The Project Gutenberg eBook of A system of practical medicine. By American authors. Vol. 3

This ebook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this ebook or online at If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook.

Title: A system of practical medicine. By American authors. Vol. 3

Diseases of the respiratory, circulatory, and hæmatopoietic systems

Editor: William Pepper

Louis Starr

Release date: October 17, 2016 [eBook #53305]

Language: English

Credits: Produced by Ron Swanson


















Entered according to Act of Congress, in the year 1885, by


in the Office of the Librarian of Congress at Washington. All rights reserved.

Stereotypers and Electrotypers, Philada.

Printer, Philada.





















































Professor of Principles and Practice of Surgery in the University of Pennsylvania, Philadelphia.


Emeritus Professor of Physiology in the University of Pennsylvania, Philadelphia.


Professor of Pathology and Clinical Medicine and Clinical Professor of Dermatology in the University of Maryland, Baltimore.


Assistant Professor of Physical Diagnosis in the University of Pennsylvania; Physician to Philadelphia (Blockley) Hospital; Lecturer on Pathology in the Woman's Medical College, Philadelphia.


Attending Physician and Chairman of the Board of Hospital Administration of the Children's Hospital, Washington, D.C.


Physician to and Clinical Lecturer at the Cincinnati Hospital, Cincinnati.


Professor of Materia Medica, Therapeutics, and Clinical Medicine in the University of Maryland, Baltimore.


Clinical Instructor in Auscultation in the Harvard Medical School; Physician to Out-Patients, Massachusetts General Hospital.

DACOSTA, J. M., M.D., LL.D.,

Professor of Theory and Practice of Medicine in the Jefferson Medical College, Philadelphia.

DAVIS, N. S., M.D., LL.D.,

Professor of Principles and Practice of Medicine in the Chicago Medical College, Chicago.


Clinical Professor of Diseases of the Throat and Chest in the University of Maryland, Baltimore.


Late Professor of Laryngology and Rhinology in the New York Polyclinic and in Dartmouth Medical College; Physician to Charity Hospital, Blackwell's Island (Throat Wards), New York.


Professor of the Principles and Practice of Medicine and Clinical Medicine in the Bellevue Hospital Medical College, New York.


Formerly Professor of Thoracic Diseases in the University of Vermont, and Assistant in Clinical Medicine in Harvard Medical School.


Aiken, South Carolina, and Bethlehem, N.H.


Clinical Professor of Diseases of Children in the College of Physicians and Surgeons, New York, etc.


Emeritus Professor of Practical Medicine in the Chicago Medical College, Chicago.


Professor of Laryngoscopy and Diseases of the Throat in the College of Physicians and Surgeons, New York; Consulting Laryngoscopic Surgeon to St. Luke's Hospital, etc.


Physician to the Pennsylvania Hospital, Philadelphia.


Professor of Pathology and Practice of Medicine in the University of the City of New York.


Professor of Principles and Practice of Medicine in the College of Physicians and Surgeons, Baltimore.


Professor of Clinical Medicine in the University of Pennsylvania; formerly Professor of the Institutes of Medicine in McGill University, Montreal.


Professor of the Theory and Practice of Medicine and of Clinical Medicine in the University of Pennsylvania, Philadelphia.


Professor of Applied Anatomy and Operative Surgery in the Philadelphia Polyclinic and College for Graduates in Medicine.


Clinical Professor of Medicine in the Bellevue Hospital Medical College, New York.


Instructor in Laryngoscopy in the University of Pennsylvania; Professor of Acoustics and Vocal Physiology at the National School of Oratory, Philadelphia.


Professor of Therapeutics and Clinical Medicine in the New York Post-Graduate Medical School; Physician to the Presbyterian Hospital, New York.



[p. 17]



[p. 19]



The laryngoscope is a combination of instruments designed for the examination of the interior of the larynx and upper part of the trachea, while the rhinoscope is a similar combination of instruments designed to explore the posterior nasal cavity; and both are comparatively recent inventions.

HISTORY OF THE LARYNGOSCOPE.—In medical literature before the middle of the eighteenth century no mention is made of an instrument or apparatus resembling the laryngoscope, but recent excavations at Pompeii have brought to light small polished metal mirrors attached to slender handles which are supposed to have been used to inspect the cavities of the human body. The first authenticated attempt at laryngoscopy and rhinoscopy was made by the distinguished French accoucheur M. Levret in the year 1743, who invented, among other surgical instruments, an apparatus by means of which polypoid growths in the cavities of the nose, throat, ear, etc. could be seen, and a ligature be passed around them for their removal.1 This apparatus consisted mainly of a polished metal mirror which "reflected the luminous rays in the direction of the tumor," and on whose surface the image of the growth was seen to be reflected. The great value of this apparatus for the diagnosis and treatment of nasal and laryngeal diseases was, however, not recognized, and it shared the fate of many other valuable discoveries which were made before the world was ready to receive them: it was forgotten.

1 Mercure de France, 1743, p. 2434.

In 1807 a certain Dr. Bozzini, living in Frankfort-on-the-Main, published a work describing an apparatus which he had invented for the illumination and examination of the cavities of the human body.2 This apparatus consisted of a peculiarly-shaped lamp and of a number of metal tubes, polished on their inner surface, of various shapes and sizes adapted for the different cavities of the body. The one intended for the examination of the larynx was bent near its end at a right angle, and had a mirror placed at the bend, which served to throw the light downward toward the opening of the larynx when the tube was inserted into the mouth. When reflected light was to be used, the interior of the tube or speculum was divided into two portions by a longitudinal septum, and two mirrors were inserted at the bend—one for the reflection of the light downward, and the other for receiving the reflected image. This invention of Bozzini was treated, however, with derision by the medical profession, probably on account of the extravagant descriptions given of it in the papers, which were not verified by its performances.

2 "Der Lichtleiter," Philipp Bozzini, Med. und Chir. Dr., Weimar, 1807.

In 1825, Cagniard de Latour, an investigator of the physiology of the voice, made some unsuccessful attempts to examine the living larynx.3

3 Physiologie de la Voix, par Ed. Tournié, Paris, 1865.

[p. 20] Senn of Geneva in 1827 endeavored to examine the larynx of a little girl suffering from an affection of the throat by means of a small mirror which he had made and which he inserted into the pharynx, but he failed to see the glottis, because, as he says, the mirror was too small, and because he used neither direct nor reflected light to illuminate the cavity below the mirror.4

4 Journal de Progrès des Sciences, etc., 1829.

In the year 1829, Benjamin Guy Babington published5 an account of what he called the glottiscope, an apparatus which consisted mainly of two mirrors. One of these was small and attached to a slender stem, and was used to receive the image, while the other, an ordinary hand-glass, was used to reflect the rays of the sun or ordinary daylight upon the smaller mirror in the fauces. This combination was essentially the same as is used at the present day in the laryngoscope, with the difference that we now use artificial light in most instances, and a concave mirror instead of a plane one for reflecting the light.

5 Lond. Med. Gazette, 1829, vol. iii.

While Babington was still engaged in perfecting his instruments, a mechanic named Selligue, who suffered from an affection of the throat, in 1832 invented a speculum for his physician, Bennati of Paris, with which the latter was able, as he asserted,6 to see the vocal cords. This instrument was similar to the one invented by Bozzini, and consisted of a double speculum bent at right angles and carrying two mirrors—one for illuminating the cavity, and the other for reflecting the image. Selligue was rewarded for his efforts by a complete cure of his affection.

6 Recherches sur le Mécanisme de la Voix humane.

A number of others worked in the same direction, and endeavored to see the interior of the larynx in the living subject by employing different apparatus and methods of illumination. Thus, in 1838, Baumès of Lyons described a mirror the size of a two-franc piece (11/8 inches in diameter) as useful in examining the larynx and posterior nares.7 Then Liston in 1840 used a dentist's mirror,8 and Warden of Edinburgh employed a prism of flint glass attached to a long stem as a laryngeal mirror.9 In the latter part of the same year Avery of London employed a speculum with a mirror in its end for examining the larynx, using as an illuminator a concave reflector with a central opening, which was supported by a frame to be worn on the head of the operator.10

7 Compte Rendu des Travaux de la Société de Médecine de Lyons, 1836–38.
8 Practical Surgery, 1840.
9 Lond. Med. Gazette, vol. xxiv. p. 256.
10 Med. Circ., June, 1862.

Up to this time all efforts at laryngoscopy had been made with a view to diagnose diseases of the larynx, with the exception of those made by Latour. In the year 1854, however, Signor Manuel Garcia of London, without any knowledge of previous efforts, conceived the idea of studying the changes in the larynx during phonation in his own throat. For this purpose he placed a small dentist's mirror against the uvula and reflected the rays of the sun into his mouth and upon the small mirror by means of a hand-glass held in the other hand. By arranging his position in relation to the sun in such a manner that he could see the reflected image of the small mirror in his throat in the hand-glass, and in it the illuminated image of his larynx, after a few ineffectual attempts his efforts at auto-laryngoscopy were crowned with such success that he was enabled to study the movements of the vocal cords during phonation, and accurately describe the registers of the voice in a paper read before the Royal Society of London in 1855.11 Although Garcia was the first who practised laryngoscopy successfully, his communication to the Royal Society attracted little attention, and would have been forgotten if it had not been that, in 1857, Tuerk of Vienna, having heard of Garcia's paper, began to use the laryngeal mirror on the patients in the K. K. Algem. Krankenhaus for [p. 21] diagnostic purposes.12 At first he was not very successful in his attempts, and began to experiment with laryngeal mirrors of different sizes and shapes. While thus engaged Czermak borrowed Tuerk's mirrors, and modified them until he succeeded in the greater number of cases in seeing the vocal cords,13 using artificial light for illuminating the larynx. Meanwhile, Tuerk continued his experiments, and also succeeded in almost all cases of throat disease which came to his department of the hospital in seeing the interior of the larynx and in treating the lesions. Both Tuerk and Czermak improved their apparatus, and especially the latter, who by substituting artificial light for sunlight, and by inventing a number of different illuminating apparatuses, has given us the laryngoscope in the form in which it is used at the present day. It is but natural that Tuerk should have claimed priority in the successful use of this instrument, and in consequence of this claim a controversy was carried on for a number of years in the medical press between him and Czermak, which at times became quite spirited, but which left Czermak master of the field. In the winter of 1858–59, Madam E. Seiler, having heard of Czermak's experiments, had a laryngeal mirror constructed from his description, practised laryngoscopy successfully on herself and others, among them the writer, with a view to study the physiology of the voice. Her efforts being crowned with success, she was able not only to verify Garcia's observations in regard to the registers, but also discovered the so-called head register of the female voice, as well as two small cartilages in the vocal cords.14

11 Proc. Royal Society of London, vol. vii. No. 13, 1855.
12 Zeitschrift der Ges. der Aerzte zu Wien, April, 1858.
13 Wien. Medicin. Wochenschrift, March, 1858.
14 Altes und Neues, Leipzig, 1861.

HISTORY OF THE RHINOSCOPE.—Rhinoscopy, or the art of viewing the naso-pharyngeal space by placing a small mirror behind the velum palati, naturally suggested itself almost as soon as any attempts at laryngoscopy were made, but in the literature we find that Bozzini was the first to clearly express the idea.15

15 Loc. cit.

A number of years later Wilde endeavored to see the opening of the Eustachian tubes by means of a small mirror: an account of these experiments he published in his famous work on the diseases of the ear.

In 1836, Baumès used the rhinoscope, and claimed to have seen ulcerations in the naso-pharyngeal cavity.16 It remained, however, for modern times to develop this field of research, and it is again Czermak whom we have to thank for the perfection of this valuable means of diagnosis.

16 Loc. cit.

THE LARYNGOSCOPE.—The laryngoscope as it is used at the present day, both by the specialist and the general practitioner of medicine, consists of a so-called laryngeal mirror and of an illuminating apparatus more or less complicated. The laryngeal mirror is a small circular glass mirror mounted in a metal frame varying in size from ¾ inch to 1½ inches in diameter, and attached to a wire stem at an angle of 120°. This stem, about 4 inches in length and about 1/10 inch in thickness, should be soldered to the back of the mirror in such a manner that the rim of the frame forms the angle with the stem, and should not be below it, as this would increase the diameter of the instrument without increasing its reflecting surface. The stem is made to slide into a hollow handle of wood, ivory, or ebonite, and is clamped at any desired length by a set-screw. This arrangement is preferable to having the stem permanently fixed in the handle, inasmuch as the stem can be pushed entirely into it, thus economizing space and rendering the instrument more portable, and also allowing an adjustment of the length of the stem when in use. The handle should be 4 inches in length, and of the thickness of an ordinary lead-pencil (Fig. 1).

FIG. 1.
Laryngeal Mirror
Laryngeal Mirror.

Mirrors of various shapes have been used, but it has been found that the circular form is the one most easily borne by the patient, and can be used in [p. 22]a greater number of cases than any other shape, at the same time giving the largest reflecting surface for its size. However, in cases where an hypertrophy of the tonsils is present an oval mirror can be introduced between the protruding glands more easily than a round one.

This laryngeal mirror, however, would be of little or no value as an instrument of diagnosis if used by itself, for in order to see the cavity of the larynx it must be illuminated, lying as it does far below the level of the back of the tongue; and this cannot be done satisfactorily by merely allowing ordinary daylight to fall into the oral cavity. It becomes, therefore, necessary to use a stronger light to illuminate the larynx, and for this purpose either direct or reflected artificial or sunlight may be used.

Direct illumination, by allowing a strong artificial light or sunlight to fall into the patient's mouth, although it is used by several of the eminent laryngologists of Europe, is both inconvenient and unsatisfactory, because the observer must either place his head in the path of the light in order to be able to see the surface of the laryngeal mirror, as in the case when sunlight is used, or he must place the lamp, candle, or other source of light between himself and the patient, which materially interferes with the freedom of his motions. For these reasons reflected light is now almost universally employed in laryngoscopy.

Reflected light may be obtained by throwing the light of a lamp, candle, gas-jet, or light from any other source into the mouth of the patient by means of a round concave reflector. This concave mirror—which, when made of glass, should be silvered and not backed with amalgam—is from 3 to 4 inches in diameter, and should have a focus of from 12 to 14 inches. The metal frame in which it is mounted is attached by means of a ball-and-socket joint to some contrivance by which it can be supported on the observer's head or be attached to the source of illumination if a stationary artificial light, such as a gas-lamp, is used at the physician's office.

A variety of devices for fastening the reflector on the head of the observer is in use, among which the head band, introduced by Cramer, will be found the most serviceable. It consists of a broad strap of some strong material which passes around the head and is fastened at the back by a buckle. To the part of the band or strap resting on the forehead is attached a padded plate, to which the reflector is fastened with its ball-and-socket joint (Fig. 2). The reflector usually either has a small hole in the centre or a small space in the centre is left unsilvered. This opening is intended to be brought before the pupil of one or the other eye of the observer in such a manner that the line of vision and that of light have exactly the same direction. Using the reflector in this way like the reflector of the ophthalmoscope, it is easier to obtain the image of the larynx well illuminated, but with the great disadvantage of [p. 23]monocular vision, which makes all objects appear on the same plane and prevents a correct interpretation of distances—a very important point in laryngoscopy. It will therefore be found more advantageous to place the reflector on the forehead, and from thence reflect the light into the patient's larynx. Both eyes may thus be employed in viewing the laryngeal image, and a correct idea of the relations of parts in regard to distance may be formed.

FIG. 2.
Head Reflector
Head Reflector.

The line of vision and the path of the beam of light in order to obtain the best results should be in the same plane as though the light emanated from the pupil of the observer; but practically the position of the reflector upon the forehead is nearly as good as when the hole in it is brought before the eye, because a line drawn from the pupil of the eye to the laryngeal mirror, and a line from the reflector upon the forehead to the mirror, do not form an angle sufficient to make any very great difference in the reflection of the light downward, and very little difficulty will be experienced in obtaining the desired image.

The head reflector should be concave when artificial light or ordinary daylight is used, but be plane when direct sunlight is employed, for the concentration of the sun's rays by a concave reflector produces so much heat as to become painful to the patient.

THE SOURCE OF LIGHT.—As an artificial source of light a candle, coal oil lamp, gas-flame, or incandescent electric lamp suffices for ordinary purposes. But frequently it is desirable to have a much stronger light than can be obtained without concentration, and several forms of apparatus for concentrating artificial light have been constructed and are in use. Among these, Tobold's lamp and Mackenzie's light concentrator are the most convenient and most universally used.

Tobold's lamp consists of a brass tube containing several lenses, which are placed, one before the other, at such distances as to give the greatest possible amount of concentration of light. The back part of the tube is closed, while near the end two large holes are cut in its sides opposite to each other, through which the chimney of the lamp projects. The whole is fastened by means of clamps to a stand, to which is also attached a jointed arm bearing the reflector. This apparatus is used either in connection with a student's lamp or with an argand gas-lamp, and it will be found very convenient to have it mounted upon a gas-bracket which can be raised and lowered and swung from side to side.

Mackenzie's light concentrator consists of a cylinder of sheet iron about 6 inches long by 2½ in diameter. Near one end a hole is cut in the side of the cylinder, and a short piece of tube holding a condensing lens is attached to the edge of the hole. This lens, which is plano-convex with a spherical curve, and of 2½ inches diameter, is placed with the plane side toward the light. [p. 24]This concentrator is intended to be slipped over the chimney of an argand burner, and should be so adjusted that the centre of the flame corresponds with the centre of the lens. It may, however, be used in connection with a student's lamp, incandescent electric lamp, or even a candle, giving in all cases a very satisfactory light, which, however, must be reflected from the head mirror into the patient's mouth.

The best light, however, when the examinations are conducted in the office of the physician, is the electric incandescent light, which presents numerous advantages over the gas or oil lamp. It is more brilliant and whiter than any other suitable artificial light, giving off neither gases nor heat, nor does it consume the oxygen in the room; and since the introduction and perfection of storage batteries it has become available and convenient for use in private houses. Numerous experiments which the author has carried on for some time have resulted in the application of this form of light for laryngoscopy in two ways which are both very satisfactory. The incandescent lamp is mounted upon the universal gas-bracket in place of the argand burner, and either the Tobold lamp or Mackenzie's light concentrator is slipped over it, so that it comes opposite the centre of the lens. In fact, the electric lamp is substituted for the gas-burner, and the whole apparatus is used as described above. The arc light may also be used in the same manner, but does not give as satisfactory results on account of its unsteadiness.

FIG. 3.
Electric Illuminator for the Laryngoscope
The Author's Electric Illuminator for the Laryngoscope.

The second method is to mount the electric lamp on the head mirror in such a way that it projects a little from the surface and is a little to one side of the centre of the reflector (Fig. 3). The light is then thrown forward in a cone, and can be directed with great ease into the mouth of the patient. Since thus the source of the light moves with the mirror, the observer can follow the motions of the patient more easily; and if, in the first place, an easy position of the head has been assumed when adjusting the light, much less [p. 25]fatigue is experienced by the examiner with this apparatus than when the light is reflected from a stationary source. Still another mode of using the incandescent lamp, which was suggested by Trouvé, is to mount the lamp within a tube one end of which is closed by a plano-convex lense, while the other end is covered by a metal cap carrying in its centre a ball-and-socket joint, by means of which it is fastened to the frontal plate of the head band. In this way the light with its condensing apparatus is carried on the forehead like the head mirror.

Sunlight is certainly the best source of light for the illumination of the interior of the larynx and nasal cavities, but, unfortunately, it is not available at all times and in all localities. When it can be obtained, however, the student should not neglect the opportunity, and should not be deterred from using it for examination by the little extra apparatus and trouble necessary.

The most convenient plan is to place a small plane mirror mounted upon a stand in such a manner that it can be turned in any direction, such as a small toilet-glass, in the direct rays of the sun coming through a southern window. Then turn the mirror until the reflection falls upon a second plane mirror supported by a jointed arm and placed in a distant corner of the room, and in front of the chair upon which the patient is seated, with his back to the first mirror. The light from the second mirror is then thrown into the patient's mouth in the same manner as when a light concentrator is used. The second mirror may also be mounted on the head band and used as a head reflector, but this latter plan is not as satisfactory, because the reflected light from the first mirror is apt to strike the observer's eye and temporarily blind him.

Sunlight, as well as the light from the oxyhydrogen and electric-arc lamps, is white, and therefore shows us the parts in their natural coloring, which is claimed as a great advantage over all other sources of light. It is true that the yellow rays which are predominant in all other artificial lights make the mucous membrane appear redder than it really is, and the observer may be led to believe that a congestion exists if the patient be examined by white light first, and then by yellow light on different occasions. But as all our knowledge and appreciation of shades of color depend upon a comparison with a standard, it makes no difference whether this standard, as in the case before us, is a little redder when viewed by yellow light or not so red when seen by white light. This advantage of the white light is, therefore, not of much practical value, and the expense and difficulties connected with the use of the oxyhydrogen or electric arc-light for laryngoscopy fully outweigh any advantage which can be claimed for it.

THE ART OF LARYNGOSCOPY.—Before entering upon a description of the details of the art it will be necessary to clearly understand the optical principle upon which the use of the laryngoscope is based, and, further, to remember that the object to be viewed is situated below the straight path of light and vision. The optical law referred to is, that "The angle of incidence is equal to the angle of reflection," and consequently, in order to illuminate the cavity of the larynx and to see its details, the laryngeal mirror must be placed in such a position in the fauces that the light is reflected downward. The light rays forming the laryngeal image will then be reflected from the surface of the laryngeal mirror into the eye of the observer. It should always be borne in mind that the image seen in the mirror is a reflected one, like the image of one's self seen in a looking-glass, so that what appears to be right is left, and vice versâ. On account of the difference in height of the parts forming the image, and because the mirror must be placed above and slightly behind the opening of the larynx, the picture appears reversed in an antero-posterior direction. The same holds good when viewing a drawing of a laryngeal image.

[p. 26]POSITION OF PATIENT AND OBSERVER.—The relative positions of the patient, observer, and the source of light are of very great importance, especially to the beginner, and a want of proper adjustment will often make it extremely difficult, if not impossible, to obtain the desired view of the larynx. The patient having been seated upon a chair, or better still upon a piano-stool, the source of light is placed upon a table at his right, at such a height that the centre of the flame is on a level with his eyes and a few inches behind. The observer then takes a seat directly in front of the patient, and, separating his knees, places his feet on either side of those of the patient, thus being able to grasp the patient's knees with his own should occasion require him to do so. This position is preferable to the one in which the knees of the observer are either on one side or the other of the patient's knees, because then the observer, in order to throw the light from the head mirror into the mouth of the patient, has to assume a constrained position which very soon becomes fatiguing. Under no circumstances should the patient be allowed to grasp the observer's knees, for then the latter is powerless to restrain the struggles of his patient, and cannot quickly leave his seat should vomiting occur. When the examination is made at the physician's office or wherever it is practicable, it is of advantage to have a head-rest, such as photographers use, for the patient's head.

The positions having been taken, the observer places the head reflector upon his forehead a little above the left eye, and by rotating it upon its ball-and-socket joint reflects the light from the lamp- or gas-flame upon the patient's face so that the circle of light is bounded above by the tip of the nose and below by the tip of the chin. It is of great importance that the adjustment of the reflector should be made by means of its joint, and not by rotating or inclining the head, for it is necessary that the head should have an easy position which can quickly be resumed should it become necessary to move the head. It requires considerable practice to quickly reflect the light from the head mirror in any desired direction, and it is therefore well for the beginner to practise this by throwing the light upon a spot on the wall before he attempts to examine a patient, as he will thus save himself, as well as the patient, unnecessary annoyance. If a light concentrator be used which supports the reflector on the jointed arm, this of course is not necessary, but the practice with the head mirror will even then be found advantageous, because when a patient is to be examined in the sick room a light concentrator cannot usually be employed, and the physician has to fall back upon the head mirror for illuminating the laryngeal cavity.

When the reflector has thus been properly adjusted the patient is required to incline his head backward and open his mouth as wide as possible, when it will be found that the centre of the circle of light falls upon the root of the uvula. A careful examination of the oral cavity, the anterior and posterior pillars, the tonsils, and the wall of the pharynx should be made before the laryngeal mirror is introduced, not only because the condition of these parts often imparts valuable information, but also in order to be sure that no infectious sores be present which might contaminate the instruments to be introduced. The laryngologist cannot be too careful to prevent the carrying of infectious material from one patient to another; and if he should by this preliminary examination discover a specific sore, he should use only such instruments as are reserved for this class of cases, and which are kept in a separate box or drawer of the instrument-case.

Everything being in readiness, the laryngeal mirror is held over the lamp, with the glass side down, for a few seconds until it is warm, so as to prevent the condensation of moisture on its reflecting surface, and is then introduced in the following manner: The handle is held between the thumb and fore finger of the right hand like a pen-holder (Fig. 4); the hand is bent [p. 27]backward upon the wrist and held below the chin of the patient. Meanwhile, the protruded tongue is grasped between the folds of a napkin or towel held in the left hand, and gently but firmly pulled out of the mouth. Great care should be exercised to prevent the frænum of the tongue from coming in contact with the sharp edge of the front teeth, for this soon becomes very painful and may prevent a successful examination. Many laryngologists are in the habit of letting the patient hold his tongue, which becomes necessary when operations or applications are to be made to the larynx; but for the purpose of examining only it is better for the observer to hold the tongue, as he thus gains more control over the movements of the head of the patient.

FIG. 4.
Position of Hand in holding the Laryngeal Mirror
Position of Hand in holding the Laryngeal Mirror.

The mirror is now rapidly introduced into the mouth of the patient, without touching the tongue or the palate, and carried backward until its rim touches the wall of the pharynx, when it is lifted upward, carrying on its back the uvula, and the stem is brought into the angle of the mouth, so as to be out of the line of vision (Fig. 5). In this position the light of the reflector will fall upon the reflecting surface of the laryngeal mirror, and will be reflected downward so as to illuminate the laryngeal cavity and reflect the laryngeal image into the eye of the observer.

FIG. 5.
Diagram of Section of Head
Diagram of Section of Head, showing the Position of Laryngeal Mirror in the Pharynx.

[p. 28]There are, however, numerous obstacles and difficulties which must be overcome to successfully practise laryngoscopy—obstacles which are partly due to the want of skill on the part of the operator, and partly to over-sensitiveness and want of control of the patient, or, finally, to abnormal positions of the parts. Taking them up one by one, in the order named above, the reader will soon learn to overcome these obstacles by practice and careful attention to details.

As has already been pointed out, a satisfactory view of the laryngeal image cannot be obtained if the position of the light, of the patient's head, and of the observer is not properly arranged; further, if the laryngeal mirror is either too cold or too hot. In the former case the moisture of the breath will condense on its reflecting surface and render it non-reflecting, and in the latter case the patient will feel the heat and will object to the presence of the mirror in the fauces. The examiner should therefore carefully test the temperature of the mirror on the back of his hand before introducing it. Many laryngologists are in the habit of testing the temperature by placing the mirror against the cheek, but this is a dangerous practice, for a slight scratch or abrasion of the skin from shaving may be inoculated with infectious material from a specific sore, and the writer knows of more than one instance in which such infection has occurred; while a scratch on the hand is not so likely to be overlooked, and therefore the danger is much less. Pulling too hard upon the tongue, so that the frænum becomes injured by the edge of the teeth, is another obstacle, for the patient will not bear the pain thus occasioned. Touching the tongue or palate in the act of introducing the mirror, besides coating the reflecting surface with the secretions of the mouth, causes in most patients gagging, and should therefore be avoided. When the mirror has been introduced it should be held very still, and if it becomes necessary to rotate it, this should be done slowly and steadily, because the slightest trembling motion of the rim of the mirror resting against the wall of the pharynx produces gagging and cuts the examination short at once. It is therefore advisable to steady the hand holding the mirror by placing the third finger against the cheek of the patient, or, better still, against the thumb of the hand holding the tongue.

Undue irritability of the fauces is of very rare occurrence, and is almost invariably produced by one or the other of the above-mentioned mistakes of the examiner. When it does exist independently, it can in a measure be overcome by letting the patient drink a large draught of ice-water immediately before introducing the mirror, and by holding the mirror so that it does not touch either the pharyngeal wall or the palate. In this manner but a very unsatisfactory view of the larynx can be obtained, and it is better to overcome the irritability by practice on the part of the patient—i.e. by introducing the mirror frequently and removing it before gagging sets in, and by directing the patient to introduce a teaspoon into the fauces before a looking-glass several times a day. Even the most obstinate cases can thus be educated to allow of a lengthy examination. No matter how tolerant a patient may be, however, the mirror should never be left in the fauces after the first symptoms of gagging show themselves, but should at once be removed. It is better in all cases to leave the mirror in the mouth but a short time and to introduce it frequently, thus studying the different parts of the image one after the other, than to attempt to see everything at once. In laryngoscopy, as in many other arts, not only the hand, but also the eye, must be educated to appreciate all the details and the variations from the normal.

Among the malformations of the parts which present obstacles to laryngoscopy are, in the first place, hypertrophied tonsils, which by narrowing the space in the fauces make it impossible to introduce the ordinary-sized mirror. A smaller mirror or one of oval shape can, however, usually be slipped past the [p. 29]enlarged glands and the desired image obtained. An elongated uvula does not exactly prevent a view of the larynx, but it materially interferes with a good image, because its end by hanging below the rim of the mirror is seen in the reflecting surface and obscures part of the image. Removal of the uvula by surgical means is of course the best remedy.

The third and most serious obstacle presented by malformation or malposition of parts is a pendent epiglottis—i.e. an epiglottis which by being bent too far over covers the laryngeal opening and prevents a view. This obstacle exists to a certain extent in most cases that come under observation, but is easily overcome by letting the patient sound the vowel sound of eh, which causes a rising of the epiglottis and opens the laryngeal cavity to view. There are some cases, however, in which this expedient does not sufficiently raise the epiglottis to obtain a glimpse of the vocal cords, and only the arytenoid cartilages are seen, from the motion and color of which we can often obtain valuable information in regard to pathological processes. In these cases, when it becomes absolutely necessary to see the whole extent of the vocal cords, we may succeed by causing the patient to laugh in a high key, but when this fails the only resource left is to lift the epiglottis by grasping its upper margin with a pair of curved forceps especially designed for this purpose and called epiglottis forceps (Fig. 6). If this instrument is not at hand, the same object may be attained by clasping the edge of the epiglottis with a bull-nose forceps, to which is fastened a string weighted at the other end by a small weight, such as a rifle-bullet. The string with its weight hanging out of the mouth of the patient makes traction upon the forceps, and thus the epiglottis is raised. In cases of operation within the laryngeal cavity this method of raising the epiglottis is even preferable to the epiglottis forceps, because it leaves the hands of the operator free to use the mirror and the instrument to be used in operating.

FIG. 6.
Elsberg's Sponge-holder and Epiglottis Forceps
Elsberg's Sponge-holder and Epiglottis Forceps.

AUTO-LARYNGOSCOPY.—There is perhaps no better method for the beginner to overcome the difficulties besetting laryngoscopy than to practise the art on himself, for then only will he be able to appreciate to its full extent the necessity of observing all the minute details described above, as the pain and inconvenience which he inflicts upon himself by his false movements will teach him better, and enable him to attain proficiency in the use of his instruments quicker than any other method of practice. Nothing need, for auto-laryngoscopy, be added to the stock of instruments necessary for the examination of others, except a stand to which the reflector is fastened and a small toilet-mirror. The observer seats himself beside a table upon which, at his left, is placed the lamp a little behind his head and the centre of the flame on a level with his eyes. The stand, an ordinary retort-stand, is placed in front of him, and to it is fastened at the proper height the reflector. On the same stand, and immediately above the reflector, is attached the plane mirror in such a manner that it can be inclined at an angle. Inclining the head slightly backward, the observer then by watching his face in the plane mirror directs the light upon his mouth by moving the reflector upon its ball-and-socket joint until the circle falls upon his mouth. He then opens his mouth as wide as possible, grasps his protruded tongue between the folds of a towel or [p. 30]napkin held between the thumb and fore finger of the left hand, and introduces the laryngeal mirror with the right hand in the manner described above. The laryngeal image as it appears on the surface of the laryngeal mirror is reflected by the toilet-glass above the reflector, and can be seen in all its details by the person practising auto-laryngoscopy. By substituting a perforated mirror for the toilet-glass the student can demonstrate the image to others in his own person if the observers look through the perforation in the mirror.

Before giving a description of the laryngeal image it will be well, for the sake of completeness, to mention the fact that of late photography has been employed to reproduce this image, both in this country by T. R. French of Brooklyn17 and by Lennox Browne of London, England, with very gratifying results. The writer himself several years ago made experiments in this direction, which, however, were not very satisfactory in their results. The method employed by French is a very simple one, and it will be best to give his own description of the process:

"The camera consists of a box 4½ inches long, 17/8 inches wide, and ¾ of an inch in thickness. The back opens upon hinges, and admits of the introduction of either the ground glass or the plate-holder. On the anterior face a tube 11/8 inches long is attached, in the outer end of which the lens is placed. This lens has a focus of 1¼ inches. At the side of the tube a part of the handle of a throat mirror is fixed, and into that the shank of the throat mirror is passed and fastened by a thumb-screw. The shank of the mirror is somewhat curved, and is attached to the side of the frame holding the mirror. The object of this is to allow the lens being held opposite any part of the opening of the mouth, and also to prevent the possibility of a shadow being cast upon the mirror. In the front part of the box is a shutter made of lead and perforated with a hole just the size of the lens. The shutter is held in position by a lever acting as a key on the anterior face of the camera.
"The apparatus is used in the following manner: A reflector, either plane or concave, attached to a head band, is arranged over the left eye so that the pencil of sunlight from the solar condenser is received upon it and thrown into the mouth. The patient, with the head inclined slightly backward, now protrudes the tongue and holds it well out between the fore finger and thumb of the right hand. The throat mirror with the camera attached, held in the right hand of the observer, is placed in position in the fauces, and the light adjusted so that the larynx can be seen with the observer's left eye to be well illuminated. If, now, the tongue does not mount above the level of the lower edge of the lens and the lower edge of the mirror, it may be taken for granted that when the plate is exposed the picture received upon it will be nearly the same as that seen with the left eye in the throat mirror. The photograph is taken by pressing upon the key with the index finger; this releases the shutter, which in falling makes an instantaneous exposure amounting to perhaps one-seventh of a second.
"In using condensed sunlight with a small camera it is important to throw the circle of light from the inner side of the reflector, that nearest the nose; for in this way a part of the larynx exposed to the lens of the camera may be illuminated which cannot be seen with the eye. To ensure this it is best to cover the outer half of the reflector with black silk. On account of the parallax or displacement of the image due to the difference in point of view between the eye and the camera, some skill is necessary in managing the illumination so that the part which it is desired to bring out will be exposed to the lens if not to the eye."
17 Archives of Laryngology, vol. iv. No. 4.

THE LARYNGEAL IMAGE.—When the mirror is introduced and is held in the proper place, and the light is reflected downward, the laryngeal image [p. 31] will appear on the surface of the mirror. As it is, however, so different from what might be expected after having examined a larynx removed from the body, it requires a detailed description, and the student will do well to refer to the diagrams frequently while examining patients, to make himself familiar with the details he sees, and to recognize them when they are altered by disease or when they are slightly different in shape in different individuals. Figs. 7 and 8 represent the image of the larynx in the act of respiration and of phonation as it appears on the surface of the mirror, while Figs. 9 and 10 are diagrammatic, and are intended to represent the same.

FIG. 7.
Laryngeal Image during Respiration
Laryngeal Image during Respiration.

FIG. 8.
Laryngeal Image during Phonation
Laryngeal Image during Phonation.

FIG. 9.
Laryngoscopic Diagram showing the vocal cords
Laryngoscopic Diagram showing the vocal cords widely drawn apart, and the position of the various parts above and below the glottis during quiet breathing. g. e. Glosso-epiglottic fold. s. u. Upper surface of epiglottis. l. Lip or arch of epiglottis. c. Protuberance of epiglottis. v. Ventricle of the larynx. a. e. Ary-epiglottic fold. c. W. Cartilage of Wrisberg. c. S. Cartilage of Santorini. com. Arytenoid commissure. v. c. Vocal cord. v. b. Ventricular band. p. v. Processus vocalis. c. r. Cricoid cartilage. t. Rings of trachea. (From Mackenzie.)

FIG. 10.
Laryngoscopic Diagram showing the approximation of the vocal cords
Laryngoscopic Diagram showing the approximation of the vocal cords and arytenoid cartilages, and the position of the various parts during vocalization. f. i. Fossa innominata. h. f. Hyoid fossa. c. h. Cornu of hyoid bone. c. W. Cartilage of Wrisberg. c. S. Cartilage of Santorini. a. Arytenoid cartilages. com. Arytenoid commissure. p. v. Processus vocalis and cartilages of Seiler. (From Mackenzie.)

The first detail to attract the eye is the epiglottis, which appears as a yellowish-red arch reaching from side to side across the image. It is thicker in the middle than at either end, and a protuberance is usually seen in the centre pointing forward. This arch is the upper margin of the epiglottis, and the protuberance is the tubercle, situated near the insertion of the epiglottis into the thyroid cartilage. The shape as well as the color of the epiglottis is very variable in different individuals, being sometimes rounded as in the drawings, sometimes rolled up like a dried leaf, sometimes notched in the centre, and sometimes presenting a point at this place. However, all these variations in shape have nothing to do with any pathological process, and may therefore be termed normal. The color of the organ also varies from a bluish-yellow to a pink-red, and these variations are also normal, being due to a greater or less thickness of the tissue covering the cartilage, which by shining through imparts its bluish color to the tissue. The superficial blood-vessels also are more prominent in some individuals than in others, and may not be noticeable in some cases.

[p. 32] Immediately behind the epiglottis we see two pit-like depressions, separated from each other in the middle by a fold of mucous membrane and bounded on either side by similar folds less prominent. These folds are the glosso-epiglottic ligaments, and serve to connect the tongue with the epiglottis, while the depressions are the glosso-epiglottic grooves, in which we usually find the foreign bodies which have accidentally been swallowed.

The ends of the epiglottic arch are lost in folds of mucous membrane, which run forward and inward to meet in the median line some distance in front of the epiglottis. Along their course several nodules of different size are noticed, which are symmetrically situated on either side. The one nearest to the epiglottis is the cartilage of Wrisberg, a small cartilaginous nodule imbedded in the tissue. The larger one, situated at the end of the fold of mucous membrane, is the arytenoid cartilage, and a third small nodule is noticed close to the arytenoid cartilage between it and the cartilage of Wrisberg, which is called the capitulum Santorini. The folds of mucous membrane are termed the aryteno-epiglottidean or ary-epiglottic folds. Their color is normally of a pinkish-red, and does not vary much in different individuals.

The arytenoid cartilages forming the ends of the ary-epiglottic folds are movable, approaching and separating alternately during the act of respiration, while during phonation they are pressed against each other, thus obliterating the space between them which is seen when they are separated. This space is the inter-arytenoid space or commissure, and is formed by the lateral walls of the arytenoid cartilages and the upper margin of the posterior portion of the cricoid cartilage. The mucous membrane in this commissure is very loosely attached to the deeper structures, and is thrown into folds by the approximation of the arytenoid cartilages. Its color is much lighter than that of the ary-epiglottic folds, due to the shining through of the cricoid cartilage. Outside of the ary-epiglottic folds and the inter-arytenoid commissure is the tissue forming the posterior and lateral walls of the oesophagus (not shown in the diagrams), and near the epiglottis a space called the pyriform sinus is noticed between the ary-epiglottic folds and the wall of the oesophagus.

Running from the epiglottis to the ary-epiglottic folds are two broad bands, one on either side, covered with mucous membrane and of a pinkish-red color, which are lost on either side in the tissue forming the walls of the laryngeal cavity, while toward the middle of the image they present concave and tolerably sharp edges. These are the ventricular bands, which were formerly termed the false vocal cords, and which form the lip to the opening of the ventricle of the larynx. Between the ventricular bands filling up the central portion of the image are seen the vocal cords, two bands of a pearl-white color which are attached to a cartilaginous process of the arytenoid cartilages, and run from these parallel with each other to the angle of the thyroid cartilage immediately below the tubercle of the epiglottis. These present sharp edges toward each other, and follow the motions of the arytenoid cartilages to which they are attached, so that when in inspiration the cartilages are separated the edges of the vocal cords are also some distance apart, forming, together with the inter-arytenoid commissure, a triangular opening called the glottis. That portion of the opening which is bounded on either side by the edges of the vocal cords alone is called the membranous portion, while the base of the triangle is termed the cartilaginous portion, being bounded on either side by the vocal processes of the arytenoid cartilages. This portion is readily distinguished from the membranous portion by its slightly yellow color, and by the fact that a very obtuse angle is formed at the junction of the two portions when the glottis is wide open during respiration. Through the open glottis the lower edge of the cricoid cartilage and several of the rings of the trachea can usually be seen, and there are a few cases in which even the bifurcation of the trachea can be dimly illuminated, showing in the [p. 33] laryngeal image the openings of the bronchi. The distance is, however, too great for bright illumination, and nothing can be seen distinctly, so that it is of little value in a diagnostic point of view. During phonation the glottis is narrowed to a slit by the approximation of the arytenoid cartilages and inner edges of the vocal cords, and, as has already been stated, the inter-arytenoid space becomes obliterated. In the higher notes of the female voice, the so-called head tones, the cartilaginous portion of the glottis remains closed entirely, while the membranous portion appears as an elliptical opening which is diminished in its longitudinal diameter with each rise in pitch. This becomes possible because of the presence in the vocal cords of a slender rod-like cartilage attached to the end of the vocal process, which can readily be seen in the female larynx, but which is only rudimentary in the male.

This description, intentionally, has been made without reference to the anatomical relation of the parts, but to give a clear idea of what is seen in the laryngeal mirror. The reader should therefore always bear in mind that the laryngeal image, being a reflected one, is reversed, and that, on account of giving a bird's-eye view of the larynx from a point above and behind the organ, distances are materially diminished; and the image is also reversed in an antero-posterior direction, so that the epiglottis appears to be posterior when in reality it is anterior.

RHINOSCOPY.—Rhinoscopy, or the art of inspecting the nasal cavities and the naso-pharyngeal space, is divided into two portions—viz. anterior and posterior rhinoscopy; and it will be convenient to observe this division in the following description of the methods employed. But before proceeding with the description it will be well to briefly review the topographic anatomy of the parts, because in most works on general anatomy the nasal and naso-pharyngeal cavities are discussed in a few sentences, and they are rarely if ever examined in the dissecting-room, so that the student has but a very imperfect knowledge of the relation of the parts belonging to these cavities. (See Fig. 11.) The nasal cavities, which are wedge-shaped, with a narrow arched roof, extend from the nostrils to the upper portion of the vault of the pharynx. Their outer walls are formed by the nasal process of the superior maxillary and lachrymal bones in front; in the middle, by the ethmoid and inner surface of the superior maxillary bones; behind, by the vertical plate of the palate bone and the internal pterygoid process of the sphenoid and the turbinated bones. These latter run before backward, three on each side, and are designated as the inferior, middle, and superior, the latter being the smallest of the three. The sinuses or spaces between these turbinated bones are called meatuses; so that the space between the floor of the nose and the lower turbinated bone is called the inferior meatus, the one between the lower and middle turbinated bones is the middle meatus, and the one between the middle and superior turbinated bones is the superior meatus.

FIG. 11.
1. Superior turbinated bone. 2. Middle turbinated bone. 3. Lower turbinated bone. 4. Floor of nasal cavity. 5. Vestibule. 6. Section of hyoid bone. 7. Ventricular band. 8. Vocal cord. 9 and 23. Section of thyroid cartilage. 10 and 24. Section of cricoid cartilage. 11. Section of first tracheal ring. 12. Frontal sinus. 13. Sphenoidal cells. 14. Pharyngeal opening of Eustachian tube. 15. Rosenmüller's groove. 16. Velum palati. 17. Tonsil. 18. Epiglottis. 19. Adipose tissue behind tongue. 20. Arytenoid cartilage. 21. Tubercle of epiglottis. 22. Section of arytenoid muscle.

The nasal cavities are separated from each other by a septum or division wall composed of the perpendicular plate of the ethmoid bone and the vomer posteriorly and the cartilaginous septum anteriorly, thus presenting a smooth surface as the inner wall of each cavity. The floor is formed by the palatine process of the superior maxillary bone and by the palate bone, and runs in a slanting, downward direction from before backward. The roof is formed by the nasal bones and nasal spine of the frontal in front, in the middle by the cribriform plate of the ethmoid, and posteriorly by the under surface of the body of the sphenoid bone. Directly communicating with the nasal cavities are other cavities situated in the bones of the skull, the lining mucous membrane of which no doubt is largely affected by the pathological processes in nasal diseases: these are the antra of Highmore, large triangular cavities situated in the body of the superior maxillary bone and communicating with the nasal cavities by an irregularly-shaped opening in the middle meatus; [p. 34] then the frontal sinuses, two irregular cavities situated between the two tables of the frontal bone. The communication between them and the nasal cavities is established by the infundibulum, a round opening in the middle meatus, and finally the sphenoidal cells or sinuses, found in the body of the sphenoid bone, communicating with the nasal cavities by small openings in the superior meatus. That portion of the nasal cavities which projects beyond the end of the nasal bone is surrounded by cartilages forming the alæ of the nose.

In the cartilaginous septum of the lower animals we find a small cavity lined with mucous membrane, called after its discoverer Jacobson's organ, the minute anatomy of which has lately been described by Klein.18 This [p. 35] organ in man is, however, only rudimentary. The nasal cavities are lined with mucous membrane, which varies greatly in thickness in different localities, and which materially decreases the size of the cavities in the living subject from that seen in the denuded skull. This mucous membrane is covered by ciliated epithelium in man, with the exception of that portion which lines the vestibule—i.e. that portion of the cavity of the nose surrounded by cartilage only—which is covered by pavement epithelium.

18 Quarterly Journal of Mic. Science, January, 1881.

In the lower animals we find that in the olfactory region the ciliated epithelium is either absent, or that ciliated and non-ciliated epithelium alternates in patches.19 The author has not been able to find a statement in the literature on the subject as to the kind of epithelium found in the accessory cavities in man, but it is very probable that the mucous membrane of the frontal sinuses and the antra of Highmore is covered with ciliated epithelium; otherwise it would be difficult, if not impossible, for the secretions of that mucous membrane to pass through the narrow channels into the nasal cavities. The color of the normal nasal mucous membrane is of a light pink shade in what is termed the respiratory portion, while it is of a yellowish hue in the olfactory region, that portion of the mucous membrane which covers the roof and the outer walls of the nasal cavities down to the upper margin of the middle turbinated bone and the septum down to about the same level. It is in this region that the nerve-ends of the olfactory nerve are distributed. Immediately beneath the mucous membrane, and between it and the periosteum of the bony walls and the perichondrium of the cartilaginous portion of the septum, we find a tissue which bears a striking resemblance to the erectile tissue of the genital organs.20 It is composed of a network of fibrous tissue, the trabeculæ of which contain a few organic muscular fibres. Its meshes of various sizes and shapes are occupied by venous sinuses lined with endothelium. These are supplied with blood by small arterioles and capillaries, which are quite numerous in the fibrous tissue and can readily be demonstrated under the microscope. In this arrangement of elements of the nasal mucous membrane we find a ready explanation of the fact that liquids of greater or less density than the serum of the blood when introduced into the nasal cavities produce pain, for we have here the most favorable conditions for osmosis, which will cause either a contraction or a distension of the sinuses. In the larger masses of fibrous tissue between the sinuses or caverns we find imbedded the glands, with their ducts opening out between the epithelial cells of the mucous membrane. There are two kinds of glands in this region, which have been described by Klein21—viz. serous and mucous glands.

19 Haenle, Anatomy des Menschen, vol. ii.
20 Haenle, loc. cit.
21 Loc. cit.

This cavernous erectile tissue is most abundant at the lower portion of the septum and of the lower turbinated bones; and, although it has been recognized and described as true erectile tissue by Haenle, Virchow, and others, yet to Bigelow of Boston belongs the honor of having first called attention to the part which this tissue plays in nasal diseases. He gave to it the name turbinated corpora cavernosa.22 The expansion of the nasal cavities formed by the alæ of the nose is termed the vestibule, which is lined with pavement epithelium and forms the entrance to the cavities proper. The naso-pharyngeal cavity extends from the posterior ends of the turbinated bones and the edge of the vomer to the line where the velum palati touches the pharyngeal wall during the act of deglutition or phonation. In this cavity we find the openings of the Eustachian tubes, two crater-like elevations, with a pit-like depression of variable size and shape, one on either side; and a collection of glands with a central duct-like opening disposed on the roof and posterior wall of the cavity. This gland was named by Luschka23 the pharyngeal [p. 36]tonsil. The openings between the edge of the vomer and the lateral walls of the naso-pharyngeal cavity are termed the posterior nares.

22 Boston Med. and Surg. Journal, April, 1875.
23 Der Schlundkopf des Menschen.

ANTERIOR RHINOSCOPY.—Anterior rhinoscopy is a very easy and simple procedure, and is practised as follows: The patient is placed in position as for laryngoscopy, and the light directed upon his face so that the centre of the circle of reflection from the head mirror falls upon the tip of the nose. The examiner then elevates the tip of the nose with his left hand, resting the fingers on the forehead of the patient, and lifts the ala away from the septum with a slightly bent probe, when he will be enabled to see a considerable distance into the nasal cavity. It is, however, better to employ a speculum instead of the bent probe, because the parts then are seen in their usual relation to each other, and are not distorted by the forcible traction necessary when the probe or a dilator is employed. The nasal speculum (Fig. 12) is best made of hard rubber and shaped like the ordinary ear speculum, except that the narrow end is oval instead of round. This instrument is to be introduced by a sort of rotatory motion until the end has passed the edge of the vestibule, when it will remain in position, displaying the interior of the nose. Great care should be exercised, when introducing the speculum, not to scratch the mucous membrane of the septum, for this will give rise to pain and start hemorrhage, both of which are to be avoided as much as possible. When applications are to be made to the mucous membrane of the septum or turbinated bones, or when operations are to be performed within the cavity, it is best to employ an instrument called a nasal dilator, of which there are a large number of different forms, the most satisfactory of which is shown in Fig. 13. The dilator is introduced by compressing the blades between the thumb and fore finger, and pushing them into the nostril until their ends have passed the edge of the vestibule. The pressure is then removed, and the spring separating the blades holds the nostril open; the handle or stem of the instrument, hanging down, need not be held or supported, as the blades press sufficiently upon the tissues to retain the instrument in position. If the pressure is too great, however, it will soon produce pain, and the patient will object to the use of the instrument.

FIG. 12.
Nasal Speculum
Nasal Speculum.

FIG. 13.
Bosworth's Nasal Dilator
Bosworth's Nasal Dilator.

The view obtained both by the speculum and the dilator is rather limited, and usually comprises only the anterior portions of the lower and middle turbinated bones, together with the cartilaginous portion of the septum. In order to get a good view of the lower and middle meatus and of the floor of the nose the patient's head should be inclined forward or backward as occasion requires. The student should, however, not be satisfied by simply inspecting the parts, but should aid the eye by the sense of touch, for pathological changes are of common occurrence, and their nature, whether soft and fleshy or hard and bony, erosions of the mucous membrane, or deep ulcerations, can often only be determined by the aid of the probe. In the same manner can the permeability of the meatuses be determined better than by inspection [p. 37] only. In cases where it becomes necessary to determine whether the anterior portion of the septum is of normal thickness, or whether a projection seen through the speculum is due to localized deflection, an instrument called the septometer is of great assistance (Fig. 14). This instrument is similar to the one used by mechanics to determine the diameter of a piece of wood or iron being turned on the lathe. In using it the long straight shanks are introduced one in each nostril, and, being closed upon the septum, the rounded points are gently moved up and down and backward and forward over the bulging portion of the septum. The motion of the index attached to the curved shanks of the instrument accurately indicates the relative thickness of tissue grasped between the points in the nose. By means of this instrument we can thus ascertain whether we have to deal with a deviation or a localized thickening of the septum; for if it is a deviation the index will move but slightly, while it will travel a considerable distance when the points pass over a thickened portion.

FIG. 14.
Septometer for Measuring
Thickness of Nasal Septum.

Although simple in its details, anterior rhinoscopy is often made difficult or altogether prevented by obstacles which are mostly due to malformation of the parts, such as deviation of the cartilaginous portion of the septum, exostoses from the superior maxillary bones reaching into the nasal cavity, adhesion between the anterior portion of the lower turbinated bone and the septum, nasal polypi, anterior hypertrophies of the mucous membrane, and so forth; or they may be due to faulty instruments, as too much pressure in the spring of the dilator; or, finally, they may be caused by want of care in the handling of the instruments, as when the septum is scratched by the edge of the speculum and hemorrhage ensues.

POSTERIOR RHINOSCOPY.—Posterior rhinoscopy is much more difficult than laryngoscopy or anterior rhinoscopy, and requires more patience and dexterity on the part of the examiner than either of the former, because but very few persons have control over the movements of the velum palati, and in most of these the upper portion of the pharyngeal wall is so sensitive that the slightest touch with an instrument gives rise to reflex cough and to gagging. In many cases, however, with patience and skill the naso-pharyngeal cavity and the posterior portion of the nasal cavities can be illuminated and inspected. To do this the patient is placed in the same position as for laryngoscopy, except that the head is not inclined backward, and after the mouth is opened as wide as possible the light from the reflector is thrown into the oral cavity. The tongue is then depressed with a tongue depressor. This instrument in its simplest form in which it is daily used by the practitioner for examining the fauces is the handle of a spoon. For laryngoscopic or rhinoscopic purposes, however, the spoon is not to be recommended, because the hand holding it must be on a level with the mouth, thus obstructing the view and light. An instrument has therefore been constructed which obviates this difficulty. It consists of a leaf-shaped blade of silver or German silver bent at right angles and inserted into a flat wooden handle. The lower surface of the blade is slightly concave, and ribbed so as to take a better hold of the slippery back of the tongue, and from the bend is about 3 inches in length. It is introduced into the mouth as far back as possible, and pressed upon the back of the tongue while the hand of the examiner is below the chin of the patient. For the sake of convenience in carrying the instrument the blade has been so hinged to the handle that it will fold up against the latter and will [p. 38]open at a right angle with it (Fig. 15). A more elegant and lighter instrument of the same description has lately been introduced in which the handle is also made of metal, and, like the blade, is heavily nickel-plated, and which when folded can be carried in a pocket-case. Soon, however, the metal tongue depressor becomes tarnished by the secretions of the mouth or by the substances used for applications to the throat, and then presents an appearance disgusting to many patients, who will not on that account submit to its use. For the sake of greater cleanliness, J. Solis Cohen devised a tongue depressor made of hard rubber, which is known as Cohen's tongue depressor (Fig. 16). It consists of a piece of ebonite bent upon itself, either end being a little over 3 inches long. The bend being more than at right angles, the hand holding the instrument rests underneath the chin of the patient; but if a different curve be desired for any particular case it can easily be obtained by placing the instrument for a little while in hot water. When soft it can be bent into any shape, which it will retain when cooled by immersion in cold water. Great care should be exercised not to carry the blade of the instrument too far back, as then gagging will at once set in. In cases where the tongue resists the pressure of the tongue depressor, it is better to exert but a gentle pressure upon the back of the organ, under which it will slowly recede, than to try to subdue it by force, for in the latter case it will unavoidably slip from under the blade of the instrument, and the desired space in the fauces is not obtained. With children the writer has found the fore finger of the left hand to be the best means of depressing the tongue, for the little patients as a rule have a horror of the formidable-looking instrument.

FIG. 15.
Folding Tongue Depressor
Folding Tongue Depressor.

FIG. 16.
Cohen's Tongue Depressor
Cohen's Tongue Depressor.

After the tongue has subsided into the floor of the mouth a small laryngoscopic mirror is introduced into the pharyngeal space behind the velum palati, with the reflecting surface upward, and is held there without touching the wall of the pharynx. The handle of the mirror, as in laryngoscopy, is brought into the angle of the mouth, so as to be out of the line of vision. As is usually the case, the velum palati at the approach of the mirror will rise and apply itself to the posterior wall of the pharynx, when of course the naso-pharyngeal space, being shut off, cannot be illuminated. Under these circumstances the velum must be made to hang down as in the act of nasal respiration, which is most easily accomplished by telling the patient to breathe through his nose. It is of course impossible to do so when the mouth is open, but the patient, not being cognizant of the fact, will make the attempt, and the palate will come down, permitting illumination and inspection of the naso-pharyngeal space and the posterior nares. In those cases in which this [p. 39]expedient fails it becomes necessary to forcibly pull down the velum by means of a blunt hook made by bending a silver laryngeal probe, or to tie it down by passing small elastic bands through the anterior nares and bringing the ends through the mouth and tying them over the upper lip. The smallest black rubber tubing is admirably suited for this purpose, as it can be introduced without an instrument. When the palate is pulled down with the palate hook, or when operations in the naso-pharyngeal space are to be performed, the patient must hold the tongue depressor himself, so as to leave the other hand of the operator free. Few persons can do this, however, satisfactorily, and it will be found more convenient to use Jarvis's tongue depressor and rhinoscope, as modified by the writer (Fig. 17). The instrument consists of a stout wire, which, after having been forked or divided at some distance from its insertion into the handle, forms the loop for the tongue depressor. The two branches then cross each other, and are bent to form another loop at an angle to the larger one. The ends of the wire are somewhat flattened and press against each other, thus closing the smaller loop and forming a sort of pincette, which can be opened by pressing the sides of the larger loop toward each other. The ends of the pincette are perforated by a small hole, which receives a pin attached at right angles to the short shaft of a small mirror, thus forming a hinge, so that the mirror can be placed at any desired angle with the handle or stem. The spring of the pincette cannot be made strong enough to prevent a change of the angle of the mirror by coming in contact with the pharyngeal wall, and therefore a ratchet was placed at the shaft of the mirror where it hinged to the end of the pincette, and a small steel spring, coming from one of the branches of the wire where they cross each other to form the small loop, by engaging in the teeth of the ratchet holds the mirror at the angle given to it before introducing. The large loop acts as a tongue depressor, so that with this admirable instrument the examination of the post-nasal cavity can be made with one hand, leaving the other free for the manipulation of other instruments. In order to be able to exert more pressure upon the tongue and to bring the hand out of the line of vision, the handle may be attached to the stem at an angle like the one in the folding tongue depressor. Except in cases of cleft palate the naso-pharyngeal cavity cannot be illuminated in its whole extent, and must be studied in parts, which when placed together in the mind of the examiner form the rhinoscopic image, a slightly diagrammatic drawing of which is seen in Fig. 18.

FIG. 17.
Jarvis's Rhinoscopic Mirror and Tongue Depressor
Jarvis's Rhinoscopic Mirror and Tongue Depressor.

FIG. 18.
1. Vomer or nasal septum. 2. Floor of nose. 3. Superior meatus. 4. Middle meatus. 5. Superior turbinated bone. 6. Middle turbinated bone. 7. Inferior turbinated bone. 8. Pharyngeal orifice of Eustachian tube. 9. Upper portion of Rosenmüller's groove. 11. Glandular tissue at the anterior portion of vault of pharynx. 12. Posterior surface of velum.

THE RHINOSCOPIC IMAGE.—In the middle of the drawing we see a triangular plate with its apex downward; this is the posterior margin of the vomer or nasal septum. On either side we notice curtain-like folds projecting against the septum; these are the posterior aspects of the turbinated bones. On either side of these and on the margin of the drawing we notice pointed elevations projecting toward the interior of the cavity, with a crater-like [p. 40]depression on their apices; these are the lateral pharyngeal walls with the orifices of the Eustachian tubes. Above we see the vault of the pharynx, and below the posterior surface of the velum palati with the uvula.

Another method of examining the laryngeal and naso-pharyngeal cavities, which is especially valuable in cases where neoplasms or impacted foreign bodies hide the parts forming the laryngoscopic and rhinoscopic images, is by means of digital palpation. Even where no obstruction is present the beginner will do well to resort to this method in all cases, for he will thus become better acquainted with the topography of the parts than by inspection only. The procedure is not as difficult nor as disagreeable to the patient as might be imagined, and needs but little description.

When the laryngeal cavity is to be examined by palpation, the head of the patient is thrown back, and steadied in that position by the left hand of the examiner while he introduces the index finger of the right hand into the mouth and slides it along the back of the tongue until the tip comes in contact with the upper margin of the epiglottis. Passing downward along its lateral margin on either side, the ary-epiglottic folds and the tips of the arytenoid cartilages can be felt, and likewise the upper surfaces of the ventricular bands. The vocal cords are, as a rule, too low down to be reached by the tip of the finger. An examination of this kind should of course be made quickly while the patient is holding his breath, so as not to obstruct respiration too long, which in cases of narrowed glottis by neoplasms might give rise to serious results. When the naso-pharyngeal space is to be explored by the finger, the patient's head is bent forward, and the index finger is gently pushed upward between the velum and the pharyngeal wall. When this is accomplished, the velum is drawn forward and the finger pushed along its posterior aspect until the different portions forming the rhinoscopic image are reached and explored by the sense of touch.

