims, but his illustrations
were too poorly interpreted to be of any scientific interest. Thus,
in a letter to Descartes, he notes that a man walking at a rapid pace
experiences fatigue, whereas his friend lying in repose experiences
none; whence More concludes that motion and space must be absolute. But
had he considered a man standing motionless for hours while his friend
was being borne away, sitting at ease in a carriage, one may wonder
what conclusion he would then have reached.


A second argument presented by More has no greater merit. A simplified
form of it would be as follows: Two trains pass each other, moving in
opposite directions. If motion were relative, we could maintain that,
as referred to the first train, a telegraph pole was speeding north,
while, as referred to the second train, it was moving south. As the
pole cannot be moving north and south all at the same time, relative
motion cannot exist, and the pole must therefore be at rest in absolute
space; whence More concludes that space must be absolute.


It is scarcely necessary to state that Newton’s arguments were of
a totally different calibre, and even to-day it appears extremely
difficult to refute them in their entirety. Newton was one of the
earliest exponents of the scientific method. As he tells us himself:


“For the best and safest method of philosophising seems to be, first,
diligently to investigate the properties of things and establish them by
experiments, and then later seek hypotheses to explain them.... For
hypotheses ought to be fitted merely to explain the properties of things
and not attempt to predetermine them except so far as they can be an
aid to experiments.”


These statements of Newton appear perfectly clear and merely reflect
the spirit of scientific procedure. It has been held, however,
by numerous philosophers who have written on the “metaphysics of
science” that Newton departed from his avowed empirical method when
he formulated his theory of absolute space and time. It is scarcely
credible that any one at all conversant with mechanics could ever
maintain an opinion of this sort, but as it appears to be widespread in
certain quarters, it may be of interest to examine its claims.


We may state that the question is one of the utmost importance; for
were it established that Newton’s absolute motion did not appear to be
imposed by the dynamical facts of mechanics, it would be impossible to
understand the philosophical significance of Einstein’s cylindrical
universe.


Let us then return to Newton’s exposition. He starts out in the
Principia by expressing his belief in absolute immovable space
everywhere the same, and in absolute time. These statements are
followed by a description of the experiment of the rotating bucket of
water and others of a kindred nature. According to the critic, Newton
evidently intended absolute space and time to be taken in the light of
necessary presuppositions. But apart from the fact that in the order

written the statements on absolute space and time precede any reference
to experiment, there appears to be no basis for any such belief.
Here we must remember that Newton was a scientist writing for the
benefit of fellow scientists; and it is a method commonly followed by
mathematicians to state a proposition and then show why the statement
must be accepted as correct. Although the statement of the proposition
precedes the proof, no one would be misled into believing that we
were asked to accept the proposition in the light of a philosophical
presupposition which might lead to controversy, and then regard the
demonstration as an argument of secondary importance. And it is the
same with absolute space and time. Just as Euclid follows up his
statement of a geometrical proposition by a proper demonstration, so
does Newton proceed to demonstrate the existence of absolute space by
showing that absolute rotation is revealed by a number of experiments
(by the experiment of the rotating bucket of water, among others). Had
manifestations of absolute motion been unknown to Newton, had absolute
motion eluded experiment, there never would have been any reason for
him to postulate its existence in physics; and as a result its direct
consequences, namely, absolute space and time, would have been reduced
to meaningless hypotheses and no longer to necessary conclusions.


As a matter of fact, Newton mentions explicitly two methods
of presentation which may be adhered to. Thus, we read in his
Opticks:


“By this way of analysis we may proceed from compounds to ingredients,
and from motions to the forces producing them; and in general from
effects to causes, and from particular causes to more general ones,
till the argument end in the most general. This is the method of
analysis: and the synthesis consists in assuming the causes
discovered, and established as principles, and by them explaining
the phenomena proceeding from them, and proving the explanations.”[147]


As an illustration of the two methods, we may consider the case of the
law of gravitation. Either we may say: The planets have been found to
describe conics round the sun, with certain definite motions, and in
order to account for these motions we must assume the existence of a
solar attraction; or else we may say: The law of gravitation is such
and such, and the proof of it is that the planets describe conics round
the sun. From the standpoint of neatness of presentation, the deductive
method is preferable, but from the standpoint of the chronological
order of discovery, the first method describes the situation.


Let us not, then, waste any more time in dwelling on these perfectly
obvious points which Newton explains time and again in answer to the
criticisms of his contemporaries. The important point to decide lies
elsewhere. Is it true that, as Newton imagined, the dynamical facts
of motion, established empirically and illustrated in the experiment
of the rotating bucket render absolute motion, hence absolute space,
inevitable? Here we may be permitted to point out that a question
of this sort must be left for scientists, trained in the school of

rigorous thinking, to decide. It is indeed obvious that critics, like
Berkeley and Kant, who possessed such hazy ideas of mechanics as to
confuse velocity and acceleration, momentum and force, were too poorly
equipped to express any opinions of value.[148] Turning, then, to the
verdict of subsequent scientists, men of the calibre of Euler, Laplace
and Poincaré, we find the conclusion unanimous. Absolute space is
recognised by all as the simplest physical hypothesis that will account
for the observed mechanical facts. To that extent it corresponds to
reality. Even Einstein, to whom the downfall of the Newtonian position
is due, recognises that with the facts at Newton’s disposal, his
solution was the only one that could be defended.


We shall now consider these basic problems in greater detail, and
endeavour to understand why it was that Newton was compelled to accept
absolute motion. Inasmuch as the absoluteness or the relativity
of motion cannot be settled by a priori reasoning, we are
compelled to appeal to experiment. Suppose, then, we perform mechanical
experiments in the interior of some gigantic rigid box. The facts
disclosed by experiment will be as follows: So long as, with respect
to this box, the stars appear to occupy fixed positions, the course
of our experiments will remain unchanged regardless of whether we
operate in this part or in that part of the box. In other words,
our mechanical experiments offer us no means of deciding as to our
location in space. We may infer therefrom that experiment suggests the
relativity of position, which means that position can be defined
only with respect to other bodies, or at least to observable points of
reference. This relativity of position entails as a direct consequence
the homogeneity of space. In precisely the same way we should

find that the orientation of our box, together with that of the
mechanical apparatus it contained, would also fail to manifest itself
by any variation in the course of our experiment; whence we infer the
relativity of orientation, or the isotropy of space.


But what about motion through space? The mere fact that position in
space was relative might suggest at first blush that motion, being a
mere change in position, should also be relative. But, here again,
the problem we are dealing with is one of physics, not one of pure
mathematics or of metaphysics. Now, if we perform our mechanical
experiment first in a box which is non-rotating with respect to the
stars, then in one which is in relative rotation, a considerable change
can be detected in the course of the experiment. Yet the relativity of
motion would imply that this change in the nature of the box’s relative
motion should entail no perceptible difference; hence we are compelled
to conclude that in contradistinction to position and orientation,
motion cannot be relative. Motion through space is not a mere matter of
point of view; we can detect it even in the absence of any perceptible
landmarks in space.


A more thorough investigation of this problem led Newton to
differentiate between two grand categories of motion: one of which
appeared relative, in that it was impossible to detect it in the
absence of landmarks in space; the other of which appeared absolute,
since it was accompanied by physical disturbances and dynamical
manifestations which could be detected and measured without our
having to take landmarks in space into consideration. A train running
smoothly along a straight track with constant speed is an illustration
of the relative type of motion, while an abject rotating with respect
to the stars, or a ship tossed at sea, affords us an illustration
of the absolute type. In short, position, orientation and a certain
type of motion manifested themselves as relative, whereas certain
other types of motion manifested themselves as absolute. These were
the facts of experiment, and they were summed up by the law of
inertia, or again by the Galilean or Newtonian principle
of relativity. It is this duality in the manifestations of motion
that renders classical mechanics so unsatisfactory.


Two courses were open to Newton:


1. Either he might have assumed that space was absolute; that all
motion was absolute, but that accelerated and rotationary motions alone
could be detected by mechanical experiments;


2. Or else he might have assumed that space possessed a dual
nature; absolute for rotationary motions, but relative for uniform
translationary, or Galilean, motion.


Newton preferred the first alternative; and the Newtonian principle
of relativity, which stressed the impossibility of detecting absolute
velocity through mechanical experiments, acted as a damper,
not on the absolute nature of space and motion, but on our
ability to detect absolute velocity mechanically.


There were a number of reasons that most assuredly prompted him to
this choice. In the first place, a duality in the nature of space and
of motion was not easy to conceive of. Furthermore, a circumstance

which influenced Newton’s successors was the fact that, after all,
the Newtonian principle of relativity concerned solely mechanical
phenomena. It was still possible that electromagnetic experiments would
reveal the absolute velocity in which Newton believed but which had
ever eluded science.


Nevertheless, many of Newton’s successors preferred to adopt the second
alternative. They assumed that experiment had revealed a duality in
the nature or structure of space and had proved its relativity for
uniform translationary motion. They were not perturbed over the fact
that electromagnetic and optical experiments might finally succeed in
detecting absolute velocity; for they argued that were such experiments
successful, all they would reveal would be velocity through the
ether, not absolute velocity through empty space. According to this
attitude the Newtonian principle of relativity emphasised no longer
the inability of mechanical experiments to detect absolute velocity
through empty space, but stressed the fact that absolute velocity
was entirely meaningless.


Now the important point is the following: Whichever of the two previous
attitudes we accept, that of Newton or that of many of his successors,
space must still remain absolute in either case. For, in either case,
space would be absolute for acceleration and rotation, regardless of
what it might turn out to be for velocity. In much the same way, if
an object is faintly coloured it is coloured; the faintness of the
colouring cannot alter this fact. Hence, when we consider space, the
entire question centres round the following problem: Is rotational
motion truly absolute? If not, hence if centrifugal force cannot be
attributed to rotation in space, whence does this force arise?


Of course, here a problem of extreme difficulty confronts us. When
by varying external conditions at will we can produce variations
in a magnitude, we may maintain that this magnitude is relative to
surrounding conditions; for instance, the weight of a body varies with
its distance from the earth. When, on the other hand, nothing that
we can do appears to produce the slightest effect, we claim that the
magnitude is absolute; mass in classical science was a case in point.
Obviously, however, a test of this sort has a purely negative value
for the simple reason that many of the external conditions lie beyond
our power to vary. We cannot, for instance, annihilate the stars or
the sun or the electrons. Thus, whereas a magnitude which has been
established as relative will presumably remain a relative for all
time to come, the same measure of assurance can no longer be claimed
for our determinations of absolute quantities. Nevertheless, unless
we are to fall into a state of complete agnosticism, we are compelled
to establish a difference between quantities which appear absolute
in the present state of our knowledge and those which are known to
be relative. If we prefer, therefore, we may refer to absolutes as
“relative-absolutes,” where the word “relative” implies the limitations
of our present means of investigation.


It is possible to present Newton’s arguments in favour of absolute
space in a number of different ways. The following illustrations may

serve to clear up a few additional points. Consider a circular disk
of gigantic proportions around whose central axis the stars would
appear to be rotating in a clockwise direction with an angular velocity
. We shall assume the disk to be inhabited by beings living
around its centre; and we shall further suppose that dense clouds
conceal the stars from their gaze, so that there would be no incentive
for them even to suspect that their disk might be in rotation. These
men would naturally refer all motion to their disk, just as, prior
to Copernicus and Galileo, men were wont to refer all motions to the
earth’s surface.


Suppose, now, that they were to perform mechanical experiments. They
would soon discover that no object could remain motionless on the disk
unless it were placed at the very centre or else fixed by artificial
means. In particular, all objects originally fixed to some non-central
point, then suddenly abandoned, would start moving away radially
from the centre, then gradually follow a curved course, circling
clockwise along an expanding spiral. In certain cases, however, a
body might describe a true circle round the centre; but whenever this
circular motion occurred, it would always be directed clockwise, and,
furthermore, its angular velocity would invariably be given by a
certain constant quantity co. Then again, if billiard balls were shot
out in all directions with equal initial speeds from some non-central
point, no two of their trajectories would be alike; not the slightest
symmetry would be observed, and the clockwise motions would always be
present. It may well be realised that for men who claimed space to be
homogeneous and everywhere the same, this dissymmetry in the motions of
bodies would be hard to account for.


Let us assume that just above the first disk a second one is rotating
relatively to the first in a clockwise direction with angular velocity
. The inhabitants of this second disk would find that bodies
remained at rest wherever placed on their disk, that bodies set in
motion would pursue straight courses with constant speeds, and, in
short, that the asymmetry characteristic of the lower disk would
give place to perfect symmetry of motion, no special direction being
privileged. Furthermore, whereas the inhabitants of the lower disk
would have the greatest difficulty in returning to the centre if
peradventure they ever wandered away from it, and whereas they would
always feel the action of unsymmetrical forces when they moved about,
the inhabitants of the upper disk could move as they pleased and never
be subjected to the action of forces.


Such would be the facts of the case. Now, if motion were relative, we
could not assume that there existed any absolute difference between
the motions of the two disks; either disk would be rotating, but only
with reference to the other disk taken as standard. Yet here we see
that whether or not a metaphysical difference is assumed to exist, it
is quite certain that a vast physical difference is present in the
conditions reigning on the two disks.


And so we are naturally led to enquire: What causes this dissymmetry
in a homogeneous isotropic space? It is always preferable in science
to search for causes in phenomena that are, so to speak, palpable,
rather than in invisible agencies, for less guesswork is involved. In

the present case, however, no visible cause can be countenanced. True,
if the cloud: were to lift, it might strike the inhabitants of the
lower disk that, with respect to their world, the stars were rotating
clockwise with an angular velocity ; whereas the inhabitants
of the upper disk would note that the stars appeared to be fixed.
If our observers were firmly convinced of the relativity of motion,
arguing that absolute motion in space was inconceivable, they might
attempt to search for the cause of all these unsymmetrical phenomena in
the state of relative rotation or rest of the stars.


But unless they were able to attribute a definite causal influence
to this star rotation, the solution would be no solution at all.
Although it now appears that they might have guessed right, yet in
Newton’s time it would have been quite impossible to justify this
attitude; not for philosophical reasons, but on account of the still
undeveloped condition of mathematics and physics. This solution being
denied them, then would be no other recourse but to appeal boldly to
suprasensible absolute space and to recognise that the lower disk was
rotating anti-clockwise in absolute space with an angular velocity
, whereas the upper disk and stars were at rest. Henceforth,
the causal influence would be attributed to the structure of absolute
space itself; and the discrepancies noted above would be accounted for
with perfect mathematical precision. (This illustration is, of course,
merely an alternative way of presenting Newton’s experiment of the
bucket of water.)


We are again driven to the same conclusions when we consider the
problem of inertia. If here, there and everywhere are one and the same
thing, why do we have to expend effort to move a body from here to
there?


Again, if all motion were relative, the only significant type of motion
would be motion relative to a frame of comparison. But then, if, as
referred to a certain frame, the path of a free body were straight,
with respect to another frame it would be crooked or curved. In other
words there would be no sense in discussing the body’s absolute course,
since by an appropriate choice of a frame of reference, we could make
it any thing we pleased. Incidentally, the law of inertia would thereby
be deprived of all meaning.


Consider, then, a number of free bodies taken at random, in relative
motion with respect to one another. These bodies might ignore their
mutual presences entirely (assuming even they were gifted with
consciousness). If, therefore, a frame of reference were selected,
there would be no reason to suppose that, as referred to this frame,
the motions o the various bodies should be in any wise connected.
And yet the law of inertia, deduced from experiment, proves that our
anticipations would be incorrect.


For if we select a certain privileged frame, an inertial or Galilean
frame, all the bodies will be found to describe straight lines with
constant velocities as though there existed some secret understanding
among them. Is it our frame that imposes this understanding on

the unintelligent bodies? Do the bodies see the frame and agree to
behave in the same way with respect to it? But the frame might be
millions of miles away; furthermore, it only exists as a result of
our free will; and the notions of the bodies with respect to one
another would obviously remain the same even were some new frame to
be chosen, or several different mes to be selected simultaneously. If
we refuse to agree that it is absolute space itself which directs and
guides the free bodies and which is thus the cause of this wonderful
pre-established harmony, where else shall we look for a regulating
cause? If we give up the search we fall back into the miraculous. Shall
we appeal to the stars once more? But we have said that in Newton’s day
this was impossible. There appears to be but one solution, and that is
absolute space.


If we summarise all these results we see that whether we like it or
not, the dynamical facts of motion and the law of inertia render an
escape from absolute motion and space impossible. To be sure, as
Einstein tells us, Newton might just as well have called his absolute
space “Ether,” or anything else. The essential point was that something
acting as an absolute background appeared to be required in order to
account for the undeniable reality of centrifugal force generated by
certain types of motion.


At all events, it was for the dynamical reasons outlined above, and
for these alone, that Newton was driven to absolute space. So far as
science is concerned, this is the only aspect of Newton’s discoveries
that is of interest. Newton, however, after he had established the
existence if absolute space scientifically, proceeded to weld it in
with his theological ideas, identifying it with the existence of the
Divine Being. This was, of course, his privilege, but these further
speculations were extra-scientific and were placed on a par with his
writings on the horned beast of Babylon or the bottomless pit of the
Apocalypse.





We may be quite certain that had absolute space been based on
considerations of a purely philosophical, theological or theosophical
character, it would never have survived the criticisms of subsequent
scientists, some philosophical schools would have championed it, others
have attacked it, but scientists without exception would have rejected
it as possessing no empirical or rational foundation. That Newton’s
great authority was insufficient to ensure the acceptance of his ideas
is seen when we consider the fate of his corpuscular theory of light or
of his relief in the impossibility of constructing an achromatic lens.
But in the case of absolute space, we find that precisely because it
was based on the facts of experience, it survived till quite recently,
when, under the attacks of Einstein, it began to crumble. Even so,
however, we must remember that it was only thanks to the very recent
discovery of new facts, unknown to Newton, that Einstein was able to
overthrow the absolute doctrine, and, furthermore, as we shall see, the
cornerstone of Newton’s mechanics, the absolute nature of rotation, is
far from having been destroyed even to-day.


As Weyl puts it when discussing the dynamical facts of motion: “It is
just these facts that, since the time of Newton, have forced us to
attribute an absolute meaning, not to translation, but to rotation.”
Again, in the following passage, Euler expresses the same opinion,
amplifying it by stating that the metaphysical nature of space and time
is irrelevant to Newton’s stand. We read:


“We do not assert that such an absolute space exists.”


And again elsewhere:


“What is the essence of space and time is not important, but what is
important is whether they are required for the statement of the law
of inertia. If this law can only be fully and clearly explained by
introducing the ideas of absolute space and absolute time, then the
necessity for these ideas may be taken as proved.”


Euler’s very clear statement brings out the pragmatic and
anti-metaphysical attitude towards reality which is characteristic of
scientific thought. From a failure to understand the significance of
scientific hypotheses, the philosophers of the idealistic school felt
it their duty to do away with absolute space. Had their attacks been
limited to Newton’s theological expressions of opinion, there would
have been no reason to criticise their arguments, for all theological
opinions can be either defended or attacked. But their failure to grasp
the deeper scientific reasons that drove Newton to absolute space,
led them to the erroneous belief that mechanical phenomena might be
accounted for equally well under the hypothesis of the relativity of
space and motion. As a matter of fact, they should have realised that
the scientific hypothesis of absolute space is quite independent of our
philosophical preference for realism or idealism. In classical science
space was absolute in the scientific sense for idealists and realists
alike. Indeed, many of Newton’s scientific successors viewed nature in
an idealistic way; yet they never saw fit to refute Newton’s absolute
space and motion on this score.


And now let us consider one of the typical objections that have beer
presented against Newton’s absolute space. It is claimed that if, as
Newton tells us, space is to be perfectly homogeneous and of infinite
extent, it follows that position in space, hence motion through space
must be meaningless, since there would be no means of distinguishing
one position from another. Now an argument of this sort is fair enough
so long as we consider purely amorphous mathematical space; it
ceases to present the same force when we consider a space, such as
Newton’s which is assumed to possess a rigid structure. To prove this
point, lei us assume that space, though homogeneous, is bounded by
a sphere In this case, the homogeneity of space would not interfere
(according to the critic) with the reality of motion, for we could
always refer motion to the boundary.


Suppose, then, that the boundary were to be removed to infinity: would
motion through space gradually lose all meaning? It appears quite
unnecessary to adopt any such view. There is no reason why a local
effect should not be developed by the passage of matter through a
rigid homogeneous space, regardless of whether the boundary be at a

finite distance or at infinity. To put it in a very crude way, there
is no reason why the individual points of absolute space should not
realise the presence or absence, hence the passage, of lumps of matter;
and so the boundary would have no rôle to play.


Where motion would appear meaningless would be if we assumed matter to
be continuous (not atomic) and considered a material rod of infinite
length gliding along the straight line it defined. In this case (from
the standpoint of the points of space) the motion of the rod might
escape detection. In the general case, however, where lumps of matter,
hence discontinuity (regardless of the molecular hypothesis), are
concerned, there appears to be no reason to reject absolute motion
through empty space on the ground that motion through a homogeneous and
infinite medium would be logically meaningless. Furthermore, how the
critic, having convinced himself that motion must be relative, proposes
to account for the physical fact that of two flywheels in relative
rotation, one will burst and the other remain unaffected, baffles the
understanding. Either we must assume, with Mach, that the material
universe exerts a definite causal influence on a body in rotation
relative to it, or else we must accept Newton’s absolute space.


Berkeley’s criticisms appear to have arisen from some such argument as
the one we have just discussed. Thus, he tells us that absolute motion
cannot be imagined and for that reason should be banished from science.
He then proceeds to point out that motion can only mean a displacement
with respect to something sensible and that, space being suprasensible,
motion through space is meaningless. Now it is perfectly correct to
claim that men originally came to conceive of motion through visual
experience by observing the motion of one body with respect to another.
In other words, the phoronomic conception of motion is the
natural one.


But when these points are granted, it still remains a fact that we
cannot force our scientific co-ordinations into a mould which would
satisfy too narrow a phenomenological attitude. In physics, as in pure
mathematics, we are often confronted with conceptions which it may be
difficult to imagine. Thus, although our understanding of continuity
is derived from experience, for instance by passing our finger over
the table, yet the concept of continuity has had to be extended and
elaborated profoundly by mathematicians. Continuous curves with no
tangents are not easy to imagine; yet we cannot deny their existence
merely because it puts too great a strain on our imagination. Neither
can we deny that there are as many points in a cube as on one of its
sides, for Cantor has proved that such is indeed the case.


It is the same in physics. Experiment presents us with certain facts
which we may often interpret in various ways. But we cannot ignore the
facts merely because they happen to conflict with our own particular
philosophy. All that we may do is to repeat the saying of a certain
king of Spain, that had we been God, we should have constructed the
universe with greater simplicity. Not being God, however, we must make

the best of a bad job. Now, in the case of motion, any philosophy which
starts to rule out absolute motion is forthwith confronted with the
difficulty of accounting for centrifugal force. Berkeley, as might be
expected, falls down on this point completely. His arguments reduce to
a criticism of absolute space without affording us any better solution.
Furthermore, his premises are scientifically incorrect.


For instance, when criticising Newton’s proof of absolute space as
illustrated by the experiment of the rotating bucket of water, he
remarks that owing to the earth’s velocity along its orbit, the
particles of water cannot possibly be describing circles. And so
Newton’s argument purporting to have detected absolute circular
motion would thus be at fault. Berkeley’s argument reveals that same
ever-recurring confusion between velocity and acceleration; he fails
to realise that velocity through absolute space is not claimed by
Newton to be detectible by mechanical experiments; the Newtonian
principle of relativity states this point explicitly. Acceleration
alone gives rise to forces. Now, so far as the particles of water are
concerned, they possess exactly the same acceleration, whether they be
whirling in circles or describing cycloids. Hence, Newton’s experiment
discloses absolute acceleration, and this is all it was ever intended
to disclose. A further argument presented by the same critic is based
on the tangential force which he claims to be acting on the revolving
water particles. He hopes thereby to account for centrifugal force
without introducing absolute rotation. The reasoning is so obscure
that we do not pretend to have fathomed it, but one thing is quite
certain—the premises are totally incorrect; for there is no tangential
force acting on uniformly revolving water particles, and centrifugal
force manifests itself in this case. Obviously Berkeley is confusing
momentum and force.





Other critics have speculated on the possibility of our space revolving
in a more embracing one, this other in still another, etc. But what if
it does! A hypothesis of this sort would never endanger the Newtonian
position. Suppose, for argument’s sake, that our universe of space
were likened to a bubble of ether rotating in a super-space; this
bubble of ether would still represent absolute space. In every case
the essential feature of absolute space and motion resides in the
empirical fact that a certain definite set of dynamical axes appears
to be present in nature; and the above-mentioned argument could never
banish the existence of these absolute axes. All it could do would be
to prove that nothing could be predicated of the motion of these axes
in the super-space. But in any case the axes would be non-rotating in
the ether bubble. This would thereby assume the position of absolute
space as understood by science, and we should have to conceive of
the more embracing space as rotating round it. Needless to say, the
entire speculation is unscientific in the extreme since it reduces to a
hypothesis ad hoc, beyond the control of experiment conceived of
for the sole purpose of complicating a co-ordination o facts; whereas
the only possible justification for this type of hypothesis is to
permit us to introduce simplicity into our co-ordinations.


We may mention yet another type of argument because it brings out
an important point of terminology. It is asserted, for instance,
that acceleration must be relative since we measure it relatively to
an inertial frame or to space. But here, of course, we have a mere
confusion of words. The critic is assuming that absolute motion should
mean motion with respect to nothing. But absolute motion in
science does not mean this at all. It means motion which cannot be
regarded as relative to something observable, such as matter;
hence it becomes automatically motion with respect to something
suprasensible, i.e., to space. Were it not for this
interpretation placed on absolute motion in science, the expression
would become meaningless, for motion with respect to nothing is itself
nothing.


We may summarise the scientific attitude towards space and motion as
follows: If motion can be detected otherwise than in relationship to
things observable, or, more precisely, if a co-ordination of scientific
facts renders it simpler to assume that such is the case, then motion,
and hence space, must be considered absolute. If, on the other hand,
no trace of absolute motion, as defined above, can be detected by
experiment, two courses are open to us. Either we may assume that
absolute motion has no scientific significance and that motion is
always motion between observable existents, in which case motion and
space are held to be relative; or else we may follow Lorentz’s method
of dealing with the ether and claim that absolute motion would be
detected were it not for a number of compensating physical effects
which just happen to conceal its presence from our experiments. But
if we adopt this very artificial attitude, it is imperative that we
follow up our argument as Lorentz has done, and succeed in specifying
the precise mode of action of these compensating effects and also their
precise numerical magnitudes—and this would entail a considerable
knowledge of advanced mathematics. So much for the scientific status of
the problem of space and motion.





Now metaphysicians have a habit of confusing this scientific aspect
of the absoluteness or relativity of motion and space with that other
problem dealing with the essence of space. But, as Euler
pointed out two centuries ago in the passage quoted previously, this
metaphysical problem is of a totally different order, and has no
bearing on the one that scientists are discussing. Even if we were
prepared to attribute any meaning to such metaphysical inventions
as Leibnitz’s monads, and agreed that space might be conceived of as
the result of a relationship between them—even so, in view of the
dynamical facts stressed by Newton, motion and space would still be
absolute. It would be of no avail to hold that motion was relative
since it was relative to the monads, for these, whether fictitious or
real, are at all events suprasensible. Conversely, even were we to
accept the metaphysician’s claim that, metaphysically speaking, space
is an absolute existent, nevertheless, were it impossible to detect
any trace of absolute motion, we should have to say that motion and
space were scientifically relative, or else follow Lorentz’s method of
dealing with the ether.


When, in addition to all these facts, we remember that the
metaphysician’s theories reduce to mere expressions of opinion
affording no possibility of proof or disproof, we can well understand
that the scientific attitude towards space and motion has been governed
solely by the empirical evidence.


And now the query will naturally be raised: If the dynamical facts of
motion impose the belief in absolute rotation, how is it that Einstein,
and even before him Mach, should have considered it possible to escape
Newton’s solution? Let us first consider Mach’s argument. Mach’s aim
was to co-ordinate the dynamical facts of motion in terms of sensible
factors alone and thus obviate the introduction of that suprasensible
entity, absolute space. And so he was led to conceive of rotation as
rotation with respect to the universe, hence with respect to the stars.
In contrast to Berkeley, however, Mach realised the great difficulty
of accounting for centrifugal forces under this view. He, at least,
made an attempt to solve the puzzle by attributing a direct dynamical
influence to the relative rotation of the star-masses. But, since his
attempt was not followed up mathematically, it was nothing more than
a loose, unsupported suggestion. The fact is that in physical science
the only convincing theories are those we can defend with quantitative
arguments; mere undeveloped guesses are of no value.





Even Newton speculated on the cause of gravitation, attributing it to
some species of ether pressure, yet in spite of his illustrious name
these ideas were not even mentioned by subsequent scientists. Why?
Because they afforded no quantitative treatment and were so vague as
to be worthless. It is the same when we consider the hypotheses that
have been suggested in order to account for the origin of the solar
system: we find these to be extremely numerous and varied. But not one
of them carried any weight until it had been submitted to mathematical
investigation, and then, according to the results obtained, it was
declared possible or impossible. And it is precisely this mathematical
work that is the crux of the difficulty, calling for the genius of a
Laplace or a Poincaré. In much the same way, we may guess that the
sequence of prime numbers will eventually be included in a concise
mathematical formula, or that some day interplanetary communications
will be established. The difficulty resides not in the guess, not
in the desire, but in its realisation. As a matter of fact, it is
questionable whether loose guesswork has ever been of any use in
science. Jules Verne’s idea of ships that travelled under water can
scarcely be claimed to have contributed to the invention of submarines,
any more than his story of a trip to the moon can be of much assistance
in enabling us to set foot on our satellite. Taking a more scientific
example, Democritus’ guess about atoms most certainly never advanced
their discovery by a single hour.[149]


And so it is with Mach’s guess (we can scarcely dignify it with
any other name). Indeed, in Mach’s day, it would have been quite
impossible for any one to justify his idea, since the necessary
material, i.e., space-time, was then unknown. When we realise
the important rôle played by space-time in our attempts to avoid
a belief in absolute rotation, we can well understand that the
doctrine of the relativity of all motion would have been absurd in
Newton’s day. In fact, any thinker prior to, say, the year 1900
could never have anticipated the discovery of space-time, for its
sole justification arose from the negative experiments in optics and
electrodynamics attempted at about that time. As for Newton, not only
did he know nothing of the non-mechanical negative experiments, but
in addition, the equations of electrodynamics had not been discovered
in his day. Furthermore, even had he conceived of space-time through
some divine inspiration, he could never have utilised it for the
purpose of establishing the relativity of all motion. His ignorance
of non-Euclidean geometry would have rendered the task impossible.
In fact, space-time, in the seventeenth century, would have been a
hindrance, and the sole result of its premature introduction into
science would have been to muddle everything up and render the
discovery of Newton’s law of gravitation well-nigh impossible.


And this brings us to another point which is often true in physical
science. Premature discoveries are apt to do more harm than good. For
instance, had the astronomers of the seventeenth century possessed

more perfect telescopes, had they recognised that the planets (Mercury,
in particular) did not obey Kepler’s laws rigorously, Newton’s law
might never have been discovered. At all events, its correctness would
have been questioned seriously and mathematicians might have lost
courage and doubted their ability to discover natural laws. Leverrier,
for example, might have lacked the necessary assurance to carry out his
lengthy calculations leading to the discovery of Neptune. In short,
physical science proceeds by successive approximations, and too rapid
jumps in the accretion of knowledge are liable to be disastrous.


We may now follow up Einstein’s investigations step by step and see
how Newton’s absolute rotation was gradually eliminated from science.
The situation facing Einstein was somewhat different from the one that
had confronted Newton. In Newton’s time, there was no a priori
reason why motion through empty space should be regarded as absolute
rather than relative. Whichever way experiment pointed would therefore
be equally acceptable. But when motion through the ether was considered
there was every reason to anticipate that it could not be meaningless.
The fact was that the ether seemed to present the properties of an
elastic material medium, so that it was difficult to anticipate a
marked difference between motion through the ether and motion through
matter. More important still, the equations of electromagnetics proved
that phenomena should be affected by motion through the ether. It
followed that when the negative experiments in electrodynamics were
being performed, there was every reason to suppose that absolute
velocity through the ether would be detected. Had this been the case,
the stagnant ether would, in all probability, have been identified

with Newton’s absolute space. And it might have been claimed that
absolute velocity, which had always escaped mechanical detection, had
been revealed at last by electromagnetic and optical tests.


Yet, as we know, absolute velocity, even through the ether, obstinately
refused to reveal itself. The situation was similar to the one we
mentioned when discussing space. There also, absolute velocity through
space appeared to elude us, in spite of the fact that, owing to the
absoluteness of rotation, space could not help but be absolute. But, in
the case of space, this duality entailed by the Newtonian principle of
relativity was accounted for immediately by the mathematical form of
the equations of mechanics. The fundamental law of mechanics, stating
that a force is equal to a mass multiplied by an acceleration, makes no
mention of velocity; hence, absolute velocity is obviously irrelevant
to mechanical processes. In the case of the ether, the elusiveness of
velocity was much more disquieting; among other reasons, because the
equations of electromagnetics contained a velocity explicitly in the
form of the electric current.


And so, when account was taken of the supposedly semi-material nature
the ether was thought to have, and when the lack of covariance of
the equations of electromagnetics was considered, the course of
least resistance obviously suggested that we assume velocity through
the ether to be a reality, but that its effects were concealed by
compensating influences. At any rate, we need not be surprised to find
that chronologically this was the attitude first considered. It was, as
we remember, the attitude championed by Lorentz. But when Lorentz had
succeeded in accounting for the negative experiments under this view,
his theory appeared so patently artificial that scientists recognised
that something was wrong somewhere.


If, with Einstein, we adopt a very general attitude, neglecting to
consider the why and wherefore of things, and if we restrict our
attention solely to what experiment has revealed, we cannot fail to
be struck by the following fact: Every time we have sought to detect
absolute velocity, whether through space or through the ether, our
attempts have failed. Even certain classical scientists, on the
strength of mechanical experiments alone, had felt compelled to banish
the thought that absolute velocity through space had any meaning. How
much stronger, then, was the suspicion that some general principle
was involved, when the same situation confronted us once more in the
case of the ether! Under the circumstances, it can scarcely be said
that Einstein followed a very revolutionary course when he postulated
his special principle of relativity, claiming that absolute
velocity through space or the ether was a meaningless concept.
In so doing, he was merely stating in abstract form the result of
experiment. Einstein’s special principle can be expressed, as follows:


“No experiment, regardless of its nature, whether mechanical, optical

or electromagnetic, can ever enable us to detect our absolute velocity
through space or ether.”


