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MATHEMATICAL PROBLEMS[1]






Who of us would not be glad to lift the veil behind which the future
lies hidden; to cast a glance at the next advances of our science
and at the secrets of its development during future centuries? What
particular goals will there be toward which the leading mathematical
spirits of coming generations will strive? What new methods and new
facts in the wide and rich field of mathematical thought will the new
centuries disclose?


History teaches the continuity of the development of science. We know
that every age has its own problems, which the following age either
solves or casts aside as profitless and replaces by new ones. If we
would obtain an idea of the probable development of mathematical
knowledge in the immediate future, we must let the unsettled questions
pass before our minds and look over the problems which the science
of to-day sets and whose solution we expect from the future. To such
a review of problems the present day, lying at the meeting of the
centuries, seems to me well adapted. For the close of a great epoch
not only invites us to look back into the past but also directs our
thoughts to the unknown future.





The deep significance of certain problems for the advance of
mathematical science in general and the important rôle which they play
in the work of the individual investigator are not to be denied. As
long as a branch of science offers an abundance of problems, so long is
it alive; a lack of problems foreshadows extinction or the cessation
of independent development. Just as every human undertaking pursues
certain objects, so also mathematical research requires its problems.
It is by the solution of problems that the investigator tests the
temper of his steel; he finds new methods and new outlooks, and gains a
wider and freer horizon.


It is difficult and often impossible to judge the value of a problem
correctly in advance; for the final award depends upon the gain
which science obtains from the problem. Nevertheless we can ask
whether there are general criteria which mark a good mathematical
problem. An old French mathematician said: "A mathematical theory is
not to be considered complete until you have made it so clear that
you can explain it to the first man whom you meet on the street."
This clearness and ease of comprehension, here insisted on for a
mathematical theory, I should still more demand for a mathematical
problem if it is to be perfect; for what is clear and easily
comprehended attracts, the complicated repels us.


Moreover a mathematical problem should be difficult in order to entice
us, yet not completely inaccessible, lest it mock at our efforts. It
should be to us a guide post on the mazy paths to hidden truths, and
ultimately a reminder of our pleasure in the successful solution.


The mathematicians of past centuries were accustomed to devote
themselves to the solution of difficult particular problems with
passionate zeal. They knew the value of difficult problems. I remind
you only of the "problem of the line of quickest descent," proposed by
John Bernoulli. Experience teaches, explains Bernoulli in the public
announcement of this problem, that lofty minds are led to strive for
the advance of science by nothing more than by laying before them
difficult and at the same time useful problems, and he therefore hopes
to earn the thanks of the mathematical world by following the example
of men like Mersenne, Pascal, Fermat, Viviani and others and laying
before the distinguished analysts of his time a problem by which, as a
touchstone, they may test the value of their methods and measure their
strength. The calculus of variations owes its origin to this problem of
Bernoulli and to similar problems.





Fermat had asserted, as is well known, that the diophantine equation
[image:  ]
([image:  ]) is unsolvable—except
in certain self-evident cases. The attempt to prove this impossibility
offers a striking example of the inspiring effect which such a very
special and apparently unimportant problem may have upon science.
For Kummer, incited by Fermat's problem, was led to the introduction
of ideal numbers and to the discovery of the law of the unique
decomposition of the numbers of a circular field into ideal prime
factors—a law which to-day, in its generalization to any algebraic
field by Dedekind and Kronecker, stands at the center of the modern
theory of numbers and whose significance extends far beyond the
boundaries of number theory into the realm of algebra and the theory of
functions.


To speak of a very different region of research, I remind you of the
problem of three bodies. The fruitful methods and the far-reaching
principles which Poincaré has brought into celestial mechanics and
which are to-day recognized and applied in practical astronomy are due
to the circumstance that he undertook to treat anew that difficult
problem and to approach nearer a solution.


The two last mentioned problems—that of Fermat and the problem of the
three bodies—seem to us almost like opposite poles—the former a free
invention of pure reason, belonging to the region of abstract number
theory, the latter forced upon us by astronomy and necessary to an
understanding of the simplest fundamental phenomena of nature.


But it often happens also that the same special problem finds
application in the most unlike branches of mathematical knowledge.
So, for example, the problem of the shortest line plays a chief and
historically important part in the foundations of geometry, in the
theory of curved lines and surfaces, in mechanics and in the calculus
of variations. And how convincingly has F. Klein, in his work on the
icosahedron, pictured the significance which attaches to the problem of
the regular polyhedra in elementary geometry, in group theory, in the
theory of equations and in that of linear differential equations.


In order to throw light on the importance of certain problems, I may
also refer to Weierstrass, who spoke of it as his happy fortune that he
found at the outset of his scientific career a problem so important as
Jacobi's problem of inversion on which to work.





Having now recalled to mind the general importance of problems in
mathematics, let us turn to the question from what sources this science
derives its problems. Surely the first and oldest problems in every
branch of mathematics spring from experience and are suggested by
the world of external phenomena. Even the rules of calculation with
integers must have been discovered in this fashion in a lower stage of
human civilization, just as the child of to-day learns the application
of these laws by empirical methods. The same is true of the first
problems of geometry, the problems bequeathed us by antiquity, such
as the duplication of the cube, the squaring of the circle; also the
oldest problems in the theory of the solution of numerical equations,
in the theory of curves and the differential and integral calculus, in
the calculus of variations, the theory of Fourier series and the theory
of potential—to say nothing of the further abundance of problems
properly belonging to mechanics, astronomy and physics.


But, in the further development of a branch of mathematics, the human
mind, encouraged by the success of its solutions, becomes conscious
of its independence. It evolves from itself alone, often without
appreciable influence from without, by means of logical combination,
generalization, specialization, by separating and collecting ideas in
fortunate ways, new and fruitful problems, and appears then itself as
the real questioner. Thus arose the problem of prime numbers and the
other problems of number theory, Galois's theory of equations, the
theory of algebraic invariants, the theory of abelian and automorphic
functions; indeed almost all the nicer questions of modern arithmetic
and function theory arise in this way.


In the meantime, while the creative power of pure reason is at work,
the outer world again comes into play, forces upon us new questions
from actual experience, opens up new branches of mathematics, and while
we seek to conquer these new fields of knowledge for the realm of pure
thought, we often find the answers to old unsolved problems and thus at
the same time advance most successfully the old theories. And it seems
to me that the numerous and surprising analogies and that apparently
prearranged harmony which the mathematician so often perceives in the
questions, methods and ideas of the various branches of his science,
have their origin in this ever-recurring interplay between thought and
experience.


It remains to discuss briefly what general requirements may be justly
laid down for the solution of a mathematical problem. I should

say first of all, this: that it shall be possible to establish the
correctness of the solution by means of a finite number of steps
based upon a finite number of hypotheses which are implied in the
statement of the problem and which must always be exactly formulated.
This requirement of logical deduction by means of a finite number
of processes is simply the requirement of rigor in reasoning.
Indeed the requirement of rigor, which has become proverbial in
mathematics, corresponds to a universal philosophical necessity of
our understanding; and, on the other hand, only by satisfying this
requirement do the thought content and the suggestiveness of the
problem attain their full effect. A new problem, especially when
it comes from the world of outer experience, is like a young twig,
which thrives and bears fruit only when it is grafted carefully and
in accordance with strict horticultural rules upon the old stem, the
established achievements of our mathematical science.


Besides it is an error to believe that rigor in the proof is the
enemy of simplicity. On the contrary we find it confirmed by numerous
examples that the rigorous method is at the same time the simpler
and the more easily comprehended. The very effort for rigor forces
us to find out simpler methods of proof. It also frequently leads
the way to methods which are more capable of development than the
old methods of less rigor. Thus the theory of algebraic curves
experienced a considerable simplification and attained greater unity
by means of the more rigorous function-theoretical methods and the
consistent introduction of transcendental devices. Further, the
proof that the power series permits the application of the four
elementary arithmetical operations as well as the term by term
differentiation and integration, and the recognition of the utility
of the power series depending upon this proof contributed materially
to the simplification of all analysis, particularly of the theory of
elimination and the theory of differential equations, and also of the
existence proofs demanded in those theories. But the most striking
example for my statement is the calculus of variations. The treatment
of the first and second variations of definite integrals required in
part extremely complicated calculations, and the processes applied
by the old mathematicians had not the needful rigor. Weierstrass
showed us the way to a new and sure foundation of the calculus of
variations. By the examples of the simple and double integral I will
show briefly, at the close of my lecture, how this way leads at once
to a surprising simplification of the calculus of variations. For in

the demonstration of the necessary and sufficient criteria for the
occurrence of a maximum and minimum, the calculation of the second
variation and in part, indeed, the wearisome reasoning connected with
the first variation may be completely dispensed with—to say nothing
of the advance which is involved in the removal of the restriction to
variations for which the differential coefficients of the function vary
but slightly.


While insisting on rigor in the proof as a requirement for a perfect
solution of a problem, I should like, on the other hand, to oppose the
opinion that only the concepts of analysis, or even those of arithmetic
alone, are susceptible of a fully rigorous treatment. This opinion,
occasionally advocated by eminent men, I consider entirely erroneous.
Such a one-sided interpretation of the requirement of rigor would soon
lead to the ignoring of all concepts arising from geometry, mechanics
and physics, to a stoppage of the flow of new material from the outside
world, and finally, indeed, as a last consequence, to the rejection
of the ideas of the continuum and of the irrational number. But what
an important nerve, vital to mathematical science, would be cut by
the extirpation of geometry and mathematical physics! On the contrary
I think that wherever, from the side of the theory of knowledge or
in geometry, or from the theories of natural or physical science,
mathematical ideas come up, the problem arises for mathematical
science to investigate the principles underlying these ideas and so to
establish them upon a simple and complete system of axioms, that the
exactness of the new ideas and their applicability to deduction shall
be in no respect inferior to those of the old arithmetical concepts.