[p. 41]




Coryza is an acute inflammation of the mucous membrane of the nasal chambers. The disease is ordinarily idiopathic, but may be produced by irritative vapors, pollen, or dust. In the idiopathic form the symptoms of coryza are often preceded by malaise, with chilly sensations, and in severe attacks with headache. The attack itself is divided into two stages: that of determination or congestion, and that of exudation. In the first stage the excessive quantity of blood flowing into the arterio-venous network and the capillaries of the nasal mucous membrane distend them and obstruct the nasal chambers.

The symptoms are referable either to such obstruction of nasal respiration—in which group are included oral respiration, sensations of distension, and throbbing in the nose—or to reflexes, such as frontal headache, attacks of sneezing, and dull aching pain in the teeth.

The first stage lasts for a period varying from a few hours to several days, and is followed by the stage of exudation. This is characterized by a free watery or mucoid discharge from the nasal chambers, and by the cessation of the symptoms due directly or indirectly to pressure of the layers of swollen mucous membrane against each other. The discharge at first is watery, and is doubtless composed of transuded liquor sanguinis. It is followed by a mucoid fluid, which in severe or neglected cases may assume a purulent character. In many instances, even in mild cases, the discharge becomes muco-purulent toward recovery. The second stage is associated in children and adults of delicate constitution with excoriations of the nostrils.

Suppuration may take place in nurslings and in old people. It would appear that in coryza, as it exists in the northern countries of Europe, the beginning of the second stage is apt to be marked by free suppuration.

Acute coryza may involve the sinuses of the face, particularly the maxillary sinus. The involvement of the frontal and sphenoidal sinuses, while possible, is infrequent. Pharyngitis, laryngitis, and occasionally acute aural catarrh, often coexist with the disease.

The symptoms of coryza are so distinctive that the diagnosis is easily made. But since any obstructive or catarrhal state of the nose is described by patients as a cold in the head, it is necessary for the medical attendant to distinguish the various diseases so denominated. Acute coryza may be confounded with angiose hypertrophy; with the obstruction to nasal respiration due to deflection of the nasal septum or to an inflamed soft polypus; with catarrhal irritation affecting surfaces which are already enlarged by hyperplasia or which are undergoing atrophy; or with the effects of operative interference in the nose.

In angiose hypertrophy the swollen membranes will contract under a mild [p. 42] current of electricity or by change in the position of the body. Both chambers are rarely involved at the same time. Reflexes are of infrequent occurrence. Obstruction to nasal respiration due to a deflected septum arises from causes which are insignificant and do not affect the constitution. The genuine influenzal or catarrhal element is absent. In an inflamed soft nasal polypus an attempt at inspiration will, as a rule, detect the presence of the growth. In diffuse multiple polypi the case is different. Many persons who are reputed to take cold readily, or who may be said never to be free from cold, are really sufferers from neglected polypi. Persons suffering from atrophic catarrh always speak of an exacerbation of their symptoms as a fresh cold, and describe the disease itself as a cold. The sense of fulness, the throbbing, the heat, and the characteristic discharge of coryza are absent. A fresh cold in atrophic catarrh is an attack of inflammation (often catarrhal in character, it is true) which affects the involved surfaces, but is attended with an increase of plastic exudation and accompanying fetor.

It is a common occurrence for patients who have had a cautery application made or a polypus removed to return after a few days' absence with the report that they have contracted a cold. While the condition may be an attack of acute coryza, the chances are in favor of the symptoms being excited by the manipulation or the reaction from the operation. The symptoms are mild in character.

TREATMENT.—The treatment of coryza is both local and constitutional. The local treatment consists in applications of agents which tend to constrict the vessels of the nasal mucous membrane. In the first rank of such agents may be named cocaine, which in a 2 per cent. or a 4 per cent. solution will often give notable relief by overcoming the sense of obstruction. Individuals will be found in whom the effect is of short duration, and in some persons I found the medicine to have no effect whatever. In more favorable subjects the relief will be acknowledged for a period varying from four to six hours. Next in rank may be named a current of constant electricity (say from six to ten cells) passed through the cheeks. Should neither of the above-named agents be available, inhalations of iodine vapor, a few drops of chloroform rubbed upon the palms and inhaled, or the inhalation of the spirits of ammonia may be recommended. Toward the later stages of the disease detergents and mild astringents are well borne. The constitutional treatment includes the administration of diaphoretics and minute doses of opium, especially in the early stages of the disease. Coryza is commonly self-limited, and by far the larger number of cases do not come under the care of the physician.

Chronic Nasal Catarrh.

Chronic nasal catarrh embraces those more or less persistent affections of the nasal chambers whose symptoms resemble those of acute coryza. The term catarrh is inexact. It is used to include several diseases associated by a single characteristic—namely, the existence of an increased amount of mucous secretion upon the affected membranes.

In order to understand the varieties of nasal catarrh, it is necessary to have clear conceptions of the uses of the nasal chambers. The normal performance of the function of respiration demands that when the mouth is closed the currents of air should pass through the nose. These currents, however, do not sweep over the entire nasal surfaces, but are confined to those portions which answer to the inferior meatus and the space bounded within by the septum, without by the median surface of the inferior turbinated bone, and above by the under surface of the middle turbinated bone. In the lower mammals this space is separated posteriorly by a transverse bony lamina which [p. 43]effectively excludes the upper portion of the nasal chambers from the tract just named. Anteriorly, at the termination of the inferior meatus and the middle turbinated bone, the tract is in freer communication with the upper spaces. The passage thus briefly defined may be called the respiratory tract, and when it remains patulous no serious interference with nasal respiration can occur.

The transverse diameters of the tract are subject to frequent changes, owing to the erectile character of the mucous membrane in its walls. But as long as the surfaces do not touch one another obstruction cannot exist. The passage, even when narrowed to a chink or line intervening between the median and lateral walls of the tract or between the floor and the roof of the inferior meatus, is sufficient evidence that there is room for the transit of the currents of air. The membranes themselves are subject to changes in form which are dependent upon the degree of development of their erectile tissue.

There is doubtless a disposition on the part of the erectile tissue to grow in the direction of the least resistance, and thus to occupy, by a process of compensative hypertrophy, the spaces left as the result of variations or defects in development in the bones composing the framework of the nasal chambers. The greater development of the erectile tissue may in this way be found on the side answering to the larger respiratory tract, which may therefore be more apt to suffer from changes in the conditions of nasal breathing than the chamber having the smaller tract. The erectile tissue acts as a monitor to the throat and lungs by presenting warm surfaces over which the air passes, thereby having the temperature raised before it enters the throat and lungs. It also acts by occluding the chamber, and thus aids in shutting out irritant vapors and dust. The lower animals possess a higher degree of development of the tissue at the point where the adducted ala presses against the septum. This point answers to the position of the organ of Jacobson. With man, the locality of the adduction corresponds to the junction of the premaxillary with the maxillary portion of the nasal chambers, and is often the seat of a delicate band of mucus extending across from the inferior turbinated bone to the septum.

That portion of the nasal chamber above the respiratory tract may be called the olfactory tract. It does not appear to be involved in the diseases under consideration, or, if it is, no clinical signs or symptoms are presented with which the author is acquainted. It will therefore receive no attention in this article.

For convenience the varieties of chronic catarrh may be classified as follows:

FIRST VARIETY—that dependent on defective nasal respiration.

This variety is caused by—

(a) Osseous obstruction in the nasal chamber.
(b) Membranous obstruction in the nasal chambers from compensatory hypertrophy of the erectile tissue, alone or with hyperplasia.
(c) Obstruction arising from hypertrophy of the adenoid tissue in the pharyngeal vault.
(d) Contracture of the levator palati muscles.

SECOND VARIETY—that dependent on structural changes in the component parts of the nasal chamber.

This variety is associated with—

(a) Chronic inflammation of the nasal mucous membrane without hypertrophy of the erectile tissue.
(b) Atrophy of the turbinals and their associated mucous membrane.
(c) Necrosis of the bones which enter into the framework of the nasal chambers.

FIRST VARIETY.—Defects in nasal respiration induce hyperæmia, distension of the erectile tissue, hyperplasia of the mucous membrane, and [p. 44] inevitable distress in the nose. A sense of fulness across the bridge of the nose and at its sides is complained of. Frontal headache may be present.

(a, b) When the septum is deflected and the left nasal chamber is narrowed, the labor of sustaining nasal respiration is thrown on the right side. This arrangement invites a flow of blood to the already large turbinals, and creates obstruction which is frequently referred to the right side, although both are alike affected. Thus, subjects in which the initial obstacle is osseous complain of distress caused by cavernous-tissue hypertrophy of the lining membrane of the opposite side. This represents a very common class of cases.

When the septum is not deflected, but projections from it impede the current of air, there may be either unilateral or bilateral obstruction, dependent upon the shape of the septum itself. Hypertrophy of the cavernous layer of the mucous membrane usually coexists. These cases are numerous, but less common than those last described.

Infrequently, cases are seen where the distress is occasioned by defects of the osseous structures not accompanied by cavernous hypertrophy.

Treatment of the above disorders consists in restoring nasal respiration by removing obstructions, whether they be osseous or membranous. The septal projections may be drilled or filed away, or, if marked deflection of the anterior portion be present dependent upon a malposition of the triangular cartilage, an operation simple in character may be performed for its correction. This consists in severing the connection of the lower margin of the cartilage with the maxilla and slipping the partially free cartilage to a new position. The details attendant upon the operation need not be here given. The reduction of the hypertrophied membranes can be best accomplished by cauterization. The most efficient method is by means of the electric cautery. The electrode used should be flexible and of small size. The points which most frequently require cauterization are the premaxillary portion of the inferior turbinated bone, the under surface of the same, and the septum at the maxillary spur. Rarely the inferior surface of the inferior turbinated bone at the palatal region requires attention. The applications are best made over small surfaces at a time, and should be repeated at intervals of from two to three days until all suspected points have been at least once cauterized. Not infrequently, the effect of the cauterization at one spot will cause constriction to take place in the vessels of the entire mucous surface, so that while this condition lasts it is impossible to tell what additional points of the membranous obstruction demand removal. At the following visit, however, the vessels have become relaxed, the membranes are again turgescent, and if obstruction now occurs it can easily be detected.

The galvano-cautery can only be used in the nasal chamber in patients who are earnestly seeking relief and are willing to assist the physician in all his efforts. With the tractable, intelligent subject it can with proper care be limited exactly to the spot intended. It is scarcely necessary to observe that any erratic or unexpected motion of the head will sear unaffected and sensitive surfaces. The interior of the vestibule is perhaps the most sensitive of these, and should always be protected by the use of the nasal speculum. No additional protection is needed, though in the judgment of others, among whom may be mentioned E. Shurly of Detroit, Michigan, an ivory shield passed in the nose parallel to the electrode is a necessary safeguard.

The pain of the application is generally slight, and can be in part annulled by a previous application of a 4 per cent. solution of cocaine. Some annoyance is acknowledged on the following day from the pressure of the eschar. Traumatic congestion of the entire mucous surface of the corresponding chamber is at the same time detected, and is usually sufficiently decided to produce some of the effects of acute coryza. This condition will spontaneously terminate in from thirty-six to forty-eight hours. The most annoying features [p. 45]following an application of the galvano-cautery which has been too freely made do not belong to the group just indicated, but rather to reflex disturbances. Pains are occasionally excited in the teeth, in the temple, eye, nape of the neck, and the middle ear. On one occasion in the writer's experience a unilateral reflex excitation of the entire opposite side of the body occurred, and a prickling sensation, followed by numbness, ensued, which lasted for twenty-four hours. Very rarely a congestion of the pharynx, of the larynx, and the larger bronchial tubes ensues, which can scarcely be directly attributable to the application, yet it has followed in a sufficient number of cases to lead me to believe that the two are in some remote way associated. Perhaps such a condition is analogous to the slight irritation of the respiratory tract following excision of the tonsil. Careful use of the galvano-cautery will obviate the conditions above described. They are important to remember as serving as limitations to the use of this valuable agent.

(c) It will be seen that osseous obstruction in the nasal chamber and hypertrophy of the cavernous nasal tissue often coexist. More rarely, a third element occurs as a complication, or it may be found independently of all other morbid processes. I allude to the presence of hypertrophy of the adenoid tissue in the pharyngeal vault. When this tissue is only moderately developed, it need not, and does not, interfere with nasal respiration; but when it projects downward to such a degree as to lie within the axis of the lower portion of the posterior nares, it produces the same effect upon nasal breathing as though obstruction existed within the chamber. The growths can be easily detected, as a rule, from behind by the aid of the rhinal mirror, but it should not be forgotten that they also can be seen from in front, provided the chamber is free from obstruction along the respiratory tract. In some individuals the ribbed or lobate structure of the mass can be discerned, but more often its presence is revealed by the minute points of light reflected from the lobules. If it be a matter of doubt whether these points of reflection are within the nasal chamber or beyond it in the pharyngeal vault, the patient may be requested to swallow, or to pronounce the letter e; when, if the point of reflection is within the nasal chamber, it will not change its position, but if it be within the naso-pharynx, it will be moved slightly from side to side, or it may for a moment disappear.

The symptoms of nasal catarrh which are provoked by the presence of such a growth can be alone successfully treated by the removal of the offending mass. In young individuals—say, from twelve to eighteen or twenty years of age—the finger inserted into the naso-pharynx from behind can often break down the growth. Slight hemorrhage follows this procedure, and the tags of imperfectly-destroyed tissue can be subsequently treated by caustics and powerful astringents. In the event of the patient proving intractable, the growth may be reached from in front through the nasal chamber, and the galvano-cautery can be used by passing the electrode backward through the nostril until it meets with resistance, which is invariably at the pharyngeal vault. Should this method of treatment not be permitted by an undisciplined or nervous person, the prolonged use of a glycerole of iodine may gradually reduce them in size; but no definite result can be promised from such treatment.

(d) Very rarely, through inordinate elevation of the soft palate owing to over-action of the levator palati muscles, the passage of communication between the naso-pharynx and the oro-pharynx is inadequate. Consequently, the nasal chamber is imperfectly ventilated, and its secretions, not flowing backward or being displaced to the normal extent, become semi-inspissated, and create obstruction by lodging in the respiratory tract, either in the premaxillary or palatal portions. To successfully combat this condition it is evident that no local treatment is demanded, either in the nose or the naso-pharynx, other than to increase the tonicity of the pharyngeal and palatal [p. 46] muscles. Very frequently in such cases there is a symmetrical atony in the muscles last named, which demands the internal use of strychnia and iron and the application of galvanism.

PROGNOSIS.—When nasal catarrh has proved to be dependent on defective respiration, the removal of the causes entering into this condition may with reason be expected to effect recovery. The prognosis, therefore, is favorable. In young persons, in whom reparative power is present in the highest degree, and in whom a secondary hypertrophy of the cavernous tissues is least developed, a prompt cure may be obtained by removal of the osseous or other forms of obstruction. In adults, however, the prognosis is less favorable, especially with those who have approached or passed middle life, and who have contracted vicious habits of breathing, which are likely to persist even after the removal of their causes. It is also tenable that in such subjects the mucous lining of the cranio-facial sinuses has become involved. Should anosmia persist after the capacity of the chambers has been augmented—in a word, should this condition not be dependent upon obstruction, but upon changes in the olfactory surfaces—the prognosis is less favorable than in any of the cases of the above-named group.

Treatment will, however, always secure amelioration of the symptoms, and few cases occur which cannot be greatly improved. The general health is invariably benefited. Should a tendency to asthma exist, it is apt to disappear, the complexion clears, and in adolescence the rate of general development is accelerated.

SECOND VARIETY.—The group of nasal diseases included under this head is not a natural one, since it embraces disorders characterized by a negative feature—viz. absence of obstruction to nasal respiration. Nevertheless, it is convenient to consider under a single head a number of relatively infrequent disorders in which there is invariably an underlying constitutional cause. Subjects of disorders herein embraced are not merely sufferers from insufficient oxygenation of the tissues, but have impaired general vitality or possess a decided constitutional taint, whether specific or otherwise. The nasal condition is simply the most prominent of the local manifestations.

Three distinct disorders are herein named: first, chronic inflammation of the nasal mucous membrane; second, atrophy of the turbinals and their associated mucous membrane; third, necrosis of the bones entering into the framework of the nasal chambers.

(a) Inflammatory thickening is a rare affection. It is more frequent in males than in females, and in persons of a sedentary occupation than in those who are actively employed. Those subject to it are apt to have light-blue or gray eyes and auburn or sandy hair. On examination, the chambers may be found free from peculiarities of bony structure, capacious, and without hypertrophy of the cavernous tissues, yet the membranes be of a deep-red color and of cushiony consistence, yield bright reflexes, and the shank of the instrument introduced into the nose is mirrored upon them. The most conspicuous alteration is not seen on the turbinals, but on the septum. The parts are very vascular, and the most moderate manipulation will often end in free capillary oozing. The discharge, though moderate in quantity, is inclined to be purulent, and resembles semi-coagulated albumen. Quite frequently, in the examination of a neglected case, minute flecks of this modified secretion are seen scattered over the septum and the inferior turbinated bone. Rarely, the discharge is maintained by the presence of a morbid growth or inflammatory products, either in the nasal chamber or a chamber accessory to it. The discharge then appears to consist of pure pus mixed with the normal secretion of the nose, and, thus rendered viscid and tenacious, it excites by its presence a condition of the lining mucous surface quite similar to that above described.

[p. 47] Under excitement, as after an attack of coryza, the discharge becomes more serous in character, and is occasionally of a chocolate color from its admixture with blood. It is without odor. There is no obstruction to respiration except during sleep, when, in aggravated cases, mouth-breathing may be established. Thus, the patient will often complain of an obstruction which is never present at the time of the examination. He further complains of a sense of dryness in the nose, with some pharyngeal irritation. The palato-pharyngeal and palato-glossal muscles are weak and often asymmetrical; the tonsils are small, but the adenoid tissues are generally unaffected. In a dry atmosphere, especially if it be loaded with irritating particles, the pharyngeal irritation is increased—a complication which is probably due to the inspired air passing too rapidly through the capacious and imperfectly-guarded nasal chambers and throat. Although I have carefully searched for all indications of aural complications, especially for the symptoms of progressive dry catarrh, I have never detected them but in a single instance.

The prognosis is to be guarded, although a careful course of treatment and proper care of the general health will greatly improve, if not entirely cure, the disease.

TREATMENT.—This consists in the application of nitrate of silver, either in strong solution or in the solid stick, to the under surface of the inferior and middle turbinated bones, of washing the parts with a dilute solution of carbolic acid, and of passing through the cheek tissues a constant electrical current of a strength of from five to ten cells. Tonics and alteratives should not be neglected, and an outdoor life, as far as is practicable, should be enjoined. The galvano-cautery may be used to destroy any nodules of tissue which resist other treatment. All applications are well borne, if indeed we may not look upon the condition of the surfaces as partially analgesic, and thus far of unfavorable significance. It is certain that indurated tags of oedematous and chronically inflamed mucous membrane overlying a bone, such as the middle turbinated or the alveolar line about the necks of the teeth, will never yield to anything but the most powerful astringents. Upon such tissues the most concentrated solutions of nitrate of silver are never caustic. The premaxillary portion of the inferior turbinated bone is frequently seen hopelessly infiltrated, and it must then be destroyed by the electro-cautery. When a discharge of a pus-like character exists, careful search should be made for the cause. If a tumor or foreign body be found, it should be removed, but if the cause lie in one of the outlying spaces of the nasal chamber, it is evident that the above treatment is palliative only.

(b) In atrophy of the nasal mucous surfaces and turbinals we have, as in the last-named group, spacious chambers, a purulent discharge, pharyngeal irritation (in many cases), and always associated a thin and relaxed, if not a paretic, condition of the velal muscles. These cases might be looked upon as an advanced stage of the preceding affection, since it may be surmised that the stage of infiltration has been succeeded by one of atrophy. The mucous membranes are everywhere pale, and closely bound to the underlying bony framework. The discharge is purulent and confluent; where in contact with the air it is desiccated, but where protected, as by crust-like surface-layers, it is semi-fluid and tenacious. There is, consequently, no disposition for the discharge to escape from the nose, and it accumulates until the sense of obstruction induces the patient to remove it by artificial means. When first seen, the nasal chambers are frequently so fully occupied with discharge as to conceal the characteristic appearances of the mucous surface. This prolonged retention induces incipient decomposition of the mass, which gives rise to the odor so characteristic of this group of cases.

The subjects of atrophic catarrh (ozæna) are never in robust health. They are, as a rule, of spare habit, anæmic, and with family histories which, while [p. 48]not distinctive, indicate that the affection is, to some degree at least, hereditary. A few cases have come under my notice in which all the general features of atrophic catarrh were present, but with very slight although confluent discharge, unaccompanied by fetor. Such cases are, strictly speaking, examples of atrophic catarrh, while they could not, under the old nomenclature, be included under the head of ozæna.

The prognosis is unfavorable for entire recovery, but treatment systematically pursued will make the patient entirely comfortable to himself and others—will arrest the progress of the disease and vastly improve the general health. As in other forms of nasal disease, should anosmia be present the prognosis is less favorable.

FIG. 19.
Antero-posterior section of the bones of the face
Antero-posterior section of the bones of the face in position, showing the premaxillary portion of the floor of the nose greatly elevated above the plane of the remaining portions. In ozæna, as mentioned in the text, a disposition of parts may exist similar to that delineated, and cause discharge to collect and undergo offensive decomposition.

TREATMENT.—The parts should be carefully cleansed—an act which, while imperfectly accomplished by either the syringe or the douche, is, in my judgment, best performed by the galvano-cautery. This instrument, the one relied upon for the subsequent treatment of the case, is to be selected for its initiation. The largest speculum which the nose will admit being placed in position, a spiral-looped electrode is introduced cold into the nose and held against one of the crusts. When heated it will effect so firm an attachment to it as to enable the mass to be withdrawn with great ease. In patients with [p. 49]whom the palatal portion of the floor of the nose is depressed below the level of the maxillary a considerable quantity of discharge may lie concealed from observation. When, after the removal of all visible crusts, the fetor persists, it is reasonable to suppose that the palatal depression is filled with decomposed pus and mucus. To test such a condition, the electrode should be appropriately curved and introduced. I have been surprised at the quantities of discharge which can in this way be withdrawn from a locality which, as far as I know, cannot be cleansed in any other way.

With the removal of the crust relief is at once experienced, and if the discharge could be removed as fast as it forms the disease would not really be a source of offence. The general health would also improve, from the fact that an atmosphere tainted with a burden of decomposition would no longer be breathed. But in practice this cannot be attained, and it is imperative, after the chambers have been entirely cleansed, to cauterize the lining membrane throughout. I have been in the habit of beginning such cautery treatments with the middle turbinated bone, passing thence to the inferior turbinated bone, then to the roof of the nose in front of the sphenoidal sinus, and lastly to the septum. Small surfaces only should be covered at a single treatment, so that it may take a month or six weeks to finish a single series of applications. This treatment is almost always well borne, nothing ever ensuing beyond a slight headache or a temporary establishment of a serous discharge. Notwithstanding that the condition in question is one of atrophy, the reparative power of the mucous membrane remains apparently unaffected. At all events, no danger from sloughing is to be dreaded after such extensive destruction of tissue. The thin eschars separate within from three days to a week, leaving a healthy mucous membrane beneath. In one instance the cauterization had extended to a sufficient depth to expose the bone, and yet from this denuded surface no exfoliation took place, the parts healing rapidly and satisfactorily. No other local treatment is relied upon for fetid atrophic catarrh than the one mentioned. No disinfectant washes are required if the discharge is removed as described. Should the patient be so situated as to be unable to report regularly for its removal or treatment, a wash composed of one part of Labarraque's solution to sixteen parts of water may be ordered with advantage, or a solution of carbolic acid, gtt. j to fluidounce j, with a little glycerin, may be snuffed up the nose twice a day, or listerine, diluted one-half with water, may be used with advantage. The general health, of course, should be cared for, and any complications met. I have found that during the winter months arsenic and cod-liver oil are well borne, associated with minute doses of Lugol's solution. For adolescents earthy and the calcareous phosphates are indicated, and for all abundant exercise and careful dieting. When the symptoms have been relieved, the patient should be requested to report once a month, for it is not to be expected that all symptoms will disappear, and some point of advice can be advantageously offered at this interval.

(c) Necrosis in the nasal chamber is a cause of catarrh, inasmuch as the fragments of bone lying within the nose excite irritation and induce discharge. I have never seen a case of this form of disease which was not due to syphilis. The remains of syphilitic angina are apt to be present, and the general manifestations of constitutional syphilis are well developed. The septum is more frequently affected than the turbinals.

Discharge due to necrosis can be readily distinguished from that arising from any other cause by the presence of detached fragments of denuded bone, by the characteristic fetor, and by the history of the case.

The prognosis is favorable, for all symptoms will cease upon the extraction of the fragments, or at least those which remain are of an entirely different character, and are due to the resultant imperfections of the septum, and consequent irritation arising from the too free entrance of air into the [p. 50]nose. I have seen in one case an extensive tumefaction and infiltration of the tissues covering the middle turbinated bone at the same time that the septum was breaking down. These masses require treatment with the galvano-cautery and astringents after the dead fragments have been removed.


Cases in which interference with nasal respiration is a conspicuous symptom:
     Due to deflection of nasal septum (common).
Due to angiose hypertrophy of the mucous membrane (common).
Due to tumors lodged in the nasal chamber.
Due to adenoid hypertrophy in the naso-pharynx.
Due to over-activity of the levator palati muscles (rare).
Cases in which discharge is a conspicuous symptom:
     Due to hyperplasia of the mucous membrane over the turbinated bones (common). The discharge when flowing backward is described as a dropping; when forward, as a running at the nose. The discharge is either mucoid or muco-purulent.
Due to tumors lodged in the nasal chambers or appendages. The discharge is usually excessive. When due to myxomata (polypi) the discharge is mucoid (common). In inflammatory complications of the same the discharge is muco-purulent (common). When due to neoplasms other than myxomata the discharge is purulent, and rarely muco-hæmic (rare).
Cases in which retention of mucus in the nose or upper part of the throat is a conspicuous symptom:
     Due to retention of inspissated mucus at the roof of the naso-pharynx (common).
Due to the mucous secretion of the nose and throat being excessively tenacious (rare).
Cases in which fetor is a conspicuous symptom:
     Odor putrid. Due to retention and decomposition of plasmic exudation from atrophied bone and mucous membrane (common).
Due to necrosis of the bones within or bordering upon the nose (rare).
Due to decomposition of muco-pus in the maxillary sinus (rare).
     Odor musty. Due to partial decomposition in small patches of desiccated mucous crusts (common).
Due to morbid secretion unaccompanied by profound alteration in the structure of the nose (rare).
Due to ulcerations of the mucous membrane (rare).
Cases in which a sense of dryness is a conspicuous symptom:
     Due to ineffective erectile tissue permitting air imperfectly warmed to enter the nose and the pharynx (often met with in neurosis). It is caused by temporary constriction of the erectile tissue or by the atrophy of the tissue.
Due to neurosis. Neurotic patients will often complain of a sense of dryness in the nose and the naso-pharynx when all the conditions of excessive mucoid discharge are present.
Cases in which hyperæsthesia exists, so that slight lesions that in any way interfere with the nasal functions form the basis of persistent complaint (not infrequent).


Epistaxis, or nose-bleed, is a form of local hemorrhage perhaps of more frequent occurrence than hemorrhage from any other mucous surface of the body. This is doubtless owing to the extreme vascularity of the lining membrane of the nose and the special arterio-venous (cavernous) spaces of the turbinated bones; and the bleeding may be said to be of grave character in proportion as these spaces are involved. In some individuals a special disposition to nasal hemorrhage exists. From the fact that the affection is transmitted from parent to offspring, and is frequently found in all members of a given family, this form of hæmophilia is probably dependent upon some structural peculiarities in the cavernous spaces.

The causes of epistaxis are both local and general. Among the local causes may be included traumatism, either from blows or other injuries, attempts on the part of the patient to relieve irritation by picking the nose, or from the [p. 51]use of cutting or other instruments in the hands of the surgeon. Septal ulcerations in this way are often accompanied by moderate bleeding. In a case reported by R. G. Curtin the nasal branch of the ophthalmic artery was thought to have been ruptured. Among the general causes the most frequent is undoubtedly the depressed state of the system preceding or accompanying typhoid and other anæmic states. Thus, among the prodromes of typhoid fever epistaxis holds a conspicuous position. It is also seen in chlorotic females, especially in those suffering from that phase of anæmia known as Grave's disease. It also occurs in vicarious menstruation and in local facial or encranial congestions. In those disorders of nutrition accompanied by a tendency to capillary extravasation, such as purpura and scurvy, the nasal mucous surface participates in the general disorder. In a case of the former disorder coming under the notice of the writer the blood had forced its way out in large quantities by every capillary avenue.

TREATMENT.—Epistaxis when a symptom of a dyscrasia is of course to be treated as a local expression of a general condition. In typhoid fever, scurvy, and purpura or anæmia the bleeding is a sign of the general distress, and requires no special local method of treatment. Epistaxis when of local character should be treated, first, by removing the cause; second, by diminishing the flow of blood to the part; third, by cold and astringent washes to the affected surface; and, fourth, by compression.

First. Should the bleeding be kept up by fragments of bone impinging upon or lacerating the mucous membrane, they should be restored as far as possible to their natural position and retained there by appropriate apparatus. If they are entirely denuded of their periosteum and mucous membrane, they should be removed. Foreign bodies should be extracted, and if septal ulceration be present it should be carefully treated, the crusts removed, the ulcerated surfaces touched with nitrate of silver in stick, and the nasal chamber plugged from in front to exclude the outside air.—Second. The position of the body is of great importance in treating epistaxis. The recumbent position is no doubt to be preferred. The patient often holds one arm elevated or ties a cord about the proximal end of a limb. These innocent accessories to treatment may be permitted, since they are based upon well-known physiological principles, although it must be said that the bleeding can in all instances be checked without their aid. Cold applications to the nape and sides of the neck are often of service. Various internal remedies, such as ergot, gallic or sulphuric acid, and erigeron, may be administered with good effect in addition to the local measures.—Third. Astringent washes, such as a solution of alum—about drachm j to the pint—will often check a moderate degree of capillary bleeding without other aid. Tannic or gallic acid may also be used. Should these measures fail, the Monsel solution may be used on pledgets of cotton carried up to the bleeding spots. In Curtin's case, already quoted, a pledget saturated with the solution of the perchloride of iron placed over the nasal branch of the ophthalmic artery promptly arrested the bleeding. In lieu of these styptics the platinum wire loop of the galvano-cautery battery may be used. The writer has often succeeded in checking bleeding after a removal of a polypus or the use of the galvano-cautery when the exact position of the hemorrhage is known by laying upon the affected spot a little square of patent lint. It acts much as in checking the bleeding from a leech-bite.—Fourth. Compression of the mucous lining of the nose and exclusion of these surfaces from the air—a method familiarly known as plugging the nose—is the dernier ressort in the treatment of epistaxis, and is to be relied upon in the event of failure of other methods. This failure is, however, relatively infrequent. Observers agree in describing the procedure tedious and rather disagreeable, as much to the operator as to the [p. 52] patient, who has already been exhausted by loss of blood and the previous measures resorted to for his relief.

FIG. 20.
Bellocq's Canula
Bellocq's Canula.

The instrument usually relied upon for this purpose is known as Bellocq's canula (Fig. 20). This little instrument consists of a hollow curved tube of metal fashioned somewhat like a Eustachian catheter, and bearing within it a flexible and adjustable metallic band which carries at its extremity an eyelet. Any one who has used the Eustachian catheter will recall the number of instances in which it could not be passed, or if passed the frequency in which great distress followed. If this be true of the Eustachian catheter, it is also true of the Bellocq canula, the difficulty in the case of the catheter, indeed, being the lesser of the two, inasmuch as the physician has a number of sizes to select from. Conceding, however, that the instrument (with a long stout thread passed through the eyelet of the stylet) has been placed in position in the nasal chamber, one end of the thread is seized within the mouth and brought out between the lips, while the other, carried by the instrument, is withdrawn through the nose and is allowed to hang from the nostril. The two ends of the thread are now tied firmly together, and a pledget of lint or cotton, fashioned somewhat after the shape of the posterior naris, is tied to the thread. Traction is now made upon the nasal portion of the thread until the plug is firmly lodged against and within the posterior naris. The remaining portion of the oral thread is now cut off close to the velum, and the free end of the nasal thread secured by adhesive plaster to the integument. The nostril should next be stopped from in front by pledgets of lint or absorbent cotton. The size of the nasal chamber and naso-pharyngeal varies so markedly that a rhinoscopic examination is of use in fixing upon the size of the plug. If it be too small, it will be drawn entirely within the nose, and possibly beyond the bleeding spot. If it be too large, it will partially or entirely occlude the posterior naris of the opposite side, and thus by interfering with nasal respiration greatly increase the distress, or by pressure against the Eustachian fossa and velum interfere with the hearing and with deglutition. The plug should be retained in position until a purulent mucus appears within the nose: this is usually about the third day. The plug now usually becomes a little loose, and can readily be withdrawn by pushing it back into the pharynx, where it is seized with forceps. Too long retention of the plug in position is followed by great fetor and the free formation of muco-pus—conditions which tend to debilitate the patient.

D. Hayes Agnew informs me that he for a long time practised stopping nasal hemorrhage by plugging the chamber from in front. Strips of patent lint four inches long by half an inch wide are employed for this purpose. They are gradually pushed into the chamber until the entire space is filled as far as is practicable. An essentially similar method is described by F. H. Bosworth in his Manual of Diseases of the Throat and Nose.

Morbid Growths.

These may be said to include the myxoma, sarcoma, fibroma, carcinoma, also the true hypertrophies and submucous inflammatory thickening.

[p. 53] The myxoma, more commonly known by the name of soft or gelatinous polyp, is the most prominent of the morbid nasal growths. It occurs ordinarily in small pedunculated seed-like masses, ranging in size from that of a grain of wheat to a grape. The most common seat is on the anterior portion of the middle turbinated bone and on the median surface of the inferior turbinated bone at the palatal portion. Instead of being pedunculated, they may be sessile; that is, each tumor may have a base equal to, if not exceeding, any diameter of the tumor.

The symptoms of nasal polypus are of three kinds: (1) those arising from obstruction of the nasal respiration; (2) those arising from the irritation excited by their presence; (3) the symptoms, reflex in character, manifested at points beyond the limit of the nasal chambers.

(1) The polypi necessarily tend to obstruct the respiratory tract of the nasal chamber. The first symptoms are of this character, and as a rule furnish the first intimation to the patient that trouble exists. Difficulty of nasal respiration is acknowledged, accompanied with a sense of tension and fulness, which is found to be worse during damp weather than when the air is dry and bracing. If the growths are freely pendulous, the act of blowing the nose may change the position of the mass and secure temporary freedom from distress. Incidental to obstruction, an intonation of the voice is often present. Loss of smelling and of taste is a frequent result of the mass interfering with the movement of the odoriferous particles. The loss of the sense of taste is dependent upon the loss of the sense of smelling.

(2) Polypi when large enough to press against the membranes of the nose excite an increased flow of mucus. As a rule, this flows forward, and is removed by the handkerchief. The quantity of fluid thus escaping is often very great. Patients often report the necessity of carrying about with them for a single day's use from eight to ten handkerchiefs. In the turgesence excited by an attack of coryza the mucus becomes thicker and of a yellowish color. Occasionally a sensation of dropping of mucus from the nose into the throat is a source of complaint.

(3) The reflex symptoms belonging to the presence of nasal polypi are, as a rule, referred to the forehead. This is especially the case if the growths involve the middle turbinated bone. When the tumors are so located, and have not impinged upon the respiratory tract, the symptoms of obstruction may be absent, and those of mucus excitement so moderate as not to excite attention, while the tension in the forehead, especially over the frontal bos, is pronounced. This sensation is intensified by prolonged inclination of the head forward, being especially aggravated in the acts of writing at a desk, working at a sewing-machine, kneeling at prayer, etc. Occasionally tinnitus aurium and suffusion of the conjunctivæ are present.

Neglected polypus ends in deformity of the nasal chambers and bones of the face. The face assumes a peculiar expression called by the older observers frog face. This is rarely if ever seen in this country, owing doubtless to the fact that the sufferers from nasal polypus seek medical advice in the early stages of the affection. Moderate degrees, however, of deformation of the turbinated bones are often seen.

Since the symptoms of soft nasal polypus are produced entirely by mechanical means, they can be closely imitated if not replaced by other morbid states of the mucous membrane. A hyperplastic state of the membrane over the middle turbinated bone will give rise to all the symptoms of a sessile polypus in the same situation. It is well to remember that this condition of the membrane often coexists with polypus, and of course will persist after the polypus has been removed. It follows that a guarded prognosis should always be made in case of sessile polypus. A tedious course of treatment of the indurated and chronically inflamed membranes may be required after the [p. 54]tumors have been removed before a cure is effected. The prognosis of soft polypus is more favorable as to the immediate results of treatment than in sessile polypus. The liability to recurrence can be materially lessened by carefully conducted after-treatment.

The diagnosis of soft pedunculated polypus is readily accomplished if the examination is made by aid of an appropriate speculum, the rhinal mirror, and a powerful light. Even without these aids the tumors can be seen by direct sunlight within the nostril if they are entirely occluding the chambers, and even in the event of nothing being visible by such inspection the movement of the masses by the act of blowing the nose will be noticed. The fact that the nasal obstruction is aggravated by damp weather seems to assist the physician in framing a diagnosis.

The diagnosis of sessile polypus requires a careful use of all the aids of rhinoscopy. They can be distinguished from hyperplasia of the mucous membrane by their lobulated form, and from the fact that the probe can move them slightly from their base. They can be distinguished from adenoid growths at the root of the pharynx by the fact that they remain unmoved during the act of swallowing.

The disease is not apt to recur if the treatment is thoroughly carried out.

The treatment of soft polypus consists in their removal. All observers are now agreed on this point. Injection by astringents and acetic acid—a process that at one time held out much promise—has been generally abandoned. In removal of the polypus one of two methods may be resorted to: that by avulsion, and that by the use of the snare. Avulsion is effected by forceps adapted for this special use. With such an instrument the polyps can readily be seized and removed. The rule that nothing should be seized which is not seen is subject to no exception. In no other way can the operator be secure against accidents. Incautious operators have frequently torn away strips of mucous membrane or portions of the turbinated bones in their crude attempts to remove these growths. Severe hemorrhage and death through violent lacerations of the ethmoid bone near the cribriform plate, and subsequent extension of the inflammation thereby excited to the membranes of the brain, have been known to follow these crude surgical procedures.

FIG. 21.
The Author's Nasal Forceps
The Author's Nasal Forceps.

W. C. Jarvis of New York has modified the wire snare for application to the nose for the removal of polypi and hypertrophied tissues, and reports that it is a safer, more expeditious, and less painful method of operation than the forceps, which he unqualifiedly condemns. His instrument, while undoubtedly an ingenious adaptation of the principle of the snare, and a valuable addition to our means of treating nasal affections, cannot, in my judgment, take the place of the forceps in removing nasal polypi. As the aurist finds both the forceps and the snare useful in removing growths from the external meatus of the ear, so I am sure the physician will need both in the treatment of nasal polypi. In many cases the malformations of the nasal septum are such that [p. 55] I have been unable to use the snare where the forceps could be used with relative ease. I find when the loop is quickly drawn the same amount of bleeding follows as when the forceps are used. When it is slowly drawn, the sitting is tedious, and both the patient and attendant find the process wearying. The amount of blood lost when the forceps are properly used is not considerable, and is always under control. F. H. Bosworth1 describes the operation as extremely painful. So far from this being the case in my experience, I find the patients complain greatly of the constriction of the wire loop on the pedicle of the polypus, and invariably prefer the forceps. I must add that this preference was in no way influenced by myself, for I was disposed at one time to agree with the writers who have of late criticised the method of removal of the polyps by avulsion.

1 A Manual of Diseases of the Throat and Nose, 1881, p. 241.

No matter which of the methods be accepted, the treatment of polypus resolves itself into two simple propositions. When one or two large polypi are present in a capacious nasal chamber, the removal of the growths either by avulsion or snaring is a simple matter, and can often be accomplished in a single sitting. When numbers of small polypi are scattered over a large surface, particularly if they grow from the sides of the middle turbinated bone, the treatment is tedious, and even after the growths are removed a series of applications are required to cure the thickened and infiltrated mucous membrane.

Sarcoma, fibroma, and carcinoma are infrequent causes of nasal disease. When located in the nasal chambers they do not present any characters with which I am familiar which distinguish them from the expressions they assume in other parts of the body. When involving the respiratory tract they alike create symptoms by obstruction, by excitement of the secretions, and by the reflexes due to the involvement of the branches of the fifth pair of nerves. When situated in the olfactory track the obstruction to nasal respiration is absent, but the reflex symptoms are pronounced: the patient is liable to depression of spirits and to frontal headache. Encroachment upon the orbital, pharyngeal, and encranial spaces is common in the last stages.

Perhaps the most common way in which these morbid growths induce symptoms referable to the nose is by obstruction of the respiratory tract by the incursions of a mass originating at a point beyond the limits of the nasal chambers. In this way a growth in the pharynx may close one or both choanæ, or protrude into the nose from the spheni-palatine space by breaking down the ascending plate of the palatal bone as it forms the median wall of this space; or the growth may project inward from the superior maxilla.

In one case under my care, of obscure growth high up within the nose, which ended fatally by involvement of the membranes of the brain, a tenacious mucus of a dark chocolate color was withdrawn from the nose into the throat. The peculiar color of the mucus was found to be caused by a mixture of blood. In my judgment, this peculiar mixture of blood and pus was significant. The blood and mucus had not been mixed in the nasal chamber to cause the chocolate or rusty hue, for then we would have had the appearance customary in epistaxis of bright blood and frothy mucus mechanically held together. The even dissemination of the blood through the mucus would point to the conclusion that the blood had escaped in small quantity at the time of the formation of the mucus. Why such mucus does not constantly form in inflammatory states of the mucous membrane of the nose, as it does from the pulmonary mucous membrane in pneumonia, I am not prepared to say. But existing as it did in a case where a deep-seated disease was present may be accepted as a fact in some way connected with the invasion of a morbid growth in and upon the nasal mucous surface.

The pharynx is always in a state of hyperæmia when morbid growths of [p. 56] the above groups are present in the nose. The front of the velum is apt to be covered with a great number of minute papillæ, which, however, are often seen in anæmic individuals, and are not therefore pathognomonic.

The treatment of the growths enumerated and the general conduct of the cases are subjects for the general surgeon, and a consideration of them here would be out of place.

It may, however, be well to describe a few instruments which have been found useful in the large group of cases where cauterization is the principal treatment indicated. Foremost among these is the instrument shown in Fig. 22, which combines advantageously the essential features of the galvano-cautery and the wire snare.

FIG. 22.
The Galvano-cautery Snare
The Galvano-cautery Snare described in the text: 1, the cable of the battery; 2, the canula (which is not shown in full length); 3, the platinum wire; 4, the vulcanite carriage, with screws holding the ends of the platinum wire in metallic contact with the hinge-connections, by which the current is transmitted from the battery; 5, a slotted barrel of aluminium; 6, a movable nut on the screw; 7, a small portion of the screw disengaged from the slotted barrel; 8, milled stationary screw-head.

FIG. 23.
The Double Battery employed by the Author
The Double Battery employed by the Author: The two sets of plates are seen united by a flat band of metal. The case which encloses the two separate batteries opens in front, displaying the cells, the plates (which are seen pendent over the cells), and the treadle. Above the figure of the battery lies a figure of the Flemming electrode handle and the electrode in position.

It is well known that a loop of wire which is steadily narrowed has great power in severing the attachment of tumors and other outgrowths. When of a large size, it may be sufficiently powerful to pass through bony structures, as well as the softer parts of the body. The principle of the snare has been employed both in the throat, the ear, and the nose; but when my attention was first directed to this subject the forms available were too large and heavy for the delicacy of manipulation demanded in removing small tumors lodged in the narrower recesses of the nose. Moreover, no snare that I could then find would permit the galvanic current to pass through the loop at the time it was being narrowed. I was led, therefore, to inquire into the practicability of an instrument which would at once be light, be of small size, and yet be sufficiently powerful to remove that class of hypertrophied tissues and polypoid growths which are of such frequent occurrence in the nasal chambers. The instrument shown in Fig. 22 combines these qualifications, and satisfactorily performs the service for which it was designed. The only feature of an essential character which may be said to be novel is the fact that the platinum wire (3, Fig. 22) forming the snare is covered with a uniform coat of copper, excepting alone the portion forming the loop, which is bare. As a consequence of this arrangement the current of electricity from the battery is conducted through a double canula (2, Fig. 22) by means of the copper. The length of the instrument being about 9½ inches, and its weight less than ½ ounce, delicacy of manipulation is not interfered with. Besides possessing all the features of the cold wire snare, it has the additional advantage of securing a more rapid and painless operation, without any hemorrhage. Sessile (pyramidal) or resilient growths may be removed by first burning a groove of any depth into them, after which the loop is drawn while the current is passing through it. For this task the cold wire snare is obviously incompetent. Growths of unusual size or hardness may be destroyed by the same procedure, and nodules no larger than a grain of wheat may also be excised with great nicety. [p. 57]It will be seen that failure to remove at least a portion of the growth attacked is an event exceedingly unlikely to occur. I have been particularly struck with the facility with which hypertrophies of the inferior turbinated bone can in this way be treated; and if cocaine be freely applied before the operation, it constitutes, in my judgment, the most speedy and the least painful of any means by which such conditions can be reduced. By using a canula with a curved end it is easy to snare growths situated on the posterior portion of the inferior turbinated bone. The current passing through the battery (Fig. 23, B) to the instrument can be interrupted by any of the numerous devices with which the practical electrician is familiar; or the treadle of the battery can be depressed and locked by the lever-catch, and the interruption of the current be determined by the pressure of the finger [p. 58]on the knob in the handle (Fig. 23, A). This is under all circumstances desirable, since the weight of the cells is sufficient to demand considerable force to be exerted by the foot—always enough to destroy the delicacy of the manipulation of the instrument.

FIG. 24.
Two Electrodes of peculiar shape in use by the Author
Two Electrodes of peculiar shape in use by the Author.

An electrode which is wrapped nearly to its distal end (Fig. 24), and used either in a straight or a curved form, is of great advantage in reaching growths within the naso-pharynx. The straight form can be thrust directly back through the nasal chamber, and the curved form can be passed from the oro-pharynx to the naso-pharynx without danger of burning the posterior border of the soft palate.

[p. 59]



DEFINITION.—Disorders of sensation or motion, or of both sensation and motion, due to disease, first, of the centres from which the nerves of the organ are derived; second, to disease along the track of the nerves; third, to disease in the terminal distribution of the nerves; fourth, to reflected irritation from neighboring or distant parts; and fifth, to myopathic change. This last condition is not necessarily a neurosis; it is nevertheless a cause of modification of the function of the parts to which the nerves are distributed, often a result of paresis or paralysis, and therefore inseparably associated with the neuroses of the organ. Disorders of innervation, depending upon structural disease of the larynx, such as ulceration or tumor, are not included in this definition.

ANATOMICO-PHYSIOLOGICAL CONSIDERATIONS.—The framework of the larynx consists of cartilages securely but rather loosely articulated with each other. The movements of these cartilages produce changes in the position and tension of the soft parts. The thyro-cricoid articulation allows ginglymoid and sliding motion; the aryteno-cricoid, rotatory and sliding motion; the hyo-thyroid, ginglymoid motion. The physiology of the muscles of the larynx is quite complex, since nearly all have fibres taking a number of different directions, and the changes in the form and positions of the parts depend upon the combined action of different muscles and parts of muscles which may be individually brought into action to produce the required results. The muscles may, however, be roughly divided into groups: 1. Constrictors of the superior strait; 2. Dilators of the superior strait; 3. Adductors of the vocal cords; 4. Tensors of the vocal cords, external, internal; 5. Relaxers of the vocal cords; 6. Abductors of the vocal cords.

The superior strait of the larynx is closed by the action of the oblique portions of the arytenoideus, acting in conjunction with the ary-epiglottici, into which some of its fibres are continued, thus drawing the cartilages of Santorini downward and inward and approximating the ary-epiglottic folds and depressing the epiglottis; while the thyro-epiglottici complete the closure by further depressing the epiglottis. Fibres of the latter muscle, acting alone, may dilate the superior strait by drawing apart the ary-epiglottic folds.

The transverse portion of the arytenoideus and the superior fibres of the crico-arytenoidei postici approximate the arytenoid cartilages. The crico-arytenoidei laterales, and also in a slight degree the external fibres of the thyro-arytenoidei, rotate these cartilages, turning their vocal processes inward: the action of the latter two muscles as adductors is imperfect unless the arytenoids are drawn backward and fixed by the arytenoidei postici.

The tensor group comprises a number both of the extrinsic and intrinsic muscles of the larynx. The crico-arytenoidei postici draw the arytenoids back, external rotation, and consequent abduction, being prevented by other muscles. The anterior fibres of the crico-thyroid and those fibres of the [p. 60]sterno-thyroid inserted anterior to the crico-thyroid articulation approximate the cricoid and thyroid cartilages, and thus tighten the vocal bands. The posterior fibres of the crico-thyroid slide the thyroid upon the cricoid, lengthening the antero-posterior diameter of the larynx. This muscle, acting as a whole, also compresses the alæ of the thyroid with the same effect. The constrictors of the pharynx have a similar function. The hyo-thyroidei, acting in conjunction with the elevators of the hyoid bone, draw the thyroid forward and tilt it downward upon the cricoid. The form and internal tension of the vocal bands are greatly influenced by the thyro-arytenoidei, especially their inner fibres, while the ascending fibres of the muscle draw the inferior portions of the vocal bands upward and prevent the sagging of their edges. This muscle, acting alone, has been thought to cause extreme relaxation of the vocal bands. Modern research renders this statement of relaxation doubtful. The contraction of those fibres of the sterno-thyroidei inserted posteriorly to the crico-thyroid articulation tilts the thyroid upward, and thus relaxes the tension of the bands.

The crico-arytenoidei postici rotate the arytenoid cartilages outward, separating the vocal processes, and, acting in conjunction with the posterior fibres of the crico-arytenoidei laterales, draw the cartilages outward and downward.

In the cadaveric condition, which is one of relaxation of all the laryngeal muscles, the glottis is neither closed nor widely open; the epiglottis is erect against the dorsum of the tongue; the arytenoid cartilages are slightly separated, so that the glottic opening is a triangle with the base posteriorly, as in the act of inspiration, but the separation is much less than in the act of breathing. This condition is met with in paralysis affecting all the muscles of the organ.

The nerves of the larynx are derived from the pneumogastrics. The superior laryngeal is mainly a nerve of sensation for the parts above the edges of the vocal bands. There are some notable exceptions to this statement: a branch, external, descends to the crico-thyroid muscles and is motor in its function. Filaments from the superior laryngeal endowed with motor functions are also distributed to the folds extending from the arytenoids to the epiglottis; these are the ary-epiglottidean bands, and are concerned in the movements of the epiglottis. It is probable that the arytenoids are also in part supplied by the superior laryngeal; in other words, that both the superior and inferior laryngeal nerves are mixed, branches from the spinal accessory, as well as from the pneumogastric proper, entering to each of these nerves. Beclard1 states that the one, the spinal accessory, is a nerve of phonation; the other, the pneumogastric, is a nerve of respiration. The sensations of the mucous surfaces below the glottis depend upon filaments from the pneumogastrics returned along with the motor fibres from the spinal accessory. The two orders of fibres go to make up the recurrents. The relations of the recurrents themselves to the large vessels, as well as to the bronchial glands, are of importance. At the point of their origin they are in close relation with the aorta and right subclavian; they are also in close relation with the top of the lungs. Disease of these organs and structures, especially of the large blood-vessels, such as aneurism of the aorta or subclavian, disease of the glands, tumors, abscess, traumatism, etc., may modify or completely destroy the functions of the laryngeal nerves. In short, anything or any condition by which pressure may be made upon the pneumogastrics or recurrents may become a cause of nervous disturbance in the larynx. In addition to this general source of innervation, Elsberg2 describes a special centre of sensation for the throat in the medulla oblongata. He also describes three kinds of sensibility in the larynx—tactile, dolorous, and reflex. Rossbach3 details experiments from which he concludes that there are nerve-cells in [p. 61] the mucous membrane of the larynx which preside over the function of secretion. The larynx is endowed with at least two kinds of sensibility: the one tactile—when exalted it becomes painful; the other, reflex sensibility, is double. First, there is as a result of excitement a contraction of the subjacent muscle, and there follows closure of the glottis. This is seen in the application of irritants to the parts, such as solutions of nitrate of silver or other escharotics. There is no cough, but great difficulty of inspiration. Expiration is free and easy. There may follow some degree of pain for several hours. It will be seen that the phenomena are the same as those observed in the irritation of other mucous surfaces. The irritation is immediately translated into motion; this motion is probably reflex, but not necessarily through the centres, such as the brain or cord. The motion is of the subjacent muscles. Second, the mechanical irritation produced by the presence of a drop of water or a morsel of food in the larynx results in violent and explosive cough. The cough persists until the offending drop or body has been removed. This kind of sensibility calls into action distant muscles. There is no spasm of the adductors of the glottis, as in the case of the application of caustics. It is probable that the filaments of the nerves, the irritation of which gives rise to spasm, are distributed more generally than those which preside over reflex action at a distance and produce cough. The one set of functions are designed probably to protect the organ from the intrusion of foreign bodies; the other for their expulsion, as well as for the removal of the secretions of the parts or of matter brought up from below. The hypothesis of a third form of sensibility, as described by Elsberg—namely, the dolorous—seems hardly to be demanded for the larynx more than for all other mucous surfaces subject to pain. The nerve-cells of Rossbach in the mucous membrane may be peculiar to the larynx and trachea, as he claims, but further observations are required for the demonstration of this as a special histological fact distinguishing laryngeal from other mucous surfaces.

1 Dic. Eng. des Sci. med.
2 Int. Med. Cong., 1881.
3 Ibid.


There is some difficulty in grouping the derangements of the sensibility of the larynx, for the reason that in many cases the perversion of this function is only a symptom of some other disease of the organ. Probably in all cases the trouble is, in fact, an expression either of disturbance in the structures of the larynx, involving more than the sensory nerves, or it is the result of change in structure or function of neighboring or distant parts. Various attempts have been made to classify these disorders according to the kind of perversion and also according to the cause of the trouble. Elsberg, in a paper presented to the International Congress, London, 1881, p. 224. vol. iii., makes an attempt at a scientific classification based upon anatomico-physiological facts. That there is yet much to learn in regard to these facts, especially the physiological facts, will be admitted by every one at all familiar with the literature of the subject. Elsberg, under the term of dysæsthesia, makes two principal divisions—namely, first, disorders having reference to the quantity or intensity of the sensation; this embraces simple hyperæsthesia and simple anæsthesia. The second grand division relates to the quality of the sensation, and includes only paræsthesia or sensory delusions. These grand divisions are still further subdivided.

In fact, we have to do with exaltation of sensibility simply, with sometimes pain; second, with delusion of sensation; and, third, with lost or diminished [p. 62]sensation. For all practical purposes, therefore, we may adopt this arrangement, but should consider it as only provisional, as has been well observed by Schnitzler. These conditions are described under the terms hyperæsthesia, with or without pain; paræsthesia; anæsthesia.


DEFINITION.—Exalted sensibility of the larynx, not necessarily associated with pain or other disorders of function. This condition is rare, but it is nevertheless met with. We sometimes find that the larynx is abnormally sensitive to touch or to an irritant, even though there is no marked inflammation. The symptoms and history justify the consideration of the condition apart.

ETIOLOGY.—Predisposing causes are probably to be found in the general condition of the nervous system. Persons of a highly susceptible nervous organization are, other things being equal, more prone to this affection. Certain habits of life, such as confinement to the house or want of exercise in the open air, excessive use of the voice in singing, especially in unnatural keys or after unnatural methods, have seemed to me to predispose to the exaltation of the sensibility of the organ. It must be confessed, however, that so little is accurately known of the history of the disease that we are left in much doubt as to the rôle of these conditions in the production of the abnormal state. The exciting causes of hyperæsthesia of the larynx are the long-continued action of the predisposing causes—acute and chronic inflammation, mechanical and chemical irritants, etc. So far as my own experience goes, the use of the voice in an unnatural key, or perhaps rather the strain upon the parts by efforts to force the organ to perform the function of phonation in an abnormal manner, has more frequently been assigned by the patient as the cause than any other one thing. I have seen quite a number of singers who have by an effort of the muscles, apparently, produced an intensified irritability of the mucous surfaces. It is possible that in rare instances there may be an exalted activity of the receptive centres, and that the local trouble in the larynx is only a manifestation, in the distribution of the nerves, of the central disease. In such cases, however, the disorder should reach all the parts supplied by the pneumogastrics. Inflammation of the pharynx, soft palate, posterior nares, and perhaps of the structures of the ear, have an influence over the sensibility of the parts below, probably through the relations of the glosso-pharyngeal and other nerves to the laryngeal branches of the pneumogastrics. E. F. Ingals of Chicago has seen a case of laryngeal hyperæsthesia produced apparently by a varicose condition of the vessels about the base of the tongue. Frankel, Tornwaldt, Bayer, Schnitzler, A. H. Smith, Glasgow, and others have reported cases in which there were symptoms of hyperæsthesia or of reflex motor disturbances due to trouble in the nose or pharynx. The general health has much to do with the development of the local trouble. Asthenia is associated so frequently with hyperæsthesia of other parts that we should expect to find this relation also in the larynx.

SYMPTOMS.—The symptoms of hyperæsthesia of the larynx are in part involved in the definition of the affection—exalted susceptibility to the touch, intolerance to the presence of mechanical irritants, a sensation of discomfort in the presence of chemical agents, such as gases or impure air, and, when the exaltation is excessive, positive pain. This pain may be only a soreness or tenderness or it may amount to neuralgia. This last form of exaltation is rare. When present it has been considered a special disease and treated as a separate affection. Von Ziemssen and Mackenzie regard it as a variety of hyperæsthesia. Schnitzler, Jones, Wagner, and Mackenzie report cases. The [p. 63]pain is said to be not confined to the larynx, but to extend up toward the ear and along the course of the superior laryngeal nerve. In two cases observed by the writer the pain not only extended along the course of this nerve, but into the pharynx and posterior nares as well. In these cases the patients were both singers, and both had adopted with great enthusiasm a new method by which the abdominal muscles were brought into action at the expense of the muscles of the thorax. The pain was always aggravated by any effort to sing, but more especially by any return to the method noted. The pain not unfrequently extended to the face as well as to the ear.

Neuralgia of hysterical origin, according to Thaon,4 is more frequently met with on the left side than on the right. Instead of being general, it is not unfrequently limited to points or circumscribed patches.

4 Proceedings Laryng. Cong., Milan.

COURSE AND TERMINATION.—The course of the affection is very uncertain. In the neuralgic variety the pain may be transient, passing away in a few days or hours even, but generally there are frequent recurrences extending through weeks or months. Simple exaltation of the common sensibility is much more persistent and more uniform in its character.

Hyperæsthesia of the larynx is so largely dependent upon the general health that not only is it very irregular in its course and duration, but its termination is equally uncertain. It can hardly be said to be a cause of death, as it does not involve structures necessary to life. It disappears occasionally without treatment. When complicated with other affections, such as acute or chronic inflammation, alterations of the function of the pneumogastrics, with disease of the thoracic viscera or with general derangements of the nervous system, its course and termination must depend largely upon the persistence of these complications.

PATHOLOGY.—So far as the pathology and morbid anatomy have been studied, there is no appreciable change of structure. This is true, of course, only of those cases which are not complicated. Whether the primary lesion is in the mucous membrane, denuding, pinching, or otherwise modifying the terminal portions of the nervous filaments, or whether there is an alteration of the conducting portion of the sensory nerves, or, in fine, whether there is some lesion of the receptive centres, it is impossible in most instances to say. It is probable, however, that in some cases the first morbid fact has been an alteration in the nerves themselves. The cases induced by unnatural methods of using the vocal organs are apparently of this character.

The diagnosis, prognosis, and treatment will be considered in connection with Paræsthesia.


Closely connected with hyperæsthesia of the larynx is a form of sensory delusion consisting of the impression that some foreign substance is lodged in the organ or that there is some alteration an the structure of the parts. This is known as paræsthesia.

ETIOLOGY.—The first variety of sensory delusion depends on a primary injury to the parts. A bone or pin or some other foreign body, perhaps having lodged in the parts for a short time, has left a persistent impression upon the mucous surfaces. It is possible that in some instances there may have been no foreign body in the parts, as we have in many cases only the statement of the patient. Local inflammations, small in extent, may possibly have left the parts in a morbidly sensitive condition justifying on the part of the subject the hypothesis of a foreign body.