We see that the only difference between Einstein’s principle and the
Newtonian principle of relativity is that henceforth the relativity of
velocity holds for all manner of experiments, or, again, that ether and
space are identified. Apart from this difference nothing is changed. As
before, space or ether remains absolute, in that though relative
for velocity, it still manifests itself as absolute for accelerated or
rotationary motions, just as in Newton’s day.


Against Einstein’s stand, the metaphysician may object to absolute
velocity being cast aside as meaningless, merely because no experiment
seems capable of demonstrating its existence. But science, as we know,
is not metaphysics; it is based on experience. An a priori
rejection of absolute velocity would sin against the scientific
method; but an absolute velocity which, though supposedly present, no
experiment can reveal, and for which, in addition, no useful function
can be found, plays no part in the workings of nature. Were future
experiment to detect this absolute velocity, it would of course have
to be reintroduced; but to retain it on general principles against the
verdict of experiment would be very poor science.


We must be careful not to confuse the present situation with that
entailed by atomism, for example. Even to-day we can scarcely say that
atoms have been observed in the same sense that stones and tables have
been observed; nevertheless, the majority of scientists accepted the
existence of atoms years ago, because by postulating their presence
a number of phenomena could be co-ordinated with simplicity. Thus,
though eluding direct detection, atoms were demanded by indirect
mathematical reasoning. Nothing similar is observed in the case of
absolute velocity. We insist on this point because it is sometimes
thought that the theory of relativity is essentially phenomenological.
In a wide sense this is true, but it is most certainly not true if
by phenomenalism we understand the word in its narrower sense. An
out-and-out phenomenologist, such as Mach, would go so far as to deny
the existence of atoms merely because they had never been observed by
human eyes, regardless of whether it was useful to conceive of them for
the purpose of co-ordinating empirical facts. This is not the attitude
of science. But if by phenomenalism we mean the desire to free our
understanding of things from unnecessary metaphysical notions which are
in no wise demanded by experiment, then we are undoubtedly justified
in claiming that not only the theory of relativity, but modern science
itself, is essentially phenomenological. If these points are clearly
understood, we see why it was that Einstein considered it necessary to
rid physics of absolute velocity. In short, the exclusion of absolute
velocity from science appears to be imposed by experiment; and the only
course to adopt is to pursue this train of enquiry in a logical way and
see where it will lead us.


We remember that the relativity of velocity, taken in conjunction
with the equations of electromagnetics, indicated the invariance of
the velocity of light in vacuo, as measured in any Galilean

frame. From this, the Lorentz-Einstein transformations followed with
mathematical logic. It is these transformations that entail, as we
know, the relativity of duration, length and simultaneity. We cannot,
therefore, regard the new notions as the result of some pipe dream
or some divine inspiration; they were forced on Einstein by his
transformation equations, and these, in turn, were derived from the
initial principles, hence from ultra-refined experiment. Needless
to say, it would have been highly arbitrary, and in fact absurd, to
lay down the special principle of relativity before such time as the
negative experiments had driven us to it. To proceed on the strength
of some divine inspiration prior to the disclosures of experiment
would have been to start out on a wild-goose chase. Here it cannot be
emphasised too strongly that a belief in the relativity of velocity
through the ether does not impose itself a priori; quite
the reverse. To put it differently, there is no a priori reason
why the equations of electromagnetics should preserve the same form
regardless of the velocity of our frame of reference. We may feel more
sympathetic towards one doctrine or another, but in the last analysis
it is experiment, and experiment alone, which can guide science in such
matters.


It is important to understand that at this stage Einstein had
discovered only the Lorentz-Einstein transformations together with
their inevitable relativistic consequences. There is not the slightest
hint, in his writings, of a world of space-time. This great discovery
is due to the mathematician Minkowski, who, in the year 1908, proved
that the Lorentz-Einstein transformations connoted the existence of
a four-dimensional space-time continuum of events. From then on,
those concepts of classical science, a space of points and a time of
instants, considered by themselves, faded into shadows. Here again,
Minkowski’s discovery was purely mathematical. It issued from a simple
application of the theory of groups, and no trace of philosophical
prejudice can be found in his work.


In short, it was the mathematical equations, hence the ultra-precise
experiments, that had rendered inevitable the new outlook of the world.
As Minkowski tells us himself in his inaugural address: “The views of
space and time which I wish to lay before you have sprung from the
soil of experimental physics, and therein lies their strength.” As
for space-time, that amalgamated continuum, it had never even been
suggested in the speculations either of scientists or of philosophers.
To Einstein himself, the discovery of the four-dimensional space-time
world was probably quite as much of a surprise as it was to the world
at large; but there was no gainsaying the correctness of Minkowski’s
arguments, which any one with an elementary knowledge of mathematics
could verify. Thus, although space-time constitutes one of the most
astounding philosophic revolutions ever witnessed, yet the procedure
which led to its discovery reduces to the customary mathematical
treatment of the empirical facts yielded by the experimenters.


Let us examine what bearing these new ideas will have on Newton’s

absolute space and motion. Of course, to begin with, space-time taking
the place of separate space and time, our outlook of the world is
considerably modified. It is modified in the sense that distance,
duration and simultaneity are no longer absolute. If, however, we view
the problem of space from the standpoint of motion, that cornerstone of
the Newtonian synthesis, we find very little change.


The same dynamical facts that had compelled Newton to recognise
rotationary motion as absolute drove Einstein once more to the same
conclusion. Hence, just as Newton, arguing from the standpoint of
space, was compelled to accept absolute space, so now Einstein, arguing
from the standpoint of space-time, was driven to absolute space-time.
In short, whether we argue in terms of space or of space-time, the
dynamical facts of motion appear to impose an absolute background in
either case.


Yet, even when confining ourselves to the problem of motion, absolute
space-time presents a great advantage over Newtonian absolute space.
With absolute space, the difficulty was to account for the elusiveness,
relativity or mythical nature of velocity through empty space
(embodied in the Newtonian principle of relativity). But with absolute
space-time this difficulty is overcome. For absolute space-time,
while necessitating the absolute nature of rotation and acceleration,
necessitates with equal inevitableness the relativity of velocity.
And so the introduction of space-time has served to eliminate that
displeasing dualistic feature which was characteristic of Newton’s
space. From all this, we see that the fundamental characteristic of the
Newtonian synthesis, namely, the presence of a suprasensible absolute
frame with respect to which rotation and acceleration would be measured
(the inertial frame), remained unaffected. A vindication of Mach’s
ideas seemed to be as remote as ever.


Einstein, in the following words, summarises the situation as it stood
before the general theory was elaborated:


“The principle of inertia, in particular, seems to compel us to ascribe
physically objective properties to the space-time continuum. Just
as it was necessary from the Newtonian standpoint to make both the
statements, tempus est absolutum, spatium est absolutum, so
from the standpoint of the special theory of relativity we must say,
continuum spatii et temporis est absolutum. In this latter
statement, absolutum means not only ‘physically real,’ but also
‘independent in its physical properties,’ having a physical effect, but
not itself influenced by physical conditions.


“As long as the principle of inertia is regarded as the keystone of
physics, this standpoint is certainly the only one which is justified.”
[150]


Now, when it was realised that the real world was one of flat
four-dimensional absolute space-time and no longer one of separate
space and time, it became necessary to adjust the laws of nature to the
new mould. The laws of electrodynamics found a ready place, and this
was only natural, since space-time had been moulded on those very laws.
Einstein then succeeded in modifying the laws of mechanics, rendering
them compatible with space-time. There still remained, however, that

most important law, the law of gravitation. This law, as given by
Newton, was incompatible with space-time, so that the next step was to
modify Newton’s law in a suitable way. Poincaré attacked the problem
and obtained a solution in 1906. Further attempts were initiated by
Abraham, Mie and Nordström.[151]


But all such attempts were soon to be overshadowed by Einstein’s own
brilliant generalisation. He succeeded in establishing the long-sought
fusion between mechanics and gravitation, obtaining thereby the most
beautiful theory known to science. However, before following Einstein
in his solution, we may state that Poincaré, as far back as 1906,
had succeeded in establishing a most important point.[152] Prior to
his investigations it had been held that Newton’s law of gravitation
constituted a powerful argument against the space-time theory. For,
on Laplace’s authority, it was believed that the observed planetary
motions required that gravitation should be propagated with a speed
many times greater than that of light; a fact difficult to reconcile
with the maximum velocity  required by relativity. Poincaré,
however, proved that the force of gravitation could perfectly well be
propagated with the speed of light and yet yield laws of planetary
motions practically identical with those of Kepler. He proceeded to
consider the various possible laws of gravitation compatible with
the flat space-time theory though reducing to Newton’s law for slow
velocities. One of these laws, in particular, was found to account for
the precessional advance of Mercury’s perihelion.


The significance of these discoveries was to prove that the relativity
theory had nothing to fear from the phenomenon of gravitation. But
a still more important point had been established. Had Laplace’s
contention been correct, were it a fact that gravitation spreads
instantaneously throughout space, we should be faced with gravitational
action at a distance, a most displeasing conception. Newton
was averse to action at a distance, but it cannot be denied that his
law of gravitation was a direct appeal to it. If, on the other hand,
gravitation were propagated with a finite speed, we could conceive
of it as a continuous action through a medium, similar to that of
electromagnetic forces. Gravitation could then be connected with the
methods of field physics inaugurated by Faraday and Maxwell. To-day,
these investigations of Poincaré have none but a historical interest,
for they have been superseded by Einstein’s brilliant solution of the
problem of gravitation, rendered possible by the introduction of a
variable space-time curvature. Nevertheless, it is well to note that
should Einstein’s general theory be abandoned as a result of some
crucial experiment, it would still be possible to preserve the special
flat space-time theory by taking the law of gravitation given by
Poincaré or Nordström. However, as we shall see, the special theory

drives us to the general theory in such a variety of ways that there
is little fear of science having to suffer the severe setback which a
reversion to flat space-time would entail in our understanding of the
unity of nature.


Let us now pursue the trail of subsequent discoveries and see how
Einstein was led to abandon the idea of a rigidly flat absolute
space-time acting as a container for matter, but in no wise modified
by the presence of matter. According to his own acknowledgment, this
important discovery was reached by at least three different lines of
reasoning. We shall examine these reasonings separately, for they throw
an interesting light on the methodology of the theory.


In the first place, Einstein remarked that spatial measurements
permed on the surface of a disk (rotating in flat space-time) would
necessarily yield non-Euclidean results, since, owing to the FitzGerald
contraction, the same rod placed radially or transversely would vary
in length. But in a rotating frame forces of inertia are active;
hence it was suggested that forces of inertia were related to a
non-Euclideanism of the space (not space-time) of the frame in which
the forces were active. We shall see how this discovery will be of use
later on. Incidentally, let us note that this first result follows as a
mathematical necessity from the special theory; no new assumptions have
been introduced. Expressed geometrically, it means that the observer on
the rotating disk splits up flat space-time into a curved space and a
curved time.


Now we pass to the second step. The most delicate physical experiments
had established the identity of the two types of masses, the inertial
and the gravitational. Classical science had regarded this identity as
accidental, or at least unexplained. Einstein assumed that we were in
the presence of a fact of very great significance in nature, a fact
that would have to be taken into consideration in any theoretical
co-ordination of knowledge. If we analyse the reasons for Einstein’s
attitude we find that they reduce to a disinclination to believe that
an identity of this sort could be a mere matter of chance. In the
same way, if two men were to publish the same book, identical word
for word, probability would suggest that one of them had copied the
work of the other. If we accept the identity of the two masses as
something more than a mere chance occurrence, we must assume that the
great similarity between forces of inertia and of gravitation is due
to the fact that these two types of forces are essentially the same.
But we have seen that in regions of empty space where forces of inertia
were active, space (though not space-time) was non-Euclidean. Hence
it must follow that in a gravitational field near matter, space must
also be non-Euclidean. But there is a marked difference between the
distribution of forces of inertia and those of gravitation. Forces of
inertia occurring far from matter can be cancelled by the observer’s
changing his motion. Thus, centrifugal force on the disk can be made
to vanish; all we have to do is to arrest the disk’s, hence the
observer’s, rotation. On the other hand, we cannot get rid of the force
of gravitation. It is true that in a falling elevator the gravitational
pull would vanish as a result of the elevator’s motion; and we could

no longer feel it, falling, as we should, together with the elevator
(owing to the identity of the two masses). But we know that were the
elevator extended enough the pull would reappear in distant places
because of the radial distribution of the gravitational field round
the earth. And so we must conclude that in the case of a gravitational
field produced by matter, the non-Euclideanism of space can no longer
be got rid of by merely varying our motion, hence by merely varying our
method of splitting up space-time into our private space and time. It
follows that the non-Euclideanism of space, present in a gravitational
field, must come from a deeper source. In particular, it must arise
from an intrinsic non-Euclideanism in the space-time which
surrounds matter, since it is only a curved non-Euclidean space-time
that can never be split up into a flat space and a flat time. And so we
see that, around masses, space-time can no longer be flat, as it was
in regions far removed from matter. The intimate connection between
the presence of matter and a non-Euclideanism of space-time becomes
apparent. Matter and, more generally, energy cause space-time to become
curved.


And here we must note an important difference between the two arguments
we have presented thus far. In the first case, that of the rotating
frame or disk, the argument was, so to speak, irrefutable: it was
imposed as a direct mathematical consequence of the Lorentz-Einstein
transformations. But the second argument, that referring to the
identity of the two types of masses, was based on an experimental
fact. When we consider the wonderful discoveries that have issued at
Einstein’s hands from this identity of the two masses, we may find
it strange that Newton or some other scientist should have failed to
attach any theoretical importance to it. Of course, the reason for
Newton’s neglect to consider the matter is easily understood when we
remember that he ignored space-time. Only with space-time, coupled with
a knowledge of non-Euclidean geometry, could the full significance of
this identity be understood. This same excuse, however, cannot hold
for those scientists who in 1908 were just as well acquainted with the
special theory as was Einstein himself. Why did three long years have
to elapse between the discovery of space-time, in 1908, and Einstein’s
identification of the two types of masses, in 1911? This brings us to a
different subject of discussion.


The point we have been attempting to explain is that the co-ordinations
of theoretical physicists are based primarily on experimental facts,
not on pipe dreams. But when this point is granted, the genius of
the individual scientist consists in singling out those particular
facts which he suspects will yield the most interesting consequences.
That Einstein should have picked out this identity of the two masses,
whereas no one else had thought of it, is a tribute to the genius of
Einstein; and that is all that can be said. It is claimed that the
idea came to him suddenly when, walking along the street, he saw a
man fall from a house-top. This incident is said to have directed his
attention to the conditions of observation that would hold for an

observer falling freely. The story is reminiscent of Newton’s apple. At
any rate, regardless of how Einstein came to think of the identity of
the two masses, the important point is that this identity constitutes
an experimental fact—a fact which had till then appeared in the light
of a miraculous coincidence. For this reason, if for no other, it
might have been suspected that this marvellous coincidence concealed
something important in nature, which we had not yet grasped.


Reverting to the motives which had driven Einstein to suspect that
matter must modify the space-time structure, we have seen that they
were of a totally different nature. The rotating-disk argument was
exclusively mathematical; the equivalence of the two masses was based
on a fact of experience. Neither of these two arguments was suggested
by philosophy, theosophy or theology. To assert, then, that Einstein
was influenced by the philosophy of Descartes or Leibnitz or Mme.
Blavatsky or any one else would indicate a very poor knowledge of
scientific method. Although the new views entail a marked change in
our understanding of the relationships between extension and matter,
yet there is no irresponsible guesswork in Einstein’s procedure. In
particular, there is no desire to impose some special matter-moulding
philosophy. If the theory is drifting towards certain philosophical
conclusions, it is drifting with the current; and the current is
represented by a rational co-ordination of the facts of experience.


We now come to the third argument advanced by Einstein in favour of his
matter-modifying space-time theory. We have left it to the last, as
it is more philosophical than the two preceding ones. We may condense
it into the statement that where there is action there must also be
reaction. Now, in rigidly flat space-time, the courses of free bodies
must be conceived of as directed by the geometry or structure of
space-time. Hence there exists an action of the space-time structure
on the bodies. But then there should also exist a reciprocal action
of the bodies on the structure. In much the same way, the electron
affects the electromagnetic field and, inversely, the field affects the
electron. Einstein expresses, in the following words, his dislike for a
conception which would conflict with the reciprocity of action:


“In the first place, it is contrary to the mode of thinking in science
to conceive of a thing (the space-time continuum) which acts itself,
but which cannot be acted upon. This is the reason why E. Mach was led
to make the attempt to eliminate space as an active cause in the system
of mechanics. According to him, a material particle does not move in
unaccelerated motion relatively to space, but relatively to the centre
of all the other masses in the universe; in this way the series of
causes of mechanical phenomena was closed, in contrast to the mechanics
of Newton and Galileo. In order to develop this idea within the limits
of the modern theory of action through a medium, the properties of
the space-time continuum which determine inertia must be regarded as
field properties of space analogous to the electromagnetic field. The

concepts of classical mechanics afford no way of expressing this. For
this reason Mach’s attempt at a solution failed for the time being.”


If we review the position of the theory as it now stands, we may
summarise it as follows: Space-time is primarily an absolute
four-dimensional continuum of events. When devoid of matter and
energy, its structure is flat. When matter is present, the flat
structure yields gently both around matter and in its interior. The
yielding, however, is exceedingly slight. Though sufficient to account
for gravitation, it is far too insignificant to be detected through
direct measurements with rods (this holds at least in the case of
the space around the sun). Disturbances of structure, caused by the
sudden arrival or passage of matter, are propagated from place to
place with the velocity of light, so that gravitation manifests itself
as a continuous action through a medium, just like the action of the
electromagnetic field. Action at a distance is thus avoided.


And now, what is the bearing of these discoveries on the problem of
absolute rotation and absolute space-time? We see that space-time,
by yielding slightly in the presence of matter, has lost that
absolute rigidity which characterised Newton’s space. Owing to these
varying distortions of the space-time background, brought about by
variations in the matter distribution, the rotational velocity of a
body suffers from a certain measure of indeterminateness. To this
extent rotation is no longer absolute.[153] But when we review the
sequence of deductions that has led us to this partial rejection of

Newton’s belief in absolute rotation, we see that our discoveries have
become possible only through the medium of space-time. Had space-time
never been discovered, had we remained content with a separate space
and time, it would have been quite impossible to establish this
indeterminateness of rotation; for it would have been impossible to
account for gravitation in terms of the variations in the structure
of space alone. As a result, the spatial background would have
remained rigid, and Newton’s position would have stood secure.


Even now, though the fluctuating space-time background has been
discovered, the absolute nature of rotation has not been fully
disproved. For in an empty universe, space-time would still preserve a
well-defined rigid structure; hence, if we conceive of one single body
introduced into this otherwise empty world, an absolute rotation of
this body could always be detected. It would be betrayed by centrifugal
forces; and these forces would arise because the particles of the body
would be following world-lines which departed from the geodesics,
or lines of least resistance, of the space-time structure. For this
reason, rotation would still be absolute, since it would preserve a
real meaning in a world devoid of matter. In short, it would have
nothing to do with a rotation relative to the star-masses. Obviously we
are still a long way from having vindicated Mach’s mechanics.


But when it is considered that Einstein’s theory is based on the
relativity of velocity, then that it establishes, in a partial way
at least, the relativity of acceleration, it cannot be denied that
a logical extension of its triumphs would be for it to succeed in
establishing the complete relativity of all motion and of inertia.
Although Einstein never conceals his hope that this will be the
ultimate outcome, there is no desire on his part to force the issue in
defiance of facts.


It may, however, be of interest to ascertain what modifications in
the theory would be required for the relativity of all motion and of
inertia to be established. Inasmuch as it is the inherent structure
of space-time persisting even in the absence of matter which is
responsible for centrifugal force in an empty world, hence for absolute
rotation and inertia, a vindication of Mach’s ideas would entail the
following condition: It would be necessary to assume that in the
absence of all matter, space-time would lose all trace of a structure
and become amorphous. In other words, matter would have to create

space-time and its structure (i.e., the -distribution,
or the metrical field), and not merely modify locally a pre-existing
structure. It is interesting to note that the relativity of
rotation is thus leading us to a concept of space which could not
have been anticipated a priori. Mach himself, when defending
the relativity of motion, does not appear to have realised that the
abandonment of Newton’s absolute space would entail a matter-created
universe.


Now what Einstein has done has been to prove that it is mathematically
possible to conceive of a universe in which the entire space-time
structure (hence the entire -distribution, or metrical field)
would be conditioned by matter. This, as we know, is the cylindrical
universe. But, here again, we must remember that he has never asked
us to accept this cylindrical universe merely because it entails
the relativity of inertia and of rotation. However strongly the
relativity of all motion may appeal to us, it reduces in fine to a mere
philosophical fancy; and more imperative arguments must be presented
before it can be entertained.


Such arguments were forthcoming when the gravitational equations were
studied more closely. It was seen that they entailed those peculiar
forces which Mach’s relativity of rotation compels us to attribute
to the stars. Over and above these motives, Einstein was guided by a
desire to avoid the conception of a gradually impoverished nuclear
universe of stars. When, in addition, account was taken of the low
star-velocities, he found himself driven once more to the cylindrical
universe. Also, we may recall that the possibility of reducing matter
to electricity and gravitation necessitates the same cylindrical
universe.


When all these facts are taken into consideration, one can realise that
the finite universe, entailing as it does the relativity of rotation,
rests on solid ground. We do not say that Mach’s idea is vindicated,
since the cylindrical universe follows from the stability of the
star distribution, and this may be a mistaken premise. All that is
maintained is that the complete relativity of motion is mathematically
possible, a point which had never been established by Mach or by any
one else. Indeed, as we have said, Einstein does not insist that we
accept the cylindrical universe. He states expressly that the theory
of relativity does not require it as an inevitable necessity; it
merely suggests it as a possibility. If we assume that our stellar
universe is concentrated into a nucleus surrounded by infinite space,
the quasi-Euclidean infinite universe must take the place of the
cylindrical one. With this alternative universe, matter still modifies
space-time locally, but can never create it in toto. As Einstein
tells us: “If the universe were quasi-Euclidean, then Mach was wholly
in the wrong in his thought that inertia, as well as gravitation,
depends upon a kind of mutual action between bodies.”


In short, we realise that the only means of coming to any decision on
the form of the universe, hence incidentally on the problem of the
relativity of rotation, must be through the medium of astronomical
observation; in particular, by measuring the velocities of the stars in
the Milky Way and globular clusters.





There exists also a third type of universe, de Sitter’s hyperbolical
universe, which also is mathematically possible. In de Sitter’s
universe, just as in the quasi-Euclidean one, matter can never
create space-time in toto, and as a result Mach’s idea must
be abandoned. But, here again, it is not a philosophical dislike for
a matter-created universe which guides de Sitter to the hyperbolical
universe; it is the restoration of absolute time in the cylindrical
universe, and also the lack of invariance of the boundary conditions,
which disturb him. This lack of invariance restricts the covariance of
the natural laws, hence, from a purely mathematical standpoint, goes
counter to the general principle of relativity. De Sitter criticises
the cylindrical universe in the following words:


“It should be pointed out that this relativity of inertia is only
realised by making the time practically absolute. It is true that the
fundamental equations of the theory, the field equations, and the
equations of motion ... remain invariant for all transformations. But
only such transformations for which at infinity  can be
carried out without altering the values of (I)”.[154]


These discussions on the form of the universe bring to light another
important aspect of the methodology of science. We may notice that
the accord which was practically unanimous in the earlier part of the
theory now gives way to dissenting opinions. The reason for this is of
course obvious. In the earlier part, experimental verifications were
soon forthcoming and permitted us to decide matters one way or another.
But when we are dealing with the form of the universe, verifications
are extremely difficult; they depend on tedious astronomical
observations which may require centuries to be completed. Hence, the
only method of advance is to explore all mathematical possibilities
in the hope that somehow or other we may be led to an experimentum
crucis. De Sitter places the emphasis on the mathematical
principle of relativity. Einstein adopts the attitude of the physicist
and prefers to stress the dynamical aspect of relativity. Weyl and
Eddington adhere more closely to the pure physics of the field,
following the procedure inaugurated by Maxwell and Faraday.


But in all cases the driving force behind these attempts has been a
desire to co-ordinate mathematically a maximum number of experimental
facts in the simplest way possible. These facts have been collected
from the various realms of physical science, and, indeed, it is owing
to their wide variety that the conclusions obtained are compelling.
Furthermore, it should be noted that the facts appealed to are the
results of highly refined experiments. This again is important, since
we have seen that a difference one way or another of a tiny fraction of
an angle or a length might be sufficient to overthrow an entire theory.


Summing up these discoveries, we see that a matter-created universe
entailing the complete relativity of all motion to the universal
masses appears to be mathematically possible. If this solution is the
correct one, the cornerstone of Newton’s absolute space is finally
destroyed. If, on the other hand, the cylindrical universe should

prove untenable, we could scarcely claim that an absolute background to
motion had been disposed of. In this measure, at least, Newton’s ideas
would stand.


In short, we see that this problem of the relativity of rotation, of
the relationships between matter and extension, of the finiteness of
the universe, is not one for philosophy and a priori arguments
to solve. A mathematical co-ordination of the facts developed by
ultra-precise experiment can alone yield us an answer. As Weyl tells us:


“The historical development of the problem of space teaches how
difficult it is for us human beings entangled in external reality
to reach a definite conclusion. A prolonged phase of mathematical
development, the great expansion of geometry dating from Euclid to
Riemann, the discovery of the physical facts of nature and their
underlying laws from the time of Galileo together with the incessant
impulses imparted by new empirical data, finally, the genius of
individual great minds, Newton, Gauss, Riemann, Einstein, all these
factors were necessary to set us free from the external, accidental,
non-essential characteristics which would otherwise have held us
captive.”


To be sure, as our knowledge accumulates and our mathematical ability
increases, we may be led to revise former conclusions. This is why
the conclusions of Einstein differ from those of Newton, just as
those of our descendants may differ from ours of to-day. But the main
point to grasp is that these variations in our philosophical outlook
are brought about by our increase of knowledge both mathematical and
physical; and this increase requires centuries: it cannot be obtained
overnight. Indeed, had Einstein lived in Newton’s time and ignored the
mathematical and physical discoveries of the present day, he could
never have improved upon Newton’s solution. Inversely, had Newton lived
in our time and been acquainted with the facts known to modern science,
it is very possible that he would have created the theory of relativity.


In our analysis of the methodology of scientific theories we have
attempted to show that the deductions of the great scientists were
always based on experiment and not on wild guesses. But this does not
mean that other factors have not also come into play. For instance,
we mentioned that a proper choice of facts was of supreme importance.
Whereas a certain choice may lead to nothing of interest, some other
choice may issue in a great discovery. A case in point was afforded by
Einstein’s attitude towards the well-known identity of the two masses.


But even this is not all. In mathematics, as in architecture, certain
co-ordinations are beautiful, others top-heavy or unsymmetrical. When,
therefore, physical phenomena are translated into mathematical formulæ,
the theoretical physicist will always endeavour to obtain beautiful
equations rather than awkward ones. Of course, since he must restrict
himself to a slavish translation of physical results, his initiative
in this respect may be extremely limited. Nevertheless, in certain
cases it may be possible to add an unobtrusive term to the equations,
though this term may not actually be demanded by experiment. If this

additional term renders the equations more beautiful, there will be
every incentive to retain it. It was an urge of this sort that guided
Maxwell in his discovery of the equations of electromagnetics. The
experimental data known in his day could not establish whether a
certain additional term was necessary or not. Nevertheless, Maxwell
introduced it because it beautified his equations, and was thus led
to anticipate the existence of electromagnetic waves. As we know,
subsequent experiment has justified Maxwell’s deep vision. It is much
the same with the theory of relativity. One of the reasons for its
great appeal to mathematicians is the extreme harmony, beauty and
simplicity which it permits us to bestow on many of the equations of
physics.


However, if we leave these aesthetic urges aside, we may say that the
methodology that has yielded us the theory of relativity is the same
methodology that has yielded all the great scientific discoveries. It
is the methodology of Galileo, Newton and Maxwell: First, ascertain
experimental facts; then, as needs be, frame tentative hypotheses or
scaffoldings for the sole purpose of co-ordinating these facts into a
consistent whole with a maximum of simplicity. Only when the theory
has succeeded in accumulating a sufficient number of facts can its
philosophical implications be studied. It follows that any attempt to
reverse the normal order and posit the philosophy before the science
will result in hampering future discovery by subordinating accuracy
of treatment to loose guesswork. The history of human thought is full
of discarded philosophic prejudices swept away by the onward march of
science. Every new scientific discovery reveals aspects of nature, or
even of the mind, as in pure mathematics, which we never suspected
before. To-day, both the discoveries of relativity and the quantum
hypothesis are case in point. It is precisely because the philosophy
of a theory of mathematical physics can only be attained a
posteriori, coming as a crowning achievement, that the philosophy
which is beginning to disentangle itself from Einstein’s discoveries is
still in an embryonic stage. It is not that a scientific philosopher
of sufficient scope could not be found; it is because there are many
scientific aspects of the subject which are still in doubt. The
following passage from Einstein will explain what we mean:


“From the present state of theory it looks as if the electromagnetic
field as opposed to the gravitational field rests upon an entirely new
formal motif, as though nature might just as well have endowed
the gravitational ether [metrical field[155]] with fields of quite
another type, for example with fields of a scalar potential instead of
fields of the electromagnetic type.


“Since according to our present conceptions the elementary particles
of matter are also in their essence nothing else than condensations
of the electromagnetic field, our present view of the universe
presents two realities which are completely separated from each other
conceptually, although connected causally, namely, gravitational ether
[metrical field] and electromagnetic field, or—as they might also be

called—space and matter.


“Of course it would be a great advance if we could succeed in
comprehending the gravitational field and the electromagnetic field
together as one unified conformation. Then, for the first time, the
epoch of theoretical physics founded by Faraday and Maxwell would reach
a satisfactory conclusion. The contrast between ether [metrical field]
and matter would fade away and through the general theory of relativity
the whole of physics would become a complete system of thought like
geometry and the theory of gravitation.”


We have quoted this passage at length, because it appears to us that
by reading between the lines it is possible to realise the deeper
philosophical problems pertaining to our knowledge of nature, hence
to knowledge in general, which still obscure the significance of
relativity.








CHAPTER XXXIX

THE CO-ORDINATION OF PHYSICAL FACTS ACCOMPLISHED
BY RELATIVITY





IN the preceding chapter, we saw that the Newtonian synthesis had
succeeded in co-ordinating terrestrial mechanics with celestial
mechanics, or again ordinary mechanics with the laws of planetary
motions; and that later Maxwell had brought together optics and
electricity. The theory of relativity goes much farther, and obtains a
synthesis of practically all the various realms of physical science,
including cosmology and the internal mechanisms of the atoms. Just as
Newton’s discoveries were made possible thanks to the introduction
of the inertial frame of reference attached to the stars, so was
Einstein’s synthesis the natural outcome of the principle of the
relativity of Galilean motion, and of the postulate of the invariance
of the velocity of light in vacuo as referred to any Galilean
frame.


We may recall that the physical facts co-ordinated by Einstein were
originally altogether of an electromagnetic nature. In the first
place, all the negative experiments were accounted for automatically,
but there was of course no merit in this, since the entire theory is
based on the acceptance of these negative results. Similar arguments,
however, no longer hold when we consider Fizeau’s experiment; for there
exists no apparent connection between the experiments of Michelson
and of Fizeau. Hence the fact that Fizeau’s result is a necessary
consequence of Einstein’s theory constitutes a first strong point in
favour of relativity. We might also mention that the theory demands
a numerical result slightly different from that anticipated by
Fresnel and Lorentz, so that more precise observations should permit
experimenters to verify the correctness of the theory.


Perhaps the most striking success of the special theory in
electromagnetics consists in its allowing us to foretell how electric
and magnetic fields will appear to be modified when we pass from one
Galilean frame to another. For instance, experiment proves that an
electron at rest is surrounded by an electrostatic field; whereas the
same electron in relative motion is known to develop an additional
magnetic field at right angles to the electrostatic field. Prior to the
discovery of the Lorentz-Einstein transformations, these experimental
results were noted but no explanation could be given to account for
this generation of a magnetic field with motion. Accordingly, an
empirical formula was appealed to in order to define its lay and
intensity. But as soon as the transformation formulæ were applied the
entire problem was cleared up, a theoretical explanation of these
mysterious facts was obtained, and the classical empirical formulæ

were found to be only approximate. It was then seen that the electric
and magnetic fields were no longer separate units, but merely relative
aspects of the same entity—the electromagnetic-field tensor.


Considering the theory from a purely mathematical point of view,
we found that great beauty and symmetry were introduced into our
co-ordination of the equations of electrodynamics; formulæ which had
always appeared disconnected now revealed themselves as intimately
related. This was especially apparent in the laws expressing the
conservation of electromagnetic energy and momentum. From the
standpoint of the theoretical investigator, these mathematical
simplifications are of great importance, in that they reveal that
unity and harmony in nature which, rightly or wrongly, make us believe
we are on the right track. Passing to mechanics, we find that the
increase of mass with relative velocity becomes a necessary consequence
of the theory; and in this way Bucherer’s experiment is accounted
for with extreme simplicity. For the same reason, when extending
these discoveries to the astronomy of the atom, Sommerfeld was able
to prophesy the existence of fine spectral rays since observed by
Paschen. A further requirement of the theory was the identification of
mass with energy; and this unforeseen relationship enabled scientists
to explain the mysterious anomalies in the atomic weights of the
successive atoms. It also followed that light, being a form of energy,
must manifest mass, and hence momentum; so that Maxwell’s and Bartoli’s
previous theoretical anticipations (later verified by experiment)
were also found to be in harmony with relativity. In a similar way
the electromagnetic energy of the electron would cause it to possess
mass. As in the case of the conservation theorems in electricity, the
same beautiful symmetry was apparent in mechanics. The special theory
entails, as we know, the existence of space-time; and with space-time
in place of separate space and time, the difficulties were finally
overcome which classical science encountered when seeking to conceive
of a structure for space capable of accounting for the differences in
the dynamical manifestations accompanying Galilean and accelerated
motion. This closes the list of the most important facts co-ordinated
by the special theory.