To new concepts correspond, necessarily, new signs. These we choose
in such a way that they remind us of the phenomena which were the
occasion for the formation of the new concepts. So the geometrical
figures are signs or mnemonic symbols of space intuition and are used
as such by all mathematicians. Who does not always use along with the
double inequality [image:  ] the picture of three points
following one another on a straight line as the geometrical picture of
the idea "between"? Who does not make use of drawings of segments and
rectangles enclosed in one another, when it is required to prove with
perfect rigor a difficult theorem on the continuity of functions or the
existence of points of condensation? Who could dispense with the figure
of the triangle, the circle with its center, or with the cross of three
perpendicular axes? Or who would give up the representation of the

vector field, or the picture of a family of carves or surfaces with its
envelope which plays so important a part in differential geometry, in
the theory of differential equations, in the foundation of the calculus
of variations and in other purely mathematical sciences?


The arithmetical symbols are written diagrams and the geometrical
figures are graphic formulas; and no mathematician could spare these
graphic formulas, any more than in calculation the insertion and
removal of parentheses or the use of other analytical signs.


The use of geometrical signs as a means of strict proof presupposes the
exact knowledge and complete mastery of the axioms which underlie those
figures; and in order that these geometrical figures maybe incorporated
in the general treasure of mathematical signs, there is necessary a
rigorous axiomatic investigation of their conceptual content. Just as
in adding two numbers, one must place the digits under each other in
the right order, so that only the rules of calculation, i. e.,
the axioms of arithmetic, determine the correct use of the digits, so
the use of geometrical signs is determined by the axioms of geometrical
concepts and their combinations.


The agreement between geometrical and arithmetical thought is shown
also in that we do not habitually follow the chain of reasoning back to
the axioms in arithmetical, any more than in geometrical discussions.
On the contrary we apply, especially in first attacking a problem,
a rapid, unconscious, not absolutely sure combination, trusting to
a certain arithmetical feeling for the behavior of the arithmetical
symbols, which we could dispense with as little in arithmetic as
with the geometrical imagination in geometry. As an example of an
arithmetical theory operating rigorously with geometrical ideas and
signs, I may mention Minkowski's work, Die Geometrie der Zahlen.[2]


Some remarks upon the difficulties which mathematical problems may
offer, and the means of surmounting them, may be in place here.


If we do not succeed in solving a mathematical problem, the reason
frequently consists in our failure to recognize the more general
standpoint from which the problem before us appears only as a single
link in a chain of related problems. After finding this standpoint, not
only is this problem frequently more accessible to our investigation,
but at the same time we come into possession of a method which is

applicable also to related problems. The introduction of complex paths
of integration by Cauchy and of the notion of the IDEALS in
number theory by Kummer may serve as examples. This way for finding
general methods is certainly the most practicable and the most certain;
for he who seeks for methods without having a definite problem in mind
seeks for the most part in vain.


In dealing with mathematical problems, specialization plays, as I
believe, a still more important part than generalization. Perhaps in
most cases where we seek in vain the answer to a question, the cause
of the failure lies in the fact that problems simpler and easier than
the one in hand have been either not at all or incompletely solved. All
depends, then, on finding out these easier problems, and on solving
them by means of devices as perfect as possible and of concepts capable
of generalization. This rule is one of the most important levers for
overcoming mathematical difficulties and it seems to me that it is
used almost always, though perhaps unconsciously.


Occasionally it happens that we seek the solution under insufficient
hypotheses or in an incorrect sense, and for this reason do not
succeed. The problem then arises: to show the impossibility of the
solution under the given hypotheses, or in the sense contemplated.
Such proofs of impossibility were effected by the ancients, for
instance when they showed that the ratio of the hypotenuse to the side
of an isosceles right triangle is irrational. In later mathematics,
the question as to the impossibility of certain solutions plays a
preeminent part, and we perceive in this way that old and difficult
problems, such as the proof of the axiom of parallels, the squaring
of the circle, or the solution of equations of the fifth degree by
radicals have finally found fully satisfactory and rigorous solutions,
although in another sense than that originally intended. It is probably
this important fact along with other philosophical reasons that gives
rise to the conviction (which every mathematician shares, but which no
one has as yet supported by a proof) that every definite mathematical
problem must necessarily be susceptible of an exact settlement, either
in the form of an actual answer to the question asked, or by the proof
of the impossibility of its solution and therewith the necessary
failure of all attempts. Take any definite unsolved problem, such as
the question as to the irrationality of the Euler-Mascheroni constant
[image:  ], or the existence of an infinite number of prime numbers of the
form [image:  ]. However unapproachable these problems may seem to us
and however helpless we stand before them, we have, nevertheless, the

firm conviction that their solution must follow by a finite number of
purely logical processes.


Is this axiom of the solvability of every problem a peculiarity
characteristic of mathematical thought alone, or is it possibly a
general law inherent in the nature of the mind, that all questions
which it asks must be answerable? For in other sciences also one meets
old problems which have been settled in a manner most satisfactory
and most useful to science by the proof of their impossibility. I
instance the problem of perpetual motion. After seeking in vain for
the construction of a perpetual motion machine, the relations were
investigated which must subsist between the forces of nature if such
a machine is to be impossible;[3] and this inverted question led to
the discovery of the law of the conservation of energy, which, again,
explained the impossibility of perpetual motion in the sense originally
intended.


This conviction of the solvability of every mathematical problem is
a powerful incentive to the worker. We hear within us the perpetual
call: There is the problem. Seek its solution. You can find it by pure
reason, for in mathematics there is no ignorabimus.


The supply of problems in mathematics is inexhaustible, and as soon as
one problem is solved numerous others come forth in its place. Permit
me in the following, tentatively as it were, to mention particular
definite problems, drawn from various branches of mathematics, from the
discussion of which an advancement of science may be expected.


Let us look at the principles of analysis and geometry. The most
suggestive and notable achievements of the last century in this field
are, as it seems to me, the arithmetical formulation of the concept
of the continuum in the works of Cauchy, Bolzano and Cantor, and the
discovery of non-euclidean geometry by Gauss, Bolyai, and Lobachevsky.
I therefore first direct your attention to some problems belonging to
these fields.







[1]
Translated for the BULLETIN, with the author's permission,
by Dr. MARY WINSTON NEWSON. The original appeared in the Göttinger
Nachrichten, 1900, pp. 253-297, and in the Archiv der Mathematik
und Physik, 3d ser., vol. 1 (1901), pp. 44-63 and 213-237.







[2]
Leipzig, 1896.







[3]
See Helmholtz, "Ueber die Wechselwirkung der Natorkräefte
und die darauf bezüglichen neuesten Ermittelungen der Physik"; Vortrag,
gehalten in Königsberg, 1851.










1. CANTOR'S PROBLEM OF THE CARDINAL NUMBER OF
THE CONTINUUM.





Two systems, i. e., two assemblages of ordinary real numbers or
points, are said to be (according to Cantor) equivalent or of equal
cardinal number, if they can be brought into a relation to one another
such that to every number of the one assemblage corresponds one and
only one definite number of the other. The investigations of Cantor

on such assemblages of points suggest a very plausible theorem, which
nevertheless, in spite of the most strenuous efforts, no one has
succeeded in proving. This is the theorem:


Every system of infinitely many real numbers, i. e., every
assemblage of numbers (or points), is either equivalent to the
assemblage of natural integers, [image:  ]... or to the
assemblage of all real numbers and therefore to the continuum, that
is, to the points of a line; as regards equivalence there are,
therefore, only two assemblages of numbers, the countable assemblage
and the continuum.


From this theorem it would follow at once that the continuum has the
next cardinal number beyond that of the countable assemblage; the
proof of this theorem would, therefore, form a new bridge between the
countable assemblage and the continuum.


Let me mention another very remarkable statement of Cantor's which
stands in the closest connection with the theorem mentioned and which,
perhaps, offers the key to its proof. Any system of real numbers is
said to be ordered, if for every two numbers of the system it is
determined which one is the earlier and which the later, and if at the
same time this determination is of such a kind that, if [image:  ] is before
[image:  ] and [image:  ] is before [image:  ], then [image:  ] always comes before [image:  ].
The natural arrangement of numbers of a system is defined to be that
in which the smaller precedes the larger. But there are, as is easily
seen, infinitely many other ways in which the numbers of a system may
be arranged.


If we think of a definite arrangement of numbers and select from them
a particular system of these numbers, a so-called partial system or
assemblage, this partial system will also prove to be ordered. Now
Cantor considers a particular kind of ordered assemblage which he
designates as a well ordered assemblage and which is characterized in
this way, that not only in the assemblage itself but also in every
partial assemblage there exists a first number. The system of integers
[image:  ]... in their natural order is evidently a well ordered
assemblage. On the other hand the system of all real numbers, i.
e., the continuum in its natural order, is evidently not well
ordered. For, if we think of the points of a segment of a straight
line, with its initial point excluded, as our partial assemblage, it
will have no first element.


The question now arises whether the totality of all numbers may not be
arranged in another manner so that every partial assemblage may have a

first element, i. e., whether the continuum cannot be considered
as a well ordered assemblage—a question which Cantor thinks must be
answered in the affirmative. It appears to me most desirable to obtain
a direct proof of this remarkable statement of Cantor's, perhaps by
actually giving an arrangement of numbers such that in every partial
system a first number can be pointed out.