The second variety of paræsthesia is the expression of some disturbance in [p. 64] a distant part. It is usually hysterical in its character or a variety of hysteria associated with neurasthenia. It belongs to the same class of phenomena as the sensory delusions in other parts of the body. The globus hystericus is one of its forms. Thaon5 says that hysteria may give rise to neuralgia as well as to other forms of hyperæsthesia of the larynx. It also, according to this author, produces that form of paræsthesia in which there is a sense of a bone or pin or some foreign substance in the larynx. The general condition of asthenia, and especially of neurasthenia, may be assigned as a predisposing cause. The local injury in the one case and the general hyperæsthetic condition in the other, with some determining fact, such as the mental impression or an apprehension of trouble in the larynx, constitute the exciting causes.

5 Proceedings of the International Congress of Laryngology.

SYMPTOMS.—It usually comes on after an injury or as a result of the presence of a mechanical obstruction or irritation, the presence of a bone or pin being frequently invoked as an explanation of the feeling. In a few cases the sensation is suggestive of an alteration of the structure of the parts. Patients are inclined to think that they have a tumor or that there is some deformity. In the first class of cases there is a sense of pricking or of scratching in the larynx. This is not constant in locality or in intensity. There will be times, occasionally days, in which the sensation may be entirely absent, after which it returns with great severity, the patient insisting that the cause of the trouble has simply changed its location—in other words, that there is a migratory body in the throat. That form of paræsthesia in which the sensation is that of a tumor or malformation is also irregular in the mode of its manifestation or kind of disturbance. Like the other forms, it comes and goes, changes its location, and undergoes modification in its character. It may be associated with neuralgia.

DIAGNOSIS.—Hyperæsthesia and paræsthesia are recognized by the symptoms already described and by the aid of the laryngoscope. The mirror reveals the fact that the parts are normal in structure and that there is no foreign body present. The mucous membrane may be hyperæmic or anæmic, but is not the seat of any active inflammation. The excessive sensibility and pain of the larynx in ulceration of the parts will be excluded from this group of troubles by the revelation of the laryngeal mirror. Cases of pain or perverted sensation dependent upon the disorders of the nerve-centres usually involve the whole range of functions supplied by the pneumogastrics, and will generally be recognized by this fact. Such cases can hardly be called local, and do not belong to the group of affections embraced in this article.

PROGNOSIS.—The prognosis of simple paræsthesia of the larynx is not grave. Though it may exist for a long time, it, so far as we know, does not terminate in death. While it sometimes results in recovery without treatment, it in a large proportion of cases yields only to both local and general treatment. Its duration is uncertain. Paræsthesia coming on after the presence of a foreign body in the organ may last many months and then gradually disappear. This result will be largely aided by the moral support which is gained if we can convince the patient that the sensation is entirely a delusion.

TREATMENT.—For the purpose of meeting local indications in hyperæsthesia we may apply with a brush or by the means of the atomizer a solution of morphine and alum of the strength of 15 centigrammes of morphine and 2 grammes of alum to 50 grammes of water, or to this may be added 20 centigrammes of carbolic acid and 10 grammes of glycerin. Of this solution an application may be made each day with the hand-atomizer. The hand-atomizer is preferable to the steam-atomizer, for the reason that we know in the use of the former the strength of the solution. In the use of the steam-atomizer the medicated solution is diluted with the water of the steam, and we are [p. 65]ignorant as to the strength of the application. The method of application by the use of the atomizer is to be preferred to the brush or sponge probang, for the reason that we produce by it no mechanical irritation of the parts. The brush or sponge can hardly be used without giving pain or discomfort. In addition to the solution above indicated, solutions of borax, of sulphate of zinc, of tannin and glycerin with chloroform, of nitrate of silver not too concentrated—2 to 10 centigrammes to 30 grammes of distilled water—tincture of aconite, solutions of the bromides, cocaine and other anæsthetics, may be used with benefit. In many cases the administration of general tonics along with the local treatment will be of the greatest value. The application of electricity to the parts through the surfaces—that is, from one side of the larynx to the other—will add to the efficacy of other local treatment. The strength of the current should not be so great as to give rise to any discomfort. The current should be continuous, and should be repeated every day for several weeks if the disorder does not yield sooner. In cases which have been induced by vicious habits of living or of exercise of the organ there should of course be an entire change of the habits. The producing cause should, if possible, be removed. The exposure of the parts to anything which gives rise to pain is to be avoided. If hyperæsthesia has been induced by unnatural methods of singing or of speaking, these should be remedied.

In neuralgia the general treatment for that affection is indicated. Quinine and iron have especially been found useful. In the hysterical variety of both hyperæsthesia and paræsthesia general treatment is of more value than local measures. General tonics, moral support, such as will be secured if we can convince the patient that there is really no serious trouble with the organ, but that it is only a morbid sensation, will be of the greatest value. In these cases change of climate, change of occupation, diversion by new associations, with expectation of recovery on the part of the patient, often bring about the most satisfactory results. The diagnosis should be certain and the physician should be able to speak with confidence in the matter. This will go far toward effecting a cure. For the purpose of diminishing the general irritability of the system bromine in some of its combinations, potassium, sodium, iron, quinine, etc., may be useful.


DEFINITION.—Diminished sensibility of the mucous surfaces dependent upon lesion of the nerve-centres, alteration of the conductivity of the nerve-trunks, or upon disease in their terminal distributions. It is usually bilateral, but may be limited to one side. This alteration of the sensitive condition of the mucous membranes is usually observed after diphtheria. It is also met with in bulbar paralysis. In this last condition it is only one of the phenomena of paresis or paralysis involving several different organs. It is not, therefore, properly a disease of the larynx, and the consideration of it will not be embraced in this article. It has been stated that hysteria is frequently accompanied with anæsthesia of the larynx. Von Ziemssen, Chairou, and Schnitzler have published cases. It seems very improbable that this condition of the organ is so generally present in hysteria as is claimed by Chairou. It is, however, certain that anæsthesia as well as hyperæsthesia of the larynx exists as a complication of hysteria. In the later stages of all exhaustive diseases, as cholera, etc., the sensibility of this organ is either diminished or abolished. This is not, however, a true paralysis in the sense in which we generally use the term. It is only one of the manifestations of the general failure of the life-forces. The special senses, the reflex functions, all share in this paresis, this severing of the relationships of life. Anæsthesia of the larynx is usually [p. 66]confined to the parts supplied by the superior laryngeal nerves, and is sharply limited by the edges of the vocal bands. If there is anæsthesia of the parts below these bands, it is of much less significance and hardly requires our consideration.

ETIOLOGY.—So far as we know, there are no predisposing causes. The chief exciting cause of this affection is unquestionably diphtheria. It is, in fact, a sequel of diphtheria. It will hardly be necessary to repeat here what the reader will find fully discussed in the sections devoted to diphtheritic inflammation of the fauces and adjacent parts: we are mainly concerned with the phenomena. Just how this morbid process produces paralysis is not known. It is believed by some observers that the disease is produced by the alteration of the nutrition of the parts during the progress of the diphtheria. It is stated that the parts most nearly related to the seat of the exudation are most likely to become involved. This is thought to sustain the theory of the direct propagation of the morbid changes from the mucous surfaces to the nerves and muscles. That the paralysis following diphtheria is not, however, produced alone in this manner seems to be made evident by the fact that distant parts, parts which have not been at all involved in the disease, do nevertheless become affected with paralysis. This paralysis develops when the general health and the nutritive changes are all improving. It is quite evident, therefore, that the loss of power in the laryngeal muscles, as well as the altered sensibility, in part at least, must be due to some lesion of the nerve-centres. In addition to the causes above noted, anything which impairs or destroys the function of the superior laryngeal nerve may produce this affection. In the anæsthesia from hysteria we know only the fact, but do not know just how the derangements of the nerves in a distant part, or in the nerve-centres perhaps, are so reflected as to change the function of this organ. The hyperæsthesias, the paræsthesias, and the anæsthesias of hysterical character are all probably produced in the same manner. Anæsthesia in bulbar paralysis is easily understood, but need not, for the reasons already given, engage our attention.

SYMPTOMS.—This condition is usually associated with paresis or paralysis of the muscles of the part. One of the first symptoms of loss of sensibility is, therefore, a failure of the constrictors of the larynx to protect the organ from the intrusion of foreign substances in the form of food and drink. Particles swallowed find entrance into the respiratory tube, and this with no sense of discomfort. If the paralysis is complete both above and below the glottis, the intrusion of these substances is not recognized. There may be no cough or spasm to indicate the fact. In the mean time, the particles of food descend into the bronchi, and may become the exciting causes of broncho-pneumonia. It is often noticed after tracheotomy for diphtheria that food and drinks gaining access to the respiratory tract are discovered at the tracheal opening. In several cases within the knowledge of the writer this fact has led the operator to fear that the posterior wall of the trachea had been opened. In all cases in which the pharynx is in a state of paresis a careful examination should be made by means of the laryngeal mirror.

There are no subjective symptoms, and this fact makes it probable that the affection is more common than has been supposed. The patient complains neither of pain nor of any other discomfort. This statement is only true, however, when there is simple loss of sensation. There may be paræsthesia associated with partial anæsthesia. In such cases there will be noted the usual symptoms of paræsthesia. In hysterical forms of anæsthesia the appearance of the parts is often variable from day to day. The location of the disordered function is well defined at the time of one examination, while at the next the condition may be quite different. It is stated by Thaon6 that [p. 67]in one-sixth of the cases of hysteria the larynx is in some way affected. The epiglottis is more usually the seat of the affection in the hysterical variety. Several authors have noted that with the laryngeal disorder there is often a zone of modified sensation beneath the chin and on each side of the larynx. This sometimes amounts to absolute loss of cutaneous sensibility.

6 Loc. cit.

COURSE AND TERMINATION.—According to Mackenzie, Von Ziemssen, and others, the anæsthesias following diphtheria usually terminate in recovery. It is quite possible, however, that the literature of the subject does not give us elements on which to base an opinion. I am inclined to think that cases die from this disorder in which the nature of the affection is never recognized. It is quite certain that paralysis of the fauces is not unattended with danger. It is also probable that in many of these cases the real danger is not so much from the loss of muscular power in the pharynx, and consequent inability to swallow, as from the fact that the larynx is not protected from the introduction of foreign substances, that the intrusion of these substances is not recognized, and the consequent disorders of the lungs become the cause of death more frequently than has been supposed.

DURATION.—Paralysis of the sensory nerves of the larynx usually lasts only a few weeks. When a result of diphtheria it disappears with the motor trouble with which it is associated. As a complication of hysteria, or rather when hysterical in character, it may last indefinitely. When dependent upon changes in the centres from which the pneumogastrics are derived it has a history commensurate with that affection.

The PATHOLOGY AND MORBID ANATOMY have been suggested in the discussion of the cause and symptomatology of the disorder. The question of the local or general changes in the diphtheritic variety is noted in the history of the disease.

The DIAGNOSIS is made mainly by the examination with the laryngoscope. The probe will at once determine the presence or absence of the sensibility of the mucous membrane of the parts. In addition to touch, electricity may be employed. In these cases the alteration involves both the tactile and reflex sensory functions. There will therefore be neither cough nor spasm resulting from a mechanical irritation. The surfaces are usually quite normal in color and form. The epiglottis is erect, abnormally so, and there will often be more or less paresis, or even complete paralysis, of the other muscles of the organ. In some cases the difficulty in deglutition due to derangement of the reflex functions may be also suggestive of alterations of sensation in the parts within the larynx, but it is only a suggestion.

The PROGNOSIS is usually favorable, but for the reasons given above this should be accepted with some degree of reservation. The diphtheritic varieties share in the uncertainty of other forms of paralysis in that disorder. The hysterical forms are not dangerous, but may continue so long as the primary affection persists.

TREATMENT.—This should be both local and general. The local treatment consists almost entirely in the application of electricity. Both the galvanic and faradic currents are recommended. In my own practice I have been accustomed to resort to the galvanic, but modified by the introduction of a shunt or switch, so as to produce a wave of electricity. The manner in which this is accomplished is to connect in the circuit a coil such as that used for the faradic current. This takes out of the direct current, with each closure of the circuit in the coil, a portion of the quantity of the current, and without entirely interrupting the working circuit gives a wave of electricity, producing, so far as I can judge, the results of both the primary and secondary currents. There is not the shock of complete interruption, while there is the stimulus of the irregular quantity. The electrode which will be found most convenient is that devised by Mackenzie or some modification of it. It [p. 68]should be applied through the parts from one side of the larynx to the other by placing the tip or point of the instrument in one of the pyriform sinuses over the superior laryngeal nerve. A double electrode will often answer better, placing one point in one sulcus, while the other is in contact with the mucous membrane of some other part of the organ or in the opposite sinus; that is, on the other side of the larynx. The current then passes through the parts and stimulates all the tissues between the two poles. The application should be made every day, and for several minutes at each sitting, interrupted, of course, as required by the variable condition of the parts. The current should not be so strong as to produce positive pain. This is not easily reached, however, for the reason that the response is slow and uncertain. The strength of the current should be tested upon the normal surfaces of the patient, or, better, upon the mucous membranes of the operator, before applying it to the morbid parts.

In case a reliable tangent galvanometer is used, much more certainty can be reached than when the strength is determined solely by the sense of touch. With this exhibition of electricity there should also be administered such remedies as are best calculated to restore the general strength of the patient—quinia and iron, with the bitter tonics, and especially strychnia in what would be considered large doses (.003–.005 grammes), two or three times a day, with interruptions every few days. In the hysterical cases, as well as those following diphtheria, electricity is often of great value.

Attention should also be given to the proper treatment of any local trouble in the viscera of the abdomen or pelvis. Uterine disease, if present, as it frequently is, demands attention. It is believed by some authorities that the unilateral disorders of the larynx dependent upon ovarian irritation generally manifest themselves upon the side corresponding to the diseased ovary. It is, however, rare to meet with complete unilateral anæsthesia. In addition to the use of these measures, change of surroundings, especially in the hysterical variety, diversion by new associations, new occupations, etc., are to be secured whenever practicable.


Disorders of motion are perhaps more complex than those of sensation. They may be divided into two general groups—1st, exalted action; 2d, diminished or arrested action. The first group is susceptible of a subdivision: first, those in which the sensory functions are exalted as well as the motor. In some of these cases the real disturbance is very probably hyperæsthesia rather than increased irritability of the nerves going to the muscles. Generally, however, the morbid phenomena are mixed; the two sets of nerves are both in a state of over-action. Spasm, for instance, may be the result of excessive activity of the sensory function coupled with the exaltation of the motor impulses, or exaggerated irritability. Second, the spasm or exalted activity of the muscles may be entirely independent of sensory impressions, possibly, in some instances, dependent upon muscular conditions, but generally only the local expression of some central nervous trouble. Chorea may be cited as an example. The diminished action of the motor system may also be due to either a want of the sensory common or special impressions; or it may be due to failure of the motor centres or some interruption of the continuity of the conducting media; or, lastly, it may be for the reason that the muscles themselves are so changed that they do not respond to the normal stimuli, such as the [p. 69]commands of the will or reflex impressions. It will be seen from this brief statement that the subject of motor derangements is one of much complexity. From the very nature of the complications it is often impossible to satisfactorily analyze the symptoms and to determine with certainty, in a given case, whether we have to deal with a simple or a compound result. We may, it is true, in some instances arrive at approximately correct conclusions by resorting to the physiological methods of testing the muscle by galvanism and faradism. In other instances we may by a careful study of the history of the disease reach at least a provisional opinion. We must, after all, admit that much will in many of these derangements remain to be conjectured.

Exalted Action.

There is quite a difference among authorities as to the place in the classification of disease of the larynx which should be assigned to spasm as met with in childhood, and which is also occasionally encountered in adult life. It is not possible, perhaps, in the present state of knowledge, to separate in every instance those cases in which there is disorder of the circulation and nutrition of the larynx from those in which the spasm is the result of disturbance simply of innervation, or in other cases the reflex manifestations of nervous irritation elsewhere. Generally, however, this can be done. I have for a long time been accustomed to consider the affection known as spasmodic croup to be a mild inflammation of the larynx, and that it differs from the same affection in the adult for the reason that the lumen of the tube is smaller, the cartilages are more yielding, and the susceptibility of the parts is greater, and further for the reason that the nervous system in childhood is always more prone to spasm than in the adult. Stridulous laryngitis, however, is a real disease, and is for the reasons above given a neurosis, even though it is an inflammation. It is entitled to a separate description for the reason that the symptoms are so well marked and differ in so many particulars from those of ordinary inflammations. That there is, besides, a true spasm of the muscles of the larynx, independent of inflammation, by which the vocal cords and the constrictors are brought into action and possibly kept in a state of tonic contraction, is possible.

In a majority of instances of laryngeal spasm there is a degree of inflammation, as above stated, or at least a degree of congestion of the mucous membranes. It is certainly true, however, that in exceptional cases there are no indications of such a condition of the parts, so far as we can determine by ante- or post-mortem study. It seems to be evident, then, that under this name of spasm of the larynx or of some synonym of it many careful observers have recorded facts and have grouped them with the thought that the functional derangement was the main trouble. The real difficulty appears to be that the spasm is in fact a symptom—a symptom of perhaps several different disorders, but so prominent and creating so much alarm that it has seemed for the time being to be the disease itself; and yet in most cases there is a mild form of inflammation, local in its extent, and producing, so long as there is no interference with the function of respiration, no general disturbance. It is perhaps appropriate to include in the discussion not only the purely nervous cases, but also those conditions in which, while there is hyperæmia, and probably always some derangement of secretion, nevertheless the symptoms and dangers concern mainly the motility of the muscles of the organ.

The disease occurs both in children and in adults. There is, however, in its etiology, course, and terminations quite a marked difference, as observed before and after puberty. We shall therefore consider, first, spasm of the glottis in children; second, in adults.

[p. 70]
Spasm in Children.

SYNONYMS.—Laryngismus stridulus, False croup, etc.

ETIOLOGY.—Predisposing Causes.—The disease occurs most frequently in children from a few months to two or three years old. It is occasionally met with in those still older and up to puberty. It seems to be more often encountered in patients of a strumous habit than in those of a healthy constitution. Rickety children are especially liable to the affection: the German pathologists especially insist upon this factor. Patients of a nervous temperament predisposed to general spasms are especially predisposed to this affection in the larynx. It is a general law that muscles weakened either by disease or by fatigue or by deficient nutrition are especially irritable. In them mechanical as well as other forms of stimuli produce local contraction with great readiness. These contractions are, it is true, rather the expression of the condition of the muscles than of the nerves. The muscular condition must, however, be regarded as a predisposing cause of the spasm. In the same way, perhaps—namely, by the inherited tendency to lower forms of vitality, weakened muscular power—we may account for the fact that family history of similar conditions, such as false croup in other members or in the parents, should be considered as among the evidences of predisposing tendencies to spasm of the glottis.

Sex has in this affection, as well as in most laryngeal diseases of children, a predisposing influence. Mackenzie has collected in all, from different sources, 8248 cases. Of these, 5378 were boys and 2870 girls—a proportion of nearly 2 boys to 1 girl. In adults the reverse holds good, females being much more frequently seized than males. It is certain that season has something to do with the development of the disease, but this influence should be regarded rather as a producing than a predisposing cause.

Dentition, worms, weaning, or anything which produces an irritation of the alimentary canal may also, by exciting the reflex irritability of the nervous system, become predisposing causes of laryngismus. The influence of dentition has, however, been probably over-estimated.

The exciting causes of spasm of the glottis are not well defined. In a few cases we are able to definitely fix upon something as the occasion of the attack. It is possible that there may be some central lesion, and this may be well defined. This is rare, however. It is nevertheless true that the onset is generally preceded by some derangement of the general health. There has been for a day, or perhaps only for an hour or two, a slight cold, a little hyperæmia of the respiratory mucous surfaces, or disturbances of the digestive tract, or the child has been unusually fatigued or excited from play or study. The secretions have in other cases been deranged. No one of these causes has perhaps been of sufficient gravity to attract the attention of the mother or nurse. The indisposition, if it has been noticed at all, has been regarded as only one of the many ephemeral troubles that so often occur in infancy, and no anxiety has been felt. Of all these possible causes, the one most frequently invoked after the attack is a cold, slight, it is true, but nevertheless, in the light of the subsequent history, evidently a mild form of inflammation of the laryngeal mucous membranes.

SYMPTOMS.—Spasm of the glottis usually takes place at night. It is true that some authorities deny that this is the case. Stefen says "that it is quite as likely to occur during the day as night." In a great majority of instances, however, it will be found that the attack occurs after the child has been asleep. During the day there has been perhaps a slight disturbance of the general health, a little inclination to cough, or there has been a catarrh of the fauces or bronchial mucous surfaces; nothing, however, of a serious character has been observed. At midnight or later the little one awakes with a crowing or [p. 71] whistling inspiration. It starts up in bed, and evidently experiences great difficulty in breathing; this difficulty is manifestly in inspiration; expiration is easy and free. The eyes are prominent, the lips blue, the surface often bathed in perspiration; pulse frequent, small, at times irregular; there is, if the child be old enough to reason in the matter, great alarm; there is often cough, and this cough is characteristic: it is a hoarse, metallic, barking, peculiar cough, described as croupy. If the spasm is limited to the larynx, the other muscles not being affected, the patient clutches at whatever it can reach, and often seizes the throat as though there was something there to tear away. The general surface becomes cyanotic and all the symptoms of asphyxia are present. The voice, though not generally extinct, is altered; it becomes hoarse, or husky, as it is called; in a few minutes the severity of the attack is passed, and the little sufferer sinks exhausted into a sleep more or less disturbed. A second attack may occur the same night, or there may be nothing more to alarm the attendants till the next night. The second attack, if it occurs, as it generally does, on the succeeding night, is less severe than the first; the third still more mild; and this generally ends the case for the time being. During the intervals—that is, during the day—the patient in a majority of cases is up, and seems to be but slightly affected by the seizure of the night before. There will perhaps be a slight cough, with some loss of appetite and indisposition to engage in play. This is the most usual type of the disease. In a few cases there is more marked derangement of the general health. The spasms are more severe; the cramp is not confined to the laryngeal muscles, but involves other parts, such as the muscles of the chest and the extremities. During the intervals of the attack there is perhaps a little fever, the digestive tract is disordered, the cough may be marked during the day, there may be an increase in the secretions of the respiratory surfaces. Attacks may recur during the day and for several days; the cough may retain its croupy character, and the voice may continue to be hoarse.

COURSE AND DURATION.—Spasm of the larynx is usually a transient phenomenon, lasting only from a few seconds in the milder cases to several minutes in the more severe forms of the disease. The attacks are intermittent. The seizures are relieved by intervals of comparative relaxation of the muscles of the parts. Even in the intervals there is, however, a degree of contraction of the constrictors, so that the relief is not absolute. Two or three days elapse before the attack may be said to have entirely ceased. In the severer forms the consequences of the spasm may continue even for a still longer time. There are usually no sequelæ. When the patient has recovered there is nothing left of the disease, though there is often a predisposition to a recurrence; the same causes that produced the first attack, or even slighter causes, may produce a second. These causes are generally persistent; the seizures are therefore usually repeated.

PATHOLOGY.—In cases dependent on central disease the pathological changes are to be sought for outside of the larynx. In rickets and other morbid conditions which by reflection produce spasm of the glottis the pathology proper is distant and not in the organ; there is only an excess of motility in the nerves and muscular apparatus. Efforts have been made to differentiate spasm and false croup, but the confusion is only equalled by the disagreement as to the relation of diphtheria to true croup. It is probably true that the cramp is generally due to some excess of motility in the system at large, and that the larynx is the seat of pathological changes that determine the spasm in that organ. This is especially true in those cases associated with rickets, derangement of the alimentary canal, etc. It seems to be a fact, nevertheless, that in a majority of cases the mucous membranes are, as already stated, the seat of a very mild inflammation. Or perhaps we should say they are slightly hyperæmic. So far as we can judge from [p. 72] examination in cases which have terminated fatally, as well as from ante-mortem observation, there is no structural change of tissue to be recognized by the naked eye, unless it be, during life, a slight fulness of the vessels. There is a change, however, in the form of the organ, at least at the entrance to the larynx. The constrictors are in a state of action, so as to partly close the superior opening to the larynx, and the epiglottis is rolled so as, in some instances, to become almost a tube. I have repeatedly recognized this in the image seen in the laryngeal mirror. Cohn reports a case of impaction even of the epiglottis in the vestibule of the larynx (p. 627). This fact is also suggested by the difficult inspiration and the altered voice and cough. In young children the yielding character of the cartilages probably adds largely to the obstruction produced by spasm of the muscles about the vestibule.

DIAGNOSIS.—The diseases with which spasm of the larynx is most likely to be confounded are true croup, simple inflammation of the larynx, foreign bodies in the larynx, and possibly, in the absence of the history of the case, tumor situated in the glottis or along the vocal cords.

It will readily be distinguished from true croup by the fact that in the one case, true croup, the attack is insidious: the patient has been sick some time, usually several days before spasm occurs; there is also fever, with usually more cough; the voice is altered before the appearance of spasm; the first seizure is slight, almost imperceptible, and the subsequent attacks become more and more severe; dyspnoea is continuous. All these facts are in marked contrast with the picture of an attack of spasm of the glottis as we have attempted to describe it. In the one case the most alarming symptoms are at the beginning. There is an explosion of morbid phenomena, each recurrence less alarming till complete convalescence is established. In the other disease the symptoms and dangers are constantly increasing in severity, till at last the spasms become as fearful as the initial seizure in laryngismus. The morbid anatomy of the two diseases is also widely different; and this difference can be recognized during life. Simple ordinary inflammation of the larynx may give rise to hoarseness and cough; the hoarseness is, however, different from that in laryngismus. There is fever, and the hyperæmia of the organ can be readily recognized. The disease is progressive, does not present its most alarming symptoms at the beginning, and spasm, if it occurs, is a late event.

It is possible that spasm of the larynx might be mistaken for a foreign body in the organ. It will be remembered that the attacks of spasm usually occur at night after the child has been asleep. The history of foreign bodies in the larynx reveals what we should expect—namely, that the accident almost always occurs during the day. In a great majority of cases this history also furnishes reliable information of some substance or object which was in possession of the child, and which has disappeared. The dyspnoea is more continuous and the course and symptoms more variable. There will therefore be no great difficulty in any case, and in most cases no difficulty at all, in making a certain diagnosis as between these two conditions. In a few cases of laryngeal tumor the symptoms are very similar to those of the disease under consideration. The attacks in the case of a pedunculated tumor on the vocal cords may take place at night and may be intermittent. The rarity of this affection in children in comparison with spasm of the larynx, and the further fact that in the case of tumor there is a more continuous disturbance of respiration, make the differentiation easy. Paralysis of the adductors gives rise to more dyspnoea during sleep, but the history and laryngeal mirror make the diagnosis easy and certain.

PROGNOSIS.—The large majority of cases of spasm of the larynx recover. Statistics show that there are deaths from this disease, but in proportion to [p. 73]the number attacked I think the mortality is small; how small we do not know. The confusion in classification is so great that we cannot place much dependence upon published statistics. In our climate I think most observers will admit that a patient seldom dies from this affection unless there be associated with it some morbid condition of a serious nature.

TREATMENT.—The immediate and pressing indication in spasm of the larynx is for something to relax the constrictors and allow the act of inspiration to be accomplished without embarrassment. For the accomplishment of this purpose three methods of treatment may be resorted to: First, heat; second, emetics if there be time; third, anæsthetics and antispasmodics. Of all these measures, the first is the most easily applied, and will probably in a great majority of cases prove efficient. It is usually within the reach of the attendant or nurse. It can in any event do no harm. This fact is not to be overlooked, as the symptoms are so alarming that friends and physicians are often tempted to do too much. Heat may be applied by means of cloths dipped in hot water (110° F., or even more) applied to the neck and chest of the patient, or the child may be placed in a bath of 105° F., while the head is kept cool by cloths wet with cold water. This treatment may be continued till the spasms yield. The second of the measures suggested is usually safe, and may be resorted to along with the first. Those agents should be selected which act with most promptness, and the doses should be adapted to the age and condition of the patient. Alum, sulphate of zinc, sulphate of copper, are perhaps the best, but by no means the only ones. Ipecacuanha, by the relaxing effect which it has upon the muscular and nervous system, may be useful not only in overcoming the spasm, but in preventing the recurrence of the attack. Antimony is unsafe, and the other emetics are quite as useful in relaxing the muscles. The third of the measures suggested should be used with great caution. It may be doubtful whether, in fact, anæsthesia is ever indicated in simple spasm of the muscles of the larynx. The dyspnoea renders it very difficult to produce full anæsthesia, and without this the relaxing effect is not reached. In cases in which there is serious disease outside of the larynx there should be appropriate treatment directed to the extrinsic trouble. During the intermission—that is, during the day following the spasm—attention should be directed to the condition of the digestive and excreting organs as well as to the respiratory tract. In malarial districts I have thought that quinia given in antiperiodic doses the morning after the seizure has been of benefit in preventing or diminishing the severity of the next spasm. In addition to these measures, for the prevention of the subsequent attacks bromide of potassium or bromide of sodium in 3 to 5 grain doses may be given once in three to six hours after the spasm has ceased. Five grains of chloral, as advised by Mackenzie, given at bedtime the night after the attack, will also diminish in a certain number of cases the severity of subsequent seizures, or possibly entirely prevent them. Musk, myrrh, camphor, castor, and other similar antispasmodics are theoretically indicated, but, in fact, are of but little if any value. If the disease is central, involving the floor of the fourth ventricle, the local and general spasms are only symptoms, and the treatment must be directed entirely to the preservation of life. It should be remembered in this connection that in the floor of the fourth ventricle the pneumogastric and the glosso-pharyngeal, as well as filaments of the spinal accessory, have their origin. The range of distribution of these nerves marks to some extent the range of the morbid phenomena in disease of central origin. It may of course be true in any given case that only a small portion of the central gray matter is involved, but as a rule the organic change in one of the nerves at the point of origin does give rise to disorder of function of one or both of the others.

General tonics and attention to hygienic conditions are of great [p. 74] importance for the purpose of giving vigor and regularity to all forms of nervous and muscular activity.

Spasm of the Glottis in the Adult.

The affection is usually bilateral; that is, all the muscles guarding the vestibule of the larynx, and probably in most cases the adductors of the vocal cords, are involved. That this is not always true, however, I am convinced by a case now under observation in my own practice. The patient is an adult, and I have been able to determine by laryngoscopic examination that the muscles on the left side are the seat of the spasm. The epiglottis is drawn downward and backward on that side. The top of the left arytenoid cartilage is drawn forward, while the similar parts of the right side remain in their normal position except the change necessarily produced in the epiglottis. This condition is not constant, and is not a paralysis of the opposite side. This is the only case that I have seen, and I do not know of any similar case on record. Nothnägel7 reports a case of spasm of the adductors upon making an effort to phonate. The cords were normally separated in inspiration, but at the first effort to speak they closed firmly, leaving no line of opening between them. The attack seemed to have been produced by a powerful impression made upon the nervous centres. It seems probable that it was hysteria. Krishaber describes a form of what he calls spasm of the larynx in adults, which seems to be rather a local manifestation of a central disease than a neurosis of the larynx. It is in many respects similar to epilepsy. The danger, even in cases in which life is threatened, is not from asphyxia, but from the arrest of the functions of circulation and respiration—an arrest of the effort even to breathe. It hardly seems proper to include this among the troubles of which we are treating. He calls it ictus laryngé.

7 Deutsch. Arch. für klin. Med.

ETIOLOGY.—It is certain that the same causes that produce spasm in childhood are efficient in the adult, though there is an absence of some of the conditions that render the disease so frequent in infancy. The cartilages have become more firm, and consequently are not so easily moved by the action of the constrictor of the vestibule of the glottis; the size of the cavity in proportion to the necessities of the body for air is larger; the control of the voluntary over the automatic actions of the muscles of mixed function is greater; the reflex irritability of the nervous apparatus is less. These facts all render the probability of spasm in the adult much less than in the child. On the other hand, the development of the generative organs, and the widespread influence which they have upon the respiratory and circulatory as well as upon the central nervous system, introduces a new factor as a cause of motor disturbances of the larynx. This new element is a reason for the fact that in adults the predisposing influence of sex is reversed: after puberty the disease occurs more frequently among females than among males. The hysterical character of many of these cases may be inferred from this preponderance of one sex over the other among the subjects attacked.

This fact has been seen and described by Charcot, Lefferts, and others. Irritation along the track of the nerves, morbid conditions of the mucous surfaces, or muscular irritability, may be each a cause of spasm.

SYMPTOMS.—The symptomatology of spasm in the adult does not differ in any material respect from the phenomena observed in children. It is in the rarity and the comparatively milder character of these symptoms that the difference is to be found. The attacks occur at night, as in children, but, so far as I have observed them, they may also take place during the day. When very severe they occasion great alarm to the patient, and for this reason [p. 75]produce a profound impression, not only upon the physical, but also upon the mental and emotional, state.

The duration and termination of the affection are about the same as in children. In the mortality-tables we find every year a certain number of deaths from spasm of the larynx in adults. It is probable that among these there are quite a number which should be placed elsewhere. A patient may die from spasm of the larynx, which spasm is produced by an ulceration, by a tumor, by the presence of a foreign body in the organ. As in children it is quite certain that the deaths reported as from spasm of the larynx include many that should be referred to central or other diseases, so here the immediate cause of death is not unfrequently given instead of the real and essential cause. This fact makes it difficult to reach anything like a definite conclusion as to the termination of the disease; only this can be said: the great majority of cases recover.

PATHOLOGY.—With the exception of those cases in which there is disease of the central nervous system or along the course of the nerves, we know nothing of the morbid anatomy of this affection. In fact, there is no appreciable alteration of the tissues or of the relations of parts; the spasm is to be considered as a symptom of disease, and not as the disease itself, or necessarily even as a sign of morbid structure in the organ.

DIAGNOSIS.—In adults we can make the diagnosis certain by the aid of the laryngoscope. This can be done in a certain number of cases in childhood, it is true, but not with the same ease as in those who have reached more mature years. Ulcerations, benign and malignant growths, and foreign bodies may each or all produce spasm, but the existence of such causes is revealed by the mirror, and excludes such cases from the group under consideration.

TREATMENT.—This does not differ in any essential respect from that suggested in spasm of the larynx in children. Attention to the condition which has been instrumental in the production of the affection, the use of antispasmodics, such as bromides, chloral, myrrh, musk, camphor, ether, chloroform, etc., will meet the urgent symptoms, while the use of tonics, such as vegetable bitters, quinine, iron, cod-liver oil, with attention to a proper hygiene, constitutes the general treatment.

The question of tracheotomy in spasm of the larynx should be considered. It is sometimes stated that there is never in simple spasm a justification for this operation, and that the other means at our control are always adequate to meet the indication. Krishaber, Thaon, and others are of this opinion. Gougenheim and Schnitzler think it is sometimes required. While in a very large majority of cases of uncomplicated spasm of the larynx the spasm will yield to the measures recommended, it is nevertheless true that there are cases in which this result is not realized. The slowness of the action of some of the drugs, the difficulty in securing their introduction into the system, their absence at the time of the attack, and the delay in their administration,—all these facts may render it absolutely necessary to resort to an operation for the purpose of saving the life of the patient. It is, however, rare that this necessity will occur. In one case recently in my own practice I think a life was lost for want of the operation. The trouble was, as I thought, of hysterical origin, and at the time of the consultation did not threaten life. There was free movement of the vocal cords, and the vestibule of the larynx was not obstructed. Spasm of the constrictors occurred at night, and did not continue for a great length of time. There was certainly not paralysis of the abductors of the glottis. I directed an antispasmodic, and advised that if the spasm returned the next night a physician in the neighborhood should be sent for. The spasm did recur, and the physician was called, but before he reached the house the patient was dead. No post-mortem was held, and [p. 76]the question of the morbid anatomy could not be determined with any degree of certainty. From the fact that there had not been spasm till the night previous to the consultation, that she was an adult female previously in good health, with no organic disease, no tumor, no ulceration, no paralysis, and with a perfectly healthy condition of all the parts of the organ as revealed by the mirror, I am led to believe that the cause of death was simple spasm of the larynx. It is possible that this was one of those cases described by Krishaber and Charcot under the name of ictus laryngé or laryngeal vertigo, and that the death was due to some central disease; but the description given by the attendants was that of true spasm of the muscles of the larynx, and it is more probable that, as in Cohen's case, there was impaction of the epiglottis in the vestibule. The question of the operation should be considered in severe spasm which does not readily yield to the ordinary means. It is certain, I think, that life may sometimes be saved by a timely opening of the trachea.

E. F. Ingals suggests tubage of the larynx in cases of spasm threatening death. If the physician is present at the time of the dangerous symptoms, this may be attempted. A large-sized catheter or one of Schrötter's dilators may be used with no danger to the patient, and possibly with the result of saving life.

Chorea of the Larynx.

There is a kind of disturbance of the motor function of the larynx which has been described as chorea. The derangements of phonation and of respiration are such as we should naturally expect from want of co-ordination of the muscles concerned in speaking and breathing. There may be a true chorea of the laryngeal muscles when there is no other indication of the disease. Lefferts, in the first volume of the Transactions of the American Laryngological Association, reports three cases which he designates chorea of the larynx. They were all characterized by spasm of the muscles concerned in phonation. It is to be observed, however, that all three were women in early life, and that there were no other choreic troubles mentioned. There were, so far as the histories indicate, no hysterical phenomena present, if we assume that the laryngeal trouble was not of that character. In the recital of these cases the author seems to think that the evidence that the patients were not simulating is a sufficient proof that the troubles were not hysterical. This will not, I think, be accepted as adequate proof of the absence of hysteria. It is certainly possible that the patients were all three really choreic, but there is at least in the fact of the sex, the absence of other manifestations of this disease, and, so far as the author informs us, no antecedent history of rheumatism or other morbid conditions so frequently preceding chorea, a doubt as to the nature of the affection. Chorea affecting the muscles of the throat and of respiration is, I think, not unfrequently met with, but there is in these cases, so far as I know, such well-marked symptoms of the origin and nature of the trouble as to leave no reasonable room for doubt.

Cases of unmistakable chorea limited to the laryngeal muscles have been seen by Knight, Roe, and others. Chorea or spasm of the expiratory muscles alone may occur. I have the records of one such case, an adult male. I was unable to say certainly that the larynx was the only part involved. After a full inspiration there followed a series of short, jerky, expiratory acts till the movable air in the thorax was all expelled. For a few breaths the respiration was regular and full, when the same phenomena were repeated. There was no organic disease. There was forcible closing of the glottis during the [p. 77]spasmodic expiratory efforts. The patient recovered under treatment by arsenic.8

8 It may not be easy in all cases to distinguish between the true choreic cases and the hysterical affections. Knight of Boston has given special study to choreic troubles of the larynx. He recognizes three varieties: The first includes those cases in which the adductor and expiratory muscles each side of the larynx are involved; second, in which the laryngeal muscles alone are involved; third, in which the expiratory muscles alone are involved.

TREATMENT.—This should be the same as for other forms of chorea.

Nervous Cough.

Besides this ataxic condition we have hysterical disturbances of the motor functions, which are of various kinds according to the muscles involved. A constant effort to clear the throat, as it is called, is sometimes met with—a scraping of the throat, by which there is produced a rough, harsh sound similar to that which is heard in some of the inflammations of the organ. At other times the form is that of cough—a cough which is almost constant, and which is not associated with disease of the mucous surfaces of the thoracic viscera. This cough is sometimes almost continuous for days, and months even. It occurs at intervals of a minute or more, with the same character of hoarseness and roughness, without any interruption, except during sleep, when the breathing is free and easy. I saw a few years ago a little patient who had a cough of this nature which lasted several weeks, when it was replaced by the peculiar rasping, scraping effort mentioned above. The patient was a girl of fourteen years and had not developed. The moral effect of a severe case of typhoid fever in a younger sister, followed by the confinement of the mother, effected a cure. It is not at all uncommon to find that certain patients suffering from uterine troubles are also affected with laryngeal derangement of this character. A lady was seen by the writer a few months ago who had a rough, harsh cough, with attacks of asthma. There was no evidence of thoracic disease, and I learned that she had had this cough from the time of her last confinement. I advised her to consult a gynæcologist, who found that she had a laceration of the cervix uteri. For this she was operated upon, and from the time that she recovered from the immediate effects of the operation she had no more asthma or cough. It had been purely hysterical.

Cohen reports in his work On Disease of the Throat (p. 627) an epidemic of hysterical cough in a school for girls near Philadelphia. The cough was peculiar in character. The neighbors called them the barking girls. Cough of this character may be dependent upon other conditions than hysteria. Irritations reflected from other parts, as the ear and naso-pharynx, have been noticed.9

9 Cohen, p. 636.

E. F. Ingals reports a case of an adult female whose voice had been abnormal for several years. It had been preceded by measles. Upon laryngoscopic examination the ventricular bands were seen to be approximated during the effort of phonation, while the true or vocal bands were, when last seen, moderately separated. The voice was not extinct, but hoarse, low in pitch. The true cords could not be seen during phonation on account of the closure of the false cords. This could hardly be considered as chorea, but there must have been an irregularity of muscular action, something between chorea and hysterical ataxia. There were no other abnormal movements of the larynx.

TREATMENT.—For these hysterical forms of trouble the treatment should be such as to correct, if possible, the morbid conditions upon which they [p. 78] depend. Under the subjects of Anæsthesia, Hyperæsthesia, and Paralysis this has been sufficiently discussed.


The function of the muscular apparatus concerned in respiration and phonation depends mainly upon the action of the recurrent nerves, as stated in the paragraph devoted to the Anatomico-physiological Facts. Disease of the centres in or near the floor of the fourth ventricle, where, in close proximity, the pneumogastric fibres of the accessory and the glosso-pharyngeal nerves take their origin, may be the sole cause of a paralysis of these muscles. Disease along the course of the nerves anywhere between this centre and the termination of the nerves may give rise to the same result. Change in the structure or function of the nerves at the point of their contact with the muscles in some instances may possibly be the sole cause of the paralysis. Alteration of the muscles themselves, such as atrophy or degeneration, produces a like effect. In certain cases both the nerves and muscles are involved in the morbid processes, but in some instances, even where there are undoubted changes in the muscles, these changes are secondary, the result of the long inactivity of the muscles. It is possible to group these morbid conditions with reference to the nerves involved; but it frequently happens that several different conditions are present at the same time, and groups of muscles supplied by different nerves are simultaneously involved. It is therefore difficult to classify these troubles with reference to the nerves by which the parts are supplied. The further fact that of individual muscles or parts of muscles supplied by the same nerve-trunk some are affected, while others are intact, renders this effort to make a physiological classification still more unsatisfactory. As a rule, however, we may state in general terms that diseases of the superior laryngeal nerves produce paralysis or paresis of the external tensors of the vocal cords, the crico-thyroids, and, to a certain extent, of the constrictors of the larynx. Diseases of the recurrent nerves produce paralysis or paresis of the other muscles of the organ. If the disease of the nerve is of one side only, we have, as a rule admitting of only a very few exceptions, a unilateral impairment of the motor functions of the parts. In the case of the loss of power of individual muscles or parts of muscles it is by no means easy to find a satisfactory explanation. It seems probable that in some instances the reason is to be sought in the centres, but in a great majority of cases the muscles are degenerated or the nervous filaments of the particular parts are in a morbid condition.

Notwithstanding this difficulty of classification, the troubles of respiration and phonation due to the complete or partial paralysis of the muscular apparatus are, for the convenience of study, divided into groups. These groups are based either upon the seat of the primary lesion or upon the kind of disturbance or the symptoms of the case. Neither method of grouping is satisfactory. We must content ourselves with a provisional arrangement. With the single exception of the arytenoideus, the muscles are double and symmetrical; paralysis may therefore be general or partial, unilateral or bilateral.

The causes, symptoms, or terminations vary with this general or partial, double or single, character of the affection. We propose, therefore, to consider these motor derangements under the following heads, which in the main follow the classification of Mackenzie and most other writers upon the subject:

1. Paralysis of the whole larynx—of one-half of the larynx; [p. 79]
2. Paralysis of the constrictors of the larynx;
3. Paralysis of the adductors of the vocal cords: (a) unilateral, (b) bilateral, (c) central;
4. Paralysis of the tensors of the vocal cords: (a) internal, (b) external, (c) unilateral, (d) bilateral;
5. Paralysis of the abductors of the vocal cords, openers of the glottis: (a) unilateral, (b) bilateral.

Paralysis of the Whole Larynx.

Paralysis of all of the muscles of the larynx gives rise to a position of the parts which has, as before stated, been called the cadaveric condition. The vocal cords are neither abducted nor adducted. The opening of the glottis is sufficiently wide to admit of easy respiration, but the cords are so far apart as to make phonation impossible. The effort to articulate is not attended with any change in the position of the vocal bands. In respiration there is no additional widening of the glottic chink. The superior portion of the larynx is also in a peculiar condition. The epiglottis is erect, standing against the dorsum of the tongue; the vestibule of the larynx is widely open; deglutition is difficult.

ETIOLOGY.—So far as we know, the causes are to be found either in central disease or hysteria. When the cause is in the centres, there is almost of necessity functional lesion of other parts of the muscular apparatus, especially of the parts supplied by the glosso-pharyngeal nerve. There will, therefore, be dysphagia. It is possible that the central lesion may be very circumscribed; in such cases we may have paralysis of individual laryngeal muscles or parts of muscles. These cases are probably very rare, and the indication of more general paralysis is, in fact, the point upon which the diagnosis of central disease depends. Tumor or other disease along the track of the spinal accessory before it unites with the pneumogastric may produce the same effect. When the affection is upon one side only the paralysis is also unilateral. There are, as before noted, exceptions to this statement. In these instances it is probable that the innervation of the affected part or side is supplied by branches from the opposite trunk. Such cases have been reported by George Johnson, Lefferts, and others. It has also been found that injury or paralysis of one recurrent nerve is sometimes followed by bilateral paralysis. Schnitzler reports a case in the Wiener Med. Report for 1882. The left recurrent was compressed by aneurism of the arch of the aorta; the right was normal. There was, however, bilateral paralysis. Experiment by Tourgues10 demonstrated the fact that powerful excitation and consequent exhaustion of one of the pneumogastrics may result in paralysis of the other. This result is in accordance with facts seen occasionally in traumatism of one of the pneumogastrics.

10 Reported in the Gazette de Montpellier, Nos. 35 and 36, 1882.

A pure, uncomplicated paralysis, in which all of the muscles of the larynx are implicated, and in which no other muscles are concerned, will almost always be found to depend upon some lesion of the pneumogastrics or the spinal accessories after they leave their point of origin. Whether the paralysis is dependent upon the lesion at one point or another, the symptoms are the same so far as the larynx is concerned. The vocal cords are in a state of absolute rest between abduction and adduction; the effort at phonation gives rise to no contraction of the tensors; the arytenoids leave the cartilages slightly separated; and the state of the organ is that of muscular death.

When the lesion upon which a paralysis of the muscles of the larynx depends is below the point at which the superior laryngeal nerves leave the [p. 80] pneumogastrics, the paralysis is limited to the phonators and respirators. The muscular bands and fibres by which the glottis is constricted are, in part at least, still capable of being thrown into contraction. This condition of recurrent paralysis may be due to a disease of the nerve-trunks, tumor pressing upon the nerves, cicatricial tissue by which the nerves are compressed, aneurism of the arch of the aorta or right subclavian artery, disease of the apex of the lung, especially of the right side, pleuritic adhesions, or, in fact, any injury or lesion along the trunks of the recurrents or pneumogastrics. The paralysis may of course be partial or complete.

The SYMPTOMS vary according to the extent of the muscular disability. In case of complete paralysis of one side there may be aphonia, but not dyspnoea. The glottis admits a sufficiency of air, but does not close so as to allow of the vibration of the cords. Where there is complete paralysis on one side only, the voice is not necessarily entirely suppressed, but it is changed in its quality; it becomes rough, weak, and in its use gives rise to great fatigue. In long-continued cases there is in part a compensation for the want of motion of one of the vocal bands. The muscles of the sound side act with increased vigor, so as to carry the sound cord at its posterior extremity beyond the median line. The result is, that the two cords are brought so near each other that phonation is possible. The arytenoid of the non-paralyzed side is drawn forward beyond its fellow. The cord upon the affected side is less tense than that on the healthy side. The vibrations are therefore not equal; the pitch is different; the voice is therefore unnatural, rattling, uncertain.

As we proceed to discuss the lesions in individual muscles or sets of muscles we shall have occasion to refer to these etiological considerations, as well as to some of the symptoms noted with partial or complete loss of power of the whole group of muscles of the organ.

Paralysis of the Constrictors.

Complete paralysis of the muscles, by which the vestibule of the larynx is closed, is rare. The partial paralysis of these muscles is, however, by no means uncommon. As we have already endeavored to show, it is probable that the motor functions of the muscular fibres in the ary-epiglottic folds—the superior constrictors—are mixed. Probably both the superior and inferior laryngeal nerves are concerned in their movements. It is not, therefore, easy to group these disorders according to the nerves involved, as has been done by Von Ziemssen, Mackenzie, and others.

Partial paralysis of the constrictors may be due to deficient power of one or both of the laryngeal nerves, superior or inferior. The parts involved are the arytenoids, transverse and oblique, and the muscular fibres in the folds going from the arytenoid and from the thyroid cartilages to the epiglottis.

The ETIOLOGY of this form of paralysis associates itself with that of anæsthesia of the parts—namely, the arrest of motor impression in the centre, obstruction along the course of the nerve, disease in the nerve itself, in its trunk or termination, or, lastly, myopathic changes rendering the muscle incapable of responding to the nervous influences. Disease in the centres may possibly affect only these muscles; the disorders of motion may be well defined and local in extent, but usually, in case of central disease, there is a complication of external manifestations and we have a wider range of disturbances. The most common cause of this loss of power is diphtheria.

SYMPTOMS.—The symptoms of paralysis of the constrictors of the larynx are for the most part mechanical. The failure to close the vestibule of the organ in the act of swallowing allows food or drink to pass into the larynx, [p. 81] and, as there is usually anæsthesia of the parts also, the invasion of the larynx is not perceived; no reflex irritation is produced, no cough for the extrusion of the offending matter, which may descend into the trachea, and, reaching the bronchi, may become the agent in the development of a bronchitis or a broncho-pneumonia. The secretions of the mouth overflow the borders of the laryngeal opening and fall into the tube below. Fluids are swallowed with greater difficulty than solids. The voice is not altered except in cases where the crico-thyroids, one or both, are involved, as in complete paralysis of the superior laryngeal nerve. The effort to close the glottis, as in the preliminary act of coughing, is accomplished with difficulty. The sound of the cough is somewhat altered. This is for want of the reinforcement to the adductors furnished by the closure of the vestibule of the larynx. Upon laryngoscopic examination the epiglottis is seen to stand erect against the dorsum of the tongue. The ary-epiglottic folds are lax or wide apart. With this is loss or diminished sensibility of the surfaces. There is little or no change in the color of the membranes. The secretions are normal in quality, and only slightly in excess in quantity.

The course of the disease is in cases of diphtheritic origin like that of anæsthesia from the same cause. The termination, except in rare instances, is recovery. In cases of central origin the local symptoms in the larynx are almost necessarily associated with disorders of other parts. The progress and termination will depend upon the nature and extent of the central lesion.

The PATHOLOGY of this form of paralysis is probably multiple. When of diphtheritic origin it has been believed to consist in a change of the nerves along the trunk or in their distribution, or an alternation of nutrition due to the local changes in the larynx or pharynx during the progress of diphtheria, or to both of them. It is also probable that it is in many cases as much a myopathic as a neuropathic trouble. In other words, during the progress of the diphtheria the muscles, as well as the nerves, have undergone a change in their nutrition; and this local change in the peripheral portions of the nerves, along with this degeneration of the muscles, goes to make up the pathological anatomy and constitutes the essential local morbid condition.

There is, however, abundant reason to think that in some cases at least the influence of the diphtheria in the production of paralysis reaches far beyond the parts which are the seat of the local manifestations of the trouble, or even the centres from which these nerves are derived. It is well known that the extremities may be affected, and that other muscles become involved which can have no direct and immediate relation to the tissues which have been attacked with the diphtheria. It seems therefore evident that there must, at least in certain cases, be a general derangement of the centres, or that there must be some other explanation for the impairment of the muscular power than that which ascribes its loss solely to the local and poisonous action of the morbid deposit or to the defective nutrition of the parts. It is probable that there is in these cases a widespread influence, a constitutional trouble, which, like the disease itself, is general and not local except as to its manifestations.

Paralysis of the Adductors.

A pure, uncomplicated paralysis of the adductors of the vocal cords is extremely rare. When present it is marked by symptoms and signs which are easily recognized. A partial paralysis of an hysterical nature is, however, not unfrequently encountered. The etiology of paralysis of the lateral crico-arytenoid muscles is in most instances the same as that of the other muscles of the larynx. There may be a morbid condition of the centres in the fourth [p. 82]ventricle, from which the spinal accessory takes its origin. It is certainly possible in theory that certain fibres ultimately distributed to these muscles may alone become diseased in their course along the trunk of the nerve. There may be change in the final distributions by which the function of the nerve is arrested. There may be myopathic change in the muscle itself, rendering it non-responsive even to normal nerve-impressions. All of these causes are theoretically possible. In fact, however, we know but little of the real causes which operate in any given case. Mackenzie, Von Ziemssen, and others ascribe it in some instances to catarrh from exposure to cold. There is developed a hyperæmia of the mucous surfaces of the supraglottic space. The structures beneath are involved in the tumefaction as a result. The voice is impaired or lost; the aphonia, which was at first due to the mechanical difficulties in the way, persists after the local inflammation has subsided. The vocal cords remain permanently apart, even though there is no swelling to prevent the arytenoids from approaching each other. Gerhardt attributes this form of paralysis in certain cases to a rheumatic inflammation affecting either the articulations or the muscles themselves. Trichina have been found in one or both muscles, producing a paresis. Syphilis, central or laryngeal, may account for a number of cases. When the loss of power is due to local syphilitic trouble, there is, however, usually a recognizable change in structure, something more than a simple paralysis.

It would seem strange to find a rheumatism so localized as this hypothesis implies. Mackenzie has met with a case in which the paralysis was unilateral and toxic, due to lead-poisoning. He thinks there may be other cases of similar origin, and suggests arsenic also as a possible cause. In his case he compares this paralysis of the lateral crico-arytenoids to the loss of power in the extensors of the forearm in well-marked cases of lead-poisoning. The affection was limited to the adductor muscles. Seifert and Lublinsk in Berlin. klin. Woch. also report cases. The adductors only were affected. The very few cases in which this form of paralysis has been carefully noted do not supply us with the material for a more exact opinion as to the causes of the trouble.

SYMPTOMS.—The symptoms of this form of paralysis are for the most part such as depend upon the mechanical relation of the parts. There is no pain; there is no dyspnoea, except in cases in which there is a catarrh of the larynx; there is no cough. There is however, complete aphonia. There may be an exception to this statement when the paralysis is unilateral. It is possible that where one cord comes to the median line, and the other is affected only with paresis, in the course of time the cord on the sound side may pass beyond the median line and render phonation possible. In such cases, however, the voice is not normal in quality.

Upon inspection with the laryngoscope the glottis is seen to be widely open. The cords approximate the lateral walls of the supraglottic space. Upon an effort to phonate the cords remain immobile. If the constrictors are unaffected, the act of laughing is still possible, from the fact that a partial occlusion of the lumen of the tube is accomplished by the action of the borders of the laryngeal opening and by the approximation of the false cords. In case of unilateral paralysis of course there is motion of the cord upon the sound side, leaving one-half of the glottis open. It has been stated by Von Ziemssen that there is sometimes an anæmic condition of the mucous surfaces. When present, this is probably only a contingent phenomenon, the evidence of a slight alteration of the circulation in the tissues. It is true that the permanent immobility of the parts ought to diminish the activity of the circulation in the muscles, and perhaps also in the neighboring structures. On the other hand, the surfaces have been found hyperæmic. Probably no importance should be attached to the surface condition as a means of diagnosis.

[p. 83] The course, duration, and termination of this form of paralysis must depend largely upon the cause. When the disorder depends upon a catarrh, we may expect that the trouble will disappear, or at least be mitigated, as the local affection is relieved. If of syphilitic or rheumatic origin, it should disappear pari passu with the primary disease. So far as we know, there is no danger to life, the loss of voice being the only important result.

The DIAGNOSIS is easy. The laryngoscope will enable the observer to differentiate it from all other affections by which the voice is destroyed. It is possible that disease affecting the articulation of the arytenoids, and thus preventing their movement, might give rise to a doubt. A careful examination in such cases will, however, generally reveal the fact of tumefaction or other evidence of structural change.

Closely allied to the paralyses which we have just been considering are the affections of the glottis of hysterical origin.

If the cases of true paralysis of the lateral crico-arytenoid muscles are rare, it is equally true that a partial arrest of the action of these muscles, and temporary for the most part in duration, is not unfrequently met with. The etiology of these cases seems to be much more within our knowledge than that of those of which we have just been speaking; at least the conditions under which they occur are much better known. For the most part they occur in females. They are met with in patients of nervous temperament, generally adults, though I have seen one case in which the subject was still undeveloped. There are very generally the evidences of hysteria in some of its various manifestations. We may therefore assume that the disease is functional in its nature and that it is reflex in origin. It has been said that, as it is not dependent upon any disease of the muscles or nerves of the larynx, so far as we know, it should not be classed among the paralyses. For the same reason it should not be considered as a neurosis of the organ, but of the system in general. But it is a neurosis of the larynx, and therefore ought to be placed here. In addition to this, it is in its symptoms identical with or very similar to the true paralyses dependent upon alteration of the nerves or of the muscles of the part.

The etiology of the affection has already been suggested in the definition. A disturbance of the functions of the uterus, or possibly of other portions of the nervous system, may be so reflected as to materially interfere with the action of the muscles of the larynx. It is possible that the affection may occur in males, as other troubles called hysterical sometimes do. That the uterus is not always the source of the reflex disturbance is certain. I have very recently seen a case in which there was unquestionably an intermittent partial paralysis of the adductors of the muscles in an adult man. It seemed to be dependent upon the condition of the stomach. Whenever there was flatulence or an accumulation of gases in the stomach, the voice became husky, requiring great effort and expenditure of air in phonation, and then extinct. Examination with the laryngoscope showed the cords in the condition of adduction. In the effort to speak there was a very slight approximation of the vocal bands, but not enough to admit of their vibration. With the recovery from the disorder of the stomach this condition disappeared. I have seen one other case similar in character. I think we may therefore assume that the trouble can be produced by any affection which creates a disturbance of the pneumogastrics, and which by reflex action interferes with the proper functions of the spinal accessory.

The disease is always bilateral. Its advent is generally sudden. The symptoms are first and almost solely loss of voice. The aphonia may from the beginning be persistent, or there may be intervals when the patient speaks with ease. In some cases the patient is able to whisper; in others this power is also lost: in the effort to phonate there is absolutely no sound. There is [p. 84]no pain, but there is often cough: this cough is hoarse, like that which has been described under a previous heading. The general health is in some cases apparently perfect, but in a majority of instances there will be found some disturbance of the viscera of the abdomen. Perhaps in all cases this is true, but so slight that we are obliged to look carefully in order to find it. Upon inspection with the laryngoscope the cords are seen to be separated, but not so widely as in complete paralysis of the adductors from other causes. There is no marked morbid condition of the mucous surfaces. The secretions are not affected. It is possible that there may be at the same time a partial paralysis of the pharyngeal muscles, so that there is also dysphagia. In a few instances there is a paræsthesia of the parts above. The dysphonia or aphonia is then associated with a feeling as though there was a foreign body in the throat. In efforts at phonation the cords usually move slightly toward the median line, but not enough to enter into vibration. When this condition of things is observed, and there is no other cause for the explanation of the loss of voice, we may with safety assume that we have to do with an hysterical paralysis of the adductors.

The duration of this form of motor disturbance is uncertain. It may terminate suddenly after a short duration or it may continue indefinitely. It is a cause neither of dyspnoea nor asphyxia. It always ends finally in recovery. This statement is possibly subject to an exception in cases in which there are other diseases present and when these diseases are of themselves dangerous to life.

The pathology and morbid anatomy are dependent upon the length of time during which the muscles have been in a state of inaction. It is possible that the muscles may degenerate or lose their power to act with the normal vigor, or there may be a simple atrophy of the muscles, as in a case reported by Mackenzie. So far as I know, this alteration of the muscles is very seldom found in hysterical paralysis. When degeneration or atrophy does exist, it is probably a result, and not a cause, of the paralysis. So far as we know, there is no antecedent change in the larynx. This must of necessity be the case, since the disease is reflex, and not primarily in the organ of speech. Why the morbid influences are manifested in this organ to the exclusion of others we do not know. In fact, we do not know that this is the case. So far as we can judge from the records of similar cases found in the literature of the subject, we may safely believe that there is in nearly all of the patients some other disorders of motility, but the derangements of speech are so striking that these have masked all minor troubles.

The intimate relation between the organs of expression, of which speech is one of the most important, finds in these cases a striking illustration. The quality of the voice is modified by emotion. The evident relation of the generative functions to this psychical state is well known. This fact explains the association of these troubles so frequently encountered in the study of the morbid conditions of the larynx. It is true that the disturbance is not always limited to the phonators, but it is nevertheless more frequently met with in these muscles than in the muscles of respiration. Emotion and the expression of emotion go together. Their morbid conditions are therefore associated.