The general theory was suggested by the mysterious identity of the two
types of masses, the inertial and the gravitational, which the most
precise experiments appeared to have established. This identification
of the two types of masses necessitated that of inertial and
gravitational forces and resulted in the postulate of equivalence.
The curvature of space-time in a gravitational field followed as an
immediate consequence, and the law of gravitation became the law of
space-time curvature. A number of laws of space-time curvature were
mathematically possible, and Einstein chose the simplest. This simplest
law of curvature was then found to be very nearly identical with that
of Newton. It yielded a precessional advance of Mercury’s perihelion
such as had already been observed by astronomers, and demanded in
addition three new effects, all of which were unknown to science.
These were the double bending of a ray of light passing near the
sun, the Einstein shift-effect, and the non-Euclideanism of spatial

measurements in a gravitational field. The first two effects have since
been verified, while calculation proves the last effect too minute to
present any hope of detection. Also, according to the theory, the force
of gravitation can never be propagated with a speed greater than that
of light. A definite limitation in size is assigned to bodies or stars
of a given density. Hence also an upper limit in density is prescribed
for a body of given mass.


Further theoretical considerations pertain to the wonderful connection
which is shown to exist between laws erstwhile considered entirely
separate, namely, the laws of conservation and of gravitation. In a
similar way, thanks to space-time, action which in classical science,
in spite of its vast physical importance, was given by so artificial a
mathematical expression, now loses its artificial appearance. Also the
displeasing teleological aspect of the principle of least action can
now be avoided.





Viewed from a purely theoretical standpoint, the theory would appear
to suggest the necessary existence of permanent entities (matter)
acting on one another through space. We may understand how this comes
about, as follows: Suppose we were told that the world was one of
four-dimensional space-time; and that all things in it were built up
of the space-time elements of structure, the ’s. By purely
mathematical reasoning, we should discover that it was possible to
construct, in terms of the ’s, tensor expressions which
would manifest conservative properties; hence, that permanent entities
were rationally possible in the space-time world. Outside and around
these permanent entities, a residual curvature of space-time would be
suggested, so that a field of force either attractive or repulsive
would be expected; and the law of force distribution would correspond
approximately to that of the inverse square. In this way matter and
gravitation, though not strictly imposed a priori, would
yet suggest themselves as likely consequences of the space-time
theory.[156] Nothing similar was encountered in classical science.


Lastly we pass to the cosmological considerations. The general theory
leaves us at liberty to choose between an infinite universe of space-time
in which the star-matter would be concentrated into a nucleus, or else
between two major types of finite universe, that of de Sitter and that
of Einstein. The stability of the sidereal distribution would suggest
Einstein’s cylindrical universe. If this model be accepted, the relativity
of rotation and the complete relativity of mass as due to interactions
between bodies, an idea so cherished by Mach, can at last be vindicated.
From all these various considerations we may realise how vast is the
nature of the synthesis accomplished by Einstein, and how varied are
the phenomena which it co-ordinates.


If any one of the experiments and anticipations mentioned were to yield
results differing even in a minute way from the expectations of the
theory, relativity would in all probability have to be abandoned.[157]
We see that the theory is exceedingly fragile and might be overthrown
at any moment; but this is precisely what militates in its favour. In
a general way, it may be said that the fragility of a theory expresses
a measure of its coherence. For a coherent theory, uniting, as it
does, into one doctrine a large number of facts and anticipations,
must inevitably collapse, owing to its very coherence, when any one of
its anticipations is proved incorrect by experiment. A theory full of
hypotheses ad hoc is never fragile; whenever the experiment does
not bear out the theory, all we need do is vary the hypotheses ad
hoc or introduce new ones. But a theory of this sort lacks the
essential requirements of a scientific theory, since no reliance can
ever be placed on its anticipations. The great merit of the relativity
theory resides precisely in its freedom from hypotheses ad hoc;
therefrom arise both its fragility and its value.[158]





Nevertheless, although Einstein’s theory has succeeded in co-ordinating
practically all our physical knowledge, there are still a few
mysterious aspects of science which have not been accounted for. An
understanding of the electron (hence of matter) and of the nature of
the Poincaré pressure which prevents it from exploding under the mutual
repulsive forces of its various parts, remains a mystery. It appears
to be impossible to build up the electron from the magnitudes of the
electromagnetic field alone; it is as though the electron must contain
something else besides electromagnetic forces. In other words, what is
known as the physics of the field (which we owe to Maxwell and Faraday)
proves itself unable to account for the existence of electrons and
matter. All that can be said is that the theory of relativity appears
to suggest that the cohesive force which holds the electron together
(the Poincaré pressure) is of a gravitational nature and is linked to
the curvature of the universe. Then again, the existence of electricity
under two different aspects, positive and negative, has yet to be
explained. As Weyl remarks, it might be explained by the choice of an
irrational expression for the action; it might also be linked to the
progress of time from past to future. But, above all, the phenomena
of the quanta, the atomicity of matter, of energy and of action still
constitute outstanding challenges to mathematicians.


We have mentioned elsewhere the nature of Planck’s investigations and

have seen that they led to the discovery of a universal constant 
representing an atom of action. In other words, there appears to
exist in nature a definite atom of action, called a quantum of action,
just as there appear to exist two definite atoms of electricity,
namely, the positive atom, or nucleus of the hydrogen atom, and the
negative atom, called electron. It is because this atom of
action appears to be of such fundamental importance that we must
endeavour to detect its presence in our space-time model of the
universe. However, not the slightest suggestion of it can be discovered.


It is not meant to imply that no unit of action can be found. Indeed,
the action connected with the totality of the finite universe could
be taken as unit. But this unit of action would be enormous, far too
great to be identified with Planck’s unit, and it seems impossible
to discover a unit of action of any such infinitesimal proportions
as is exemplified by Planck’s quantum of action. Nor does it seem
likely that any such infinitesimal atom of action will ever be
found in our space-time model, whether it be that of Einstein or of
Weyl. For, space-time having been assumed from the outset to be a
continuous manifold, the only fixed quantities pertaining to volumes in
space-time and capable of representing action will always be of cosmic
proportions, embracing the whole extension of the finite universe. In

order to obtain discontinuities or atoms of infinitesimal proportions,
it would seem to be necessary to suppose that this discontinuity was
inherent in the texture of space-time; and this would lead us to a
granular conception of space-time, as opposed to our present continuous
conception. We should have to assume that the apparent continuity of
the fundamental manifold was due to our macroscopic study of it; just
as a piece of polished marble may appear continuous when we run our
fingers over its surface, whereas its discontinuous nature would be
revealed were we to study it with the aid of a powerful microscope. This
view would imply that the secret of Planck’s quanta of action would
only be revealed were we to study space-time on a microscopic scale.
Our entire understanding of nature would then be modified, for this
atomicity of action might bring in its wake the atomicity of space and
of time, proving that space and time, as ordinarily understood, were
but approximate concepts.


Also, we should mention that by following another train of thought,
de Broglie and Schrödinger have succeeded in throwing new light on
the significance of quantum phenomena. For by adopting a wave theory
of matter, Schrödinger has proved that the existence of energy levels
within the atom (as postulated by Bohr) can be deduced mathematically
from the solutions of certain wave equations. Thus our understanding
of matter assumes a most revolutionary aspect. In the light of the new
investigations, the mechanics of the atom would stand on an entirely
different footing from that of classical or even of relativistic
science. Just as classical mechanics appears as a first approximation
holding good for low velocities, but breaking down for high velocities,
in which case the more embracing relativistic mechanics must take
its place, so now relativistic mechanics ceases to be applicable
when minute regions of atomic dimensions are contemplated. Here the
still more embracing wave mechanics of Schrödinger would correspond
to reality. We see, then, that these successive scientific structures
constitute better and better approximations, each degenerating into its
predecessor when certain refinement are neglected.


We may also say that the vicissitudes through which matter is now
passing present a striking similarity to those through which our
under standing of optics passed during the nineteenth century.
Here, also when minute regions of dimensions comparable to those of
wave-length were considered, there arose diffraction phenomena which
the old-fashioned geometrical optics was unable to account for. Wave
optics took it place. But it cannot be stressed too strongly that this
new wave mechanic of Schrödinger, which appears to be gaining ground,
does not endanger in any sense the main achievement of the relativity
theory, namely, the discovery of space-time. Space-time is incorporated
into the new mechanics, along with Einstein’s other results. In the
present state of these highly abstract investigations, not much
positive information is available; and it would be a mere waste of time
to guess what the future may hold in store.








CHAPTER XL

THE GENERAL SIGNIFICANCE OF THE THEORY OF
RELATIVITY





THE theory of relativity, as we have seen, is one of mathematical
physics; and its sole aim has been to co-ordinate the greatest
number of natural phenomena and experimental results in as simple
and as direct a manner as possible. In common with all other great
developments of theoretical physics, it has adhered strictly to
scientific methods. But now that the mathematico-physical co-ordination
has been completed, it becomes permissible to investigate the changes
which the theory may necessitate in our philosophical understanding of
nature.


The most interesting aspect of the entire theory for philosophers would
appear to be the discovery of space-time, with the paradoxes of feeling
to which it leads. Thus, the duration of our life, the distance
we cover, have no absolute significance. Two twins might both live
seventy years in their own estimation, and yet if they met again before
their death one might be younger than the other. Two men starting
from the same point and travelling in the same direction might both
cover what they would measure as the same distance, and yet might find
when they came to a stop that they were many miles apart. The fact is
that a distance and a duration are not absolute; they merely express
a relation between something that is absolute, and the space-time
mesh-system or motion of the observer. There is no more cause to be
surprised at the curious results we have mentioned than at the relative
character of the length of the shadow cast by a pole, or of the visual
angle under which we see the pole.





As an immediate consequence of this relativity of distance and
duration, we must accept the relativity of simultaneity. Classical
science recognised that no absolute significance could be attached to
the concept of the same point of space considered at different times;
for since points of space could be determined only with respect to a
system of reference, two events occurring in succession at the same
point of our system would obviously occur at two different points
of some other system, in motion with respect to the first. On the
other hand, classical science refused to extend similar relativistic
considerations to the concept of the same instant of time at two
different points. It was assumed that a change of system of reference
could have no effect on the rate of time-flow, which remained absolute,
ever the same for all observers. It is this belief in the absolute
nature of simultaneity that is shattered by Einstein’s discoveries.
Henceforth no greater significance can be attached to the absolute
sameness of time in different places than to the absolute sameness of
location at different times.


We may recall that all these so-called paradoxes of relativity are by
no means antinomies of reason or of logic, which the theory could not
possibly survive. They are merely paradoxes of feeling, which arise
when from force of habit we continue to be haunted by the classical
concepts of absolute duration and distance, and to credit these
erroneously with some a priori inevitable virtue of logical
necessity.


When we consider that there is scarcely a single field in our
understanding of the physical universe upon which relativity has
failed to throw some new light, we can realise that as yet the full
significance of its discoveries is far from being established.
Nevertheless, sufficient positive information has been gathered with
respect to the concepts of space and time for certain philosophical
conclusions to appear legitimate. What the theory has proved
conclusively is that real space and real time can be approached only by
empirical methods, and in particular by ultra-refined experiment.


We mentioned, when discussing space, that Kant’s philosophy of the
a priori nature of three-dimensional Euclidean space as
representing the form of pure sensibility was exploded years ago by the
mathematicians from Gauss onwards. So far as scientists were concerned,
the matter was definitely settled. The theory of relativity merely
confirms these views by justifying them no less on physical than on
mathematical grounds. Henceforth, four-dimensional space-time, which,
though flat, is non-Euclidean (in the extended sense), owing to the
negative dimensionality of time, constitutes the fundamental continuum
of the universe. Had it not been for the general theory, it might have
been argued that space-time possessed no deep significance, and that it
reduced to a mere convenient mode of mathematical representation, like
the graph of a barometer needle. Though we may state (even confining
ourselves to the special theory) that this opinion would have been
untenable, the use which Einstein has made of space-time in the general
theory excludes this view completely. With space-time we are in the
presence of a new continuum which has exactly the same measure of
reality as was formerly attributed to three-dimensional space.


Now we have seen that with the rejection of the a priori
Kantian attitude, mathematicians long before the advent of Einstein’s
theory were thrown back on the empirical philosophy of space as
arising from the simplest co-ordination of our sensory impressions. In
particular, the apparent inevitability of Euclidean space was assumed
to result from the co-ordination of sensory experience, whether that
of the individual or that of the species. In other words, it was the
behaviour of material bodies and of light rays which was held to be
the fundamental source of our natural belief in the Euclideanism of
space. But here an objection might be urged, for it might be contended
with perfect truth that according to Einstein the behaviour of material
bodies and light rays is such as to yield space-time, and not separate
space and time. How, then, could we account for space-time having
failed to impose itself ages ago; and why had it been necessary to
await the arrival of Minkowski and Einstein?





The reason is, of course, obvious. Theoretically, there is a great
difference in structure between space-time and separate space and
time, and this difference arises, as we know, from the finiteness of
the invariant velocity in space-time as contrasted with its infinite
magnitude in separate space and time. The higher the relative speeds
of bodies, and, in particular, the nearer they approximate to the
critical speed of light, the more marked will become the physical
discrepancies between the two worlds. And as the velocities of those
bodies which enter into our daily experience are exceedingly small
in contrast to that of light, crude perception cannot enable us to
detect the minute differences which are theoretically present. To all
intents and purposes, therefore, the world of common experience is
one of separate space and time, and not one of space-time. In much
the same way, the mere survey of a landscape would be incapable of
revealing the rotundity of the earth. And so we understand why it
was that the discovery of space-time had to await the performance of
ultra-refined physical experiments. We might, of course, conceive of
beings whose senses were so far developed as to detect the minute
differences that escape us. If such beings existed, there is every
reason to suppose that their sensibility would accept space-time as
a matter of course, just as ours accepts three-dimensional Euclidean
space and time. In the words of Eddington: “It is merely the accident
that we are not furnished with a pair of eyes in rapid relative motion,
which has allowed our brains to neglect to develop a faculty for
visualising this four-dimensional world as directly as we visualise
its three-dimensional section.” Being so poorly equipped as to sensory
organs, being unable to discern the minute discrepancies that arise
when  is very large though finite and when  is infinite,
we have got into a rut and have believed from ages immemorial in a
world of separate space and time. There is no reason to marvel at
the paradoxes of feeling which we suffer when told of the strange
disclosures that would ensue were relative velocities to become very
great or our senses to become more acute. In much the same way, quite
apart from the disclosures of relativity, were our eyes to be suddenly
gifted with microscopic vision, our familiar world would become so
terrifying as to baffle description.


Now the essential characteristic of space-time is that it exhibits
no absolute separation between space and time which would hold for
all observers, regardless of their motion. Each and every observer
will split it up in a different way, so that the totality of space at
an instant for one becomes a successive spread of points throughout
space at a succession of times for another. Of course, so long as we
are considering only our immediate perceptions, we shall always split
up space-time into a separate space and time; and this fact has been
construed by some as implying that the space-time amalgamation is
obviously artificial, since it can be so easily separated into space
and time. Needless to say, the argument is faulty. For the space and
time that we obtain as a result of a splitting up of the space-time

continuum correspond to a private view of the world, and it is never
the private views considered in isolation that give us the objective
world. It is solely a certain construct or synthesis of the private
views which can be deemed to represent objective reality. To revert to
an illustration from classical science, it is not the shape of the rock
as seen from here or there that yields us a knowledge of the rock’s
shape, but solely a synthesis of the appearances of the rock as seen
from here, there and anywhere. In relativity we must also consider the
perceptions of observers moving with various relative motions Then
it is found that objective shape, size and duration can no longer
be constructed by a synthesis of private views, in contrast to what
classical science had erroneously supposed. For this reason, distance
and time separation, or, what comes to the same thing, space and time
though remaining real from the standpoint of the private view, can no
longer be claimed to constitute the scaffolding of the common objective
world. From an objective point of view, such concepts are ambiguous
and we must substitute for them a space-time world and space-time
configurations. In short, it must be realised that space-time is an
entirely new concept, new both in science and in philosophy, and it
must not be confused with the mere artificial representation of time
and space directions in graphs such as classical science had often made
use of.


Possibly further illustrations of space-time may be helpful. Thus, if
we consider the three-dimensional extension occupied by the atmosphere
and note the variations in temperature that occur from place to
place, we are justified in speaking of a four-dimensional continuum
space-temperature But it is obvious that we are at liberty to divorce
these two entities and study them separately, obtaining thereby two
separate continua, one of space and one of temperature. In classical
science, it was much the same with space and time. We could consider
them jointly as constituting a four-dimensional continuum of events
but then again, owing to the absolute nature of time and distance, we
could divorce them. When this was done, both three-dimensional space
and uni-dimensional time were separated into distinct self-supporting
continua.


With the space-time of relativity, a separation of this sort is
impossible. We cannot withdraw the time dimension, for it is no longer
unique. If we cancel it so far as some definite observer is concerned,
leaving him with an instantaneous space, we shall have mutilated the
instantaneous space, without having cancelled time, in the estimation
of another ob server in relative motion. We see, then, that whereas in
classical science the adjunction of time to space was artificial, in
that time and space could always be separated like oil and vinegar,
such is no longer the case in relativity. Space and time are now
blended together and can be claimed to constitute one solid whole. In
a very crude way, we may say that space-time is more akin to an opal
emitting various colours in various directions. Just as with space-time
it was impossible to annihilate time or space for all observers, so
here, with the opal, it would be impossible to cancel all the points
that reflected green light and only green light since if we pursued

this course from the standpoint of one observer we should have failed
to achieve our object from the standpoint of another.


Let us now consider the characteristics of metrical continua. From a
mathematical standpoint, a metrical continuum is one with which it
is possible to associate a geometry, hence to obtain an invariant
expression for the distance separating two points of the continuum,
the value of this expression holding for all observers. In the case
of space-time, this would imply that the distance between any two
point-events should exhibit the same space-time separation holding for
all observers regardless of their motion. Now, in the space and time
of classical science, no such invariant space and time distance was
possible. A simple example may make this point clear. Suppose that
in classical science we were standing on a railroad embankment, and
viewing the production of two instantaneous events—say, two light
flashes emitted by two spatially separated signals on the line. By
taking into consideration the speed with which the light signals had
progressed towards us and by measuring our distance from the respective
signals, we could determine the spatial distance between the two
signals and the respective times at which the flashes had occurred. We
should thus obtain the temporal separation and the spatial separation
of the two events as referred to the embankment. But suppose now
that we had viewed the same two events from a train moving uniformly
along the track. In classical science, time being absolute, the
temporal separation between the two events would, of course, suffer no
modification. The spatial separation as referred to the train would,
however, generally be different. We can understand this by supposing
that the train passed before the two successive signals as their
respective flashes were emitted; in this case, as referred to the
train, the two events would have occurred at the same point of the
train, and so their spatial separation would be zero. We see, then,
that the time separation would be the same in either case, whereas
the space separation would have varied. As a result, the space and
time separation could not remain invariant. For the separation between
the two point-events to manifest itself as invariant, we may surmise
that the time separation should also vary in such a way as to offset
the variation of the space separation. The absoluteness of time in
classical science rendered this impossible, and this is what is meant
by stating that space and time were not amalgamated into one continuum
in any deep sense.


Now, what Einstein tells us is that had we performed our measurements
with extreme accuracy, using our customary chronometers and rigid
rods, we should have found that the time separation between the two
events had varied slightly; and that as a result this slight variation
would have cancelled the corresponding change of the space separation,
leaving the space-time distance unmodified.


Calling  and  and  and  the space and time
separations, as measured from the embankment and the train,
respectively, we should have found that


Here, then, was the expression of the space-time distance between
the two events, or rather of its square. It is the fact that our
measurements would have verified the invariance of this distance,
which permits us to consider space and time as amalgamated. It cannot
be too strongly emphasised that our clocks and rods would have been
the ordinary clocks and rods of classical science. They would not
have been adjusted so as to force relativistic results, as is often
erroneously supposed; for had this been the case the theory would have
been artificial and worthless. All that the theory suggests, therefore,
is that our ordinary rods and clocks do not behave quite as we used to
believe they did.[159]


We see, then, that the juxtaposition of space and time in classical
science was just as artificial as a juxtaposition of space and
temperature would have been. In short, the reality of space-time arises
from Minkowski’s discovery that it was possible to define an invariant
distance between two points in space-time, holding for all observers;
and that it was impossible to define any such invariant distance in
space alone or in time alone, showing that space and time by themselves
were phantoms. These last two concepts must henceforth be considered
jointly, and no longer as separate entities.


Now it is apparent that if the model of space-time is to spare us
from a conflict with certain fundamental facts of consciousness it is
imperative that some kind of mathematical difference should distinguish
time directions from space directions. However, we need not anticipate
any difficulties from the space-time model on this score; for we know
that, owing to the heterogeneity which exists between time directions
and space directions, space-time is anisotropic. Bearing this
peculiarity in mind, we see that space-time around any point-event can
be split up into a bundle of time directions and into bundles of space
directions; these, however, can never overlap with the time-bundle.
Then, from this bundle of possible time directions, every observer will
select that particular line which constitutes his world-line through
space-time. As for the flow of psychological time, or the duration

between two psychological events measured by a clock at our side, it
will be given by the space-time length of our world-line limited by
those two events. Thus, two world-lines of equal length will always
correspond to the same duration of time lived by the observers who
follow these world-lines. For instance, of two identical sodium atoms,
one near the sun and one far away, the solar atom will beat a slower
time; but with both atoms the segments of the world-lines limited by
successive vibrations will be the same in length. The existence of the
Einstein shift-effect has verified this fact, and it is equivalent to
stating that the atoms behave like perfect clocks.


So far as an observer’s three space directions are concerned, they
will be perpendicular to his world-line or time direction. If his time
direction is curved owing to his acceleration or to the intrinsic
curvature of space-time due to matter, the space and time directions
will be properly determined as perpendicular to one another only in
the immediate vicinity of the observer. Elsewhere a definition of
orthogonality, or perpendicularity will be impossible; as a result
the very concepts of time and space become blurred in the general
theory, and we have to content ourselves with co-ordinate systems which
constitute measurements neither in space nor in time. We cannot dwell
on this type of difficulty because it necessitates explanations of too
technical a nature; suffice it to say that it is this complication that
causes all problems connected with rotating disks and gravitational
fields to suffer from a certain measure of obscurity when we attempt to
interpret them in terms of space and time. We may also add that when
large masses are moving about, the concept of simultaneity throughout
space even for a given observer loses all precise significance.


The great difference between our present views and those of
classical science is that whereas in classical science our lines of
time-reckoning and of space-reckoning were unique, they now offer an
indefinite number of possible alternatives, because of the plurality of
time and space directions present in space-time. It is as though the
flow of time were represented no longer by a single stream, but by a
number of branches radiating from every point in different directions.
In spite of this ambiguity in the possible space and time directions,
we have seen that to each and every observer a definite space and time
separation will correspond; so that all ambiguity disappears[160] as
soon as we have defined the observer.


The strange results and concepts which the theory of relativity has
disclosed have been appealed to by a number of writers in order to
justify an ultra-idealistic philosophy of nature. These men have
concluded that the real objective universe about which scientists were
never weary of talking had been dashed to the ground and that realistic
science had finally surrendered to the idealistic school of philosophy.
This expression of opinion results from a confusion between the point
of view of science and that of the metaphysical realist.





The vast majority of modern scientists are agnostics in that they
reject the claim of the metaphysical realist who presumes to have
discovered substance and true being in the outside world. They will
claim that substance and the thing in itself are unknowable, or at
least that these elude rational investigation, and that the objective
world of science is nothing but a mental construct imagined for the
purpose of co-ordinating our sense impressions. But, once this point is
admitted, they will recognise that this mentally constructed objective
universe must to all intents and purposes be treated as a reality
pre-existing to the observer who discovers it bit by bit. This last
expression of opinion is not the result of some philosophical system.
It is imposed upon scientists as an inevitable conclusion; for had it
been proved impossible to imagine a common objective universe, the
same for all men, science could never have existed, since it would
have reduced to individual points of view which could never have been
co-ordinated. In other words, knowledge would have lacked generality;
and without generality there could have been no such thing as science.


Had the theory of relativity, for instance, failed to furnish us with
a common objective world, it could never have gone very far. All we
can correctly state is that the objective world of absolute duration
and distance has faded away, that space and time as the fundamental
constituents of the objective world have sunk to mere shadows.
Expressed in other words, the so-called primary qualities of shape,
size, duration and mass erstwhile considered absolutes must now be
regarded as relatives having no definite value until the observer is
specified. But this work of destruction has been followed by one of
reconstruction, as a result of which a new objective world, that of
space-time with its invariant intervals, has taken the place of the
discarded world of separate space and time.


Idealistic metaphysicians have a habit of passing rapidly over
space-time as if it were of no particular importance. They lose sight
thereby of the entire significance of Einstein’s theory. As Einstein
tells us himself: “Without space-time the general theory of relativity
would perhaps have got no farther than its long clothes.” Even though
we were to limit our investigations to the bare facts of the theory,
without studying it more deeply, the idealistic interpretation would be
open to serious objections.


Consider, for example, the phenomenon of gravitation. It is obviously
impossible to assert that the apparent bending of a ray of starlight
as it passes near the sun is due entirely to the idiosyncrasies of
the observer; for we know that were the sun to be removed suddenly
during an eclipse the ray of starlight would automatically cease to
bend, in spite of the fact that the purely subjective space and time
idiosyncrasies of the astronomer at his telescope would have had no
occasion to vary. Again, in the special theory, the space and time
computations vary from one observer to another only when relative
motion exists between the observers. The norms of Peter do not differ
from those of Paul because Peter is Peter and Paul is Paul, but only
because Peter and Paul are in relative motion. Were their relative

motion to cease, their norms would cease to differ.


But this is not all. According to the idealistic views, the norms
of the various observers are so adjusted, owing to some miraculous
pre-established harmony, that the velocity of light appears the same to
all. As a matter of fact, this statement is incorrect, for the velocity
of light is invariant only for Galilean observers; it is variable
from place to place when accelerated observers are considered, and it
is also variable in the neighbourhood of matter. Again, if we revert
to Michelson’s experiment, we see that its essential feature is to
have demonstrated that no matter what the velocity of a sphere as a
whole may be, rays of light which leave the centre at the same instant
of time all return to the centre at the same instant, after having
suffered a reflection against the sphere’s inner surface. In this
experiment, we are therefore dealing with a coincidence, with
waves of light which pass the same point at the same time. The space
and time elongations produced by the idiosyncrasies of the observer
could never create or disrupt a coincidence of this sort. They might
cause a duration or a distance to appear longer or shorter; but they
could never cause two rays of light to intersect on the surface of some
object if they did not intersect there in the opinion of all other
observers. Thus an intersection or a coincidence is an absolute, for
the simple reason that no amount of magnification will ever cause a
point to appear as two separate points. A point has no dimensions which
can be torn apart by magnification. It follows that in an experiment
such as Michelson’s it is impossible to attribute the observed
coincidence to the idiosyncrasies of the observer; there is obviously
a mysterious something in nature which will have to be conceived of as
existing independently of the observer and as situated in the objective
world of science. This something is found to be represented by the
intersections of the world-lines in absolute space-time, i.e.,
in the objective world of science.


As a matter of fact, in the general theory the concepts of space and
time become completely indeterminate, and it is only in the very
simplest type of problems that it is feasible to reason in terms
of space and time. As Bertrand Russell points out, the idealistic
interpretation appears to have arisen from the continual reference to
“the observer” in Einstein’s theory. It should be realised, however,
that “the observer” is a very loose term. A photographic camera and
clock, or any other mechanical registering device, would be just as
appropriate for purposes of observation as would a living human being.
In short, the principal weakness of the exponents of the idealistic
interpretation seems to be their desire to cling to space and time
in spite of everything. They fail to see that the objective world of
relativity cannot be built up of space and of time in the same simple
way as that of classical science. Summing up, we may say that whether
space-time be considered a metaphysical reality, or whether it be
regarded as a mental construct devised for the purpose of co-ordinating
our sensory experience, in either case it plays the part of an
objective reality (in the scientific sense). We must conceive of it,

therefore, as an entity pre-existing to the observer who explores it
and locates events in its substance.


Now the criticism has often been raised that there is nothing in
Einstein’s space-time model which enables us to explain the reason
for that most fundamental fact of consciousness, our awareness of the
flowing of time. It is difficult to see why a criticism of this sort
should be directed with any greater justification against space-time
than against the classical theory. The fact that in classical science
space and time were separate did not allow us to explain the phenomenon
of the flowing of time any better than does the space-time theory. To
state with Newton that time flows teaches us nothing about the cause of
this flow. Hence, we must conclude that whatever merit there may be in
the critic’s objections, they would apply with equal force to classical
science. But when we analyse the reason for these objections we find
that the critic is starting from the assumption that the passage of
time must be conceived of as pre-existing in the objective universe,
and is thus denying its purely subjective nature. Speculations of this
kind can never lead us very far in the present state of our knowledge;
but, if need be, there is nothing to prevent us from assuming that
space-time presents dynamic properties which urge natural processes
on from past to future along the bundle of time directions. Those,
however, who suggest views of this sort have not accomplished much
thereby; they have merely removed the mystery of the passage of time
from human consciousness and placed it elsewhere in the objective
universe. It seems safer to concede that our awareness of the passage
of time is in all probability of a subjective nature, connected with
our consciousness of being alive. In this case we should have to
assume that it is our consciousness which rises along a world-line,
discovering, as it proceeds on its course, events situated in the cone
of its absolute past. This has always been the view defended by the
most competent authorities, in particular by Minkowski, Einstein, Weyl
and Eddington. As Weyl tells us:





“However deep the chasm may be that separates the intuitive nature of
space from that of time in our experience, nothing of this qualitative
difference enters into the objective world which physics endeavours
to crystallise out of direct experience. It is a four-dimensional
continuum, which is neither ‘time’ nor ‘space.’ Only the consciousness
that passes on in one portion of this world experiences the detached
piece which comes to meet it and passes behind it, as history,
that is, as a process that is going forward in time and takes place in
space.... It is remarkable that the three-dimensional geometry of the
statical world that was put into a complete axiomatic system by Euclid
has such a translucent character, whereas we have been able to assume
command over the four-dimensional geometry only after a prolonged
struggle and by referring to an extensive set of physical phenomena
and empirical data. Only now the theory of relativity has succeeded in
enabling our knowledge of physical nature to get a full grasp of the
fact of motion, of change in the world.”


As can be seen from the preceding quotation, our awareness of the
passage of time is ascribed to the passage of our consciousness through
the space-time continuum. According to the views of Minkowski, a
material body is then represented by a world-line, or continuous chain
of events, the entire length of which is subjected to a modification
of structure which we come to interpret as connoting the presence of
matter. So long as we reason in terms of space-time, this is all we can
say. But when in our habitual perception of things, we, as sentient
observers, split the world up into an appropriate space and time, what
we perceive of the world-line is its momentary intersection with our
cone of the passive past. If our world-line and that of the body which
is being observed are parallel, the body will be said to be at rest.
But if the two world-lines are not parallel, then, when interpreting
things in terms of space and time, the body will be said to be in
relative motion.


We may illustrate these same views by considering the following
example: We shall assume for reasons of convenience that space-time is
reduced to three dimensions: two of space and one of time.
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Fig. VII







Suppose, then, that in this block of space-time we consider a volume of
redness. If we assume that our own world-line is given by , our
instantaneous present will at all times be given by an indefinite plane
parallel to . As our existence at every instant is represented
by the successive points along , our instantaneous present will
gradually rise, intersecting the red volume  along successive
plane areas (Fig. VII). We may say, therefore,
that from the standpoint of space and time, the red space-time
volume appears as a splash of red colour squirming and varying in
shape; in spite of the fact that from the space-time standpoint the
volume is fixed and motionless. But the varying shape of the red
patch as described above corresponds to the patch as it exists in
our instantaneous present. It is not this that we perceive with our
eyes, for whatever we perceive is already situated in our past. Hence,
what we perceive at a given instant will be given, not by the
intersection of the red volume with the plane of our instantaneous
present, but by its intersection with the surface of our instantaneous
cone of the passive past (Fig. VIII).  This is the light-cone

which passes through those space-time events which are in our present
range of vision. All other events are from a visual standpoint either
in our visual past or future. (More detailed explanations will be given
in Appendix I.)


Looking back on what has been accomplished, we see that the motion
and change with which we are familiar in our daily experience are now
interpreted as arising from a passage of our consciousness through
space-time. The cause of this passage remains utterly mysterious; but,
as we said before, it would not solve our difficulties to attribute it
to dynamic properties of the continuum itself—dynamic properties which
would urge our consciousness on. Even were this solution to be adopted,
the cause of the dynamic properties and their mode of action on our
consciousness would remain as mysterious as ever.
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Now, in this interpretation of space-time, there is no room for free
will, since everything is already predetermined and pre-exists in
the future. To be sure, this is a most unsatisfactory aspect of the
presentation. But how are we to avoid it? In classical science we could
always reserve a part for free will by assuming that the present and
the past alone were fully determined while the future might be modified
at will. But in relativity this neat separation is no longer possible.
For if we consider two observers passing each other, the present of
the one comprises both the past and the future of the other. Hence, we
cannot banish the future without annihilating a portion of the past
together with the present, or at least that portion of the present
which stands elsewhere than in our immediate vicinity. Neither may we
assume boldly that the seat of free will resides in some suprasensible
world transcending that of space-time, for the position of an object on
the table is, after all, an effect of the will that placed it there,
and the body as a material object occupies a position in space-time.


At any rate, there appears to be very little use in speculating
on puzzles of this sort. The fact is that science is necessarily
deterministic, not through an act of faith, not because it has
convinced itself that free will is non-existent, but because
determinism is for science a dire necessity if phenomena are to be

co-ordinated and linked to one another. Regardless of what the future
may hold in store, the physicist is therefore compelled to act as
though a rigidly deterministic scheme were existent in nature, and to
consider space-time and its content as given, even though he may doubt
whether such is really the case.


Interesting sidelights on causality are offered by the space-time
theory. Since no effects can be propagated with a speed greater
than that of light, the passage of time is an essential if causal
connections are to operate. This was not necessarily true when
instantaneous effects (or action at a distance), were contemplated. The
theory of relativity thus imposes restrictions on causal connections;
it allows us to assert that between certain space-time events no causal
connections can ever exist. It is well to note, however, that the
category of causality has no place in space-time as such. Only when we
consider the perceptions of the observer can causality be considered,
since only then is the passage of time introduced. When discussing
space-time from an impersonal point of view as a four-dimensional
continuum which is static, it would therefore seem preferable to refer
to functional relationships.