2. THE COMPATIBILITY OF THE ARITHMETICAL AXIOMS.





When we are engaged in investigating the foundations of a science, we
must set up a system of axioms which contains an exact and complete
description of the relations subsisting between the elementary ideas of
that science. The axioms so set up are at the same time the definitions
of those elementary ideas; and no statement within the realm of the
science whose foundation we are testing is held to be correct unless it
can be derived from those axioms by means of a finite number of logical
steps. Upon closer consideration the question arises: Whether, in
any way, certain statements of single axioms depend upon one another,
and whether the axioms may not therefore contain certain parts in
common, which must be isolated if one wishes to arrive at a system of
axioms that shall be altogether independent of one another.


But above all I wish to designate the following as the most important
among the numerous questions which can be asked with regard to the
axioms: To prove that they are not contradictory, that is, that
a finite number of logical steps based upon them can never lead to
contradictory results.


In geometry, the proof of the compatibility of the axioms can be
effected by constructing a suitable field of numbers, such that
analogous relations between the numbers of this field correspond to
the geometrical axioms. Any contradiction in the deductions from the
geometrical axioms must thereupon be recognizable in the arithmetic
of this field of numbers. In this way the desired proof for the
compatibility of the geometrical axioms is made to depend upon the
theorem of the compatibility of the arithmetical axioms.


On the other hand a direct method is needed for the proof of the
compatibility of the arithmetical axioms. The axioms of arithmetic are
essentially nothing else than the known rules of calculation, with the
addition of the axiom of continuity. I recently collected them[4] and
in so doing replaced the axiom of continuity by two simpler axioms,

namely, the well-known axiom of Archimedes, and a new axiom essentially
as follows: that numbers form a system of things which is capable of
no further extension, as long as all the other axioms hold (axiom of
completeness). I am convinced that it must be possible to find a direct
proof for the compatibility of the arithmetical axioms, by means of
a careful study and suitable modification of the known methods of
reasoning in the theory of irrational numbers.


To show the significance of the problem from another point of view, I
add the following observation: If contradictory attributes be assigned
to a concept, I say, that mathematically the concept does not
exist. So, for example, a real number whose square is [image:  ] does
not exist mathematically. But if it can be proved that the attributes
assigned to the concept can never lead to a contradiction by the
application of a finite number of logical processes, I say that the
mathematical existence of the concept (for example, of a number or a
function which satisfies certain conditions) is thereby proved. In the
case before us, where we are concerned with the axioms of real numbers
in arithmetic, the proof of the compatibility of the axioms is at the
same time the proof of the mathematical existence of the complete
system of real numbers or of the continuum. Indeed, when the proof
for the compatibility of the axioms shall be fully accomplished, the
doubts which have been expressed occasionally as to the existence of
the complete system of real numbers will become totally groundless.
The totality of real numbers, i. e., the continuum according to
the point of view just indicated, is not the totality of all possible
series in decimal fractions, or of all possible laws according to which
the elements of a fundamental sequence may proceed. It is rather a
system of things whose mutual relations are governed by the axioms set
up and for which all propositions, and only those, are true which can
be derived from the axioms by a finite number of logical processes. In
my opinion, the concept of the continuum is strictly logically tenable
in this sense only. It seems to me, indeed, that this corresponds best
also to what experience and intuition tell us. The concept of the
continuum or even that of the system of all functions exists, then, in
exactly the same sense as the system of integral, rational numbers, for
example, or as Cantor's higher classes of numbers and cardinal numbers.
For I am convinced that the existence of the latter, just as that of
the continuum, can be proved in the sense I have described; unlike the

system of all cardinal numbers or of all Cantor's alephs, for
which, as may be shown, a system of axioms, compatible in my sense,
cannot be set up. Either of these systems is, therefore, according to
my terminology, mathematically non-existent.


From the field of the foundations of geometry I should like to mention
the following problem:







[4]
Jahresbericht der Deutchen
Mathematiker-Vereinigung, vol. 8 (1900), p. 180.









3. THE EQUALITY OF THE VOLUMES OF TWO TETRAHEDRA
OF EQUAL BASES AND EQUAL ALTITUDES.





In two letters to Gerling, Gauss[5] expresses his regret that certain
theorems of solid geometry depend upon the method of exhaustion, i.
e. in modern phraseology, upon the axiom of continuity (or upon
the axiom of Archimedes). Gauss mentions in particular the theorem
of Euclid, that triangular pyramids of equal altitudes are to each
other as their bases. Now the analogous problem in the plane has been
solved.[6] Gerling also succeeded in proving the equality of volume
of symmetrical polyhedra by dividing them into congruent parts.
Nevertheless, it seems to me probable that a general proof of this kind
for the theorem of Euclid just mentioned is impossible, and it should
be our task to give a rigorous proof of its impossibility. This would
be obtained, as soon as we succeeded in specifying two tetrahedra of
equal bases and equal altitudes which can in no way be split up into
congruent tetrahedra, and which cannot be combined with congruent
tetrahedra to form two polyhedra which themselves could be split up
into congruent tetrahedra.[7]







[5]
Werke, vol. 8, pp. 241 and 244.







[6]
Cf., beside earlier literature, Hilbert, Grundlagen der
Geometric, Leipzig, 1899, ch. 4. [Translation by Townsend, Chicago,
1902.]







[7]
Since this was written Herr Dehn has succeeded in proving
this impossibility. See his note: "Ueber raumgleiche Polyeder," in
Nachrichten d. K. Gesellsch. d. Wiss. zu Göttingen, 1900, and
a paper soon to appear in the Math. Annalen [vol. 55, pp.
405-478].









4. PROBLEM OF THE STRAIGHT LINE AS THE SHORTEST DISTANCE
BETWEEN TWO POINTS.





Another problem relating to the foundations of geometry is this:
If from among the axioms necessary to establish ordinary euclidean
geometry, we exclude the axiom of parallels, or assume it as not
satisfied, but retain all other axioms, we obtain, as is well known,
the geometry of Lobachevsky (hyperbolic geometry). We may therefore
say that this is a geometry standing next to euclidean geometry. If

we require further that that axiom be not satisfied whereby, of three
points of a straight line, one and only one lies between the other
two, we obtain Riemann's (elliptic) geometry, so that this geometry
appears to be the next after Lobachevsky's. If we wish to carry out
a similar investigation with respect to the axiom of Archimedes, we
must look upon this as not satisfied, and we arrive thereby at the
non-archimedean geometries which have been investigated by Veronese
and myself. The more general question now arises: Whether from other
suggestive standpoints geometries may not be devised which, with equal
right, stand next to euclidean geometry. Here I should like to direct
your attention to a theorem which has, indeed, been employed by many
authors as a definition of a straight line, viz., that the straight
line is the shortest distance between two points. The essential content
of this statement reduces to the theorem of Euclid that in a triangle
the sum of two sides is always greater than the third side—a theorem
which, as is easily seen, deals solely with elementary concepts,
i. e., with such as are derived directly from the axioms, and
is therefore more accessible to logical investigation. Euclid proved
this theorem, with the help of the theorem of the exterior angle, on
the basis of the congruence theorems. Now it is readily shown that
this theorem of Euclid cannot be proved solely on the basis of those
congruence theorems which relate to the application of segments and
angles, but that one of the theorems on the congruence of triangles
is necessary. We are asking, then, for a geometry in which all the
axioms of ordinary euclidean geometry hold, and in particular all the
congruence axioms except the one of the congruence of triangles (or all
except the theorem of the equality of the base angles in the isosceles
triangle), and in which, besides, the proposition that in every
triangle the sum of two sides is greater than the third is assumed as a
particular axiom.


One finds that such a geometry really exists and is no other than that
which Minkowski constructed in his book, Geometric der Zahlen,[8]
and made the basis of his arithmetical investigations. Minkowski's
is therefore also a geometry standing next to the ordinary euclidean
geometry; it is essentially characterized by the following stipulations:


1. The points which are at equal distances from a fixed point [image:  ] lie
on a convex closed surface of the ordinary euclidean space with [image:  ]
as a center.





2. Two segments are said to be equal when one can be carried into the
other by a translation of the ordinary euclidean space.


In Minkowski's geometry the axiom of parallels also holds. By studying
the theorem of the straight line as the shortest distance between two
points, I arrived[9] at a geometry in which the parallel axiom does not
hold, while all other axioms of Minkowski's geometry are satisfied.
The theorem of the straight line as the shortest distance between two
points and the essentially equivalent theorem of Euclid about the sides
of a triangle, play an important part not only in number theory but
also in the theory of surfaces and in the calculus of variations. For
this reason, and because I believe that the thorough investigation
of the conditions for the validity of this theorem will throw a new
light upon the idea of distance, as well as upon other elementary
ideas, e. g., upon the idea of the plane, and the possibility
of its definition by means of the idea of the straight line, the
construction and systematic treatment of the geometries here possible
seem to me desirable.







[8]
Leipzig, 1896.







[9]
Math. Annalen, vol. 46, p. 91.









5. LIE'S CONCEPT OF A CONTINUOUS GROUP OF TRANSFORMATIONS
WITHOUT THE ASSUMPTION OF THE
DIFFERENTIABILITY OF THE FUNCTIONS
DEFINING THE GROUP.








It is well known that Lie, with the aid of the concept of continuous
groups of transformations, has set up a system of geometrical axioms
and, from the standpoint of his theory of groups, has proved that this
system of axioms suffices for geometry. But since Lie assumes, in the
very foundation of his theory, that the functions defining his group
can be differentiated, it remains undecided in Lie's development,
whether the assumption of the differentiability in connection with
the question as to the axioms of geometry is actually unavoidable,
or whether it may not appear rather as a consequence of the group
concept and the other geometrical axioms. This consideration, as
well as certain other problems in connection with the arithmetical
axioms, brings before us the more general question: How far Lie's
concept of continuous groups of transformations is approachable in our
investigations without the assumption of the differentiability of the
functions.