Paralysis of the Arytenoideus—Central Adductor.

The function of this muscle is to approximate the arytenoid cartilages. Its paralysis leaves the posterior borders of the cartilages separated, even though the vocal processes are by the action of the lateral crico-arytenoids made to approach the median line. There is left a triangular opening at the base of the cartilages, through which the air escapes in the act of speaking. This, the [p. 85]cartilaginous portion of the glottis, remains patent even though the anterior three-fourths of the space be closed. The result is generally, but not always, a loss of speech. The air whistles through this opening, but phonation is difficult or absent. The causes are to be sought in the derangements resulting in the loss of power of the other muscles. Upon examination with the laryngoscope the triangular opening is readily seen. The ligamentous portion of the glottis is seen to close in the effort to speak, while the cartilaginous portion is widely open. There is no other morbid condition necessarily present. The trouble is frequently associated with paralysis of the adductors of the two sides—that is, the lateral crico-arytenoids. In these cases there is complete separation of the cords throughout the whole length.

The DIAGNOSIS is easy except in instances where there is ankylosis of the articulation of the cartilages. Even in these cases a careful study of the parts, as revealed by the mirror, will enable the observer in most instances to recognize evidence of structural disease on the walls of the larynx. There will also be a history of some antecedent affection, such as syphilis or tuberculosis, or possibly arthritis. The course and termination of this form of paralysis depend largely upon the etiology in any given case.

Paralysis of the Tensors of the Vocal Cords.

It will be remembered that these are in two groups, the internal and external.

The internal are the thyro-arytenoids. While their function is in part still a matter of discussion, it is very generally conceded that they have to do with the form and tension of the cords. Their paralysis produces a very marked derangement of the functions of the larynx as the organ of speech. They act ordinarily along with the crico-thyroids, but from the fact of their separate innervation it would seem very probable that they should be the seat of special functional derangements. In fact, it is true that their paralysis in a limited number of cases is found to be quite independent of any disturbances of the external tensors.

ETIOLOGY.—In addition to the general causes of laryngeal paralysis, the use of the voice in an unnatural or too high a key or the too long-continued use of the organ may result in a temporary or even permanent impairment of the power of these muscles. Their exposure to the causes of inflammation, lying as they do so near the surface of the mucous membranes, subjects them to the morbid influences of the catarrhal troubles to which the glottis is liable. They are probably more frequently affected than the literature of the subject would lead us to suppose, as in many cases the disease is temporary.

SYMPTOMS.—These consist mainly in the alteration of the voice. It is hoarse, the register is lower, the quality is uneven. Occasionally a note is, if not lost, uttered with difficulty; some letters, such as the aspirates, requiring the careful adjustment of the glottis, are articulated with great uncertainty. There is what has been called a rattling of the voice. It is quite impossible to sing or to speak long in a high key; even prolonged ordinary conversation gives rise to fatigue, for the reason that there is so great a waste of air in the effort. The pressure upon the under surface of the cords in their relaxed condition forces its way upward and through the glottis without throwing them into normal vibration.

DIAGNOSIS.—The laryngeal mirror reveals the glottis only partly closed. There is an oblong opening extending from the thyroids to the base of the arytenoid cartilages. The vocal processes even are not brought to the median line, but are so far apart as to leave a noticeable slit between them. It seems from this fact that these muscles are therefore the aids of the lateral [p. 86]crico-arytenoids in the rotation of the cartilages on their bases. In the effort at phonation the cords are seen to move with difficulty. The disease may be unilateral or bilateral.

This form of paralysis in course and termination does not in any essential respect differ from other paralyses of the larynx. The duration is therefore very uncertain, and will depend largely upon the cause of the affection.

Paralysis of the External Tensors of the Cords.

This is a rare disease, but is present in complete paralysis of the superior laryngeal nerve. It is then associated with anæsthesia of the superior portion of the glottis, as well as paresis of the depressors of the epiglottis, and generally of the constrictors of the vestibule of the larynx.

ETIOLOGY.—It may be the result of injury to the external branch of the superior laryngeal in its distribution to the muscles. It may be caused by diphtheria. It is possible that the motor fibres of the superior laryngeal nerve may be alone involved, while the sensitive portion is still normal. Cases of partial paralysis are recorded by Von Ziemssen, Gerhardt, and others.

The SYMPTOMS are such as we should expect in diminished tension of the vocal bands: lowering of the pitch of the voice, with inability to reach the higher notes. There ought to be, therefore, hoarseness. Acute paralysis of this muscle has been known to produce aphonia (Ramon).

DIAGNOSIS.—It is said that this form of paralysis gives rise to a well-recognized condition which may be seen in the laryngeal mirror. The cords are described as wavy, irregular in their relation to each other, like the position of two pieces of ribbon, which, having an attachment at their extremities near to each other, are allowed to fall into folds. This condition, if ever present, is, I am convinced, very rare. It is probable that the descriptions have been given to correspond with what ought to be seen, rather than what is actually seen, in the mirror. There is said to be a slight depression of the vocal processes in the act of inspiration, and a corresponding elevation of them in the act of expiration and phonation. The diminished tension should produce this change in position. The disease may also be recognized by placing the finger upon the edge of the crico-thyroid muscle during the effort to speak. The muscle acts so strongly in the healthy condition that it may be easily felt; in paralysis this contraction is wanting.

The course and duration of the disease must depend upon the cause and complications. When the muscles suffer in common with the sensory apparatus supplied by the superior laryngeal nerve, as in the case of diphtheria, there is reason to expect that it will disappear with the other morbid phenomena.

Paralysis of the Posterior Crico-Arytenoids.

The functions of these muscles render any loss of their power as glottis-openers a matter of importance. It will be remembered that they are so situated that they not only rotate the arytenoids, turning the vocal processes away from each other, but they also serve to fix the cartilages, giving them a firm support as points of attachment for the vocal cords. The outer fibres tend also to draw the body of the arytenoids away from each other, as well as to fix them in a postero-lateral position. They are, more than any other of the muscles of the larynx, organs of respiration. They are also in constant action: with each inspiration they contract, and during expiration they [p. 87] fall into rest. In this respect they resemble the other muscles of respiration and the central organ of the circulation. In some respects they also resemble the muscles of the heart in the degenerative changes to which they are subject. Their antagonists are the lateral crico-arytenoids. When both sets of muscles are paralyzed, the glottis is in what is known as the cadaveric condition; that is, the vocal cords are neither widely separated nor parallel to each other. There is an opening of a triangular shape as in the act of easy inspiration, not sufficiently approximated to admit of speech, but sufficiently open to admit of free inspiration. With this understanding of the physiology of the parts, we can readily appreciate the results of the loss of power of these muscles. As stated by Bosworth, the especial danger is in the integrity of the adductors, tending for the want of antagonism to keep the glottis closed. Of all the muscles of the larynx, these are therefore the most important so far as life is concerned.

The disease is progressive (Lefferts, Semon, Bosworth).

The first symptom which attracts attention is generally inspiratory dyspnoea while taking active exercise. The difficulty continues to increase till there is constant difficulty in the act of inspiration, usually with spasm. The dyspnoea is more marked during sleep than when awake. Death may occur at this period of the disease before the gravity of the trouble has been recognized. As a rule, tracheotomy will be required to prolong life, after which the dangers to the patient are passed.

The ETIOLOGY of this form of paralysis presents some peculiar problems. In all paralyses of the individual muscles we are obliged to invoke nerve-changes in special nerve-cells in the centres from which the individual nerves have their origin—changes along the course of the nerves; or, on the other hand, some myopathic change in the muscles themselves. In the muscles now under consideration we have a special function—namely, respiration—involved. The disorder is usually limited to these muscles alone. If it becomes general, it commences here. The phonators not being involved, it is probable that in a part of the cases reported the essential cause of the paralysis must be ascribed to disease in a centre in the brain, or at least along the course of the nerve near its origin. Other cases are evidently due to pressure on the pneumogastrics or recurrents. This view has been proposed by Bosworth. Von Ziemssen and others have thought that syphilis enters very largely into the pathology of this group of cases. There has been noted, as confirmatory of this proposition, that other symptoms of central disease have been in a few instances observed. Diseases affecting the recurrents have been known to affect these muscles alone: Ingals reports cases. On the other hand, it is quite certain that in a large majority of the cases recorded there has been no satisfactory cause assigned. In nearly all of the post-mortems there has been found a degeneration of the muscles. This is as we should expect to find it where the structures have been for a considerable time in a state of inaction. The histological change may possibly be in any case only the result of the paralysis, and not the cause of it. In a few instances there has been discovered a degeneration of the nerve-trunks by which the parts are supplied. As to the causes by which the muscles may become affected, we can imagine that the exposed position suggested by Mackenzie renders them peculiarly liable to mechanical injuries from hard substances forced down the oesophagus. They are subjected to changes of temperature produced by hot and cold drinks and food. Their relation to the seat of local inflammation of a specific as well as of a non-specific character renders them liable to become involved in morbid processes. The fact that the disease occasionally occurs after diphtheria, as I have in two instances demonstrated, gives additional weight to this hypothesis. The fact probably is that there are several varieties of the affection. The want of more accurate information as to the [p. 88]previous history, as well as to the immediate antecedents of the attack, renders it impossible as yet to differentiate the cases due to one or other of these causes. For the present, then, we may conclude that paralysis of these muscles may depend upon either disease of the centres, disease along the track of the nerves, pneumogastric or recurrent, or to disease of the peripheral branches or fibrils, or to disease of the muscles themselves.

SYMPTOMS.—These are at first so slight that the trouble is usually not recognized till it has reached such a stage that the act of inspiration is either attended with fatigue or there is stridor which annoys the patient or alarms his friends. Soon afterward there begins to be a dyspnoea, a difficulty in breathing, especially during any active exertion and during sleep. The voice in the mean time remains normal. Expiration is free. The general health is usually undisturbed. There may be a catarrhal affection of the mucous surfaces, but if so it is quite accidental. Spasm supervenes. There is at times great difficulty of breathing, and, finally, the effort becomes so great that the patient becomes alarmed. Upon examination with the laryngoscope the vocal cords are seen in close proximity to each other even during the inspiratory effort. In fact, they are, by the pressure of the air upon their upper surfaces, brought closer together during inspiration than during expiration. They seem to act as valves which are closed by the weight of the atmosphere upon their wide, flat upper surfaces, pressing them against each other. Hence the inspiratory stridor and dyspnoea. The act of expiration is a passive one in health, and in this condition the air is easily forced out by pressing the cords away. The order of the movements of the cords is therefore changed—in the normal condition wide in inspiration, narrow in expiration; in this disease narrow in inspiration, and while not wide, at least wider, in expiration than in inspiration. In other respects the parts are normal. There is nothing to suggest the trouble except the closure of the glottis during inspiration.

The course and duration of the disease are in a large majority of cases chronic. Once established, it tends to persist. The cases of diphtheritic origin should be excepted from this statement. In those forms in which the trouble is entirely in the muscles of the part life may, so far as we know, be continued indefinitely. Where the trouble is central it is probable that the cause has a tendency to involve other parts of the brain, and in this way to lead to other, and possibly dangerous, complications. Of this, however, we know but little. The paralysis is not directly the cause of death, except as it closes the glottis. The dangers are therefore mechanical. When the patient has once been placed in a condition of safety by the operation of tracheotomy the local paralysis no longer endangers life.

Mackenzie, Von Ziemssen, Cohen, and in fact almost all writers upon the diseases of the larynx cite and publish cases by the way of illustration of the symptoms, course, and termination of this class of troubles. They are now so numerous that it would seem to be hardly necessary to do more than to give the conclusions which the recorded instances suggest. Fortunately, this form of laryngeal disease is rare, and when present it is easily recognized. The treatment is clearly indicated. In all cases in which the inspiratory difficulty is marked tracheotomy should be performed, even though suffocation does not seem to be imminent. The treatment for the radical cure of the disease must be in the main the same as that required in other forms of laryngeal paralysis.

TREATMENT OF PARALYSIS OF THE LARYNX.—The grouping of these disorders for the purpose of description has, for the reasons already given, been based largely upon symptoms. For the purpose of treatment we may properly divide them with reference to their causes. With these in view, we have, first, those cases in which the cause of the affection is within the [p. 89]cranium—central disease; second, those in which the loss of power is the result of disease or pressure along the course of the nerves outside the cranium and before reaching the larynx; third, those in which there is disease of the structure of the larynx itself, nerves or muscles; fourth, those in which the cause is to be found in some distant part—reflex paralysis; fifth, those of toxic origin. This last includes paralysis after typhoid fever, diphtheria, etc., as well as those produced by lead, arsenic, mercury, and possibly copper and other toxic agents.

Diseases of the base of the brain or medulla are for the most part not amenable to treatment. They are generally organic and progressive. The exception to this statement, or at least the most notable exception, is syphilis. The influence of this disorder in the production of paralysis of central origin must be admitted, but it seems to have been by many authorities overstated. The coincidence of paralysis with an earlier infection does not by any means justify the inference that the one disease has been produced by the other. When, however, there is reason to think that this relation may exist, antisyphilitics should be administered. In a few cases this treatment has been followed by marked improvement of the laryngeal disease.

Cases dependent upon malignant growths within the cranium are absolutely beyond the reach of treatment. Paralysis dependent upon bony tumors, even though they are benign in character, are also for the most part beyond the reach of surgical interference. If the paralysis is complete—that is, if all the muscles are involved—there are no indications for any operative procedure. If, however, only the nerves that supply the posterior crico-arytenoids are involved, as occasionally happens, tracheotomy should be resorted to even though the dyspnoea is not urgent. This operation places the patient in a condition of temporary safety, and gives time to resort to other means if the indications for their use can be found.

The second group of cases includes all those in which the cause of the paralysis is due to the presence of disease of the nerve-trunks, or to pressure upon the nerves between their emergence from the cranium and their terminations in the muscles of the larynx. Malignant growths and benign tumors situated along the tract of the nerves, and pinching them, are readily recognized, and when not contraindicated by other facts they should be removed. Enlargement of the thyroid gland may in some cases press upon the nerve and cause paralysis. This is occasionally relieved by appropriate treatment directed to it. Among those means which have occasionally been found efficacious for this purpose iodine or some of its compounds, and especially electricity in the form of galvanism, seem to be entitled to the most confidence. For paralysis dependent upon cicatricial pinching of the recurrent nerve-trunks relief may possibly be obtained by dissecting out the bands by which the nerves are compressed. This is hardly indicated for the partial derangements which do not endanger life, as in unilateral paralysis of the recurrent. Where the trunk of the nerve is entirely obliterated nothing can be done, and in many cases of injuries along the trunk of the recurrent it will be impossible to know that the nerve has not been destroyed in the mechanical lesion.

Paralysis caused by pressure upon the intra-thoracic portion of nerve is beyond the reach of surgical interference. When this is aneurism, disease of the apex of the lung, or pleuritis, as may possibly happen, the paralysis or paresis must of course have a history coeval with the thoracic disease. The causes themselves are unfortunately persistent and tend to terminate in death; the paralyses are therefore persistent and beyond the reach of medical or surgical relief. In cases where the posterior crico-arytenoids are especially involved, tracheotomy, as in the same condition from intra-cranial disease, should be performed. It is certainly true that there may be a morbid [p. 90]condition of one or both of the pneumogastrics or recurrent nerves without macroscopic changes in their structure; in such cases the use of the faradic current together with general tonics is indicated.

The third group is made up of those cases in which there is disease of the nerves or muscles of the larynx itself. It seems to be true that in most of these patients there is a derangement of the general nutrition; but this is not all: there is also a special morbid condition of these special structures. For degeneration of the muscles of the larynx there is probably no remedy; for atrophy there may be something done by different methods of exercising the muscles. The use of electricity when the muscles are still responsive to the current should be attempted. Regular applications by which they are thrown into action may result in the improvement of their nutrition. The use of them so far as they are phonators, without carrying it to the extent of producing fatigue, is also indicated. In addition to these local measures, tonics for the purpose of improving the general condition may be administered. Strychnia, with the purpose of stimulating the centres, will also be found in some cases useful. When the disease is partial, as in the case of the posterior crico-arytenoids, such operative measures as have been already indicated must be resorted to. The purpose is to prolong life, even though we cannot cure the disease.

The fourth group, the paralyses of reflex origin, are generally within the reach of treatment; at least, they usually recover. They depend for the most part, as will be remembered, upon some disorder of distant organs. There is primarily no disease of the larynx, and not necessarily even a secondary disorder of its structures. It is true that long inaction may result in atrophy of the muscular structure, but this is, I am convinced, a rare exception to the rule that in hysterical paralysis there is maintained a complete integrity of the muscles of the organ, even though the parts have been for years in a state of inaction. For some reason, the nutrition is maintained much better than in paralysis from other cases. The trophic nerves are evidently not involved. The treatment should be both local and general. It should be directed to the larynx and to the distant part upon which the motor disorder of the larynx depends. So far as the larynx is concerned, we know of nothing better than electricity. The faradic current, by which the muscles are stimulated and the nervous energies awakened, seems to be most useful. The method of applying electricity to the larynx may be varied according to the nature of the case and the age of the patient. In young children the current should be directed through the walls of the larynx from side to side or from before backward. It should be repeated every day if possible. In adults the current may with advantage be passed through the larynx from within outward or from one side to the other. This may be accomplished by the use of Mackenzie's laryngeal electrode. The instrument is either single or double. Armed with a sponge and bent to the proper curve, one pole is introduced into the larynx, the other placed upon the neck, and then by pressing a spring the circuit is closed, permitting the current to pass through the parts from one pole to the other. In using the instrument with two electrodes, as in paralysis of the arytenoids and constrictors, the instrument with two branches, each armed with a sponge, and to which the two poles are attached, is introduced with one branch in one of the depressions in one side of the larynx, and the other on the opposite side in the corresponding depression. The circuit is now closed as before, with the muscles between the two poles as part of the circuit. The electrodes may be carried down into the organ and the stimulus applied directly to the vocal bands. In some cases the first shock is followed by distinct phonation; in others repeated applications are necessary; while in still others all efforts of this kind fail entirely. Both the galvanic and the faradic current may be used. When the object [p. 91]is to stimulate the dormant energies of the nerves or muscles, the faradic is probably the more useful; if it is desired to modify the nutrition of the parts, the galvanic is preferable. The strength of the current should be carefully tried upon the surface of the hand of the operator before introducing it into the larynx. The shock to the nervous system from the dread of the operation has sometimes resulted in the recovery of the voice before anything has been done. The morbid spell is broken and the patient speaks. This is true in spasm even, as shown in a case reported by Lefferts, where it was thought that tracheotomy was necessary for the purpose of saving life. The patient, frightened at the thought of the operation, recovered, and respiration became easy. There was no reason to think that the case was one of simulation.

For the general condition, which is usually one of asthenia, nerve-stimulants are indicated, and the bitter tonics, with iron and strychnia, good generous diet, outdoor exercise, change of surroundings, travel, moral impressions, in short everything that tends to promote general good health,—these are among the most important requirements. If there is local uterine trouble, this of course requires attention, or if there is any other derangement which serves as the point of departure for the morbid phenomena, this will also demand consideration. In fact, no organ suffers alone. There is a community of function and there is a community of suffering. This subject has been perhaps sufficiently discussed in the consideration of the treatment of hysterical disorders of sensation and of spasm, to which the reader is referred.

The fifth group comprises paralyses toxic in their origin. When the cause is typhoid fever or diphtheria, we may confidently expect the paralysis to disappear with the other manifestations of adynamia. Time and tonics, with attention to diet, and in the more protracted cases electricity, will generally be all that is required. Cases depending upon the toxic effects of lead or arsenic demand the treatment appropriate for the other manifestations of these forms of paralyses. The iodide of potassium internally, with attention to the general health, and especially to the functions of the excreting organs, constitute the most important measures. In addition, strychnia may be administered, and the faradic current applied through the larynx. It is certainly possible that laryngeal paralysis may be produced by arsenic, as shown in the case reported by Mackenzie, and probably also by copper or mercury. Such cases, however, must be exceedingly rare. The potassium iodide, as suggested for lead-paralysis, may be resorted to in case mercury is supposed to be the cause. For arsenic- and copper-poisoning the reader is referred to articles upon these subjects elsewhere. Cases in which there is evidence of a local lesion due to syphilitic intoxication should receive both local and general treatment.

[p. 92]



PATHOLOGY.—Catarrhal inflammations of the mucous membrane and the submucous tissue of the larynx are of frequent occurrence. They are either general or local; that is, confined to the epiglottis or the vocal cords, etc. The affected parts are red (only less so where the elastic fibres are developed to an unusual degree and capable of compressing the dilating capillaries) and more or less tumefied. Sometimes small hemorrhages occur. The secretion is either changed in character or in quantity. It is either mucous or purulent, or (mainly in passive congestions produced by interrupted venous circulation) serous. The epithelium is either thrown off or accumulated in some spots, particularly on the vocal cords, so as to form whitish conglomerates which may become the abode of schizomycetæ. The muciparous follicles are enlarged and dilated; to this condition is due the granular form of laryngitis, with the nodulated condition of the epiglottis or the fossæ Morgagni or the inferior vocal cords.1

1 Ziegler, Pathol. Anat.

When the catarrhal process is of longer duration, the capillaries and small veins become permanently enlarged; round cells are deposited between the epithelium and cellular tissue; the cellular tissue becomes hypertrophied; papillary elevations are formed on the vocal cords. The disintegration of the epithelium and the bursting of the tumefied muciparous glands lead to the formation of erosions and ulcerations; the chronic swelling and hypernutrition of the muciparous follicles to their destruction by cicatrization or simple induration; and to atrophy of the mucous membrane.

Many of the specific causes of inflammation of the larynx exhibit no peculiar alterations of their own. Scarlatina, measles, and exanthematic typhus are complicated with either a catarrhal (in most cases) or a diphtheritic laryngitis. Variola, however, has a peculiar form of its own, with red, pointed, whitish stains or nodules, consisting of a cellular infiltration or of a deposit upon or into the upper layers of the mucous membrane, composed of necrotic epithelia and pus-corpuscles or of coherent membrane. Hemorrhages or abscesses are but rare, and chondritis seldom results from it. Even syphilis has not always changes which are characteristic. The laryngitis accompanying it is often but catarrhal, without anything pathognomonic about it. But whitish papules consisting of granulation-tissue (plaques muqueuses), gummata often changing into sinuous ulcerations, particularly on the epiglottis and posterior wall of the larynx, also perichondritis with loss of cartilage and deep cicatrization, such as are not found in either carcinosis or tuberculosis of the larynx, are frequently met with. Typhoid fever shows different forms of laryngitis, from the catarrhal to the ulcerous. Epithelium is thrown off at an early period of the disease; erosions and ecchymoses follow; rhagades on [p. 93] the margins of the epiglottis, and a deposit on the anterior wall of the larynx and the vocal cords, consisting of epithelium and round cells, are frequent. That they should be mixed with micrococci and bacteria is self-understood. Not so that these bacteria are to be considered as the cause of the disintegration which is taking place, the less so as no specific typhoid bacterium has been demonstrated, and several varieties of them are found both in the mouth and in these ulcerations. These changes are apt to terminate in ulceration of the epiglottis and false vocal cords; these will extend in different directions, and to the deeper tissue down to the cartilage.

In tuberculosis, laryngitis is a frequent occurrence. In most cases it is secondary to the pulmonary affection, and due to the direct influence of the contagious sputum—according to Heinze, however, not to contagion, but to the influence of the infected blood. In other cases it appears to develop spontaneously, before any pulmonary affection is diagnosticated, and may then be due to some poison circulating in either blood or lymph. Tubercular laryngitis, according to Rindfleisch, commences in the excretory ducts of the muciparous glands. That this is so in a great many cases is undoubted. The first changes visible are small cellular subepithelial infiltrations or real subepithelial tubercles, which, while growing, undergo gaseous degenerations and ulcerate. These ulcerations are either flat and small or deeper with an infiltrated edge, and are apt to terminate in secondary nodulated infiltrations and abscesses. Large tumors are not met with, but oedema and phlegmonous inflammations are by no means rare.

ETIOLOGY.—The predisposition varies according to individuals, ages, and seasons. Some mucous membranes appear to be more sensitive than others. The hereditary transmission of peculiarities of structure of all or some tissues or organs is apparent, in the case of laryngitis, in the fact that many children in the same family or the children of parents who were sufferers themselves are affected. Children are more liable than adults, infants more than children: 20 per cent. of all the cases are met with under a year, 25 from the first to the second, 15 from the second to the third. Not many occur after the twelfth year. The narrowness of the infant larynx and the looseness of its mucous membrane afford full play to injurious influences, such as dust, cold and moist air, changing temperatures, hot vapors and beverages. Colds, though their nature and effects can hardly be said to be understood, are certainly amongst the main causes. Perspiring surfaces afford frequent opportunities. One of the principal causes is insufficient clothing—more amongst the well-to-do than amongst the poor. The latter have this blessing in their misfortune, that they are protected uniformly if at all, and have their skins hardened by exposure. The bare necks and chests, the exposed knees, the low stockings and thin shoes of the children of the rich, old and young, are just as many inlets of laryngeal catarrh, inflammatory disease, and phthisis. Persons suffering from nasal catarrh or pharyngeal catarrh are liable to have laryngitis. Thus, not only rachitis, with its influence on lymphatic glands and the neighboring mucous membranes, but also acute infectious diseases, such as whooping cough, measles, influenza, erysipelas, hay fever, tuberculosis, syphilis, typhoid fever, and variola, are as many causes of laryngitis. That over-exertion of the voice should produce laryngitis seems probable, but experience does not teach that those babies who cry most are most subject to laryngeal catarrh.

SYMPTOMS.—Acute laryngitis is a frequent disease, and has always been. Still, in 1769, Millar mistook it for a sensitive neurosis, considering it as identical with spasm of the glottis, and recommended antispasmodic treatment. Guersant understood its nature better. He first (1829) used the names false croup and stridulous laryngitis. Acute laryngitis is attended with but little fever in the adult, but with a high elevation of temperature in [p. 94]the young. In all, it yields a number of symptoms, part of which are uncomfortable only; others are liable to become dangerous.

Seldom without any catarrhal premonitory symptoms of other parts of the respiratory tract, sometimes, however, without any, there is a burning, tickling, irritating sensation in the larynx—a sense of soreness in it and the lower portion of the pharynx. Sometimes these sensations amount to actual pain, to difficulty of deglutition, and to the sensation of the presence of a foreign body. Speaking, coughing, cold air, increase the discomfort and pain. Hoarseness, sometimes increasing into aphonia, follows soon after, is seldom simultaneous with, the first appearance of cough, but lasts longer than the latter, which is, according to the severity of the case or the stage of the disease, changing between loose and dry, hoarse and barking. Inspiration is apt to become impeded, mainly in infants and children. In these it is often sibilant. It is followed by a reflex paroxysm of cough, with interrupted and brief expirations, during which the forcible compression of the thorax may result in cyanosis. The principal attacks are met with at night amongst children. Quite suddenly they wake up with a dry, barking cough, interrupted by considerable dyspnoea, which is great enough sometimes to give rise to much anxiety. They toss about or cling to a solid body, raise themselves on their knees, breathe with great difficulty, exhibit cyanosis in its different hues, perspire very freely, and yield all the symptoms of the strangulating attacks of membranous croup, its over-exertion of the sterno-cleido-mastoid muscles and supraclavicular and diaphragmatic recessions not excepted. These attacks occur but rarely during the day; on the contrary, well-marked remissions are quite common in the morning. Their occurrence during the night is best explained by the facility with which mucus will enter the larynx from above during the reclining posture, the increasing dryness of the pharynx during sleep, perhaps also the nervous influence depending upon the relative diminution of oxygen and increase of carbonic acid in the respiratory centre, leading to spasmodic contractions.

Some of these grave attacks of sudden dyspnoea are explained by the participation of the submucous tissue in the morbid process. When that occurs, adults also, who as a rule do not suffer from dyspnoea in laryngeal catarrh, are badly affected. The symptoms are rigor, high temperature, pain, hoarseness or aphonia, a barking cough, labored expectoration—which is sometimes bloody—dyspnoea, orthopnoea, cyanosis. In some cases, to which the name of laryngitis gravis or acutissima has been given, the symptoms grow urgent to such a degree that tracheotomy alone is capable of saving life.

Otherwise, the severity of the symptoms does not go parallel with the local lesions. Particularly in children, hoarseness, cough, and dyspnoea are liable to be grave, while the local hyperæmia is not intense at all. A pharyngeal catarrh is very apt to increase the suffering. Complications with tracheitis or bronchitis are liable to prolong the course of the disease and to render respiration—which is not accelerated in laryngeal catarrh—more frequent. Otherwise, the disease runs a favorable course. Remissions of the severe attacks which may occur in several successive nights take place in the morning. Expectoration, which in the beginning was either absent or scanty, becomes soon more copious and mucous; the hard, barking, loud cough grows looser with increasing secretion. In most cases the violence of the affection is broken in from three to five days, and the disease runs its full course in a week or two. But hoarseness may remain behind for some time; in rare cases aphonia has become permanent and relapses are frequent. Not infrequently children are presented who are reported to have had croup five or ten or more times. In some families all the children are subject to laryngeal catarrh, and hereditary influence cannot be doubted.

The very worst complication of laryngitis is oedema of the glottis. It [p. 95] affects both the mucous membrane and the submucous tissue of the larynx. It is met with on the inferior (posterior) surface of the epiglottis, in the ary-epiglottic folds, and on the false (inferior) vocal cords, the submucous tissue of which is of a very loose structure normally. Amongst its causes—which may be various (foreign bodies in the larynx, injuries, mechanical and chemical irritants of any kinds; typhoid, tubercular, variolous, syphilitic ulcerations; erysipelas of the neighborhood, inflammations of the parotids or tonsils, suppuration in the pharynx, thyroid body, and cellular tissue of the neck)—both catarrhal and croupous laryngitis are not at all uncommon. This is particularly so when they are complicated with cardiac and renal anomalies, pulmonary emphysema, and compression of the veins of the neck by glandular swellings; also with changes in the structure of the walls of the blood-vessels. The last-named pathological conditions are alone capable of giving rise to chronic oedema of the larynx, which is by no means so fatal, but still dangerous.

In glottic oedema the dyspnoea is both very great and very sudden. First, it is inspiratory only, but soon becomes both inspiratory and expiratory. The swelling is felt distinctly by the examining finger; the laryngoscope is neither required nor advisable.

DIAGNOSIS.—It is by no means easy in all cases. When laryngeal diphtheria (membranous croup) happens to be frequent, the most experienced diagnostician will meet with occasional difficulties. The sound of the barking, explosive, tickling cough locates its origin in the larynx, but the affection may be very mild or very severe. Expectoration in small children is not pathognomonic; even when it is copious it is not brought up, but swallowed. Fibrinous expectoration would settle the diagnosis of a croupous process. Depressing the tongue with a spoon or spatula and producing the movements of vomiturition often reveals the presence of a tough, viscid mucus rising from the larynx. It renders the catarrhal nature of the laryngitis positively clear. The frequency or volume of the pulse is of no account in diagnosis; it is too variable. Of more importance is the temperature, at least in children. Uncomplicated sporadic croup has no increase, or very little; catarrhal laryngitis is mostly attended with high fever. In very many cases this symptom has guided me safely, in spite of the statements of the books. The stenosis of catarrhal laryngitis comes on very suddenly, in diphtheritic laryngitis mostly slowly. In the former it is not of long duration; remission sets in soon, and is more complete than in membranous croup. An attack of stenosis occurs mostly in the night, and is apt to return with the same vehemence after a fair remission after twenty-four hours. The frequency of relapses in catarrhal laryngitis in children who have been affected before must, however, not prejudice in favor of the catarrhal nature of an individual case, for not infrequently will those who have had many attacks be taken with membranous croup some other time. In the latter the main symptoms—viz. stenosis, hoarseness (or aphonia), and cough—will mostly develop simultaneously and in equal proportion; the unproportionality of these symptoms—for instance, much stenosis and cough, but little hoarseness, or barking cough and hoarseness with little stenosis—would speak for catarrh. The laryngoscope, when it can be used—viz. in the adult and very docile children—reveals redness of the mucous membrane of the pharynx and all or part of the larynx; also tumefaction of the epiglottis or fossæ Morgagni or ary-epiglottic folds. Sometimes the inferior part of the larynx only is affected; Ziemssen has described a severe form under the name of hypoglottic laryngitis. The vocal cords can be watched easily. Their proportionate and parallel contraction is often interfered with.

Tubercular laryngitis, particularly when there is no pulmonary tuberculosis, is not easily diagnosticated by the local changes only. The long duration of [p. 96]hoarseness and fever, increasing emaciation, and the knowledge of the presence of tuberculosis in the family are more conclusive than local examinations can be.

PROGNOSIS.—The termination of catarrhal laryngitis in the adult is almost always favorable. Still, relapses are frequent, and it may become chronic, with permanent tickling of the mucous membrane and submucous tissue. In children it is mostly favorable; still, it is doubtful, because of the frequency of complication with, or transmutation into, bronchitis, pneumonia, or glottic oedema, and because of the facility with which in a prevailing epidemic the catarrhal laryngitis becomes diphtheritic. The elevation of temperature is not a very significant symptom in regard to prognosis. The danger does not increase with the temperature at all. On the contrary, those cases which set in with a high temperature will, as a rule, terminate soon and favorably. When, however, the temperature rises again after having gone down to the normal or nearly normal standard, complications or extension of the catarrhal or inflammatory process must be expected. Catarrhal secretion from the nasal mucous membrane, which was dry in the beginning, is a favorable symptom; so is the looser and moister character of the cough.

TREATMENT.—Whatever plays an important part in the etiology of the disease ought to be carefully avoided. The feet must be kept warm under all circumstances, nothing being more injurious to health in general, and to that of the respiratory organs in particular, than cold and moist feet. Shoes and stockings must be kept dry, the latter changed when wet, and of slowly-conducting material. No part of the body must be kept uncovered, and the dresses of children made the particular object of care on the part of the family physician. Linen must not be in immediate contact with the skin, cotton—or, still better in all seasons, wool—being required for the undergarment. At the same time, the hygiene of the skin requires attention. Regular washing or bathing need not be mentioned as a requisite, as it is self-understood. What, however, cannot be insisted upon too much is this, that the skin must get accustomed to cold water. The whole body must be exposed once a day to cold water—washing or bathing—and well rubbed off afterward with a thick towel. Young infants and those who are very susceptible to colds begin with tepid water, the temperature being lowered from day to day. Even children of three or four years enjoy, finally, a morning bath at sixty or sixty-five degrees F. in winter. Such as do not get easily warmed up under the succeeding friction may mix alcohol with the water they use for washing and sponging purposes, in the proportion of 1:5–8. Sea-bathing also makes the skin more enduring, to such an extent that exposure to cold air has no longer any damaging influence. In fact, cold air without wind is easily tolerated even by those who have a tendency to respiratory disorders, while wind and draught must be avoided. From this point of view the change of climate sometimes required for such as suffer from catarrhal laryngitis must be instituted. It is not always necessary to select a very warm climate; undoubtedly, many of the winter resorts are badly selected, for the very reason that they are too warm. On the other hand, great elevations are not advisable. The sudden atmospheric changes and fogs of high mountains are injurious.

Patients suffering from catarrhal laryngitis or a tendency in that direction must avoid all irritation of the pharynx and larynx. They must not smoke, or talk too much or too loud. Those few clergymen who suffer from clergymen's sore throat in consequence of speaking only will remember that they can speak just as forcibly when speaking less vehemently. The use of alcoholic beverages, unless greatly diluted, is prohibited. Catarrh of the nares and pharynx must get cured. The former will get well in most cases under the use of salt water. A tepid solution of 1 or ½ per cent. of table-salt [p. 97]in water, snuffed up copiously (a tumblerful) from the hand of an adult patient, or a similar solution in a small quantity injected through each nostril of a child, twice or three times a day for weeks and months in succession, will often remove a laryngeal as well as a pharyngeal catarrh. Care must be taken that the fluid passes the whole length of the nasal canal. It must be applied in the fauces, and will then be ejected through the mouth or a small portion of it swallowed. Many a severe nasal catarrh requires no other treatment. Some chronic ones require the use of a spray of nitrate of silver in a solution of ½–1 per cent. every other day, or of a 2 per cent. solution of alum daily. Where both the pharyngeal and nasal catarrh are complicated with, or kept up by, enlarged or ulcerated tonsils, these organs must be resected. The combination of these two measures, exsection of the tonsils and nasal injections, has proved very beneficial in a great many cases.

The treatment of an acute case requires great care. Avoid injurious influences. The patient must keep silent and quiet in bed. The temperature of the room is to be about 70° F., the air moistened by vapor, which must not be allowed to get cold before it reaches the patient.

When swelling and dyspnoea are considerable, particularly in those grave cases attended with swelling of the submucous tissue, the application of an ice-bladder or ice-cloths will be found beneficial and agreeable. But the cases in which these applications are indispensable are but few. In most of them the necessity of subduing intense inflammation is less urgent than the advisability of increasing the secretion of the congested larynx. For that purpose warm poultices, but of light weight, act very favorably. Inhalation of warm vapors either constantly or at short intervals, or of muriate of ammonium or spirits of turpentine, will prove beneficial. The latter is evaporated from the surface of boiling water, on which a small quantity, from a teaspoonful to a tablespoonful, may be poured every one or two hours. The hydrochlorate of ammonium is evaporated, 10 or 20 grains (1.0 gramme), every one or two hours by heating it on a hot stove or otherwise. The white cloud penetrates the air of the whole room, and, while not uncomfortable to the well, serves a good purpose in liquefying the viscid and tough secretion of the mucous membrane. The internal administration of liquefying and resolvent remedies may properly accompany the external applications and inhalations. Amongst them I count the alkalies, mainly bicarbonate and chlorate of potassium or sodium and the hydrochlorate of ammonium. A child of two years will take daily a scruple (gramme 1.0–1.5). The iodide of potassium will also have a good effect and counteract many a predisposition to chronicity. A child may take from 8 to 15 grains a day (gramme 0.5–1.0). Hydrochlorate of apomorphine, gr. 1/501/30 (0.001–0.002), dissolved in water, a dose to be given every two hours or every hour, is quite sufficient to act as a fair expectorant without being enough to produce emesis. Antimonii et potassii tartras has been used more extensively in former times than at present. An adult would take gr. 1/201/15 every two hours. Children ought to be spared the drug, as it is depressing, produces unnecessary vomiting now and then, even in small doses, and, what is still worse, diarrhoea. The other antimonial preparations, such as kermes mineral and the oxysulphuret of antimony, are less depressing and less purging, but also less effective; and there are but few cases where a good substitute could not be found. For the purpose of increasing secretion the hydrochlorate of pilocarpine has been recommended. It certainly has that effect, but its indications become doubtful in many cases where the saving of strength is of paramount importance. I shall return to this subject in my remarks on the therapeutics of membranous laryngitis.

Derivation is of great service when well directed. Local depletion must be avoided. A purgative in the beginning is beneficial—a dose of calomel [p. 98] as good as, or mostly better than, anything else. Diaphoretics and diuretics act quite well; the best of them all are warm beverages of any kind. They need not come from the apothecary's nor be very unpleasant to take—water not too cold, Apollinaris, Selters, or Vichy, hot milk, tepid lemonade in large quantities and very often. Sinapisms have a good effect. When not kept on longer than a few minutes—long enough to give the surface a pink hue—they may be applied every hour or two.

Some urgent symptoms may require symptomatic treatment. When secretion is copious, but too tough, and expectoration insufficient because of both the character of the mucus and the incompetency of the respiratory muscles, ipecac in small doses or camphor is indicated. A child's dose of the latter would be gr. ¼–½(gramme 0.015–0.03) every one or two hours. In these cases the hydrochlorate of ammonium may be combined with the carbonate (ammon. chlorid. drachm ss. (2.0); ammon. carbonat. scruple j (1.25); extr. glycyrrh. pur. scruple ij (2.5); aq. pur. fluidounce iij (grammes 100.0)—teaspoonful every hour). When the difficulty of expectoration is excessive an emetic may be resorted to. It is true that infants and children vomit with less straining and difficulty than adults, but, still, the practice of flinging emetics around is too common. The unpleasantness of getting up in the night because of a pseudo-croup in a distant patient's baby is not a correct indication for encouraging the indiscriminate use of emetics. When they are required, antimonials ought to be excluded from the list. Ipecac, sulphate of zinc, sulphate of copper, turpeth mineral are preferable.

In urgent cases the hydrochlorate of apomorphia may be used hypodermically (six or ten drops of a 1 per cent. solution in water). Cases of such urgency, and so excessive dyspnoea coupled with cyanosis, as to necessitate tracheotomy are but very rare. But once in thirty years and in many more than four hundred tracheotomies have I been compelled to operate for a case of catarrhal laryngitis. Still, a few such cases are on record. The best-known amongst them is that of Scoutetten, who operated successfully on his own daughter six weeks old.

Narcotics prove quite beneficial, particularly in complications with pharyngeal catarrh. A dose of gr. j–jss of Dover's powder (gramme 0.05–0.1) at night will secure rest for several or many hours to a child of two or three years; an adult is welcome to a dose of 10 or 12 grains (0.6–0.75). When the irritation is great during the day, it is advisable to add a narcotic (acid. hydrocyan. dil., min. j; vin opii, min. viij–xij; codeine gr. 1/3–½, or extr. hyoscyam. gr. ij–iij—daily) to whatever medicine was given. I am partial to the latter, giving it up to gr. viij–x (0.5–0.6) to adults daily in their mixture, retaining the single dose of opium or morphine to be taken for the night. At that time a single larger dose is rather better than several small ones. Narcotics cannot be dispensed with in all those cases in which—as, for instance, in tubercular laryngitis—deglutition is very painful because of the catarrhal and ulcerous pharyngitis. Bromide of potassium has a fair effect, but frequently fails, and the administration of morphia before each meal is sometimes an absolute necessity.

That complications, such as bronchitis, have their own indications is self-understood. The general rules controlling the treatment of laryngitis are not interfered with by them. Oedema of the glottis, however, when occurring during an attack of laryngitis, has its own indications, and very urgent ones indeed in all acute cases. In chronic cases a causal treatment is required according to the etiology of the affection as specified above. In acute cases it is not permitted because of want of time. The danger of immediate strangulation is often averted only by a deep scarification or the performance of tracheotomy.

Chronic cases require all the preventive measures enumerated above and [p. 99] the internal use of iodide of potassium or sodium (scruple j–scruple iiss = gramme 1.25–3.0 daily, for adults), and tincture of pimpinella saxifraga three or four teaspoonfuls daily. When it is given it ought to have an opportunity to develop its local effect on the pharynx also by giving it but little diluted, and not washing it down afterward (tinct. pimpinella saxif., glycerin. aa, teaspoonful every two hours). In these cases, while the local salt-water treatment recommended above is indispensable, the nitrate-of-silver spray mentioned in that connection is here again referred to as very beneficial indeed. But the solution of 1 per cent. is the highest degree of concentration allowable. Conducted through the nose, it will reach the larynx better than through the mouth. When both accesses are rather difficult the application must be made directly to the larynx.

[p. 100]



PATHOLOGY.—Pseudo-membranous laryngitis is characterized by the presence, on and in the mucous membrane, of a pseudo-membrane of a whitish-gray color, various consistency, and different degrees of attachment. It has been called croupous when it was lying on the mucous membrane without changing much or at all the subjacent epithelium and could be removed without any difficulty. It has been called diphtheritic when it was imbedded into the mucous membrane and was difficult to remove. This difference exists, but it does not justify a difference of names except for the purpose of clinical discrimination; for the histological elements of the two varieties are the same, and the difference in their removability is explained by the anatomical conditions of the territory in which they make their appearance. The membrane consists of a net of fibrin studded with and covering conglomerates of round cells, mixed with mucus-corpuscles, epithelial cells more or less changed, and a few blood-cells. The fibrinous deposit is either quite superficial or lies just over the basal membrane or on layers of round cells originating from the basal membrane. It is continued into the open ducts of the muciparous follicles, filling them entirely in the worst cases, or meeting the normal secretion of mucus in the interior of the duct. The principal seat of the pseudo-membrane is that mucous membrane which is covered with pavement epithelium; thus it is that the tonsils are the first, usually, to exhibit symptoms of diphtheria. But cylindrical epithelium is by no means excluded. However, while pavement epithelium is generally destroyed by the diphtheritic process, the cylindrical epithelium is frequently found unchanged, or but little changed, on top of the mucous membrane under the pseudo-membrane.

The nature and consistency of the pseudo-membrane in the larynx is best studied by the light of the study of its anatomy. There is a great deal of elastic tissue in both epiglottis and larynx; the mucous membrane of the latter is thin, and sometimes folded on the vocal cords. The epithelium of the epiglottis is pavement; only at its insertion it is cylindrical. In the larynx it is also pavement on the true vocal cords and in the ary-epiglottic folds, and fimbriated toward the fossæ Morgagni and trachea. Lymph-vessels are but scanty on the epiglottis, still more so in the larynx. Of acinous muciparous glands there are none on the epiglottis, none on the true vocal cords; they are more frequent in and round the fossæ Morgagni, with cylindrical epithelium in the glandular ducts. The trachea and bronchi contain a good many elastic fibres, less connective tissue, fimbriated epithelium, some lymph-vessels, but no lymph-glands, and acinous muciparous glands in large numbers. Wherever the pavement epithelium membrane is abundant the membrane is firmly adherent and imbedded into the mucous membrane. Where it is cylindrical and plenty of acinous glands secrete their mucus, they are loosely spread over the mucous membrane, from which [p. 101] they can be easily removed; while the histological condition of both the imbedded and the loose membrane is exactly the same.

Before the membranous deposit takes place the surface is in a condition of catarrh. Round the membrane the mucous membrane is red and slightly swollen. Not always, however, is that so. Particularly, the epiglottis may be covered on its inferior surface with a solid membrane or be studded with tufts of membrane, without much or any hyperæmia. The same can be said of the larynx, which is supplied with but a scanty distribution of blood-vessels and a sufficient network of elastic fibres to counteract the dilatation of blood-vessels peculiar to the catarrhal and inflammatory processes.

In uncomplicated cases of membranous laryngitis the membrane is confined to the larynx. Dozens of years ago—viz. before 1858, when diphtheria began to settle amongst us, never, it appears, to give up its conquest again—that took place in most cases. But since that period we meet with few such simple cases. As a rule, the membrane makes its appearance in the pharynx first, from there to descend into the larynx, and not infrequently into the trachea and bronchi. In other—fortunately, but few—cases the membrane is formed in the bronchi and trachea first, and invades the larynx from below.

Other organs suffer but consecutively and from the results of impeded circulation only. Thus, in post-mortem examination hyperæmia of the brain, liver, and kidneys, and bronchitis, broncho-pneumonia, or pulmonary oedema, are met with. Only those cases of membranous laryngitis which are complicated with general diphtheria yield the additional changes of the latter.

ETIOLOGY.—Intense irritants will produce an irritation on mucous membranes. In the larynx the product is, according to the severity of the irritation, either a catarrhal or a phlegmonous or a croupous laryngitis. The irritating substances may be mechanical, chemical, or thermical. Heubner produced diphtheria of the bladder by cutting off, temporarily, the supply of circulation. Traumatic injury of the throat and larynx will soon show a croupous deposit. Caustic potassium, sulphuric acid, caustic ammonium, corrosive sublimate, arsenic, chlorine, or oxygen, applied to the trachea or larynx, produce croupous deposits.1 Inhalations of heat, smoke, and chlorine have the same effect. These, however, are not the usual causes of croup. Cold and moist air is a more common cause, mainly during a prevailing epidemic of diphtheria. In former times, which are unknown to the younger generation of physicians, when no such epidemics existed, the only form of diphtheria occurring now and then was the local laryngeal diphtheria called pseudo-membranous croup. It was then a rare disease, while at the present time it is of but too frequent occurrence. In my Treatise I have explained at some length the relations of the two (p. 128).

1 A. Jacobi, Treatise on Diphtheria, p. 111.

Age has some influence in its development. The disease is not frequent in the first year of life; between the second and seventh years almost all the cases are met with. There are families with what appears to be a general tendency to croupous laryngitis. It may return. Even tracheotomy has been performed twice on the same individual.2 It is contagious. In the same family, from a case of croup, either another case of laryngeal croup may originate or another form of diphtheria will develop in other members of the household. It is not so contagious, it is true, as generalized diphtheria must be, for the infecting surface is but small in uncomplicated membranous croup, and the membrane not so apt to macerate and be communicated. Boys appear to be affected more frequently than girls. But the previous constitution makes no difference.

2 Treatise, p. 27.

SYMPTOMS.—Membranous laryngitis begins sometimes with but slight symptoms of catarrh, sometimes without them. Nasal, pharyngeal, and laryngeal catarrh may precede it a few hours or a week, with or without fever and with [p. 102] a certain sensation of pain or uneasiness in the throat and a moderate amount of cough and hoarseness. This condition has been called the prodromal stage of membranous laryngitis, though it is just as natural to presume that the changes in the mucous membrane merely facilitated the deposit of false membrane. The latter is more apt to develop on a morbid than on a healthy mucous membrane. The membranous laryngitis proper dates from the time at which, with or without an elevation of temperature, a paroxysmal cough makes its appearance—first in long, afterward in shorter intervals—which is increased by a reclining posture, mental emotions, or deglutition. At an early period this cough, which is very labored and gives rise to dilatation of the veins about the neck and head, is complicated with hoarseness, which gradually increases into more or less complete aphonia. Respiration becomes audible, sibilant, with the character of increasing stenosis. Inspiration becomes long and drawn; expiration is loud; head thrown back; the scaleni, sterno-cleido-mastoid, and serrati muscles are over-exerted; above and below the clavicles and about the ensiform process deep recessions take place in the direction of the lungs, which are expanded with air, but incompletely; dyspnoea becomes the prominent symptom, and occasional attacks of suffocation render the situation very dangerous and exciting indeed. These sudden attacks of suffocation are due—besides the permanent narrowing of the larynx by the membranes, which gradually increase in thickness—to occasional deposits of mucus upon the abnormal surface of the larynx and vocal cords, by partly-loosened false membrane, which now and then become audible, yielding a flapping sound, by oedema in the neighborhood, and by secondary spasmodic contractions. They are mostly met with in the evening and night; there is often a slight remission in the morning, which rouses new hopes, which soon, however, prove unfounded. Meanwhile, the pulse becomes more frequent in proportion with the increase of dyspnoea, and finally irregular; the temperature rises but little, and usually only when the throat or other organs, which are in more intimate connection with the lymph circulation than the larynx, are participating in the exudative process; and the laryngeal sounds become so loud as to render the auscultation of the lungs impossible. The glands of the neck are not swollen when the process is confined to the larynx. Now and then small or larger, rarely cylindrical, pieces of false membranes are expectorated, with or without any amelioration of the condition. In this condition the patient may remain a few hours or a few days.

Then the dyspnoea will rise into orthopnoea; the anxious expression and bearing of the little patient—for the vast majority of the sufferers are children—becomes appalling to behold; cyanosis increases; the head is thrown back; the larynx makes violent excursions upward and downward; the abdominal muscles work in rivalry with those of the thorax and neck; the surface is bathed in perspiration; still, consciousness is retained by the unhappy little creature tossing about and fighting for breath, and in complete consciousness he is strangled to death. Now and then the carbonic-acid poisoning renders the pitiful sight a little less appalling to the powerless looker-on by giving rise to convulsions or anæsthesia and sopor, which finally terminate the most fearful sight, the like of which the most hardened man, the most experienced medical attendant, prays never to behold again.

Besides the brain symptoms just mentioned, but few other organs give rise to abnormal function. In the kidneys the stagnant circulation results in albuminuria—in the bronchi and lungs, in hyperæmia, inflammation, and oedema.

The symptoms described above are the same both in those cases which are strictly localized and those which descend from the pharynx. In the latter there is fever only when the pharyngeal diphtheria was attended with it. The process descending into the trachea and bronchi changes the symptoms [p. 103] but little, as far as the laryngeal stenosis is concerned, for it is the latter which destroys by suffocation. Only when tracheotomy has been performed, and the immediate danger of suffocation has been removed, the further progress in a downward direction gives rise to a new series of symptoms. After the temporary relief procured by the operation dyspnoea will set in anew, not always, however, of that intense degree of the laryngeal stenosis; respiration will become dry and loud again, and a little more frequent than in the uncomplicated laryngeal cases. Death will finally also result, either from suffocation or from the symptoms I enumerated above.

Lastly, when membranous laryngitis is but the terminating development of extensive membranous bronchitis, the symptoms differ from those described above in this, that the laryngeal symptoms last but a short time. For days or weeks no symptoms but those of an ordinary bronchial and tracheal catarrh were observed: all at once the process reaches the larynx; in a few hours the very last stage of croupous stenosis is reached; even tracheotomy does not relieve the symptoms. Or the fibrinous bronchitis was extensive enough to give rise to a sufficient number of symptoms before the larynx was reached. Amongst them is, foremost, frequency of respiration, because of its insufficiency; diminution of respiratory murmur over the area supplied with the affected bronchi; sometimes localized absence of respiratory murmur, while the percussion sound is sonorous. Another complication is emphysema, either subpleural or pulmonary. It is not frequent, except in combination with fibrinous bronchitis. The increase of respiratory movements is quite sudden, percussion sound tympanitic, and auscultation negative. Pulmonary oedema is quite frequent; it is the result of the rarefaction of air in the bronchi, the consecutive dilatation of the blood-vessels, and the effusion of serum by intravascular pressure. Every severe case is accompanied with it; in every tracheotomy it is met with coming up into the incision. Oedema of the glottis is less common, but it is met with in the same manner and with the same symptoms which characterize the glottic oedema of catarrhal laryngitis.

PROGNOSIS.—It is not favorable even in the simple and uncomplicated cases. Infants and children under two years almost invariably die. The percentage of average mortality rates very high—from 80 to 90 and more. It is probable that some recent therapeutical advances have reduced it, will reduce it, considerably. Tracheotomy is known to do so certainly, as from 20 to 45 out of 100 operations prove successful. The previous condition of the patient is of very little account in regard to the course and termination of the disease; no constitution protects or saves. The more the disease is local the better the prognosis. When fever makes its appearance, it means a complication, such as extending diphtheria or bronchitis or bronchi-pneumonia, and impairs the chances of recovery. The expectoration of membranous shreds or whole membranes does not improve the prognosis much, as the new formation of membranes may be very rapid indeed. I have seen new membranes rising to a formidable extent in from two to seven hours. The prognosis is improved when the cough becomes looser, expectoration more purulent, pulmonary respiration become audible again after having been covered by the laryngeal noises, rhonchi become moist, and portions of lungs which before were inaccessible to air by clogging membranes are reopened. Increasing debility, frequent and irregular pulse, are ominous symptoms. Even more so is the failure on the part of emetics to take effect.

DIAGNOSIS.—It may be quite difficult to diagnosticate croupous from catarrhal laryngitis, particularly in those cases where the former is not complicated with any visible exudative process in the fauces. In membranous laryngitis stenosis begins gently (except in those cases which ascend from the bronchi) and increases gradually; there are, it is true, remissions in the [p. 104]morning (mostly), but they are but slight, and the subsequent evenings are worse than the previous ones. It increases from day to day until a slight cyanotic hue of the lips is followed with more general cyanosis. There is no fever or very little, except in the cases of generalized diphtheria. The character of the cough does not change; perhaps it becomes more dry and suppressed after a while. Hoarseness does not improve, but increases steadily into aphonia. Expectoration is but scanty; now and then a small portion of mucus from the lower portion of the respiratory tract, now and then shreds of membrane, are expelled.

In catarrhal laryngitis stenosis begins abruptly and suddenly, and is often at its height a few minutes after the commencement of the attack. Remission sets in soon, is more marked, sometimes complete, and a new attack, just as sudden as the first, may occur in the next night. Real cyanosis is but rarely developed; when it is, it changes soon into a more normal condition. Catarrhal laryngitis in the child is a febrile disease. In it the cough changes after a little time, some moisture mixes with the expectoration and changes both cough and articulation; also, the voice is not equally husky; now and then a clear note comes in. Close inspection of the throat exhibits sometimes a thick, viscid mucus floating up and down with the excursions of the larynx in catarrh. It never has any membranous expectoration.

Local oedematous swelling of the ary-epiglottic folds, with or without membranous deposits in some other parts of the larynx, yields all the symptoms of membranous croup with its dangers and death-rate. The effect of this oedema is partial paralysis of the vocal cords. Thus, inspiration is impeded, as in membranous obstruction; expiration, however, is free and the voice intact to a certain extent. This local oedema may be detected by palpation.

General oedema of the larynx (glottis) is fortunately rare. The attack is very sudden; there is no cold, no hoarseness, no choking cough, no membrane; there is only dyspnoea, gasping, asphyxia, sopor, and death, unless relief is given almost instantaneously.

The presence of a foreign body has been mistaken sometimes for membranous laryngitis. The history is a different one; there was no prodromal catarrh; the children were taken suddenly while playing or eating.

The laryngoscope would be a great aid in diagnosis if it could be used during the distress of a membranous laryngitis. Still, it has been employed by Ziemssen, Rauchfuss, and others. But the opportunities are rare.

TREATMENT.—The objects of treatment differ with the various stages of the disease. The inflammatory symptoms of the commencement, the completed exudation, the maceration and disintegration, and also the expectoration of the pseudo-membranes, and, finally, the asphyctic stage, have each their own indications. If there is anything which must not be recommended, it is depletion. Fortunately, there are but few practitioners left who still apply leeches or employ more general depletion, but these few are still doing too much harm by their practice and teaching. The application of ice, however, in bags over and near the larynx, and of iced cloths frequently changed, combined with the swallowing of small pieces of ice from time to time, is apt to be beneficial in well-nourished, hearty children. Such as have been anæmic, with thin muscles and pale mucous membranes, do not bear it so well.

The most powerful and reliable preventive and solvent, thus far, is hydrargyrum. It is true that many voices have been raised against it, but from Bard, Bretonneau, and Billard to Rauchfuss, Ch. West, Lynn, Pepper, and others, the remedy has had its admirers. Large single doses of calomel have been given by some, amounting to 15–30 grains (gramme 1.0–2.0), but that treatment has not found many friends. In small and frequent doses it has been of good service to me both in fibrinous laryngitis and bronchitis, [p. 105]particularly in the latter; gr. ¼–½ may be given every half hour or every hour. Tartar emetic is liable to develop so many unfavorable effects that even doses—in combination with calomel—of 1/100 of a grain require great caution. The most reliable mercurial preparation, in my experience, and the least hurtful, is the corrosive chloride. In the stomach it combines with the chloride of sodium, is absorbed without being changed, and transmuted into an albuminate during its circulation in the blood. Babies of tender age bear one-half of a grain and more, daily, many days in succession. Salivation and stomatitis are exceedingly rare after its use. Gastro-intestinal disturbances are not at all frequent; diarrhoea, if observed at all, is very moderate, and can be avoided or removed by the administration of mucilaginous and farinaceous food or a mild dose of an opiate. But the administration of the bichloride requires care in regard to its solution. A fiftieth of a grain may be safely given to a baby a year old every hour, but it must be dissolved in one-half of a tablespoonful or a whole tablespoonful of water. The solution of a grain in a pint of water is about correct. In those very rare cases in which no preparation of mercury is borne internally the inunction of sufficient and frequent doses of the oleate of mercury may take the place of the internal administration or alternate or be combined with it. The blue ointment is not so effective as the oleate. The subcutaneous injection of the corrosive chloride may be added to the modes of administration if no time must be lost in introducing as much as possible of the drug into the system. Now and then, however, the subcutaneous tissue of the child does not tolerate it well in that form, though the solution may be not larger than 2 per cent.3 The cyanide of mercury, in doses of a hundredth of a grain every hour, has been warmly praised by A. Erichsen and C. G. Rothe.

3 The Medical Record, May 24, 1884.

The large mortality in croup and the inefficiency of remedial treatment have been the reasons why the recommendations of remedies have been very numerous. Alkalies were held in great favor during different periods of our literature, mainly the carbonate and bicarbonate of potassium (and sodium), in daily doses, to a child, of ½ drachm or 1 drachm or more; also the chlorate of potassium or sodium. As an adjuvant it may be useful; as an antidiphtheritic or antimembranous remedy it must not be regarded. What it can do is to heal or prevent a catarrhal stomatitis and pharyngitis. The best and most reliable is probably the iodide, in larger doses than are usually given. One or two drachms daily (grammes 4.0–8.0) are well tolerated when sufficiently diluted. Benzoate of sodium was recently recommended for its supposed antifermentative and antibacteric effect; its practical utility is but very limited; not even its antifebrile effect is anything but reliable. Lime-water has not fulfilled in my hands the promises made by others—neither its internal use nor spray nor inhalation. The most certain mode of introducing lime particles into the larynx is, after all, the inhalation of slaked lime, which allows a quantity sufficient to be somewhat effective to enter the respiratory organs. Its comparative inefficiency has been acknowledged by those who add 1 per cent. of the liquor of caustic potassium or sodium to the lime-water.