The next most important aspect of the theory of relativity which we
have to consider relates to our conception of real space. We remember
that the geometrical space of mathematics was amorphous. It possessed
no intrinsic metrics, no special geometry, no size, no shape; and the
geometry which the mathematician credited to space was purely a matter
of choice. On the other hand, the real space of physics appeared to
possess a definite metrics. Furthermore, the amorphous nature of space
was belied by the existence of centrifugal forces and the like, proving
that not all motions through space were equivalent.


When it came to determining the precise geometry of real space, various
methods could be considered. We might proceed by appealing to rigid
bodies, that is, to bodies which visually and tactually appeared to be
the same wherever we might carry them. More generally, rigid bodies
were assumed to be exemplified by material bodies maintained as far
as possible under permanent conditions of temperature and pressure.
We could also investigate space by means of light rays, assuming that
their courses in vacuo would define geodesics. Over a century
ago Gauss attempted experiments of this sort between the summits of two
mountains. A still more general method consisted in appealing to the
laws of physics in general, and determining the type of geometry which
would have to be credited to space in order to permit us to co-ordinate
natural phenomena with the maximum of simplicity. This procedure was
suggested by Riemann in 1854 in his inaugural address at Göttingen.


It will be noted that all these various methods of determining the
geometry of space are essentially physical. Hence, the accusation
could always be made, as it was indeed made by Poincaré, that all
we could determine in this way would reduce to the geometrical
properties of material bodies or of light rays, and that space itself
was amorphous and would therefore escape us completely. On the other
hand, it was an undeniable fact of experience that measurements in

space, whether conducted with material rods or with light rays, always
yielded the same Euclidean results. Furthermore, the same Euclidean
geometry seemed to be imposed upon space when we sought to interpret
the laws of physics in the simplest way possible. It was scarcely
conceivable that this general concordance of results obtained by
these various methods of approach should be attributed to chance.
Hence, the problem was reversed and the belief arose that space itself
possessed a Euclidean structure, and that it was this structure which
controlled the behaviour of material solids, the paths of light rays,
and the course of free bodies moving far from matter according to the
law of inertia. When this attitude was adopted the significance of
measurements with material rods was altered. The geometry of space was
not merely the Euclidean geometry of material bodies; it was rather
the reverse. The geometry of material bodies was Euclidean by reason
of this pre-existing Euclidean structure of space, which moulded them
into shape and thus gave them their geometrical properties. Under
the circumstances, measurements in space with rigid bodies and light
rays would resolve themselves into an exploration of the pre-existing
geometry of space, and the rôle of the rigid body and the light ray
became similar to that of the thermometer in detecting pre-existing
variations of temperature.


Now this attitude of regarding the behaviour of rigid rods and light
rays as symptoms, and not as causes, must not obscure the fact that
rods, light rays and physical phenomena generally are an essential
requirement for the discovery of the pre-existing structure of space.
There is no sense, therefore, in attempting to determine this structure
a priori on the plea that physical measurements, however
perfect they may be, can never transcend a certain approximation, and
are therefore of no value in permitting us to discover the precise
structure of space. We must never forget that we are dealing here
with a problem of physics, not with one of pure mathematics. For
instance, in Euclidean geometry the mathematician does not have to
appeal to measurements with rigid rods in order to determine the value
of , since in virtue of our basic Euclidean postulates and the
rules of logical reasoning,  can be determined as accurately as
we wish by purely mathematical means. But in the case of the geometry
of physical space we are completely at sea. A priori, this
geometry might be one of a variety of different types. All we might do
would be to assert that the principle of sufficient reason compelled
us to regard physical space as homogeneous and isotropic, hence as
reducing to a constant-curvature geometry, whether Euclidean or not.
Even this belief would be open to question until we knew more about the
origin of this structure. At any rate, on a priori grounds the
precise geometry of space can never be ascertained. Whether we like it
or not, we are compelled to resort to rods, light rays and physical
methods of exploration; and whatever geometry we obtain in this way
will ipso facto become that of real physical space, to the order
of precision of our measurements.





Up to this point we have limited ourselves to discussing the first
step in our study of physical space. The structure is viewed as
pre-existing; and our rods and light rays, by adjusting themselves to
this structure, permit us to objectivise it, as it were. In much the
same way a coloured liquid poured into an ideally transparent glass (so
transparent as to be invisible) permits us to ascertain the inner shape
of the glass. But we now come to the second step. What is the cause of
this structure? Is it posited by the Creator, as an intrinsic property
of space, or is it the mere manifestation of something more fundamental?


Riemann refused to believe that a structure of the void could exist of
itself. He recognised, as before, that our rods would adjust themselves
and would thus reveal the pre-existing structure; but this structure
in turn would have to be created and conditioned by something else
foreign to the void. For this “something else” Riemann appealed to
the forces generated by the enormous mass of the totality of the star
distribution. It would follow that were there no stars and no matter
in the universe aside from our exploration rods, no geometry would be
revealed. The rods would not know how to act; light rays would not know
where to go; physical space would be unthinkable. With this bold idea
of Riemann’s, the homogeneity and isotropy of space (whether Euclidean
or non-Euclidean), formerly thought to be imposed by the principle
of sufficient reason, was no longer inevitable; for star-matter,
the generating cause of this structure, was not distributed equally
throughout the universe. Riemann, therefore, considered that a varying
non-Euclideanism might be present in space. Rods and light rays would,
of course, adjust themselves to this heterogeneous structure, yielding
different numerical results from place to place throughout space.


All these theories antedate Einstein’s discoveries by many years,
but with the advent of the theory of relativity the entire problem
presented itself afresh, with this difference, however—that the
fundamental continuum to be explored was four-dimensional space-time
and no longer three-dimensional space. The introduction of space-time
necessitated an appeal to chronometers or vibrating atoms as well
as to material rods, although the progress of light rays through
space could also serve to measure duration (owing to the postulate
of the invariant velocity of light according to which a ray of light
would describe equal spaces in equal times). At all events, the time
determinations would have to yield the same results whether computed
by light rays or by the vibrations of atoms, since otherwise we should
have to assume that the structure of space-time itself could not be
the governing and moulding influence regulating the behaviour of
material bodies and of all processes of change. In this eventuality a
belief in the structure of space or of space-time would be difficult
to accept. This structure of space-time has received various names.
Weyl calls it the affine-relationship, the guiding field
or the metrical field. Einstein refers to it as the ether
of space-time or the gravitational ether. In order to
avoid confusion with the stagnant ether of classical science, from
which it differs in so many respects, we shall refer to it as the

“metrical field.” Mathematically, as we know, it is represented by the
-distribution.


It is to be noted that as space-time can be split up into a space and
a time by any given observer (at least in his immediate vicinity),
the space-time-structure will automatically be split up into a
space-structure and a time-structure, or a spatial and a temporal
metrical field. The behaviour of rods and bodies at rest with respect
to the observer will be controlled by the space-structure, while the
beatings of perfect clocks such as vibrating atoms will be controlled
by the time-structure. When we consider space and time together, we
may say that the difference between space-time and separate space
and time can be expressed as follows: Whereas the three-dimensional
Euclidean space of classical science could be considered as cleaved by
parallel time-stratifications, defining the spatio-temporal situations
of simultaneous events and separating neatly space from time, no
such stratification exists in space-time. If we wish to adhere to
the older conception, we may still speak of time-stratifications
through space-time, but we must be careful to add that these
stratifications manifest no fixed direction. This is due to the
fact that those stratifications which would be time-stratifications
defining simultaneous events for one observer would cease to be
time-stratifications defining simultaneous events for another observer
in relative motion. The relativity of simultaneity is but another way
of expressing the same facts. But, of course, with this admission, the
conception of time-stratifications loses all deep significance. It
follows that, when discussing the space-time structure, it would be
preferable to omit mentioning such relative concepts as those of space
and time. Accordingly, we will say that the structure of space-time is
defined by the light-cone, that is, by the locus of the world-lines of
light rays issuing from any given point at any given time. It is this
light-cone which will split up space-time into its permissible space
and time directions.[161]


Let us revert to the metrical field, as defining the space-time
structure. Although Riemann had attributed the existence of the
structure, or metrical field, of space to the binding forces of matter,
there is not the slightest indication in Einstein’s special theory
that any such view is going to be developed later on; in fact, it does
not appear that Einstein was influenced in the slightest degree by
Riemann’s ideas. At any rate, in the special theory, the problem of
determining whence the structure, or field, arises, what it is, what
causes it, is not even discussed in a tentative manner. Space-time,
with its flat structure, is assumed to be given or posited by the
Creator.


But in the general theory the entire situation changes when Einstein
accounts for gravitation, hence for a varying lay of the metrical
field, in terms of a varying non-Euclidean structure of space-time
around matter. We are then compelled to recognise not only that the
metrical field regulates the behaviour of material bodies and clocks,
as was also the case in the special theory, but, furthermore, that a
reciprocal action takes place and that matter and energy in turn must

affect the lay of the metrical field. But we are still a long way from
Riemann’s view that the field is not alone affected but brought into
existence by matter; and it is only when we consider the cosmological
part of Einstein’s theory that this idea of Riemann’s appears to be
vindicated.


And here we come to a parting of the ways with de Sitter and Eddington
on one side, Einstein and Thirring on the other, and Weyl somewhere
between the two extremes. The differences of opinion arise from the
views to be entertained on the subject of the origin of the metrical
field. It is impossible to accept Einstein’s general theory without
admitting that the field regulates the behaviour of matter and all
processes of change, and is in turn affected by matter yielding under
its influence; but the point to be determined is whether this field or
space-time structure is entirely created by matter, or whether some
type of structure would subsist in the absence of all matter.


Now we saw when discussing the form of the universe, that if de
Sitter’s spherical universe or the infinite quasi-Euclidean universe
is adopted, inasmuch as they can both exist in the total absence of
matter, we must infer that the metrical field is manifestly not brought
into existence by matter. If, on the other hand, we accept Einstein’s
cylindrical universe necessitated by the apparent stability of the star
distribution, a direct relationship is found to exist between the size
and geometry of the universe and the presence of matter. It is not
necessary, however, to assume with Einstein that matter creates the
field. We might also hold with Eddington that it is the field which
creates matter.[162] If Eddington’s views are entertained, what our
senses recognise as matter is constituted by certain curvatures of the
metrical field. Were the universe to contract, a certain amount of
matter would be annihilated; were it to expand, a corresponding amount
of matter would be brought into existence. If we accept Einstein’s
views it is the reverse. More matter would cause the universe to expand
and an annihilation of matter would cause it to contract. We saw that
Einstein’s universe would appear to be in perfect harmony with Mach’s
belief in the radical relativity of rotation with respect to the
stars, and in the relational nature of mass. Just as classical science
recognised that weight was due to the proximity of other bodies, so do
Mach and Einstein believe that similar considerations must be extended
to mass. It is the same eternal conflict between those who, like
Maxwell and Faraday, hold to the pure physics of the field, exalting
the electromagnetic field over electricity and magnetism proper; and
those who, like Lorentz, exalt the substantial electron over the field,
or at least consider the field and the electron realities of equal
importance, but of different categories.


From the standpoint of methodology there is an interesting difference
between the special and the general theories. In the special theory the
space-time structure is explored by physical means. It is the Euclidean
behaviour of our rods, the behaviour of our clocks, and finally the

rectilinear paths and constant invariant velocity of light rays, that
indicate that the structure must be flat or semi-Euclidean, at least
so far as the accuracy of our observations permits us to assert.
Theoretically, the same physical method of exploration might have
been continued in the neighbourhood of large masses of matter. But it
must be remembered that by these methods we could never have explored
regions of space-time in the interior of matter. Furthermore, as can be
gathered from the minuteness of such effects as the bending of a ray of
light passing near the sun, and from the elusiveness of the Einstein
effect, we now know that variations from flatness are most certainly
exceedingly minute. Under the circumstances, it would have been
extremely hazardous to attribute to a non-Euclideanism of space-time
effects which might also have been ascribed to contingent physical
influences.


Furthermore, even in the case of falling bodies, which describe
ellipses or parabolas deviating widely from straight courses covered
with constant speeds, so long as the ordinary Newtonian force of
attraction was deemed responsible for these deviations, no particular
reason could be given for attributing them to a non-Euclideanism of
space-time. It was only after Einstein had become convinced that a
modification in the structure of space-time could not help but exist
around matter that a new mathematical method suggested itself for
determining the structure prior to all physical exploration. We have
seen that this method was furnished mathematically by the general
principle of relativity, according to which all laws of nature, and in
particular the law of gravitation, should be capable of being expressed
by tensor equations.


Now it is most important to understand that although, in the case of
the space-time structure, or metrical field, the method of discovery
differs in the special and general theories, yet the significance of
the structure, once it has been determined, remains exactly the same.
In either event it is the structure which conditions the behaviour of
rods and clocks and directs the courses of light rays and of bodies
falling along geodesics; so that although the general structure was
not discovered by means of direct physical measurements, theoretically
it should have been, had our measurements been susceptible of greater
accuracy. Tests of the relativity theory consist, therefore, in
discovering whether or not ultra-refined measurements with rods,
clocks, light rays and free bodies will reveal the structure as
predetermined by Einstein. We know that the motion of Mercury and
the double bending of a ray of light have confirmed Einstein’s
previsions. But in order to be doubly sure we should also require
measurements with rods and with clocks. With rods, unfortunately,
the verification is quite impossible, owing to the minuteness of the
anticipated deviations from Euclideanism around matter; but with clocks
the verification should be possible by appealing to the vibrations
of incandescent atoms. This was the reason why the detection of the
Einstein shift-effect was held to be of such vital importance. Had this
shift been proved non-existent, the theory would have collapsed. It
might have been possible to save it by assuming that the atom did not

adjust the frequency of its vibrations to the time-curvature of the
structure, or, in other words, did not behave like a perfect clock. But
as every one will recognise, had this avenue of escape been taken, the
entire beauty of the theory would have vanished along with its ability
to enable us to foretell and to foresee. Of what significance would
be this knowledge of the structure around matter, if among other
things it did not result in moulding the time-rate of all processes
of change to its curvature? At any rate, Einstein stated long before
the shift-effect was finally observed on the companion of Sirius that
he would abandon the theory if the shift should prove non-existent.
Fortunately for this beautiful theory, such a course is now obviated.


Further verifications of the structure would relate to explorations
with rods and clocks in the interior of matter. But, as may well be
realised, explorations of this sort are exceedingly difficult and
we have to be satisfied for the present with Einstein’s theoretical
anticipations in this connection.


When we come to the form of the universe, hence to the space-time
structure of the universe as a whole, theoretically again physical
explorations should yield us the structure. For instance, a ray of
light should circle round the universe, and the motions of the stars in
the Milky Way and of the planets in the solar system should be affected
by the universal curvature. But once more, in view of the difficulty
of direct physical exploration, mathematical methods were resorted to;
and, as we have seen, Einstein appealed to the structural tensor law
of curvature, which would be compatible with the stable appearance
of the star constellations. He thus obtained the cylindrical universe.
If this law is adopted, space-time is never perfectly flat; the flat
continuum of the special theory becomes an ideal limiting case.


In the theory of relativity the concept of matter also undergoes
important modifications. In classical science, matter was distinguished
by its attribute of mass and by its ability to create a gravitational
field. It is true that the electromagnetic field was also known to
possess momentum and hence inertia (as exemplified by the pressure
of light), so that even in classical science the distinction between
matter and ether was losing its definiteness. Owing, however, to the
fundamental difference that was thought to exist between inertial mass,
as representative of inertia, and gravitational mass, as representative
of attraction, the electromagnetic field was never suspected of
developing a gravitational field. Hence the difference between matter
and energy remained fairly clear. Einstein’s theory, by identifying
mass and energy and by showing that all forms of energy are capable
of producing a gravitational field, tends to render the distinction
less legitimate. A further consequence of the theory has been to show
that conservation of matter cannot hold. The result is that mass, as a
substance, loses its meaning.


Passing to the laws of motion, we remember that there is but one law:
All free bodies (when reduced to point-masses) follow time-geodesics
in space-time regardless of whether space-time be flat, as it is (at

least approximately) in interstellar space, or whether it be curved
by the presence of matter. If space-time is flat, the geodesics are
straight and the bodies describe straight courses with constant speeds
as referred to a Galilean frame. Thus Newton’s law of inertia is seen
to express the flatness of space-time. When space-time, and hence its
geodesics, are curved by the presence of matter, the courses of free
bodies appear to be curved, or else their motion to be accelerated.
But whereas, under those conditions, the law of inertia was at fault
in classical science, and an additional gravitational influence had to
be introduced, in Einstein’s theory the general law of geodesic motion
still holds good. Inasmuch as the structure of space-time determines
the laws of our geometry, the beatings of natural clocks (atoms) and
the motion of free bodies, we see that the theory has brought about a
fusion between geometry and physics.


We may also remember that the existence of space-time has solved the
old enigma of the dual nature of the structure of space in mechanics,
seemingly relative for velocity and absolute for acceleration (see
Chapter XIX).


Force is another important concept on which the theory of relativity
has shed new light; though to avoid any misunderstanding we may state
that by force we refer not to muscular pulls, but to the forces of
gravitation, of inertia and of the electromagnetic field. Let us recall
how the new ideas were obtained. We saw that the fundamental continuum
of the world was space-time, and that observers, according to their
relative motions, carved it up into space and time in various ways.
Now we know that even in flat space-time, far from matter, forces of
inertia spring into existence when we place ourselves in a rotating
frame or, more generally, in any accelerated frame; translated into
terms of space-time, this means when we split up space-time into a
curved space and a curved time.


It follows that in an empty region of flat space-time there is no
sense in wondering whether forces are present or not. Forces can
come into existence only after the splitting up of space-time into
separate space and time has been accomplished. Then, according to
the method selected forces will appear to be distributed this way or
that, or even may not arise at all; the last case would correspond to
the choice of a Cartesian mesh-system. But this splitting-up process
which may give rise to forces is obviously artificial and corresponds
to nothing intrinsic in nature, any more than the splitting up of
three-dimensional space into arbitrary directions, which we name above,
below, left and right, reveals any intrinsic property of space. So
we see that forces are introduced by the observer and that, in the
same region of space-time, they may be present for one man and absent
for another. We cannot, therefore, attribute to them any absolute
existence, one transcending the observer.


Now the forces we have been discussing were those which might arise
in flat space-time far from matter. They were the forces of inertia o
classical science, and were often referred to as fictitious precisely
because their existence depended on our conditions of observation.

A distinction was then drawn between these fictitious forces and
the force of gravitation, which was assumed to exist around matter
regardless of the observer’s frame of reference. But with the
relativity theory we see that a discrimination of this sort is no
longer permissible. Around matter, space-time manifests curvature, but,
just as in the case of flat space-time, it is possible for an observer
to carve it up into space and time in such a way that no force will
be manifest, at least in his vicinity. This method of partitioning
corresponds, as we know, to that of the observer falling freely, hence
following a geodesic in space-time. If, then, forces of inertia must
be regarded as fictitious, so must forces of gravitation. And it is
much the same with electromagnetic forces. Here also, the intensity and
nature of the field (whether electric, magnetic, or electromagnetic)
depends in large part on the circumstances of observation.


The purport of all these discussions is that if we wish to form an
impersonal picture of the universe, there is no place for forces of
gravitation or of inertia, since these forces are introduced by the
observer. Likewise, in the description of a monument there is no
place for shadow, since shadow is introduced only by the sun, and,
so far as the monument itself is concerned, the sun and light in
general do not constitute essential conditions of its existence. The
entire philosophy of the relativity theory is to separate entities
which have no significance except as expressing relationships to the
frame of the observer, from entities which can be conceived of as
enduring regardless of the observer’s presence. We recognise these
absolute entities as those which remain unaltered for all observers.
Mathematically, they are expressed by invariants and tensors in
space-time. Action and the Einsteinian interval are representative of
invariants, while the majority of types of space-time curvature, the
electromagnetic-field tensors, and the matter tensor are representative
of tensors. It is because gravitational force and potential energy
are not represented by tensors that we can attribute no absolute
significance to them; and as a result, potential energy being discarded
as a relative, conservation of energy falls to the ground.


The attitude towards gravitational force which we have outlined is
championed more especially by Eddington. Weyl, however, views the
problem differently. He argues that the space-time metrical field is
related to matter much as the electric field is related to electricity.
Just as an electric force is a real force generated by the electric
field on a charged body, so now inertial and gravitational forces must
be regarded in the same light, arising as they do from the action of
the metrical or guiding field on matter. But it should be understood
that Weyl’s conception of force is not quite the same as the one
commonly accepted. For instance, according to the views of classical
science, a body moving through interstellar space in conformity with
the law of inertia would be submitted to no forces. It moved as it did
in virtue of the principle of inertia, and no question was raised as
to why it followed a straight line rather than a curve. Although it
was apparent even in classical science that there must be a guiding

influence at work emanating from space itself, very little was said of
its nature.


It is this “guiding field” whose importance is stressed by Weyl. It
is this dynamical property of space or space-time that the theory of
relativity has brought into full light. The guiding field, or metrical
field, is represented, as we know by the -distribution, and
according to Einstein, its origin must in all probability be sought in
the presence of the universal masses. To quote Weyl:


“Galilei’s principle of inertia shows that there is a sort of ‘forcible
guidance’ which compels a body that is projected with a definite
velocity to move in a definite way which can be altered only by
external forces. This ‘guiding field,’ which is physically real, was
called ‘affine relationship’ above. When a body is diverted by external
forces the guidance by forces such as centrifugal reaction asserts
itself.”


These considerations pertaining to tensors lead us in turn to an
understanding of the significance of the laws of nature. The special
theory, by demonstrating the identity of the invariant velocity
of the space-time world with Maxwell’s constant , had proved
that the laws of nature remained covariant to the Lorentz-Einstein
transformations. This was but another way of saying that they expressed
relationships between vectors and tensors in flat space-time, at least
so far as Galilean observers were concerned. The general theory extends
this discovery by assuming it to hold for all observers regardless of
their frame of reference and regardless of whether space-time be flat
or curved. We thus obtain the general principle of relativity, or of
covariance, which expresses the conditions which all laws of nature
must satisfy. Those which do not pass this acid test can no longer be
regarded as true laws.


We can also approach the problem of the laws of nature in a deductive
way by starting from space-time. As soon as we recognise the existence
of an absolute universe underlying our spatial and temporal world of
immediate perception, and as soon as we realise that variations in
our motion correspond to mere differences in our methods of splitting
up into space and time the space-time continuum, it becomes evident
that all particularities of structure of the absolute universe will
subsist regardless of our choice of mesh-system, and hence regardless
of our motion. These absolute space-time relations correspond to the
laws of nature, which transcend the motion of the observer. From this
it follows that the existence of the absolute universe, in which our
physical entities are represented by vectors and tensors, and the
relativity of all motion so far as the expression of the laws of nature
is concerned, are but alternative aspects of one same condition; so
that, as we have had occasion to state, the theory of relativity might
also be termed the “quest of the absolute.”


And here a rather curious point about Einstein’s theory must be
mentioned. Classical science seemed to have established almost beyond
the shadow of a doubt that the description of phenomena in terms of
the inertial frame of Copernicus had come to stay; since, when we
endeavoured to express phenomena in terms of rotating frames, we
were compelled to complicate the form of our laws by introducing

centrifugal and Coriolis fields of force. But this remained true
only so long as we reasoned in terms of separate space and time.
With space-time the laws of nature assume invariant forms, so that
the mathematical relationships are no longer modified when we pass
from the inertial to a rotating frame. It is not that centrifugal and
Coriolis forces fail to manifest themselves when we pass from Galilean
to rotating frames, but that they no longer have to be introduced as
foreign adjuncts, for they are already contained in a latent form in
the mathematical expression of the laws. Then the mathematical rules
of transformation which correspond to the passage from one frame to
another, say from a Galilean to a rotating frame, cause these forces to
pass automatically from a latent to an active form.


The heuristic value of this new aspect of the laws of nature is, of
course, considerable. In classical science, laws were always tensor
equations in separate space and time; but the relativity theory, by
compelling us to substitute space-time for space, narrows down our
choice of laws in a remarkable manner. Thus, in classical science,
the law of gravitation might have been practically anything; it might
have been an inverse-cube law, for instance; only the observation of
planetary motions could decide between Newton’s law and any other. But
with the space-time criterion, a number of conceivable laws, including
Newton’s law of the inverse square and those of classical mechanics,
are discarded as impossible ab initio.


Here, however, it is necessary to obtain a proper understanding of the
limitations which the principle of covariance, or general principle of
relativity, imposes upon the laws of nature. The mere fact that all
the laws of nature should be expressible in space-time-tensor form is
not, of itself, sufficient to determine them unambiguously.[163] By
introducing a sufficient number of arbitrary tensors into the laws of
gravitation, tensors whose existence we would postulate ad hoc,
we might conceivably vary the law ad infinitum while retaining
its properties of covariance. Furthermore, even without introducing
foreign tensors, the principle of covariance does not restrict the law
of gravitation to that simplest form selected by Einstein (
for the infinite universe, or with the additional  term
for the finite universe). We have mentioned on various occasions that
more complicated laws were also possible provided we were willing to
consider those involving the derivatives of the potentials to an order
higher than the second.


Nevertheless, in spite of these various possibilities, the principle of
covariance does allow us to narrow down our choice of permissible laws;
it therefore retains considerable heuristic value. And it was thanks to
this principle that Einstein, as we remember, was able to formulate the
simplest possible law of gravitation even before awaiting the verdict
of experiment and precise observation.


We may also note that the general principle of relativity does not
signify that all observers are on the same footing. The irrelevance of

the observer holds only in so far as the mathematical expression of the
laws of nature is concerned; and it would not be true to suppose that
a rotating observer could ever beguile himself into believing that he
was at rest in a Galilean frame, or that a man tossed about in a ship’s
cabin would assume that the sea was perfectly calm.


In short, we see that the general principle of relativity possesses
essentially a mathematical and formal significance; the absoluteness of
rotation remains, as before, an empirical fact which we cannot conjure
away. It is only when we accept the hypothesis of the cylindrical
universe, permitted but not obligated by the general principle, that
the relativity of all motion in the Machian sense may be possible.


In this book we have attempted to enumerate the most salient features
of Einstein’s work. There are, of course, a number of aspects which it
has been impossible to mention, owing to the highly technical arguments
that they would involve. Nevertheless, from what little has been said,
certain general conclusions appear to be legitimate.


The theory of relativity has taught us that, strangely enough, there is
nothing in the world of physics to justify our natural belief in the
separateness of space and time. It is this discovery, entailing that
of the four-dimensional world of space-time, that constitutes the most
important contribution of the theory to our knowledge of the universe.
What gives added significance to the four-dimensional world is the fact
that those entities with which physicists deal are found to be vectors
and tensors in its substance, and not in that of some other world.
This, in itself, gives physical reality to space-time, and removes from
it all trace of fictitiousness.


In addition to the existence of space-time and its invariant intervals,
the really novel views which the theory forces upon us consist in the
relativity of such primary concepts as length, duration, simultaneity,
mass, force, etc., to which temperature should also be added. We also
obtain new views on causal connections, and a better understanding
of the principle of action and of the principles of conservation.
Matter becomes fused with energy and disappears as a substance, and
conservation is not rigorous. Furthermore, matter possibly creates
space-time, and all motion may be relative. As for mass, it may be of
an entirely relational nature, just like weight.


If we confine ourselves to the better-established philosophical aspects
of the theory, we may say that it proves that nature is ruled by
mathematical laws, at least to a first approximation; but this fact
was already known to scientists many years ago, following Newton’s
discoveries in celestial mechanics. So far as the unity of nature is
concerned (a belief which was indissolubly connected with the very
existence of science), the theory merely confirms the scientific
attitude by revealing a degree of unity of sublime simplicity and
beauty. When it comes to deciding whether nature must be viewed in
an idealistic or a realistic sense, relativity affords little new
information; and, as before, those who wish to adopt a realistic
attitude towards the objective world of science are at liberty to do

so, though, as we have mentioned, there are a number of reasons which
render this philosophy most unsatisfactory. At any rate, the sole
difference between relativity and classical science, in their bearing
on realism and idealism, consists in the fact that the objective world
of science is now one of space-time, no longer one of separate space
and time.


The theory is undoubtedly opposed to the view that we can speculate
to any advantage on things which are beyond the control of experiment
and observation; so the theory is distinctly anti-metaphysical in this
respect. But this again brings no additional information to scientists;
for the anti-metaphysical attitude was already that of science prior to
Einstein’s discoveries, and was expressed in Planck’s statement: “What
can be measured is what exists.”


For similar reasons the theory brings home to us with increased force
a truth already recognised by science, namely, that space, time and
simultaneity are concepts which can be studied only by empirical
methods, by the use of rods, clocks and physical processes, and, more
generally, by investigating the simplest co-ordinations of physical
laws. In particular, the problems of determining whether a simultaneity
of external events has any meaning, and, if so, whether it is a
relative or an absolute concept, or, again, whether the universe is
finite or infinite, are questions which the theoretical physicist
alone is in a position to discuss—and then only after he has been
informed of the results of ultra-precise observation. A priori
speculations are worthless.


Relativity has also brought about the fusion of two realms of knowledge
which had hitherto been developed independently of each other; we refer
to geometry and physics. This fusion is illustrated by the fundamental
rôle that is played by the geometrical -quantities in the
laws of mechanics, in that of gravitation, and in many other physical
phenomena. As Weyl tells us, this synthesis may be indicated by the
scheme



Although not much more can be said at the present time, one may realise
that even this fragmentary accretion to our knowledge of nature is of
an importance which it would be difficult to overestimate.
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APPENDIX I

THE SPACE AND TIME GRAPHS





THE theory of relativity appeals to what is known as the space-time
graphical representation of Minkowski, but aside from certain
peculiarities which the relativity theory entails, the general method
of graphical representation in space and in time was known to classical
science. Indeed, the graph traced by a thermometer needle is an
illustration of this method. In it we have a graphic description of the
variations in height of the mercury as time passes by.


The essence of these space and time graphs is to select a frame of
reference, then to represent the successive positions of a body
moving through this frame, in terms of its successive space and time
co-ordinates. As a simple case let us consider a railroad embankment
which will serve as our frame of reference. We shall restrict ourselves
to considering the graphical space and time representation of events
occurring on the surface of the embankment; not above it or beneath
it. In other words, the space we shall be dealing with will for all
practical purposes be reduced to one line, hence to one dimension. We
then select a fixed point (any one at all) on the embankment and call
it our origin . Thanks to this choice of an origin, the
spatial position of any event occurring on the embankment may
be specified by a number. Thus the position of an event occurring two
units of distance to the right or to the left of the origin will be
given by the number +2 or -2, and an event occurring at the origin
itself will have zero for its number.


In order to represent these results on a sheet of paper, we shall draw
a straight line, say a horizontal, called a space axis; this
will represent the embankment. On this space axis we mark a point 
which will represent our origin on the embankment. Then, in order to
represent on our paper the positions of events occurring at, say,
one mile, two miles, three miles, etc., to the right of the origin
on the embankment, we mark off points along our space axis at one,
two and three units of distance from the point . Obviously, we
cannot manipulate a sheet of paper miles in length; hence we agree to
represent a distance of one mile along the embankment by a length of
one foot or one inch or one centimetre along the space axis. It matters
not what unit we select so long as, once specified, it is maintained
consistently throughout. As the reader can understand, the procedure is
exactly the same as that followed in the plan of a city.


Thus far, our graph reduces to a space graph of the points situated
along the embankment. But we have now to introduce time. Two events

may happen at the same point of the embankment, but at widely different
times, and our graph in its present form offers us no means of
differentiating graphically between the occurrence of the two events.
Accordingly, we shall agree to represent such differences in time
on our sheet of paper by placing our representative points of the
events at varying heights above or below the space axis. If, then, we
assume that all points on our space axis represent the space and time
positions of events occurring on the embankment at a time zero or at
noon, it will follow that all points above or below the space axis will
represent events occurring on the embankment either after or before the
time zero. This is equivalent to considering a vertical axis called a
time axis, along which durations, hence instants, of time will
be measured. Of course, just as in the case of distances, we must agree
on some unit of length in our graph, in order to represent one second
in time. We may choose this unit as we please; we may, for example,
represent one second by one foot, or by one inch, along the vertical
. However, for reasons which will become apparent in the theory
of relativity, it is advantageous, though by no means imperative, to
select the same unit of length in our graph in order to represent both
one second in time and 186,000 miles in distance.
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Suppose, for instance, we agree to represent these magnitudes by a
length of one inch on our graph; then a point such as , one inch
from  and one inch from , will represent the space and time
position of an event occurring on the embankment 186,000 miles to the
right of the origin  and one second after the time zero
(Fig. IX).


We see, then, that in our space and time graph, a point traced on
our sheet of paper represents not merely a position in space along
the embankment, but also an instant in time. For this reason such
graph-points are known as point-events. Thus a point-event
constitutes the graphical representation of an instantaneous event
occurring anywhere and at any time along the embankment. The position
of the point-event with respect to our space and time axes will then
define without ambiguity the spatio-temporal position of the physical
event with respect to the embankment and to the time zero, provided the
units of measurement in the graph have been specified.