Lie defines a finite continuous group of transformations
as a system of transformations
[image:  ]
having the property that any two arbitrarily chosen transformations
of the system, as
[image:  ]
applied successively result in a transformation which also belongs to
the system, and which is therefore expressible in the form
[image:  ]
where [image:  ] are certain functions of
[image:  ] and [image:  ]. The group
property thus finds its full expression in a system of functional
equations and of itself imposes no additional restrictions upon the
functions [image:  ]. Yet Lie's
further treatment of these functional equations, viz., the derivation
of the well-known fundamental differential equations, assumes
necessarily the continuity and differentiability of the functions
defining the group.


As regards continuity: this postulate will certainly be retained for
the present—if only with a view to the geometrical and arithmetical
applications, in which the continuity of the functions in question
appears as a consequence of the axiom of continuity. On the other hand
the differentiability of the functions defining the group contains a
postulate which, in the geometrical axioms, can be expressed only in a
rather forced and complicated manner. Hence there arises the question
whether, through the introduction of suitable new variables and
parameters, the group can always be transformed into one whose defining
functions are differentiable; or whether, at least with the help of
certain simple assumptions, a transformation is possible into groups
admitting Lie's methods. A reduction to analytic groups is, according
to a theorem announced by Lie[10] but first proved by Schur,[11] always
possible when the group is transitive and the existence of the first
and certain second derivatives of the functions defining the group is
assumed.





For infinite groups the investigation of the corresponding question is,
I believe, also of interest. Moreover we are thus led to the wide and
interesting field of functional equations which have been heretofore
investigated usually only under the assumption of the differentiability
of the functions involved. In particular the functional equations
treated by Abel[12] with so much ingenuity, the difference equations,
and other equations occurring in the literature of mathematics, do not
directly involve anything which necessitates the requirement of the
differentiability of the accompanying functions. In the search for
certain existence proofs in the calculus of variations I came directly
upon the problem: To prove the differentiability of the function under
consideration from the existence of a difference equation. In all these
cases, then, the problem arises: In how far are the assertions which
we can make in the case of differentiable functions true under proper
modifications without this assumption?


It may be further remarked that H. Minkowski in his above-mentioned
Geometrieder Zahlen starts with the functional equation
[image:  ]
and from this actually succeeds in proving the existence of certain
differential quotients for the function in question.


On the other hand I wish to emphasize the fact that there certainly
exist analytical functional equations whose sole solutions are
non-differentiable functions. For example a uniform continuous
non-differentiable function [image:  ] can be constructed which
represents the only solution of the two functional equations
[image:  ]
where [image:  ] and [image:  ] are two real numbers, and [image:  ]
denotes, for all the real values of [image:  ], a regular analytic uniform
function. Such functions are obtained in the simplest manner by means
of trigonometrical series by a process similar to that used by Borel
(according to a recent announcement of Picard)[13] for the construction
of a doubly periodic, non-analytic solution of a certain analytic
partial differential equation.










[10]
Lie-Engel, Theorie der Transformationsgruppen, vol. 3,
Leipzig, 1893, §§ 82, 144.







[11]
"Ueber den analytischen Charakter der eine endliche
Kontinuierliche Transformationsgruppen darstellenden Funktionen,"
Math. Annalen, vol. 41.







[12]
Werke, vol. 1, pp. 1, 61, 389.







[13]
"Quelques théories fondamentales dans l'analyse
mathématique," Conférences faites à Clark University, Revue générale
des Sciences, 1900, p. 22.









6. MATHEMATICAL TREATMENT OF THE AXIOMS OF PHYSICS.





The investigations on the foundations of geometry suggest the problem:
To treat in the tame manner, by means of axioms, those physical
sciences in which mathematics plays an important part; in the first
rank are the theory of probabilities and mechanics.


As to the axioms of the theory of probabilities,[14] it seems to me
desirable that their logical investigation should be accompanied by a
rigorous and satisfactory development of the method of mean values in
mathematical physics, and in particular in the kinetic theory of gases.


Important investigations by physicists on the foundations of mechanics
are at hand; I refer to the writings of Mach,[15] Hertz,[16]
Boltzmann[17] and Volkmann.[18] It is therefore very desirable
that the discussion of the foundations of mechanics be taken up by
mathematicians also. Thus Boltzmann's work on the principles of
mechanics suggests the problem of developing mathematically the
limiting processes, there merely indicated, which lead from the
atomistic view to the laws of motion of continua. Conversely one might
try to derive the laws of the motion of rigid bodies by a limiting
process from a system of axioms depending upon the idea of continuously
varying conditions of a material filling all space continuously,
these conditions being defined by parameters. For the question as to
the equivalence of different systems of axioms is always of great
theoretical interest.


If geometry is to serve as a model for the treatment of physical
axioms, we shall try first by a small number of axioms to include as
large a class as possible of physical phenomena, and then by adjoining
new axioms to arrive gradually at the more special theories. At the
same time Lie's a principle of subdivision can perhaps be derived from
profound theory of infinite transformation groups. The mathematician
will have also to take account not only of those theories coming
near to reality, but also, as in geometry, of all logically possible
theories. He must be always alert to obtain a complete survey of all
conclusions derivable from the system of axioms assumed.





Further, the mathematician has the duty to test exactly in each
instance whether the new axioms are compatible with the previous ones.
The physicist, as his theories develop, often finds himself forced
by the results of his experiments to make new hypotheses, while he
depends, with respect to the compatibility of the new hypotheses
with the old axioms, solely upon these experiments or upon a certain
physical intuition, a practice which in the rigorously logical
building up of a theory is not admissible. The desired proof of the
compatibility of all assumptions seems to me also of importance,
because the effort to obtain such proof always forces us most
effectually to an exact formulation of the axioms.





So far we have considered only questions concerning the foundations
of the mathematical sciences. Indeed, the study of the foundations
of a science is always particularly attractive, and the testing of
these foundations will always be among the foremost problems of the
investigator. Weierstrass once said, "The final object always to be
kept in mind is to arrive at a correct understanding of the foundations
of the science.[19] But to make any progress in the sciences the
study of particular problems is, of course, indispensable." In fact,
a thorough understanding of its special theories is necessary to the
successful treatment of the foundations of the science. Only that
architect is in the position to lay a sure foundation for a structure
who knows its purpose thoroughly and in detail. So we turn now to the
special problems of the separate branches of mathematics and consider
first arithmetic and algebra.







[14]
Cf. Bohlmann, "Ueber Versicherungsmathematik", from the
collection: Klein and Kiecke, Ueber angewandte Mathematik und Physik,
Leipzig, 1900.







[15]
Die Mechanik in ihrer Entwickelung, Leipzig, 4th edition,
1901.







[16]
Die Prinzipien der Mechanik, Leipzig, 1894.







[17]
Vorlesungen über die Principe der Mechanik, Leipzig,
1897.







[18]
Einführung in das Studium der theoretischen Physik,
Leipzig, 1900.







[19]
Math. Annalen, vol. 22, 1883.









7. IRRATIONALITY AND TRANSCENDENCE OF CERTAIN
NUMBERS.





Hermite's arithmetical theorems on the exponential function and their
extension by Lindemann are certain of the admiration of all generations
of mathematicians. Thus the task at once presents itself to penetrate
further along the path here entered, as A. Hurwitz has already done in
two interesting papers,[20] "Ueber arithmetische Eigenschaften gewisser
transzendenter Funktionen." I should like, therefore, to sketch a class
of problems which, in my opinion, should be attacked as here next in
order. That certain special transcendental functions, important in
analysis, take algebraic values for certain algebraic arguments, seems

to us particularly remarkable and worthy of thorough investigation.
Indeed, we expect transcendental functions to assume, in general,
transcendental values for even algebraic arguments; and, although
it is well known that there exist integral transcendental functions
which even have rational values for all algebraic arguments, we shall
still consider it highly probable that the exponential function
[image:  ], for example, which evidently has algebraic values
for all rational arguments [image:  ], will on the other hand always take
transcendental values for irrational algebraic values of the argument
[image:  ]. We can also give this statement a geometrical form, as follows:


If, in an isosceles triangle, the ratio of the base angle to the
angle at the vertex be algebraic but not rational, the ratio between
base and side is always transcendental.


In spite of the simplicity of this statement and of its similarity to
the problems solved by Hermite and Lindemann, I consider the proof of
this theorem very difficult; as also the proof that


The expression [image:  ], for an algebraic base
[image:  ] and an irrational algebraic exponent [image:  ], e.
g., the number [image:  ] or [image:  ],
always represents a transcendental or at least an irrational
number.


It is certain that the solution of these and similar problems must lead
us to entirely new methods and to a new insight into the nature of
special irrational and transcendental numbers.







[20]
Math. Annalen, vol. 32, 1888.









8. PROBLEMS OF PRIME NUMBERS.





Essential progress in the theory of the distribution of prime numbers
has lately been made by Hadamard, de la Vallée-Poussin, Von Mangoldt
and others. For the complete solution, however, of the problems set
us by Riemann's paper "Ueber die Anzahl der Primzahlen unter einer
gegebenen Grösse," it still remains to prove the correctness of an
exceedingly important statement of Riemann, viz., that the zero
points of the function [image:  ] defined by the series
[image:  ]
all have the real part [image:  ], except the well-known
negative integral real zeros. As soon as this proof has been
successfully established, the next problem would consist in testing
more exactly Riemann's infinite series for the number of primes below
a given number and, especially, to decide whether the difference

between the number of primes below a number [image:  ] and the integral
logarithm of [image:  ] does in fact become infinite of an order not greater
than [image:  ] in [image:  ].[21] Further, we should determine
whether the occasional condensation of prime numbers which has been
noticed in counting primes is really one to those terms of Riemann's
formula which depend upon the first complex zeros of the function
[image:  ].