Quinia, in doses of 15 or 30 grains (grammes 1.0–2.0) daily, has been recommended by Monti for the same indications, mainly in the commencement of febrile cases. It has been claimed that cold applications, to be changed every hour or two according to the Priessnitz or hydropathic plan, had a great power in macerating and disintegrating mucous membrane. Many of the successful cases of these, as of all other specialists, are undoubtedly the result of the convenient substitution of a grave diagnosis for a milder one. The effect of such applications in laryngeal catarrh, like that of warm applications, is undoubted. Vesicatories applied to the neck over the larynx are never [p. 106] useful—frequently injurious by the sore surface becoming the seat of a pseudo-membrane.

Inhalations of warm vapor are decidedly beneficial, but atomized water is not of equal value. Thus, Richardson's atomizer is not so useful as Siegle's inhaler or other apparatuses working on the same plan.

Lactic acid, in solutions of 1:10 or 25 (Monti's solution of 1:200 is certainly too weak), has been applied by means of a sponge, inhaled, or thrown in from an atomizer for the same purpose. Good results have been reported, failures also; and still, recoveries are rushed into print much more readily than failures. The same may be said of the local applications of glycerin, boric acid, carbolic acid in solutions of 1 or 2 per cent., salicylic acid, iodoform, and hypermanganate of potassium; also of bromine (bromine and potas. bromid. aa) 1:water 500, or a stronger solution.

Tannin, dry or with glycerin, is rather more injurious than it can be useful. It is apt to coagulate the mucus contained in the pharynx and the upper part of the larynx, and to render the dyspnoea graver than before. Such an aggravation of symptoms must be carefully avoided, though it be but temporary. The same must be said of alum, which has been used solid, in finely-powdered condition, down to a 3 per cent. solution in water.

Spirits of turpentine are inhaled either from an inhaling apparatus or by saturating the air of the room. Water is kept boiling constantly on a stove, oven, or alcohol lamp (not on gas, which consumes a larger quantity of oxygen), and a tablespoonful of the spirits of turpentine is poured hourly or in shorter intervals upon the boiling surface.

Hydrochlorate of ammonia can be used in the same manner as described in the article on Catarrhal Laryngitis.

Hydrochlorate of pilocarpine was introduced into the treatment of diphtheria and pseudo-membranous croup some years ago, and recommended as no less than a specific. It increases, physiologically, the secretion of the skin, the mucous membranes, the lachrymal and muciparous glands, the kidneys. It also depresses the heart's action. In all cases in which the latter effect is to be feared the drug is contraindicated; thus in septic diphtheria, in pseudo-membranous croup with great asthenia, in general debility and anæmia. By increasing the secretion of the mucous membranes it is expected to macerate the pseudo-membrane and raise it from its bed. This can be accomplished wherever the membrane is deposited upon the mucous membrane—that is, whenever the number of muciparous follicles is large and the epithelium is cylindrical. This is not so on the vocal cords, and thus the floating effect of pilocarpine cannot be obtained exactly where it is most needed—that is, on the vocal cords, where the pseudo-membrane is more intimately imbedded into the tissue than, for instance, on the posterior wall of the fauces or the trachea and bronchi. Still, pilocarpine may be tried, in combination with other modes of treatment, as long as the heart's action is competent and the general condition satisfactory. It is dissolved in water; its dose, for a child a year old, 1/30 grain (2 milligrammes = 0.002) every hour. A subcutaneous injection every four or six hours of 1/60 grain (three drops of a 2 per cent. solution) will prove very effective for good and evil. I believe it has rendered me good service in some well-marked but mild cases of pseudo-membranous laryngitis, which it either aided in healing or prevented from getting worse.

Emetics have their distinct indication. It is irrational to expect any relief from them when the larynx is narrowed by firmly-adhering pseudo-membranes. Their indication depends on the possibility of removing something which acts as a foreign body. This something can be either mucus or loose or partially loose membrane. The peculiar flapping sound produced by the latter admits of or requires the administration of an emetic. Above I have stated which [p. 107]of them ought to be selected. Turpeth mineral in a dose of from 3 to 5 grains, repeated in six or eight minutes, acts quite well. Hypodermic injections of apomorphine may be required in urgent cases.

The introduction of catheters into the larynx, according to the methods of Horace Green, is a dangerous proceeding and ought not to be indulged in. It gave the idea to Loiseau and Bouchut to force a tube into and through the larynx, full of pseudo-membrane, for permanent use until the pseudo-membrane would have disappeared. This tubage was rendered ridiculous at once by the assertion of Bouchut (1858) that children suffering from croup who were supplied with this laryngeal tube were not only relieved at once, but expressed their gratitude in audible oratory. Still, there are some cases on record of more recent date in which tubage is reported to have been attended with success. It is not very probable, however, that a larynx which admits of no air, because of its being clogged with firm pseudo-membrane, should be willing to admit and endure the presence of a tube.

Massage of the larynx has been recommended by Bela Weiss. It consists in systematical gentle pressing and kneading of the larynx by the physician while sitting behind the patient. He asserts its satisfactory influence not only in catarrhal but also in diphtheritic (croupous) laryngitis.

The inhalation of oxygen has proved rather advantageous in my hands in a few instances. The most memorable case of the kind I have mentioned elsewhere. It was that of a child on whom tracheotomy had been performed. The pseudo-membranous process, however, invaded the bronchi, with the result of producing dyspnoea, cyanosis, and convulsions. Whenever a current of oxygen was introduced into the lungs through the canula both cyanosis and convulsions would cease, and returned when its supply was stopped.

But if no medication will have proved successful, the symptoms of stenosis, dyspnoea, cyanosis, and the supra- and intraclavicular and epigastric recension increase steadily to an alarming extent. When the pulse becomes frequent and intermitting, even without the presence of asphyxia and anæsthesia, air ought to be introduced into the lungs by tracheotomy. No positive rules can be laid down as to the length of time one ought to wait before performing it. No subdivision of the disease into several stages is of any benefit in selecting the exact period in which the trachea must or may be opened. No alleged contraindication to the performance of tracheotomy, whether the tender age of the patient or a complication with either an inflammatory or an infectious disease, must be considered valid. The one strict indication for the performance of tracheotomy is when the diagnosis of pseudo-membranous laryngitis is undoubted, the increasing dyspnoea, cyanosis, and approaching asphyxia, with the certainty that a well-directed and sufficient medicinal treatment has been, and in all probability will be, useless. Even under these circumstances there is no mathematical certainty. The matured experience of a well-informed and thoughtful physician will commit but few errors. If there be the slightest doubt, the operation ought to be preferred to suffocation.

The operative procedure and the surgical treatment after the performance of tracheotomy will form the subject of a special article in this work. In this place a few remarks upon the medicinal and dietetic treatment in that period of the disease must suffice.4

4 Cf. The Med. Rec., May 24, 1884.

The nutrition of the patient has generally suffered much. Before the operation but little food was taken, still less was digested, and the operation itself and the anæsthetic have added to the previous weakness or exhaustion. Moderate feeding and stimulation are therefore to be commenced soon. Vomiting after chloroform I have seldom seen to last long or to be embarrassing under these circumstances. Feeding and stimulation are the more necessary [p. 108]the more the hungry lymph-vessels are liable to absorb injurious material when not supplied with healthy food.

Is internal treatment required? The general treatment must be continued. If it consisted in the administration of hydrargyrum, either internally or externally, it must be continued. If its effect was not sufficient to clear the larynx and to render the operation unnecessary, it will or may be sufficient to complete its effect in the next day or two, to prevent the process from descending or the membranes becoming too many or too thick. No changes ought to be made in the treatment unless there be changes in the symptoms. Not infrequently the first symptoms of broncho-pneumonia come on within a few hours after the operation, recognizable by frequent pulse, respiration frequent beyond proportion, and physical symptoms. The stomach is not very reliable. Quinine answers best hypodermically. From 6 to 10 grains may be injected at once. The preparation which has served me best in the last few years is a solution of the carbamid in five parts of water. If an additional remedy is required, from 20 to 30 grains of sodium salicylate may be given in the course of three or four hours, in hourly doses, to reduce the temperature. Tincture of digitalis will prove advisable at the same time when the heart appears to require it. Strychniæ sulphas will act as a powerful nervine; 1/25 grain may be given to a child two years of age every two hours, until four or five doses shall have been taken. The rest of the treatment of the complications depends on their nature and character. It is not the name of the disease which has to be treated, here as in every case, but the individual patient.

In regard to stimulants I have but little to say. I use alcohol in the most pleasant shape, preferring brandy or whiskey. I use a great deal of camphor, 10 to 40 grains daily, or in cases of urgency Siberian musk, from 2 to 5 grains, every half hour or hour, until from 15 to 20 grains have been taken in cases of collapse or great prostration.

[p. 109]



Inflammation, Erosion, and Ulceration of the Epiglottis.

Of the diseases of particular portions of the larynx, those of the epiglottis deserve especial attention in a work designed for general practitioners, on account of the comparative ease of recognizing and treating them if understood, and the promptness their management requires. They occur more frequently than is generally supposed, their symptoms are often erroneously ascribed to other affections, and they may lead to extensive disease in the respiratory apparatus, sometimes of a very serious character. Adjacent portions of the root of the tongue and pharynx or of the larynx are apt to be coaffected. In diseases which commence in the pharynx, usually the lingual surface, and in such as spread upward from the larynx only the laryngeal surface, of the epiglottis is involved mainly or exclusively.

Before describing the affections of the epiglottis a few words must be said of the manner of using the tongue-spatula. Physicians almost without an exception press the tongue from above downward and from before backward; but in order to bring the epiglottis into view in the majority of instances the proper method is just the opposite of this—viz. from below upward and from behind forward. Place the spatula far back, lift up the base of the tongue, and draw it forward. The usual manner of depressing the tongue—no matter how good or bad an instrument may be used, and an ordinary spoon-handle serves the purpose better than most of the so-called tongue-depressors—pulls upon and irritates the pharyngo-glossal fold, and often hides the epiglottis instead of bringing it into view, besides producing intolerance and intractability. The blade of the tongue-spatula should be long (at least four, still better five, inches), slightly curved downward, not more than from half an inch to one inch wide, and joined to the handle at an obtuse angle.

1. Acute inflammation of the epiglottis is usually caused by taking cold, exposure to draughts, wet, sudden changes of temperature, etc. The symptoms are local pain and difficulty of swallowing; in severe cases also some dyspnoea and dysphonia. Only occasionally there is a hemming cough, and that a peculiar one, induced (usually voluntarily) by a feeling of a foreign body at the root of the tongue. The diagnosis is made by means of the tongue-spatula and laryngeal mirror, the epiglottis being seen to be inflamed and swollen. When the lower portion, the so-called cushion of the epiglottis, is affected, the mirror is required for diagnosis. In this case suppuration is apt to occur. The prognosis is good with attention; neglected epiglottitis may cause great discomfort, and even death. Treatment must be antiphlogistic and supporting. For mild cases systemic and dietetic regulation suffices, with externally either hot fomentations or cold applications as the patient can best bear. Severer cases require in addition leeches and ice to the part; and cases of threatened suppuration, medicated and unmedicated steam inhalation, and, when necessary, lancing of the abscess through the [p. 110]mouth under guidance of the mirror. After the acute inflammation has subsided, local treatment may become necessary to hasten or produce complete restoration, as will be noticed in Chronic Epiglottitis.

Inflammatory oedema of the epiglottis will be considered under the head of Laryngeal Oedema.

Chronic inflammation of the epiglottis is usually the result of uncured acute epiglottitis or of laryngitis. The main symptom is dysphagia. The epiglottis is found swollen and more or less discolored. Not only tongue-spatula and laryngeal mirror, but also the finger carefully introduced into the mouth, may ensure the diagnosis, especially if the upper portion be affected: then the thickened epiglottis is seen and felt as a peculiar rounded tumor at the base of the tongue. Oedema is distinguishable from chronic inflammation by both sight and touch. As to prognosis, it must be observed that the process of restoration is slow and that there is always danger of acute exacerbation. The treatment consists in attention to the general health and habits and in local applications. The latter are indispensable, and should be made by means of an instrument (Elsberg's applicator or the like) carrying a little wad of cotton or sponge. Some prefer a brush: to such individual preference no objection need be made, but powders and sprays are not advisable. The remedies to be applied should be in liquid form, and belong pharmacologically to the class of alteratives. Iodine, iodoform, and silver nitrate in solution are most useful. In subacute inflammation (see above) potassium bromide and chlorate, respectively, in saturated aqueous solution, may be applied once a day, or a saturated solution of iodoform in sulphuric ether, or ten grains of crystallized silver nitrate dissolved in an ounce of water, every other day. In chronic epiglottitis the tincture or compound solution of iodine, the ethereal solution of iodoform, and the watery solution of silver nitrate, in degrees of concentration varying according to the severity of the case and the individuality of the patient (the choice of either of the three agents, the repetition of the same, or the change from one to the other depending upon the effect produced), should be accurately applied to the part affected by means of the laryngeal mirror or the tongue-spatula.

2. The most frequent, and at the same time the most neglected, morbid condition of the larynx is erosion of the free edge of the epiglottis. Louis has called attention to the epiglottic erosions in connection with tubercular phthisis: he found them present in about one-sixth of the patients who died of that disease, and they are caused, in his opinion, by the constant passage of pus over the part. Horace Green was the first who pointed out that they are also frequently met with independently of tubercular disease. According to him, "These instances, for the most part, have been found occurring in those cases in which a persistent, teasing cough, following chronic follicular disease or common catarrhal inflammation, has obstinately resisted all the ordinary measures for its arrestment. On depressing the tongue in such cases by means of the ordinary bent spatula or tongue-depressor, so as to bring the epiglottis into view, this cartilage has been found frequently inflamed, vascular, and its superior border marked at one or more points by distinct erosions. In much the largest proportion of cases these erosions make their first appearance on the left superior edge of the epiglottis. Next in frequency they will be found occupying its centre, and occasionally, but very rarely in comparison with the two preceding locations, they have been observed upon its right border. These erosions are not readily detected, at first, by the inattentive observer, as they are quite small, are only slightly depressed, with a pallid base, sometimes a little reddened, and with whitish, linear edges. The surrounding mucous membrane is generally inflamed, its delicate network of superficial vessels is red and injected, and the epiglottis itself more or less thickened." Sometimes epiglottic erosions exist without [p. 111]much cough, and certainly a cough can exist without erosions; but the two seem frequently to act interchangeably as cause and effect; and certain it is that a cough, from whatever cause, once firmly established, when such erosions have supervened rarely if ever yields so long as the erosions continue, and often stops when they are cured. According to my experience, the left and right sides of the upper border are affected with about the same frequency, and oftener than the centre. The erosions are catarrhal in their nature, even in tubercular subjects; in non-specific cases they degenerate exceedingly rarely into ulcers—i.e. they may exist for years without involving any tissue below the epithelium unless the patient is or becomes syphilitic or phthisical. They often produce symptomatically, especially in the beginning, more hemming than cough. The diagnosis is easy on thorough inspection of the epiglottis. Prognosis is generally favorable, except in phthisical cases; in others, although they sometimes prove exceedingly obstinate, they usually yield with surprising promptness to topical treatment. In specific cases, and even in chronic naso-laryngeal catarrh, they are apt to recur, however. A cotton wad dipped in a strong solution (gr. xxx–drachm j ad ounce j water) of either silver nitrate or gold chloride must be brought accurately into contact with the eroded spots once in twenty-four or forty-eight hours; ordinarily only a fortnight's treatment is necessary, except for the frequently accompanying (or underlying) catarrhal condition of a more or less large extent of the upper respiratory mucous membrane. In very severe cases a few applications at longer intervals of a still stronger solution (drachm j–drachm ij), or even of the solid silver or gold preparation, may be required.

3. Epiglottic ulcerations differ from erosions in the fact that the latter are confined to the epithelium, while the former involve also deeper structures. It has been asserted by some observers that an erosion is always the first stage of an ulceration, and by others that the one never passes into the other. I believe that both of these extreme assertions are incorrect; but if it were possible to distinguish, clinically or pathologically, every case of superficial ulceration from erosion, I might incline to agree with the latter. Histologically, epiglottic ulceration affects the mucous membrane, glands, or cartilage. Most frequently it seems to originate in the follicles. As Horace Green has long ago pointed out, "At first an enlarged or pimple-like follicle appears on the border of the epiglottis, surrounded by an inflamed and highly-injected portion of mucous membrane. Soon the follicle softens, and degenerates into an ulcer with irregular edges and an inflamed and reddened circumference. In many instances these ulcers remain for some time superficial, destroying only the mucous membrane; in others they penetrate deep into the fibro-cartilage, and occasionally they result in the total destruction of the epiglottis." Sometimes the ulcer seems to originate in the superficial layer of the mucous membrane, the molecular death proceeding from the surface downward; these are the cases which in the beginning cannot be distinguished from erosions. Both these kinds of ulceration of the epiglottis occur without, and with, grave constitutional affections, but the cartilaginous tissue usually, though not invariably, remains intact except in phthisis, syphilis, and cancer. Lupus, lepra, and glanders also give rise to ulceration, and sometimes to much accompanying thickening of the epiglottis. The seat of the ulcers is, as a rule, on the upper border and laryngeal surface of the epiglottis, only exceptionally on the lingual. Together with ulcers on the laryngeal face those on the lingual face are found, but not vice versâ. Ulcers of the epiglottis are usually small, but numerous, worm-eaten in appearance, and frequently pass to other laryngeal structures. Though occasionally resulting from tuberculosis, syphilis, and other constitutional affections, they also occur as primary disease due to catarrh and local injury, but may become the antecedents, and in many instances the exciting cause, of other grave maladies. Indeed, I quite agree [p. 112]with Horace Green that they are often "not only among the earliest manifestations of thoracic diseases, but are themselves in many instances the true exciting cause of these affections; and furthermore, this postulate once established, that we have it in our power, by timely topical medication, to arrest, positively, cases of disease which otherwise would, and in many instances which do, terminate fatally."

The symptoms vary with the seat and extent of ulceration. Cough and the sense of irritation in the throat are usually present. "In several instances all the prominent rational signs, with some of the earlier physical manifestations, of pulmonary disease have been observed to follow long-continued ulceration of the epiglottis; all of which symptoms have been seen to disappear after these lesions have been healed." When the upper border is extensively affected, and still more when either surface, especially the lower portion of the laryngeal surface, be involved, there is difficulty of swallowing; the pain is due often as much to surrounding inflammation as to the epiglottic lesion. In some cases the voice also is affected.

The diagnosis of the existence of an ulcer is easily made when the epiglottis can be seen not only with the spatula, but also with the laryngeal mirror. Its origin and nature are, however, not always easily recognized, and the patient's general condition and history, as well as the appearance of the ulcer, must be taken into account. The diagnosis of catarrhal epiglottic ulceration must be made only after other underlying conditions, as phthisis, syphilis, malignant disease, lupus, lepra, and glanders (see the articles on those subjects), have been excluded. The prognosis is good, except in cases of phthisis, syphilis, etc., or in which already a great deal of the cartilage has been destroyed; and even in these cases appropriate treatment will often give the patient much comfort. Appropriate constitutional treatment must be instituted in all cases in which the constitution is affected.

Topical treatment consists in the application of alteratives, astringents, stimulants, or sedatives, as the case may call for. Some cases may require once or more times touching with solid silver nitrate; watery solution of this remedy, varying in strength from gr. x to drachm ij to the ounce; solution of gold chloride of similar strength; of iron pernitrate and perchloride drachm ss–drachm j to the ounce; of zinc chloride (gr. x–drachm ss to the ounce); a solution of iodine in olive oil (gr. x–xxv ad ounce j with a few grains of potassium iodide), or of iodoform in sulphuric ether (drachm i–drachm ij ad ounce j); carbolic acid in glycerin (gr. v ad ounce j) or Magendie's solution of morphine, or a mixture of morphine and syrup of tolu (gr. 1/8–½ to a few drops),—have most frequently been beneficial in my hands. In many cases in which the pain on swallowing has been so great as to make deglutition almost impossible, I have succeeded in temporarily anæsthetizing the parts before a meal by applying, after cleansing them, a watery solution of cocaine hydrochloride (gr. xx ad ounce j). If, in spite of all, the difficulty of swallowing threatens the patient with starvation, feeding with the oesophageal tube must be resorted to.

Laryngeal Oedema.

DEFINITION.—Infiltration of a fluid or semi-fluid into the submucous connective tissue of the larynx.

SYNONYMS.—Oedema of the glottis (often incorrectly so called, as will presently be seen), Oedematous laryngitis, Phlegmonous laryngitis, Submucous laryngitis, Dropsy of the larynx, Angina laryngis infiltrata, Angina laryngea oedematosa, Angine infiltro-laryngée, etc.

CLASSIFICATION.—Cases of laryngeal oedema are classified as to their occurrence into acute and chronic, corresponding generally to inflammatory [p. 113] and non-inflammatory; as to the nature of the infiltration, into serous, purulent, sanguineous, sero-purulent, sero-sanguineous, etc.; as to the extent of the infiltration, into diffuse and circumscribed (the latter often leading to abscess-formation, and then called laryngeal abscess rather than laryngeal oedema, differing, however, from perichondric abscess); and as to the seat, into epiglottic, supraglottic, infraglottic, and glottic. When epiglottic, it implicates, besides the upper border, often the glossal, hardly ever the laryngeal, surface; in supraglottic, the ary-epiglottic folds, arytenoid region, ventricular folds, or ventricles are involved; in glottic, the interfibrillar connective tissue of the thyro-arytenoid muscle is infiltrated, very exceptionally, if ever, the submucous tissue of the vocal bands themselves;1 and in infraglottic, the submucous connective tissue down to the first ring of the trachea. Glottic oedema occurs extremely seldom, but the designation oedema glottidis is often used, no matter what portion of the larynx is affected. Laryngeal oedema usually affects both sides; occasionally one side more than the other, still more rarely one side exclusively.

1 Such a case has been positively reported, or I would deny the possibility of its occurrence.

ETIOLOGY.—Laryngeal oedema is seldom, if ever, idiopathic. Usually it accompanies or follows either some disease or injury of the larynx2 or neighboring structures or a constitutional affection. Acute oedema may be caused by catarrhal or diphtherial pharyngo-laryngitis; irritation from scalds, burns, caustics, foreign bodies (especially sharp ones), or other trauma; laryngeal ulcers, especially syphilitic and tuberculous; laryngeal perichondritis, tonsillitis, parotitis, or inflammation of cervical tissues on the one hand, and pyæmia and septicæmia, endocarditis, erysipelas, small-pox, scarlatina, measles, typhoid fever, typhus, or acute Bright's disease of the kidneys on the other. "It has ensued upon deglutition of very cold water and upon prolonged vocal efforts" (Cohen). Perichondritis and chondritis, tuberculous, syphilitic, carcinomatous, or typhoid ulcerations of the larynx, especially when deep-seated or extensive, are sometimes attended with acute, but more often with chronic, oedema. Non-inflammatory or chronic laryngeal oedema is sometimes part and parcel of general dropsy in consequence of heart, kidney, or lung disease: Horace Green has reported a case occurring in a man who had hydræmia from great losses of blood from hemorrhoidal tumors; and it is sometimes due to some impediment to free venous circulation in the laryngeal tissues, from paralysis of the walls of the vessels, mechanical obstruction, tumors of the thyroid body or in the mediastinum, etc. compressing the jugular veins, compression of the superior vena cava, etc.

2 According to Sestier, who has written (in 1852) the most elaborate treatise extant on the subject, four-fifths of all cases occur in other laryngeal affections.

Cohen mentions cases to show that acute iodism and mercurialization may cause laryngeal oedema. He also says that although occurring in individuals in good general health, it is more apt to take place in those of impaired constitution or recently convalescent from acute diseases; and in some instances there would appear to be some peculiar predisposition toward its occurrence the nature of which is not understood, for examples are on record of more than one attack in the same individual. Under all these circumstances the immediate exciting cause, when apparent, seems to be exposure to cold and moisture.

Laryngeal oedema is not a disease of childhood; exceptional under five years, it is very rare until after ten. Most cases occur between eighteen and thirty-five. After the sixtieth year it is again rare; and it occurs more rarely in women than in men.

SYMPTOMATOLOGY.—The symptoms of laryngeal oedema vary with the seat and degree—that is, according to the class to which the case belongs. [p. 114] Increasing interference with breathing is the most prominent symptom. Interference with swallowing, though not always present, is the next prominent. Sometimes the occurrence is so sudden, insidious, or overwhelming that the patient dies before aid can be procured. Such was Boerhaave's case of a man who during dinner suddenly spoke with a changed voice, which his companions took as a joke, and in a few minutes fell dead; Rühle's case of a servant-girl, who, a trifle hoarse, went out lightly clad on a cold morning and suffocated while going up stairs on her return; and the case of a patient of mine with subacute catarrhal laryngitis, who rode out behind a fast horse on a cold afternoon, and died, within ten minutes after entering his own house, from serous infiltration of the upper aperture of the larynx. A number of similar cases have been reported, but usually the disease runs its course less rapidly. When the ary-epiglottic folds are the seat of the oedema, the patient experiences either suddenly or gradually a difficulty of inspiration, while the expiration may be at first unimpaired, and with increasing sensation of constriction of the throat or of the presence of a foreign body, hoarseness, and stridor, but often without dysphagia, the most threatening paroxysms of suffocation supervene. When the epiglottis is the main seat, while respiration is also more or less impeded, swallowing is rendered painful, difficult, and sometimes impossible without choking and regurgitation through the nares, and the voice roughened and sometimes extinguished. When the arytenoid region is also affected, respiration and deglutition are still worse, aphonia is complete, the sense of irritation at the upper aperture of the larynx often amounting to pain, and the patient with great effort expectorates slightly. In oedema of the ventricular folds there is early aphonia and gradually increasing dyspnoea, which affects both expiration and inspiration, sometimes the former even worse than the latter. This makes the sufferer's efforts to breathe most frightful to witness, the feeble inspiration being accompanied by a slow whistling sound, and the expiration, despite most violent exertion, almost entirely shut off. Glottic oedema is, as before said, exceptional; when it occurs to any great extent apnoea ends the case unless operative relief is immediately afforded. In infraglottic oedema, which is exceedingly rare and chronic in nature, there is steadily increasing dyspnoea, wheezing, cough, and abundant expectoration.

In acute cases of supraglottic and epiglottic oedema the suffocative paroxysms may last several minutes, and recur at irregular intervals of a few hours with increased intensity. If not relieved, patients become wildly excited or terror-stricken; they may throw the chest forward, open the mouth, grasp the throat outside or thrust their hands into it, and make convulsive movements in their struggles for breath; with protruding eyes and flushed face they become cyanotic, the extremities cold, the pulse small and frequent; coma supervenes, and death. In chronic cases the symptoms are not so violent, though they may steadily progress to impending strangulation, but for a long time the dysphagia gives the patient much more distress than the dyspnoea.

In circumscribed acute cases leading to the formation of an abscess there is usually pain in a particular spot, and often general feverishness, in addition to all the symptoms before mentioned, according to the seat of the oedema. Sometimes the suffering in laryngeal abscess at its height is very intense. Perforation into the pharynx, oesophagus, or even externally, may take place, but usually the pus points into the larynx. When the pus is evacuated either spontaneously or by incision, violent choking, coughing, and hawking may occur, but after it is evacuated all dangerous symptoms usually rapidly subside.

In sanguineous infiltration the symptoms do not differ from serous or purulent oedema under the same circumstances. Hemorrhagic infusion is usually [p. 115] sudden, and the resulting stenosis often fatal. Muscular spasm or paralysis sometimes coexists with laryngeal oedema, and greatly adds to the interference with respiration.

PATHOLOGY AND MORBID ANATOMY.—The seat of the morbid process being the connective tissue, those localities of the larynx in which this tissue is most abundantly interposed between the mucous membrane and the cartilage are most liable to infiltration. I must say from my own experience that the epiglottis—particularly the glosso-epiglottic region—is most frequently affected,3 next the ary-epiglottic folds, then the arytenoid region, and then the ventricular folds. The ventricles and the vocal bands are very rarely involved. Infraglottic oedema is still more rare, and is never an extension of the supraglottic. The disease is never a primary one, and, though seated in the submucous connective tissue, it may have started with inflammation of either the overlying mucous membrane or the underlying perichondrium. Effusion of blood is generally limited to traumatic cases, but has ensued from mercurialization, small-pox, and typhus; purulent infiltration and abscess formation is the result of phlegmonous inflammation and breaking down of the tissue, occurring especially in the cushion of the epiglottis and in the ventricular and ary-epiglottic folds; but as a rule the effusion in laryngeal oedema is of a serous or sero-purulent character.4 In infraglottic oedema it is said to be fibrinous.

3 According to Sestier, the ary-epiglottic folds are affected in nearly every case, either alone or together with other parts.
4 In 90 cases Sestier found the infiltration serous 60 times, sero-gelatinous 6, sero-purulent 9, sero-purulent with plastic lymph 4, purulent 8 times, sero-sanguineous twice, and sanguineous once.

The mucous membrane covering the oedematous structures is tense and discolored; except in very inflammatory conditions it is yellowish, shimmering, and pallid. On cutting into the diseased parts often but little exudation takes place, and sometimes even squeezing between the fingers does not suffice to cause disgorgement.5 After the fluid is evacuated the parts collapse and the mucous membrane is left wrinkled and folded.

5 In 23 autopsies Sestier found that incisions into the oedematous structures made the liquid run out either without any or with slight pressure 10 times; with repeated pressure, with difficulty and only in small quantity, 6 times; and not at all, in spite of repeated incisions and pressure, 7 times.

DIAGNOSIS.—With the laryngoscope, the spatula, and the finger the seat, the degree, and often the nature of the infiltration can be determined. A successful laryngoscopical examination may sometimes require in such cases more than ordinary skill, and there is often so much tumefaction that the parts are not easily recognizable. The epiglottis may appear as a thick roundish tumor, or be of a more or less indistinct horse-shoe shape, overhanging the laryngeal aperture; the ary-epiglottic folds may be converted into large lateral cushions pressing against the arytenoid bodies, or be merged with the latter into huge, irregularly pear-shaped, oval, or globular masses; and the ventricular folds may be immensely tumefied, or else, by means of the swelling and the being pushed into a horizontal position of the whole lateral lining of the upper laryngeal cavity, may be obliterated altogether. Glottic oedema never occurs except with supraglottic, and the upper surface of the vocal bands may look elevated, arched, and bladder-like, even if only the thyro-arytenoid muscles are infiltrated. In infraglottic oedema there is usually neither epiglottic nor supraglottic oedema; pads are seen underneath the vocal bands, either ring-shaped or projecting from side to side toward the middle line, and fill up to a greater or less degree the rima glottidis. The oedematous parts have sometimes a pinkish, but usually a yellowish, translucent or semi-translucent aspect. Accumulation of pus lessens the translucency and sometimes makes the yellow more marked. Sanguineous [p. 116] infiltration shows a bluish-red or livid discoloration. In chronic oedema the color is lighter, sometimes a dirty gray.

I have already explained the proper method of using the spatula. It reveals in all cases, sometimes best during retching, the epiglottis, and in many cases the ary-epiglottic folds. With the finger these parts can be touched, and all the more easily when they are swollen; but great care must be exercised to avoid provoking by digital examination a suffocative paroxysm. When felt by the finger the peculiar elasticity or fluctuation present is unmistakable.

PROGNOSIS.—Laryngeal oedema is always a very dangerous condition—in a chronic case less so than in an acute one. The prognosis depends largely upon the causative or accompanying disease. The more local the oedema and the more promptly medical, and in most instances surgical, aid can be had, the more favorable is the prognosis, though uncertain even then. Sometimes a rapidly fatal attack supervenes in a mild, chronic, or apparently convalescing case. In abscess formation it is generally favorable unless the underlying disease makes it the reverse.

TREATMENT.—Antiphlogistic treatment of every sort has been recommended against this dread disease. Its frequently rapid course usually necessitates primarily topical measures. Even fifty years ago, when bleeding and tartar emetic were in vogue, Ryland entirely discountenanced these, and said: "Our chief reliance must be placed on the local detraction of blood by means of a large number of leeches applied in the vicinity of the larynx; on the use of blisters, which should never be put on the front of the neck, as their operation will interfere with the subsequent performance of tracheotomy should such a step be necessary, but on the back of the neck or the upper part of the chest; and on the internal administration of large doses of calomel, which, either by their purgative effect or by their specific action on the general system, tend to check the inflammation in the glottis and to promote the absorption of the effused fluids. These remedies can only be of use during the early stages of the disease, and experience shows but too plainly that even then we have far more reason to anticipate failure than success."

Many years ago it was proposed to catheterize the trachea for the purpose of allowing air to reach the lungs in this and other diseases in which the larynx is obstructed; and more recently Hack has shown the great benefit of using, under sight by means of the laryngoscopic mirror, Schrötter's dilating hard-rubber tubes in acute as well as chronic laryngeal oedema. According to him, they do good not only symptomatically, but also curatively.

Furthermore, we can employ, under the guidance of the mirror or of the finger, scarifications of the infiltrated structures by means of the laryngeal lancet, or in its absence of a long bent, sharp-pointed bistoury covered, except for a quarter of an inch or so from its point, with adhesive plaster. (For the epiglottis the ordinary gum lancet will often do.) An abscess is opened in the same way. When the bleeding following scarification is excessive we use ice internally or externally, or both; when bleeding is insufficient, steam inhalation, hot fomentations, etc. To promote absorption we make topical applications, either before or certainly after the scarification, of a saturated solution of iodoform in sulphuric ether (drachm ij ad ounce j), or of a strong watery solution of silver nitrate (scruple ij–drachm j ad ounce j). Astringents, especially tannin and alum, applied in the form of spray to parts that cannot otherwise be reached, are advisable; and antispasmodics and narcotics (potassium bromide and morphine) should not be omitted in cases complicated with muscular spasm, etc. The internal administration of fluid extract of jaborandi in drachm doses or the hypodermic injection of pilocarpine is highly lauded as promoting absorption; also diaphoretics, purgatives (salines and croton oil), [p. 117] etc. From the beginning the patient's general functions must be regulated and his strength supported by tonics and nutritives, and any underlying disease amenable to treatment must of course be attended to. The slow swallowing of pieces of ice is often of great benefit. In every case that does not visibly improve by the vigorous carrying out of the treatment hitherto detailed, especially the catheterization by means of Schrötter's tubular dilators, the ultima ratio—viz. tracheotomy, particularly inter-crico-thyroid laryngotomy—must be resorted to without waiting until the patient has lost much ground by the impediment to respiration. One of the lessons taught us by pathological investigation is that epiglottic, supraglottic, and glottic oedema does not extend beyond the upper surface of the vocal bands: therefore, while in infraglottic oedema, and when the two conditions supraglottic oedema and infraglottic coexist, tracheotomy should be performed, in the other cases the air-passage should be opened by introducing a tube through the inter-crico-thyroid membrane. This operation is, especially for the general medical practitioner, much easier, safer, and quicker of performance, and answers in those cases all purposes. This important lesson is not heeded by any of the recent authors on the subject. Indeed, Cohen expressly says: "The trachea is to be opened in preference to the larynx, as being at a greater distance from the seat of the disease and less liable to involvement, as well as for the reason that the disease occasioning the oedema may be extending low down in the larynx, and therefore exist at the very point usually selected for laryngotomy." Supraglottic oedema does not extend to the region of the inter-thyro-cricoid membrane, and the tube may therefore safely be there introduced.

Perichondritis and Chondritis of the Larynx.

DEFINITION.—Inflammation of the laryngeal perichondrium and cartilage.

SYNONYMS.—Phthisis laryngea of the older authors, Laryngitis affecting the cartilages, Deep-seated ulcerative laryngitis, Caries cartilaginum laryngis, Vomica laryngis, Perichondric laryngeal abscess, Necrosis laryngis. (Some of these names refer to the product or terminal stage of the disease.)

ETIOLOGY.—Laryngeal perichondritis and chondritis occur either as idiopathic or as symptomatic or secondary affections. Even the former, caused by so-called catching cold or exposure to cold and wet while the system is in a state of lowered vitality, may have a septicæmic basis; it is much more rare than the secondary. Rühle has remarked that arytenoid perichondritis may probably sometimes start in the crico-arytenoid articulation, and in an instance which has come under my observation this certainly seemed to have been the case. Authors state that occasionally the inflammation commences in the cartilaginous tissue itself, instead of in its investment; this is hardly conceivable. Perichondritis must always precede chondritis, but it always causes the cartilage to become involved in the morbid process. Quite often perichondritis and chondritis constitute an extension of a particular ulcerative disease of the mucous and elastic membranes. In the great majority of cases the causes are tuberculosis, syphilis, diphtheria, cancer, lupus, typhus and typhoid fever, small-pox, or else traumatic occurrences, especially suicidal throat-cutting, decubitus or other pressure upon the part—as, for instance, the frequent introduction in an aged subject of the oesophageal sound observed by Ziemssen, and overstrain of the voice alleged by Flormann. At least three cases are reported (viz. by Porter, Lawrence, and Eppinger) in which the disease has been ascribed to the administration of mercury, and Graves and Stokes remark that in broken-down constitutions, [p. 118] where large quantities of mercury have been used, chronic laryngitis is very apt to terminate in ulceration of the cartilages.

The disease occurs oftener in men than in women, and oftener between the twentieth and fortieth years than at any other age.

SYMPTOMATOLOGY.—I distinguish three stages of laryngeal perichondritis and chondritis—viz. the inflammatory, suppurative, and necrotic. The symptoms of the first stage are obscure: the main one is pain, usually of a boring, burning character, localized according to the precise cartilage affected, which is increased by functional or other movement of the part and by pressure from the outside. To the pain there are gradually added—also depending somewhat upon the precise seat of the inflammation—cough, dysphonia, and dysphagia. In cricoid perichondritis—especially when, as is generally the case, the posterior surface of the plate of the cricoid cartilage is affected—there is sometimes inflammatory reddening of the pharyngeal mucous membrane which may extend upward to the palate. Inflammatory swelling of some part of the cartilaginous framework may be recognizable in the first stage of the disease by means of the laryngoscope.

The suppurative stage is attended with more swelling of the part affected, due to accumulation of pus and to collateral oedema. Pain, dysphagia, or dysphonia, and sometimes irritative, harsh cough may be much augmented; but, above all, dyspnoea now appears, which sometimes so rapidly increases that the patient dies asphyxiated unless tracheotomy is performed.

During the necrotic stage the symptoms of laryngeal stenosis sometimes persist, and sometimes cease with the expectoration of quantities of pus containing possibly a part, and occasionally the altered whole, of the affected cartilage: with continued purulent expectoration the patient's strength fails, the breath becomes very fetid, and hectic fever and death may supervene.

Swelling of cervical lymphatic glands, though by no means always present, has been observed in the early and sometimes only in the later stages of the disease.

The course of the disease, whether idiopathic or secondary, is either acute or chronic. It tends either toward abscess-formation, which predominates, or toward new growth of tissue; for a time sometimes the one, sometimes the other occurs, and, as a rule, during the former the process is more acute, and during the latter more chronic: the proliferated tissue, after being produced, may break down and increase the amount of pus. When acute, the three stages of the disease follow each other rapidly, if, indeed, the third be not cut off by the death of the patient. When chronic, the pus collected is very apt to burrow and to make fistulous passages and openings internally and externally. At various points also perichondric hypertrophies, ecchondroses, and exostoses are apt to occur.

The inflammatory stage can terminate by more or less complete resolution, though usually some enlargement of the cartilages permanently remains; recovery can also take place in the later stages, and leave deformities and produce cicatricial contractions.

PATHOLOGY AND MORBID ANATOMY.—The perichondrium of the larynx is diseased comparatively oftener than that of any other region of the body; which, aside from other causes, is partly due to the fact that the laryngeal cartilages become with increasing age normally vascular and ossified. The morbid process never affects at one time the whole of the cartilaginous framework of the larynx, and usually only one cartilage, or even only a limited portion of one cartilage, except in the case of the cricoid and arytenoid, which are sometimes together implicated. Perichondritis does not spread easily. The cricoid is most frequently affected, next the arytenoid, far less often the thyroid, and exceedingly rarely the epiglottis.

As already remarked, the inflammation of cartilage and perichondrium [p. 119] has a great tendency to suppuration—occasionally, though rarely, proliferation and hypertrophy; or, on the other hand, and more frequently if the inflammation is a slowly progressing one, the processes leading to ossification take place. The suppurative stage follows the inflammatory quickly unless the latter has been comparatively very slight. A great abundance of pus collects between the cartilage and its investing membrane. As the former is thereby denuded and separated from its nutritive vessels, it must become necrotic. Exfoliated pieces of cartilage are generally found in the abscess. Caries of adjacent tissues is apt to take place, and oedema of the surrounding connective tissue, and sometimes far-reaching destruction, before the perichondrium bursts or becomes destroyed over a large extent. In cricoid perichondritis, the plate mainly being affected, the abscess projects mostly toward the oesophagus and the trachea, or it points outwardly when the narrow portion is involved; the opening when the abscess has burst is frequently large, and shows a portion of the necrosed cartilage; sometimes there are a number of perforations. In arytenoid perichondritis the abscess bulges either into the interior of the larynx or into the adjacent pyriform sinus; bursting usually occurs at the posterior portions of the ventricular folds or near the posterior vocal process, and the undermined edges may disclose the dead cartilage. In thyroid perichondritis either the interior of the larynx, the pyriform sinus, or the outside of the neck is encroached upon.

In the course of the necrotic stage of the disease the laryngeal framework may cave in, and a stenosis be produced which may quickly put an end to the patient's life unless tubage—as explained under the head Oedema—or tracheotomy be performed. A loose piece of dead cartilage getting into the rima can produce the same fatal effect. Smaller or larger pieces of necrosed cartilage, sometimes partially or wholly ossified, have been expectorated, or, post-mortem, found lying in the respiratory passage, looking dirty-yellowish or blackish. Fistulous openings may take place in the larynx, pharynx, and in the skin covering these parts. Gaucher has reported an extraordinary case in which a perichondritic abscess of the thyroid cartilage had opened into the vertebral canal, as well as externally by the side of the sterno-cleido-mastoid muscle. If the perichondritis has followed deep-going ulcerative destruction of the mucous membrane, the perichondritic abscess bursts more easily, and less burrowing of the pus usually takes place.

In the rare termination of healing of the necrotic stage of perichondritis the loss of cartilage-substance is supplied by connective-tissue granulation emanating from the perichondrium. Cohen has reported a case in which there was apparently a reproduction of the whole cricoid cartilage, the necrosed original one remaining in the interior of the larynx as a foreign body.

Just as laryngeal stenosis is the grave danger during the continuance of the disease before the perichondritic abscess has opened from its protrusion into the laryngeal cavity, together with the accompanying oedema, and from the undermining of soft parts by burrowing pus, and after the abscess has opened from exfoliated pieces of cartilage blocking the interior, or, when eliminated, from caving in of the laryngeal framework, so laryngeal stenosis is the grave consequence of the disease from remaining deformity, cicatricial contraction, ankylosis of the crico-arytenoid articulation, etc. An open perichondritic abscess may also lead to extensive gangrenous destruction, and occasionally to subcutaneous emphysema.

Under the microscope the first stage of perichondritis is marked by the appearance in the fibrous basis-substance of the perichondrium of more or less coarsely granular corpuscles, the so-called inflammatory corpuscles. As to their origin, it is well known that Virchow taught that they are produced by the enlargement, division, and subdivision of the connective-tissue corpuscles, while Cohnheim claimed that they are nothing but emigrated [p. 120]colorless blood-corpuscles: in point of fact, most of them arise from the liberation of the living matter contained in the basis-substance, by the liquefaction or melting out of the non-living ingredient, and the increase and division of this matter into medullary or inflammatory corpuscles which constitute the so-called inflammatory infiltration. So long as the corpuscles remain connected by filaments of living matter, the inflammatory process may terminate by a new formation of basis-substance in hyperplasia—i.e. in the new formation of connective tissue. When, on the contrary, the inflammatory corpuscles are torn apart and become suspended in a liquid exudate, they constitute pus, and then the termination of the inflammatory process is in suppuration; that is to say, usually in an abscess.

The perichondrium and cartilage are normally so closely connected that the one tissue passes gradually into the other without definite boundary-line, and the cartilage participates in the inflammatory process by a liquefaction of its basis-substance, reappearance of the living matter therein contained, and the formation of more inflammatory corpuscles. So long as the inflamed perichondrium remains in living connection with the cartilage, both tissues may participate in the new formation of a dense connective tissue, and hyperplasia be the result of the perichondritis and chondritis. Should, on account of suppuration at the boundary of the cartilage, the vascularized portion of the perichondrium become detached, the cartilage, being itself devoid of blood-vessels, will become dead. Its corpuscles will shrivel, and together with the lifeless basis-substance become disintegrated. Pieces of necrotic cartilage may be found lying in the surrounding pus, and, though usually chondritis has preceded the necrosis, the latter may ensue without previous change of the cartilage tissue, especially if the perichondritis runs its course to suppuration rapidly; but in every case suppurative perichondritis precedes necrosis of the cartilage.

After the elimination of necrosed portions cartilage is as a rule replaced by newly-formed dense fibrous connective tissue. Some clinically-observed cases, aside from the remarkable case of Cohen already mentioned, indicate, however, that, exceptionally, new formation of cartilage may occur from hyperplastic perichondrium, in the same manner as new bone is sometimes formed from hyperplastic periosteum after osseous necrosis.

DIAGNOSIS.—The inflammatory stage may be suspected, rather than positively recognized, from the peculiar pain if the laryngoscope (or, in the rare case of thyroid perichondritis, palpation) reveals enlargement of a part of the cartilaginous structure without much injection of the mucous membrane. The presence of other symptoms mentioned, and in the case of cricoid perichondritis the localized pharyngeal reddening, make the diagnosis more probable. During the suppurating and necrotic stages the diagnosis becomes certain from the symptoms I have described, especially expectoration of fragments of necrosed cartilage, together with direct examination. The laryngoscope may show the abscess; sometimes the finger or a probe can detect fluctuation, and frequently through an opening the probe detects the necrosis. The movement of one or both vocal bands may be affected either mechanically from purulent accumulation, or from articular ankylosis, or from interference with muscular attachments or action, or with innervation. In my hand, and in that of others, a probe introduced through an external fistula has been seen in the larynx; others have been able to inject colored fluid and find it in the interior.

PROGNOSIS.—Except in slight cases death is more apt to take place than recovery. If tracheotomy has saved the patient from impending death, ultimate prognosis is still unfavorable in severe cases. In idiopathic, traumatic, and syphilitic cases the prognosis is of course better than in others in which we have to face grave dangers of the underlying disease as well. The [p. 121]remaining laryngeal stenosis after recovery makes the prognosis bad as to the doing away with the tracheotomy-tube, although it is far more favorable at the present day than it was previous to Schrötter's success with dilating measures.

TREATMENT.—Throughout the disease the patient's general health and strength must be carefully attended to, tonics and stimulants used according to circumstances, and the underlying condition of secondary perichondritis, such as syphilis, etc., treated secundum artem. Locally, the treatment during the first stage must be antiphlogistic, by leeches, ice, etc., and soothing, especially by inhalations. Afterward, abscesses must, if accessible by means of the laryngoscope, be opened. Artificial feeding, through either an oesophageal or a rectal tube, may become necessary. Schrötter's hard-rubber tubes may be inserted to conduct air to the lungs, but tracheotomy, not laryngotomy, must be performed if, in spite of this tubage, suffocation threatens.

The methodical dilatation of post-perichondritic laryngeal stenosis requires special bougies, catheters, hard-rubber tubes, pewter plugs, and dilators which are not to be found in the ordinary armamentarium of a medical practitioner; but the proper and frequently successful use of these can be acquired with patience and perseverance when a case of the kind presents itself for treatment.

Chronic Laryngitis.

DEFINITION, SYNONYMS, AND CLASSIFICATION.—Under the name chronic laryngitis are brought together a number of different diseases of the larynx which have the character in common that they are more or less inflammatory and chronic in their course. The various conditions of chronic inflammation of the mucous membrane (chronic laryngeal catarrh) prominently belong to this category, but the chronic inflammation of every other constituent tissue of the larynx, except cartilage and perichondrium, is included.

The synonyms refer mostly to individual etiological and other factors not applicable to all cases, as clergymen's laryngitis, phthisical laryngitis, and many of the designations of different classes.

Chronic laryngitis frequently involves more than one tissue, but usually one prominently. Histologically, the following kinds of chronic laryngitis have been distinguished: viz. catarrhal, when simply or principally the mucous membrane is affected; granulous or glandular, when the muciparous glands; submucous or parenchymatous, when the connective tissues underneath the mucous membrane are prominently implicated; and muscular, when there is chronic inflammation of the muscular tissue. According to the seat, there will be supraglottic, glottic, and infraglottic chronic laryngitis. There have also been described atrophic, hypertrophic, and polypoid chronic laryngitis; dry and blenorrhoeic or hypersecreting chronic laryngitis; simple, fetid or ozænic, and ulcerative; phlebectasis laryngea, trachoma, etc.

ETIOLOGY.—Chronic laryngitis is caused in many ways. Frequently it follows uncured or neglected acute laryngitis. It is apt to occur in persons whose avocations or habits lead them to strain or otherwise abuse their vocal organ, to work in an impure or irritating atmosphere, or to use tobacco or alcohol excessively; and it may depend upon or be an extension of chronic inflammation of either the naso-pharyngeal or tracheo-bronchial mucous membrane. Secondarily, it accompanies all long-continued laryngeal affections, such as phthisis, syphilis, lupus, etc. Males suffer more often than females, and middle-aged persons more often than either children or the very old. Boys at the time of puberty are liable to become affected.

SYMPTOMATOLOGY.—The diseases comprised under the collective name of chronic laryngitis give rise to various symptoms, of which the chief are [p. 122] morbid sensations in the region of the larynx and alteration of the voice. Unless ulceration have occurred, the morbid sensations hardly amount to pain, except on acute exacerbation from catching cold or after long-continued use of the voice. They consist in a sense of dryness or of pressure, in a tickling or in an unnatural feeling that cannot be definitely described in words. Though not acute, they are sufficient to make the patient constantly conscious of their existence and to induce fruitless efforts at clearing the throat, etc. The alteration of the voice varies from occasional unsteadiness or veiling, or a loss of power or purity of tone, to different degrees of hoarseness, dysphonia, and even aphonia. In singers and public speakers the disease interferes sometimes with professional vocal efforts only, ordinary conversation not being affected. The voice is best, sometimes worst, after a night's rest, and in either instance changes after moderate use for worse or better as the case may be; but long-continued exercise is always harmful. The voice is comparatively easily fatigued, and then the vocal organ becomes positively painful.

In addition to the two chief and constant symptoms there are others that may or may not be present, and which sometimes assume even greater prominence than the modification of the voice. Thus, secretion, which in most cases is very slight, glassy grayish, and viscid, is occasionally very abundant, yellowish, or darkish, or more rarely still mixed with streaks of blood and in clumps, though not sticky or dried into scabs, and is sometimes so fetid that the patient's breath is exceedingly malodorous. Cough, which in most cases is either absent or comparatively trifling, barking, or hacking, occasionally is the most troublesome of all the symptoms. Dysphagia is sometimes present even in simple or mild cases. In severer cases, in the later stages, especially in syphilitic and phthisical chronic laryngitis, swallowing becomes painful and difficult, or even impossible. Dyspnoea occurs only from accumulations of phlegm in the larynx, and is then lessened after expectoration, or it may depend upon the diminished lumen of the laryngeal cavity on account of thickening of the walls, as it is especially apt to do in subglottic chronic laryngitis, or on account of so-called polypoid hypertrophies in simple cases, gummata or cicatricial tissue in specific cases, etc. Dyspnoea may become so urgent as to require tracheotomy.

PATHOLOGY AND MORBID ANATOMY.—In catarrhal chronic laryngitis there is congestion of the mucous membrane, dilatation of the blood-vessels, and altered secretion. The mucous membrane becomes, as a rule, hypertrophied, tougher, and more firmly connected with the subjacent tissues. Laryngeal venous congestion (so-called phlebectasis laryngea) is occasionally, though rather rarely, met with; and still more rare is a hemorrhage from the surcharged vessels in chronic cases. In granular or glandular chronic laryngitis—i.e. when the muciparous glands are prominently involved in the inflammatory process—they form elevations, making the surface uneven, and the tissues become tenser and more compact. When the submucous connective tissue takes much part in the process the hypertrophy is still greater, and not only may the lumen of the laryngeal cavity become greatly diminished, but projections of various lengths (the so-called cellular polypi and papillary excrescences) are apt to occur. The objective term tuberosa is sometimes added to laryngitis or to the designation for inflammation of a portion of the larynx; as, for example, that of the vocal bands—viz. chorditis tuberosa, when small whitish, tumor-like elevations occur. These, especially on the vocal bands, where they have been described by Tuerck, Elsberg, Cohen, and others, are also called trachomata. In cases to which the name muscular chronic laryngitis is given the muscular tissue has been found prominently hypertrophied. Moura Bourillou has recorded a case in which the striated fibres of the posterior crico-arytenoid muscle were converted into fibrous tissue. In many of [p. 123] the common cases of catarrhal chronic laryngitis the alteration of the voice depends upon paralysis of the muscles—especially the thyroid arytenoid and the arytenoid—directly caused by the transmitted inflammation and by thickening of the overlying mucous membrane. In fetid chronic laryngitis there is usually found excoriation of the mucous membrane, and atrophy. That erosions—i.e. superficial ulcerations extending no deeper than the epithelial layer—frequently occur in the course of catarrh is admitted by everybody, but much unnecessary discussion has been indulged in concerning the question whether deeper ulcerations of the mucous membrane can ever take place under these circumstances. It has been insisted upon that catarrhal ulcerations never occur. This is a mistake, but it is true that catarrhal ulceration is rare unless the patient is greatly debilitated or cachectic. Ulcerative chronic laryngitis in the majority of cases depends upon some cachexia—i.e. tuberculosis, syphilis, lupus, lepra, etc.

Tuberculous chronic laryngitis—laryngeal phthisis proper—frequently accompanies pulmonary consumption. Usually it follows, but occasionally precedes, the latter. Unquestionably, it also occurs, though rarely, without any disease in the lungs. Anæmia of the laryngeal mucous membrane is present from the first, and usually persists throughout. There is a low form of inflammation, swelling of the tissue, and then ulceration, the ulcers being at first small, and afterward coalescing to form larger ones. Much destruction may take place, and more or less oedema is always present. Paralysis of some of the interior laryngeal muscles may also occur, depending alike upon anæmia and oedematous infiltration of the muscular substance, or upon compression of the nerve-tracts by enlarged lymphatic glands (most frequently on the right side) or upon involvement of the nerves—pleuritic adhesions, tuberculous deposits, etc.

Syphilitic chronic laryngitis is a local manifestation occasionally of hereditary, but usually of acquired, syphilis. It may vary from a slight erythematous condition of the mucous membrane to intense inflammatory thickening or destructive ulceration, may be accompanied by laryngeal oedema and pericarditis, and may lead to dangerous adhesions, cicatrizations, and stenosis. The chronic laryngitis occurring in lupus and lepra and in malignant diseases of the larynx partakes of the character of these processes, and is accompanied by their peculiar thickenings, tuberosities, granulations, and ulcerations.

DIAGNOSIS.—Chronic alteration of voice, local morbid sensation, and other symptoms mentioned may lead us to suspect the presence of chronic laryngitis, but are insufficient for diagnosis without mirror examination. The diagnosis can be positively made only by means of the laryngoscope, and even by this means requires care. It is of the utmost importance that the physician make himself perfectly familiar with the appearance of the healthy larynx by the particular illumination he uses for examining patients.

A very able laryngoscopist, Carl Michel of Cologne, confesses6 that he has many times diagnosed chronic laryngitis when none existed, and explains that with inadequate illumination the contours of the small vessels run into one another and make the whole surface which they traverse appear red. In simple chronic laryngitis the redness has a somewhat livid look; in syphilitic chronic laryngitis it is darker and more angry-looking; in phthisical cases it is duller, even though the mucous membrane be congested, while usually it is pale. In both the latter diseases the swelling is greater, the natural contour of the parts more changed, and destruction more imminent than in the simple chronic laryngitis. When oedema is present there is a peculiar transparent or translucent appearance. In subglottic chronic laryngitis, especially when [p. 124]much hypertrophy has already taken place, the color is often quite light grayish instead of red.

6 Practische Beiträge zur Behandlung der Krankheiten des Mundrachenhöhle und des Kehlkoffes (Leipzig, 1880).

Phlegm found in the larynx may have come from the bronchial tubes or the trachea; when it is cleared away by cough or otherwise, the larynx may prove to be unaffected. In all cases of suspected secondary chronic laryngitis, phthisical, syphilitic, etc., the state of the lungs and whole respiratory tract, as well as the general health in every respect, hereditary tendencies, and past diseases, must be carefully inquired into.

PROGNOSIS.—The prognosis of chronic laryngitis is good as to life except in broken-down constitutions, neglected exacerbations, and grave underlying affections; but, even with these exceptions, it can be said to be favorable as to cure only with expert local treatment and if no severer tissue-alterations, usually hypertrophic, have as yet taken place. If the latter have taken place—especially if the submucous tissues are prominently involved—the organ can seldom be restored to perfect integrity. For persons in ordinary vocations and situations in life the recovery that can generally be secured may be entirely satisfactory, but more exacting demands on the speaking and singing voice require special measures, including hygienic precautions, to be carried out carefully, and sometimes to be long continued.


TREATMENT.—Whatever the grade or stage of a chronic laryngitis, the constitutional condition or proclivity of the patient always requires suitable hygienic, dietetic, and therapeutic management. The repair of regional or local morbid conditions may often be confidently entrusted to such constitutional measures; and it is only when these morbid conditions resist the influence of systemic treatment, or are of some special character obviously insusceptible to such influence, that topical medication or actual surgical procedure becomes requisite in addition. The accessibility of the interior of the larynx to instrumental manipulation under laryngoscopic guidance offers great temptations for topical interference. The result is, that the diseased larynx is sometimes submitted to unnecessary, and even injurious, direct attack at the hands of a dexterous manipulator untrained in general practice, and consequently ignorant of the beneficial influence of purely constitutional measures upon many local morbid conditions. While it is highly proper, therefore, to utter a few words of caution, it is equally proper to assert that many local conditions are entirely beyond the control of systemic measures, and require topical treatment.

Constitutional Treatment.—Simple or catarrhal chronic laryngitis, unassociated with special diathesis, is often admirably influenced by the prolonged administration of some preparation of cubeb; the oleoresin being preferred by the writer in doses of from fifteen to twenty-five minims for the adult, three times a day on crushed sugar. This drug being eliminated in part by the bronchial tract, it seems especially adapted to exert upon chronic inflammatory conditions of the aërial mucous membrane that healing process which it is known to exert on mucous membrane elsewhere. Among other useful constitutional remedies from which similar service can be expected may be enumerated compound tincture of benzoin in doses of from thirty to sixty minims for the adult, three or more times daily; fermented infusion of tar or tar beer, several ounces daily; and petroleum mass, one to two grains for the adult, three or four times daily, with pulverized extract of glycyrrhiza in pill or capsule. In cases with deficient secretion ammonium chloride is indicated. In cases associated with impaired digestion, with excess of acidity, the [p. 125]prolonged use of alkaline mineral waters is advisable; preferably, if convenient, at their sources. In cases associated with chronic diarrhoea the mineral acids are indicated. Cod-liver oil, hydrated chloride of calcium, and preparations of iodine and of arsenic are useful in patients of the scrofulous diathesis. Iodoform, one grain for the adult, rubbed up with glucose or some other excipient, in pill or capsule, three times a day, is often useful in patients with the tuberculous diathesis. Specific remedies are required for syphilis. In like manner, any constitutional abnormality is to be systematically attacked.

The functions of skin, kidneys, and intestine are to be maintained as nearly normal as may be, or even a little in excessive action from time to time for derivative purposes. Abstinence is to be enjoined from all exposures or indulgences deleterious to the parts diseased; with as sparing a use of the voice as is compatible with ordinary domestic or social demands, and absolute rest for prolonged periods of days at a time whenever unusual demands have resulted in exacerbating the malady. Under such treatment many cases of simple catarrhal or glandular chronic laryngitis may get well, as has been intimated, without any special local measures.

Topical Treatment.—The difficulty of impressing patients with the necessity of submitting to these hygienic measures and to dietetic restrictions, and for avoidance of occupations or habits which favor or maintain the condition of chronic inflammation, renders topical treatment necessary in many instances. Direct instrumental medication requires the personal attention of the medical attendant. Medication by inhalation or insufflation may be entrusted to the patient or the nurse in most instances. In instituting a course of topical treatment several things must be taken into consideration, such as the condition of hyperæsthesia, hypersecretion, insufficient secretion, congestion, hemorrhagic infiltration, hemorrhage, hypertrophy of tissue or tissue-elements, erosion, fissure, ulceration, and excessive granulation. The first three of these furnish the clue to the nature of the home-treatment, the remainder to that required at the hands of the physician. The home-treatment is to be directed to keeping the parts clean and comfortable; the manipulation of the physician is to be directed toward overcoming special pathological conditions.