And now let us consider the representation of events that last and
are not merely instantaneous. Here let us note that the existence
of a body, say a stone on the embankment, constitutes an event,

since the position of the stone can be defined in space and in time.
But the stone endures: its existence is not merely momentary; hence
its permanency is given by a continuous succession of point-events
forming a continuous line. This line giving the successive positions
of the stone both in space and in time is called a world-line. For
the stone to possess a world-line, it is not necessary that it should
be in motion along the embankment; it may just as well remain at
rest. The sole difference will be that if the stone is at rest, its
world-line will be a vertical, whereas if it is in motion along the
embankment, its world-line will be slanting, since in this case the
spatial position of the stone will vary as time passes by. If the
speed of the stone along the embankment is constant, its world-line
will be straight, whereas if the motion is uneven or accelerated,
the world-line will be more or less curved. Assuming the motion to
be uniform, the greater the speed of the body, the more will its
world-line slant away from the vertical and tend to become horizontal.
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Of course, as can easily be understood, the slants of the world-lines
in the graph (aside from exceptional ones such as that of a body at
rest) will be influenced by our choice of units. With the particular
units we have chosen, the world-lines of bodies moving along the
embankment at a speed of 186,000 miles a second will possess a slant
of 45° with respect to both space and time axes. In other words,
the world-lines of such bodies, hence also of rays of light, will
be inclined equally to our space and time axes. Thus any straight
line inclined in this way, either to the right or to the left (Fig. X),
will represent the world-line of a body moving with respect to
the embankment with the speed of light, either to the right or to
the left. The reason we selected our units of space and time as we
did, was precisely in order to confer this symmetrical position of
the world-lines of light, on account of the important rôle which the
velocity of light plays in the theory of relativity. We may consider
still another case, that of a body moving with infinite speed along the
embankment (assuming, of course, that the existence of such a motion
is physically possible). The body will obviously be everywhere along
the embankment at the same instant of time; hence its world-line will
be a horizontal. Thus the space axis is itself the world-line of a
body moving along the embankment with infinite speed at the instant

zero. Conversely, the time axis is the world-line of a body remaining
motionless at the origin. Again, we may say that the space axis
represents the totality of events occurring on the embankment at the
instant zero, hence simultaneous with one another and with the instant
zero. Likewise, any horizontal represents the totality of events
occurring on the embankment at some given time, the height of this
horizontal above or below the space axis defining the time.


Thus far, we have been considering happenings with reference to an
observer at rest on the embankment, and everything we have said
applies in an identical way to classical science and to relativity.
It will only be when observers in relative motion are considered that
differences in our graphical representation will arise.
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Let us first consider the case of classical science. And here it is
important to realise that our graph is nothing but a description: it
merely describes graphically the relationships of duration,
distance and motion which we wish to represent. Hence it is for us to
discover through the medium of experiment what these relationships
are going to be. Only after this preliminary work has been done can
we represent these relationships graphically. Now classical science,
both as the result of crude experience and, later, of more refined
measurements, held to the view that duration and distance were
absolutes, in that their magnitudes would never be modified by our
circumstances of motion. Accordingly, regardless of whether we were at
rest on the embankment or in motion, the duration separating two events
or the distance between two fixed points on the embankment was assumed
to remain the same. Interpreted graphically, this meant that the space
and time axes would never have to be changed in our graph, regardless
of the motion of the embankment observer whose measurements we were
seeking to represent.


Consider two point-events, such as  and  (Fig. XI).
As referred to the embankment, these two point-events represent two
instantaneous events occurring on the embankment at a definite distance
apart in space and in time. Suppose, now an observer leaves the
origin at a time zero and moves along the embankment to the right.
His world-line will be given by some such line as . Since,

regardless of his motion, these two events  and  are to
manifest exactly the same time separation as before, we must assume
that the moving observer must adhere to measurements computed along the
same time axis .
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Next consider two stones  and  lying on the embankment. Their
world-lines will be  and , respectively (Fig. XII),
and their distance apart at any time  will be given by the length
 of the horizontal situated at the height  above  (the
world-lines being vertical, this distance can of course never vary with
time). Now, since the distance of the two stones must remain the same
for the moving observer, he also must measure this distance along
a horizontal, hence along the space axis . In other words, the
space axis and the time axis are unique, or absolute.


It follows, of course, that since the space and time axes remain
unchanged regardless of our motion along the embankment, all
horizontals will represent events occurring simultaneously not only for
an observer at rest on the embankment, but for all observers. We
thus get the absolute nature of simultaneity.


Then again, since all observers measure time along the same
direction, they will all recognise one same absolute distinction
between past and future, regardless of their position and motion along
the embankment. Thus, point-events below  (Fig. XIII),
will represent events that occurred on the embankment prior
to zero hour; those point-events lying above the line 
will represent events that occurred after zero hour,
while the point-events lying on  will give the events that
occurred at zero hour.
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As a final illustration (Fig. XIV), let us consider the case of
an observer rushing after a light wave, both observer and light
disturbance having left the origin  at the time zero. The
world-line of the light ray will be represented by , and that
of the observer by , less slanting than , at least if we
consider the case of an observer moving along the embankment with
a speed inferior to that of light. At a definite instant, say at
one second after zero hour, the point-event defining the observer’s
position will be , that is to say, a point on his world-line at
a height of one inch above . The point-event of the light wave
at the same instant will be , also at one inch above , and

the point-event of the observer who remained at  will be ,
the line  being, of course, horizontal. Hence the distance of
the light wave from the moving observer, at that precise; instant, will
be , which is less than , its distance from the stationary
observer. It follows that the light ray is moving with decreased speed
with respect to the moving observer. We might have foreseen this;
directly since the world-line of light  is no longer equally
inclined to; the world-line  of the moving observer (hence to the
successive positions of his body) and to his space line .


We have now mentioned the chief characteristics of the space and time:
graph of classical science, and we should find that it reduced to a
mere geometric representation of the classical Galilean space and time
transformations of classical science, namely,

Thus all the problems we have discussed could be solved either
geometrically or analytically.


It is a matter of common knowledge that this space and time graph
we have discussed was rarely mentioned in classical science; and
such appellations as point-events and world-lines were unknown prior
to Minkowski’s discoveries. It may seem strange, therefore, that
the theory of relativity should have made so extensive a use of a
graphical method of representation. The reason is that in classical
science the graph reduced to a mere geometrical superposition of
space and time which was convenient in certain cases, but which had
no profound significance. By reason of the separateness of space and
time exemplified by the absoluteness of the space and time axes, there
existed no amalgamation, no unity between space and time. They did not
form one four-dimensional continuum of events in any deep sense.
Let us endeavour to understand the meaning of these statements.


In classical science, space was regarded as a three-dimensional
continuum of points, because it was possible to localise the position
of a point in our frame by referring to its three co-ordinates.
Suppose, then, that we wished to measure the distance between two
points in space. All we should have to do would be to stretch a tape

between the two points, and the length of the tape would define the
distance between them.


And now let us consider the space and time of classical science.
Here, again, we might claim that space and time constituted a
four-dimensional continuum of events; for we could always localise
the occurrence of an instantaneous event by measuring three spatial
co-ordinates in our frame of reference, and by computing the instant
at which the event occurred. But suppose we wished to measure the
distance between two events occurring, say, one in New York on Monday,
and the other in Washington on Tuesday. Obviously the problem would be
meaningless. We might say that the distance in space between the two
events was so many miles, and their distance in time so many hours;
but we should be unable to measure the distance in space-time itself
directly, whereas, with the aid of the tape, in our previous example,
we were able to measure immediately the spatial distance between the
two points.


We see, then, that whereas both classical space and classical
space-cum-time constituted a three-dimensional and a
four-dimensional continuum, respectively, yet there was a vast
difference between these two continua. The first one was a
metrical continuum, whereas classical space-cum-time had no
four-dimensional metrics.


We may present these arguments in a slightly different way, as follows:
We say that a necessary condition for a continuum of points to form a
metrical continuum possessing a definite geometry is that a definite
unambiguous expression, invariant in magnitude, be found for the
distance between any two points. Now this condition is certainly not
realised in our classical space and time graph.
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Consider, as before, the embankment, an observer at rest at 
(whose world-line is then ), an observer in motion (whose
world-line is ), and finally two point-events  and 
(Fig. XV). We wish to find for the distance between the point-events
 and  some mathematical expression which will remain the
same for all observers regardless of their motion. Now it is obvious
that whereas the time distance between  and , given by the

difference in height of these two point-events above , remains
the same for all observers, this is no longer true of their space
distance. Thus, for the observer at rest, the space distance of 
and  is , whereas, for the moving observer, it is
, i.e., a different magnitude. Owing, then, to the
fixedness of the time separation and the variableness of the spatial
one, it becomes impossible to construct an invariant mathematical
relation capable of expressing a distance. This is what is meant when
we say that the space and time of classical science could not be
regarded as a four-dimensional metrical continuum of events. Space
and time, when considered jointly, reduced to the juxtaposition of a
continuum of points in space and of a continuum of instants in time;
for space alone and time alone constituted separate metrical continua.


To Minkowski belongs the honour of having established the fusion
between the two. Now and only now can we speak of the space-time
distance, or Einsteinian interval, between the two events—say,
one occurring in New York on Monday, and the other in Washington
on Tuesday. Now and only now, thanks to ultra-precise experiment
and to the genius of Einstein and Minkowski, is there any advantage
in speaking of space-cum-time as a four-dimensional
continuum of events which we call space-time. Prior to these
achievements, the concept of space-time was as artificial as that of
an -dimensional continuum of space, time, pressure, temperature,
colour, etc.


We shall now investigate in what measure the graphical representation
of classical science will have to be modified in order to harmonise
with the empirical facts revealed by ultra-refined experiment. There is
no need to modify our understanding of point-events and world-lines;
these will remain undisturbed.





The bifurcation between the two graphs arises when we consider the
principle of the invariant velocity of light. We saw that if a ray
of light was sent along the embankment to the right, leaving the
origin  at a time zero, its world-line was given by a line 
bisecting the angle  (Fig. XIV). On the other hand, for an
observer travelling to the right and having a world-line , the
light-world-line  would no longer bisect the angle formed by
his own world-line  and the space axis . The physical
significance of this fact was that the velocity of light for the moving
observer would be less than for the embankment observer. Now this
result contradicted the principle of the invariant velocity of light.
If, therefore, we wished to conceive of a graph capable of yielding
results in conformity with the principle, we should have to assume that
for all observers moving along the embankment, the line  would
bisect the angle formed by their respective world-lines and space axes.
It followed that the space axis of the moving observer could no longer
be Ox but a new line , such that  would bisect the angle
. In similar fashion, the observer’s time would have to be
measured along his own world-line , now called 
(Fig. XVI).
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Hence we conclude that the space and time directions  and
 are no longer absolute; every observer will have to measure
time along his world-line and space along a line orthogonal to this
world-line.[164] It follows that there exist an indefinite number of
time directions given by the world-lines of the various observers, and
a correspondingly indefinite number of space directions.


A first consequence of this novelty is that simultaneity can no longer
be absolute. For whereas, in the classical graph, all events on the
same horizontal or space direction were simultaneous for all observers,
we now realise that with this variation in the space directions, or
lines of simultaneous occurrence, the absoluteness of simultaneity
must vanish. For instance, all the point-events lying on  which are
therefore simultaneous with the time zero for the moving observer,
appear to be unfolding themselves in succession for the stationary
observer.


Also it follows that as, according to relativity, no observer can
travel faster than light, all the permissible world-lines of the
observers (passing through  at a time zero) will be contained
between the two light-world-lines  and 
(Fig. XVII).
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Any line passing through and not contained between these two
 
light-lines can never be a world-line, hence can never be a time
direction; it will be a space direction of some possible observer. We
may extend these results to two space dimensions. In this case our
world-lines of light rays passing through  at the time zero form
a cone called the light-cone with its apex at . Straight
lines passing through  and contained within the light-cone are
possible world-lines, or time directions; those passing through 
but lying outside the cone constitute possible space directions for
appropriate observers, or again possible loci of simultaneous events.
Of course each point-event taken as point of departure gives rise to a
light-cone, so that in a general way we may say that all lines parallel
to lines contained within any given light-cone and passing through its
summit constitute possible world-lines or time directions. It is thus
apparent that any light-cone defines limiting directions in space-time.
All lines whose slant is less than that of the generators of the cone
are possible time directions, while all those whose slant is greater
are possible space directions. We thus realise the importance of the
light-cone in defining the particularities of structure of space-time.
In the case of four-dimensional space-time the cone becomes a
three-dimensional surface, which it is not easy to visualise, but this,
of course, need not trouble us when we reason analytically.


And here a further point must be mentioned. Since no disturbance can
reach us with a speed greater than that of light, the world-line of
the disturbance can never lie outside the light-cone at whose apex we
momentarily stand. In other words, the events of which we may become
conscious (otherwise than visually) at a given instant will always be
represented by point-events situated within the cone below us, in the
direction of the past. Events which we perceive visually at an instant
will always lie on the cone’s surface.
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Thus, if a star suddenly becomes visible in the sky, the point-event of
that star when it burst into prominence is situated on the surface of
our instantaneous light-cone somewhere in the past
(Fig. XVIII).





In a similar way, the only events we can affect must lie in or on the
upper part of the cone. An event which occurs outside the cone can
never affect us or be affected by us now. It may, however, affect us
ultimately, when, as a result of our light-cone’s rising with us along
our world-line, it finally touches the cone’s surface. The event will
then become visible, provided it be luminous. Once in the interior of
the cone, the event may be perceived in other ways, by sound, etc.,
but no longer as a result of light transmission in vacuo.
We may also state that when two point-events lie on the same time
direction, their order of succession will remain the same for all
observers; hence, in this case, it will be possible to conceive of a
causal relation as existing between them. But if the two events lie
on the same space direction, they may be simultaneous, or subsequent
and antecedent, or antecedent and subsequent, according to our motion.
Events represented by such point-events can never be considered as
manifesting any causal relationship one with the other. We see, then,
that inasmuch as it is the light-cone which differentiates space from
time directions, and events which may be causally connected from those
which may not, the irreversibility of time and the problem of causality
are linked with the existence of the light-cone.


In a general way, we may say that whereas the classical graph showed an
absolute past, present and future for all observers, in the new graph
this statement must be modified as follows: If we consider all the
observers situated at a definite point at some definite time, that is
to say, all observers whose spatio-temporal position is given by the
same common point-event, then, regardless of their relative motions,
the same instantaneous light-cone holds for all. The apex of the cone
is given by the common point-event, and all point-events situated
within or on the surface of the cone stand in the instantaneous past
or future for all the observers. There exist, therefore, an absolute
past and an absolute future even in the theory of relativity. On the
other hand, all point-events situated outside the cone will be neither
past nor future in any absolute sense, for they may be in the past, the
present or the future, according to the motion of the observer.


We may also mention that, thanks to the indefiniteness of the space and
time directions, our graph is now dealing with a veritable continuum,
the space-time continuum, which cannot be separated in any
unique way into space and time.


We should also find that the space-time distance between any two
point-events,  and , for which no absolute expression existed
in the classical graph, would now assume an absolute value, the same
for all observers. This distance is the Einsteinian interval
discovered by Minkowski, which permits us to associate a definite
geometry with the four-dimensional continuum of events. The geometry is
not Euclidean, but semi-Euclidean. When account is taken on Minkowski’s
discoveries, it is seen that a space-time distance, when taken along a
line which can be traced inside a light-cone, hence on a world line,
is an imaginary magnitude; whereas, when taken along a line lying
outside any light-cone, the distance becomes real. However, no great

importance need be attributed to time being imaginary and space being
real; for we could just as well have conceived of space as imaginary
and time as real. All that it is important to note is that there exists
a mathematical difference between the various directions in space-time,
those which lie inside the cone and are time-like, and those which
lie without and are space-like. The former alone can be followed by
physical disturbances and material bodies.


It may be instructive to look into this strange geometry of space-time
a little more closely. We shall restrict ourselves to two dimensions,
that is to say, to one space dimension and to the time dimension. In
other words, our space-time graph will refer to the measurements of
observers moving along the embankment.


Suppose, then, that a number of observers, moving with various uniform
speeds to the right or to the left, pass the observer on the embankment
at , at the time zero. These observers carry ordinary clocks in
their hands, and these all mark zero hour as the observers pass 
simultaneously. The question we wish to decide is as follows:


“Where will the point-events of the various observers be situated on
the graph when their respective clocks mark one second past zero hour?”
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We know that the point-event of the observer, who does not move from
the point  on the embankment, will be situated on the vertical
, at a distance  = one second or one centimetre on our
graph (Fig. XIX). Calculation then shows that the point-events of all
the other observers will be situated on the equilateral hyperbola
which passes through  and which has for asymptotes the two
light-world-lines  and . For instance, the observer
whose world-line is  will find himself at the point  when
his clock marks zero hour plus one second, that is to say, when he
has travelled along the embankment away from  during a time of
one second as measured by his clock. In classical science, of
course, the various observers’ point-events would have been situated
at the intersection of their world-lines with the horizontal ,
no longer with the hyperbola . It is not that the relativistic
clocks differ from the classical ones; we are always considering our
ordinary chronometers. The novelty is solely due to the fact that,

thanks to ultra-precise experiment, our understanding of the behaviour
of clocks and rods is more accurate than it used to be.


From all this, we may infer that the space-time distances from 
to any of the points on the hyperbola represent congruent space-time
distances in the space-time geometry. We may also note that, were
space-time Euclidean instead of semi-Euclidean, the locus of points
defined by the hyperbola would be given by a circle with  as its
centre.


And now let us consider the world-line of a light ray leaving  at
a time zero. We see that this world-line ( or ) does not
intersect the hyperbola, or, if we prefer, intersects it at infinity.
It follows that the space-time distances , , etc., are
all equal to , where  is infinitely distant. Hence we must
conclude that since the point  must be infinitely distant for
 to have a finite space-time value, any such space-time distance
as , where  is any point on , must be nil. In other
words, from the standpoint of space-time geometry, the point-events
on the same world-line of light are all at a zero distance apart.
Accordingly, a world-line of light, i.e., any line inclined at
45°, is called a null-line. Lines of this sort were well known
to geometricians long before Einstein’s theory, so we need not suppose
that a null-line is one of the queer conceptions we owe to relativity.
All Minkowski has done has been to give us a physical interpretation of
a null-line. It would be illustrated by the world-line of an observer
moving with the speed of light. For this observer the events of his
life would present no temporal separation; though, of course, another
observer would realise that these various events were separated in time.


Next, let us examine the measurements of spatial lengths. Suppose
that the various observers, when they pass , carry poles which
they hold as lances parallel to the embankment. If these poles are of
equal length when placed side by side at rest, the point-events of
their further extremities, at the instant the observers pass ,
will lie on a hyperbola . In this case  gives the length
of the rod at rest on the embankment. Of course, the positions of the
extremities of the rods at the instant the observers pass  must be
computed according to the simultaneity determinations of the respective
observers. If the rods are 186,000 miles in length,  = one
centimetre, and the two hyperbolas will be geometrically alike. We
may also infer that the space-time distances from  to any of the
points on the second hyperbola are all equal to one another. In fact,
we may repeat for the second hyperbola, or space hyperbola, the same
arguments we made when discussing the time one.


We are now in a position to understand how the FitzGerald contraction
arises. Consider, for instance, a rod, , lying on the embankment.
The world-lines of its two extremities will be  and ,
respectively (Fig. XX). If, now, an observer passes  at time
zero and moves to the right with velocity , his world-line will
be ; but then his space direction will be . For him,

therefore, the length of the rod lying on the embankment is no longer
, as for the embankment observer, but. The graph shows us
that this length  is shorter than the length  of the rod
the observer is carrying with him. And as these two rods, when placed
side by side at rest, are equal we see that as measured by the observer
the rod, on the embankment past which he is moving, will have suffered
a contraction.
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We might, as a final example, consider the trip to the star (Fig. XXI).
If  denotes the world-line of the star, and  the
world-line of the travelling twin, we see that he will have lived a
time  during his trip. His brother remaining on earth will
have  for world-line. Hence, he will have lived a time .
As before, though  appears longer than , it is, in
reality, shorter, as can be understood by referring to Fig. XIX.
Incidentally, we see how the absolute nature of acceleration causes the
traveller’s world-line to bend; and it is this absolute bend in the
world-line which differentiates the life-histories of the two twins
and which is responsible for an absolute, non-reciprocal
difference in their respective aging.


Let us also state that just as was the case with the classical graph
which represented geometrically the classical Galilean transformations,
so now the Minkowski graph merely translates the Lorentz-Einstein
transformations.


And here a matter of some importance must be noted. We remember that
before proceeding to draw our graph, we were compelled to settle on a
co-ordination of units of measurement for space and time. We then chose
the same length on our sheet of paper to represent a duration of one
second and a distance of 186,000 miles. As a result of this choice the
world-lines of light rays became diagonals. But suppose we had selected
other units. Then, obviously, the slant of the world-lines, hence
the angle of the light-cone, would have been modified and the entire
appearance of the graph changed. Inasmuch as our choice of units is

entirely arbitrary, we might be led to believe that the graph could not
depict reality. But this opinion would be unfounded. While it is true
that owing to the arbitrariness of our units, the graph cannot aspire
to represent absolute shape, yet it does express certain definite
relationships which a change of units could not disturb. In fact we
might conceive the graph to be distorted by stretching, but still the
relationships would endure; and relationships are all that science (or,
we might even say, the human mind) can ever aspire to approach.


On the other hand, this question of units allows us to give a graphical
solution of a point which is of great philosophical interest. Here
we are living in a world which, theoretically at least, is vastly
different from the world of separate space and time, and yet it is only
thanks to ultra-refined experiment and to the genius of Einstein and
Minkowski that we have finally realised it to be a four-dimensional
continuum of events. How is it that ordinary perception is so blind to
facts?


In order to understand this point, we must mention that though our
choice of units for co-ordinating space and time measurements is
arbitrary, since there is no rational connection between the magnitude
of a distance in space and that of a duration in time, yet our daily
activities suggest a common standard of comparison. The fact is that
the distances which we ourselves and other material bodies cover in one
second over the earth’s surface are always comprised within certain
narrow limits. This leads us to couple one second and one yard, rather
than one second and 186,000 miles.


If, now, with these more homely units we were to set up Minkowski’s
graph, we should find that it was virtually identical with the
classical one. The world-lines of the light rays would appear to
coincide with the space axis , and it would need a graph
thousands of miles in length to detect their deviations from this
line. A light-cone would cover the entire graph; hence the permissible
space directions lying outside the cone would appear to be limited to
the  axis. To all intents and purposes, there would be but one
permissible space direction entailing the absoluteness of simultaneity
and of time. We see, then, that it is by our immediate needs rather
than by cosmic conditions, or, again, because slow velocities
predominate around us, contrasted with which the velocity of light
appears infinite, that we have been misled into believing in a world of
separate space and time.








APPENDIX II

THE CURVATURES OF SPACE-TIME





IT may be of interest to explain the significance of Einstein’s
gravitational equations more fully. We will restrict our attention
to the equations of the general theory in the case of an infinite
universe. These equations may be written:

Here it must be noticed that  and  are letters for which the
four numbers representing the four dimensions of space-time must be
substituted in pairs. There exist, therefore, a number of gravitational
equations—sixteen in all. When we discard those which are mere
repetitions of the others, hence which yield us no new information, we
find that this number reduces to ten.


Now we have already a general idea of the significance of these
equations. The left-hand side gives us the curvatures of space-time
from point to point as measured in our mesh-system, and the right-hand
side gives us the various aspects of matter, energy and momentum
situated at the same points where the curvature is being calculated.
If we agree to select the nearest possible approach to a Galilean
mesh-system, and for reasons of simplicity agree to treat it as a
Galilean system, we are able to write out the components of the
energy-tensor of matter in this mesh-system, and as a result we obtain:

This gives us all the equations, since the six we have omitted to write
out, namely,


are mere repetitions of



We have thus written out the ten equations. In them,  represents
the density of the matter at the point considered; , ,
, its component velocities at the point considered, and
, , , etc., the strains and stresses
existing in its interior. If we are dealing with non-coherent matter,
we may ignore these strains and stresses.


We see that the curvatures of space-time are connected with the various
conditions of the matter. If we heat it, we increase its energy, its
molecules vibrate faster, and the curvatures of space-time, hence
the field of gravitation, are affected correspondingly. We may also
note that whereas the density of mass of the matter at a point,
namely, , affects the curvature ,
the momentum components of the matter , ,
 affect the curvatures , ,
, and its vis viva components
, ,  affect the curvatures
; ;
. Whereas one type of curvature
is produced by mass, another is produced by momentum, and still another
by energy.


Of course, these mathematical equations merely express relationships;
and it is impossible to deduce from them alone whether it is mass,
momentum and vis viva which produce the respective space-time
curvatures, or whether it is these space-time curvatures which arise
in some mysterious way and are interpreted by our senses as mass,
momentum and vis viva. Eddington, as we know, prefers the second
attitude, whereas the majority of thinkers prefer the first.


It is to be noted that if we adopt Eddington’s views, a velocity (say,
), being equivalent to , appears
as a ratio of two of the space-time curvatures; hence the co-presence
of two special types of space-time curvature would reveal itself to
our consciousness as a velocity. Inasmuch as a velocity implies the
passage of time, it would seem as though this mysterious passage might
be connected in some way with certain of the space-time curvatures.
It would be but a step to assume that our entire perceptual world
might eventually be reduced to these curvatures. We do not insist on
this aspect of the question, first, because we are not certain that
they correspond to Eddington’s views, and, secondly, because the
theory of relativity has, thus far at least, been unable to interpret
electromagnetic phenomena in terms of space-time curvatures.


But there is an interesting idea that Eddington suggests in his book,
“Space, Time and Gravitation.” He argues that we are now in a position
to understand why it is that velocity is always relative, that
is to say, is meaningless otherwise than in relationship to
matter. The fact is that the curvatures of space-time, such as
, or , connote
 and  respectively,

and not simply . The presence of these curvatures connotes,
therefore, matter together with velocity, and no curvature taken by
itself defines bare velocity without matter.


Acceleration, on the other hand, is connected with the metrical
’s of space-time; and these, of course, subsist regardless
of the presence or absence of matter, since they represent aspects of
the structure of absolute space-time itself. We thus understand how
it comes that acceleration manifests itself as absolute. Mach’s views
lead us to ascribe the existence of these ’s of acceleration
not to space-time itself, but to the totality of the matter of the
universe. Under this aspect the -distribution acquires
the likeness of a species of ether conditioned by matter, which in
turn conditions the behaviour of bodies in space and the evolution
of phenomena in time. It should be emphasised, however, that rash
philosophical conclusions on these and kindred subjects should be
avoided. In the present state of our knowledge, even the most competent
of scientists are far from having succeeded in solving all these
arduous problems.








APPENDIX III

THE GRAVITATIONAL EQUATIONS





FROM a purely mathematical point of view, without any regard to
physical applications, we may always select a co-ordinate system, or
mesh-system, in a continuum regardless of whether the continuum be
Euclidean or non-Euclidean. As referred to this co-ordinate system, the
position of every point of the continuum is defined by its co-ordinates
 , ... . There are as many of these as the
continuum has dimensions.


In addition to these co-ordinates of every point, there exist certain
structural tensors (the ’s), their number being
 at every point, where  represents
the dimensionality of the continuum. The values both of the ’s
and the ’s at a point will depend on the co-ordinate system
selected; but the ’s are remarkable in that they depend not
solely on the co-ordinate system, but also on the structure (curved
or flat) of the continuum which they define. Once, then, a particular
co-ordinate system is selected in a continuum whose structure is known
from place to place, the values of the ’s in this co-ordinate
system can be determined at all points of the continuum. We then find
that the square of the distance between two infinitely close points of
co-ordinates  and  (hence whose co-ordinates differ by
), is given by

where  represents summation for all values attributable to
 and . Note that  and  can receive all whole values
from 1 to , where  is the dimensionality of the continuum.


It is a remarkable fact that when, and only when, the continuum
is flat, this expression for  can break up into a sum or
difference of squares. When it breaks up into a sum of squares, the
continuum is called Euclidean; when into sums and differences of
squares, it is called semi-Euclidean, and is said to have positive
and imaginary dimensions; but in all such cases it remains flat.
(Space-time is an illustration of this latter species of continuum.)


And now suppose we wish to discover the equations of geodesics, that is
to say, of the straightest of lines compatible with the structure of
the continuum. We obtain a geodesic between two points  and 
by expressing the fact that the line stretching between  and 
is a maximum or a minimum. Mathematically, this means that by summating
the value of , expressed above, along the line joining the two
points  and , this value must be greater or less than that of
all other lines stretching between these two points. The calculus of
variations enables us to solve the problem. As a result, we obtain the

following equations, in which the co-ordinates (, , ...)
of each and every point of the geodesic, as referred to our co-ordinate
system, are given by

These equations are written for short:

where , ,  must be given all whole values from 1 to
;  being the dimensionality of the continuum.


It follows that, having selected a co-ordinate system, all we have to
do is to determine the values of the ’s in this co-ordinate
system, and then substitute these values in the expression of 
and of the geodesics; and the entire geometry of the continuum is
thereby established.


Thus far we have been reasoning as though the continuum possessed
a structure; but in a purely amorphous continuum no such structure
exists, and the mathematician must postulate it. When, however, we are
dealing with physical space, we find that the laws of dispositions of
material rods, as also the laws of moving bodies (law of inertia),
suggest that space is three-dimensional and Euclidean. This implies
that it is possible to obtain a particular co-ordinate system, called
a Cartesian one, in which the ’s will have constant values
equal to unity. Einstein’s and Minkowski’s great achievement was to
prove that this conception of the world was incompatible with the
verdict of the negative experiments. Instead it appeared necessary to
assume that the fundamental continuum was four-dimensional, possessing
one imaginary dimension, which was none other than time. In this
four-dimensional space-time continuum, experiment proved that 
had the following form when a Galilean frame of reference was resorted
to:

We have reversed the sign of , but this is of no particular
importance. This formula proves that the ’s have the
following values when computed in a Cartesian space-time co-ordinate
system:


all other ’s vanishing. Now, while leaving the time axis
unaltered, we might also have split up space, no longer with parallel
planes, but with concentric spheres and with lines radiating from
their centre. We then obtain a polar co-ordinate system. In this case,
neglecting one of the spatial dimensions for purposes of simplicity,
and calling  the distance from the centre, and  an
angle, we get

so that

all other ’s vanishing. It may be noted that this change
in the value of the ’s is due solely to our change of
co-ordinate system; it is in no wise attributable to any change in the
structure of space-time. This remains flat, as before.


Now we know that in a gravitational field space-time is no longer flat;
it becomes curved, and its law of curvature outside matter is given by
. But  is what is known as a differential
equation in the ’s. By this we mean that it contains in
its expression the differences in the values of the ’s at
neighbouring points. What we wish to discover, however, are the precise
values of the ’s, and not their mere differences in value.
For this purpose the differential equation must be manipulated in a
certain way, or, as mathematicians would say, integrated. Only after
the integration has been accomplished can solutions be obtained. Now
all differential equations have a character in common in that they
yield classes of solutions. In order to single out that particular
solution which answers to the problem we may be considering, it will be
necessary to impose certain conditions upon it. In the present case,
the differential equations of the gravitational field are of the second
order, which means that two separate conditions will have to be imposed.


Schwarzschild succeeded in integrating these equations for the
particular case of the radially symmetrical field of gravitation
produced by a mass-particle. The flatness of space-time at infinity, or,
in other words, the degeneration of  to 
at infinity, yielded a first condition; and the second condition
was obtained by introducing into the solution the numerical value
of the mass  exciting the gravitational field. In this way the
solution became determinate. Schwarzschild then found that for a polar
co-ordinate system the expression of  assumed the following
form:

or, in other words,

all other ’s vanishing. We can see that when , the mass
of the particle, vanishes, or when  becomes infinite, we obtain
the values of flat space-time; this is as it should be.


Now that we are in possession of these values of the ’s, all
we have to do is to introduce them into the equations of the geodesics,
and automatically we shall obtain the equations of free motion of
particles moving in our system of co-ordinates under the influence of

a central mass . It is these equations which yield us the double
bending of light and the motion of the planet Mercury.


We may note that if we neglect to consider the influence due to the
variations in value of  as  increases, that is, if we
assign to  the value of -1, which it had in flat space-time,
we obtain approximately Newton’s law. It is then the deviation of
 from the value -1 which is the distinguishing feature of
Einstein’s law of gravitation. But it is obvious that  was
not adjusted for the mere satisfaction of accounting for Mercury’s
motion, since its value follows mathematically from the integration of
.


We may also add that the gravitational equations  are
not linear. In ordinary language, this means that the resultant
field produced by two masses cannot be obtained by superposing the
two separate fields; additional cross-terms must also be taken into
consideration. In the case of weak fields, however, these cross-terms
may be neglected, so that in practice a superposition of separate
fields is possible. Nevertheless, owing to this non-linearity of the
gravitational equations, the problem of two bodies (when neither of
the masses may be neglected) presents insurmountable mathematical
difficulties. And so it happens that the problem of double stars, so
easy to solve in Newtonian science, has as yet failed to receive a
solution in the case of Einstein’s law of gravitation.


One last point is worth noting. We have seen that there were ten
gravitational equations, and that there were ten ’s whose
values were to be determined. Owing to the fact that there were as
many equations as unknowns, it might be thought that one single set
of values for the ten ’s would be obtained. But inasmuch
as the values of the ’s deduced from  must
necessarily differ as we choose one mesh-system or another, it would
appear as though some definite mesh-system were imposed on us—a fact
incompatible with the arbitrariness of mesh-system demanded by the
general theory of relativity. According to relativity, there should be,
therefore, a fourfold arbitrariness in the values of the ’s
of space-time corresponding to the four arbitrarily chosen meshes of
our space-time mesh-system. Mathematically, this would imply that four
of our gravitational equations should be superfluous, hence linked
to one another by relations of identity. Now we know that four such
identical relations actually exist. Physically, they express the
conservation principles of momentum and energy. We are thus led to
the remarkable conclusion that the relativity of motion entails the
existence of permanent entities in the world. In Eddington’s words:


“The argument is so general that we can even assert that corresponding
to any absolute property of a volume of a world of four
dimensions (in this case, curvature), there must be four
relative properties which are conserved. This might be made the
starting-point of a general inquiry into the necessary qualities of a
permanent perceptual world, i.e., a world whose substance is
conserved.”[165]








APPENDIX IV

SPACE, GRAVITATION AND SPACE-TIME





A NUMBER of philosophers have expressed the view that the special
theory is too paradoxical to be accepted, but that the general theory
meets with their approval. Statements of this sort are indefensible;
they arise from too meagre an understanding of mechanics and geometry.
Nevertheless, it may be of interest to investigate the problem more
fully.


The special theory is but a particular limiting case of the general
theory, one in which space-time remains flat instead of manifesting
curvature. Now it is space-time which is the source of all the
paradoxes of feeling (trip to the star; relativity of simultaneity,
etc.). And since this new continuum is as essential to the general
as to the special theory, we may be quite certain that all the
paradoxes of the special theory will subsist in the generalised case,
aggravated, however, by an additional element of complication produced
by curvature. In short, the rejection of space-time would entail the
downfall of both the general and special theories. In much the same
way, if there were no omelet there might still be eggs, but if there
had been no eggs in the first place there could certainly be no omelet.
Indeed, we may summarise Einstein’s work by saying that in the special
theory space-time was discovered, and that in the general theory its
possibilities were investigated mathematically.