After an exhaustive discussion of Riemann's prime number formula,
perhaps we may sometime be in a position to attempt the rigorous
solution of Goldbach's problem,[22] viz., whether every integer is
expressible as the sum of two positive prime numbers; and further to
attack the well-known question, whether there are an infinite number
of pairs of prime numbers with the difference [image:  ], or even the more
general problem, whether the linear diophantine equation
[image:  ]
(with given integral coefficients each prime to the others) is always
solvable in prime numbers [image:  ] and [image:  ].


But the following problem seems to me of no less interest and
perhaps of still wider range: To apply the results obtained for
the distribution of rational prime numbers to the theory of the
distribution of ideal primes in a given number-field [image:  ]—a problem
which looks toward the study of the function [image:  ] belonging
to the field and defined by the series
[image:  ]
where the sum extends over all ideals [image:  ] of the given realm [image:  ]
and [image:  ] denotes the norm of the ideal [image:  ].


I may mention three more special problems in number theory: one on the
laws of reciprocity, one on diophantine equations, and a third from the
realm of quadratic forms.







[21]
Cf. an article by H. von Koch, which is soon to appear in
the Math. Annalen [Vol. 55, p. 441].







[22]
Cf. P. Stäckel: "Über Goldbach's empirisches Theorem,"
Nachrichten d. K. Ges. d. Wiss. zu Göttingen, 1896, and Landau,
ibid., 1900.










9. PROOF OF THE MOST GENERAL LAW OF RECIPROCITY
IN ANY NUMBER FIELD.





For any field of numbers the law of reciprocity is to be proved for
the residues of the [image:  ]th power, when [image:  ] denotes an odd
prime, and further when [image:  ] is a power of [image:  ] or a power of an odd
prime.





The law, as well as the means essential to its proof, will, I believe,
result by suitably generalizing the theory of the field of the [image:  ]th
roots of unity,[23] developed by me, and my theory of relative
quadratic fields.[24]







[23]
Jahresber. d. Deutschen Math.-Vereinigung, "Ueber
die Theorie der algebraischen Zahlkörper," vol. 4 (1897), Part V.







[24]
Math. Annalen, vol. 51 and Nachrichten d. K.
Ges. d. Wiss. zu Göttingen, 1898.










10. DETERMINATION OF THE SOLVABILITY OF A DIOPHANTINE EQUATION.





Given a diophantine equation with any number of unknown quantities
and with rational integral numerical coefficients: To devise a
process according to which it can be determined by a finite number of
operations whether the equation is solvable in rational integers.






11. QUADRATIC FORMS WITH ANY ALGEBRAIC NUMERICAL
COEFFICIENTS.





Our present knowledge of the theory of quadratic number fields[25] puts
us in a position to attack successfully the theory of quadratic
forms with any number of variables and with any algebraic numerical
coefficients. This leads in particular to the interesting
problem: to solve a given quadratic equation with algebraic numerical
coefficients in any number of variables by integral or fractional
numbers belonging to the algebraic realm of rationality determined by
the coefficients.


The following important problem may form a transition to algebra and
the theory of functions:







[25]
Hilbert, "Ueber den Dirichlet'schen biquadratischen
Zahlenkörper," Math. Annalen, vol. 45; "Ueber die Theorie
der relativquadratischen Zahlenkörper," Jahresber. d. Deutschen
Mathematiker-Vereinigung, 1897, and Math. Annalen, vol.
51; "Ueber die Theorie der relativ-Abelschen Körper," Nachrichten
d. K. Ges. d. Wiss. zu Göttingen, 1898; Grundlagen der Geometrie,
Leipzig, 1899, Chap. VIII, § 83 [Translation by Townsend, Chicago,
1902]. Cf. also the dissertation of G. Rückle, Göttingen, 1901.









12. EXTENSION OF KRONECKER'S THEOREM ON ABELIAN
FIELDS TO ANY ALGEBRAIC REALM OF RATIONALITY.





The theorem that every abelian number field arises from the realm of
rational numbers by the composition of fields of roots of unity is
due to Kronecker. This fundamental theorem in the theory of integral
equations contains two statements, namely:


First. It answers the question as to the number and existence of those

equations which have a given degree, a given abelian group and a given
discriminant with respect to the realm of rational numbers.


Second. It states that the roots of such equations form a realm of
algebraic numbers which coincides with the realm obtained by assigning
to the argument [image:  ] in the exponential function [image:  ] all
rational numerical values in succession.


The first statement is concerned with the question of the determination
of certain algebraic numbers by their groups and their branching.
This question corresponds, therefore, to the known problem of the
determination of algebraic functions corresponding to given Riemann
surfaces. The second statement furnishes the required numbers by
transcendental means, namely, by the exponential function [image:  ].


Since the realm of the imaginary quadratic number fields is the
simplest after the realm of rational numbers, the problem arises, to
extend Kronecker's theorem to this case. Kronecker himself has made the
assertion that the abelian equations in the realm of a quadratic field
are given by the equations of transformation of elliptic functions
with singular moduli, so that the elliptic function assumes here the
same rôle as the exponential function in the former case. The proof of
Kronecker's conjecture has not yet been furnished; but I believe that
it must be obtainable without very great difficulty on the basis of the
theory of complex multiplication developed by H. Weber[26] with the
help of the purely arithmetical theorems on class fields which I have
established.


Finally, the extension of Kronecker's theorem to the case that,
in place of the realm of rational numbers or of the imaginary
quadratic field, any algebraic field whatever is laid down as realm of
rationality, seems to me of the greatest importance. I regard this
problem as one of the most profound and far-reaching in the theory of
numbers and of functions.


The problem is found to be accessible from many standpoints. I regard
as the most important key to the arithmetical part of this problem the
general law of reciprocity for residues of [image:  ]th powers within any
given number field.


As to the function-theoretical part of the problem, the investigator
in this attractive region will be guided by the remarkable analogies
which are noticeable between the theory of algebraic functions of
one variable and the theory of algebraic numbers. Hensel[27] has

proposed and investigated the analogue in the theory of algebraic
numbers to the development in power series of an algebraic function;
and Landsberg[28] has treated the analogue of the Riemann-Roch theorem.
The analogy between the deficiency of a Riemann surface and that of
the class number of a field of numbers is also evident. Consider a
Riemann surface of deficiency [image:  ] (to touch on the simplest case
only) and on the other hand a number field of class [image:  ]. To the
proof of the existence of an integral everywhere finite on the Riemann
surface, corresponds the proof of the existence of an integer [image:  ]
in the number field such that the number [image:  ] represents a
quadratic field, relatively unbranched with respect to the fundamental
field. In the theory of algebraic functions, the method of boundary
values (Randwerthaufgabe) serves, as is well known, for the
proof of Riemann's existence theorem. In the theory of number fields
also, the proof of the existence of just this number [image:  ] offers the
greatest difficulty. This proof succeeds with indispensable assistance
from the theorem that in the number field there are always prime
ideals corresponding to given residual properties. This latter fact
is therefore the analogue in number theory to the problem of boundary
values.


The equation of Abel's theorem in the theory of algebraic functions
expresses, as is well known, the necessary and sufficient condition
that the points in question on the Riemann surface are the zero points
of an algebraic function belonging to the surface. The exact analogue
of Abel's theorem, in the theory of the number field of class
[image:  ], is the equation of the law of quadratic reciprocity[29]
[image:  ]
which declares that the ideal [image:  ] is then and only then a principal
ideal of the number field when the quadratic residue of the number
[image:  ] with respect to the ideal [image:  ] is positive.


It will be seen that in the problem just sketched the three fundamental
branches of mathematics, number theory, algebra and function theory,
come into closest touch with one another, and I am certain that the

theory of analytical functions of several variables in particular would
be notably enriched if one should succeed in finding and discussing
those functions which play the part for any algebraic number field
corresponding to that of the exponential function in the field of
rational numbers and of the elliptic modular functions in the imaginary
quadratic number field.


Passing to algebra, I shall mention a problem from the theory of
equations and one to which the theory of algebraic invariants has led
me.







[26]
Elliptische Funktionen und algebraische Zahlen.
Braunschweig, 1891.







[27]
Jahresber. d. Deutschen Math-Vereinigung, vol.
6, and an article soon to appear in the Math. Annalen [Vol.
55, p. 301]: "Ueber die Entwickelung der algebraischen Zahlen in
Potenzreihen."







[28]
Math. Annalen vol. 50 (1898).







[29]
Cf. Hilbert, "Ueber die Theorie der relativ-Abelschen
Zahlkörper," Gött. Nachrichten, 1898.










13. IMPOSSIBILITY OF THE SOLUTION OF THE GENERAL
EQUATION OF THE 7TH DEGREE BY MEANS OF
FUNCTIONS OF ONLY TWO ARGUMENTS.





Nomography[30] deals with the problem: to solve equations by means of
drawings of families of curves depending on an arbitrary parameter.
It is seen at once that every root of an equation whose coefficients
depend upon only two parameters, that is, every function of two
independent variables, can be represented in manifold ways according
to the principle lying at the foundation of nomography. Further, a
large class of functions of three or more variables can evidently
be represented by this principle alone without the use of variable
elements, namely all those which can be generated by forming first a
function of two arguments, then equating each of these arguments to
a function of two arguments, next replacing each of those arguments
in their turn by a function of two arguments, and so on, regarding
as admissible any finite number of insertions of functions of two
arguments. So, for example, every rational function of any number of
arguments belongs to this class of functions constructed by nomographic
tables; for it can be generated by the processes of addition,
subtraction, multiplication and division and each of these processes
produces a function of only two arguments. One sees easily that the
roots of all equations which are solvable by radicals in the natural
realm of rationality belong to this class of functions; for here the
extraction of roots is adjoined to the four arithmetical operations and
this, indeed, presents a function of one argument only. Likewise the
general equations of the [image:  ]th and [image:  ]th degrees are solvable by suitable
nomographic tables; for, by means of Tschirnhausen transformations,
which require only extraction of roots, they can be reduced to a form

where the coefficients depend upon two parameters only.