Should secretion be defective, alkaline sprays inhaled at regular intervals, for a few minutes at a time, tend to augment secretion and to facilitate the detachment of adherent mucus. For the purpose choice may be made of the following drugs in the proportion of about five grains to the ounce for the adult, dissolved in distilled water or tar-water, with the addition of a sedative when the parts are hyperæsthetic, or an opiate when they are painful: ammonium chloride, sodium borate, sodium bicarbonate, sodium chloride, sodium chlorate, sodium iodide, potassium iodide, potassium chloride. The spray should be propelled by means of compressed air, with what is known as the hand-ball atomizer, in preference to steam, the effect of which is too relaxing in most instances. A few drops of some aromatic or balsamic product will render the spray more agreeable in many instances. Should these agents fail, pyrethrum or jaborandi may be found more serviceable, in the proportion of from one to five minims of the fluid extract to the ounce of water.

Should secretion be excessive, astringents are indicated; and choice may be made from alum, five grains to the ounce of rose-water; tannic acid, two or three grains; zinc sulphate or zinc sulphocarbolate, two grains; lead acetate, two grains; ferric chloride, one grain; and silver nitrate, half a grain to the ounce. Personal supervision of the initial inhalations is requisite to ensure proper use of the spray. Whether the medicament is to be propelled directly into the larynx by means of a tube with a vertical tip to be passed beyond the tongue, or to be inhaled by efforts of inspiration from spray projected horizontally, will depend upon the skill of the individual using it. Hard-rubber [p. 126] spray-producers are furnished with series of tips, so that either method may be employed. When the horizontal tip is used, the instrument should be held some distance from the mouth, so that the spray may be deflected into the larynx by the act of inspiration. When the tube is placed within the mouth most of the spray becomes condensed upon the pharynx, and very little can be drawn down into the larynx. As metallic tubes are liable to become reduced by certain remedies—ammonium chloride, for instance—tubes of glass or of hard rubber are to be preferred.

Should a steam apparatus be employed, the patient should remain housed for half an hour after inhalation, except in very warm weather. In cases of hyperæsthetic mucous membrane the home inhalation of volatile remedies daily is often useful. Compound tincture of benzoin, camphorated tincture of opium, oil of pine, oil of turpentine, terebene, eucalyptol, creasote, carbolic acid, may be inhaled from a bottle containing hot water or from a special inhaler, a few drops of chloroform being advantageously added when there is a good deal of irritative cough. A few drops of the more pungent volatile substances, such as terebene, eucalyptol, and creasote, may be dropped on the sponge supplied with the perforated zinc respirator of Yeo of London, and the apparatus be worn for an hour or longer continuously. In cases with excessive secretion and in syphilis, ethyl iodide is indicated as a remedy appropriately administered by this method. When the parts are very irritable, a respirator of this kind or some similar contrivance, or a fold or two of woollen or silk gauze worn in front of the mouth and nose while in the open air, will often protect the tissues from too cool an atmosphere, and enable the patient to bear exposure with comfort.

Topical treatment of a more decided character being required, the physician usually chooses between powder and solution. Powders are usually propelled by a puff of air through a properly curved tube, whether from a rubber ball, a reservoir of compressed air, or the mouth. The mouth allows the most delicate and accurate application, but the mouthpiece should be protected by a valve from receiving a return current when the patient coughs. Solutions may be applied by means of pipette, syringe, brush, cotton wad, or sponge, according to indications. A fragment of sponge securely fastened to a properly-bent rod or pair of forceps is the safest and most effectual material for positive contact against a limited surface, and a brush the best for painting larger surfaces. The use of the cotton wad involves a slight risk of leaving a detached shred of fibre in the larynx, but renders the manipulation less unpleasant to the patient than the use of the sponge, and is less irritating to the mucous membrane. Spasm of the larynx is usually excited the first time that a medicinal application is made within it, and even death by suffocation has followed the incautious use of powerful agents. Hence strong solutions should not be used until the tolerance of the parts has been sufficiently tested by weak or innocuous ones. The remedies which have been employed topically for intra-laryngeal medication seem to include every available medicinal agent that could be mentioned, from rose-water to the incandescent cautery. The list of really useful ones is not very long. Those upon which the most reliance is placed by the writer comprise tannic acid (a saturated glycerite), zinc sulphate (thirty grains to the ounce of rose-water), and silver nitrate (forty to sixty grains to the ounce) in obstinate and protracted cases of simple chronic laryngitis; iodine and carbolic acid, singly or in combination (one grain or more to the ounce of glycerin), and chinoline tartrate or salicylate (five or more grains to the ounce), in cases attended with infiltration; iodoform (finely pulverized or in recent saturation in sulphuric ether) in ulcerative or proliferative tuberculosis; and iodoform and acid solution of mercuric nitrate (one part to ten or twelve of water) in progressive ulcerative syphilis resisting appropriate constitutional treatment. Other [p. 127]astringents in the simple varieties; resorcin in the glandular, hypertrophic, polypoid, and tuberculous varieties; chromic acid and incandescent metal in the circumscribed hypertrophic and in the polypoid varieties; and zinc chloride and copper sulphate in the syphilitic varieties,—proffer additional resources. These applications are to be made at intervals of one day or more, according to results. Hyperæsthesia and pain, whether of the larynx or of parts adjacent, can usually be subdued by the local anæsthetic effect of solutions of erythroxyline hydrochloride (2 per cent. or stronger) applied at intervals of a few hours, or even by the fluid extract or a strong aqueous infusion of the erythroxylon-leaves. Before the anæsthetic effect of this drug was known, morphine powder (one-eighth to one-fourth of a grain, alone or associated with tannin or with iodoform) or aqueous solutions of morphine salts and of aconite were employed to relieve pain and obtund sensitiveness. The oleate of morphine (2 to 4 per cent. solution) and the oleate of aconitine (2 per cent. solution) are similarly useful. Morphine, by its constitutional influence, is preferable to erythroxyline in some instances, though less prompt in its effects. Where ulcerative processes at the top of the larynx or thereabouts entail odynphagia, these preparations should be used before administering nourishment. The use of erythroxylon products may be entrusted to the nurse or to the patient with comparative safety. Morphine and aconite should be applied only by a medical attendant or an exceptionally skilled nurse. Before any medicinal curative or reparative agent is applied the parts should be thoroughly cleansed of suppurative and secretory products. This may be done with sprays of alkaline solutions—five or more grains of sodium borate or bicarbonate, for example—dissolved in pure water, in tar-water, or in an emulsion of coal tar. An excellent agent, especially in the presence of pus, is hydrogen dioxide, usually furnished in a 10-volume solution which should be diluted with two or more parts of distilled water. It is likewise disinfectant and gently stimulant to mucous membrane. The manipulations by the physician preparatory and medicatory should be performed laryngoscopically, otherwise the entire procedure must be haphazard.

Neoplasmata and fungous growths may require removal should they interfere with respiration. In the presence of stricture, surgical interference by tracheotomy may become requisite. Elsberg, according to the testimony of his assistant, Schweig, seems to have been particularly favorable to the performance of this operation in obstinate cases of ulcerative laryngitis of whatever character, and even in protracted non-ulcerative cases, for the purpose of securing physiological rest to the parts, although the procedure might not be indicated to relieve any embarrassment in respiration. The writer's experience in tracheotomy as a factor in producing rest has not been favorable, such a result being usually defeated by the cough so frequently following a tracheotomy, no matter how well-adjusted a tube may have been inserted. His recommendation, therefore, is limited to cases of embarrassment to respiration due to stricture or constriction unamenable to intra-laryngeal interference.

Morbid Growths of the Larynx.

DEFINITION.—Neoplastic formations, benign and malign, in the interior of the larynx, in its cartilaginous framework, in its investment-tissues, or upon the exterior of the organ.

ETIOLOGY.—Inflammation of the mucous membrane, local irritation or injury, ulceration, cell-proliferation, and excessive granulation seem to be the exciting causes of benign neoplasms. They follow on laryngitis, whether catarrhal, syphilitic, tuberculous, exanthematic, toxic, or traumatic. They [p. 128]are quite common, so to speak, several thousands of cases being on record, and as many or more probably being unrecorded. Heredity does not seem to play any special part in their production. They are occasionally congenital, and may be developed at any age; but they are encountered the most frequently in subjects between the ages of thirty and sixty years, probably because of the greater exposure to laryngitis attending the activity incidental to the prime of life. Males are affected far more frequently than females, probably on account of greater exposure to sources of laryngitis. Benign growths are sometimes followed by malign growths in recurrence, and are sometimes converted into malignity by irritation, whether physiological, mechanical, or instrumental. Malign growths are attributed to cold, chronic laryngitis, and traumatism as the initial exciting causes. Butlin suggests a cryptogamic origin. They are far more common in males than in females, and occur chiefly between the ages of twenty-five and seventy, but they have been noted as occurring exceptionally much later, and even as early as the first year.

PATHOLOGY AND MORBID ANATOMY.—By far the greater number of laryngeal morbid growths belong histologically to the category of benign neoplasms, but the important location they occupy often renders them clinically malign. By far the greater number of benign growths are papillomas, perhaps fully two-thirds, although Elsberg has reported that but 163 instances were papillomas out of 310 seen in his own practice.7 This has been an exceptional experience. Then we have fibromas, myxomas, adenomas, lymphomas, angeiomas, cystomas, ecchondromas, lipomas, and composite neoplasms. Laryngeal morbid growths, too, occasionally undergo the fatty, colloid, or amyloid degenerations. Papillomas are frequently multiple, and most frequently sessile, but the other benign neoplasms are most frequently single and are more often pedunculated. All this class of morbid growths affect the anterior half of the larynx more than the posterior. They are most frequent on the vocal bands or very near to them, although they may occupy any portion of the larynx. They vary in size from the smallest protuberance to a bulk sufficient to block up the cavity of the larynx and even project above it. The dimensions of the greater number of papillomas vary from the size of a pea to that of a small mulberry. Other benign neoplasms rarely reach the bulk attained by papillomas.

7 Archives of Laryngology, p. 1, New York, 1880.

Malign growths are far less common than benign ones. They comprise both sarcomas and carcinomas. Sarcomas occur in the varieties of spindle-celled, round-celled, giant-celled, mixed-celled, fibrosarcoma, lymphosarcoma, and myxosarcoma. Some attain only the size of small beans, and few exceed the size of a pigeon's egg. The majority of them are primary growths. Most of them originate in the interior of the larynx, whence they may extend by contiguous infiltration, even penetrating the laryngeal walls. The vocal band and the ventricular band are the most frequent seat. The epiglottis is a common seat. These growths appear either in irregular, smooth, spheroid masses, or nodulated, mamillated, and dendritic. They are much the more common in males, and occur chiefly in subjects between the ages of twenty-five and fifty. Their growth is slow for a year or more, and then becomes more rapid.

Carcinoma is much more common than sarcoma. It is most frequently primary, and primarily limited to the larynx, but occurs likewise in extension of carcinoma of the tongue, palate, pharynx, oesophagus, or thyroid gland. It rarely extends to the oesophagus or penetrates the laryngeal walls.

Squamous-celled carcinoma or epithelioma is the commonest variety, large spheroidal-celled or encephaloid being much less frequent, and small spheroidal-celled and cylindrical-celled occurring still more rarely. Intrinsic [p. 129] laryngeal carcinoma is usually unilateral at first, and most frequently in the left side. Its most frequent seat is at the vocal band. It rarely occurs below this point, and when it does, as in the five cases analyzed by Butlin,8 it seems to be at some point just beneath. Extrinsic laryngeal carcinoma usually begins in the epiglottis, and sometimes occupies that structure only. It may begin in a cicatrix in the skin.9 Carcinoma is the more common in males, chiefly in subjects between the ages of fifty and seventy. It has occurred within the first year, at three years, and as late as at eighty-three years. Carcinoma is liable to extend by infiltration of tissue and destroy all the contiguous and overlying tissues, so that it may extend into the pharynx or even externally; the large spheroidal-celled variety presenting the most frequently progressive ulceration into contiguous tissue, and the squamous-celled, intrinsic ulceration. Hemorrhage is frequent. Perichondritis, abscess, necrosis, and fistula take place in old cases.

8 On Malignant Disease of the Larynx, p. 36, London, 1883.
9 Cohen, Transactions American Laryngological Association, p. 113, 1883.

SYMPTOMATOLOGY.—Small growths in localities where they neither provoke cough nor interfere with voice or respiration may run their course for a long time without giving rise to any symptoms at all. Growths of larger size, pedunculated growths, and growths located upon important structures give rise to interference with voice, respiration, or deglutition as may be—to cough, and even to pain. Dysphonia is due to mechanical interference with vibrations of the edges of the vocal bands; aphonia, to mechanical interference with their approximation; diphthonia, to mechanical interference at an acoustic node. These manifestations may be permanent or intermittent. Dysphonia is one of the earliest symptoms of carcinoma, and is usually continuous for a number of months before any other indication. Aphonia in carcinoma is often due to nerve-lesion. Dyspnoea is due to some considerable mechanical occlusion of the respiratory tract, whether by the growth itself or in consequence of oedema or of intercurrent tumefaction. It is inspiratory rather than expiratory, and subject to aggravation at night. As with the dysphonia, it varies with the size, location, and mobility of the growth and the position of the head and neck. It may be intermittent or permanent; be slight or severe; or it may terminate in apnoea by spasm, by mechanical occlusion of the calibre of the larynx, or by impaction of the growth at the chink of the glottis. Marked encroachment on the breathing-space is not accompanied with as marked dyspnoea as in acute processes, the parts seeming to acquire tolerance during the slow growth of neoplasms.

Dysphagia is due to a growth at the top of the larynx or on some portion of its pharyngeal surface. It is quite frequent in carcinoma, preceding dysphonia in the extrinsic varieties. It may be associated with regurgitation of food, drink, or saliva into the larynx, provocative of paroxysms of suffocation. Cough is due to growths which project from the vocal bands or press upon them, or to hemorrhage or accumulation of secretory or suppurative products. Hemorrhage, cough, and expectoration of bloody and fetid masses are indicative of carcinoma. Pain is usually due to intercurrent conditions. Aches in the part and sensations of the presence of a foreign substance are more frequent. Intense pain is exceptional in benign neoplasmata; it is often an early symptom in carcinoma, in which it is apt to radiate toward the ears and along the neck. Epileptic seizures and vertigo are sometimes occasioned by reflex influence. Exceptionally, large growths may produce change in the external configuration of the larynx. The general health is not much involved in benign growths, unless they interfere seriously with important physiological functions. Impaired health is far less manifest in sarcoma than in carcinoma. Emaciation, pyresis, and marasmus eventually occur as constitutional manifestations of malign growths.

[p. 130] DIAGNOSIS.—Laryngoscopic inspection usually reveals the growth and furnishes the best means of diagnosis. Intra-ventricular and subglottic growths may elude detection. Palpation is sometimes available, especially with children. Palpation with probes under laryngoscopic inspection is sometimes requisite to determine the mobility of a growth, its form and seat of attachment, and even its size. It seems, too, to discriminate a neoplasm from an eversion of a ventricle. While the histological character of a growth cannot be definitively decided by laryngoscopic inspection, the varieties present a series of characteristics sufficiently pronounced for approximative discrimination. Papillomata are often multiple, usually sessile, and usually racemose or dendritic. Some are white, but the majority are red, and the tinge varies from one extreme of the tint to the other. Some are as small as the smallest seeds; most of them have a bulk varying from that of a pea to that of a berry; some of them are so extensive as to appear to fill the larynx or even project above its borders. They are far the most frequent in the anterior portion of the larynx, and are often located upon a vocal band. Fibromata are most frequently single, smooth and pedunculated, and red. Some are white or gray. Some are vascular. When fully developed they vary in size from small peas to large nuts. They are more frequent upon a vocal band. Their development is slower than that of papillomata. Myxomata are usually single, smooth, pyriform, and pedunculated. They are usually red or reddish. Their ultimate size varies from that of grains of rice to that of Lima beans. They are most frequent at the commissure of the vocal bands. Angeiomata are usually single, reddish or bluish, vary in size from that of small peas to that of berries, and are most frequent on the vocal bands. Cystomata are usually globular, sessile, translucent, and white or red. They are most frequent in a ventricle or on the epiglottis. Their size varies from that of hempseed to that of peas. Ecchondromata are usually developed in the posterior portion of the larynx. Other benign growths are very rare, and do not seem to present special features for recognition by laryngoscopic inspection. Sarcomata are usually present as sessile, hard, well-circumscribed growths, smooth or lobulated. Some are dendritic on the surface, but not to the extent noticed in papillomata, and their location at the posterior portion of the larynx would suggest their true character, for papillomata rarely occupy this position except in tuberculosis. Superficial ulceration occurs in some cases, but is not extensive. There is no peculiarity in the color of the mucous membrane, which may be paler or redder than is normal. The lymphatic glands are not involved.10 Carcinomata present first as diffuse tumefactions in circumscribed localities, gradually undergoing transformation into well-formed growths, then nodulation, and then ulceration. Meanwhile, especially in extrinsic varieties, the submaxillary and the cervical lymphatic glands become successively involved and tumefied. Squamous-celled carcinoma becomes pale, wrinkled, and nodulated, and sometimes dendritic. Large spheroidal-celled carcinoma becomes nodulated, dark, and irregularly vascular, and finally ulcerated, perhaps at a number of points. In the ulcerative stage of carcinoma of the epiglottis and of the interior of the larynx discrimination is requisite from syphilis and from tuberculosis. In all cases of doubt as to malignancy, laryngoscopic inspection should be supplemented by microscopic examination of fragments detached for the purpose. The early detection of sarcoma may lead to surgical measures competent to save life—a remark applicable, perhaps, in a far more limited degree to intrinsic carcinoma.

10 Butlin, op. cit., p. 14.

PROGNOSIS.—The prognosis is usually good in benign growths submitted to proper surgical treatment. Left to themselves or treated medicinally, the prognosis is bad both as to function and to life. Such growths are occasionally expectorated after detachment during cough or emesis. Some [p. 131] occasionally undergo spontaneous absorption. Some remain without change for years. Most of them enlarge and compromise life as well as function. Recurrence occasionally follows thorough removal, and this recurrence is occasionally malign in character. Repullulation frequently follows incomplete removal. The prognosis is favorable in sarcomata, provided thorough eradication can be accomplished by surgical procedure. Incomplete removal is followed by repullulation or recurrence. Unsubmitted to operation, sarcoma will destroy life either mechanically by apnoea or physiologically by asthenia.

The prognosis is unfavorable in carcinoma. Recurrence takes place as the rule despite the best devised resources of surgery. Intrinsic carcinoma offers some hope of success to the surgeon; extrinsic carcinoma, little if any. Life is shortest in the large spheroidal-celled, and longest in the small spheroidal-celled variety, other conditions being equal. Death may take place by apnoea or asthenia, as in sarcoma, or by hemorrhage, collapse, or pyæmia. Submitted to tracheotomy at the proper moment in cases in which death is threatened by occlusive dyspnoea, life is prolonged and suffering mitigated. The fresh lease of life is longest in the squamous-celled variety.

TREATMENT.—The essential treatment is surgical, and to surgical works the reader must be referred for details. Suffice it to say that when a benign growth is small and does not embarrass respiration, it need not be attacked at all, unless its interference with the voice deprives the patient of his means of livelihood. The majority of benign growths are accessible to instruments passed through the mouth. Some require external incision into the larynx, whether partial or complete. The intra-laryngeal procedures in vogue include cauterization, both chemical and by incandescence, incision, abscission, crushing, brushing, scraping, and evulsion. According to the character and location of the growth, direct access from the exterior is practised by infra-hyoid pharyngotomy, by partial or complete thyroid laryngotomy, mesochondric laryngotomy, cricoid laryngotomy, complete laryngotomy, laryngo-tracheotomy, or tracheotomy, as may be indicated.

The thorough eradication of sarcomata usually requires a direct access by section of the thyroid cartilage or even of the entire larynx. This procedure failing or appearing insufficient, partial or even complete laryngectomy may be necessary. Temporizing is of no avail.

The treatment of carcinoma is palliative, unless it be decided advisable to attempt eradication, which may offer some chance of success in intrinsic carcinoma still confined to the larynx. Laryngectomy may be unilateral in some instances, and must be bilateral in others. Unilateral laryngectomy is the more hopeful. Eradication proffers no hope in cases of extrinsic carcinoma in which the growth has passed the boundaries of the larynx. After recovery from the laryngectomy an artificial appliance may be adjusted to the parts for the purpose of supplying a mechanical method of producing sound in the larynx for speaking purposes. Should no radical procedures be instituted, treatment is relegated to general principles, with prophylactic performance of tracheotomy in the presence of dangerous occlusion of the larynx. The voice should be used but little. All sources of laryngitis should be avoided. Ergot or hamamelis may be given to restrain hemorrhage, and morphine to relieve pain and secure sleep. Sprays can be used to keep the parts free from morbid products. Erythroxyline may be applied to produce local anæsthesia as required. Semi-detached portions of growth may be removed from time to time. Nourishment may be given by the bowel when necessary, and so on as in other diseases of the larynx in which the functions of respiration and deglutition are seriously impaired. Medicinally, arsenic may be given in the early stages, as that drug is conceded to possess some slight retarding influence on the growth of carcinoma.

[p. 132]
Lupus of the Larynx.

Lupus is rare in the larynx. It usually occupies the structures above the vocal bands. It is most frequent in females, and usually associated with cutaneous lupus.

ETIOLOGY.—Scrofulosis and syphilis seem to be the predisposing causes. Climate may have some influence. The reason of the special proclivity of the female is undetermined. Of 9 reported cases, records of which are before the writer, 8 were in females.

PATHOLOGY AND MORBID ANATOMY.—Laryngeal lupus is usually an extension of the disease from the upper lip or the nose, extending along the nasal passages, pharynx, and palate. Destructive ulceration takes place, with irregular cicatrization and the formation of hard nodules of hyperplastic tissue of irregular conformation, varying from the size of hempseeds to that of small peas, similar to the cutaneous buccal and pharyngeal nodules.

SYMPTOMS.—These include dysphonia, dyspnoea, dysphagia, and cough. Pain is exceptional.

DIAGNOSIS.—Laryngoscopic inspection reveals the characteristic nodulation, the nature of which is inferred from the coexistence of external lupus. The disease may be confounded with lepra, syphilis, tuberculosis, or carcinoma. Discrimination from syphilis is the most difficult, and is predicated chiefly on its slow progress and on the absence of constitutional manifestations.

PROGNOSIS.—This is unfavorable. The reported cures seem to have occurred only under the influence of antisyphilitic treatment.

TREATMENT.—The prolonged use of cod-liver oil and of potassium iodide seems to be more beneficial than any other systemic treatment. Destruction of the nodules and ulcerated tissues is indicated when the diseased structures are sufficiently circumscribed and accessible. This may be done with the sharp spoon or with the electric cautery. Silver nitrate and iodine have been lauded as topical remedies.

Lepra of the Larynx.

Lepra is rare in the larynx.

ETIOLOGY.—Its cause seems to be climatic. In Europe it is most frequent in Norway and Sweden, and in America in Cuba and the West Indies.

PATHOLOGY AND MORBID ANATOMY.—It is always associated with cutaneous lepra, and usually with lepra of the nasal passages and the pharynx. According to Schroetter's observations, laryngeal lepra occurs as small connective-tissue nodules on the epiglottis or in the interior of the larynx, or as uniform thickenings, general or circumscribed. These may lead to stricture. Extensive ulceration may ensue.

SYMPTOMS.—Dysphonia, aphonia, dyspnoea, cough, and local anæsthesia are the main symptoms. Pain is infrequent.

DIAGNOSIS.—This depends upon the external manifestations of lepra and the laryngoscopic detection of the characteristic thickenings and nodulations.

PROGNOSIS.—This is unfavorable.

TREATMENT.—This must be conducted on general principles. Elsberg commended iodoform topically and gurgun oil internally.

[p. 133]



Disease originating in or confined to the trachea is rare. It hardly ever follows tracheotomy unless the shape of the canula or its relation to the windpipe be improper; the normal tracheal mucous membrane probably resists cadaveric disintegration longer than any other mucous membrane of the body. But morbid processes of the larynx often extend downward, and those of the bronchial tubes still more frequently upward, so that the trachea is found affected in connection with both. Indeed, in what is ordinarily simply called bronchitis (see article on BRONCHITIS) the windpipe is seldom free from the inflammatory condition.

We shall here consider Inflammation, Ulceration, Morbid Growths, Stenosis, and Dilatation (hernia, fistula). Tracheotomy may have to be performed in any of these diseases to prevent impending suffocation, and in some to gain access to the part for further treatment. (See article on TRACHEOTOMY.)


Tracheitis is either simple or complicated, and acute or chronic.

Simple Tracheitis.

DEFINITION.—Inflammation of the windpipe limited to the mucous membrane.

SYNONYMS.—Catarrhal tracheitis, Tracheal catarrh.

Its ETIOLOGY may be gathered from the corresponding sections on Catarrhal Laryngitis and Bronchitis.

SYMPTOMATOLOGY.—In acute catarrhal tracheitis local irritation is complained of, varying according to the severity of the case from a mere tickling sensation to soreness and pain. This morbid sensation is increased by pressure on the part, and with it there is cough and expectoration—the former either brassy and hacking, or paroxysmal and violent; the latter at first scanty, but very soon more copious than when the larynx alone is affected, although much less so than when the inflammation involves the bronchial tubes at the same time. The sero-mucous secretion gradually becomes muco-purulent or even purulent. When inflammation is confined to the trachea there is no alteration of the voice, and, except in children, in whom the calibre of the windpipe is proportionately small, usually no or only very slight dyspnoea. In mild cases there are no constitutional disturbances. Severe cases are accompanied by [p. 134] the febrile symptoms of a bad cold. The disease runs its course in from a few days to a week or two.

Uncured or too frequently repeated attacks of acute catarrh of the windpipe lead to chronic tracheitis, occasionally with considerable hypertrophy of the mucous membrane. In mild cases the cough and expectoration are less than in the acute disease, but persist, with exacerbations in cold, damp weather; in other cases the cough is more frequent, and the expectoration either thick, glutinous, and scanty, or else thin, frothy, or glairy, semi-transparent, and abundant. The separation by forcible paroxysmal coughing of accumulated adherent tough secretion from the tracheal mucous membrane has been observed to cause not only slight dyspnoea, but even the dangerous suffocating attacks of foreign bodies in the larynx. In color the sputa vary from gray to green and yellow; occasionally they are streaked with blood; sometimes they are without taste or odor; sometimes they are nauseous and fetid. Frequently patients with chronic tracheitis complain of "a sort of tightness at the root of the neck." In some cases a sense of dryness in the region of the trachea is the principal or the only symptom complained of, and this may alternate with, or even actually coexist with, occasional hypersecretion of tracheal or bronchial mucus.

In chronic bronchitis and senile pulmonary emphysema mucorrhrea and cough usually depend to some extent upon the chronic tracheitis that is present.

PATHOLOGY AND MORBID ANATOMY.—The pathological characteristics of simple tracheitis are hyperæmia, active or passive, swelling, and increased secretion of mucus. There is no fibrinous exudation.

Acute inflammation causes the mucous membrane to become softened, swollen and red, either uniformly or in points or patches, frequently with ecchymoses and catarrhal erosions, more perceptible in the lower than in the upper portions of the trachea. Scanty secretion sometimes lies upon the surface in pearl-like drops, which might be mistaken for solid elevations only that they can be wiped off.

In chronic inflammation the redness is more dull, reddish-blue or grayish; the secretion, sometimes more scanty and sometimes more abundant, is puriform and usually spread out over larger portions of the surface; and the glands are enlarged and prominent, with their ducts so dilated that their mouths are readily visible, sometimes, to the naked eye, and always with a low-power lens, and the rest of the tissue is hypertrophied, especially at the back wall of the trachea. Catarrhal tracheal ulcers are exceedingly rare, superficial, and of but slight extent, but they do occur, and are usually situated on the intercartilaginous membrane.

DIAGNOSIS.—Tracheoscopy, a modification of laryngoscopy, can alone determine with certainty whether, and to what extent, the trachea is inflamed. Unfortunately, very few practitioners have as yet mastered this method of examination, which, though really not more difficult than laryngoscopy, requires greater illumination (necessitating under some circumstances a mirror of longer focal distance) and different relative position of patient and operator. (See article by Seiler.) Figs. 25 and 26 show the tracheoscopical images of a case in which there was intense acute tracheitis. The anterior wall is seen in Fig. 25, and the posterior in Fig. 26; on both, but especially the latter, clumps of phlegm and ramifying injected blood-vessels are distinctly seen. In many cases, by means of the stethoscope, either dry sonorous or mucous râles may be heard over the windpipe; at other times we may be aided in coming to a conclusion by the presence of dysphagia—increased when the chin is raised and diminished when the chin is pressed on the chest, as pointed out by Hyde Salter—and by the morbid sensations, increased by pressure, in the region of the windpipe when there is cough and expectoration.

[p. 135]
FIG. 25.
Acute Tracheitis: anterior wall
Acute Tracheitis: anterior wall.

FIG. 26.
Same case as Fig. 25: posterior wall
Same case as Fig. 25: posterior wall.

PROGNOSIS.—Simple tracheitis, though occasionally not without danger in extremely young and very old patients, rarely if ever destroys life. Under good hygienic circumstances it frequently gets well of itself, and it does not usually produce sufficient swelling or hypertrophy to cause stenosis. It is, however, when severe, an annoying disease, apt to recur, and, unless properly managed, difficult to eradicate.

TREATMENT.—Tracheitis is treated very much like bronchitis confined to the larger tubes, only that local measures are more prominently applicable, especially in chronic cases. Frequently, when acute, the disease may be arrested by a Dover's powder, a warm bath, and a diaphoretic drink at night, with hygienic attention, regulation of systemic functions, and soothing applications, such as inhaling simply vapor of water or medicated water, or using warm-water poultices externally. Expectorant mixtures, containing ipecacuanha, sanguinaria, squills, or senega, may be given, according to the age and condition of the patient, with matico and the like, when the secretion is abundant, and with ammonium acetate or sodium bromide (potassium carbonate or ammonium carbonate where there is depression) or tincture of aconite (especially when fever is present), or a very minute quantity of tincture of veratrum viride, when there is much dryness. Inhaling the steam arising from a pint of hot water (160–170° F.) containing 10 grs. of extract of conium, 1 drachm of compound tincture of benzoin, and half a drachm of ammonium sesquicarbonate, or inhaling nebulized solution of potassium bromide, 10 to 20 grains to the ounce, or fumes of evolving ammonium chloride or of nitre-paper, is very serviceable, as well as placing a mustard plaster or a hot poultice on the upper part of the chest (not directly over the windpipe) and on the back of the neck or between the shoulders. Some patients require for several days to take daily from 8 to 10 grains of quinia sulphate, then a smaller quantity, care being taken not to discontinue the remedy suddenly. Smoking eucalyptus-leaves, with much inhalation of the smoke, is useful in protracted cases. In chronic as well as acute tracheitis not only balsamic, anodyne, and astringent inhalations either of vapors, or of liquids nebulized by the various spray-producers are in vogue, but also insufflations of powders, injections of liquids, and touchings with the sponge or cotton-wad probang or tracheal applicator. Powders should never or only rarely (as, e.g., morphia, 1/161/8 of a grain, when the cough is troublesome, etc.) be blown into the trachea; injections and touchings should be made use of only after the operator has acquired the necessary skill to apply them by means of the mirror. A few drops of a solution of silver nitrate, varying in strength inversely as the chronicity of the case from 5 grains to 60 to the ounce of water, thus accurately applied at proper intervals of time, have proved successful in otherwise intractable cases. In chronic tracheitis general tonic treatment must be combined with the local, and attention be paid to possible coexistent cardiac and [p. 136] broncho-pulmonary affections or other morbid conditions. In some cases it is advisable to administer potassium iodide; in rheumatism, sodium salicylate; in gout, colchicum. The utility of producing alkalinity of the blood (as by giving alkaline mineral waters to drink, etc.) has received a new and direct support by Rossbach's recent observations of diminution of the blood-supply and of the secretion in the tracheal mucous membrane of cats whose blood was made alkaline by injecting sodium carbonate into the femoral vein.

Patients subject to tracheitis should observe all the precautionary measures of so-called bronchitics as to sponging, bathing, and friction of the body, wearing a respirator, clothing, exercise, habits, etc.

Complicated Tracheitis.

Under this heading are here classed together all inflammatory conditions of the windpipe differing from simple or catarrhal tracheitis. In these, other tissues may be affected as well as the mucous membrane. In exanthematous, erysipelatous, and exudative tracheitis the mucous membrane is prominently involved; in oedematous and phlegmonous tracheitis, the submucous connective tissue; and in perichondritic and chondritic tracheitis, the cartilages and their investing membrane. The latter forms are connected with suppurative and ulcerative processes, and, unless traumatic, almost never occur, except in phthisical and syphilitic tracheitis. I shall speak of them under the head of Ulceration.

The tracheitis of measles and scarlatina consists in an acute catarrh, with sometimes considerable desquamation of epithelium, erosion, and capillary hemorrhage. In cases of small-pox in which the larynx is affected, the same disease may extend into the trachea, varying in severity from a congestion of the mucous membrane to an intense pustular process. Erysipelas of the larynx may also involve the windpipe, and when it does is exceedingly dangerous. More than half a century ago Gibson observed in an epidemic of erysipelas that when it spread to the trachea it generally proved fatal.1 Tracheal oedema is extremely rare even when the larynx is oedematous. Phlegmonous inflammation and abscess have been observed in a few instances. Tracheal diphtheria is usually an extension of diphtherial disease of the larynx. Without entering into a discussion of the nature and cause of diphtheria, as either a local or general disease, it is here sufficient to refer to the fact that while in simple inflammation of mucous membrane no fibrinous exudation takes place, certain poisonous irritations lead to the exudation of lymph which infiltrates the tissue and may form a pseudo-membranous deposit upon it: experiments have proved that ammonia, chlorine, and, certainly, bacteria, are able to produce this. In laryngo-tracheal diphtheria or croup the disease most frequently commences in the pharynx, occasionally in the larynx, and much more rarely in the trachea.

1 Transactions of the Edinburgh Medico-Chirurgical Society, vol. iii., 1828.

The treatment of each of these forms of complicated tracheitis is the same as the treatment of the corresponding form of laryngitis.


Tracheal ulcers are just as multiform as laryngeal ulcers, but far more rare. Like inflammation, they may occur by extension from above or below, [p. 137] and only those following localized morbid conditions are certain to have arisen in the trachea. Under the head of Inflammation it has been stated that simple catarrhal ulceration does occasionally occur; of this there is really no doubt, but some writers have denied it and thrown the whole subject into great confusion. It is true, however, that a tracheal ulcer has usually a so-called dyscratic base, and either is diphtherial or phthisical (tuberculous) or syphilitic or lupoid or leprous or carcinomatous, or else comes from extraneous causes; as, for instance, from traumatic ulceration or extension or perforation from neighboring abscess, etc. There are two kinds of ulcers—viz. one in which the molecular death of tissue proceeds from the surface inward, and another in which it proceeds from within to the surface. Catarrhal ulcers, as well as ulcers from decubitus after tracheotomy, from pressure of the canula, belong to the first kind; when involving only the epithelium or the epithelium and the layer immediately underneath it the name erosions is given them; and if it were true that catarrhal erosions never penetrate to the deeper structures, it would be justifiable to say that there are no catarrhal ulcers, but only erosions: they do, however, penetrate, and sometimes to great depths. In the second kind of ulcers the epithelium is at first normal or intact, and the loss of substance of underlying tissue in consequence of inflammatory processes in the mucosa, submucosa, or perichondrium affects the epithelium secondarily. This occurs whenever, from any cause, there is primarily caries of cartilage or suppuration of submucous tissue, especially in typhoid conditions, in phthisis, and in syphilis.

FIG. 27.
Tuberculous Ulceration of the Trachea
Tuberculous Ulceration of the Trachea, as seen during life.

FIG. 28.
Same case as Fig. 27: post-mortem appearance
Same case as Fig. 27: post-mortem appearance.

FIG. 29.
Syphilitic Ulceration of Trachea
Syphilitic Ulceration of Trachea, as seen during life.

[p. 138]
FIG. 30.
Same case as Fig. 29: post-mortem appearance
Same case as Fig. 29: post-mortem appearance.

The seat of tracheal ulcers is usually the posterior wall and the lower portion, unless the upper portion is affected by extension from the larynx or by pressure from a tracheotomy-tube. They are found also in other portions, and sometimes are so numerous that they give to the membrane a sieve-like appearance. Occasionally they denude some of the tracheal rings. In shape they vary, being mostly irregularly circular or oval, and excavated or scooped out; in size they vary from that of a pin's head to that of a marble. In tuberculosis they are generally small and numerous, have a pale background, and are occasionally confluent, while in syphilis they are usually isolated and large, very destructive, and apt to cause contractions or other deformities by [p. 139] partial or extensive cicatrization. Such contracting ray-like cicatrices have more than once produced fatal stenosis.

The SYMPTOMS are frequently obscure, but local pain and irritation are usually, purulent or muco-purulent sputa are sometimes, present. The diagnosis is difficult unless tracheoscopic examination reveals the condition. Fig. 27 shows the tracheoscopical image, and Fig. 28 the post-mortem appearance, of a case of tuberculous tracheal ulceration on the upper portion of the front wall, while Figs. 29 and 30 show the image during life and the appearance after death of a case of syphilitic ulceration. In Fig. 30 the posterior wall is seen with the ulcers, and below them a star-shaped cicatrix.

The PROGNOSIS generally depends upon the underlying disease, and is grave because the latter is. Perforation may take place, as well as cicatrization and hypertrophy, and either process may lead to a fatal issue. In a number of instances post-mortem examination has shown that tracheal ulceration may produce surprisingly great ravages before destroying life.

TREATMENT, like the prognosis, depends somewhat upon the disease underlying the ulceration. Pain is relieved by anodyne, and cicatrization promoted by alterative inhalations, as of nebulized glycerated solutions of morphine, ethereal solution of iodoform, iodinic preparations, oil of solidago, citronella oil, etc. Catarrhal ulcers heal without special treatment with the subsidence of the catarrhal inflammation. In syphilitic ulceration, stenosis from cicatrization is to be dreaded, and specific constitutional treatment is the main reliance. The internal administration of cod-liver oil has been found of service in nearly all cases of tracheal ulceration, especially in phthisis, lupus, etc. Appropriate general treatment must be combined with the local.


DEFINITION.—Tumors, benign or malignant, growing from the wall and projecting into the interior of the windpipe. Inversion of the mucous membrane forming a protrusion into the interior will be spoken of under the head of Stenosis; and tumors of other organs extending into the trachea, such as cancer of the oesophagus, lymphatic glands, thyroid body, etc., are excluded from consideration under the present head.

FREQUENCY OF OCCURRENCE.—Aside from post-tracheotomic granulation-tumors, which with careless tracheotomy or after-treatment occur often, the disproportion in the frequency of laryngeal and tracheal morbid growths is even greater than that of other laryngeal and tracheal affections. I have met with only eight instances of tracheal morbid growths, strictly so called, in a special practice during more than twenty-five years. This is exclusive of post-tracheotomic vegetations and tumors from contiguity.

ETIOLOGY.—Local irritations and chronic inflammatory conditions seem often, if not always, to be the forerunners of tracheal tumors, but the real cause of the latter is unknown. Recently it has been suggested (see the article on LARYNGEAL TUMORS) that the ever-present bacilli play a rôle in the production of morbid growths as well as in that of other diseases. As it is known that some parasitical organisms on plants use up their nidus very slowly, with the formation of peculiar excrescences, while others very rapidly destroy the tissue of their host, it would be easy to suppose that some such difference in the micro-organism causing the tumor determines its benign or malignant character.

Post-tracheotomic vegetations may arise from the irritating pressure of a [p. 140] tracheotomy-tube, especially from the use of a fenestrated tube or a tube ill fitted to the patient. Some observers are of opinion that such tumors existed before the performance of the operation, and, indeed, led to it, even though the supposed reason may have been laryngeal or some other tracheal disease. While it cannot be denied that such may have been the case sometimes, there is no doubt that in other instances—and not only in those in which the vegetations "always grow from the cicatrix" (Petel)—they are truly caused by the operation, or by the wearing of the tube, especially if it be in any way unsuitable as to size, form, etc.

SYMPTOMATOLOGY.—The symptoms of tracheal tumors are local irritation; tickling or other morbid sensation, sometimes inducing and sometimes not inducing cough; and encroachment upon the breathing-space—dyspnoea—depending on their precise seat, size, and rapidity of growth. It is usually difficult for the patient to specify the beginning of his trouble, because, on account of the large size of the windpipe, dyspnoea generally comes on very gradually. An accidental catarrhal condition of the tracheal mucous membrane from a cold usually first arrests the patient's attention. The very great diminution of the calibre of the tube that the patient can bear when the tumor enlarges slowly is sometimes astonishing. Unless the tumor is pedunculated (so that expiratory efforts can throw it up into the larynx), which is generally not the case, expiration and inspiration are equally affected, both becoming gradually more and more labored and noisy. Sometimes the act of swallowing large morsels brings on an increased dyspnoea; sometimes respiration is accompanied by a sort of valvular sound. Cough is frequently, but not always, present, and depends, together with expectoration, upon either coincidental catarrhal condition or irritation from the tumor: in the latter case it is essential, dry, and persistent, and may vary with the position of the patient. Sputum may be bloody and even contain shreds of the tumor, as in similar cases of laryngeal growth. With increase of the tumor the voice becomes weak and suffers in extent of range, as in other cases of tracheal stenosis; the same is true of the diminished rising and falling of the larynx. The course and duration of the disease vary considerably with its nature. I have observed a tracheal fibroma to remain stationary for eight years, when the patient died from other causes and the diagnosis was confirmed post-mortem; and, on the other hand, a cancer to grow so rapidly that the patient died from suffocation within five months of its first causing the slightest symptom. If not relieved, suffocatory paroxysms, with or without consequent bronchitis and pneumonia, lead to a fatal termination.

PATHOLOGY.—As in the larynx, so in the trachea, the pathological character of neoplasmata is generally that of papilloma. Of my eight cases, all observed during life, four were papillomatous (two examined microscopically after successful extirpation, one post-mortem, and one in situ macroscopically only), one was a fibroma, microscopically examined, one an osteo-chondroma, one a sarcoma, and one a carcinoma, the three last having been examined post-mortem.

Of non-malignant tracheal tumors observed by others, the large majority were papillomata; next in number come fibromata. Aside from these two kinds of tracheal tumor, the cases recorded in literature are the following: Rokitansky more than thirty years ago described tracheal enchondromata found after death; and Cohen discovered in the corpse of a phthisical patient a number of small enchondromata on the central portions of the tracheal cartilages. Steudener, Demme, Wilks, Chiara, and Eppinger have observed, post-mortem, tracheal osteomata. Gibbs has described a tracheal cystic tumor2 seen with the laryngoscope; Müller, under the guidance of Gerhardt, a myxo-adenoma observed tracheoscopically and carefully studied [p. 141]during life and after death; and Eppinger has recorded a case of post-mortem tracheal adenomata and cysts, Simon having previously found three similar tumors on dissecting a new-born tigress. Virchow speaks of the occurrence of retro-tracheal retention-cysts, and Gruber has observed several; but there can be no doubt that at least some of the tumors thus described are nothing but circumscribed dilatations of the tracheal mucous membrane—practically, dilated mucous glands. As to malignant tumors, in addition to my two cases Schrötter has reported two cases of sarcoma, and Labus one of fibro-sarcoma, while Rokitansky, Klebs, Koch, Schrötter, Langhans, and Mackenzie have described cases of carcinoma.

2 Cohen questions whether this was a cyst or an abscess. It burst spontaneously.

Cases of cancer of the oesophagus, which involve the trachea—excluded, as before stated, from present consideration—are, comparatively speaking, by no means rare, and are apt to establish a fistulous communication between the two tubes.

DIAGNOSIS.—The symptoms mentioned are those common to nearly all cases of tracheal stenosis, and will be referred to again under that head. Tracheoscopy alone makes the diagnosis certain; unless when the seat of the disease is ascertainable without, its nature is shown by the expectoration of portions of the tumor. The first case of tracheal tumor ever diagnosed during the patient's life was observed by means of the mirror by Tuerck in 1861; but it is very difficult in the mirror to estimate distances as to depth, and unless the number of tracheal rings above a tumor can distinctly be counted, a growth in the lower cavity of the larynx may readily be mistaken for one in the trachea, and vice versâ. Catheterism of the trachea shows the distance at which the tumor is situated, sometimes very accurately, but it is dangerous unless performed under the guidance of the mirror, and even then requires great care. The introduction without the mirror of a probe or sound for the same purpose is still more dangerous and unjustifiable, while with the mirror it is perfectly safe in proper hands. Localized protrusion of the mucous membrane into the interior is the condition which most simulates tracheal tumor. (Compare Fig. 32.)

FIG. 31.
Papilloma of Trachea
Papilloma of Trachea.

The pathological nature of a tracheal tumor can sometimes be determined in situ with more or less probability. Without microscopical examination it is not always possible to say whether a growth is benign or malignant unless the mass has advanced to ulceration, and then specific disease must be excluded by the history and concomitant symptoms. Papillomata have a peculiarly uneven surface; fibromata are usually more smooth. With equally good illumination, tumors of the trachea resemble tumors of the larynx, and may be similarly differentiated. The former are almost always non-pedunculated, or at least none of those hitherto observed have had a long pedicle. Their seat is generally the posterior wall, or the cicatrix of the anterior wall after tracheotomy. In Fig. 31 is seen the tracheoscopic appearance of one of my cases of tracheal papilloma.

PROGNOSIS.—The prognosis is always unfavorable in malignant cases, and also in non-malignant when the tumor grows rapidly or has already attained a large size. The introduction of the laryngoscope has bettered the prognosis, inasmuch as in many cases early recognition enables us, by performing tracheotomy, to prevent sudden death from suffocation, and also because by the aid of the mirror removal has been accomplished through the natural passages.

TREATMENT.—Removal of a tracheal tumor through the natural passages [p. 142] by means of either cutting or cautery instruments requires so much special ability on the part of the operator that it need not be described in detail in a work designed for general medical practitioners. When the tumor is situated above a point at which tracheotomy can be judiciously performed, no physician worthy of the name should hesitate to lay open the trachea in any case in which suffocation is impending. Removal of the tumor by surgical operation after opening the windpipe may be attempted or not according to circumstances, but in all cases palliative measures by sedative inhalation and otherwise may be resorted to, and the patient's general health, especially in malignant cases, must be kept up as much and as long as possible.


DEFINITION AND PROXIMATE ETIOLOGY.—Stenosis is narrowing or more or less occlusion of the windpipe. It is either stricture or constriction from within, or compression from without, or both combined. Constriction within the trachea is due to swelling or thickening or cicatricial displacement of the mucous membrane or other tissue, inversion of its walls, or morbid growth or foreign body in its interior. Compression from without is due to goitre (which has in some cases prevented viability) or other disease of the thyroid body; aneurism; abscess; enlarged bronchial glands or cervical lymphatics; disease of the sternum, clavicle, or vertebræ; mediastinal tumor; cystic, emphysematous, or other tumor of neighboring tissue; or foreign body. According to Rose's observations of goitre,3 compression of the trachea leads to fatty degeneration of the cartilages and their subsequent softening and absorption; after which, the windpipe having become membranous throughout and no longer patulous, death can easily—in some positions or flexion of the body, etc.—take place.

3 Der Kropftod und die Radicalcur der Kröpfe, Berlin, 1878.

In acute tracheitis, though there is swelling of the mucous membrane, the large size of the tube usually obviates stenotic symptoms, while chronic tracheitis does occasionally lead to sufficient contraction to interfere with respiration; but generally stenosis is the result of syphilis, and frequently follows ulceration and cicatrization. In a case recorded in the Bullétin des Sciences médicales for January, 1829, the lumen of the trachea was reduced to two lines.

FIG. 32.
Involution of Trachea, due to aneurism
Involution of Trachea, due to aneurism.

SYMPTOMS AND DIAGNOSIS.—The main symptom is the peculiar, gradually increasing dyspnoea; once observed, it is recognized without much difficulty. There may also be mucous râles; cough rough and sibilant; attempts at clearing the throat without expectoration, or occasionally with some expectoration, which is at first light-colored, then streaked with blood, and at last purulent, but never abundant (unless accidentally complicated by catarrh), and always difficult to eject; perhaps occasional pain, but constant disagreeable sensation (tightness) in the trachea just above the sternum. Tracheoscopy settles the diagnosis. The tracheal rings are seen either as diminished circles or arcs—sometimes concentrically placed, sometimes in two different directions, as shown in a case of tracheal stenosis from [p. 143] compression causing protrusion of the mucous membrane into the interior, represented in Fig. 32, or else constricting bands are visible.

As to the dyspnoea, both inspiration and expiration are affected—frequently, however, the former more than the latter, as is shown by pneumatometry. The head is thrown forward and the chin up; the larynx moves up and down less energetically than in health (while the respiratory movements of the larynx are abnormally increased in laryngeal dyspnoea); the thorax is less expanded than normally, especially its upper portions.

As to catheterization and probing, see the remarks under the head of Morbid Growths.

PATHOLOGY.—The pathological changes in cases of stenosis vary with its cause. In the great majority of cases of stricture from within, syphilis—antecedent ulceration followed by cicatrization—has produced the stenosis; in compression thyroid disease, and next often aneurism, is the cause. The stenosis is most frequently situated in the lower, next in the upper, and least in the middle, portion; more often than the latter alone the whole tube is affected.

PROGNOSIS.—This is rather favorable with timely and proper treatment unless a continuing active cause be irremovable; without treatment, however, the cases almost invariably terminate fatally from pneumonia, tracheal spasm, apnoea as before explained, etc.

TREATMENT.—When the symptoms are urgent and the stenosis is not too low down, tracheotomy must be performed. Sometimes a very long and flexible tube may be introduced with success in case of very low stenosis, but more often tracheotomy is disappointing on account of the stenosis extending too low down even when its beginning is higher up.

Stricture, especially when the symptoms are not very urgent, may be relieved by dilatation through the natural passages, with, or if possible without, previous tracheotomy. The cure of compression implies removal of the compressing tumor or disease. Soothing inhalations, such as of hops, benzoin, etc., diminish irritation and give temporary relief.


Dilatation of the trachea is either confined to the tube (when the synonym tracheaectasy is applied to it) or is diverticular. In the former case it may involve only a part or else the whole extent of the windpipe. Whenever free respiration, especially expiration, is chronically impeded, some portion of the air-tract below the obstruction is apt to become dilated; thus, a bottle-shaped dilatation is sometimes found immediately below an annular contraction. On the other hand, tracheaectasy may extend upward from bronchiectasy. It has been observed post-mortem to a slight extent in public criers, trumpeters, etc., and in old coughers from laryngeal disease, chronic bronchitis, pulmonary emphysema, etc., but without giving rise to distinct symptoms during life.

Diverticular dilatation forms an air-containing tumor which either looks into the oesophagus or is discernible on the outside of the neck. Though rarely met with, it ought to be thought of in all appropriate cases, and when pointing externally ought always to be recognized by the careful practitioner. It is either hernial, glandular, or fistular—three pathological conditions which have hitherto been confounded. On account of the construction and position of the trachea there can be but little protrusion outward without previous [p. 144] dilatation. Unless there be a deficiency of the cartilaginous rings, only the posterior wall, which is always unsupported, and to a slight extent also the intercartilaginous membranous portions, are liable to tracheal hernia. This is properly called tracheocele; but the various terms aërial goitre, aërial bronchocele, pneumatocele, tracheal air-cyst, tracheal retention-cyst, internal tracheal fistule, subcutaneous or incomplete fistule of the trachea, have been indiscriminately used as synonyms of tracheocele, and have added all the more to the confusion, as some of them originated, no doubt, as correct appellations of the particular cases to which they were applied. Aside from the occasional occurrence, both congenital and acquired, of tracheo-cutaneous fistule, complete and incomplete, and the still more rare occurrence of hernia of entire portions of the mucous membrane, the cases of diverticular dilatation of the trachea—or saccular tracheaectasy, as it may be called—are glandular, as found by Rokitansky more than fifty years ago. Virchow seems to regard all such glandular dilatations as retention-cysts (see Morbid Growths), but although retro-tracheal retention-cysts doubtless do occur (Gruber has reported two unquestionable instances), and although the tumors now under consideration do in fact sometimes contain a little mucus in addition to air, they do not constitute cysts or adenomatous new growths, but are simply distended portions of the tracheal mucous membrane, respiratory glands, whether the dilatation be caused, as Rokitansky thought, by traction (Zerrung) and hypertrophy of the mucous glands, or, as Eppinger suggests—and which is more likely—mainly by increased intra-tracheal air-pressure. There must, however, I think, coexist some deficiency or weakness of the cartilaginous or other tissue, either congenital or acquired.

When the dilatation is retro-tracheal only, the symptoms are very obscure, and diagnosis during life is at best uncertain. In one such case under my care, confirmed (death having occurred from another cause) by post-mortem examination, there was some dysphagia and slight alteration of the voice. In all other cases the characteristic and unmistakable sign of the disease is the peculiar intermittent, or, at all events variable, aërial cervical tumor. It increases and diminishes with forcible expiration and inspiration, and attains its largest size during violent coughing, hawking, blowing of the nose, or other expiratory effort. Occasionally the voice is considerably affected. The tumor, especially by the manner in which it can be made to temporarily disappear and reappear, can usually be easily differentiated from subcutaneous emphysema and goitre, the only two conditions with which it might be confounded. In the fistular variety the opening into the trachea can sometimes be seen by means of tracheoscopy.

Aside from the deformity which the tumor may cause, it sometimes induces laryngeal spasm and dyspnoea; otherwise it is of no gravity.

As to TREATMENT, methodical and continued compression by applications of astringent collodion or by mechanical means is the only palliative measure applicable; when suffocatory attacks call for it, tracheotomy must be performed.

[p. 145]



The operation of tracheotomy, or the artificial opening of the air-passage—using the term in its modern acceptation as including all of the five incisions that are both anatomically and surgically possible, either singly or in combination, between the lower border of the thyroid cartilage and the upper edge of the sternum (incisura jugularis sterni), and reserving the term laryngotomy to denote the division of the thyroid cartilage alone—fulfils two important and usually urgent indications: First, in allowing the respiratory current free access to the lungs in cases where the laryngeal obstruction is of such a sudden or of so progressive a character as to either immediately or remotely threaten the life of the patient; and, secondly, in affording a ready means of direct access to those portions of the air-tract which lie below the level of the glottis, and thus permit not only of the direct extraction of such foreign bodies as may accidentally have found their way within the air-passage, but of neoplasms here located and of occluding diphtheritic membranes. Catheterization and aspiration of the trachea are likewise both rendered not only possible, but easy of execution. Both general indications mentioned often coexist, and are met by the operation in a large class of cases; the first alone plays its important life-saving rôle in many.

The disease or accident which renders the operation necessary varies greatly, and upon this variation depends not only the surgeon's decision as to the precise time at which the opening into the air-tube must be made, but also the precise point at which the operation should be performed. These general questions I treat of in detail. The special indications may conveniently, but somewhat arbitrarily, be arranged as follows, in groups, which I have attempted to make complete, although some of the conditions, being purely surgical, do not strictly come within the compass of this essay:

A. Acute inflammatory diseases of the larynx and trachea:

1. Acute oedema of the larynx.
2. Erysipelatous and exanthematous laryngitis.
3. Acute perichondritis, with abscess.
4. Diphtheritic croup.

B. Chronic affections of the larynx and trachea:

1. Syphilitic laryngitis.
2. Phthisical laryngitis.
3. Chorditis vocalis inferior hypertrophica.
4. Carcinoma of the larynx or trachea.
5. Non-malignant growths of the larynx or trachea.
6. Tumors overlying the superior aperture of the larynx.
7. External compression of the trachea by tumors of the neck or chest.
8. Strictures of the larynx or trachea.

C. Neurotic diseases:

1. Paralysis of the abductors of the vocal cords.
2. Spasm of the adductors of the vocal cords. [p. 146]

D. Traumatic conditions:

1. Foreign bodies in the larynx or trachea.
2. Impaction of foreign bodies in the pharynx or oesophagus.
3. Fracture of the larynx. Rupture of the trachea.
4. Scalds and burns of the larynx.
5. Incised and gunshot wounds of the throat.
6. Poisonous bites inflicted by certain insects about the mouth or neck.
7. Suffocation from the passage of blood, fluids, etc. into the air-passages (tracheotomy, with aspiration of the windpipe and artificial respiration).
8. Suffocation from the acute collection of either mucus or serum in the bronchia (ditto).
9. Suffocation from the inhalation or development of poisonous gases (tracheotomy, with artificial respiration).

Finally, although it pertains alone to the province of the surgeon, I may allude to the temporary tracheotomy and "tamponing of the trachea" which has been recommended—and certainly found efficient—in preventing the entrance of blood to a dangerous degree into the lower trachea and lungs during the performance of certain operations in the neighborhood of or upon the air-passages, such as resection of the upper jaw, the extirpation of large nasal and naso-pharyngeal polypi, removal of the tongue, subhyoidean pharyngotomy, laryngotomy, and extirpation of the larynx.1

1 For the details of this procedure consult Schüller, Die Tracheotomie, etc., Stuttgart, 1880.

All-important as a preliminary to the operation itself is a thorough knowledge of the surgical anatomy of the region upon which it is proposed to operate; and this not alone in the adult, but especially in the child, where essential differences often exist. Possible anomalies also are not to be forgotten.2 The assurance of the surgeon depends upon this knowledge: mere, manual skill will not compensate for its want; the success, both immediate and remote, of the operation is in great measure the reward of its possession.

2 See Pilcher, "The Anatomy of the Anterior Median Region of the Neck," Ann. of Anat. and Surgery, Brooklyn, April, 1881.

It will be remembered that the trachea commences at the inferior border of the cricoid cartilage, directly opposite to the lower edge of the fifth cervical vertebra, and reaches thence downward, in the median line of the neck, until it bifurcates opposite to the third dorsal vertebra. In its upper part it is nearly subcutaneous, and is surmounted by the prominent ring of the cricoid cartilage (easily identified, even in the young child), above which, in turn, lies a slight depression (the crico-thyroid space) between the cricoid and thyroid cartilages. As the trachea descends in the neck it recedes gradually, lying at the episternal notch about one and three-eighths of an inch from the surface. Throughout the whole of this course it is in relation with important structures. In its cervical portion it is covered by the sterno-hyoid and sterno-thyroid muscles, and in the median space, which is usually distinct between them, by layers of the deep cervical fascia. It is also crossed by the isthmus of the thyroid gland, which lies between the second and fourth tracheal rings; by the arteria-thyroidea ima, when present, and below by the plexus formed of inferior thyroid veins with their tributary and communicating branches. In the latter region, but more superficially, are some communicating branches between the anterior jugular veins. The innominate and left carotid arteries are also anterior to it in the episternal notch as they diverge from their origin. Laterally, the trachea is in relation with the common carotid artery, the lateral lobes of the thyroid body, the inferior thyroid veins, and the recurrent laryngeal nerves. The thoracic portion of the trachea is covered by the manubrium sterni, with the origins of the sterno-hyoid and [p. 147]sterno-thyroid muscles, by the left innominate vein, and by the commencement of the innominate and left carotid arteries. Still lower, the transverse portion of the arch of the aorta crosses, and the deep cardiac plexus of nerves lies in front of it. Posteriorly, throughout its length, it rests upon the oesophagus.

In performing, then, either the superior or inferior operation of tracheotomy, after cutting through the skin and superficial cervical fascia—which is really loose areolar tissue containing fat—the superficial layer of the deep cervical fascia is reached, and immediately below it more or less adipose tissue and the two anterior jugular veins lying in an inferior tracheotomy to either side of the wound, which is always made in the median line. As a matter of fact, these various layers are rarely demonstrable, and the surgeon proceeds irrespective of them until he reaches this point in his operation—viz. the muscles which overlie the trachea. These may overlap in the median line, and have to be retracted after having been separated; or, again, a thin line of connective tissue marks a slight interval between their inner edges, and is readily seen and dissected through if the operator has kept his incision vertical and strictly in the median line of the neck—a matter so important to the success of his operation that I do not hesitate to again allude to it. The muscles separated and gently retracted, together with the overlying tissues, toward the sides of the wound, the upper edge of the isthmus of the thyroid gland overlying the second and third, perhaps fourth, rings of the trachea, is always seen in a superior tracheotomy—its lower edge very frequently in the inferior operation. The isthmus is adherent to the trachea and to the larynx through the deep layer of the deep cervical fascia, but is capable of being slightly displaced or pushed upward or downward as the case may be, and thus kept from obscuring the operative field. This being done, the deep layer of the deep cervical fascia is seen covering and strongly adherent to the tracheal wall together with the thyroid veins. A few touches of the knife, carefully avoiding the blood-vessels, serve to clear it away, and the tracheal rings are clearly exposed.