However, we may consider the problem under a different aspect. The
main achievement of the general theory has been to account for
gravitation in a purely geometrical way in terms of the curvatures of
the fundamental continuum (space-time in the present case). But we
may examine whether similar developments might not have been pursued
had we been content to abide by the classical picture of a separate
space and time. Gravitation would then be accounted for in terms of
space-curvature alone, and space-time would be obviated together with
the paradoxes of feeling it entails. However, we shall see that there
are a number of reasons which would render success along these lines
impossible. But it is not by a mere line of philosophical talk that the
situation can be made clear; hence a short digression seems necessary.


When Galileo and Newton initiated their epochal discoveries in
mechanics, they assumed that space was three-dimensional and Euclidean.
But when we state that space is Euclidean, what is it we wish to imply?
We mean that if ideally accurate measurements could be performed,
the numerical results of pure Euclidean geometry would be obtained.
If, therefore, on performing measurements with material rods, slight
discrepancies are noted, we shall assume that owing to contingent

influences of one sort or another, our rods are not true to standard.


Now it is obvious that by proclaiming space to be Euclidean a
priori and then laying the blame on our physical measurements if
our a priori assumption is not borne out in practice, we are
placing ourselves in a position which is impregnable but useless.
We are professing to know everything before we start, and hence are
depriving ourselves of the aid of experiment in our study of nature.


It might therefore appear strange to find Newton, the great empiricist,
following an a priori procedure which he was never weary of
combating in science. But here we must remember that in Newton’s day
Euclidean space was the only type known; hence it was regarded as
axiomatic, not alone by Kant, but, more important still, by the most
competent mathematicians of the seventeenth and eighteenth centuries.
In view of this supposed inevitableness of Euclidean geometry, it was
assumed that if the geometry of space was to convey any meaning at
all, it could not help but be Euclidean. And so the danger of an a
priori attitude towards the geometry of space failed to impress
itself.


But the entire situation changed when non-Euclidean geometry was
discovered. For since it was now established that various types of
spaces could exist, it was impossible to anticipate a priori
which one of these possible types would be realised in nature.
Euclidean geometry was thus deprived of its position of inevitableness.
Henceforth, our sole means of ascertaining the geometry of space was
to appeal to physical measurements; and the geometry of space would be
that of light rays and of material bodies maintained under constant
conditions of temperature and pressure.


It is, however, permissible to question whether such physical
measurements could ever teach us anything about the geometry of space;
it might be claimed that they merely yielded information as to the
behaviour of light rays and material bodies. This was Poincaré’s
attitude. But we have seen that if the aid of physical measurements is
denied us, the geometry of space escapes us completely; and there is
nothing further to argue about. In view of the various types that are
rationally possible, any species we might select would be in the nature
of an arbitrary definition, hence would be purely conventional. It
would be as useless to try and prove that our definition was incorrect
as it would be to state that the system of numbers should be decimal,
or binary, or duodecimal; convenience alone could guide us in
such cases.


But when we analyse what is implied by the word “convenience,” we
see that in the final analysis it is often based on the results of
physical measurements. Thus, were all physical measurements to yield
non-Euclidean results, were all the laws of nature to be expressed more
simply in terms of the same non-Euclidean geometry, it would certainly
be more convenient to attribute a non-Euclidean structure to space. For
the same reason it is more convenient to attribute three dimensions
to space, since this hypothesis permits us to account very simply for
our inability to get out of a closed room without opening the door

or window. The reason the word “convenient” is still adhered to in
this case is because it might still be possible to account for the
observed facts in terms of, say, a four-dimensional space, provided we
were willing to vary our fundamental ordering relation and with it our
understanding of sameness.


We may summarise these statements by saying that “reality” for the
scientist reduces to the simplest co-ordination of experimental facts
and that in view of the various possible types of spaces suggested by
non-Euclidean geometry, physical measurements constitute our only means
of determining which is the simplest, hence which is the real solution.
This explains why Gauss (who as far back as 1804 had mastered in secret
the essentials of non-Euclidean geometry) endeavoured to establish
the geometry of space by means of light-ray triangulations. But in
Newton’s day the fusion of geometry and physics was not contemplated,
since Euclidean geometry was thought to constitute the only possible
type. Furthermore, the greater the care in performing measurements, the
nearer did results approximate to those of pure Euclidean geometry; and
so it appeared reasonable enough to assume that space was Euclidean.


We have deemed it necessary to recall these fundamental notions in
view of their importance in the discussions which are to follow. But
for the present we shall revert to the problem as it stood in the
days of Newton, when non-Euclidean geometry was unknown and space was
assumed to be Euclidean. In particular, we shall examine briefly the
foundations of rational mechanics.


In all problems of motion it is essential to specify the frame of
reference in which the motions of bodies are to be computed since the
velocities and accelerations that are measurable vary with our choice
of this frame. Following Copernicus’ suggestion, scientists defined
the standard frame of reference as one in which the stars appeared to
be fixed, or at least non-rotating. A frame of this sort is termed
inertial or Galilean.


In addition to the choice of a frame, the measurement of a motion
entails measurements of both space and time. The Euclideanism of space
gave significance to the equality of two spatial distances measured in
our Galilean frame. To a high degree of approximation, equal spatial
distances were assumed to be defined by the displacement of the same
material rod maintained under standard conditions. As for measurements
in time, they were assumed to be given by clocks regulated ultimately
by the earth’s rotation.


The operations of measurement being thus defined physically, both
Galileo and Newton considered that on the strength of the empirical
evidence, it was permissible to assert that a free body in motion,
unsolicited by forces, would pursue a straight course with constant
speed. This statement constitutes the law of inertia.
Nevertheless, the empirical methods whence Galileo and Newton had
derived the law of inertia were extremely crude. Not only were
more or less inaccurate physical measurements involved, but, worse
still, perfectly free bodies could never be contemplated, since the

earth’s gravitational effect and frictional influences could never be
eliminated. It follows that the law of inertia could lay claim to no
direct empirical justification.


But, on the other hand, if mechanics were to be developed along
mathematical lines, it was essential that certain rigorous premises
be accepted. Newton could not content himself with the statement that
free bodies pursued more or less straight courses with more or less
constant speeds. Hence the necessity of elevating the law of inertia
to the position of a principle. Thus the principle, though originally
adduced as a generalisation from experience, now assumed the position
of the definition of the motion of a free body. When, therefore,
a body appeared to deviate from the dictates of the principle, it was
agreed that the body could not be free; just as, when rods did not
yield perfectly Euclidean results, it was assumed that they could not
be perfectly rigid (since, in classical science, the Euclideanism of
space had been accepted as a principle).


The principle of inertia having been posited in this way, we see
that it yields us an ideal definition of time, for, by definition, a
perfectly free body describes equal Euclidean distances in rigorously
equal intervals of time. Thanks to the principle of inertia, Newton
thus gave an accurate (though ideal) definition of time.


In addition to this first principle, it was necessary to consider two
others, also obtained as generalisations from experience; namely, the
principle of force and acceleration, and the principle of action and
reaction. These three basic principles constitute the foundations of
rational mechanics.


Henceforth mechanics, originally an empirical science, becomes
rationalised and is placed on a mathematical basis. It can now be
developed without further appeal to experience by purely mathematical
methods.[166] For this reason it is called rational mechanics.
If, however, we consider the mechanics of the solar system, further
empirical information must be obtained. The observational data were
furnished by Tycho Brahe and Kepler. From this information Newton
deduced the law of gravitation. When, therefore, the mutual force
acting between bodies is of the inverse-square variety, we obtain
a special branch of mathematical mechanics, called celestial
mechanics.


From what has been said, we realise that the solutions of these
problems of rational and celestial mechanics are of a purely
mathematical nature, involving technical difficulties of their own. And
so we need not be surprised to find the names of pure mathematicians
on every page of the treatises consecrated to these arduous sciences.
Thus, in rational mechanics we find the great names of Newton, Euler,
d’Alembert, Lagrange and Hamilton, whereas in celestial mechanics we
come upon the equally great names of Laplace, Jacobi and Poincaré. We
have stressed these points in order to show how mechanics, originally,

an empirical science, has since become mathematised.


Now, theoretically at least, it is of no interest to the pure
mathematician to know whether these mathematical speculations
correspond in any way to the workings of the real world; and regardless
of whether Newton’s law is correct or at fault, the solution of the
problem of the n bodies acting under Newton’s law of the inverse square
would still present considerable interest. But, on the other hand, it
would be a grave mistake to assume that these abstruse mathematical
problems constitute mere intellectual pastimes, cross-word puzzles of
a higher sort. Rational and celestial mechanics claim to correspond to
the real workings of the world. The only way to verify the justice of
this claim will be continually to check the anticipations of theory by
the results of observation.


If this checking up proves harmony to prevail between theory and
observation, we may assume that our fundamental principles are correct.
If not, three courses are open: Either we may recognise that our
fundamental principles are at fault, and attempt to replace them by
others; or else we may retain our fundamental principles, and adjust
theory to observation by introducing suitable disturbing influences
or hypotheses ad hoc; finally, we may assume that nature is
irrational, hence is not amenable to mathematical investigation.


It is impossible to give any golden rule in this respect. The
hypothesis of Neptune was an illustration of the second procedure,
where disturbing influences were introduced while the basic principles
were maintained. The Einstein theory is an example of the first
procedure, where the fundamental principles have been abandoned. As
for the third procedure, it would be adopted only as a last resort,
since it would be equivalent to throwing up the sponge. Nevertheless,
it is far from certain that we may not have to resign ourselves to this
attitude eventually, when our observations deal with phenomena on a
microscopic scale.


Reverting to Newtonian science, we may say that until quite recently
the fundamental principles of rational mechanics appeared to be in no
danger. The most accurate astronomical observations yielded results in
full conformity with theoretical previsions, when account was taken of
a minimum of disturbing influences and of the inevitable inaccuracy in
our knowledge of the planetary masses. We understand, therefore, whence
arises the justification for the law of inertia, hence, incidentally,
for the classical definitions of time and space.


It was not because stones thrown on the ice appeared to follow straight
courses with constant speeds that the law of inertia was deemed to be
established, for stones eventually come to a stop. It was because the
numerous consequences of the law appeared to be verified indirectly to
a high degree of accuracy. Hence, although it is undoubtedly correct
to say that the fundamental principles of mechanics were nothing but
hazardous generalisations from exceedingly crude observations, their
justification appeared to have been established a posteriori, at
least until quite recently.


From the principles of mechanics it is possible to deduce a certain
very general principle. We refer to the principle of Least

Action, alternative forms of which are given by Hamilton’s
principle, and by Gauss’ principle of minimum effort. Any one of
these general principles comprises all the principles of mechanics in
a highly condensed form. Least action enables us to anticipate the
following result: Free bodies unsolicited by forces invariably follow
geodesics with constant speeds. Even when only partially free, as,
for instance, when constrained to move over a fixed surface (without
friction), the bodies will invariably follow the geodesics of the
surface, also with constant speed.


Here a word of explanation may be necessary. The geodesics of
three-dimensional Euclidean space are the familiar Euclidean straight
lines; and our previous statement is but a presentation of the law of
inertia. But when we consider a curved surface, the straight lines of
space cannot lie on its surface. The geodesics of the curved surface
are then no longer straight lines in the Euclidean sense, but they are
the nearest approach to such lines, i.e., the least curved of
all lines traceable on the curved surface. In the case of the sphere,
geodesics are great circles. All surfaces have their geodesics more
or less capriciously distorted in shape according to the variation in
curvature from place to place of the surface. Again, as in the case
of three-dimensional space, a geodesic is the shortest line between
two points of the surface (when the distance is computed along the
surface).[167]


An inextensible thread stretched between two points over a curved
surface lies along a geodesic. Of course, in practice, it would be
difficult to obtain adherence of the thread to the surface, were the
surface concave. But this difficulty can be remedied if we consider a
second surface fitting over the original one. The thread would then
be stretched in the interstice between the two surfaces; and a body
moving over the surface would be given by a small ball rolling without
friction in the interstice between the two surfaces. In this way the
ball would always remain in contact with the surface.


We may say, then, that in the absence of forces—for instance, in
the interior of a falling elevator—the ball, if started with some
initial speed, would describe that geodesic of the surface which lay
tangentially to its initial velocity. In addition, the ball’s speed
along the geodesic would remain constant (in the absence of friction).


And so, were we to discover one of the geodesics of the surface by
stretching a string, and were we to mark the lay of this geodesic with
a line of ink, we should find that the ball, when constrained to move
without friction over the surface, would follow this line provided its
initial velocity were directed tangentially to it. To all intents and
purposes, geodesics act, therefore, as grooves guiding the progress

of free bodies; and the free bodies follow these grooves with whatever
initial speed we may have given them. All these considerations apply
solely when no external forces are acting on the moving body. The
presence of a force tears the body away from the geodesic it would
normally follow, and also accelerates its speed.


We now come to Newton’s law of gravitation. It was a remarkable
fact that although, according to the law of inertia, the motions
of free bodies should be directed along the straight geodesics of
three-dimensional Euclidean space, yet the courses and motions of the
planets round the sun and of projectiles near the earth’s surface
deviated widely from these geodesic paths. In the case of projectiles,
a cause for this deviation was easy to discover. It was attributed
to the disturbing action of the force of gravitation exerting
itself in the earth’s neighbourhood. But in the case of the planets
the discrepancy was harder to explain. Newton solved the problem
by extending the scope of gravitation; namely, by assuming that a
gravitational force varying inversely as the square of the distance,
and directed towards the sun, was acting on the planets. He was thus
able to account for the elliptical orbits of the planets, and also for
their motions along these orbits, as given by Kepler’s laws.


Thus, in classical science, we were faced with straight geodesics and
with forces emanating from matter and compelling bodies to depart from
their normal geodesic courses when moving in the proximity of matter.


But we, who, in contradistinction to Newton, know of non-Euclidean
geometry, might be tempted to offer another solution of gravitation.
Viewed from the standpoint of non-Euclidean geometry, the motion of
the point over the surface (discussed previously) can be interpreted
as the free motion of a point in a two-dimensional non-Euclidean space
(the space of the surface). Hence we may say that whether space be
Euclidean or non-Euclidean, least action demands that free bodies
follow its geodesics with constant speed. This holds regardless of
the dimensionality of the space, whence we may conclude that were our
three-dimensional space non-Euclidean instead of Euclidean, Newton’s
law of inertia would have to be revised. It would no longer be correct
to state that free bodies described Euclidean straight lines
with constant speeds. Instead we should say: “Free bodies pursue the
geodesics of space with constant speed.”


Thanks to this generalisation of the law of inertia, we are enabled
to extend classical mechanics to spaces of all kinds. Only in the
particular case where space is Euclidean does our generalised law of
inertia coincide with that given by Newton.


From an observational standpoint, what would be the result of space
manifesting itself as non-Euclidean? The geodesics would be curved,
as contrasted with Euclidean ones, and free bodies unsolicited by
forces would appear to follow curves with constant speeds. Under
the circumstances, it would seem to be possible to account for the
curved paths of planets and projectiles without having to introduce a
disturbing force of gravitation. All we should do would be to assume

that space was suitably curved around large masses, such as the sun and
earth; and as a result the geodesics, hence the paths of free bodies,
would be curved in turn. In particular, planets would now circle round
the sun, not because the attraction of the sun compelled them to do so,
tearing them away from their straight geodesics, but because the space
around the sun being now curved, its geodesics would automatically
become curved lines.


Ideas of this sort were advanced tentatively by Lobatchewski, Riemann
and Clifford; but, as we shall proceed to explain, a solution along
these lines was physically and mathematically impossible so long as
we restricted our investigations to the separate space and time of
classical science.


A first difficulty would be encountered when we contrasted an
exploration of the metrics of space by the method of rod measurements,
with that of free bodies following geodesics. We remember that when
discussing the free motion of a ball constrained to move on a curved
surface, we said that the ball would describe the shortest course
between two points on the surface, in other words, a geodesic; that
had we stretched a string over the surface between these two same
points, the string in turn would have placed itself along the same
geodesic (it was in this sense that the geodesic could be considered as
defining the shortest line between the two points over the surface).
In short, measurements with rods or motions of bodies yielded the same
geometry, the same metrics, for the two-dimensional surface. Similar
considerations would apply to a three-dimensional space.


But with our tentative theory of gravitation this accord would
disappear and we should be faced with an insufferable dualism.
Consider, for instance, the case of a stone thrown into the air; it
describes a parabola. According to our present views, we should have to
assume that this parabola represented a geodesic of three-dimensional
space, and therefore the shortest distance between two points on the
trajectory. But obviously, were a string to be stretched between
the starting point and the point of fall of the stone, it would
never coincide with the parabolic trajectory. In the same way, the
distance between two points on the earth’s orbit—say, at six months’
interval—is not given by the line of the orbit. Thus the geometry
of space established by freely moving bodies would be incompatible
with that established by rod measurements. In the first case, intense
non-Euclideanism would manifest itself, whereas, in the second case,
space would appear to be Euclidean.


Under such conditions, it would be difficult to see what argument we
could invoke for maintaining that the curved course of the parabola was
a geodesic, hence constituted the shortest spatial distance between two
points on the trajectory. In short, we should be faced with a dualism
subsisting as between rod measurements and explorations with moving
bodies. Inasmuch as it is the constant endeavour of science to obviate
dualism wherever possible and to establish unity, we may anticipate
that an interpretation of gravitation along the preceding lines would

have had no chance of being accepted by scientists. Rather would they
have retained Newton’s Euclidean space, which would account perfectly
for the results of rod measurements and light-ray triangulations, and
then appealed to an additional force of gravitation whose action would
be to tear bodies away from the straight geodesics they would normally
have followed.


Furthermore, there is still another aspect to the problem. If we assume
that moving points describe geodesics in a non-Euclidean space which
presents a high degree of non-Euclideanism, we must recognise that
our material bodies (which behave Euclideanly) must diverge widely
from standard when displaced. If, then, we consider the translational
motion of a large non-rotating mass, all its molecules should describe
geodesics. But this would be impossible, since, owing to the enormous
variations in the shape of the body, as contrasted with the geometry of
space, the majority of the molecules would be torn from their natural
courses. Enormous forces of reaction would therefore arise, so that the
body would be either torn apart, crushed or unable to move at all.


With space-time, however, all these drawbacks are removed, since no
dualism arises as between measurements with rods and the courses of
free bodies. In Einstein’s theory it is the geodesics of space-time,
not those of space, which are followed by free bodies. This
curvature of space-time is sufficient to account for the motions of
projectiles and planets; and when space-time is split up into space and
time, we find that over limited areas the geodesics of space remain
Euclidean straight lines (owing to the enormous value of ), as
in classical science. For this reason, it is fully in order that in
spite of the space-time curvature, measurements with rods and
stretched strings should yield Euclidean results.


Thus we see that in Einstein’s theory the metrics of space-time permits
us to account both for gravitation and for the results of ordinary
measurements with rods. It also enables us to co-ordinate temporal
processes as exhibited in the Einstein shift-effect. In short, with the
rejection of space-time, the unity of nature revealed by the relativity
theory would be lost.


Let us now consider a second objection to the space-curvature
hypothesis. The law of motion for falling bodies is not concerned
solely with spatial courses. For instance, projectiles describe
parabolas, but their motions along these trajectories are just as
characteristic as are the shapes of the trajectories themselves. Again,
in the case of the planets, we are telling only half the tale when we
state that they describe ellipses round the sun, situated at one of the
foci. It was not from an incomplete statement of this sort that Newton
could ever have obtained his law of the inverse square. Kepler’s second
and third laws complete the description of the planetary motions by
defining the nature of the motions and velocities of the planets along
their elliptical orbits. Only when all three of Kepler’s laws are taken
into consideration can Newton’s law of gravitation be deduced without
ambiguity. For example, if the planets pursued their elliptical orbits

with constant speeds, Newton’s law would be unable to account for their
motions.


Turning, then, to our tentative scheme of gravitation in terms of
a curved space, we see that there is nothing in it to suggest the
peculiar accelerated motions of planets and projectiles, so that we
are unable to account for all the effects that Newton ascribed to
gravitation. Worse still, with a theory of space-curvature the motions
of bodies along their trajectories would be uniform, since geodesics
are described with constant velocity. And this would be in utter
conflict with the accelerated motions of falling bodies and of the
planets.


We might, however, seek an avenue of escape by claiming that the
curvature of space would account for the accelerated appearance of
these motions, much as the apparent velocity of a body depends on its
orientation with respect to our line of vision. To be sure, a curvature
of space would entail a visual distortion of this sort, since the light
rays emanating from a luminous source would now reach us along curved
routes. As a result, we should misjudge the position of the source,
much as occurs in the case of refraction. This effect has to be taken
into consideration in Einstein’s cylindrical universe, for example. The
distances of stars, as deduced from a measurement of their parallaxes,
have to be decreased somewhat, owing to the spherical curvature of
space. It follows that a star leaving us radially with uniform speed
would appear to possess an increasing acceleration as it moved away
from us, as though repelled from the point where we happened to be
standing.[168]


But it is obvious that if separate space and time are retained, our
belief in the accelerated motions of bodies falling in a gravitational
field can in no wise be attributed to effects due to optical
distortions varying with the relative position of the percipient. These
accelerations are objective in that they exist to the same degree for
all observers in the objective space and time world of science. To take
a simple case, if we allow a stone to fall on our foot, its velocity
of impact will vary with the height whence it was released. We cannot
say that these variations in velocity are to be ascribed to a mere
optical distortion of the light rays reflected from the stone. We know,
indeed, that quite aside from any visual image of motion, the pain we
experience will tell the tale. Added to all these considerations, it
would be quite impossible to account for the precise accelerations of
falling bodies and of the planets, even were we to interpret them by
means of optical distortions.


And so we see that the best that could be hoped from a curvature of

space alone would be an explanation of the precise paths of falling
bodies, but not of their motions along these paths. Hence we should
not have succeeded in interpreting gravitation, since, once more, the
motion along the paths is as essential as the spatial shape of the
paths. Newton’s law, on the other hand, accounts both for paths and for
motions.


But we may consider another means of escape. We might assume that
the spatial geodesics which free bodies follow act not only as
grooves, but more like arteries which propel the blood along by
their expansions and contractions. We might then assume that these
pulsations of the geodesics would give the planets and projectiles
those precise variations in motion which are observed. Needless to say,
the hypothesis would be absurd and useless, and, so far as the writer
is aware, has fortunately never been suggested. At all events, even
with this hypothesis ad hoc, we should have failed to account
for gravitation in terms of space-curvature, since we should have been
compelled to introduce this additional influence. Furthermore, as in
the absence of attracting masses free bodies are not accelerated, we
should have to assume that in the absence of attracting masses these
pulsations of the geodesics would cease; hence it would be the action
of matter which would produce the pulsations. In other words, what we
formerly called the force of gravitation would now be called the force
of pulsation, and we should be thrown back on the Newtonian law of
gravitation under a new name, in spite of our absurd hypothesis ad
hoc.


With space-time, again, all these difficulties are obviated, for the
geodesics of space-time, in contradistinction to those of space,
account both for the paths of bodies and for their precise motions
along these paths. This is due to the fact that a space-time geodesic
deals with both time and space.


Thus far we have seen that one of the main obstacles to a
space-curvature theory of gravitation resided in its inability to
account for the precise motions of bodies along their orbits or
trajectories. Yet, on the other hand, were it not for the other
difficulties mentioned previously in this chapter, it might not have
appeared impossible to account for the spatial shapes of the orbits of
bodies in a gravitational field. We now propose to show that, quite
independently of the reasons already given, even this partial success
can never be realised. Here, however, we are compelled to consider a
more mathematical aspect of the problem.


First, let us consider ordinary three-dimensional Euclidean space. If
we select a point  at random, we know that there exists a triple
infinity of straight lines passing through . But if we impose
the restriction that these lines shall all be perpendicular to some
arbitrary direction , the possible straight lines are decreased
in number. In their aggregate they now constitute a plane, the plane
passing through  and perpendicular to .


Similar reasonings may be applied to any -dimensional space,
whether Euclidean or non-Euclidean. But if the space is non-Euclidean
our straight lines, or geodesics, will be curved from the Euclidean
standpoint. Hence we see that the geodesics passing through  and

perpendicular at  to the direction  will now form a curved
surface, no longer a plane as in Euclidean space. A surface of this
sort formed by geodesics is called a geodesic surface; and the
one we are considering will be the geodesic surface passing through
 and perpendicular to the direction  at . We see, then,
that in a Euclidean space the geodesic surfaces are planes, just as
the geodesics are straight lines; whereas in a non-Euclidean space the
geodesic surfaces are curved, just as the geodesics are curves.


If, now, we assume that the direction  is pivoted round , we
shall obtain a new geodesic surface for each new orientation of .
In the case of Euclidean space these surfaces will always be planes,
but in non-Euclidean space the curvatures of the various surfaces
at  may vary with the orientation of , and also with the
position of the point . Riemann then defined the curvature of
the space at the point  in the direction  by the curvature
of the geodesic surface passing through  and perpendicular to
 at . Thus we see that whereas a two-dimensional surface
has but one curvature at every point, a three-dimensional space has
various curvatures at a point, depending on the direction in which
the curvature is computed. If for all orientations of , and
for all points , the curvature of the geodesic surface remains
the same, we have a space of constant curvature. When the geodesic
surfaces are spheres of the same radius, hence are surfaces of the same
positive curvature, we have a spherical space; when pseudospheres,
hence surfaces of constant negative curvature, we have a Lobatchewskian
space, and when planes, hence surfaces of constant zero curvature, we
have a Euclidean space.


It remains to be said that, as Riemann discovered, these curvatures
of a space at a point can be described fully only in terms of the
Riemann-Christoffel tensor  at each point. For this reason
the Riemann-Christoffel tensor is the only one which enables us to
define the nature of the space in a complete way.


And now let us revert to the space-curvature theory of gravitation.
Inasmuch as the orbits of free bodies do not present a constant
curvature, we should be in the presence of a space of variable
curvature from place to place. This in itself is no drawback. But here
comes the difficulty: Consider a point  above the earth’s surface,
and let  be directed along a vertical. Then the geodesic surface
perpendicular to  at  contains all the geodesics passing
through  and proceeding initially in a horizontal direction
parallel to the earth’s surface. Let us consider, in particular, one
of these geodesics, say the one proceeding from east to west. There
exists one and only one such geodesic passing through  and
starting out horizontally from east to west. According to our tentative
theory of gravitation, this would imply that there existed but one
path which a body could follow when projected horizontally from 
in a westerly direction. But we know that this is not true, since by
varying the initial velocity of a body we obtain an infinite variety of
parabolas; whence we must conclude that it is impossible to identify

the spatial courses of bodies shot out from  with the geodesics
of a curved three-dimensional space. But we have seen that unless we
are to introduce forces, least action requires that free bodies should
describe geodesics. Furthermore, geodesics are the only lines that
possess any absolute structural significance. If, then, bodies moving
in a gravitational field do not follow them, we cannot attribute the
courses of these bodies to the intrinsic geometry of the space. Once
more we are compelled to appeal to a force of gravitation, just as
Newton did, and our entire theory collapses. In order to succeed in
an identification of the courses of bodies in a gravitational field
with the geodesics of the continuum, a fourth non-spatial dimension is
unavoidable. Only thus can we obtain the infinite number of geodesics
necessitated by the infinite number of paths that bodies are known to
follow. Here again, space-time solves all our difficulties.


Summarising, we may say that the great merit of Einstein’s general
theory resides in the fact that his law of space-time curvature,
 (practically the only one possible) yields us not only
the motions of bodies, hence the law of gravitation, but also the
metrical properties of the fundamental continuum. By this we mean that
the law of space-time curvature permits us to anticipate the precise
results of measurements with rods and the precise rates of temporal
evolution of processes situated in various parts of the gravitational
field. Thanks to the law of curvature, we know that an atom must beat
faster here than there, hence that its light must be modified in
colour. This is, of course, the celebrated Einstein shift-effect since
observed by astronomers. The importance Einstein attributes to this
phenomenon is plainly illustrated when, writing in 1918, before the
shift was observed, he tells us: “If the displacement of spectral lines
towards the red by the gravitational potential does not exist, then the
general theory of relativity will be untenable.”


Thus we see that this fusion of geometry and physics, this linking
together of mechanics and gravitation with the geometry, or metrics,
of space and of time, constitutes one of the most beautiful aspects
of the general theory. It emphasises a degree of unity in nature
heretofore undreamt of. Were it not for this superb unity, were it not
that measurements with rods and clocks were in perfect harmony with the
motions of bodies, the theory would be abandoned. At all events, the
passage previously quoted expresses Einstein’s personal attitude on the
subject.


Finally, we may consider still another drawback of the space-curvature
hypothesis. Whatever the law of curvature, it would consist in some
three-dimensional tensor law—say, ,
restricted to space alone. But a tensor law of this sort, while
remaining covariant for any change in the orientation of our spatial
frame of reference, would cease to manifest this property when
referred to a frame in motion. It is admitted that this in itself is
in no sense a decisive argument against the space-curvature attitude,
since the covariance of natural laws for all observers, regardless of
motion, is not a condition which is by any means imposed on us a
priori. Classical science, for instance, did not anticipate any
such covariance. Nevertheless, it must be admitted that Einstein’s

theory, by permitting us to establish this irrelevance of the laws of
nature to the observer’s motion, has achieved a result which, from a
philosophical point of view, is compelling. And again this covariance
entails space-time.


We have thus presented a number of arguments establishing
the impossibility of accounting for gravitation in terms of
space-curvature. With the exception of the last argument, it is
safe to say that any of the preceding ones would prove the point to
the satisfaction of scientists. We might have mentioned a number of
other reasons, but those discussed seem sufficient. We see, then,
why it was that the ideas of Riemann and Clifford were incapable of
realisation in their day, when space-time was as yet unknown. And so
Newton’s conception of a force emanating from matter and operating in a
three-dimensional Euclidean space was in no danger of being overthrown.



FOOTNOTES:




[1]
As exemplified in the Pythagorean discovery of the
relationship between the length of a vibrating string and the pitch of
its note, a discovery utilised in musical instruments. Another example
is represented by Archimedes’ solution of the problem of Hieron’s gold
tiara.







[2]
The appellation Galilean motion does not appear to
have been adopted generally. However, as it is shorter to designate
“uniform translationary motion” under this name, we shall adhere to the
appellation.







[3]
We need not discuss here the difficult problems that
relate to the connectivity of the continua. For instance, a point on a
closed line does not divide the line into two parts, and yet the line
remains one-dimensional. Problems of this sort pertain to one of the
most difficult branches of geometry, namely, Analysis Situs, with which
the names of Riemann, Betti and Poincaré are associated.







[4]
The discoveries of du Bois Reymond have shown that we
could proceed still further and interpose an indefinite number of
additional points, but in the present state of mathematics this
extension is viewed only as a mathematical curiosity. We may mention,
however, that the rejection by Hilbert of the axiom of Archimedes (to
be discussed in the following chapter), leading as it does to the
strange non-Archimedean geometry, would be equivalent to considering
the mathematical continuum as of this more general variety.







[5]
That the choice of an ordering relation is all-important
for the determination of dimensionality may be gathered from the
following examples. Consider a number of diapasons emitting notes of
various pitch. We should have no difficulty in ranging these various
diapasons in order of increasing pitch. This ordering relation would
be instinctive and not further analysable, since it would issue
from that mysterious human capacity which enables all men to assert
that one sound is shriller than another. Human appreciation is thus
responsible for this definition of order in music; and we may well
conceive of men whose reactions to sonorous impressions might differ
from ours and who in consequence would range the diapasons in some
totally different linear order. As a result, a note which we should
consider as lying “between” two given notes might, in the opinion of
these other beings, lie outside them. In either case, however, if
we should assume that the various notes differed in pitch from one
another by insensible gradations, a sensory continuum of sound pitches
would have been constructed, though what we should call a continuum of
pitches would appear to the other beings as a discontinuity of notes,
and vice versa. In either case the respective sensory continua would
be one-dimensional, since by suppressing any given note, continuity
of passage would be broken. And now let us suppose that these strange
beings were still more unlike us humans. Let us assume that not only
would every note of their continuum appear to them as indiscernible
from the one immediately preceding it and the one immediately following
it, but that it would also be impossible for them to differentiate each
given note from two additional notes. This assumption is by no means as
arbitrary as it might appear, for we know full well that even normal
human beings experience considerable difficulty in differentiating
extreme heat from extreme cold and we know, too, that people afflicted
with colour blindness are unable to distinguish red from green. But
then, to return to our illustration, we should realise that the sound
continuum, when ordered with this novel understanding of nextness or
contiguity, would no longer remain one-dimensional.


In other words, in virtue of this new ordering relation, imposed by
the idiosyncrasies of their perceptions, the same aggregate of notes
would range itself automatically into a two-dimensional sensory
continuum. This is what is meant when we claim that an aggregate of
elements has of itself no particular dimensionality and that some
ordering relation must be imposed from without. We must realise,
therefore, that when we speak of the space of our experience as being
three-dimensional in points, no intrinsic property of space can be
implied by this statement. It is only when account is taken of the
complex of our experiences interpreted in the light of that sensory
order which appears to be imposed upon out co-ordinative faculties
that the statement can acquire meaning. These conclusions are by no
means vitiated by such facts as our inability to get out of a closed
room or to tie a knot in a space of an even number of dimensions.
Unfortunately, owing to lack of time, we cannot dwell further on these
difficult questions.







[6]
Here again we are neglecting, from motives of simplicity,
our awareness of the focussing effort and of that of convergence. If we
take these into account, we are in all truth considering not merely one
private perspective, but a considerable number. Even so, our data would
be incomplete.







[7]
This difficulty of counting points might be obviated to
a certain degree were space to be considered discrete or atomic; for
in that case we might count the atoms of space separating points and
thereby establish absolute comparisons between distances. But here
again the procedure would be artificial, for it would be nullified
unless we were to assume that the spatial voids separating the
successive atoms were always the same in magnitude; furthermore (as
Dr. Silberstein points out in his book, “The Theory of Relativity”),
we should be in a quandary to know how a succession of atoms would
have to be defined, since this definition would depend on a definition
of order. At any rate, we need not concern ourselves with atomic or
discrete manifolds, for Riemann assumed that mathematical space was a
continuous manifold. In view of the quantum phenomena we may eventually
be led to modify these views and to attribute a discrete nature to
space, but this is a vague possibility which there is no advantage in
discussing in the present state of our knowledge.