Now it is probable that the root of the equation of the seventh degree
is a function of its coefficients which does not belong to this class
of functions capable of nomographic construction, i. e.,
that it cannot be constructed by a finite number of insertions of
functions of two arguments. In order to prove this, the proof would
be necessary that the equation of the seventh degree [image:  ] is not solvable with the help of any
continuous functions of only two arguments. I may be allowed to add
that I have satisfied myself by a rigorous process that there exist
analytical functions of three arguments [image:  ] which cannot be
obtained by a finite chain of functions of only two arguments.


By employing auxiliary movable elements, nomography succeeds in
constructing functions of more than two arguments, as d'Ocagne has
recently proved in the case of the equation of the [image:  ]th degree.[31]







[30]
d'Ocagne, Traité de Nomographie, Paris, 1899.







[31]
"Sur la resolution nomographiqne de l'équation du
septième degré." Comptes rendus, Paris, 1900.









14. PROOF OF THE FINITENESS OF CERTAIN COMPLETE
SYSTEMS OF FUNCTIONS.





In the theory of algebraic invariants, questions as to the finiteness
of complete systems of forms deserve, as it seems to me, particular
interest. L. Maurer[32] has lately succeeded in extending the theorems
on finiteness in invariant theory proved by P. Gordan and myself, to
the case where, instead of the general projective group, any subgroup
is chosen as the basis for the definition of invariants.


An important step in this direction had been taken already by A.
Hurwitz,[33] who, by an ingenious process, succeeded in effecting the
proof, in its entire generality, of the finiteness of the system of
orthogonal invariants of an arbitrary ground form.





The study of the question as to the finiteness of invariants has led me
to a simple problem which includes that question as a particular case
and whose solution probably requires a decidedly more minutely detailed
study of the theory of elimination and of Kronecker's algebraic modular
systems than has yet been made.


Let a number [image:  ] of integral rational functions
[image:  ] of the [image:  ] variables
[image:  ] be given,
[image:  ]



Every rational integral combination of [image:  ] must
evidently always become, after substitution of the above expressions,
a rational integral function of [image:  ].
Nevertheless, there may well be rational fractional functions of
[image:  ] which, by the operation of the substitution
[image:  ], become integral functions in [image:  ]. Every
such rational function of [image:  ], which becomes
integral in [image:  ] after the application of the
substitution [image:  ], I propose to call a relatively integral
function of [image:  ]. Every integral function of
[image:  ] is evidently also relatively integral;
further the sum, difference and product of relative integral functions
are themselves relatively integral.


The resulting problem is now to decide whether it is always possible
to find a finite system of relatively integral function
[image:  ] by which every other relatively integral
function of [image:  ] may be expressed
rationally and integrally.


We can formulate the problem still more simply if we introduce the idea
of a finite field of integrality. By a finite field of integrality I
mean a system of functions from which a finite number of functions
can be chosen, in terms of which all other functions of the system
are rationally and integrally expressible. Our problem amounts, then,
to this: to show that all relatively integral functions of any given
domain of rationality always constitute a finite field of integrality.


It naturally occurs to us also to refine the problem by restrictions
drawn from number theory, by assuming the coefficients of the given
functions [image:  ] to be integers and including among
the relatively integral functions of [image:  ]
only such rational functions of these arguments as become, by the
application of the substitutions [image:  ], rational integral functions of
[image:  ] with rational integral coefficients.


The following is a simple particular case of this refined problem:
Let [image:  ] integral rational functions [image:  ] of
one variable [image:  ] with integral rational coefficients, and a prime
number [image:  ] be given. Consider the system of those integral rational
functions of [image:  ] which can be expressed in the form
[image:  ]
where [image:  ] is a rational integral function of the arguments
[image:  ] and [image:  ] is any power of the prime
number [image:  ]. Earlier investigations of mine[34] show immediately
that all such expressions for a fixed exponent [image:  ] form a finite
domain of integrality. But the question here is whether the same is
true for all exponents [image:  ], i. e., whether a finite number of
such expressions can be chosen by means of which for every exponent
[image:  ] every other expression of that form is integrally and rationally
expressible.



From the boundary region between algebra and geometry, I will mention
two problems. The one concerns enumerative geometry and the other the
topology of algebraic curves and surfaces.







[32]
Cf. Sitzungsber. d. K. Acad. d. Wiss. zu München,
1890, and an article about to appear in the Math. Annalen.







[33]
"Ueber die Erzeugung der Invarianten durch Integration,"
Nachrichten d. K. Geseltschaft d. Wiss. zu Göttingen, 1897.







[34]
Math. Annalen, vol. 36 (1890), p. 485.









15. RIGOROUS FOUNDATION OF SCHUBERT'S ENUMERATIVE
CALCULUS.





The problem consists in this: To establish rigorously and with an
exact determination of the limits of their validity those geometrical
numbers which Schubert[35] especially has determined on the
basis of the so-called principle of special position, or conservation
of number, by means of the enumerative calculus developed by him.


Although the algebra of to-day guarantees, in principle, the
possibility of carrying out the processes of elimination, yet for
the proof of the theorems of enumerative geometry decidedly more
is requisite, namely, the actual carrying out of the process of
elimination in the case of equations of special form in such a way
that the degree of the final equations and the multiplicity of their
solutions may be foreseen.







[35]
Kalkül der abzählenden Geometrie, Leipzig, 1879.









16. PROBLEM OF THE TOPOLOGY OF ALGEBRAIC CURVES
AND SURFACES.





The maximum number of closed and separate branches which a plane
algebraic curve of the [image:  ]th order can have has been determined by
Harnack.[36] There arises the further question as to the relative
position of the branches in the plane. As to curves of the [image:  ]th order,
I have satisfied myself—by a complicated process, it is true—that of
the eleven blanches which they can have according to Harnack, by no
means all can lie external to one another, but that one branch must
exist in whose interior one branch and in whose exterior nine branches
lie, or inversely. A thorough investigation of the relative position
of the separate branches when their number is the maximum seems to
me to be of very great interest, and not less so the corresponding
investigation as to the number, form, and position of the sheets of an
algebraic surface in space. Till now, indeed, it is not even known
what is the maximum number of sheets which a surface of the [image:  ]th order
in three dimensional space can really have.[37]


In connection with this purely algebraic problem, I wish to bring
forward a question which, it seems to me, may be attacked by the same
method of continuous variation of coefficients, and whose answer is of
corresponding value for the topology of families of curves defined by
differential equations. This is the question as to the maximum number
and position of Poincaré's boundary cycles (cycles limites) for a
differential equation of the first order and degree of the form
[image:  ]
where [image:  ] and [image:  ] are rational integral functions of the [image:  ]th
degree in [image:  ] and [image:  ]. Written homogeneously, this is
[image:  ]
where [image:  ], [image:  ] and [image:  ] are rational integral homogeneous functions
of the [image:  ]th degree in [image:  ], and the latter are to be
determined as functions of the parameter [image:  ].







[36]
Math. Annalen, vol. 10.







[37]
Cf. Rohn. "Flächen vierter Ordnung," Preisschriften der
Fürstlich Jablonowskischen Gesellschaft, Leipzig, 1886.









17. EXPRESSION OF DEFINITE FORMS BY SQUARES.





A rational integral function or form in any number of variables with
real coefficients such that it becomes negative for no real values
of these variables, is said to be definite. The system of all
definite forms is invariant with respect to the operations of addition
and multiplication, but the quotient of two definite forms—in case

it should be an integral function of the variables—is also a definite
form. The square of any form is evidently always a definite form. But
since, as I have shown,[38] not every definite form can be compounded
by addition from squares of forms, the question arises—which I have
answered affirmatively for ternary forms[39]—whether every definite
form may not be expressed as a quotient of sums of squares of forms.
At the same time it is desirable, for certain questions as to the
possibility of certain geometrical constructions, to know whether the
coefficients of the forms to be used in the expression may always be
taken from the realm of rationality given by the coefficients of the
form represented.[40]


I mention one more geometrical problem:







[38]
Math. Annalen, vol. 32.







[39]
Acta Mathematica, vol. 17.







[40]
Cf. Hilbert: Grunglagen der Geometrie, Leipzig, 1899,
Chap. 7 and in particular § 38.









18. BUILDING UP OF SPACE FROM CONGRUENT POLYHEDRA.





If we enquire for those groups of motions in the plane for which a
fundamental region exists, we obtain various answers, according as the
plane considered is Riemann's (elliptic), Euclid's, or Lobachevsky's
(hyperbolic). In the case of the elliptic plane there is a finite
number of essentially different kinds of fundamental regions, and a
finite number of congruent regions suffices for a complete covering
of the whole plane; the group consists indeed of a finite number of
motions only. In the case of the hyperbolic plane there is an infinite
number of essentially different kinds of fundamental regions, namely,
the well-known Poincaré polygons. For the complete covering of the
plane an infinite number of congruent regions is necessary. The case of
Euclid's plane stands between these; for in this case there is only a
finite number of essentially different kinds of groups of motions with
fundamental regions, but for a complete covering of the whole plane an
infinite number of congruent regions is necessary.