In carrying out this dissection, which has been described as occurring in an ordinary and uncomplicated adult case, several matters must be borne in mind; and especially is this true if the operation concerns infants. In them, for instance, the thymus gland rises half an inch above the level of the sternum, and is frequently to be found as late as the sixth or seventh year. In both adults and children the innominate artery occasionally comes into view in an inferior tracheotomy, obliquely crossing the lower portion of the right half of the trachea. It is relatively higher in the child than in the adult. The left innominate vein is also often observed when the trachea is opened low down.

Certain abnormalities of the blood-vessels have been alluded to above. The commonest consists in the existence of a thyroidea ima artery, which when present usually arises from the innominate trunk, but sometimes from the right common carotid or the aorta: it passes to the thyroid body directly in the median line of the neck and close to the trachea; again, the place of the anterior jugular veins may be taken by a single central vessel, almost sure to be wounded during the operation if it exist (Mackenzie).

In performing the operation through the thyro-cricoid membrane (thyro-cricotomy) or through the cricoid cartilage alone (cricotomy), the same tissues are met with, and the same dissection is necessary in the earlier stage of the operation, as have been described in the operation of superior or inferior tracheotomy; but the parts are more superficial, adipose and cellular tissue less abundant, blood-vessels much less numerous, and the operation very much simpler. The thyroid gland of course does not come into view, [p. 148]and the crico-thyroid artery, a very small vessel, needs no attention in the dissection.

I have here and elsewhere included under the general term tracheotomy five distinct operations, having for their object the opening of the air-passages, which are surgically possible between the lower border of the thyroid cartilage and the upper edge of the sternum. In this classification I have followed that of Schüller, and its simplicity, but exactness, and the avoidance of the old confusion of different terms which results from the use of one intelligently employed, seem to me to commend it. These five operations are—1. Thyro-cricotomy, or the opening made through the crico-thyroid membrane alone. 2. Cricotomy, or the division of the cricoid cartilage alone. 3. Superior tracheotomy, the incision being made above the point where the isthmus of the thyroid gland crosses the trachea and below the cricoid cartilage. 4. Median tracheotomy, when, the isthmus being displaced or torn through, the trachea is opened immediately below its site. And 5. Inferior tracheotomy, the incision being made below the point of crossing of the isthmus of the thyroid gland, and at varying distances, dependent mainly upon the age of the patient and size of the parts, above the sternal notch.

Rarely, I am bound to admit, is the field of all of these operations as distinctly limited in practice as is here indicated, and one, perhaps two, are rarely selected. Thyro-cricotomy (old term laryngotomy) is often indicated, and cricotomy and median tracheotomy are sometimes performed as here described. Superior tracheotomy is commonly a combination of at least two of the methods—viz. the division of the upper rings of the trachea and the cricoid cartilage as well. It may even, probably frequently does, trench also upon the thyro-cricoid membrane (thyro-cricotomy) and upon the field of a median tracheotomy, the isthmus being pushed downward or even cut or torn through. The latter operation and cricotomy are, I believe, rarely if ever done from choice. Finally, inferior tracheotomy is a common method. As here described, it meets a large number of indications, and, despite its superior difficulties over the higher operations, is therefore necessarily often chosen; not infrequently, however, does it invade the median region, the isthmus of the thyroid being pushed upward.

Which of these operations shall be selected in a given case depends upon the particular conditions which render it necessary, and likewise, to some extent, upon the age of the patient. Durham summarizes the question very fairly. Thyro-cricotomy (old term laryngotomy) is by far the easiest operation to perform, and its execution is attended by least risk; therefore it is the operation to be preferred in any sudden emergency when suffocation threatens, and especially where the surgeon is alone with the patient. Generally, it is not as applicable as the others, especially in early childhood, on account of the limited dimensions of the thyro-cricoid space. It cannot be recommended in cases of acute or extensive diseases or injuries of the larynx, nor is it likely to be of much service if a foreign body is in the trachea or bronchus. On the other hand, it is probably the best operation to adopt in cases in which foreign bodies are impacted in the larynx, in cases of limited chronic disease or contractions of the superior laryngeal parts—usually the result of syphilitic ulceration—and in cases in which respiration is impeded by intra-laryngeal growths which cannot be removed by the natural passages.

Cricotomy, combined with superior tracheotomy (old term laryngo-tracheotomy), is not a difficult operation, and may be advantageously practised, especially in children; in the adult it meets many indications. Holmes recommends it the more urgently, in preference to an inferior tracheotomy, the earlier the age of the subject may be.

Inferior tracheotomy is comparatively difficult to perform, and during its performance dangers may have to be encountered greater and more numerous [p. 149] than those met with in either of the other operations. This is true certainly of children. As regards young children, Holmes states that after the age of five or thereabouts the surgeon can, if he prefer it, open the trachea below the isthmus of the thyroid gland. He himself does not recommend the operation before puberty. In the case, however, of a foreign body loose in the windpipe of a child, where a large opening is required, it can hardly be obtained above the thyroid body and below the cricoid. To cut through the isthmus of the thyroid (median tracheotomy) is, in early life at least, a doubtful proceeding when it is of large size, on account of its vascularity, and the incision must be made below it—in other words, an inferior tracheotomy.

When the operation of tracheotomy shall be performed is a question which the experience and individual views of the surgeon, based on experience, must decide in each case. The doubt always arises in the mind of the inexperienced operator whether the symptoms are sufficiently urgent to render the operation necessary. To him these general rules may be given: The immediate indication for the operation is to be looked for in the thorax. It is the recession of the lower part of the sternum and contiguous ribs and the retraction of the intercostal spaces and clavicular fossæ at each act of inspiration. He must not wait until lividity of the lips and blueness of the fingernails prove that the blood is being imperfectly oxygenated (Mackenzie). Let him remember also that, aside from the immediate and imminent danger of sudden suffocation, a remote one exists and increases the longer he postpones his operation and allows the struggle for air to continue—viz. vascular engorgement and oedema of the lungs, especially in young children; the production of all those conditions which allow, and even predispose, the lung after the operation to fall an easy prey to the inflammatory processes.

The instruments necessary for the performance of the operation of tracheotomy are few and simple, and are such as may ordinarily be found in any small operating-case. A scalpel, a probe and sharp-pointed bistoury, dissecting and artery forceps, a tenaculum, a grooved director, two small retractors, scissors, and a dilator for the tracheal wound, are necessary. To these may be added the needles and thread, waxed ligatures, sponges, and tape. The tracheal tube is elsewhere described. A faradic battery, good suction syringe, and a large flexible catheter may render good and timely service if at hand.

It is true that many other and more or less complicated instruments have been devised for the purpose of facilitating the operation; and other methods, aside from that of the knife, have come of recent years into vogue; but, still, simplest means, as above given, have in the experience of most surgeons been proven to be the best. This statement, undeniably true for all surgical measures, is especially so for the operation under consideration, which is often necessarily undertaken without opportunity for elaborate preparation and under the most adverse and inconvenient circumstances. The more familiar, therefore, the surgeon is with his instruments, the better and more certain will be his work.

Holding this view, it is unnecessary for me to more than briefly mention such instrumental aids as the grooved tenaculum of Chassaignac, the groove serving to guide the operator's knife into the trachea; the sharp double hooks of Langenbeck, which, after being caught in the tracheal walls to either side of the site of the intended incision, are sprung apart after the latter is made, thus dilating the wound and rendering the introduction of the tube easy; the tracheotome of Thompson, a pair of curved cutting forceps, the blades of which are caused to open by a screw after they have been plunged through the tracheal walls; that of Garin, a forceps with curved blades—one, the longest and sharpest-pointed, being made to penetrate the trachea, the instrument then opened, and both blades cut their way to the desired extent of [p. 150] incision; finally, the tracheotome of Maisonneuve, a curved dilating hook with cutting inner edges. Its point is entered between the first and second rings of the trachea and brought out again between the fourth and fifth; the handle is then carried under the chin, so that the blades are made to cut through the trachea and the skin between the points of insertion and exit, after which, upon pushing a spring, the two halves of the hook separate, and the canula is introduced between them (Thornton). And the trachea-stretcher of Marshall Hall, by means of which a portion of the trachea is cut out and the opening kept patent.

None of these instruments have been proven to possess any practical worth; on the contrary, their use, especially that of the latter forms, has in more than one instance been attended with disastrous results.

To obviate the danger of serious hemorrhage during the performance of tracheotomy, both the galvano-cautery knife and the thermo-cautery instrument of Paquelin have been recommended within the past few years, and a number of operations placed upon record. The procedure is the same whichever means be used. The skin and soft parts overlying the trachea are usually alone cut through by means of the cautery-knife, the cartilaginous rings of the tube, when reached, being divided with the ordinary knife. This fact alone speaks against the thoroughness attainable by means of these methods; but, still more important, neither has been found reliable in checking hemorrhage, and in several instances the operator has been obliged in haste to lay aside his cautery apparatus and turn to the ordinary and better-known means to complete his operation. The healing of the tracheal wound made by the cautery is slow: erysipelatous inflammation may attack the wound as the result of the burn, and extensive sloughing of the edges is not unknown, while the resulting cicatrix is large, strong, and contractile, and has caused, in one case at least, a stenosis of the trachea. In the face of these facts he must indeed be an enthusiastic advocate who would recommend the procedure. Mackenzie justly remarks that the use of the thermo-cautery for opening the air-passage merely introduces an unnecessary complication into the operation.

The choice of a proper tube, one suited to meet the special indications in a given case and specially adapted to the age of the patient and the calibre and position of his trachea, is no unimportant matter, and may do much not only to facilitate the immediate success of the operation, but likewise prevent the occurrence of those possible unfortunate results, ulceration, fatal hemorrhage, abscess, pneumonia, and pyæmia, no lack of which are recorded in our literature.

Although the number and variety of mechanical devices and forms of tracheal tubes that have from time to time been devised by the inventive ingenuity of operators is large, the choice practically centres upon one of two forms. The first, and the one most commonly used, is but the original canula of Trousseau, modified by Roger, in that the tracheal portion of the tube is detached from the collar or neck-piece, and moves freely with the movements of the patient; and by Obré, by the important device of an inner tube to prevent clogging of the outer or original tube by mucus. Starting upon this essential basis, the instrument-maker has perfected the instrument of to-day. It is a silver tube, double throughout, the inner tube projecting at the lower or tracheal end beyond the outer—an important point, as it prevents any possible permanent occlusion by mucus or blood-crusts, membranes, and the like at this point, removal of the inner tube at once clearing the end of the outer one. The curve of both tubes should correspond to the arc of a quadrant, and the outer is fastened to a transverse collar or shield by means of two small projections or pins upon its sides which lie under small wire bridges upon the shield after it has passed through an opening in the [p. 151]transverse neck-collar large enough to permit of its free movement during the respiratory movements of the trachea, as well as during the forcible action caused by cough. The ends of this collar or shield curve slightly backward to correspond with the curve of the neck, and are perforated by, preferably, large oval openings, instead of the usual small, inconvenient slit, through which the tapes are passed which hold the tube in position by encircling the neck. To this same shield is fastened, by means of a small turn-screw or a revolving collar, the end of the inner tube, which is thus prevented from being forced out of the outer tube by coughing or any motion of the patient. Upon the upper or convex surface of the outer tube a small ovoid opening is usually made for the purpose of permitting the expiratory current to pass upward (the inner tube being removed) into the larynx and render phonation possible; also, the free opening of the outer tube being closed, to allow of respiration being carried on through the larynx and natural passages—often an important matter, as the case progresses toward recovery, in instances where the operation of tracheotomy has been performed on account of laryngeal obstruction.

A set of these tubes, which can now be readily obtained, should consist of four, with the following diameters: No. 1, one centimeter; No. 2, nine millimeters; No. 3, seven millimeters; No. 4, five millimeters: their length is of course in relative and fixed proportion to these measurements. A tube should always be selected less in diameter than the trachea operated upon: to seek to introduce one of the same calibre is not only unnecessary, but cannot fail to be dangerous. Tubes constructed upon the same principles as that just described (Lüer's) are made of hard rubber instead of silver (Leiter): their lessened cost is their principal recommendation, added to the one that they are more easily kept clean and sweet than the silver tubes. The fact that they are necessarily made much heavier and thicker than the latter is a disadvantage, the lumen of a hard-rubber tube being smaller than that of a silver tube of corresponding external diameter. The objection urged against them, of their great danger of breakage, I have not found borne out by experience. Tracheal tubes are also constructed of platinum, and recommend themselves on the score of lightness.

The main objection to any of the forms of tube just described exists in the nature and shape of their curve, which not infrequently causes the lower or tracheal end to lie in contact with the anterior tracheal wall, or its convexity with the posterior, and irritate, even ulcerate, them. This misfortune is entirely obviated by the canula of Durham, the second of the two forms to which I have called special attention, and which is essentially a right-angled tube, made of four sizes, with a long horizontal portion, varying from 7 to 4 centimeters, and short vertical portion, of from ½ to ¾ of an inch in length and slanting slightly backward. The former portion is capable of being lengthened or shortened in any sized tube by means of a screw arrangement attached to it as it passes through the usual neck-collar or shield; and the vertical tube can thus be correctly adapted to the particular depth at which the trachea naturally lies in a given case from the surface; and not alone this, but also to the condition of the overlying parts, whether thin or fat, swollen or otherwise. Once in position, the vertical portion of the tube remains in the long axis of the trachea, and does not touch its walls to any injurious degree. Owing to its right-angled shape, the angular and descending portions of the inner tube of this canula are necessarily made upon the lobster-tail principle, with joints—a possible disadvantage, as they can become clogged with mucus and may become detached. Other modifications and improvements exist in this Durham canula over the older one first described, which add to its utility, but need not here be dwelt upon. Suffice it to say that the tube is an excellent one for its purpose, and is deservedly highly [p. 152]spoken of and recommended by those who have had experience in its use. Its cost is an objection.

The other forms of tracheal tube need but passing mention. The bivalve canula of Fuller is made in two lateral segments, fastened to a collar and tapering when closed to a point, so that introduction of the apparatus through the tracheal wound is made easy. Once introduced, an inner complete canula is slid into its place, thus separating the two outer halves and rendering the whole round and compact. It has been criticised unfavorably on account of the danger of hemorrhage that it is likely to cause through pressure on the tracheal walls by the sharp edges of the outer canula. In Gendron's canula the same lateral blades are separated after introduction by means of a screw fastened on a transverse bar.

Soft-rubber canulas were introduced to the profession not long since by Morrant Baker for subsequent use after the operation of tracheotomy, the usual tube having been worn meanwhile for a few days. Being soft and flexible, they are certainly safe and comfortable for the patient, but their thickness and the absence of any inner tube are, especially the latter, serious disadvantages. They are not, I believe, generally used. Finally, the long, flexible tracheal tube of König was devised by its author to meet the indications in cases where the trachea is compressed from without by tumors, and where a long canula that is flexible, but at the same time rigid enough to resist pressure, becomes a necessity. It is made in the form of the ordinary tracheal canula, only larger, some three or more inches of the centre of the descending portion of the tube being constructed of spirally-twisted silver wire.

It may not be out of place to remind at this point that a tracheotomy is not infrequently performed, of necessity, very hastily, and in the absence not only of a tracheal tube, but likewise of other and even more essential instruments. The lack of the former need never be a barrier to the prompt performance of the operation, for the ready wit of the true surgeon will show him various ways out of his temporary difficulty. A thick goosequill fastened by threads passed through its outer end makes an efficient improvised canula. A bit of elastic catheter answers the same purpose. Retractors for the edges of the tracheal wound, made of wire—silver if it be at hand, a couple of hairpins if it be not—and connected together by an elastic tape which passes around the neck, will not only answer a good temporary purpose in holding the tracheal wound dilated, but have been recommended by Martin—in a more elegant form, it is true—as a proper method of treatment after opening the trachea. Finally, one or more stitches passed through the cartilaginous edges of the wound, and attached to the soft parts beyond it, will serve to secure its patency, at least temporarily.

If a patient be doomed to wear a tube constantly in his trachea, the instrument described above can be removed at a suitable interval after the operation and its place supplied by a single tube of the same size and form as has been found adapted in the case. In the convexity of this permanent tube an ovoid opening should be made to allow of the passage to the larynx of the respiratory current, in part at least, and to its mouth a pea-valve may be fitted which shall admit air on inspiration, and not allow it to escape on expiration, thus doing away with the necessity of the patient's closing the opening of his tube with his finger each time that he requires to speak. Several forms of these valves have been devised, but practically they are of little use, are annoying to the patients, and, as a rule, not tolerated by them.

How shall the operation of tracheotomy be performed? An answer to this question necessitates a short description of the operative steps of the different procedures that is given in the order in which, I believe, the operations are, as a matter of experience, found to occur in practice—viz. 1st, superior [p. 153]tracheotomy, combined or not with cricotomy; 2d, thyro-cricotomy and, 3d, inferior tracheotomy. Certain preliminaries are common to all.

The patient should be extended upon a table covered with one or two thicknesses of blanket and of suitable height, which has been placed sideways in front of a window if the operation is done by daylight. (At night several candles tied together afford a better and safer light than a kerosene or oil lamp.) The surgeon stands at the right side of his patient and facing the window. Of his two assistants—and the value of trained assistance in this operation is inestimable—one faces him, without obscuring the light, and is prepared to use the sponges, hand the instruments, manipulate the retractors, and render such direct assistance as may be required. The second sits at the head of the table and holds the head of the patient steadily, the neck being well extended and thrown backward over a small round pillow (or, better, a wine-bottle wrapped in a towel) which has been placed beneath it. The head must be held directly in the median line of the patient's body, and even in that of the operating-table. The assistant's attention must never waver from this important duty. In certain cases too great inclination of the head backward serves to increase the urgent dyspnoea, or even to check respiratory efforts. This effect he must watch for, and be prepared to relieve instantly by raising the head. His duties also include the preliminary administration of an anæsthetic, and its use during the operation if required. That such use is safe in this class of operations is now generally admitted, but it is not always necessary. The operation is not an exceedingly painful one, and I have often performed it, with the adult patient's consent, without using any anæsthetic (sometimes freezing the skin over the site of the incision before making it), he submitting rather than undergo any addition to the sense of urgent dyspnoea from which he is already suffering. In children anæsthetics—ether being more commonly employed, although chloroform is often used—are much more necessary, often indispensable. Their effects are speedily manifested when asphyxia is present in any marked degree, and but little of the vapor need be inhaled. The administration, always to be carefully watched and profound anæsthesia avoided, renders breathing easier in many instances, certainly lessens laryngeal spasm, and may be discontinued early in the operation when the air-tube is or has been nearly reached by dissection. Any slight risk attending their use is more than outweighed by the safety and precision which they ensure in the more difficult and delicate steps of the operation (Sands). If the patient be already insensible or if death be imminent, their use, of course, is contraindicated.

The operator having previously decided which operation he will perform, and after carefully identifying the position of the various parts, the larynx especially, marking them with ink upon the skin if he chooses, now steadies the loose skin over the site of his intended incision, and then makes it, freely, firmly, cleanly, and exactly in the median line. If it be for a superior tracheotomy, combined or not with cricotomy, the operation I shall first describe, it must extend from just at the notch of the thyroid cartilage downward for about four inches. A free external incision is very desirable in all cases. The subcutaneous tissue now rapidly dissected through by the careful use of the knife, the veins as met with either being pushed to one side or, if they cross the line of incision, cut if small, then twisted or immediately ligated, or if large doubly ligated and then cut between the ligatures, the interval between the sterno-hyoid muscles is sought for and found, then separated by the blade or handle of the knife and held apart by retractors at the side of the wound. It is important that the faint whitish line of connective tissue which marks the interval between the muscles be recognized, otherwise it happens that the operator passes through the body of one of them, deviates at once from the median line, and approaches the side of the trachea [p. 154]instead of the front. The ring of the cricoid cartilage above and the upper edge of the isthmus of the thyroid gland below can now be either seen or felt by the finger in the wound between them; and about the latter lies more or less connective tissue and numerous small veins. As a rule, careful touches of the point of the knife, or, as some operators prefer at this stage, its handle or the use of a blunt director, serves to dissect up piecemeal or tear through and clear this away, the veins again being pushed out of the way, or if necessary cut and tied, and all parts held aside by removing and replacing freshly the retractors from time to time as the dissection proceeds, until the ring of the cricoid and the upper rings of the trachea come plainly into view; that is, are seen, not alone felt. During this dissection, especially if the handle of the scalpel be used, too much pressure must not be made upon the trachea. More than once I have known it to cause sudden suspension of the respiration, probably by exciting reflex spasm of the larynx. If the isthmus of the thyroid gland extend far upward, it must be pressed downward, its facial attachments to the cricoid and trachea cut or torn through, and may require to be held downward in the lower angle of the wound by an additional retractor. The upper rings of the trachea having been thus well cleared of their overlying parts, the next step of the operation follows. I am in the habit of now removing the retractors and allowing the trachea, which may have become displaced by them, to resume its normal position, the head of the patient being meanwhile readjusted. All this takes but a few seconds. A tenaculum is then implanted in the median line, either just below the edge of the thyroid or the cricoid cartilage, if the latter is not to be severed, and held firmly by the assistant at the head of the table, thus steadying and elevating slightly the trachea and rendering the incision into it certain. The retractors are now reintroduced at the sides of the wound, and the operative field is clear and steady. A glance having shown that all bleeding has ceased, another that the tracheal dilator and tracheotomy-tube lie ready at hand, the operator plunges a straight-pointed bistoury through the tracheal wall at the level of the third or fourth ring in the median line, and cuts quickly upward until the cricoid cartilage is reached, if he proposes, as in the adult can usually be done, to limit his operation to a superior tracheotomy. If not, as in the child, and the cricoid cartilage must be cut through to gain sufficient space for the introduction of the tube, it also is severed by prolonging the incision upward to the thyro-cricoid membrane. A hissing of escaping air, with the bubbling of a little blood and paroxysms of cough, follows the incision and shows that the trachea has been fairly opened. The tracheal dilator is now introduced, the lips of the tracheal wound separated, and the canula slipped neatly into the windpipe (unless in the case of a foreign body), and secured a moment or two later, when respiration is fairly established, by tapes passing around the neck. The tenaculum and retractors are removed at the same moment that the tube is slipped into place.

Many different methods have been recommended for the dilatation of the tracheal wound and to assist the introduction of the canula. The dilator (Trousseau) which has been mentioned surely answers all purposes, and is simple and easily used. An ordinary dressing forceps will likewise do the work if introduced closed and afterward opened. More complicated procedures are unnecessary.

Thyro-cricotomy requires that the superficial incision be so made over the larynx that the thyro-cricoid space shall lie in the centre of one, about two inches long, made in the median line. Following now the dissection just described, the thyro-cricoid membrane is easily reached and quickly seen as soon as the sterno-hyoid muscles are retracted. It should then be divided transversely close below the lower edge of the thyroid cartilage, the wound dilated, and the tracheotomy-tube slipped into place.

[p. 155] Inferior tracheotomy demands that the external incision be free. In children, and in adults with a short neck, it should extend from the cricoid cartilage to just above the sternum. The subsequent steps of the operation are as for superior tracheotomy, with but slight differences. The anterior jugular veins may come into view, but can generally be avoided. If they are joined by a transverse branch, this is necessarily cut through after being doubly ligated. After the thyro-hyoid muscles are separated, the rings of the trachea are much less distinctly felt at first than in superior tracheotomy, being covered by more connective tissue and numerous veins. These inferior thyroid veins, especially if large, are the great obstacle in the way of this operation, and much care is necessary in order to avoid them, which should be done if possible. The lower edge of the isthmus of the thyroid gland, which presents to a variable extent above in the wound, does not, as a rule, offer any obstruction. The thymus gland present in infants is easily pulled downward and out of the way. The trachea at length fairly exposed and all bleeding controlled, the left fore finger of the operator is placed in the lower angle of the wound to securely protect the large blood-vessels here located, and the incision made through some three tracheal rings from below upward.

It may happen that in either a superior or inferior tracheotomy no time will be allowed for careful and slow dissection as here described. In such instances Durham advises that the surgeon grasp the trachea between the fore finger of his left hand on the left side and the thumb on the right, and make uniform, steady, deep pressure, thus firmly securing it and at the same time protecting the large vessels of the neck. The fingers thus placed are not to be moved until the trachea is reached, which is accomplished by rapid incisions confidently made. The pressure of the fingers causes the wound to gape and the trachea to advance. The latter reached, it is caught by the tenaculum and the operation completed as before described.

The operation of median tracheotomy may require a word. As has been stated, that part of the trachea covered by the isthmus of the thyroid gland is very commonly encroached upon in performing either or both superior and inferior tracheotomy, the isthmus being slightly displaced from its site. Other than this the site here mentioned would rarely be selected as the point for opening the trachea. Certain conditions, it is true, might render it necessary, but they would be rare. The danger lies in the hemorrhage which, theoretically at least, is to be expected when the isthmus of the thyroid gland is either torn or cut through; but opinions vary very greatly as regards this danger. With a thin, narrow isthmus in children I have frequently, in performing superior tracheotomy, cut my way through to a sufficient extent to clear a suitable space upon the trachea through which to introduce a tube without difficulty or danger. I should not recommend the procedure, however, were the isthmus to be seen to be, when reached, thick, wide, and exceedingly vascular, but at the same time believe that the danger even here of cutting into it is much overestimated.3 Roser's recommendation to apply a ligature to the isthmus on either side of the median line previous to its division is not generally applicable. Hueter has shown that the fibrous capsule of the thyroid gland enclosing it and its blood-vessels is firmly attached to the trachea and sides of the larynx, and that from the isthmus this fascia extends upward over the larynx (fascia laryngo-thyroidea), and thus prevents, in a measure, attempts at displacing the gland downward. Bose4 recommends that this fascia be divided transversely over the anterior convexity of the cricoid cartilage, when a director can be passed behind the isthmus, to lift it from the trachea and depress it far enough to expose three or four of the [p. 156]rings: the capsule of the gland thus remains unbroken and no hemorrhage occurs. The procedure certainly merits trial; twice it has succeeded well in my hands.

3 See Foulis, "Some Points on Tracheotomy," Glasgow Med. Journ., vol. xv. No. 2, p. 123.
4 Archiv für klin. Chirurgie, vol. xiv. p. 137.

Cricotomy, the division of the cricoid cartilage alone, is an operation which, as far as I am aware, is rarely ever performed. The objection urged against it, however, that in the adult the elasticity of the cricoid cartilage is so great that a wound through its ring cannot be made to gape sufficiently to allow of the introduction and retention of a canula without discomfort and danger of necrosis of the cartilage, is not borne out by experience. In children the objection cannot of course be urged.

The description of the operative steps which has been given, and which comprises the routine in an ordinary and easy cure, should not mislead. The operation is not always as simple and safe as would appear from what has been said. At times complicated and difficult, at times dangerous in practice from the delay involved, it demands in all, but especially in certain urgent cases, a trained hand and eye, sound anatomical knowledge, coolness, self-reliance and presence of mind on the part of the operator. Despite the greatest caution, and even in apparently favorable cases where time for dissection and deliberation is allowed, certain mishaps may occur which complicate the operation to a serious, dangerous, or even fatal degree. Some of these, as will be seen, are avoidable with care, but others may happen that are not only unavoidable, but totally unforeseen, and from their very suddenness all the more embarrassing.

Accidents may occur during the dissection of the soft parts overlying the larynx and trachea, and the importance of carefully determining by palpation the location of the various parts prior to making the preliminary incision, and of studiously preserving their relation and location during the dissection, cannot be overestimated. Neglect of this precaution has in more than one instance led to the air-passages being opened through the thyroid cartilage or thyro-hyoid membrane, instead of at the intended point. It should not be forgotten also that the natural laxity of the several layers of connective tissue of the neck is much increased by their division, and that the trachea, being naturally freely movable, is thus very easily displaced from its normal position during the act of dissection; especially will this happen when unskilful attempts are made to hook aside or retract the divided structures during the operation. Thus it may easily occur that the entire trachea is drawn to one side and entirely lost, or, more commonly, is turned upon its vertical axis, and finally opened at the side instead of anteriorly in the median line. It may not be opened at all, either being altogether missed by the surgeon in his dissection, which is continued past it, even down to the vertebral column, or the tracheal tube may be passed into the tissues lying in front of the trachea, under the mistaken idea that the latter has been incised. Persistence in keeping to the median line during dissection—a golden rule in the operation of tracheotomy—will render the first accident impossible; the second may be avoided by hooking up the trachea, as has been described, before incising it. If the opening into the trachea has not been made large enough to receive the tube, as often happens to the young operator, and even to the experienced when he fears to extend his incision on account of the proximity of the thyroid isthmus, no resource remains but to carefully enlarge it, pushing the thyroid isthmus or veins from before the course of the knife. If the opening be small, and be lost both to touch and sight, a second should at once be made, especially in urgent cases, and no time lost in searching for the first. This opening must be made directly in the median line, otherwise the canula will stand awry in the wound and be easily dislodged from its position in the trachea. If the first opening made is faulty in this respect, it is better to at once make a second. It may seem unnecessary to [p. 157] warn the surgeon against thrusting his sharp-pointed bistoury too far inward at the moment of incising the trachea; but as a matter of fact it has been driven through both anterior and posterior walls, and even through the oesophagus, until it has struck the spine. The converse, or a too superficial incision, is an accident more likely to occur, the point of the knife not being made to penetrate the mucous membrane of the trachea, which is probably swollen and thickened. No relief in such cases follows the incision, and an attempt to introduce a tracheal tube may cause it to pass between the mucous membrane and tracheal walls into the submucous tissue, thus stopping up the tube as it progresses. The disastrous result of such an accident can readily be foreseen unless the complication be quickly appreciated as to its nature, the tube withdrawn, and the incision completed. Much more frequently will a somewhat similar accident occur in the operation of tracheotomy for croup or diphtheria. The pseudo-membrane overlying the walls of the air-passage is not penetrated, but pushed before the knife, which has properly incised the walls of the tube; the introduction of the canula now crowds this membrane still farther back toward the posterior tracheal wall, and a complete tracheal stenosis is added to the pre-existing laryngeal one; sudden and urgent dyspnoea follows, and prompt relief alone wards off fatal suffocation. Fortunately, in such instances the forcible efforts at respiration and struggles of the patient are often sufficient to break through the occluding membrane and allow the respiratory current to pass. Violent cough often follows, and more or less of the membrane is forced out through the tube. Should these events not come instantly to pass, the surgeon must not wait for the efforts of the patient, he being often cyanosed and unconscious at this point, but by passing an elastic catheter down through the tracheal tube break through the occluding membrane forcibly. The occurrence of such an accident is always denoted by absence of respiration through the canula and by alarming asphyxia, and its cause needs but little reflection to be appreciated.

Much the same train of events happens if during the introduction of the canula large portions of the false membrane are completely detached and drawn down into the lower trachea by the violent inspiratory efforts of the patient, or stripped up from the mucous membrane and pushed downward into the air-tube. No time should be lost in either case in removing the tracheal tube, dilating the tracheal wound by forceps or otherwise, and in endeavoring to clear the trachea by seizing the obstructing membrane with forceps. If this be unavailing, the suction-syringe must be adapted to the mouth of the canula and the trachea cleared by aspiration. A large elastic catheter may take the place of the canula. Sands recommends in such instances as the foregoing that another opening should be freely made below the first one in the trachea, when respiration will probably be re-established. The success of this procedure of course depends upon the depth to which the false membrane has been drawn in the trachea.

Schüller regards the moment at which the trachea is opened as the most important and most dangerous of the whole operation. Certain of the accidents which may occur at this period have been detailed; others remain to be spoken of, one of which at least—viz. hemorrhage—requires special mention. Even before the tube is cut into it may cause an important question to arise for the surgeon's decision. A bleeding, often copious and persistent, which arises during the course of the operation from the accidental or unavoidable wounding of the thyroid veins, especially when they are large and numerous, the patient unruly, and perhaps with a short fat neck, and the fact that having wounded one the blood flows so over the parts as to obscure and increase the chance of wounding others, constitutes one of the commonest difficulties met with in the operation of tracheotomy. Hemorrhage arising from a wound of the thyroid isthmus is much rarer, and neither, as a rule, need be [p. 158]feared if due care and promptitude be exercised. But should it occur in a case in which the urgency of the dyspnoea allows of no time in which to employ the ordinary methods by ligature, torsion, pressure, or otherwise of checking it, shall the incision be made and the risk boldly incurred of blood passing to a dangerous degree into the trachea, and this in the face of the oft-repeated advice—the, in some quarters, absolutely given rule—that the trachea is never to be opened until all hemorrhage has ceased? I hold that it unquestionably should be, and that he who waits in many instances until the former moment will have to wait until his patient is dead. Durham truly says that it is useless to let the patient die from suffocation while attempting to prevent death from loss of blood; and yet this has been done.

In any case, then, where there is great venous congestion, marked venous bleeding, and little time, the patient being on the point of suffocation, the surgeon should carefully but boldly proceed and complete his operation in spite of the hemorrhage, opening the trachea and introducing the canula even though the entire field of his operation be obscured by blood. The tracheal opening once made under such circumstances, the patient, if the blood which enters the windpipe be not coughed up again, may be turned upon his face, so that the blood will gravitate toward the tracheal opening and the lips of the latter compressed about the rigid tube; or the blood may be aspirated from the trachea by means of the suction-syringe through an elastic catheter in the wound or the tracheotomy-tube by the operator's mouth, according to the urgency of the case. These measures answer for the slighter cases, but where the patient has suffered from urgent impending suffocation before the opening of the trachea, the entrance of the blood and its suction downward by the first inspiration may make it complete, and the danger is great. Still, the choice lies between the two evils, and the advice given above holds good. To the treatment there recommended will now have probably to be added artificial respiration and faradization. Comfort in any case may be taken in the fact that the re-establishment of respiration through the tracheotomy wound quickly relieves the pulmonary capillaries and the right heart of their distension, the venous circulation resumes its natural course, and the venous bleeding, perhaps alarmingly free, ceases almost immediately or is readily checked by pressure.

Where time is afforded and despatch in the operation is not a necessity, the trachea should not be opened until all hemorrhage has ceased. This, as a rule, is readily controlled by the usual measures, and in a large percentage of operations is not excessive. A direct fatal hemorrhage is very rare; likewise an arterial hemorrhage of any extent, especially if the possible anomalous position of certain arteries, such as the thyroidea ima, be borne in mind and care in making the incision exercised. Nothing but gross carelessness on the part of the surgeon and entire loss of presence of mind can account for the opening of the carotid or innominate arteries, as has been done. During the performance of the low operation of tracheotomy the finger of the operator must more or less frequently be pressed into the lower angle of the wound, and his anatomical sense constantly on the alert.

The entrance of air into a vein during the operation is a possible accident, especially when it is much enlarged and imbedded in dense tissue, as sometimes occurs in malignant disease of the throat or when large tumors of the parts exist. Should such an unfortunate complication occur, the proper treatment, according to Erichsen, should be compression of the wounded vein with the finger and its immediate ligation if possible; compression of the axillary and femoral arteries and a recumbent position for the patient to favor cerebral circulation; and, lastly, artificial respiration.

At the moment of opening the windpipe two conditions may suddenly [p. 159] supervene, both of which need, as may usually be easily done, differentiation from the asphyxia produced by the entrance of blood into the trachea. The first of these is the apnoea which not unfrequently arises in children suffering from urgent dyspnoea the moment that a free opening is made and the air-stream rushes unimpeded into the lungs. The condition lasts but a moment or two, and need excite no alarm. The second is based upon the fact that the operation itself not seldom excites an alarming asphyxia, probably by provoking laryngeal spasm. The introduction of the tube serves to promptly relieve it.

Finally, I may refer to those rare but unfortunate and unpreventable cases where the introduction of a tracheotomy-tube after a carefully conducted operation fails to give relief. Such instances are reported by several authors, and depend upon the existence of some unascertained pathological lesion, such as the presence of a stricture of the trachea below the site of the operation, compression of this tube from without or a tumor within, stricture of the primary bronchi, or some similar condition. A careful preliminary examination and study of the case will in the majority of instances do much to fix the indications for the operation and perhaps account for the surgeon's failure.

The operation itself having been practically completed with the introduction of the canula, the after-treatment of the case now becomes the important consideration. This naturally varies in accordance with the accident or disease which has rendered the opening of the trachea necessary. In the instance of a foreign body lodged in either larynx or trachea the tube may at once be removed as soon as the former is removed or expelled. Indeed, the introduction of the tube is often unnecessary, as the offending article flies out through the wound as soon as the trachea is opened. The only contraindication would be to this rule when the foreign body is of a sharp and irritating character, and has been impacted in the larynx, especially of a child, and consequent inflammation and swelling of the parts may confidently be looked for. Should the operation have been called for on account of laryngeal or tracheal obstruction due to syphilis, both constitutional and local treatment are indicated, the latter varying with the special conditions presented, and being fully described in the section of this work treating of that subject. The patient not infrequently is obliged to wear the tracheal tube permanently. In croup and diphtheria the first efforts of the surgeon after introduction of the tube should be directed toward the removal of such shreds of the membrane as present through the tube or may be reached by forceps introduced through it into the air-passage. Large quantities may thus often be gotten away, to the manifest relief of the patient. A pseudo-membrane covering the vocal cords and causing glottic stenosis has thus also more than once been removed through the wound. A feather carefully passed through the tube into the trachea, by exciting cough and through its mechanical effects, is of assistance in promoting the expulsion of membrane lodged in the trachea below the wound. The use of an elastic catheter and aspirating syringe for the same purpose is advised by Roux and Hueter. In any case, constitutional treatment as well is indicated, and other measures—viz. the inhalation of steam, direct local applications, and the like—such as may meet the views of the particular operator.

Granted that the operation has been performed to meet the indication in cases of sudden and urgent dyspnoea arising from the passage of blood into the trachea or the accumulation of serous fluids in the lower air-passages, as well as in cases of dangerous intoxication from the effects of poisonous gases and narcotics, aspiration of the trachea in the former instances, followed by artificial respiration in all, and perhaps the catheterization of the trachea in the latter, as advised by several recent writers, will tax the surgeon's energies as the primary consideration after his operation. The catheter may be first used for the purpose of aspiration in the former cases, if [p. 160]necessary, then for the injection of air, it here taking the place of the natural upper air-passages.

In cases of acute laryngeal oedema, certain chronic inflammatory processes, neoplasms in the larynx or trachea, and injuries or wounds of the air-passages, the proper treatment, aside from that of the necessary tracheotomy, will suggest itself on ordinary surgical principles, or is elsewhere specially treated of in this work in connection with the subjects themselves.

Aside from these special indications for after-treatment, which must be met as they arise, there are certain general rules for the management of any case after the tracheotomy-tube has once been inserted: they relate mainly to the care of the patient, the dressing of the wound, and the care of the canula.

A variable period of intense and exhausting suffering from dyspnoea having probably preceded the operation, the sooner the patient is allowed to seek refreshing sleep the better; and this may be allowed if there be no danger of hemorrhage. Nourishment of a fluid character and stimulants, if necessary, are to be allowed in quantities and at times dictated by good judgment. The patient's first attempts at swallowing must be watched and directed, as the fluids frequently pass in part for a short time into the larynx, and may appear at the tracheal wound. If the condition persist, it may be, no other apparent cause existing, because the tracheal tube is too long and presses on the posterior wall of the trachea, thus interfering with deglutition. For the first day or two at least a competent nurse must be in attendance, and the care of the tube entrusted, after explicit directions, to her. For the first twenty-four hours the secretions usually need to be constantly cleared from the mouth of the inner tube as they are coughed up by the patient, and the tube itself occasionally removed and thoroughly cleaned in carbolized water (or water to which a little borax or potash has been added) by means of a bristle brush, such as is used for cleaning pipes. As the case progresses, the secretions are not as profuse or annoying, and the patient learns to assist himself, in caring for his tube and to remove and replace the inner one. Attempts at using the voice are to be abstained from, and a slate or pencil and paper used until, if the case progress favorably, the third day, when he may be shown how to produce it by closing the outer fenestrated tube (the inner being removed) with the finger. The outer tube does not require usually to be removed, except in diphtheria, for cleansing until the third or the fourth day, prior to this it being done by means of a feather. The removal of the tube should always be done by the surgeon himself, and the occasional danger of its difficult reintroduction, caused by the swelling of the parts, not forgotten. At the same date, the wound sutures may be cut and removed. After its first removal the outer tube is taken out, cleansed, and replaced at each daily dressing, which consists in the washing of the wound with carbolized solutions, the application of adhesive strips, if necessary, across it after the sutures have been removed, and the insertion between the neck-plate or collar of the tracheotomy-tube and the skin, upon which it presses, of a layer of sheet lint covered by a little simple cerate or like dressing. The tapes attached to the canula for fastening it about the neck need changing, and care must be taken to regulate each day their degree of tension about the neck in proportion to the amount of inflammatory swelling attendant upon the wound through the soft parts overlying the trachea.

The patient, during, especially, the first few days after the opening into the trachea has been made, should be kept in a well-ventilated room with a uniform temperature. There is rarely any occasion, except in cases of croup and diphtheria, when it may be advisable, to envelop him in steam. Some surgeons place a small wad, two or three layers of gauze, wrung out frequently in hot water, over the mouth of the tube for the first day or two. A [p. 161]large, coarse sponge answers the same purpose; and the precaution seems to me to be a good one, preventing, as it does, air of a low temperature from entering the lungs, and rendering it moist and free from adventitious particles. The difficulty is in keeping it in place.

The question as to the final removal of the canula is a difficult one to answer here, depending as it does upon the various causes for which the operation was originally performed. In certain cases, as will be seen from what has been said, its sojourn in the trachea will only be from a few moments to a few hours; while, on the other hand, in cases, for instance, of severe syphilitic disease of the larynx, with cicatricial stenosis of its cavity, the tube, once introduced, has to be worn during the lifetime of the patient. Between these extreme limits the period varies greatly. As a general rule—perhaps from the fourth or fifth day to the end of the first week—an attempt to cause the patient to breathe through the natural passages, the outer end of the outer fenestrated tracheal tube being closed, will partially succeed. Each day will now make success greater; the voice in part returns, and a period is soon reached when the outer tube may be closed with a cork (at first during the daytime only) and respiration carried on entirely through the larynx. The speedy removal of the tube and the closure of the tracheal wound then follow as a matter of course. I have never found it necessary to employ any of the various forms of after-treatment canulas, and believe them to be unnecessary. The original tube, preferably a fenestrated one, as heretofore described, is to be worn until convalescence is established, then permanently withdrawn.

The tube should be removed at the earliest safe and practicable moment. Its lengthened sojourn is not devoid of danger, as will be shown; and an atrophy of the laryngeal muscles, especially the abductors of the vocal cords, may follow their prolonged disuse, or at least inactivity, thus giving rise to a narrowing of the glottic opening perhaps inconsistent with respiration.

The wound, covered by granulation-tissue if the tracheotomy-tube has been worn for any length of time, quickly closes, when the latter is removed, and needs to ensure this but a few narrow strips of adhesive plaster to be passed across it and attached to the side of the neck, to prevent the air being forced out through it during the first day or two when the patient coughs or attempts to speak.

In cases where the tube has been worn for a long period, and the edges of the opening have firmly cicatrized, their freshening by the knife or scissors is a necessary preliminary to their being brought together by means of a suture or two.

The wound in the trachea closes not by the formation of a cartilaginous, but rather of a dense connective tissue, and the cicatrix is so smooth and small as to be with difficulty discernible. The cicatrix remaining externally upon the neck need be but slight and linear, and cause no disfigurement, especially if the wound have been properly treated and watched during the healing process.

Among the complications and accidents which may occur after a tracheotomy successfully performed,5 none is commoner, and none, perhaps, is more to be feared, than the broncho-pneumonia which may develop at any time within the first three or four days, and especially in those cases where the operation has been rendered necessary by a diphtheritic inflammation of the throat or air-passages. Bronchitis is common when much blood has escaped into the trachea during the operation. The periodical and careful auscultation of the chest is therefore desirable, in order that the earliest physical signs of these morbid conditions may be detected.

5 See Parker, "On Some Complications of Tracheotomy, with Illustrative Cases," Lancet, Jan. 24, Jan. 31, and Feb. 7, 1885.

[p. 162] Secondary hemorrhage is rare: should it occur, the wound must be opened, enlarged if necessary, and the bleeding vessel sought for and secured. A slight hemorrhage may be checked by pressing the parts firmly about the tracheal tube and the use of styptics locally.

When the pathological condition of the parts has demanded that the canula be worn for a long time, and in cases where sufficient care has not been taken to select one suited to the age of the patient or to the particular form of operation that has been chosen, perhaps to the needs of the special case, an ulceration of the anterior or posterior wall of the trachea, the result of the pressure of the lower edge of the tube or of its upper posterior and convex side, may occur. Usually, it happens on the anterior wall, rarely on both, and the main trouble to which they give rise lies in the repeated hemorrhages that proceed from the laceration of granulation-tissue, in changing the canula, for instance, and the descent of the blood into the trachea and lungs. Cases of extensive ulceration, with erosion of the large vessels at the root of the neck, and fatal hemorrhage, have been reported. Considerable care should then be exercised in so adapting a canula to a special case that it will lie as free as possible within the lumen of the trachea. Ulceration of the tracheal walls, it is claimed, never occurs with the right-angled canula of Durham. Occasional change of form in the canula or the use of canulas with rounded extremities (perforated with numerous slits) is often advisable when the tube is worn for a length of time.

Another complication following the prolonged sojourn of a tracheal tube—rare, it is true—is the development of a mass of granulation-tissue, a veritable tumor, which may occlude the lumen of the trachea and lead to serious disturbances of respiration. The growth usually occurs about the inner edges of the tracheal wound, extending thence inward and upward or downward, as the case may be, and is most frequently met with, perhaps, after tracheotomies undertaken for diphtheria, although it may occur as a result of the ulcerations mentioned above, and develop even from the cicatrix in an old and perfectly-closed tracheotomy wound. The size of the mass, its location, and the amount and manner of its interference with the respiratory current vary much, but the condition must ever be regarded as a troublesome, even dangerous, one, and may always be suspected when attempts at the removal of the canula temporarily or permanently are followed by sudden and urgent dyspnoea.

The exuberant granulation-tissue which forms about the outer edges of even a recent tracheotomy wound, and occasionally renders the reintroduction of the tube difficult, as well as closing the wound while it is out, is a much simpler matter, and is easily remedied by cutting it away with the scissors or checking its formation by caustic applications.

A subcutaneous emphysema not infrequently occurs as the result of poor surgery and delay at the time of introducing the tube into the windpipe, or may come on later when the tube fits the tracheal wound incompletely. In either case it need excite no apprehension, and usually quickly subsides. Cervical cellulitis is a more serious matter, but is fortunately rare if unconnected with disease of the cartilages of larynx or trachea. It probably depends upon injury to the tissues and a too extensive opening up of the intermuscular strata at the time of the operation. Should the complication arise, the tendency to the burrowing of pus must be prevented by free drainage and, if necessary, incisions. The other surgical indications are to be treated on general principles.

When the incision necessary for the introduction of a tracheotomy-tube has been made through healthy tissue, necrosis of the cartilage in contact with the tube belongs to the rarest of the complications of the operation. The simple traumatic perichondritis set up by the operation shows no tendency to [p. 163]eventuate in death of the parts. Equally rare is cicatricial contraction of the trachea as the direct result of the operation. That it may follow the healing of the extensive defects sometimes left by the syphilitic and other processes can readily be understood; and the same defects, involving as they occasionally do the loss of large amounts of tissue and destruction of important parts, may eventuate in the formation of an aërial fistula during or after the healing process is completed. The occurrence of such a fistulous opening as the result of a simple and uncomplicated tracheotomy wound could only be regarded as the evidence of unskilful surgery and after-treatment. The various plastic operations undertaken for the repair of such defects are described in the works on general surgery, notably in the able monograph of Schüller. Dislodgment of the canula out of the trachea as the result of an insufficiently long tube, or of neglect to fasten the tapes which hold it properly about the neck, so that it slips during coughing or the movements of the patient, is an accident which may not for the moment attract the attention of an inexperienced surgeon unless laryngeal dyspnoea is urgent. The patient breathes quietly, the air passing by the sides of the tube, which apparently is correctly placed. The simple test of ascertaining whether air be passing through the canula or not, or of making a trial whether the patient breathe as well when the finger closes the opening of the outer tube, as he will do if the tube is out of the trachea, will decide the question. Should the tube have slipped, it is of course at once to be replaced.

The breaking off of a portion of the inner canula, and the terminal piece falling down the trachea—several instances of which have been reported during recent years—is more apt to happen with the right-angled canula of Durham, the inner tube of which is necessarily made up of segments held by small rivets: these become in time loosened and the piece that they held detached. The outer tube of the hard-rubber canula also has become detached from its collar and dropped into the trachea. An occasional inspection of the condition of the tube is therefore desirable.

[p. 164]




DEFINITION.—Inflammation of some part or of the whole of the mucous membrane lining the bronchial tubes between the bifurcation of the trachea and the alveoli or air-cells of the lungs. The inflammation may vary in grade from simple hyperæmia, with increased irritability, to the most intense engorgement, exudation, and tumefaction of the membrane, and in activity from the most acute and rapidly-progressive to the most chronic and protracted in duration.

SYNONYMS.—By the earlier writers the disease was called Peri-pneumonia notha, Angina bronchialis, and sometimes Erysipelas pulmonis. More recently it has been called Catarrhus suffocativus, Catarrhus pituitosus, Catarrhus bronchialis, Bronchial catarrh, and Bronchitis; Fr. Bronchite; Ger. Bronchialentzundung. Adopting the simple name of bronchitis, acute and chronic, in the further consideration of the subject I shall group the cases as they occur in general practice under the heads of Catarrhal, Mechanical, Capillary, and Pseudo-membranous Bronchitis.

HISTORY.—During all the earlier periods of medical history bronchitis was generally confounded with inflammation of the membrane lining the larynx and trachea on the one side, and with pneumonia and pulmonary phthisis on the other. Among the earliest writers who gave more accurate descriptions of bronchitis as a distinct disease were Badham, J. P. Frank, and Broussais, in the latter part of the eighteenth century. Full and accurate descriptions of the disease, differentiating it from inflammation of other parts of the respiratory organs, were not given, however, until the discovery of auscultation by Laennec, and its practical application aided by percussion to the physical examination of the chest. This important addition to the previous means for studying the exact location and extent of all diseases within the chest, and the largely increased attention given about the same time to the study of morbid anatomy, soon led to as accurate an appreciation of the existence and extent of disease in any part of the organs of respiration and circulation as in any of the structures of the human body.

ETIOLOGY.—The causes of bronchitis, like those of all other acute diseases, may be divided into two classes—namely, predisposing and exciting. The first embraces all those influences that are capable of rendering the mucous membrane of the air-passages more susceptible to impressions, whether by direct increase of the irritability of the structure or indirectly by altering the quality of the blood and the tone of the smaller blood-vessels. The second embraces such influences only as are capable of exciting a direct increase of irritability of the lining membrane of the bronchial tubes, with congestion of [p. 165] blood in its capillaries. Among the most common predisposing causes may be mentioned age, sex, occupation or modes of life, and climatic influences. As a general rule, the several grades of bronchitis are more prevalent during childhood and old age than during the active period of adult life. The British Registrar-General's Report for 1868 contained 33,258 deaths attributed to bronchitis, being 1344 for every million of inhabitants. Of the whole number, 10,550 died during the first three years of life, and 18,485 over forty-five years of age, leaving only 4223 to occur between the ages of three and forty-five years. This, however, is very far from indicating correctly the relative prevalence of the disease at the different periods of life, for the reason that the disease is far more fatal both in early life and in old age than in the early and middle periods of adult life.1 During the months of February, March, and April, 1882, in San Francisco, there were 65 deaths reported from bronchitis, of which 37 were of children under five years of age, 25 adults over forty years, and only 3 persons between five and forty years. During the same months there were reported 154 deaths from bronchitis in the city of Chicago, with about the same ratio in regard to age. In the city of Philadelphia, during the seven years from 1862 to 1869, the deaths from bronchitis at all periods of life aggregated 969, of which 495 were of children under five years of age, 14 over five and under fifteen years, and 460 of persons over fifteen years of age.2 These and similar mortuary statistics have led to the very general adoption of the opinion that early childhood and old age are pre-eminently susceptible to attacks of bronchitis. Yet my own clinical observations and records relating to the time and number of acute and subacute cases of bronchitis coming under my own care lead to a very different conclusion. By reference to those records I find a larger number of cases occurring between the ages of ten and thirty years than at any other period of life. Thus, during the first six months of the present year (1882) I recorded 59 cases of primary bronchitis; that is, cases not arising secondarily as complications of other diseases. Of this number, only 5 were children under ten years of age, 38 between ten and thirty years, and 16 over forty. It is probable that similar results will be obtained by all who will take the trouble to record the whole number of cases, instead of simply the number of deaths. The statistics of mortality in relation to this disease are deceptive, not only in regard to relative susceptibility of the human system to attacks at the different periods of life, but also in regard to the ratio of mortality of the disease itself. It is generally conceded that the chief mortality from this disease occurs during infancy or early childhood and in old age, cases rarely terminating fatally in youth or the more active period of adult life. Careful examination of cases will show that this fatality at the extremes of life is owing mainly to the greater tendency of the inflammation at those periods to extend directly from the bronchioles into the lobules of the lungs, thereby complicating the bronchitis with lobular pneumonia; and in more than half the cases reported under the head of bronchitis the fatal result was caused by the pneumonia instead of the bronchitis.

1 See Reynolds's System of Medicine, Amer. ed., vol. ii. p. 318.
2 See A Practical Treatise on the Diseases of Children, by J. F. Meigs, M.D., and William Pepper, M.D., 4th ed., p. 189.

Neither recorded facts nor my own clinical observations show any decided difference in the susceptibility of the sexes to attacks of bronchial inflammation.

Those occupations which confine the parties pursuing them much indoors, and at a temperature either too warm or too cold, strongly predispose to attacks of inflammation of the membrane lining the respiratory passages. Habitual exposure to a warm, confined air invites free exhalation from both the bronchial and cutaneous surfaces, with increased susceptibility, and [p. 166]consequently renders the individual more susceptible to all external impressions. Habitual passive exposure indoors to a low temperature represses the exhalations and causes the retention of some of the products of tissue-change which by their presence in the blood render the individual more liable to attacks of inflammation on the supervention of any exciting cause. For the same reasons the habitual wearing of too much warm clothing on the one hand, or too little on the other, predisposes to attacks of bronchial disease. Another error of importance is the unequal adjustment of clothing to different parts of the cutaneous surface. In children especially we often see an abundance of warm clothing over the whole body, while the legs and feet and neck have but a single covering, and sometimes none. And even adult women often go out loaded with warm clothing, while their feet and ankles are protected only by thin shoes and stockings. All those occupations that surround the workmen with an atmosphere filled with irritating gases, floating particles of stone, metal, or charcoal, or with the dust from grain and many vegetable substances, increase the liability of such workmen to attacks of all grades of bronchial inflammation.

It is universally conceded that bronchitis, as well as inflammation of all other parts of the mucous membrane lining the air-passages, prevails most in such countries as are characterized by a cold, damp, and variable climate. This can be well illustrated by comparing the prevalence of this class of diseases in that belt of our own country lying north of the fortieth parallel of latitude and east of the Rocky Mountains with the prevalence of the same class in the belt south of the thirty-third parallel and bordering upon the Atlantic and Gulf of Mexico. In the former the summers are comparatively short, with brief periods of high temperature, the winters cold, and the transition seasons, spring and autumn, long and exceedingly variable, with a predominance of cold and dampness. In the latter all the conditions just mentioned are substantially reversed. Perhaps the earliest reliable statistics we have bearing upon this subject are those collected by Samuel Forrey from the several military posts occupied by the United States Army, and given in a series of articles in the American Journal of Medical Science, and subsequently in an octavo volume, on the climate of the United States and its influence over the prevalence of diseases. The valuable facts presented by Forrey were added to by Daniel Drake, and given in full in his large work on the topography and diseases of the great interior valley of this continent. From these sources we learn that the average annual number of attacks of inflammation of the mucous membrane of the respiratory passages in every 1000 soldiers at Fort Snelling, in Minnesota, latitude 44° 53' N., was 600. At Fort King, fifty miles from the Gulf of Mexico, latitude 28° 58' N., the annual number of attacks average only 101.2 in every 1000 persons. Again, at Madison Barracks, near Sackett's Harbor, New York, the average number of attacks for every 1000 persons was 637.2, while at Key West, Florida, the average number of attacks was 208.9, and at Baton Rouge, Louisiana, only 207.2. Lest it should be thought that these five posts had been selected for the purpose of showing the most extreme contrasts, it may be added that Drake, after a laborious comparison of the statistics at all the military posts in the great interior valley from Fort Snelling at the north to Fort Jessup in Louisiana, the most southern, makes the "ratio of decrease in bronchial inflammations" as we pass from the north to the south as 31.5 for each degree of latitude.3 A similar comparison of the statistics of all the posts on the Atlantic Slope from Madison Barracks to Key West gives nearly the same results. The general inference here drawn concerning the much greater prevalence of bronchitis in the colder and more variable climate of the northern belt of our country [p. 167]than in the southern is fully corroborated by all the facts to be gathered from observations in civil life.

3 See A Systematic Treatise on the Principal Diseases of the Interior Valley of North America, etc., etc., 2d Series, pp. 795, 796.

A study of these same military statistics, representing the mean ratio of the prevalence of diseases of the respiratory passages for a period of ten years at nearly all the posts, will justify some other inferences of interest besides the one just stated. According to this general inference or rule, which is assented to by all the authors within my reach, the three important factors in the climates most favorable for producing bronchial inflammation are cold, variableness, and dampness, the latter being emphasized by most writers as of predominating influence. Yet the tables before us show that the highest ratio of prevalence of inflammatory attacks of the mucous membrane of the respiratory passages in the northern part of the interior valley was at Fort Snelling, in the immediate vicinity of St. Paul, Minnesota, being 600 attacks for every 1000 soldiers, while the lowest ratio was at Fort Dearborn, on the site now occupied by the city of Chicago, being only 102 for every 1000 soldiers. Looking at the posts in the eastern part of the northern belt of country, Madison Barracks, at Sackett's Harbor, at the eastern end of Lake Ontario, gives a ratio of 637 attacks for every 1000 soldiers, while Fort Niagara, at the mouth of the Niagara River, near the western end of the same lake, gives a ratio of only 355. Again turning to the posts in the southern belt of country, the tables show at Fort Jessup, in the interior of Western Louisiana, a ratio of 432.8, while at Fort Jackson the ratio was only 47.5 and at Fort King 101.2. As Fort Snelling is on the high rolling prairie of the interior of Minnesota, noted for its cold and dry air, and Fort Jessup on the elevated arid plateau between the head-waters of the Sabine and the Red River, they cannot be noted for a high degree of atmospheric moisture. On the other hand, Fort Dearborn was located on the south-west shore of Lake Michigan, on the borders of a low and wet prairie with a substratum of impervious clay, giving all the conditions favorable for the prevalence of a high degree of atmospheric moisture. And Forts Jackson and King are both on low alluvial lands only fifty miles from the Gulf. Again, Fort Niagara is surrounded by all the conditions favoring a high degree of atmospheric moisture, certainly equal to those surrounding Madison Barracks in nearly the same latitude, and yet the ratio of attacks in the latter was nearly double those in the former. It is evident, therefore, that there exists some important factor in the climatic relations of the inflammatory affections of the respiratory passages besides temperature, humidity, and changeableness. A glance at the topography of the whole country will show that each of the posts giving a high ratio of attacks—namely, Madison Barracks and Forts Snelling and Jessup, to which may be added Forts Gratiot, Crawford, and Wood—are so located as to be exposed to the prevalence of unusually severe winds or atmospheric currents either from the north-east or the north-west and west, with certain relations either to high mountain-ranges or ocean-currents. For instance, from Madison Barracks the open valley of the St. Lawrence River extends in a north-easterly direction to the Atlantic Ocean, where the cold ocean-current is from the north, favoring the pressure of cold atmospheric currents directly up the valley from the north-east, reaching its termination at the eastern end of Lake Ontario with but little diminution of force. The mountains of Northern New York, Vermont, and New Hampshire seem to prevent the deflection of these currents to the south, and help to keep them directly in the line of the valley. That the high ratio of attacks of bronchial and catarrhal affections at Madison Barracks is largely due to the influences here described is corroborated by the fact that the same class of diseases are much more prevalent in the province of Quebec, through which the valley of the St. Lawrence extends, than in the province of Ontario, as shown by the Registrar-General's Report in reference to the several [p. 168]military posts in the Canadas. Turning to Forts Snelling and Crawford at the north and Jessup at the south, we find them so situated in relation to the great mountain-chains to the west as to be fully exposed to the cold and strong atmospheric currents that sweep over the Plains from the north-west and west with such force as to justify the popular title of blizzards. Without consuming more time in details, it may be said that the force and direction of atmospheric currents have quite as much to do with the development of inflammations of the air-passages, including all grades of bronchitis, as either temperature or humidity.