[8]
Were it not for this restriction, comparisons of distance
in space situated in different places could never be obtained by
transporting rods from one place to another; for since the measurements
yielded by our standard rods when they had reached their point of
destination would depend essentially on the route they had followed,
they could scarcely be called rigid. When the restriction is adhered
to we obtain the most general type of Riemannian spaces or geometries
exemplified by the three major types, the Euclidean type, the
Riemannian type and the Lobatchewskian type. Weyl, however, dispenses
with Riemann’s postulate and thereby obtains a more generalised type of
space or geometry.


The non-mathematical reader is likely to become impatient at this
rejection on the part of mathematicians of apparently self-evident
postulates. But it must be remembered that a postulate which can be
rejected and whose contrary leads to a perfectly consistent doctrine
can certainly not be regarded as rationally self-evident; so that in a
number of cases the legitimacy of so-called self-evident propositions
can only be discussed a posteriori and not a priori. As
a matter of fact our belief in self-evident propositions is derived in
the majority of cases from crude experience and we cannot exclude the
possibility that more refined observations may compel us to modify our
opinions in a radical way. Einstein’s discovery that Euclid’s parallel
postulate would have to be rejected in the world of reality is a case
in point.


So far as Weyl’s exceedingly strange geometry is concerned, it is
conceivable that it also may turn out to represent reality after
all, for Weyl found it possible to account for the existence of
electromagnetic phenomena in nature by assuming that the space-time of
relativity was of the more general Weylian variety and not, as Einstein
had assumed, of the more restricted Riemannian type.







[9]
The association of a straight line with the shortest
distance between two points only holds, however, provided the several
dimensions of the space are of an identical nature. When we consider
continua in which the several dimensions differ in nature, as in the
space-time of relativity, the straight line may turn out to be the
longest distance between two points.







[10]
In the chapter on Weyl’s theory we shall mention Weyl’s
method briefly.







[11]
We are referring solely to those bodies which would yield
the numerical results of Riemann’s or Lobatchewski’s geometry—both
these types of geometry being compatible with the homogeneity of space.







[12]
Also the behaviour of light during refraction proved that
a form of Least Action known as Fermat’s principle of minimum time was
involved.







[13]
In this discussion we are always assuming that the
observer is standing right above the coin; hence we are not considering
the variations in apparent shape due to a slanting line of sight. This
latter problem is of a totally different nature.







[14]
The reason why Riemann refers specifically to the
infinitely small is because he took it as proved that for ordinary
extensions experiment had shown space to be Euclidean, and because for
exceedingly great extensions he did not consider that measurements
would be feasible.







[15]
This metrical ether must not be confused with the
classical ether of optics and electromagnetics.







[16]
In all fairness to Einstein, however, it should be noted
that he does not appear to have been influenced directly by Riemann.







[17]
A fact by no means evident a priori.







[18]
Calling  the dimensionality of the non-Euclidean space
the number of dimensions of the generating Euclidean space would be
 and not , as at first sight we might
be inclined to believe.







[19]
An equivalent form of the criticisms discussed in the
text consists in assuming that as Euclidean geometry is associated with
the number zero, it must be logically antecedent to the non-Euclidean
varieties since these are associated with non-vanishing numbers. But
here, again, it is only because we take “curvature” as fundamental
that Euclidean geometry is connected with zero. Should we choose to
take “radius of curvature,” Euclidean geometry would be associated
with infinity, and the non-Euclidean varieties with finite numbers.
Hence, the problem would now resolve itself into determining whether
“curvature” or “radius of curvature” was the more fundamental; and, in
point of fact, “curvature” is a more complex conception than “radius of
curvature.”


Then again, we might characterise the various geometries by means of
the parallel postulate. In this case, Riemann’s geometry would be
associated with the number zero, Euclidean geometry with the number
one, and Lobatchewski’s geometry with infinity. Still another method
of presentation would be to approach the problem through projective
geometry. Then we should find that Lobatchewski’s geometry was
associated with a circle, and Euclid’s with the intersection of the
line at infinity with two imaginary lines, yielding the “circular
points at infinity,” whereas Riemann’s geometry would be connected
with a circle of imaginary radius. With this method of representation,
zero would never enter into our discussions. And no one would maintain
that the concept of imaginary points at infinity (the circular
points) was logically antecedent to a real circle of finite radius.
In short, we see that there are a large number of different methods
of representing the various geometries; and, according to the method
selected, the number zero may be associated with Euclideanism or with
non-Euclideanism, or, again, with neither. All that we are justified in
saying is that Euclidean geometry is the easiest of the geometries, but
not necessarily the most fundamental.







[20]
It is to be noted that had the source of light been
placed at the centre of the sphere instead of at the north pole, all
the great circles on the sphere would have cast straight lines for
shadows on the tangent plane. Still, the shadows on the plane would, as
before, have yielded Riemann’s geometry (of the elliptical variety). We
see then, once again, that absolute shape, size and straightness escape
us in every case, and we cannot even say that Reimann’s straight lines
are curved with respect to Euclidean ones. All that is relevant is the
mutual behaviour of bodies, their laws of disposition.







[21]
For the sake of completeness we may mention that
connectivity can be studied by the same procedure as that by which
dimensionality was investigated. Thus, a space was considered to
be two-dimensional when it was possible to intercept the path of
continuous transfer between any two points by tracing a continuous
line throughout the space. If we apply this test to the surface
of a doughnut, it will be seen that a continuous line, such as a
circumference enclosing part of the doughnut, like a ring, would be
insufficient to divide the doughnut into two separate parts which could
not be connected by a route of continuous transfer over the surface.
This property would differentiate the surface of a doughnut from that
of a sphere or an ellipsoid, and yet the surface of the doughnut would
still be two-dimensional, but its connectivity would be different owing
to the hole passing through its substance.







[22]
An instant of time is of course a mere abstraction, but
so is a mathematical point in space.







[23]
We are not referring solely to the tides of the sea, but
also to the solid tides generated in the earth’s substance.







[24]
The problem is of course much more complex than would
appear from the present analysis. For the slowing down of the earth’s
rate of rotation, owing to tidal action, would also result in causing a
retreat of the moon, producing thereby a variation in the period of its
revolution round the earth.







[25]
This is because in Michelson’s experiment it is not
necessary to consider a sphere. The two arms of the apparatus may
be of different lengths; and all that is observed is the continued
coincidence of the interference-bands with markings on the instrument.







[26]
More precisely








[27]
When we consider the ’s in this light, we realise
that the expression for  might have been anticipated directly
without any regard to measurement. We might, for instance, have
attempted to construct in a purely mathematical way the possible
expressions containing variables such as  and , together
with corrective factors whose rôle it would be to ensure invariance.
Riemann remarked that in addition to the classical expression, a number
of such expressions could be constructed. But if we wish our value
of  to be compatible with the existence of the Pythagorean
theorem, namely ( for a right triangle), the
classical expression of  must be adhered to. For this reason
the type of space which is obtained under these conditions is called
Pythagorean space; and in what is to follow, we shall have no occasion
to consider any other variety.







[28]
In a very brief way the difficulties are as follows:
Differential geometry involves continuity; hence in a discrete
continuum it would lose its force. But even this is not all, for there
are various kinds of continuity, and continuity must be of a special
type for differential geometry to remain applicable. For instance, in
the foregoing exposition of the method we assumed that the expression
of  would tend to a definite limit  when the points
were taken closer and closer together. In particular we assumed that
for infinitesimal areas of the surface the Pythagorean theorem
 would hold. This was equivalent to stating that
infinitesimal areas of our curved surface could be regarded as flat or
Euclidean, hence as identified with the plane lying tangent to them.
Inasmuch as the restriction of Euclideanism in the infinitesimal is
precisely one that Riemann has imposed on space, we need have no fear
of applying the differential method to the types of non-Euclidean space
thus far discussed.


Nevertheless, we may conceive of spaces where  would not
tend to a limit, and where, however tiny the area of our surface, we
should still be faced with waves within waves ad infinitum. The
situation would be similar to that presented by curves with no tangents
at any point. However, such cases are only of theoretical interest.







[29]
It should be mentioned that there exists another type of
curvature, different from the Gaussian curvature. This other type of
curvature is called the mean curvature at a point and is given
by .


In this chapter we have mentioned only the Gaussian curvature,
for, as Gauss discovered, it is this type of curvature alone which
characterises the geometry of the surface when explored with Euclidean
measuring rods. This discovery is a direct consequence of the following
considerations:


Two surfaces which have the same Gaussian curvature can be superposed
on each other without being torn or stretched, whereas two surfaces
which have different Gaussian curvatures can never be applied on
each other unless we tear them or stretch them. Obviously the metric
relations of a surface are not disturbed so long as we do not stretch
the surface; and this is why surfaces which have the same Gaussian
curvature and which can therefore be superposed without being
stretched, must necessarily possess the same geometry.


A few illustrations may be helpful: A plane sheet of paper has a
zero Gaussian curvature and a zero mean curvature at every point. A
cylinder, a cone or a roll has a zero Gaussian curvature but a positive
mean curvature. It is the differences in the mean curvatures that cause
these surfaces to appear to us visually as differing from the plane.
But owing to the fact that the plane, the cylinder, the cone and the
roll have the same zero Gaussian curvature, we can wrap the plane on to
the cylinder or cone without stretching it.


For this reason all these surfaces have the same Euclidean geometry
(Euclidean measuring rods being used). On the other hand, a minimal
surface (such as the surface defined by a soap film, stretched from
wires situated in different planes) has a zero curvature just like the
plane, but in contradistinction to the plane it has a negative Gaussian
curvature; hence, cannot be applied to a plane, and its geometry is
therefore non-Euclidean.


For the same reason a sphere, whose Gaussian curvature is a constant
positive number, or that saddle-shaped surface called the pseudosphere
whose Gaussian curvature is a constant negative number, can neither
of them be flattened out on to a plane without being stretched. As
a result their geometries differ from the Euclidean geometry of
the plane. We have seen that these geometries are Riemannian and
Lobatchewskian, respectively.







[30]
If we were to represent non-Euclidean geometry as arising
from the behaviour of our measuring rods, squirming when displaced as
compared with Euclidean rods, we should see that Euclideanism in the
infinitesimal implies that when our rods are of infinitesimal length
and are displaced over infinitesimal distances, they behave in the same
way as rigid Euclidean rods.







[31]
These invariant types of curvature are given by
 and . If we consider
the terms  and  separately, we obtain “tensors.”
In a four-dimensional space there are 10 components for the 
tensor and 20 for the  tensor. These components represent
the curvatures measured in various directions.







[32]
It is necessary to make this distinction for a space may
be flat and yet only semi-Euclidean, as will be understood in later
chapters when discussing space-time.







[33]
The ’s were also the components of a tensor.







[34]
We may note that the geometry, hence the nature, of a
space is fully determined only when we express it in terms of the
Riemann-Christoffel tensor . Thus  at every
point denotes perfectly flat or homaloidal space; , on
the other hand, comprises a whole series of generally non-homogeneous
spaces of which  (the homogeneous and homaloidal
variety) is only one particular illustration. Hence,  by
itself does not yield us any very definite information.


Likewise, a perfectly homogeneous spherical space of four
dimensions, i.e., the type of space which corresponds
to Riemann’s geometry of four dimensions, is given by

where  is a constant depending on the intensity of the
curvature. On the other hand,  represents
a whole series of spaces, generally non-homogeneous, of which the
above-mentioned truly spherical and homogeneous variety is only one
particular case.







[35]
Quoted from one of the standard text-books of philosophy.







[36]
We are endeavouring to explain things as simply as
possible, but as a matter of fact the statement we are making that
acceleration remains absolute in Einstein’s special theory is not quite
correct. The acceleration of a body which in Newtonian science remained
the same regardless of our selection of one Galilean frame or another,
varies in value in the special theory under similar circumstances.
Nevertheless, inasmuch as a sharp distinction still persists between
velocity and acceleration, we have felt justified for reasons of
simplicity in presenting the problem as we have done.







[37]
Subject to the restrictions mentioned in a note in the
previous chapter.







[38]
This formula  or  can also be
written: , since . We may conclude that the
velocity of the ball with respect to the embankment is equal to its
velocity in the train plus the velocity of the train with respect to
the embankment. This expresses the classical belief that velocities add
up like numbers.







[39]
In the classical theory, however, aberrational
observations of very high refinement should reveal our speed through
the ether, but observations of this sort are beyond our present powers;
and Einstein’s theory has since proved that however precise our
experiments, this velocity could never be revealed.







[40]
Although no experimental results could be claimed to have
justified any such assumption, Maxwell introduced it unhesitatingly
into his theory. His celebrated equations of electromagnetics
represented, therefore, the results of experiment, supplemented by this
additional hypothetical assumption. The advisability of making this
hypothesis was accentuated when it was found to ensure the law of the
conservation of electricity.







[41]
If two magnetic poles of equal strength, situated in
empty space at a distance of one centimetre apart, attract or repel
each other with a force of one dyne, either pole is said to represent
one unit of magnetic pole strength in the electromagnetic system
of units. Owing to the interconnections between magnetism and
electricity, we can deduce therefrom the unit of electric charge also
in the electromagnetic system. Likewise, if two electric charges of
equal strength, also situated in empty space at a distance of one
centimetre apart, attract or repel each other with a force of one dyne,
either charge is said to represent one unit of electric charge in the
electrostatic system of units. From this we may derive the unit
of magnetic pole strength in the electrostatic system.







[42]
It is to this pressure of light that the repulsion of
comets’ tails away from the sun is due.







[43]
By a first-order experiment, we mean one that is
refined enough to detect magnitudes of the order of 
where  is the velocity of the earth through the stagnant ether
and  is the velocity of light. Likewise, by a second-order
experiment, we mean one capable of detecting magnitudes of
the order of .
Inasmuch as  is certainly very much smaller than
,  is an extremely small quantity, and
 is very much smaller
still. So we see that a second-order experiment is necessarily very
much more precise than a first-order one. We may also mention that no
experiments have yet been successful in exceeding those of the second
order in precision.







[44]
The classical or Galilean transformations were
, , , , where 
was the velocity of the frame with respect to a frame at rest in
the ether, hence with respect to the ether itself; this velocity
being directed along the  axis and the two frames being
assumed to have coincided at the initial instant .
Under the same conditions the Lorentz transformations were
, , ;

where 
being the velocity of light. It is easy to see that when  is
small compared to , the difference between the two types of
transformations becomes negligible.






[45]
As a matter of fact the appellation “FitzGerald
contraction” should also be abandoned in Einstein’s theory, since
FitzGerald and Lorentz had always regarded the contraction in the light
of a real physical contraction in the stagnant ether. Nevertheless,
if the reader realises the difference in the two conceptions of the
contraction, it will simplify matters to retain the original name.







[46]
It is necessary to take both of these conditions
into account. If, for instance, we limited ourselves to the
invariance of light’s velocity without taking into consideration
the relativity of velocity, transformations such as ;
 would also satisfy our requirements,
and these would not be the Lorentz-Einstein transformations and would
not be in accord with the relativity of Galilean motion.







[47]
These results had already been anticipated by Lorentz,
since as we have seen, he considered that his transformations were
applicable to purely electromagnetic magnitudes. But Lorentz was
always dealing with a fixed ether and with motion through the fixed
ether; hence the interpretation of these discoveries was much less
satisfactory.







[48]
We must remember that it is only light in vacuo
which is propagated with the speed , hence which possesses an
invariant velocity. Light passing through a transparent medium moves
with a velocity which is less than ; hence in this case its
velocity ceases to be invariant and is affected by the velocity of the
medium, as also by that of the observer.







[49]
The objective world of science has nothing in common
with the world of things-in-themselves of the metaphysician. This
metaphysical world, assuming that it has any meaning at all, is
irrelevant to science.







[50]
The identification of mass with energy necessitated by
the Einstein theory allows us to obviate the paradoxical appearance
of the following example: Consider an incandescent sphere radiating
light in every direction. If placed at rest in some Galilean frame, it
should remain there undisturbed, since the backward pressure exerted
by the light radiation is distributed symmetrically round the sphere.
But suppose now we view the incandescent sphere from some other
Galilean frame moving away from the first with a velocity . From
this new frame the incandescent sphere will be moving with a velocity
, whereas the light waves radiated by it will still possess a
velocity  in all directions in our frame. It will then appear
to us that the light waves are speeding away from the sphere
in the direction of its motion with a velocity  while they
are traveling with a speed  in the opposite direction. The
conditions of light pressure will no longer be symmetrical, and
calculation shows that the motion of the sphere should gradually slow
down under the action of this resistance. Now this is impossible;
for if the sphere appeared to us to be slowing down, it could never
remain attached to its evenly moving Galilean frame, and we should be
faced with a contradiction. As soon, however, as we recognise that
the incandescent sphere by radiating light is losing energy and hence
mass, the principle of the conservation of momentum shows that this
gradual loss of mass would have for effect an increase in the velocity
of the sphere and would thus compensate exactly the loss of velocity
generated by the unsymmetrical light pressure. In this way the paradox
is explained very simply.







[51]
A further verification was afforded when the mechanism
of Bohr’s atom was studied by Sommerfeld. In Bohr’s atom the electrons
revolve round the central nucleus in certain stable orbits. Sommerfeld,
by taking into consideration the variations in mass of the electrons
due to their motions as necessitated by Einstein’s theory, proved that
in place of the sharp spectral lines which had always been observed it
was legitimate to expect that more accurate observation would prove
these sharp lines to be bundles of very fine ones closely huddled
together. These anticipations were confirmed by experiment both
qualitatively and quantitatively.







[52]
Whenever we refer to “another Galilean frame,” we
invariably mean one in motion with respect to the first. Were it not in
a state of relative motion, it would constitute the same frame.







[53]
We may mention that the physical existence of a finite
invariant velocity is by no means impossible. It is acceptable
mathematically, and the only question that we shall have to consider is
whether it corresponds to physical reality.







[54]
By an external event we do not necessarily mean an event
occurring outside our body. We mean one that does not reduce to a mere
awareness of consciousness. A sudden pain in our toe would constitute
an external event in exactly the same measure as would the explosion of
a barrel of gunpowder a mile distant.







[55]
The relativity of simultaneity is a most revolutionary
concept, as will be seen from the following illustration:


Consider two observers, one on a train moving uniformly along a
straight line, the other on the embankment. At the precise instant
these two observers pass each other at a point , a flash of
light is produced at the point . The light wave produced by this
instantaneous flash will present the shape of an expanding sphere.
Since the invariant velocity of light holds equally for either
observer, we must assume that either observer will find himself at all
times situated at the centre of the expanding sphere.


Our first reaction might be to say: “What nonsense! How can different
people, travelling apart, all be at the centre of the same sphere?” Our
objection, however, would be unjustified.


The fact is that the spherical surface is constantly expanding, so
that the points which fix its position must be determined at the same
instant of time; they must be determined simultaneously. And this is
where the indeterminateness arises. The same instant of time for all
the points of the surface has not the same significance for the various
observers; hence each observer is in reality talking of a different
instantaneous surface.







[56]
“The Principles of Natural Knowledge.”








[57]
In the present chapter we are classing under the common
name of “neo-realism” all those metaphysical doctrines which agree
in considering perception, especially visual perception, a matter of
direct apprehension. This classification may not be in accord with that
of the metaphysicians. But as, from the standpoint of science, all
doctrines that hold to the theory of the direct apprehension of reality
are equally objectionable, we shall not trouble to differentiate
between them.







[58]
By giving the same name to these two conflicting types of
simultaneity, Dr. Whitehead soon falls a victim to his own terminology.
Thus, in his book, “The Theory of Relativity,” he informs us that he
accepts Einstein’s discovery of the relativity of simultaneity. But in
so doing he does not appear to notice that the type of simultaneity
which Einstein has proved to be relative to motion is the scientific
type; and it has nothing in common with the neo-realistic type. This
latter species is never relative to motion, but solely to position.
Hence, without any justification whatsoever, Whitehead has suddenly
extended to his own understanding of simultaneity a characteristic
which belongs to the type he is attacking. But owing to the same name
having been given to the two types, the non-scientific reader is apt
to overlook the confusion, and in this way be led to a very erroneous
understanding of the nature of Einstein’s discoveries.







[59]
The majority of Dr. Whitehead’s views are unfortunately
couched in such loose and obscure terms that it is usually possible to
place a variety of conflicting interpretations upon them. As he himself
candidly admits in his book, “The Principles of Natural Knowledge”:
“The whole of Part II, i.e., Chapters V to VII, suffers from a
vagueness of expression due to the fact that the implications of my
ideas had not shaped themselves with sufficient emphasis in my mind.”


Obviously, if the author of a book is not quite clear as to what he
means, there is always some danger in settling the matter for him.
Accordingly, we should have omitted any reference to Dr. Whitehead’s
writings had it not been that some of his criticisms (though totally
erroneous in our opinion) are often of considerable interest, leading
as they do to a novel vision of things. At any rate, in any further
reference to Whitehead, we shall view his criticisms in the light of
type-objections, regardless of whether or not, as interpreted by us,
they depict his own personal views.







[60]
Italics ours.







[61]
For the present we are confining ourselves to the
consideration of Galilean frames; the problem becomes highly
complicated when we study the peculiarities arising from a choice
of accelerated frames. In this latter case, a non-Euclideanism, or
curvature of space, appears with the presence of acceleration (as also
of gravitation), so that we cannot even refer to a multiplicity of
superposed Euclidean spaces. Also, space and time become so hopelessly
confused that we are compelled to express ourselves in terms of
four-dimensional space-time, where everything becomes clear once more.







[62]
Conformal transformations are those which vary the shape
of lines while leaving the values of their angles of intersection
unaltered. They are of wide use in maps, e.g., in Mercator’s
projection or in the stereographic projection.







[63]

the direction of motion being situated along the  axis.







[64]
This type of geometry is sometimes called
flat-hyperbolic; but as the appellation “hyperbolic” is also
attributed to Lobatchewski’s geometry, it is apt to be misleading.
Hence it is preferable to use the expression “semi-Euclidean.”







[65]
Minkowski demonstrated the significance of the expression
for  by taking a new variable , where  stands
for . With this change,  can be written:

which is the expression of the square of a distance in a
four-dimensional Euclidean space when a Cartesian co-ordinate system
is taken. Since this expression is to remain unmodified in value and
form in all Galilean frames, we must conclude that in a space-time
representation a passage from one Galilean frame to another is given by
a rotation of our four-dimensional Cartesian space-time mesh-system.
Now rotation constitutes a change of mesh-system to the same extent as
would a deformation of the mesh-system, and all changes of this sort
entail a variation in the co-ordinates of the points of the continuum.
In other words, they correspond to mathematical transformations. The
transformations which accompany a rotation of a Cartesian co-ordinate
system are of a particularly simple nature; they are called “orthogonal
transformations.” It follows that if we write out the orthogonal
transformations for Minkowski’s four-dimensional Euclidean space-time,
we should obtain ipso facto the celebrated Lorentz-Einstein
transformations which represent the passage from one Galilean system
to another. This fact is easily verified. If, now, we recall that
Minkowski had got rid of the minus sign in the expression for
 by writing  in place of , we obtain the
following result: Two Galilean systems moving with a relative
velocity  are represented by two space-time Cartesian co-ordinate
systems differing in orientation by an imaginary angle ,
where  is connected with  by the formula
.







[66]
The general expression giving the composition of
velocities in all three cases can be understood as follows: If a ball
is moving through a train with velocity  as measured in the train,
and if the train is moving with a speed  in the same direction
along the embankment, then the speed of the ball with respect to the
embankment is given by , where  has the following expression:

In this formula  represents the value of the invariant velocity in
that particular type of world we are considering.


In classical science,  is infinite, and the formula degenerates
into . This is the well-known classical composition where
velocities lying in the same direction are added algebraically.


In Einstein’s theory,  is equal to Maxwell’s constant .
This being a real finite number, we obtain the Lobatchewskian type
of composition. Were  an imaginary number, we should obtain the
Riemannian type.


We may note that if for  or  we substitute , that is to
say, if we wish to discover what would result from the addition of a
velocity to the invariant velocity, we obtain

This proves that the addition of a velocity to the invariant velocity
still leaves us with the invariant velocity, justifying thereby the
maximum and invariant nature credited to .







[67]
“The Principle of Relativity.”







[68]
We may mention that the logicians have often endeavoured
to introduce definitions of this sort into mathematics; but in
mathematics, as in physics, their attempts have always been condemned.
For instance, the definition of an inductive number, also given by
Dr. Whitehead, was severely criticised by Poincaré (in “Science and
Method”), who remarked that the object of a definition was to define,
and that Whitehead’s definition being circular, defined nothing.







[69]
In the case of Fresnel, his ignorance of non-Euclidean
geometry might be claimed to lessen the force of the argument, but this
contention would not hold for Lorentz or for the theoretical physicists
of the latter part of the nineteenth century.







[70]
It is important to understand the precise significance
of the principle of entropy. Keeping in mind the fact that the
principle refers to probabilities and not to absolute certainties, we
may express its general formulation as follows: For all changes of a
system the total entropy either is increased (irreversible changes)
or else remains constant (reversible changes). At first sight it
might appear as though the transformation of heat into work in the
steam engine, or the withdrawal of heat from a colder body and its
transfer to a warmer one, as in the case of refrigerating machines,
would constitute flagrant violations of the principle. But, as a
matter of fact, such is not the case. For, with the steam engine, the
unnatural change exhibited by the transformation of heat into work is
counterbalanced by a natural change illustrated by the fall of heat
from generator to condenser. In fine, the total entropy thus remains
constant (in a perfectly reversible cycle, for instance in a Carnot
cycle), or else suffers an increase. Again, with the refrigerating
machine, the unnatural passage of heat from the cold to the warmer body
is compensated by a natural transformation; this is represented by
the transformation into heat of the mechanical work performed on the
apparatus. So once again the total entropy is increased, or, at best,
remains constant. Still more striking cases, where the principle would
appear to be at fault, are illustrated by the endothermic reactions in
chemistry. Contrary to what we should expect, they absorb heat so that
low-grade heat energy is transformed into higher-grade chemical energy;
but here again compensating influences are at work. We cannot dwell
further on these points. The reader who is interested in studying them
must consult some standard work on thermodynamics.







[71]
This decrease of the visual angle under the influence
of relative motion would, however, apply only provided the observer
were moving in a direction parallel to that of the pole, or at least
yielding a component parallel to this direction.







[72]
We do not wish to indulge in endless repetitions, but we
must note once more that by absolute length of classical science we
are referring solely to length once it has been defined by the norms
of practical congruence. We do not imply absolute metaphysical spatial
length, which is meaningless in science.







[73]
A light year is an astronomical unit of length defined by
the distance a wave of light covers in one year.







[74]
We are considering only flat space-time far from matter.







[75]
Recent experiments conducted by Kennedy have shown that
Miller’s conclusions were erroneous, and that the null result of the
original experiment was completely confirmed. (See Proc. Nat. Acad.
of Sci., Nov., 1926.)







[76]
It might be argued that a rotating disk is an accelerated
body and that, in spite of this fact, no force acts upon it. This view
would, however, be incorrect. Cohesive forces are acting between the
various molecules of the disk, and were it not for the existence of
these forces, the various molecules would fly off along tangents and
would pursue Galilean motions; the disk would cease to exist. It is the
presence of the cohesive forces which compels the molecules to describe
circles, that is, to pursue accelerated or non-Galilean motions.







[77]
This was in full accord with the principle of entropy.







[78]
There are cases in which no determinate value for the
potential can be found.







[79]
Note how the theory of relativity is establishing the
fusion of the mathematical (i.e., the -distribution)
with the physical (i.e., the forces of inertia).







[80]
The statement that all bodies fall with the same motion
in vacuo is correct, but, unless properly understood, is apt to
lead to erroneous conclusions.


What the statement asserts is that any body, regardless of its
constitution or mass, will fall in exactly the same way through a
given gravitational field. If, however, the falling body causes
a modification in the distribution of the field, then it is obvious
that various falling bodies will no longer be situated in the same
gravitational field; and there is no reason to assert that they will
all fall in exactly the same way. For instance, if a relatively small
mass—say, a billiard ball—then a relatively large one—say, the
moon—were to be released in succession from some very distant point
and allowed to fall towards the earth, it is undoubtedly correct to
state that the duration of fall would be greater for the billiard ball
than for the moon. It is easy to understand why this discrepancy would
arise. In either case, owing to the mutual gravitational action, the
earth would also be moving towards the falling body (moon or billiard
ball), so that the point of collision would be some intermediate
point, namely, the centre of gravity of the system earth-moon or
earth-billiard ball. But in the case of the billiard ball, owing to
its relatively insignificant mass, this centre of gravity, or point of
collision, would be practically identical with the earth’s centre. This
implies that the earth would scarcely move at all towards the billiard
ball, whereas it would move an appreciable distance towards the moon.
The motion of the earth would thus shorten considerably the distance
through which the moon would have to fall, whereas the billiard ball
would have to fall through the entire distance.


If we wish so to modify the conditions of the problem as to
re-establish the perfect identity in the rate of fall of the moon and
billiard ball, we must so arrange matters that the earth is unable
to fall towards the body it is attracting. If, for example, it were
possible to nail the earth to the Galilean frame in which earth,
moon and billiard ball were originally at rest, and if this Galilean
frame could be made to remain Galilean, i.e., unaccelerated,
then the previous experiment attempted first with the moon, then with
the billiard ball (the moon being removed entirely), would reveal
exactly the same rate of fall for the two bodies. For now, indeed, the
modifications in the distance covered, and in the nature of the field
brought about by the displacement of the earth, would be non-existent.


A further case which presents a theoretical interest in Einstein’s
discussions is afforded by what is known as a uniform field, that is to
say, a field in which the gravitational force is the same in intensity
and direction throughout space. A field of this sort would be generated
by an infinitely extended sheet of matter of uniform density. Owing to
the infinite mass a sheet of this sort would possess, its acceleration
towards the falling body would be nil; all bodies would then fall with
exactly the same constant acceleration towards the sheet. The reason
uniform fields present a theoretical interest is because the field of
force generated in an enclosure moving with constant acceleration is
precisely of this type. When, therefore, Einstein identifies the field
of force enduring in an accelerated enclosure with a gravitational
field, we must remember that the distribution of matter which would be
necessary to produce the same field is that of an infinitely extended
sheet. Only to a first approximation can a finite mass of matter, like
the earth, be deemed to generate a field of this kind.







[81]
Subject to certain niceties which will be mentioned
presently.







[82]
To obviate any confusion with electromagnetic forces, we
are considering only forces which act on uncharged bodies.







[83]
Here the reader may well question our right to argue
as though velocities combined in the classical way, when the whole
significance of the special relativity theory has been to deny the
validity of the classical transformations. In point of fact the
objection would be legitimate; and in all rigour the Einstein-Lorentz
transformations should be applied for each successive instantaneous
velocity of the enclosure. But it so happens that when the
Einstein-Lorentz transformations are applied to a transverse beam
of light, it is found that for low velocities of the enclosure the
bending is practically the same as it would have turned out to be had
we followed the classical rule of composition. In other words, had the
motion of the enclosure been uniform, the transverse ray of light as
measured in the enclosure would have been inclined much as in classical
science. Indeed, were it not that the relativity transformations
entailed a variation in the slant of a ray of light moving
transversally, the theory would be incompatible with the well-known
phenomenon of astronomical aberration.







[84]
We are assuming that the field does not vary with time.
When this is not the case, we must specify that our observations must
also be conducted over a very short duration of time.







[85]
Qualitatively at least. The precise quantitative
justification will be furnished later.







[86]
If the spatial mesh-system we are considering is one
of straight lines, a Cartesian one, for example, the statement in
the text is accurate, but if we consider the more general case of a
curvilinear mesh-system, we must introduce certain restrictions. In
this last instance, our rod must be of infinitesimal length, for were
its length finite, its orientation as referred to the curvilinear
mesh-system would vary from place to place. This would introduce
complications. Hence it is preferable to restrict our attention to rods
of infinitesimal length and consider orientation as defined at a point.
With this restriction in force, there is nothing to change in the
explanation given in the text.







[87]
Thus, calling , ,  the components of the
vector in the first frame of reference and , ,  in
the second, the components , ,  will be connected
with the components , ,  in the following way:

where , , , , etc., are defined by the nature of
the change to which our co-ordinate system has been subjected.







[88]
Not to be confused with the tensor of a quaternion.







[89]
A distinction of this sort does not apply, of course,
to the equality of two invariants; for, as we have seen, a change of
mesh-system can produce no effect on the value of an invariant, seeing
that an invariant has no components.







[90]
The tensor  being twice covariant, and the
vector  repeated twice in the formula, being contravariant.







[91]
It is customary to represent scalars by ordinary letters,
and tensors of the first, second and third orders, and so on, by
letters followed by indices equal in number to the order of the tensor.
Thus,  is a tensor of the second order,  is
one of the third order, and so on.


When we substitute for these indices all possible arrangements of
the numbers from  to , where  represents the 
dimensions of our continuum, we obtain thereby the various components
of our tensors.


Thus, in a space of two dimensions, the various components of
 are , , , , which
reduce to , , , owing to the identity of
 and , the  tensor being symmetrical.


In order to differentiate at a glance contravariant tensors from
covariant ones, the indices are placed above the letter. For instance,
 is the contravariant form of , and 
is the mixed form. We see, then, that 
should really be written , since 
refers to a contravariant vector.







[92]
There exist types of fields for which the potential
distribution is indeterminate, but we need not consider this case, as
Newton’s gravitational field is of the kind which admits a definite
potential distribution.







[93]
In four-dimensional space-time there are sixteen of these
’s at every point, but, the tensor being symmetrical, six
turn out to be mere repetitions, so we need only speak of ten separate
’s at every point.







[94]
More precisely,  is not , but is
connected with  by the relation 







[95]
Later we shall see that this belief of classical science
is not rigorously correct but it still remains true under certain
special circumstances.







[96]
In point of fact, it was when Einstein applied the
principle of Action (to be discussed presently) that he first
recognised the error in his original law. Also we may note that the law
of curvature , when it does not reduce to , represents a non-homogeneous type of curvature, and most certainly
not a homogeneous spherical curvature as certain lay writers have
stated, drawing hasty philosophical conclusions therefrom.







[97]
We shall see (Appendix I) that the geodesics
of space-time are of two major varieties: the so-called time-like and
the so-called space-like geodesics. The transition between the two is
given by the null-lines or minimal geodesics; these correspond
to the paths and motions of light rays. The space-like geodesics would
correspond to the paths and motions of bodies moving with a speed
greater than that of light. As such motions cannot exist, according
to the theory of relativity, we see that free bodies can follow only
the time-like geodesics. In future, therefore, when referring to the
geodesics of space-time, we shall always have in mind the time-like
geodesics. Also we may note that whereas the time-like geodesic defines
the longest space-time distance between two points, the null-line or
minimal geodesic has always a zero space-time length.