Exactly the corresponding facts are found in space of three dimensions.
The fact of the finiteness of the groups of motions in elliptic
space is an immediate consequence of a fundamental theorem of C.
Jordan,[41] whereby the number of essentially different kinds of
finite groups of linear substitutions in [image:  ] variables does not
surpass a certain finite limit dependent upon [image:  ]. The groups
of motions with fundamental regions in hyperbolic space have been
investigated by Fricke and Klein in the lectures on the theory of
automorphic functions,[42] and finally Fedorov,[43]
Schoenflies[44]
and lately Rohn[45] have given the proof that there are, in euclidean
space, only a finite number of essentially different kinds of groups
of motions with a fundamental region. Now, while the results and
methods of proof applicable to elliptic and hyperbolic space hold
directly for [image:  ]-dimensional space also, the generalization of the
theorem for euclidean space seems to offer decided difficulties. The
investigation of the following question is therefore desirable: Is
there in [image:  ]-dimensional euclidean space also only a finite number
of essentially different kinds of groups of motions with a fundamental
region?


A fundamental region of each group of motions, together with the
congruent regions arising from the group, evidently fills up space
completely. The question arises: Whether polyhedra also exist which
do not appear as fundamental regions of groups of motions, by means
of which nevertheless by a suitable juxtaposition of congruent copies
a complete filling up of all space is possible. I point out the
following question, related to the preceding one, and important to
number theory and perhaps sometimes useful to physics and chemistry:
How can one arrange most densely in space an infinite number of equal
solids of given form, e. g., spheres with given radii or regular
tetrahedra with given edges (or in prescribed position), that is,
how can one so fit them together that the ratio of the filled to the
unfilled space may be as great as possible?





If we look over the development of the theory of functions in the last
century, we notice above all the fundamental importance of that class
of functions which we now designate as analytic functions—a class
of functions which will probably stand permanently in the center of
mathematical interest.


There are many different standpoints from which we might choose,
out of the totality of all conceivable functions, extensive classes
worthy of a particularly thorough investigation. Consider, for

example, the class of functions characterized by ordinary or
partial algebraic differential equations. It should be observed
that this class does not contain the functions that arise in number
theory and whose investigation is of the greatest importance. For
example, the before-mentioned function [image:  ] satisfies no
algebraic differential equation, as is easily seen with the help of the
well-known relation between [image:  ] and [image:  ], if one
refers to the theorem proved by Holder,[46] that the function
[image:  ] satisfies no algebraic differential equation. Again, the function
of the two variables [image:  ] and [image:  ] defined by the infinite series
[image:  ]
which stands in close relation with the function [image:  ],
probably satisfies no algebraic partial differential equation. In the
investigation of this question the functional equation
[image:  ]
will have to be used.


If, on the other hand, we are lead by arithmetical or geometrical
reasons to consider the class of all those functions which are
continuous and indefinitely differentiable, we should be obliged in
its investigation to dispense with that pliant instrument, the power
series, and with the circumstance that the function is fully determined
by the assignment of values in any region, however small. While,
therefore, the former limitation of the field of functions was too
narrow, the latter seems to me too wide.


The idea of the analytic function on the other hand includes the whole
wealth of functions most important to science, whether they have their
origin in number theory, in the theory of differential equations or of
algebraic functional equations, whether they arise in geometry or in
mathematical physics; and, therefore, in the entire realm of functions,
the analytic function justly holds undisputed supremacy.







[41]
Crelle's Journal, vol. 84 (1878), and Atti d.
Reale Acad. di Napoli, 1880.







[42]
Leipzig, 1897. Cf. especially Abschnitt I, Chaplets 2 and
3.







[43]
Symmetrie der regelmässigen Systeme von Figuren, 1890.







[44]
Krystallsysteme und Krystallstruktur, Leipzig, 1891.







[45]
Math. Annalen, vol. 53.







[46]
Math. Annalen, vol. 28.









19. ARE THE SOLUTIONS OF REGULAR PROBLEMS IN THE CALCULUS
OF VARIATIONS ALWAYS NECESSARILY ANALYTIC?





One of the most remarkable facts in the elements of the theory of
analytic functions appears to me to be this: That there exist partial
differential equations whose integrals are all of necessity analytic

functions of the independent variables, that is, in short, equations
susceptible of none but analytic solutions. The best known partial
differential equations of this kind are the potential equation
[image:  ]
and certain linear differential equations investigated by Picard;[47]
also the equation
[image:  ]
the partial differential equation of minimal surfaces, and others. Most
of these partial differential equations have the common characteristic
of being the lagrangian differential equations of certain problems of
variation, viz., of such problems of variation
[image:  ]
[image:  ]
as satisfy, for all values of the arguments which fall within
the range of discussion, the inequality
[image:  ]
[image:  ] itself being an analytic function. We shall call this sort of
problem a regular variation problem. It is chiefly the regular
variation problems that play a rôle in geometry, in mechanics, and
in mathematical physics; and the question naturally arises, whether
all solutions of regular variation problems must necessarily be
analytic functions. In other words, does every lagrangian partial
differential equation of a regular variation problem have the property
of admitting analytic integrals exclusively? And is this the case
even when the function is constrained to assume, as, e. g., in
Dirichlet's problem on the potential function, boundary values which
are continuous, but not analytic?


I may add that there exist surfaces of constant negative
gaussian curvature which are representable by functions that are
continuous and possess indeed all the derivatives, and yet are not

analytic; while on the other hand it is probable that every surface
whose gaussian curvature is constant and positive is necessarily an
analytic surface. And we know that the surfaces of positive constant
curvature are most closely related to this regular variation problem:
To pass through a closed curve in space a surface of minimal area which
shall inclose, in connection with a fixed surface through the same
closed curve, a volume of given magnitude.







[47]
Jour. de l'Ecole Polytech., 1890.










20. THE GENERAL PROBLEM OF BOUNDARY VALVES.





An important problem closely connected with the foregoing is the
question concerning the existence of solutions of partial differential
equations when the values on the boundary of the region are prescribed.
This problem is solved in the main by the keen methods of H. A.
Schwarz, C. Neumann, and Poincaré for the differential equation of the
potential. These methods, however, seem to be generally not capable
of direct extension to the case where along the boundary there are
prescribed either the differential coefficients or any relations
between these and the values of the function. Nor can they be extended
immediately to the case where the inquiry is not for potential surfaces
but, say, for surfaces of least area, or surfaces of constant positive
gaussian curvature, which are to pass through a prescribed twisted
curve or to stretch over a given ring surface. It is my conviction
that it will be possible to prove these existence theorems by means
of a general principle whose nature is indicated by Dirichlet's
principle. This general principle will then perhaps enable us to
approach the question: Has not every regular variation problem a
solution, provided certain assumptions regarding the given boundary
conditions are satisfied (say that the functions concerned in these
boundary conditions are continuous and have in sections one or more
derivatives), and provided also if need be that the notion of a
solution shall be suitably extended?[48]







[48]
Cf. my lecture on Dirichlet's principle in the
Jahresber. d. Deutschen Math.-Vereinigung, vol. 8 (1900), p.
184.









21. PROOF OF THE EXISTENCE OF LINEAR DIFFERENTIAL
EQUATIONS HAVING A PRESCRIBED MONODROMIC GROUP.





In the theory of linear differential equations with one independent
variable [image:  ], I wish to indicate an important problem, one which
very likely Riemann himself may have had in mind. This problem is as
follows: To show that there always exists a linear differential
equation of the Fuchsian class, with given singular points and

monodromic group. The problem requires the production of [image:  ]
functions of the variable [image:  ], regular throughout the complex
[image:  ] plane except at the given singular points; at these points
the functions may become infinite of only finite order, and when
[image:  ] describes circuits about these points the functions shall
undergo the prescribed linear substitutions. The existence of such
differential equations has been shown to be probable by counting the
constants, but the rigorous proof has been obtained up to this time
only in the particular case where the fundamental equations of the
given substitutions have roots all of absolute magnitude unity. L.
Schlesinger has given this proof,[49] based upon Poincaré's theory of
the Fuchsian [image:  ]-functions. The theory of linear differential
equations would evidently have a more finished appearance if the
problem here sketched could be disposed of by some perfectly general
method.







[49]
Handbuch der Theorie der linearen
Differentialgleichungen, vol. 2, part 2, No. 366.









22. UNIFORMIZATIOM OF ANALYTIC RELATION'S BY MEANS
OF AUTOMORPHIC FUNCTIONS.





As Poincaré was the first to prove, it is always possible to reduce
any algebraic relation between two variables to uniformity by the use
of automorphic functions of one variable. That is, if any algebraic
equation in two variables be given, there can always be found for
these variables two such single valued automorphic functions of a
single variable that their substitution renders the given algebraic
equation an identity. The generalization of this fundamental theorem
to any analytic non-algebraic relations whatever between two variables
has likewise been attempted with success by Poincaré,[50] though by
a way entirely different from that which served him in the special
problem first mentioned. From Poincaré's proof of the possibility of
reducing to uniformity an arbitrary analytic relation between two
variables, however, it does not become apparent whether the resolving
functions can be determined to meet certain additional conditions.
Namely, it is not shown whether the two single valued functions of the
one new variable can be so chosen that, while this variable traverses
the regular domain of those functions, the totality of all
regular points of the given analytic field are actually reached and
represented. On the contrary it seems to be the case, from Poincaré's

investigations, that there are beside the branch points certain others,
in general infinitely many other discrete exceptional points of the
analytic field, that can be reached only by making the new variable
approach certain limiting points of the functions. In view of the
fundamental importance of Poincaré's formulation of the question it
seems to me that an elucidation and resolution of this difficulty is
extremely desirable.


In conjunction with this problem comes up the problem of reducing to
uniformity an algebraic or any other analytic relation among three or
more complex variables—a problem which is known to be solvable in many
particular cases. Toward the solution of this the recent investigations
of Picard on algebraic functions of two variables are to be regarded as
welcome and important preliminary studies.







[50]
Bull. de la Soc. Math. de France, vol. 11 (1883).









23. FURTHER DEVELOPMENT OF THE METHODS OF THE
CALCULUS OF VARIATIONS.





So far, I have generally mentioned problems as definite and special
as possible, in the opinion that it is just such definite and special
problems that attract us the most and from which the most lasting
influence is often exerted upon science. Nevertheless, I should like to
close with a general problem, namely with the indication of a branch of
mathematics repeatedly mentioned in this lecture—which, in spite of
the considerable advancement lately given it by Weierstrass, does not
receive the general appreciation which, in my opinion, is its due—I
mean the calculus of variations.[51]


The lack of interest in this is perhaps due in part to the need of
reliable modern text books. So much the more praiseworthy is it that A.
Kneser in a very recently published work has treated the calculus of
variations from the modern points of view and with regard to the modern
demand for rigor.[52]


The calculus of variations is, in the widest sense, the theory of the
variation of functions, and as such appears as a necessary extension
of the differential and integral calculus. In this sense, Poincaré's

investigations on the problem of three bodies, for example, form a
chapter in the calculus of variations, in so far as Poincaré derives
from known orbits by the principle of variation new orbits of similar
character.


I add here a short justification of the general remarks upon the
calculus of variations made at the beginning of my lecture.


The simplest problem in the calculus of variations proper is known to
consist in finding a function [image:  ] of a variable [image:  ] such that the
definite integral
[image:  ]
assumes a minimum value as compared with the values it takes when [image:  ]
is replaced by other functions of [image:  ] with the same initial and final
values.


The vanishing of the first variation in the usual sense
[image:  ]
gives for the desired function [image:  ] the well-known differential
equation
[image:  ]


In order to investigate more closely the necessary and sufficient
criteria for the occurrence of the required minimum, we consider the
integral
[image:  ]
[image:  ]



Now we inquire how [image:  ] is to be chosen at function of [image:  ],
[image:  ] in order that the value of this integral [image:  ] shall
be independent of the path of integration, i. e., of the choice
of the function [image:  ] of the variable [image:  ]. The integral
[image:  ] has the form
[image:  ]
where [image:  ] and [image:  ] do not contain [image:  ] and the vanishing of the
first variation
[image:  ]
in the sense which the new question requires gives the equation
[image:  ]
i.e. we obtain for the function [image:  ] of the two variables
[image:  ], [image:  ] the partial differential equation of the first order
[image:  ]



The ordinary differential equation of the second order (1) and the
partial differential equation (1*) stand in the closest relation to
each other. This relation becomes immediately clear to us by the
following simple transformation
[image:  ]


We derive from this, namely, the following facts: If we construct any
simple family of integral curves of the ordinary differential
equation (1) of the second order and then form an ordinary differential
equation of the first order
[image:  ]
which also admits these integral curves as solutions, then the function
[image:  ] is always an integral of the partial differential equation
(1*) of the first order; and conversely, if [image:  ] denotes any
solution of the partial differential equation (1*) of the first
order, all the non-singular integrals of the ordinary differential
equation (2) of the first order are at the same time integrals of
the differential equation (1) of the second order, or in short if
[image:  ] is an integral equation of the first order of the
differential equation (1) of the second order, [image:  ] represents
an integral of the partial differential equation (1*) and conversely;

the integral carves of the ordinary differential equation of the second
order are therefore, at the same time, the characteristics of the
partial differential equation (1*) of the first order.


In the present case we may find the same result by means of a simple
calculation; for this gives us the differential equations (1) and (1*)
in question in the form
[image:  ]
where the lower indices indicate the partial derivatives with respect
to [image:  ]. The correctness of the affirmed relation
is clear from this.


The close relation derived before and just proved between the ordinary
differential equation (1) of the second order and the partial
differential equation (1*) of the first order, is, as it seems to me,
of fundamental significance for the calculus of variations. For, from
the fact that the integral [image:  ] is independent of the path of
integration it follows that
[image:  ]
if we think of the left hand integral as taken along any path [image:  ] and
the right hand integral along an integral curve [image:  ] of
the differential equation
[image:  ]



With the help of equation (3) we arrive at Weierstrass's formula
[image:  ]
where [image:  ] designates Weierstrass's expression, depending upon
[image:  ],
[image:  ]



Since, therefore, the solution depends only on finding an integral
[image:  ] which is single valued and continuous in a certain
neighborhood of the integral curve [image:  ], which we are
considering, the developments just indicated lead immediately—without
the introduction of the second variation, but only by the application
of the polar process to the differential equation (1)—to the
expression of Jacobi's condition and to the answer to the question:
How far this condition of Jacobi's in conjunction with Weierstrass's
condition [image:  ] is necessary and sufficient for the occurrence of a
minimum.


The developments indicated may be transferred without necessitating
further calculation to the case of two or more required functions, and
also to the case of a double or a multiple integral. So, for example,
in the case of a double integral
[image:  ]
to be extended over a given region [image:  ], the vanishing of the
first variation (to be understood in the usual sense)
[image:  ]
gives the well-known differential equation of the second order
[image:  ]
for the required function [image:  ] of [image:  ] and [image:  ].


On the other hand we consider the integral
[image:  ]
[image:  ]
and inquire, how [image:  ] and [image:  ] are to be taken as
functions of [image:  ], [image:  ] and [image:  ] in order that the
value of this integral may be independent of the choice of the surface
passing through the given closed twisted curve, i. e., of the choice of
the function [image:  ] of the variables [image:  ] and [image:  ].


The integral [image:  ] has the form
[image:  ]
and the vanishing of the first variation
[image:  ]
in the sense which the new formulation of the question demands, gives
the equation
[image:  ]
i. e., we find for the functions [image:  ] and [image:  ] of the three
variables [image:  ], [image:  ] and [image:  ] the differential equation of the first
order
[image:  ]


If we add to this differential equation the partial differential
equation
[image:  ]
resulting from the equations
[image:  ]
the partial differential equation (I) for the function [image:  ] of the
two variables [image:  ] and [image:  ] and the simultaneous system of the two
partial differential equations of the first order (I*) for the two
functions [image:  ] and [image:  ] of the three variables [image:  ], [image:  ], and
[image:  ] stand toward one another in a relation exactly analogous to that
in which the differential equations (1) and (1*) stood in the case of
the simple integral.


It follows from the fact that the integral [image:  ] is independent
of the choice of the surface of integration [image:  ] that
[image:  ]
if we think of the right hand integral as taken over an integral
surface [image:  ] of the partial differential equations
[image:  ]

and with the help of this formula we arrive at once at the formula
[image:  ]
[image:  ]
which plays the same rôle for the variation of double integrals as the
previously given formula (4) for simple integrals. With the help of
this formula we can now answer the question how far Jacobi's condition
in conjunction with Weierstrass's condition [image:  ] is necessary and
sufficient for the occurrence of a minimum.


Connected with these developments is the modified form in which
A. Kneser,[53] beginning from other points of view, has presented
Weierstrass's theory. While Weierstrass employed to derive sufficient
conditions for the extreme values integral curves of equation (1)
which pass through a fixed point, Kneser on the other hand makes use
of any simple family of such curves and constructs for every such
family a solution, characteristic for that family, of that partial
differential equation which is to be considered as a generalization of
the Jacobi-Hamilton equation.





The problems mentioned are merely samples of problems, yet they
will suffice to show how rich, how manifold and how extensive the
mathematical science of to-day is, and the question is urged upon us
whether mathematics is doomed to the fate of those other sciences that
have split up into separate branches, whose representatives scarcely
understand one another and whose connection becomes ever more loose. I
do not believe this nor wish it. Mathematical science is in my opinion
an indivisible whole, an organism whose vitality is conditioned upon
the connection of its parts. For with all the variety of mathematical
knowledge, we are still clearly conscious of the similarity of the
logical devices, the relationship of the ideas in mathematics as a
whole and the numerous analogies in its different departments. We
also notice that, the farther a mathematical theory is developed, the
more harmoniously and uniformly does its construction proceed, and
unsuspected relations are disclosed between hitherto separate branches
of the science. So it happens that, with the extension of mathematics,
its organic character is not lost but only manifests itself the more
clearly.





But, we ask, with the extension of mathematical knowledge will it
not finally become impossible for the single investigator to embrace
all departments of this knowledge? In answer let me point out how
thoroughly it is ingrained in mathematical science that every real
advance goes hand in hand with the invention of sharper tools and
simpler methods which at the same time assist in understanding earlier
theories and cast aside older more complicated developments. It is
therefore possible for the individual investigator, when he makes these
sharper tools and simpler methods his own, to find his way more easily
in the various branches of mathematics than is possible in any other
science.


The organic unity of mathematics is inherent in the nature of this
science, for mathematics is the foundation of all exact knowledge of
natural phenomena. That it may completely fulfil this high mission,
may the new century bring it gifted masters and many zealous and
enthusiastic disciples.









[51]
Text-books: Moigno-Lindelöf, Leçons du calcul
des variations, Paris, 1861, and A. Kneser, Lehrbuch der
Variations-rechnung, Braunschweig, 1900.







[52]
As an indication of the contents of this work, it may
here be noted that for the simplest problems Kneser derives sufficient
conditions of the extreme even for the case that one limit of
integration is variable, and employs the envelope of a family of curves
satisfying the differential equations of the problem to prove the
necessity of Jacobi's conditions of the extreme. Moreover, it should be
noticed that Kneser applies Weierstrass's theory also to the inquiry
for the extreme of such quantities as are defined by differential
equations.







[53]
Cf. his above-mentioned textbook, §§ 14, 15, 19
and 20.
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