[98]
Also constants such as  may enter into the
law of curvature in the empty space around matter; but never foreign
tensors.







[99]
It is well to remember, however, that the laws we have
considered are all in the image of Newton’s in that they contain no
derivatives of the potentials to an order higher than the second.
If this restriction is omitted, a number of alternative laws become
possible. Inasmuch as their study presents tremendous mathematical
difficulties they have not been investigated; and it is hard to say
what might be the nature of their solutions.







[100]
There are also the other time-potentials, i.e.,
, , . But as, in our mesh-system, the
direction of time is perpendicular to those of space, these potentials
vanish in the present case, and we are left with .







[101]
In reality the identification is a little more
complicated; it is given by



Furthermore, it can be seen that this potential , of
varying value from place to place, is connected with the variable
speed of light from place to place through the gravitational field.
More precisely, the speed of light in vacuo is given by
, which is approximately  or
, where  is the mass of the body
exciting the gravitational field.
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The Einstein effect is due to a veritable decrease in
the frequency of vibration of the atom situated nearer the sun, and
this retardation is caused by the increasing departure from unity
of the potential , tending as it does towards zero as we
approach the sun. It would be totally incorrect to ascribe it to a
slowing down in the motion of a ray of light travelling away from the
sun in a radial direction, owing to the retarding effect of the sun’s
gravitational pull. The gravitational pull has nothing to do with the
Einstein effect; and as a matter of fact, calculation shows that a ray
of light travelling away from the sun would gradually increase
in speed till it attained its invariant speed  at infinity, as
though it were repelled, not attracted by the sun. But over and
above these results of calculation, it can be seen immediately that a
modification in the speed of light would be incapable of explaining the
existence of the Einstein effect. In all cases we are bound to receive
the successive vibrations with the same frequency as they are emitted
by the atom; for otherwise there would be a gradual accumulation or
depletion of light waves travelling along the fixed distance separating
us from the atom. Hence any verification of the Einstein effect could
be ascribed only to a real modification in the frequency of the atom’s
vibrations.







[103]
The Einstein shift in the spectral lines as seen by a
definite observer will increase in importance as the atom nears the
star or as the star increases in mass. For a star of given mass, the
effect will therefore increase as the volume of the star decreases, and
hence as its density increases. We understand, therefore, why it is
that for two stars of the same mass, the best conditions of observation
will be afforded by the star which has the greater density; while for
two stars having the same density, the best conditions will be afforded
by the star having the greater mass.







[104]
According to the special principle of relativity.







[105]
Of course even from a mathematical point of view the attempt would have
been impossible from the start. See Appendix IV.
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De Sitter’s universe is truly spherical only when we
argue in terms of imaginary time it. In this case, for any given
observer, both time and space close round on themselves. When, however,
we use real time t, as indeed we should, we find that de Sitter’s
universe yields a three-dimensional spherical Riemann extension, for
the space of a given observer, but that real time no longer curls
round on itself. This universe can be represented on the surface of
a hyperboloid of one sheet, open at both ends in the time direction,
and there is no fear of a return of time with the past becoming the
future. It is easy to see why time is differentiated in its curvature
from space in de Sitter’s universe. All we have to do is to notice
that in , since the three
space-’s () are always positive
and , the time-, is always negative, or vice versa
(except when they all vanish), we always have a difference in sign
between the curvatures , , , on the one
hand, and , on the other. Were we to appeal to imaginary
time,  would also be positive, so that 
would be of the same sign as the other ’s. Analogously,
in the special theory, by putting it in place of , we obtained
 
in place of ,
giving us  in place of
.







[107]
Here we are viewing de Sitter’s universe as a spherical
universe for reasons of simplicity. In other words, we are arguing in
terms of imaginary time it.
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The reason why, under Newton’s law, a uniform
distribution of matter to infinity is impossible can be understood as
follows: The difference between the values of the Newtonian potential
 at two points  and  is equal to the work which must
be expended against the gravitational force for a unit mass to be
moved from  to . But if matter were distributed uniformly
to infinity, no work would be necessary, since wherever the body
stood, it would be at the centre of the infinite universe, hence would
be subjected to equal forces in every direction. But then 
would have the same constant value everywhere. This would entail the
vanishing of . And so Poisson’s equation
 would become ; an
impossibility, since , density of matter, must have a non-vanishing
value. In short, it would be necessary to modify the law of gravitation
and consider, for example, 
(where  is some constant) in place of Poisson’s equation.
With this latter law instead of Newton’s, an infinitely extended
universe of matter would be possible.








[109]
The difference in the Newtonian potential between two
points  and  is defined as the work necessary to drag a unit
mass from  to  against the action of the Newtonian gravitational
field. In this case the potential at  is always higher than at
.
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At all events, it could be departed from only
momentarily. A more precise formulation of the law of equipartition
would consist in saying that when the condition of statistical
equilibrium is reached, the total energy of the system will be divided
up among the different degrees of freedom of the constituent particles.
However, this equipartition of energy will not be absolutely rigorous.
Taken at any instant, the energies of the separate degrees of freedom
will be some greater and some less than would be demanded by rigorous
equipartition; but, on an average, equipartition will endure when large
numbers are considered. These conclusions are necessary consequences
of the law of entropy and are based on probability considerations.
Inasmuch as, in the example of the billiard balls, we assumed these
to be identical, the law of equipartition connoted that the kinetic
energies, hence velocities, of the balls would eventually fluctuate
round the mean velocity corresponding to rigorous equipartition; so
that, broadly speaking, the velocities of all the balls would be the
same. The precise fluctuations in the velocities are expressed by
Maxwell’s law of the distribution of velocities, and would be found
to be represented by the bell-shaped curve of Gauss, a celebrated
mathematical curve which enters into the law of errors and into a
number of probability problems.







[111]
Here let us note a difference between our present
problem and the one we discussed when investigating the curvature
of space in the interior of a fluid sphere under the older law of
space-time curvature. In the present case, by adjoining the 
term, it is possible for cosmic matter to fill the entire space of the
universe, so that space closes round on itself when matter is assumed
to be distributed homogeneously and continuously. The universe becomes
self-contained, and no matter or light can escape from it.







[112]
We are, of course, referring solely to the sphere’s
surface, and not to the centre of its volume, which stands outside the
two-dimensional surface or space which we are considering.







[113]
The problem might be on a different footing were
space-time to be considered atomic; for, as we have mentioned, in a
discrete manifold, in contradistinction to a continuous one, a metrics
might be immanent in the continuum even in the total absence of matter.
There is always the possibility that we may be on the wrong track when
we assume space-time to be continuous, and it cannot be denied that
the existence of quantum phenomena lends colour to this possibility.
So long, however, as we assume the continuity of the fundamental
extension, de Sitter’s universe, existing with a perfectly definite
metrics independently of the presence of matter, appears extremely
improbable.







[114]
At least it appears to be the only type of
universe which would also be in harmony with the existence of low
star-velocities.







[115]
The situation would be somewhat similar to that which
exists in the case of electric and magnetic actions. Here, also, we
know that an electron at rest develops a purely electric pull according
to the Newtonian law, whereas, when it is in relative motion, a
magnetic pull is superadded at right angles to the line of motion and
to the electric pull.







[116]
It is most important to note that the relativity of
all motion, as expressed by the general principle of relativity,
stands on an entirely different footing from the ultra-relativistic
conception of rotation as upheld by Mach. The two forms of relativity
have been muddled up so often that it appears necessary to point out
their essential differences. The general principle of relativity merely
states that the natural laws can be thrown into a form which remains
covariant to all choices of mesh-system. In other words, all observers,
whether Galilean, accelerated or rotating, will observe the laws of
nature under the same tensor form; so that there is no reason to follow
classical science and elevate one type of observer above another. This
is what Einstein originally meant by the relativity of all motion. Thus
the general principle of relativity in no wise implies that an observer
would not realise that conditions had changed after the frame to which
he was attached had been set into rotation.







[117]
The increase of mass in a gravitational field can be
anticipated most easily as follows: Consider a disk rotating in a
Galilean frame. As referred to this frame, the points of the rim will
be moving with a certain velocity; hence a mass fixed to the rim will
increase when its value is computed in the Galilean frame. But the
postulate of equivalence allows us to assert that conditions would
be exactly the same were the disk to be at rest in an appropriate
gravitational field. Inasmuch as in this case the gravitational force
would be pulling outwards from centre to rim, just as though a massive
body had been placed outside the rim, we may infer that the mass of a
body increases as it approaches gravitational masses. For instance, the
inertial mass of a billiard ball would be increased were the ball to be
placed nearer the sun.







[118]
Prior to his discovery of the cylindrical universe,
Einstein had made several attempts to account for a self-contained
nuclear universe in infinite space-time, in which the relativity of
inertia would also be satisfied. The solution of this problem was
intimately connected with the invariance of the boundary conditions,
and this accounts in part for the numerous references to boundary
conditions which we encounter in all the original papers. However, the
low velocities of the stars proved that the relativity of inertia could
not be realised with infinite space-time.







[119]
Einstein’s original law in the case of feeble
gravitating masses and low velocities is practically identical with
that of Newton.







[120]
It is of interest to note that in an alternative presentation of the
cylindrical universe Einstein does not make use of the 
term at all. He confines himself to studying under what conditions
a cloud of cosmic dust could cause the universe to be cylindrical,
hence to be stable. The novelty of the procedure consists in taking
into consideration a certain pressure (not a hydrostatic pressure)
which physicists have been led to discuss but which as yet remains
unexplained. We refer to the internal pressure which prevents an
electron from exploding under the mutual repulsions of its various
parts, all of which are charged with negative electricity. This
pressure has been called the Poincaré pressure; it is thought to be
responsible for atomicity, but its nature is highly enigmatic. Under
this new treatment of the problem, the mysterious cohesive pressure
 takes the place of  in our former equations. Einstein
then shows, as before, that for the universe to be cylindrical, hence
stable, a connection must exist between this mysterious pressure
 and the average density of matter throughout the universe,
hence also between the pressure and the universal curvature. In this
respect, at least, a slight advance in our understanding of the
binding pressure of matter appears to have been obtained (see 
Chapter XXXVI). Furthermore, the connection
between the density of matter  and the internal pressure 
is easier to understand than that between  and the curvature
 of the universe; although, of course,  and 
are one and the same, so that, as before, it is matter that creates the
spatio-temporal universe.







[121]
We are assuming that a four-dimensional vector calculus
would have been in existence; but this is a purely mathematical
question.







[122]
We are using the word “Action” to denote what Hamilton
called the “Principal Function.” For a more rigorous treatment the
reader must refer to standard works on Analytical Dynamics.







[123]
Also called Lagrangian Function.







[124]
This deification of the principle of action which is
traceable to the influence of Hilbert and Weyl is resisted by Eddington
and Silberstein, who point out that the principle has none but a formal
significance.







[125]
We are endeavouring to explain the problem in as
elementary a way as possible. A rigorous exposition, however, would
compel us to state that only a certain part of  constitutes the
function of action. At all events, inasmuch as the superfluous part
of  disappears when we calculate the stationary condition, no
essential change need be made in our exposition.







[126]
“Space, Time and Matter.”
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We cannot insist on numerous niceties such as the
distinction between tensors and tensor-densities, etc. We may note,
however, that whereas the in-magnitudes , ,
 differ from the tensors , ,
and from the invariant density , yet ,
the tensor of the electric and magnetic forces, is the same as in
Einstein’s theory. This is because  in Einstein’s theory
already happened to be an in-tensor.







[128]
Eddington has shown that the discrepancies which might
be expected to arise would in all probability be too small to be
observed.







[129]
See note, page 354.
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When suitable units are chosen.







[131]
J. S. Mackenzie.
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In Poisson’s case the argument had some weight, for
there was reason to suppose that were Fresnel’s views justified, we
should at some time or other have observed bright shadows in the course
of our daily experience.







[133]
It is scarcely necessary to add that our awareness of
sensations does not presuppose any knowledge of space or of our human
body as an object situated in space. When, for instance, an infant who
is beginning to emerge into consciousness feels a pain in its leg, then
one in its arm, it is not supposed that it succeeds in localising the
two sensations in the two respective limbs. Only much later will it
succeed in localising its sensations. For the present we are assuming
that the infant knows nothing of space or of its body; it is merely
registering sensations, and the pain in its leg will appear to it to
differ in some obscure qualitative way from the pain in its arm.







[134]
Recently considerable progress has been made by
Schrödinger in the interpretation of quantum phenomena within the atom,
by means of a wave theory of matter, known as wave mechanics.







[135]
By realism we mean “common-sense realism,” and not that
monstrous distortion known as “neo-realism.”







[136]
Of recent years certain philosophers known as logicians,
Bertrand Russell in England, Couturat in France, among others, have
stressed the logical aspect of mathematics. The question is whether
they have not over-stressed it. That mathematical reasoning implies
clear thinking and complies with the rules of logic has never been
denied; nevertheless the assertion that all mathematical reasonings
are of a purely deductive nature, and are reducible to the rules of
logic, is an opinion which is by no means unanimous. Some of the
greatest among the modern mathematicians, notably Poincaré and Klein,
have protested vigorously against this view and have pointed out
numerous cases of circularity in the arguments and lack of rigour
in the definitions presented by the logicians. Over and above this
aspect of the matter, they have maintained that the rules of a game
are not everything in its make-up. To say that mathematics and logic
are one and the same would be equivalent to maintaining that poetry
was nothing but grammar, syntax and rules of versification, or that
music was nothing but counterpoint and harmony. It is conceivable
that we might acquire as thorough a knowledge of counterpoint and
harmony as Beethoven may have possessed and yet be unable to compose a
work rivalling any of his symphonies. We should have no hesitancy in
granting that a Beethoven must obviously have been gifted with some
mysterious faculty which had been denied us; and this faculty, whatever
its essence, would relate to music, would be a part of music, since
were all men lacking in it, there would be no great music. Under the
circumstances, in spite of what might be called our logical knowledge
of music, could we truthfully claim to have as thorough a knowledge of
it as a Beethoven?


And it is exactly the same with pure mathematics. We know from
experience that many persons, though possessing highly logical minds,
are yet refractory to advanced mathematics. Were mathematics nothing
but logic, this situation would seem extraordinary. Logistics, from
a failure to see in mathematics anything but a series of rules and
regulations with no creative faculty behind it, has been christened
“thoughtless thinking” by its adversaries. But without wishing to take
sides in a controversy for which the majority of persons evince but
little interest, there is a point which the unprejudiced onlooker must
perceive. With the sole exception of Hilbert, who, though opposing
Russell’s views, defends opinions of a somewhat similar nature, none of
the logicians have contributed to the constructive side of mathematics.
This again appears somewhat strange when we recall that one of the
earliest boasts of this school of thinkers was that logistics would
give them wings. One cannot help but suspect that the logicians are
lacking in some creative faculty of which they may not be conscious,
and that as a result they perhaps occupy in mathematics a position
analogous to that of the professor of counterpoint and harmony in
music. Under the circumstances, it is questionable whether they possess
a sufficient understanding of this difficult science to contribute any
information of value.


Of course a charge of this sort cannot apply to Hilbert, whose great
work in the creative regions of mathematics has proved him to be gifted
with the creative faculty in addition to the purely formal dissecting
faculty which all mathematicians, regardless of their tendencies,
must necessarily possess. Owing to Hilbert’s attitude, the problem is
generally regarded as controversial.







[137]
In this case, however, Laplace’s equation is of the
two-dimensional variety and not of the usual three-dimensional type
which defines the distribution of the Newtonian potential in the empty
space around a gravitational mass of finite dimensions. However, the
two-dimensional Laplace equation also gives the distribution of the
potential around matter in special instances. Such is the case when we
consider an attracting cylinder of uniform density, finite section and
infinite length.







[138]
In the particular case of the oscillating pendulum, we
may restrict our attention to the real (i.e. non-imaginary)
realm of the elliptical function considered. But the very existence
of elliptical functions is dependent on the introduction of imaginary
quantities.







[139]
This is of course merely a figure of speech. It is not
assumed that the molecules come into actual contact. Furthermore, it
would be difficult to specify exactly how contact should be defined for
molecules.







[140]
Thus, Euler, when discussing absolute space and time,
writes: “What is the essence of space and time is not important; but
what is important is whether they are required for the statement of the
law of inertia. If this law can only be fully and clearly explained by
introducing the ideas of absolute space and absolute time, then the
necessity for these ideas can be taken as proved.” Again, Riemann, when
discussing the possible non-Euclideanism of space, maintains a similar
attitude. We read: “It is conceivable that the measure relations of
space in the infinitesimal are not in accordance with the assumptions
of our [Euclidean] geometry, and, in fact, we should have to assume
that they are not, if, by doing so, we should ever be enabled to
explain phenomena in a more simple way.”







[141]
Bergson, “Durée et Simultanéité.”







[142]
Bertrand Russell, article on non-Euclidean geometry in
the Encyclopaedia Britannica, and various other writings. We may note,
however, that Russell has recently modified his views on this subject.







[143]
Whitehead, “The Principle of Relativity.”
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Both attempts failed.







[145]
Quantum phenomena would now appear to account for what
Ritz ascribed to that new entity, the magneton.







[146]
We might also mention the annual variation in the angle
of aberration of a star, and its relationship with the star’s parallax.
This relationship would appear to be utterly mysterious.







[147]
Italics ours.







[148]
Kant’s attitude towards Newton’s absolute space is
somewhat confused. At times he defends the absoluteness of space,
making extensive use of the arguments of Newton and Euler. At other
times he presents his own arguments in favour of the relativity
of space and motion. Finally, in his last work (Metaphysische
Anfangsgründe der Naturwissenschafften), he writes: “Absolute space
is, then, necessary not as a conception of a real object, but as a mere
idea which is to serve as a rule for considering all motion therein as
merely relative.” How motion can be relative while space is absolute
is a problem that Kant fails to elucidate. At any rate, the problem of
the absoluteness of space and time in classical science refers not
to the essence of space and time (a problem which would degenerate
into one of metaphysics, hence which would be meaningless to the
scientists), but solely to a discussion of those conceptions which are
demanded by the world of experience. Hence we may realise that a man
ignorant of mechanics is in no position to pass an opinion one way or
the other. And Kant’s knowledge of Newtonian mechanics was extremely
poor, to say the least.


Thus, in his Allgemeine Naturgeschichte und Theorie des Himmels,
we find him giving incorrect formulæ for the most elementary facts
concerning falling bodies. Then again, basing his arguments on what
he claims to be the laws of dynamics, he tells us of a nebula which
would set itself into rotation owing to its outer parts falling towards
the centre and rebounding sideways against the inner parts. But this
hypothesis is in flagrant opposition to the principles of dynamics, and
had Kant spoken of a man pulling himself up by his bootstraps he would
have given expression to no greater absurdity. Whereas this latter
statement would violate the principle of action and reaction, Kant’s
violates the invariance of the quantity of moment of momentum in a
self-contained dynamical system.







[149]
The development and gradual acceptance of the kinetic
theory of gases is particularly instructive in this connection. Some
two centuries ago Daniel Bernoulli had suggested that the tendency
of a gas to expand might be attributed to a rushing hither and
thither of its molecules. But inasmuch as the idea was not worked out
quantitatively, no great attention was paid it. Not till a century or
so later was it investigated in a mathematical way by Maxwell and by
Boltzmann. For this reason these scientists receive the credit for the
kinetic theory; and Bernoulli’s name (in connection with this theory)
has lost all but a historical interest. Maxwell’s and Boltzmann’s
theoretical anticipations were borne out quantitatively by the
experiments performed in their day, and a large number of scientists
accepted the theory as sound. Even so, the doctrine still had its
detractors, for subsequent experiment proved that in the matter of
specific heats at low temperatures, theory and observation were in
utter conflict. Further difficulties related to the problem of the
equipartition of energy. The net result was that other physicists
(Kelvin and Ostwald in particular) were hostile to the kinetic theory.


At this stage we must mention that as far back as 1827 an English
doctor named Brown had noticed that fine particles suspended in a
liquid appeared to be quivering when viewed under the microscope. Brown
attributed these curious motions to the presence of living organisms;
others suggested that they were due to inequalities of temperature
brought about by the illumination of the microscope. On the other hand,
the adherents of the kinetic theory maintained that these Brownian
movements were due to the impacts of the molecules of the fluid on the
suspended particles. Now the important point to understand is that this
latter hypothesis could serve only as a suggestion. Before any reliance
could be placed in it, it would be necessary to prove that the precise
Brownian movements actually observed were in complete quantitative
agreement with the theoretical demands of the kinetic theory; and
a quantitative theory of this sort had never been formulated. Such was
the state of affairs when Einstein, in one of his first papers, gave an
exhaustive quantitative solution of the problem of Brownian movements
(in the case both of translations and of rotations), stating what the
precise movements would have to be if the kinetic theory of
fluids corresponded to reality.


Perrin then submitted the Brownian movements to precise quantitative
measurements with a view to checking up on Einstein’s anticipations.
The result was a disappointment; for Perrin found a considerable
discrepancy between those anticipations and experiment. And so the
kinetic theory of Brownian movements appeared to be untenable, and,
more generally, the whole kinetic theory of gases and fluids to be
in peril. When informed of Perrin’s results, Einstein went over
his calculations afresh and discovered a numerical mistake in his
computations. On rectifying this error he found that the theoretical
anticipations were in perfect agreement with Perrin’s measurements.
About the same time, by means of mathematical calculations based on the
quantum theory, Einstein succeeded in accounting for the specific-heat
difficulty mentioned previously. As for the arguments directed against
the kinetic theory by reason of the “equipartition-of-energy theorem,”
they in turn were answered, thanks to the quantum theory, itself a
product of quantitative investigation. The net result was that the
kinetic theory was finally established, the principle of entropy ceased
to be regarded as an absolute principle, and Ostwald surrendered.


Our purpose in giving this brief historical sketch of the problem
of Brownian movements has been to show that loose guesses, unless
supported by arguments of a precise quantitative nature, are of little
interest to physical science. For this reason no great importance is
attributed to the vague atomistic speculations of Democritus or to
the relativistic speculations of Mach, even though, in the light of
subsequent developments, the latter may prove to be correct. In all
cases of this sort, the credit goes (and rightly so) to the theoretical
investigator who has succeeded in overcoming the major difficulty,
that of working out the theory along rigid mathematical lines. To be
sure, in many instances the thinker who makes the guess or advances
the hypothesis also follows it up mathematically. Such was the case
with Einstein when he formulated the postulate of equivalence for the
purpose of interpreting the significance of the equality of the two
masses. When a dual contribution of this type occurs, the credit is of
course twofold.
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“The Meaning of Relativity.”







[151]
Quite recently Dr. Whitehead has endeavoured to work out
the same problem afresh.







[152]
A very lucid exposition of Poincaré’s attack is given in
Cunningham’s “Principle of Relativity” (1914), pp. 173 ff.
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In defence of an absolute space-time, flat
everywhere and everywhen, Dr. Whitehead argues that the
variable curvature forced upon space-time by matter in Einstein’s
theory “leaves the whole antecedent theory of measurement in confusion”
and hence must render knowledge impossible.


We do not consider the argument sound, for the absolute magnitudes
of the relativity theory never were spatial or temporal, even in the
special theory with its flat space-time. It was only the space-time
interval that was absolute. As for the charge that the general theory
renders knowledge impossible, it is refuted by the fact that Einstein’s
astronomical predictions are of so precise a nature that it has
required the most perfect instruments and most competent astronomers
to detect them. This would scarcely be expected of a theory which had
rendered knowledge impossible.


A further argument of Dr. Whitehead’s deals with the ambiguity in the
measure of rotation which is entailed by Einstein’s matter-modified
space-time theory of gravitation. Thus he writes: “The Einstein theory
in explaining gravitation has made rotation an entire mystery.”
Following this criticism, Dr. Whitehead proceeds to confuse the
general theory of gravitation with the cylindrical universe and Mach’s
mechanics, neglecting to notice that the former does not necessarily
entail the latter. Einstein has insisted on this point repeatedly;
besides, the gravitational equations themselves make it quite clear.


At all events, it is difficult to see any merit in the criticism based
on rotation. All that we have a right to demand of any theory is that
it be in harmony with the existence of an inertial frame with respect
to which rotation develops centrifugal forces; for these forces have
been detected by experiment. But we have no right to maintain that any
experiment performed to this day has ever been sufficiently precise to
demonstrate the absolute fixity of the inertial frame, or to deny that
the frame may not suffer from a certain measure of indeterminateness
when large masses move in its neighbourhood. Dr. Whitehead’s
argument, which he claims is “based entirely on the direct results of
experience,” would thus appear to be scientifically unsound.


As a matter of fact, calculations have been performed by J. A.
Schouten (see Eddington’s illuminating discussion of the matter in
“The Mathematical Theory of Relativity,” pp. 99-100), and the results
have been to show that the indeterminateness of rotation resulting
from the sun’s relative motion is no more than 1".94 a century in
Einstein’s theory. And, most certainly, neither Newton’s experiment of
the rotating bucket of water nor even the more precise tests taken with
pendulums and gyroscopes would be able to detect a negligible magnitude
of this sort. Hence it would appear that the general theory, though
necessitating a fluctuating space-time background, is yet in perfect
harmony with those dynamical facts of rotation which drove Newton to
absolute space more than two hundred years ago.
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(I) refers to the boundary conditions of
the cylindrical universe.







[155]
Inserted in order to conform to previous terminology.
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A tensor expression built up of the ’s,
and presenting the property of conservation, is given by
. We may
identify this expression, therefore, with the presence of a
permanent entity such as matter. Outside these permanent
entities the space-time structure would be given by
, which
is equivalent to . If now we integrate 
round a point-centre, assuming space-time to be flat at infinity,
a certain undetermined constant of integration must be introduced
into our solution. This is a purely mathematical necessity, having
nothing to do with the physical significance of our equations. Now,
the constant being undetermined, we may assign any value to it we
please. According to the positive or negative value we might ascribe to
this constant, we should obtain a field of force either attractive or
repulsive around our particle; and the law of force distribution would
be approximately that of the inverse square. Only if we attributed a
vanishing value to the constant would no field of force be present.
This solution, however, would be scarcely permissible. Thus, we have
shown that the space-time theory, independently of any empirical study
of nature, suggests the existence of permanent entities surrounded
by fields of force. In actual practice, we identify the undetermined
constant with the “mass” of the central particle; and since mass is
always positive in the world of our experience, the constant is always
a positive number, and attraction is the outcome. In this way the
integrated form of Einstein’s law of gravitation is obtained.







[157]
Or else so profoundly modified as to constitute, to all
intents and purposes, a new theory.







[158]
From the standpoint of scientific method, it is most
instructive to contrast with Einstein’s theory one which fails to
satisfy the demands of science. We refer to Dr. Whitehead’s attempt
to interpret the phenomenon of gravitation in terms of Minkowski’s
flat space-time. In the last chapter we noted that prior to Einstein’s
sweeping generalisation a solution of gravitation on the basis of flat
space-time had been worked out by Poincaré, Nordström and others.
Dr. Whitehead wishes to revert to this type of solution. One of its
advantages, he claims, is that it obviates the idea that matter
influences the structure of space-time. Whether this is an advantage
or not is a mere question of feeling, but in science it is a highly
dangerous procedure to reject a simple co-ordination of the facts of
experience in favour of some a priori preference which offers no
means of being put to a test. Dr. Whitehead would probably claim that
in his case this criticism does not hold, for he has given definite
arguments in support of his contentions. But what are these arguments?
The first consists in his writing: “The only possible structure is
that of planes and straight lines.” Yet, as no mathematician would
agree with this contention, it would appear that Whitehead was merely
restating his a priori belief in the inevitable homogeneity
of the space-time structure without justifying his views in any way.
Elsewhere he writes: “Are these material bodies really the ultimate
data of perception, incapable of further analysis? If they are, I at
once surrender.” Now, in point of fact, it is scarcely probable that
any scientist would agree with Whitehead’s hypothetical opponent in
maintaining that material objects do constitute the ultimate data of
perception. But what conceivable connection is there between this
problem and the totally different one pertaining to a possible action
of matter on the structure of space-time? Obviously, Whitehead is
implicitly assuming that we know enough of space-time a priori
to assert that it can never be affected by whatever is not an ultimate
datum of perception. Hence his second argument, just like the first,
reduces to a mere restatement of his a priori convictions. Let
us proceed.


Having satisfied himself that material bodies are not what his
hypothetical opponent claims them to be, he considers his point proved.
Material bodies are henceforth referred to as “a certain coherence
of sense-objects such as colours, sounds and touches.” And these
sense-objects “at once proclaim themselves to be adjectives of events.”
This, according to Dr. Whitehead, precludes matter from exerting
any effect on space-time, so that Einstein’s general theory must be
discarded.


It is hard to see how a solution of the problems of nature will ever
be advanced by such loose arguments. At any rate, having assumed
space-time to be flat, or at least homogeneous, everywhere and
everywhen, Dr. Whitehead is compelled to account in terms of
forces generated by matter for the gravitational effects predicted by
Einstein. He explains the occurrence of the shift-effect by tracing
it “to the combination of two causes, one being the change in the
apparent mass due to the gravitational potential and the other being
the change in the electric cohesive forces of the molecule due to the
gravitational field.” We shall assume on his authority that the first
of the two causes he mentions can be deduced from his gravitational
equations, and shall concern ourselves solely with the second cause.
Now, unless we get our information from text-books of physics, written
more than thirty years ago, we shall never labour under the impression
that the spectral lines have anything to do with the constitution of
the molecule. Molecular vibrations may cause a broadening of the lines
owing to a Doppler effect, and are recognised as giving rise to the
diffuse band spectra, but modern experiment has traced the visible line
spectra to occurrences within the atom. It follows that these molecular
adjustments which Dr. Whitehead is seeking to introduce would appear to
have no effect one way or another on the shift he proposes to account
for. However, it is not from the standpoint of scientific accuracy that
we wish to criticise Dr. Whitehead’s statements, but solely from that
of method.


By his own admission, nothing can be predicted of the shift until we
know more about the molecule (we presume he means atom). Thus, he tells
us, “Accordingly, it requires some knowledge of the structure of the
molecule to be certain what the shift (if any) of the spectral lines
should be.” Dr. Whitehead wrote his book before the shift was observed
on the companion of Sirius, and presumably thought it safer to include
the parenthetical words “if any.”


The quotation just cited illustrates the weak point of this type
of theory. For inasmuch as we know practically nothing about the
intra-atomic occurrences responsible for radiation, we may postulate
anything we please with impunity, and as a result make the theory
predict any shift we wish, be it vanishing or great. But the purpose of
a scientific theory is to give us the power to predict phenomena as yet
unknown, and not merely to account for what we already know. It was for
this reason that Newton’s law of gravitation was so great an advance
over Kepler’s laws of planetary motion or Ptolemy’s crystal spheres.
For Newton’s law enabled us to predict how a stray comet would move,
whereas Kepler’s laws could tell us nothing.


A theory such as Dr. Whitehead’s allows us to predict anything—hence
nothing. No experimental test is possible, since whatever experiment
discloses can immediately be accounted for by varying our hypotheses
ad hoc. Besides, one cannot help but feel that had not Einstein
previously predicted the existence of the shift, Dr. Whitehead would
never have deduced it from his theory. Similar conclusions would apply
to the double bending of a ray of starlight.


One of the reasons why Einstein’s theory commands such respect among
scientists is precisely because, by predicting definite occurrences
and no others, it allows itself to be submitted to a test. As Einstein
wrote in 1918, several years before the shift was finally observed on
the companion of Sirius: “If the displacement of spectral fines towards
the red by the gravitational potential does not exist, then the general
theory of relativity will be untenable.” It is theories permitting such
categorical statements that scientists demand. The theories of Newton,
of Maxwell and of Einstein are of this sort.







[159]
The difference is, however, exceedingly minute, as we
can judge by reverting to the expression for the invariant space-time
distance . If  is expressed
in metres and  in seconds,  will be 300,000,000. Suppose,
then, that the two signals, as measured from the embankment, are
ten metres apart, and that the two light flashes are separated by
an interval of one second. If these two events are viewed from a
train travelling at the rate of ten metres a second, that is, at
approximately 22 miles an hour, it will be possible for the observer
in the train to pass before each of the two flashes just as they
are produced, with the result that as referred to his train the
two events will occur at the same spot. The time separation 
of the two events as referred to the train will then be given by

(since ). Substituting our numerical values, we find

which is very nearly one second, as it would rigorously have been
in classical science. We see, furthermore, that it is owing to the
enormous value of  that the difference between the two sciences
is so hard to detect in practice. It is for this reason that the
fundamental continuum, though one of space-time, reduces for all
practical purposes to the separate space and time of our forefathers,
unless very high velocities are considered.








[160]
Subject to the limitations mentioned in the previous
paragraphs.







[161]
See Appendix I.







[162]
We do not know whether Eddington is still prepared to
defend these views.







[163]
An exceedingly clear presentation of this point has been
given by Dr. Silberstein in his remarkable books on the relativity
theory.







[164]
Although they do not appear to be perpendicular to each
other on the diagram, the time and space directions  and 
are perpendicular when account is taken of the peculiar geometry of
space-time with which we are dealing.







[165]
“Space, Time and Gravitation,” p. 141.







[166]
This is true only in a general way, for further
empirical data are necessary when we wish to consider problems
involving friction and elasticity, etc. Moreover, in considering any
particular problem, a knowledge of the masses and forces involved must
be obtained, and this of course entails physical measurements.







[167]
Geodesics are also the longest distances; the essential
is that they constitute extreme distances. Thus, if we take two points
at random on a sphere, the great circle passing through these points is
a geodesic. But we may follow this geodesic from one point to the other
in two different ways: either by going along the shortest path, or else
by following the line that passes through the antipodes on the other
side of the sphere. In this last case, the geodesic is the longest
path.







[168]
To confine ourselves to a three-dimensional space, if
this space were spherical, stars situated at a finite distance would
yet have vanishing parallaxes, so that they would appear to be at
infinity. For this reason a spherical space, though finite, would
manifest itself to us visually as infinite. Theoretically, also, images
of stars should form at the antipodes. In an elliptical space, however,
these images would coincide with the star itself.


Conversely, a Lobatchewskian space, though of infinite extent, would
appear to be finite, since stars at infinity would have a non-vanishing
parallax, and so would appear to be situated at a finite distance.
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