As might be inferred from what has already been said in relation to the influence of climatic conditions, season of the year is also found to exert a marked influence over the prevalence of bronchial affections. Those parts of the year characterized by a low temperature, high winds, and frequent thermometric changes are accompanied by the highest ratio of prevalence of inflammations of the respiratory passages. Thus, the statistics compiled from the records of all the military posts by Drake show an average ratio for the four quarters of the calendar year of 119.8 for the first quarter, 72.7 for the second, 48.7 for the third, and 99.6 for the fourth.4 This corresponds closely with the results of clinical records kept under my own observation through a series of years.

4 See Drake on the Principal Diseases of the Interior Valley of North America, p. 792.

That tubercular deposits in the lungs, cancerous growths, emphysema, and previous attacks of bronchitis, all strongly predispose the patient to further attacks of the last-named disease, is proved by universal clinical experience.

EXCITING CAUSES.—Exposure to sudden and extreme changes in atmospheric temperature from warm to cold is almost universally regarded as the chief exciting cause of inflammation of the bronchial as of all other parts of the mucous membrane of the air-passages. More accurate and detailed observations, however, show that such changes of temperature are seldom productive of diseases of this class unless accompanied by coincident high winds and humidity. My own studies concerning the relations between special meteorological conditions and the prevalence of particular diseases have led me to the following conclusions in regard to bronchitis and inflammation of the mucous membrane of the air-passages generally:

First. Many sporadic cases are caused, at any and all seasons of the year, by exposure of limited portions of the cutaneous surface to cool or cold currents of air while the rest of the body is well protected. Females going out with thin shoes and stockings or sitting before open windows with low-necked dresses, and children out on cold days with naked legs from short trousers and defective stockings, afford many and familiar examples of bronchitis from this cause.
Second. The sudden transition from a protracted period of intense dry cold to a higher temperature with increased atmospheric humidity. Almost every winter season, in the northern belt of the United States, east of the Rocky Mountains, is characterized by several periods of steady dry, cold air, varying from one to three weeks in duration, during which the mercury in the thermometer often descends more than 20° C. (8–10° F.) below zero, and which generally ends in a sudden change in the direction of the winds and a marked elevation of temperature, constituting what is popularly called a thaw. Such changes are very uniformly accompanied by a general prevalence of catarrhal affections of the air-passages, including many cases of bronchitis. This class of cases occur principally in the months of December, January, and February.
Third. The occurrence of those cold north-east winds that during the latter part of autumn and early part of spring so often sweep over the whole extent of our Atlantic coast and press up the valley of the St. Lawrence to [p. 169] the great interior lakes, and the still more severe currents that come during the same seasons from the north-west and west, over all the wide plains that intervene between the great mountain-chains to the west and the upper lakes and Mississippi River to the east, are also accompanied by a high ratio of prevalence of bronchial affections, as has been already shown from the records of the several military posts. Most of these severe storms of wind are accompanied by either snow or rain and a marked increase of ozone or active oxidizers. In some of the severe snowstorms from the north-east, occurring in the latter part of February and in March, I have found an unusual amount of free ammonia. Whether either the ozone or the ammonia has had anything to do with the production of the bronchitis cannot be determined until the observations and records now being made under the auspices of the American Medical Association have been continued for a few years, by which adequate data will be furnished for reliable deduction.

Besides ordinary meteorological conditions, bronchitis may be produced by inhaling irritating substances, such as steam, irritating gases, steel-dust, or minute particles of other metals or stone in workshops, and the dust encountered in handling grain, etc. The disease has often occurred in epidemic form without the presence of an obvious exciting cause. It also frequently occurs in connection with certain general fevers, more particularly with typhoid, measles, influenza, and pertussis. It also sometimes, though more rarely, accompanies rheumatism, constitutional syphilis, and erysipelas. The presence of tuberculous and cancerous deposits in the lungs almost always provokes more or less bronchial inflammation during some part of their progress.

Acute Bronchitis.

SYMPTOMATOLOGY.—The most common form of acute bronchitis, by many writers styled catarrhal bronchitis, acute bronchial catarrh, etc., presents considerable variety of symptoms, according to the extent of the membrane involved and the intensity of the inflammatory process. As a general rule, the disease commences with slight chilliness or unusual sensitiveness to slight changes of temperature, accompanied by a sense of soreness and oppression behind the sternum and sometimes across the whole chest, with a frequent and rather dry, harsh cough. In many cases there is during the first day or two coincident congestion of the membrane lining the nostrils, fauces, and larynx, causing sneezing, with some feeling of soreness in the throat and hoarseness, also a heavy dull pain in the head, much increased by coughing. By the second day a moderate general fever has supervened, characterized by dryness and moderate heat of the skin, flushed face, slight increased frequency and fulness of the pulse, more sense of oppression and soreness in the chest, with a continuance of harsh, dry cough, which often causes soreness in the epigastrium, radiating laterally in the direction of the attachments of the diaphragm to the inner surface of the ribs. On the second or third day the inflamed membrane begins to be less dry and the paroxysms of coughing bring up a scanty expectoration of a tenacious, somewhat frothy mucus, which gradually increases until about the fourth or fifth day, when it becomes more opaque, sometimes yellowish, and much more easily expectorated. At the same time that the expectoration changes to a more opaque condition, the general febrile symptoms begin gradually to abate, and the cough is accompanied by less sore pain both in the chest and head.

In the milder class of cases, the decline in all the general symptoms is so rapid that by the seventh or ninth day, convalescence is established. But in the more severe cases the more important symptoms may continue through [p. 170]two weeks, and convalescence not be complete until the end of the third week. And in some of the cases the inflammation does not disappear on the subsidence of the febrile symptoms, but degenerates into a chronic form, causing a continuance of cough, with some muco-purulent expectoration and slight soreness in the chest, through an indefinite period of time. The disease is most likely to take this course when it occurs in young persons having a scrofulous diathesis, or in connection with eruptive fevers or pertussis, or in the aged afflicted with rheumatism.

During the active stage of ordinary cases of bronchitis the urinary secretion is diminished in quantity, redder than natural, and deficient in chloride of sodium, and the bowels are inactive. But after the crisis of the disease is passed, as indicated by the character of the expectoration, the renal and intestinal discharges soon return to their normal condition.

The results of auscultation and percussion in ordinary bronchitis, limited to the membrane lining the larger bronchial tubes, are mostly negative. In some instances during the first or dry stage, the respiratory or vesicular murmur may be slightly harsher or more dry than natural, and after the exudation or secretion of mucus, as indicated by expectoration, there may be some coarse, moist râles, which are removed temporarily by coughing, but return again in a little time. These râles are heard much more in cases occurring either in infancy or in old age than in youth or the middle period of adult life. Percussion elicits only the natural degree of resonance throughout the whole course of the disease, except in those rare cases in which complete occlusion of the bronchial tube has taken place, causing exclusion of air from certain lobules of the lungs, and consequently a shade of dulness on percussion over such lobules.

Mechanical Bronchitis.

By mechanical bronchitis is meant those cases in which the inflammation is caused by the direct action of mechanically irritating substances floating in the inspired air, as fine particles of steel and other metals, particles of stone, charcoal, and various vegetable powders and fungi. Such substances, when inhaled, are liable to impinge on the surface of the bronchial membrane and produce direct irritation and inflammation, both acute and chronic.

Cases originating from this class of causes differ from ordinary acute bronchitis chiefly in the mode of beginning and in the greater tendency to continue in the chronic form. Instead of slight rigors, coryza, and early development of moderate general fever, the patient generally complains first, and for several days, of a sense of tickling or fulness in the air-tubes, with occasional paroxysms of violent coughing and little expectoration. Sometimes particles of the foreign substance that is producing the inflammation may be seen mixed with the mucus or matter expectorated. In many of these cases there is much soreness in the chest and considerable dyspnoea, especially during the night, followed by severe coughing in the morning, and a more free discharge of mucus occasionally containing little streaks of blood, but which is never intimately intermixed with the sputa as in pneumonia. If the patient, by change of occupation or otherwise, ceases to be exposed to the further action of the exciting cause, the symptoms soon begin to abate, and a complete recovery may take place in from two to four weeks. If exposure to the further action of the exciting cause is not avoided, the disease will necessarily assume a chronic form, and in many cases produce such changes as to materially shorten the life of the patient.

[p. 171]
Capillary Bronchitis.

By this term is meant inflammation in the smaller bronchial tubes, but not necessarily involving the true bronchioles as they terminate in the air-cells. It may arise from all the causes that are capable of exciting inflammation in the larger and medium-sized tubes. It may occur at any period of life, but is most frequent in infancy and early childhood, and next in persons past the middle period of life.

The chief differences in the clinical history of this and ordinary catarrhal bronchitis arise from the greater obstruction to the ingress and egress of air through the inflamed tubes. The same degree of tumefaction of the membrane that occasions but little obstruction in the larger tubes is capable of completely obstructing many of the smaller ones, and thereby causing much dyspnoea and sense of oppression, with frequency of respiration, accompanied at first by an abundance of dry râles in all parts of the chest, followed later by the complete intermixture of dry sounds and moist submucous râles, the latter caused by more or less exudation or secretion of mucus from the inflamed mucous membrane. The addition of the tenacious mucous exudation to the previous tumefaction of the membrane, often so far obstructs the ingress of air to the air-cells of the lungs that the respirations become short, very frequent and noisy, with blueness of the lips, coldness of the extremities, drowsiness, and soon death from suffocation. This result, however, is seldom met with except in quite young children and in persons enfeebled by age or by previous disease.

In cases which do not thus tend to an early fatal result from the direct obstruction of the bronchi the respirations continue frequent, in young children sometimes reaching 50 or 60 respirations per minute, with much dyspnoea and restlessness; the pulse is quick, but not in proportion to the respirations; the expression of countenance is anxious and often slightly bloated, with a leaden hue of the prolabia; the wings of the nose expand and the chest heaves with each inspiration, giving a great variety of dry, whistling sounds generally throughout the whole chest, which after the first two or three days become mixed with sharply-defined submucous râles, and in the later stages give place to the latter entirely. The cough is frequent and inefficient, on account of the difficulty of getting sufficient air to make it satisfactory. The temperature varies from 38° to 39.5° C. (101–103° F.), seldom rising above the latter figure unless complicated with lobular pneumonia. The urine is generally scanty and deficient in the chlorine salts, and the bowels are inactive. The labored efforts of breathing in many cases make the upper and anterior part of the chest appear more prominent than natural, and even more resonant on percussion on account of temporary emphysema from over-distension of the air-cells in those parts, while in some parts of the lower and posterior portions there is less expansion and less resonance than natural from the occlusion of some of the bronchi and the partial obstruction of others leading to those parts of the lungs.

Between the third and fifth days usually the mucous exudation, which up to that time had been scanty and tenacious, becomes more abundant and more opaque, and in two or three days more assumes a distinct muco-purulent character and is much more easily expectorated. As that which comes from the smaller bronchial tubes is less mixed with air, and consequently less frothy than that which comes from the larger tubes, the two qualities of matter may often be recognized in the same mouthful of sputa; and if the whole be placed in water, that from the smaller tubes will drop lower in the water, or sink to the bottom if detached from the other, which floats freely upon the surface.

In acute cases, at the same time that the expectoration becomes more opaque and more easily dislodged by coughing, all the more important [p. 172] symptoms begin slightly to improve, and by the end of the second week convalescence is fairly established. Many cases, however, are less acute, slower in progress, and do not reach convalescence in less than two or four weeks; and many of this class manifest a strong tendency to continue indefinitely in a chronic form, more especially in persons past the middle period of life. In some of the cases that do not continue in a chronic form, the bronchial membrane is left in a condition of such susceptibility that the attack is renewed on the slightest exposure to the exciting causes.

Rheumatic Bronchitis.

Although many systematic writers on practical medicine make no mention of this form of bronchitis except as a complication of general rheumatic fever, yet cases both of acute and chronic inflammation of the bronchi, of unmistakable rheumatic character, have so often come under my observation that I am constrained to recognize it as a distinct form of disease. In regard to the relative frequency of the occurrence of this class of cases, I find in a brief report concerning 965 cases of chronic pulmonary disease, read in the medical section of the American Medical Association by F. H. Davis in 1877,5 the following classification of the cases:

Chronic catarrhal bronchitis 403
Chronic rheumatic bronchitis 283
Chronic bronchitis accompanied by gastric derangement and spasmodic dyspnoea     119
Chronic bronchitis, modified by syphilitic disease 37
Hereditary pulmonary tuberculosis 56
Inflammatory pulmonary phthisis   67
        Total 965

It will be seen that, of the 842 cases of chronic bronchitis included in the table, the writer classes 283, or a trifle more than 33 per cent., as of rheumatic character. That the relative proportion of acute cases of a distinct rheumatic character is less than those of a chronic grade I have no doubt, and yet their number is not so small as to be insignificant or unworthy of careful attention.

5 See Transactions of American Medical Association, vol. xxviii. p. 269, 1877.

They differ in clinical history from ordinary acute bronchitis chiefly in the following particulars: Etiologically, a large proportion of them occur in persons of a rheumatic diathesis, either hereditary or acquired, and at those seasons of the year characterized by a predominance of cold and damp air with frequent changes of temperature.

Symptomatically, they are characterized from the beginning by more continuous dull pain in the chest, often extending to the attachments of the diaphragm, the shoulders, and the dorsal portion of the spine; by more persistent dry, harsh cough, often exhibiting a marked spasmodic character and accompanied by a great aggravation of the pains in different parts of the chest. When the smaller bronchi are involved the stage of dry râles is much more protracted, the dyspnoea and suffocative paroxysms of coughing more uniformly aggravated at night; and when mucous exudation does take place it remains scanty and viscid, rarely presenting a distinct muco-purulent character unless the case is protracted into a chronic form, and sometimes not then. During the active stage the urine is less in quantity and more decidedly acid in reaction than natural, and the bowels generally costive.

When not interfered with by appropriate treatment, these cases run a much more protracted course, and more frequently degenerate into a chronic form, [p. 173] than those of an ordinary catarrhal character. When they are thus allowed to run a protracted course or to continue in a chronic form, they manifest another tendency of great importance—namely, to have the inflammation extend by continuity from the fibrous and muscular structures of the small bronchi into the connective tissue of the pulmonary lobules, inducing sclerosis of the latter tissue and consequent compression or obliteration of the alveoli or air-cells, and permanent contraction of the chest. Much and careful clinical observation has satisfied me that many of the cases now classed by writers as fibrous and inflammatory phthisis began as simple acute or subacute rheumatic bronchitis, which, being renewed at every return of the cold, damp, and changeable part of the year, not only ultimately caused permanent thickening of the bronchial structures, but gradually invaded portions of the connective tissue of the lungs, and induced similar pathological changes in it, constituting the sclerosis just mentioned.

Pseudo-membranous Bronchitis.

This affection has been described by different writers under the additional names of plastic, croupous or croupal, and diphtheritic bronchitis. The extension of the inflammation and membranous exudation to the bronchial tubes in cases of diphtheria and pseudo-membranous tracheitis and laryngitis or croup, is of frequent occurrence. But as a distinct disease limited to the bronchial membrane it is of comparatively rare occurrence.

In 1854, T. B. Peacock noticed in the Transactions of the London Pathological Society 34 cases collected from European sources; Biermer in 1867 increased the number to 58; Kretschy in 1874 added 10, and Chevstok 4 more cases—making in all 72 cases in Europe. In 1879, W. C. Glasgow of St. Louis read to the medical section of the American Medical Association an interesting report on the subject of plastic bronchitis, in which he notices 23 cases which had occurred in this country, accounts of which were obtained from an extensive correspondence with leading physicians in all parts of the United States, as well as from reference to our periodical medical literature.6 These statistics are certainly sufficient to justify the statement that the disease is of rare occurrence both in this country and in Europe.

6 See Transactions of the American Medical Association, vol. xxx. p. 177, 1879.

The statistics thus far collected show a much greater prevalence of the disease in males than in females, and that the larger number of cases occur between the ages of fifteen and fifty years, although one case is reported by T. G. Simons of Charleston, S. C., as quoted by Glasgow, at four years of age, and Goumoens one at seventy-two. In a large proportion of the cases reported the disease existed in a chronic form. When acute, and affecting a large portion of the bronchial membrane, it is liable to lead to an early fatal termination from obstruction to the ingress of air to the air-cells of the lungs. But in many cases the disease has extended to only a limited number of the bronchi, and recovery has generally taken place in from two to three weeks.

The symptoms differ from those of ordinary bronchitis in only two important particulars—namely, the more violent and suffocative character of the cough, and the actual appearance of shreds, patches, or casts of pseudo-membrane in the matters raised and ejected by coughing. The latter is the only reliable diagnostic symptom by which it can be certainly differentiated from all other forms of bronchial inflammation. When the membranous exudation is discharged in shreds or small pieces, it may readily escape the attention of the physician, and even considerable casts when expectorated are in some cases so surrounded with mucus and collapsed into a slightly yellowish mass in the central part of the mouthful expectorated, that they might be regarded as only [p. 174] a more muco-purulent part of the mucous secretion. If the whole is thrown into water, however, and agitated a little, the membranous patches and casts will be quickly unfolded in such a manner as to be easily recognized. It is distinguished from mucus by placing it in a solution of acetic acid, which causes it to swell, while mucus contracts in a similar solution. It has the appearance of having been formed in concentric layers, and is sometimes cast-off so complete as to present a continuous representation of one or both primary and several of the secondary bronchial tubes. Under the microscope it has the same fibrillated appearance as other pseudo-membranous formations.

Chronic Bronchitis.

Cases of acute and subacute bronchitis belonging to either of the five varieties just described may be protracted until they assume a chronic form, and other cases of each variety are met with which have been chronic from the beginning. This form of the disease is met with in aged persons more frequently than at an earlier period of life. In children it sometimes follows as a sequel of measles and whooping cough, and in adults is often associated with tuberculosis, emphysema, and cardiac diseases.

ETIOLOGY.—Chronic bronchitis is capable of originating from any and all the causes that have been enumerated as capable of producing the more acute forms of the disease, and consequently prevails most under the same conditions of topography, climate, and social relations.

SYMPTOMATOLOGY.—The symptoms of ordinary chronic catarrhal bronchitis differ from those accompanying the acute form of the disease, chiefly in the absence of general fever and the existence of much less pain or feeling of soreness and oppression in the chest. The patient generally complains of a rather harsh, full cough, usually more severe on first retiring to bed at night and on rising in the morning, but occurring at intervals through the day, and accompanied by a mucous or muco-purulent expectoration varying much in its amount and tenacity. In the great majority of cases occurring in young persons and in the first part of adult life, the expectoration is simply a whitish or slightly opaque mucus, more or less frothy from the intermixture of minute bubbles of air, and easily dislodged, especially in the mornings. In old persons and in cases which have continued a long time, the expectoration often becomes more copious and more decidedly purulent, with slight feverishness at night and some loss of flesh.

In all the cases except those last mentioned the general health of the patient is but little impaired, the appetite and secretions usually remaining nearly natural. Those who pursue indoor occupations or are sedentary in their habits will be prone to constipation and imperfect digestion—more, however, from the circumstances just mentioned than from the effects of the bronchial disease. All cases of chronic bronchitis are subject to temporary aggravation by exposure to a cold and damp atmosphere, whether indoors or out, and are also very susceptible to increase from the inhalation of air containing dust or floating particles of solid matter or of irritating gases.

Cases of ordinary chronic bronchitis rarely prove fatal without the intercurrence of some other disease, and yet there is no natural limit to their duration. In many cases the symptoms almost disappear during the warm months of summer, but return with the first period of cold and wet weather of autumn. Such patients usually find permanent relief by changing their residence to a mild and dry climate.

The symptoms of the rheumatic grade of chronic bronchitis differ from those just described mostly in the more severe paroxysmal character of the [p. 175] cough, with either no expectoration or only a scanty quantity of a glairy, tenacious mucus; in the more soreness or dull pain in the intercostal muscles and attachments of the diaphragm; and in the more marked influence of sudden and severe meteorological changes. Perhaps the most marked and distressing cases of this variety of bronchitis are those we occasionally meet with in old persons whose joints, especially those of the extremities, have long been stiffened and sometimes enlarged from chronic rheumatism, and who are harassed and worn from a harsh, suffocative cough, the worst paroxysms of which are almost always during the latter part of the night and the early morning, accompanied by the expectoration of considerable quantities of a thick, viscid, and very tenacious mucus, which is dislodged with so much difficulty that in the midst of the more violent paroxysms of coughing the action of the stomach is reversed and its contents ejected by vomiting. This is very liable to happen just after breakfast, and to occasion the loss of the morning meal. The condition of these patients is very generally ameliorated during the warm months of summer, but on the whole they emaciate and grow more helpless from year to year, until they die either from exhaustion or the supervention of pulmonary sclerosis (fibroid phthisis), endocarditis, or chronic diarrhoea. There is one grade of rheumatic irritation which is liable to attack the fibrous texture of the smaller bronchi and to give rise to a very persistent form of asthma, which increases with every returning cold season of the year; but as asthma in all of its forms is treated in other parts of this work, I only allude to it in this connection.

PATHOLOGY AND MORBID ANATOMY OF BRONCHITIS.—The special pathology of inflammation involving the mucous membrane and other structures of the bronchi does not differ from that of similar grades of inflammation in any other structures of the body. It consists essentially of an increase or disturbance of those properties of living organized matter which regulate the molecular movements constituting nutrition, disintegration, secretion, and cell-evolution to such a degree as to cause accumulation of blood in the capillaries, followed by exudation and increased cell-proliferation, which may organize into plastic material or pseudo-membrane or degenerate into pus, according to the coincident circumstances and condition of the patient.

Consequently, the anatomical changes resulting from acute catarrhal bronchitis are, in the early stage, more or less intense congestion of blood in the vessels, causing redness and tumefaction of the membrane, soon followed by an increased flow of mucus, with increase or proliferation of mucous corpuscles and epithelium-cells, while leucocytes or white corpuscles are seen permeating the capillary walls and penetrating the submucous tissue or mingling with the increased epithelium upon the surface. These several inflammatory products are seen adhering to the surface of the inflamed membrane and in the smaller tubes, often so filling their calibre as to greatly interfere with the ingress and egress of air through them, and of course adding to the dyspnoea that characterizes the capillary form of bronchitis. During the latter stage of the disease pus-corpuscles are seen freely intermingled with the mucus, and, owing to the exfoliation of much of the epithelium, the surface of the mucous membrane often appears irregular, abraded, or ulcerated.

When the inflammation has been protracted into a chronic form, the vessels appear less congested, but the cell-proliferations continue both in the mucous and submucous structures, causing thickening and increased density, with a still more purulent quality of secretion. The bronchial glands are also [p. 176]sometimes found enlarged, and either softened, colored with pigment, or, more rarely, calcified.

In addition to the foregoing changes, in many cases of the capillary form of bronchitis some lobules of the lungs are found collapsed from the complete occlusion of the bronchi leading to them by the accumulation of tenacious mucus with other inflammatory products. And in the same cases the air-cells in other parts of the lungs, more frequently the upper and anterior parts, are enlarged from over-distension, constituting a degree of emphysema.

In very chronic cases, especially of the rheumatic variety, considerable hypertrophy of the connective tissue of the bronchi has been found, and in other cases atrophy of the same tissue, the latter generally accompanied by more or less dilatation of the tubes.

In pseudo-membranous or croupous bronchitis the bronchial tubes are found lined, and in some cases filled, with a plastic exudate. Usually, only a limited number of the bronchi are affected. The tube-casts that may be expelled are generally in the form of balls, which may be unrolled, and which will then be found to be fragments or complete cylindrical casts of the tubes. They are, when expelled, usually yellowish and often sanious. When washed they are white. There are frequently points of enlargement along the casts which are caused either by the presence of air-bubbles within them, or by a more rapid exudation from that point on the bronchus. The largest casts are usually solid and laminated in structure; the smaller ones more frequently are hollow, containing a greater or less number of air-bubbles; the smallest consist of a single solid thread. Under the microscope the casts seem to be composed of a structureless or fibrinous substance holding numerous mucus and pus-cells, more or less numerous globules of fat, and occasional epithelial cells; seldom red blood-corpuscles, although these may be numerous on the surface. The casts are usually moderately compact, firm, and elastic. Toward the end of the disease, however, they may be less firm. In some cases toward the close of life epithelial cells are abundant in them, but in other cases on post-mortem examination the epithelial lining of the bronchi is found nearly or quite entire. The mucous membrane may be much reddened, or, on the other hand paler than normal. The submucous tissues are also sometimes involved in the swelling, and occasionally infiltrated with serum.7

7 For a representation of one of the most complete specimens of pseudo-membranous casts from the bronchi the reader is referred to the paper of Glasgow in the Transactions of the American Medical Association, already referred to.

DIAGNOSIS.—The principal diseases from which acute inflammation of any part of the bronchial mucous membrane needs to be differentiated are pneumonia, pleurisy, laryngitis, tracheitis, and asthma, while it is still more important to keep a clear line of diagnosis between the chronic grades of bronchial inflammation and the earlier stages of pulmonary phthisis and of emphysema. From nearly all the diseases named it is separated by negative evidence or the absence of symptoms and physical signs characteristic of those affections. It neither presents the rusty expectoration or high temperature or fine crepitant râle of pneumonia, nor the acute pains or short stifled cough or friction-sounds of pleurisy in the early stage, and still less is there in the middle and later stages any of the dulness on percussion that characterizes the corresponding stages of the other two diseases. In true asthma the active symptoms are distinctly paroxysmal, without fever or increase of temperature, and the respiration during the paroxysms is slow, with marked prolongation of the expiratory act; while in bronchitis, both catarrhal and capillary, the symptoms are continuous, the temperature increased, and the respirations more frequent than natural. All grades of bronchitis are easily distinguished from laryngitis and tracheitis by auscultation, which enables us [p. 177] to trace all the morbid sounds to the chest in the former, and to the front part of the neck in the two latter.

The great advantage of recognizing pulmonary tuberculosis and other forms of phthisis in the early stage of the disease makes the diagnosis between it and chronic bronchitis a matter of primary importance. This can be readily done by all practitioners who have acquired a reasonable degree of skill in the practice of auscultation and percussion. In all forms and stages of pulmonary phthisis, whether from primary tubercular deposits, pneumonic exudation followed by caseous degeneration, or from interstitial fibroid sclerosis, there is increased vocal fremitus and diminished resonance on percussion; neither of which is present in any grade of uncomplicated bronchitis. It is true that in the advanced stage of some very severe cases of capillary bronchitis there occurs sufficient pulmonary oedema to increase the vocal fremitus and diminish the resonance over some parts of the chest; but the accompanying symptoms and immediately preceding history of such cases are sufficient to separate them from any stage of phthisis. The same remark is applicable to those rare cases in which an attack of pseudo-membranous bronchitis results in the complete occlusion of one or more of the bronchi and the permanent collapse of the pulmonary lobules to which the occluded tubes lead. If in addition to the plain difference in the physical signs already mentioned we remember that in all the forms of phthisis there is progressive loss of flesh, some increase of temperature and acceleration of pulse, with a contraction of the upper and anterior part of the chest, while none of these changes result from bronchitis alone, there should be no difficulty in keeping the line of diagnosis clear between these two diseases. And yet there is probably no more frequent or important error committed in diagnosis than that of mistaking the early stage of pulmonary phthisis for bronchitis. This may arise in part from the fact that bronchitis often supervenes and continues coincidently with phthisis. But the practitioner should remember that whenever there is increased vocal fremitus and diminished resonance in any given case there is some altered condition of the lung-structure, and consequently some form of disease besides bronchitis, however plain the ordinary symptoms of the latter may be at the same time.

From pulmonary emphysema, chronic bronchitis is distinguished chiefly by the abnormally-increased resonance on percussion in the former, especially over the upper and anterior parts of the chest, and the peculiar depression of the spaces above the clavicles and between the ribs at the beginning of the inspiratory act, and their return to over-fulness near its close; while none of these changes accompany any grade of simple bronchial inflammation.

PROGNOSIS.—In the ordinary form of acute and chronic bronchitis there is very little tendency to terminate fatally except when it attacks infants or persons infirm from age. And even when it occurs at these extremes of life the fatal terminations are usually caused by the supervention of lobular pneumonia as a complication, and not from the bronchial inflammation alone. Severe cases of capillary bronchitis are more dangerous, and in young children and aged or debilitated persons often prove fatal before the end of the first week of their progress by the direct obstruction to the entrance of air into the air-cells of the lungs. The pseudo-membranous or plastic bronchitis is still more dangerous. It has been estimated that one out of every five dies. But the statistics concerning the number and character of cases are not sufficient to furnish a reliable deduction of the ratio of mortality.

The duration of acute attacks of bronchitis of all varieties from which recovery takes place is from one to three weeks. Uncomplicated cases of chronic bronchitis seldom prove fatal, neither is there any self-limit to their duration. Many cases undergo marked improvement during the warm [p. 178] months of summer, but suffer a renewal of all the more severe symptoms on the return of the cold and wet weather of autumn. In other cases the symptoms continue nearly the same through all the seasons of the year and until an advanced period of life.

TREATMENT.—There are certain leading objects to be accomplished in the treatment of all grades of inflammation affecting the mucous membrane and connective tissue of the bronchial tubes—namely, (a) to diminish or overcome the morbid excitability of the inflamed part; (b) to relieve the vascular hyperæmia or fulness of blood in the vessels, and thereby limit the amount of exudation or morbid secretion and consequent dyspnoea; (c) to counteract or relieve secondary functional disturbances, such as increased heat and dryness of the skin, diminished renal and intestinal activity, and nervous restlessness; (d) to hasten the removal of such plastic exudations as may have caused thickening and induration of the inflamed structures or formed layers or patches of false membrane on the bronchial surface, and to lessen the tendency to establish a stage of purulent degeneration or suppurative action in the inflamed part; (e) to regulate diet, drinks, exercise, and clothing in such a way as to sustain healthy nutrition and prevent the further action of predisposing and exciting causes.

The first three objects to be accomplished belong more particularly to the early stage of acute and subacute attacks, but are present in some degree throughout the whole course of the disease; while the last two belong to the latter stages of the acute and to all stages of the chronic grades of the inflammation. While the foregoing indications to be fulfilled or objects to be accomplished are present in all the various grades and stages of inflammation of the bronchi, the particular means for accomplishing them will be modified by the age and previous physical condition of the patient, the nature of the predisposing and exciting causes, the extent of the disease, and the stage of its advancement; or, in other words, the nature and extent of the pathological changes already accomplished. For instance: the same remedial agents that would be most efficient in relieving the morbid excitability and the vascular fulness of the first stage of acute inflammation in a young or middle-aged and previously healthy, vigorous subject might be positively injurious, or even fatal, if used in the same stage of inflammation in a subject previously anæmic and feeble or debilitated from age or from causes capable of impairing the quality of the blood and favoring a typhoid condition of the system. Consequently, the practitioner who not only sees clearly the objects most desirable to accomplish, but who most judiciously selects and adjusts the means or agents he uses to the special conditions of each patient, will meet with the highest degree of clinical success.

In the first stage of acute attacks involving the bronchi of both lungs in vigorous adult persons, and especially if the inflammation extends into the smaller tubes, causing much dyspnoea and dry râles, there is no single remedy that will so certainly and speedily check the intense engorgement of vessels in the bronchial membranes, and thereby gain time for the action of other remedies, as one prompt and liberal abstraction of blood by venesection. In cases of a little less severity, and in children, the application of from two to twelve leeches to the upper and anterior part of the chest, the number being regulated by the age of the patient, will be a good substitute for the venesection. And in case leeches are not at hand extensive dry cupping over both the anterior and posterior parts of the chest may be applied with much benefit. Immediately after the venesection, leeching, or cupping, and without these in cases of only ordinary severity, the whole chest may be enveloped in an emollient poultice or in folded napkins wet in warm water and covered with oiled silk. At the same time the following combination may be given internally: [p. 179]

No. 1. Rx. Liquoris ammonii acetatis, (60.0 c.c.) fluidounce ij;
  Tincturæ opii camphoratæ, (75.0 c.c.) fluidounce iiss;
  Vini antimonii, (15.0 c.c.) fluidounce ss;
  Tincturæ veratri viridis,   (6.0 c.c.) fluidrachm iss.

M.—Sig. Give to an adult 4 cubic centimeters or 1 teaspoonful in a tablespoonful of water every two, three, or four hours, according to the severity of the case. The same may be given to children, the dose being properly adjusted to the age of the child.

If the tongue be coated, the bowels inactive, and urine high-colored, from 6 to 30 centigrams (grs. j–v) of calomel, according to the age of the patient, may be given, and followed in four or five hours by a saline laxative sufficient to procure two or three evacuations from the bowels. Under the influence of these remedies the high fever and great sense of soreness and oppression in the chest which exist in the first stage of the more acute cases in previously healthy subjects rapidly diminish, giving place to more moist râles, easier breathing, and some expectoration. As soon as such amelioration of symptoms has been obtained, the mixture containing veratrum viride should be discontinued, and the following formula substituted in its place:

No. 2. Rx. Syrupi scillæ comp. (45.0 c.c.) fluidounce iss;
  Tincturæ sanguinariæ, (15.0 c.c.) ounce ss;
  Tincturæ opii camphoratæ, (60.0 c.c.) fluidounce ij.

M.—Sig. Give to an adult 4 cubic centimeters in a little additional water every three or four hours.

If the patient suffers much from severe sore pain in the head, aggravated by coughing, or from nervous restlessness, the addition of bromide of potassium, 16 grams (drachm iv), to the above formula will render it more efficient in relieving these symptoms and in promoting rest. Under such quieting and expectorant influences, aided by a mild laxative when needed, the cough, soreness, and oppression in the chest, and all other active symptoms, diminish from day to day, and convalescence ensues in from seven to nine days.

If after the first three or four days the temperature rises in the evening and the cough becomes more troublesome, interfering with rest during the first part of the night, followed by some sweating in the early morning, a single dose composed of sulphate of quinia from 3 to 6 decigrams (gr. v–x), pulverized sanguinaria-root 3 centigrams (gr. ½), and codeine 16 milligrams (gr. ¼) given between six and eight o'clock each evening for three or four evenings, will often contribute to the rest of the patient and hasten the establishment of convalescence.

Cases are sometimes met with, especially in patients debilitated by previous ill-health or age, in which the fever subsides after the first three or four days, leaving the patient with a feeling of unusual weakness, a deep harassing cough, copious muco-purulent expectoration, and little or no appetite. In such cases tonics and the more stimulating class of expectorants are indicated. A mixture of equal parts of the syrup of Prunus virginiana, syrup of senega, and camphorated tincture of opium, given in doses of 4 cubic centimeters or one teaspoonful every four or six hours, and 13 centigrams (gr. ij) of quinia three times a day, will often cause a rapid improvement in all the symptoms. In some of the cases last described there is added to the other symptoms a troublesome nausea and disposition to vomit with the paroxysms of coughing, in which I have found the following formula a good substitute for the mixture containing the prunus virginiana and senega:

No. 3. Rx. Acidi carbolici, (0.50 grams) gr. viij;
  Glycerinæ,     (30.0 c.c.) fluidounce j;
  Tincturæ opii camphoratæ,     (60.0 c.c.) fluidounce ij;
  Aquæ,     (60.0 c.c.) fluidounce ij.

[p. 180] M.—Sig. Give 4 cubic centimeters (fluidrachm j) or 1 teaspoonful before each mealtime and at bedtime, giving the quinia a little after the meals.

If more anodyne influence is required to procure rest at night, 16 milligrams (gr. ¼) of codeine may be added to the teaspoonful of carbolic acid mixture given at bedtime. If, as sometimes happens in cases of acute bronchitis, both of the catarrhal and capillary varieties, the inflammation invades some of the lobules of the lungs, as indicated by undue rise of temperature, greater expansion of the wings of the nose during inspiration, with short expiration, and diminished resonance with fine crepitation over limited portions of the chest, I have found the most certain and speedy relief to follow the application of a blister over the seat of the pneumonia and the internal use of the following formula:

No. 4. Rx. Ammonii chloridi, (12.00 grams) drachm iij;
  Antimonii et potassii tartratis,   (0.13 grams) gr. ij;
  Morphiæ sulphatis,   (0.20 grams) gr. iij;
  Extract, glycyrrhizæ fluidi,       (30.0 c.c.) fluidounce j;
  Syrupi,       (90.0 c.c.) fluidounce iij.

M.—Sig. Give to adults 4 cubic centimeters (fluidrachm j) or 1 teaspoonful, mixed with a tablespoonful of water, every three or four hours until some relief is obtained, and then at longer intervals. For children the doses must be diminished in proportion to the diminution of age. Quinine and laxatives may be used in these cases under the same indications as in uncomplicated bronchitis.

In the severe attacks of capillary bronchitis in young children many writers recommend emetics, and subsequently nauseating doses of antimony or ipecacuanha. But I have not seen sufficient benefit result from emetic doses of these agents to compensate for the early prostration, and sometimes continued gastric irritability, which they induce. I prefer the proper application of leeches at the very beginning, followed by emollient applications to the chest, and the same remedies internally as already mentioned, aided, perhaps, by an earlier use of quinine and digitalis if the cardiac action becomes weak and frequent. In all this class of cases, however, much caution should be exercised in regard to the use of opiates, either alone or in combination with other remedial agents, lest their narcotizing influence should diminish the force and frequency of the respiratory movements too much, and encourage the accumulation of the inflammatory products in the smaller bronchi to such a degree as to produce apnoea or death by the exclusion of air from the alveoli or air-cells of the lungs. And yet just enough of these quieting agents to diminish excitability and allay excessive restlessness is as desirable in children as in adults.

In the plastic or pseudo-membranous form of bronchitis it is an object of much importance, in the first stage, to limit the amount of plastic exudation, and later to hasten the loosening and disintegration or discharge of such layers of false membrane as may have formed on the bronchial mucous surface. For these purposes alterative doses of calomel may be given alternately with the doses of the formula containing the liquor ammonii acetatis already given (see Formula No. 1) during the first twenty-four hours, and subsequently pretty full doses of the iodides of sodium or potassium or of the bicarbonates. In acute cases in children, when the symptoms indicate that the false membrane is loosening and the dyspnoea is great, an emetic that will induce prompt and free vomiting may hasten its expulsion and afford much relief.

In the cases which have been described as rheumatic bronchitis of the more acute or active grade I have seen the most prompt and satisfactory degree of relief follow the administration of the following combination of remedies in the early stage: [p. 181]

No. 5. Rx. Sodii salicylatis, (25.00 grams) drachm vj;
  Glycerinæ,     (15.00 c.c.) fluidrachm iv;
  Vini colchici radicis,     (25.00 c.c.) fluidrachm vj;
  Syrupi scillæ compositi,     (45.00 c.c.) fluidounce iss;
  Tincturæ opii camphoratæ,     (60.00 c.c.) fluidounce ij.

M.—Sig. Give 4 cubic centimeters (fluidrachm j) every three or four hours in a little additional water.

In several cases in which this grade of inflammation was located chiefly in the smaller bronchi, causing very distressing and persistent dyspnoea, I have found an equal mixture of the wine of colchicum-root and the acetated tincture of opium, given in doses of 25 to 30 minims every three hours at first, to afford more relief than any other remedies I could use; and after some degree of relief had been obtained, by lengthening the interval between the doses to four or six hours and continuing it a few days, all the symptoms were removed. When the disease occurs in old persons, accompanied by severe paroxysms of coughing and only a scanty and very viscid mucous expectoration, much benefit may sometimes be derived from the use of the carbonated alkalies, such as the carbonate of ammonium or bicarbonate of sodium, dissolved in an equal mixture of the fluid extract of the Phytolacca decandra, liquor ammonii acetatis, and camphorated tincture of opium, in such proportions that the patient will get 3 decigrams (gr. v) of carbonate of ammonium in each dose of the mixture.

It is proper to remark that there are many mild attacks of bronchitis, caused by exposure to sudden and severe meteorological changes, which if seen during the first twenty-four hours can be speedily arrested by a hot or stimulating foot-bath and a full dose of the compound powder of opium and ipecacuanha (Dover's powder), taken in the evening, and followed the next morning by a saline laxative and two or three moderate doses of quinine during the day. Similar results can also be obtained in some cases by the use of any agents that will allay irritability and at the same time produce a free or copious elimination from the skin and kidneys. An efficient diaphoretic dose of pilocarpine, or a full warm bath, followed by two or three moderate doses of quinine, will succeed well if employed in the initial stage of the disease. Unfortunately, but few cases come under the care of the physician until after this stage is past.

TREATMENT OF CHRONIC BRONCHITIS.—Most of the cases of chronic bronchitis are treated satisfactorily by a more moderate use of the same remedial agents that have been recommended in the acute and subacute grades of the disease, aided by a judicious regulation of diet, dress, and exercise. In the great majority of cases of the ordinary chronic catarrhal variety of bronchitis the formula already given, numbered 4, or the one numbered 2, if given to adults in doses of 4 cubic centimeters (fluidrachm j) before each meal and at bedtime, mixed with a tablespoonful of water, will afford the necessary relief without confining the patient to the house. If the bowels become constipated while using either of these prescriptions, the evil may be obviated by taking one of the following pills every evening:

No. 6. Rx. Extract. hyoscyami, (2.00 grams) gr. xxx;
  Ferri sulphatis, (2.00 grams) gr. xxx;
  Pulveris aloës, (2.00 grams) gr. xxx;
  Pilulæ hydrargyri, (2.00 grams) gr. xxx.

M. et ft. pil. No. XXX. If one pill taken every evening does not prove sufficient to prompt one natural intestinal evacuation each morning, another can be taken after breakfast. The patient should adhere to a plain, nutritious, and easily digestible diet, avoiding the use of all varieties of alcoholic drinks, wear good warm underclothes of flannel all the time, and take moderate daily outdoor exercise so long as the strength will permit.

[p. 182] In addition to the several remedies that have been mentioned as applicable to the treatment of the different varieties of acute and subacute bronchitis, there are many others that have been found more or less beneficial in the treatment of chronic cases. Among the more important of these are the iodide of potassium and sodium, the grindelia robusta, eucalyptus globulus, oenothera biennis, cimicifuga racemosa, asclepias tuberosa, balsams copaiba and tolu, gum benzoin, turpentine, cod-liver oil, and the hypophosphites of sodium, calcium, and iron; and a still larger number that have been used for inhalation. As a general rule, when the cough is harsh and the expectoration scanty, with the predominance of dry râles, such remedies as the muriate and iodide of ammonium and the iodides of potassium and sodium, given in conjunction with small doses of antimony and some mild anodyne, will produce the best effects. On the other hand, if the expectoration is abundant and of a muco-purulent character, the balsamic and terebinthinate remedies, given in connection with such tonics as the lacto-phosphate of calcium, phosphate of iron, sulphate of quinia and strychnia with codia, hyoscyamia, or lupulin, at night to procure rest, will afford the greatest relief. In some of these cases I have obtained very good effects from a combination of two parts of the syrup of iodide of calcium with one of the fluid extract of hops, given in doses of 4 cubic centimeters (fluidrachm j) each morning, noon, tea-time, and bedtime.

When chronic bronchitis is complicated with pharyngitis and laryngo-tracheitis, much palliative influence may be obtained by judiciously-directed inhalations, either in the form of vapor or atomization. But when the disease is limited to the bronchi alone, inhalations have much less influence over its progress or in relieving the more distressing symptoms. And unless the nature of the material used is judiciously selected with reference to the particular stage and grade of the disease, the inhalations will be more likely to do harm than good. There are two conditions of the bronchi met with in different cases of chronic bronchial inflammation to which local applications can be made in the form of vapor with much benefit. The first is indicated by an abundant purulent or muco-purulent expectoration, sometimes fetid and at other times not. For such the full deep inhalation of aqueous vapor impregnated with some antiseptic and anodyne will be of great service. One of the best combinations that can be used for this purpose is that of carbolic acid with camphorated tincture of opium in the proportion of 2 grams of the former (gr. xxx) to 90 cubic centimeters (fluidounce iij) of the latter; 4 cubic centimeters (fluidrachm j) of this mixture may be put into 250 cubic centimeters (fluidounce viij) of hot water in an inhaling-bottle and the vapor inhaled freely, five minutes at a time, two or three times each day.

The second condition alluded to is characterized by a persistent, harsh, irritating cough, with little or no expectoration, indicating a sensitive and congested condition of the mucous membrane with diminished secretion. Such cases may generally be much relieved by adding to the antiseptic and anodyne mixture just given some one of the oleo-resin or balsamic preparations, of which perhaps none are more efficient than that which is known in the shops as oil of Scotch pine. Four cubic centimeters (fluidrachm j) of this may be added directly to the quantity of the other ingredients already given, and then used in the same manner. The combination thus used appears to allay the morbid sensitiveness and speedily establishes a better secretory action.

There is another important class of cases met with most frequently in persons of both sexes between twelve and twenty years of age. They present a narrow, imperfectly-developed chest, with so sensitive a condition of the bronchial membrane that every trifling exposure to cold and damp air renews the vascular hyperæmia and cough, until both become permanent and the morbid process extends into the connective tissue of the pulmonary lobules, [p. 183]establishing what some call interstitial pneumonia and others fibroid phthisis. In the earlier stage of all this class of cases the systematic daily practice of full, deep inhalations of pure atmospheric air, coupled with a judicious exercise of the muscles of the chest and arms, will do more to remove all symptoms of bronchial disease and preserve the general health of the patient than all the medicines that have been hitherto devised. There is much evidence in favor of using compressed air for inhalation in these and some other cases of bronchial inflammation. The late F. H. Davis of this city, who during his brief professional career gave much attention to the treatment of diseases of the respiratory organs, and had good opportunities for clinical observation, says, when speaking of the same class of young subjects, that "the inhalation of compressed air for from five to ten minutes once or twice a day produced marked and rapid improvement in all the cases. The size of the chest on full inspiration was increased from one-half inch to one inch in the first month, and a habit of fuller, deeper breathing and a more erect carriage was established."8 But he adds, with proper emphasis, that the inhalations to be permanently curative must be continued faithfully for many months, and be accompanied by a judicious regulation of all the habits of life.

8 See paper read before the Chicago Society of Physicians and Surgeons, April, 1877, on "The Respiration of Compressed and Rarefied Air in Pulmonary Diseases."

Every physician of much practical experience knows, however, that, in defiance of all the remedies and methods of treatment hitherto devised, there are many cases of chronic bronchial inflammation which will continue, and be aggravated at every returning cold season of the year, so long as the patient lives in a climate characterized by a predominance of cold and damp air with frequent and extreme thermometric changes. And yet a large proportion of these, by changing their residence to a mild and comparatively dry climate, either greatly improve or entirely recover. Consequently, in all the more severe and persistent cases such a change is of paramount importance, and should be made whenever the pecuniary circumstances of the patient will permit. Probably the best districts in our own country to which the class of patients under consideration can resort are the southern half of California, the more moderately elevated places in New Mexico and the western part of Texas, Mobile in Alabama, Aiken in South Carolina, and most of the interior parts of Georgia and Florida. My own observations lead me to the conclusion that the unfortunate invalid, suffering from any grade of chronic bronchial inflammation, can find in some of the regions named all the relief that could be gained in the most celebrated health-resorts on the other side of the Atlantic. But adherence to strictly temperate and judicious habits of life, with regular daily outdoor exercise, is essential to the welfare of the invalid in whatever climate he may choose to reside.

In the foregoing pages I have said nothing concerning the management of those cases of asthma, emphysema, interstitial pneumonia, etc. which often occur either as complications during the progress of bronchial inflammations or as sequelæ, simply because they will all be fully considered in the articles embracing those topics in other parts of this work.

[p. 184]



SYNONYMS.—Asthma convulsivum (Willis); Spasmus bronchialis (Romberg); Asthma nervosum; Krampf der bronchien.

DEFINITION.—A violent form of paroxysmal dyspnoea, not dependent upon structural lesion; characterized by wheezing respiration, with great prolongation of the expiration, and by the absence of all symptoms of the disease during the intervals between the attacks.

HISTORY.—Derived from the Greek [Greek: asthmatnô] to gasp for breath, the term asthma was employed by the older writers to designate a variety of affections of which embarrassed respiration was the most prominent symptom, thus including a great number of diseases which a more extended knowledge of pathology has since distributed among other nosological groups. By the earlier authors simple embarrassment of breathing was designated as dyspnoea; if attended with wheezing it was called asthma; while those forms in which the difficulty in respiration was so great as to prevent the patient from lying down were appropriately styled orthopnoea (Celsus). Ignorant to a great extent of pathological anatomy and unprovided with the improved methods of physical diagnosis which we now possess, they described as asthma not only the dyspnoea due to cardiac and pulmonary diseases, but also that occasioned by affections of the pleura and greater vessels. Covering such an extensive range of territory, it was found necessary to subdivide the disease into a number of varieties, each author classifying them according to his conception of the cause, seat, and nature of the trouble. Some of these—e.g. a. dyspepticum—still find a place in medical literature, but the vast majority of them, having ceased to be of any practical significance, have been discarded, and are now only interesting as examples of the crude and fanciful notions which prevailed in an age during which science rather retrograded than advanced.1 Of the writers of this period, Willis in the seventeenth century is especially worthy of notice as being the first to describe the nervous character of asthma. Without discarding the accepted forms of the disease, he mentions another variety, characterized by spasmodic action of the muscles of the chest, to which he gave the name asthma convulsivum.

1 "Van Helmont, discarding the ancient doctrine of the four humors, attributed asthma to an error of the Archeus, which he conceived to be enthroned in the stomach and to constitute the source of all diseased as well as of all healthy phenomena. This principle, he supposed, sent forth from the stomach a peculiar fluid, which, when it became diseased, gives rise to a morbid state of the parts to which it was conveyed. He moreover imagined that this fluid sometimes mixed itself with the male semen, and thus formed a compound which, as one of its constituents is the means provided by nature for the propagation of the species, possesses the power of generating a disease of hereditary character. Thus, when this compound was conveyed to the articulations, he affirmed it produced gout, and when it took its direction to the lungs it then occasioned asthma" (Baltimore Med. and Surg. Journ. and Review, Baltimore, 1833, p. 300).

The improvement in physical diagnosis resulting from the brilliant discoveries of Auenbrugger and Laennec greatly curtailed the domain of asthma. [p. 185] With the aid of auscultation and percussion it was discovered that most of the cases hitherto regarded as asthma were only symptoms of some organic disease. Many distinguished authorities, particularly of the French school, went so far as to declare that there existed no such disease as asthma, and that in every case the dyspnoea and other phenomena described under that name were merely symptoms of some organic affection.

Although very generally received at first, it was not long before this too-sweeping reform encountered opposition from various quarters. Cases were observed with marked asthmatic symptoms in which, after death, the most careful examination failed to reveal the slightest trace of textural lesion. The discovery by Reisseisen of muscular fibres even in the minutest bronchi, and the demonstration of their electric contractility by Longet and Williams, afforded a ready explanation of these cases, and led to the opinion—which has since been generally received—that asthma in the modern acceptation of the term is simply a neurosis. The more recent theories in regard to the nature of asthma will be more fully discussed in the portion of our article devoted to the pathology of the disease.

SYMPTOMS AND COURSE.—The following description of an attack of asthma by Trousseau, who was himself an asthmatic, is perhaps the best that has ever been written: "An individual in perfect health goes to bed feeling as well as usual, and drops off quietly to sleep, but after an hour or two he is suddenly awakened by a most distressing attack of dyspnoea. He feels as though his chest were constricted or compressed, and has a sense of considerable distress; he breathes with difficulty, and his breathing is accompanied by a laryngo-tracheal whistling sound. The dyspnoea and sense of anxiety increasing, he sits up, rests on his hands, with his arms put back, while his face is turgid, occasionally livid, red, or bluish, his eyes prominent, and his skin bedewed with perspiration. He is soon obliged to jump from his bed, and if the room in which he sleeps be not very lofty he hastens to throw his window open in search of air. Fresh air, playing freely about, relieves him. Yet the fit lasts one or two hours or more, and then terminates. The face recovers its natural complexion and ceases to be turgid. The urine, which was at first clear and was passed rather frequently, now diminishes in quantity, becomes redder, and sometimes deposits a sediment. At last the patient lies down and falls to sleep."

The next day the patient may feel well enough to pursue his accustomed avocation, and may remain free from all symptoms of the disease until another attack comes on; but more frequently he is confined to the house, if not to bed, the slightest exertion being sufficient to cause dyspnoea; and during the following night there is a repetition of the paroxysm.

If unchecked by treatment, the disease may continue for days, weeks, and in some instances even for months, the paroxysms often increasing in severity until, as in other nervous affections, it ultimately wears itself out.

There is no regularity in the occurrence of the attacks. In some cases they recur every few days, while in others there may be an interval of weeks or months between the seizures. Even in the same case, although the individual paroxysms of the attack may come on at the same hour, there is, except in rare instances, no regularity in the recurrence of the attack itself; and when it does recur at a certain time it is almost always due to some cause which, as in hay asthma, exerts its influence only at that particular period.

In the great majority of cases asthma comes on without any warning whatsoever, but occasionally it is preceded by certain sensations which to the experienced asthmatic are a sure indication that an attack is impending. With some it is only a feeling of ill-defined discomfort; others complain of various disorders of the digestive system—a sense of dryness of the mouth and pharynx, uncomfortable distension of the epigastrium with eructation of [p. 186]gases from the stomach, and more or less obstinate constipation. A troublesome itching of the skin often precedes the attack. Some experience a feeling of constriction around the throat; a profuse secretion of clear urine is a symptom of this stage. Frequent gaping, frontal and occipital headache, are mentioned; but far more constant than all of these are certain symptoms indicative of a mild grade of acute catarrh of the respiratory organs—coryza, with swelling of the Schneiderian membrane and discharge from the nostrils, sneezing, redness of the conjunctivæ with increased lachrymation, and later, as the irritation extends downward, more or less cough.

The attack almost always comes on after midnight, and, as a rule, between the hours of two and six o'clock in the morning. Salter states that nineteen out of twenty cases occur between two and four A.M. There are, however, occasional exceptions to this rule; sometimes the patient is attacked soon after retiring, and Trousseau cites the case of his mother, who always had her attacks between eight and ten in the forenoon, and also that of a tailor, whose paroxysms invariably came on at three o'clock in the afternoon. Indeed, there is no hour of the twenty-four during which the seizure may not take place. Various attempts have been made to explain why it is that the paroxysms of asthma almost invariably occur during the latter half of the night. Many attribute it to a stasis of blood in the lungs caused by the recumbent posture of the patient, while others claim that it is due to a dulling of reflex impression, the patient during sleep failing to perceive the necessity of breathing. Germain Sée, who discredits both theories, inquires why, if the above explanations are correct, does the attack not come on soon after retiring, as is the case with the dyspnoea of cardiac diseases.

The paroxysm of asthma develops very rapidly, but not so suddenly as is claimed by many authors, several minutes to half an hour or more elapsing before it attains its full height.2

2 Germain Sée in Nouveau Dictionnaire de Médecine et de Chirurgie, tome iii. p. 617, Paris, 1865.

The patient, experiencing an urgent desire for breath, instinctively places himself in the position most favorable for the ready admission of air into the lungs. If in bed he sits up, and, resting on his hands or grasping his knees with them, he so fixes the body that the muscles of respiration may work to the greatest advantage. The shoulders are drawn up and the head thrown back. The expression of the face is one of great anxiety—pale at first, then red, and as the attack increases in severity assumes a dusky, bluish tint; the mouth is partially opened, the nostrils are dilated; the eyes, the conjunctivæ of which are much injected, are prominent, with a wild, staring look; and the forehead is moist with perspiration. Others in their desperate struggle for breath spring from the bed, throw open the window, and, regardless of everything save what they believe to be impending suffocation, recklessly gasp in the cold night air. Sometimes the sufferer prefers to kneel before a table or some other article of furniture, supporting his head with his hands. Whatever posture he assumes, he is actuated by the one impulse of placing himself in the position that will enable him to use to the greatest advantage the muscles of respiration and their auxiliaries. The sterno-cleido-mastoid muscles are contracted to the utmost, and, projecting like hard cords, with the aid of other muscles draw the chest upward. The patient instinctively avoids every unnecessary exertion as having a tendency to aggravate his dyspnoea; he speaks but little, and when questioned usually replies with a motion of the head.

In ordinary respiration the inspiratory movement is twice as long as the expirium, the latter, except in forced expiration, being a purely passive act. In asthma this rule is reversed, the expiratory movement being four or five times as long as the inspirium, and is often so slow that it fills the whole of [p. 187]the pause which usually intervenes between the completion of one respiration and the beginning of another. It is sometimes so slow "that it seems as though the lung would never empty itself." In the desperate struggle for breath the respiratory muscles are exerted to the utmost in futile endeavors to expand the chest; with each inspiration there is an elongation of the thorax, but no lateral movement. The chest moves up and down, but there is no expansion; "the muscles tug at the ribs, but the ribs refuse to rise" (Salter), the walls of the chest remaining immovable.

Notwithstanding the all but tetanic contraction of the diaphragm, there is during each inspiration a sinking in of the epigastrium, and in severe cases also of the spaces above and below the clavicles. During expiration the abdominal muscles, especially the recti, are hard and tense, the pressure thus exerted being sometimes sufficient to expel the contents of the lower bowel and bladder.3 The transversus is also tightly contracted, and a cross furrow above the umbilicus indicates that the contraction of its upper half is opposed to the contents of the abdomen forced down by the distended lung (Biermer). Although the dyspnoea is great, there is no increase in the frequency of the respirations so long as the patient remains quiet, but, on the contrary, they are often less frequent than in health. This slowing of the respiration is also observed in the dyspnoea from laryngeal stenosis in croup, etc.; but in these cases we do not have the prolonged expiration which is so characteristic of asthma (Biermer). At every breath which the patient takes there is a peculiar wheezing sound which may be heard distinctly all over the room; it is usually heard only during expiration, but some authors (Biermer) claim that it is also audible during inspiration.

3 Bamberger's case, as quoted by Riegel, Ziemssen's Pathologie u. Therapie, Leipzig, 1875, Band iv. 2, S. 282.

On auscultating the chest it will be found that the ordinary vesicular murmur is either entirely absent, or if heard it is only over very limited areas. In the place of it we have an endless and ever-changing variety of dry sounds, such as whistling, cooing, mewing, snoring, etc., technically styled sibilant or sonorous ronchi. They are usually equally diffused over both lungs, but are sometimes confined to one. The sibilant râles afford an index of the degree of spasm, being in mild cases equally audible during both inspiration and expiration, while in severe attacks they are louder during expiration (Biermer). That the vesicular murmur cannot be heard is due not only to its being masked by the louder ronchi, but also to the absence of the condition necessary for its production, the spasmodic constriction of the bronchial tubes or their plugging with tough, viscid mucus preventing the entrance of sufficient air to produce the sound. Sometimes a hitherto occluded tube becomes pervious, and we have vesicular respiration where a moment before only dry sibilant râles were heard. Usually at the close of the attack, when cough sets in, there are occasional moist râles. These become more frequent as the expectoration becomes more abundant. Frequently, however, the paroxysm terminates much more abruptly, the spasm relaxes, and the air rushing through the tubes gives rise to puerile respiration.

During the paroxysm there is, even in the early stages of asthma, more or less distension of the lungs, measurement of the chest showing that its circumference is four to eight centimeters greater than before the attack (Beau). This transitory emphysema, which must not be confounded with that due to structural changes observed in old cases, disappears with the attack, and the lung returns to its normal condition. This distension causes the exaggerated resonance obtained by percussion which is one of the most constant symptoms. At the base of the lung, especially posteriorly and laterally, there is a peculiar modification of the percussion sound to which Biermer has applied the name Schachtelton, from its resemblance to the note produced by striking [p. 188] an empty pasteboard box. Besides this exaggerated resonance, it will be found that the line of dulness on the right side, which marks the upper border of the liver, is fully two inches lower during the paroxysm than before, and that the area of cardiac dulness is somewhat diminished by the overlapping of the distended lung-tissue (Riegel). Another peculiarity elicited by percussion, and to which Bamberger was the first to direct attention, is that in some rare cases instead of moving vertically the line of hepatic dulness remains unchanged during both acts of respiration.

Toward the close of the attack the congested mucous membrane of the bronchi begins to secrete, and there is more or less cough. The matter expectorated consists at first of little balls of tough, semi-transparent mucus not much larger than a pea. It is exceedingly tenacious, and is raised with great difficulty. Examined under the microscope, the sputum is found to consist "of a great number of corpuscles, some of which are polyhedral in form with rounded angles; they are pale, homogeneous, and slightly granular. At first sight they resemble pus-corpuscles, but they are much larger, less circular in form, and have no nucleus. In addition to these corpuscles there are others which are oval, elongated, fusiform, and sometimes linear in shape, but all of them appear to be of the same nature and possess the same refracting power as the corpuscles first mentioned. They are all of them agglomerated in a sort of viscous matter."4 The expectoration often contains blood, and in some rare instances profuse hemorrhages have been known to occur. Sometimes the matter has particles of soot and coal-dust intermingled with it, the so-called carbonaceous sputum (Sée). In addition to the cells above described, the sputa contains small yellowish-green masses or threads in which are imbedded the peculiar octahedral crystals which Leyden has ingeniously connected with the etiology of asthma, and to which we shall again have occasion to refer.5 Ungar has recently also discovered crystals of oxalate of lime in the sputa.

4 Germain Sée, Nouveau Dictionnaire de Médecine et de Chirurgie, pp. 612, 613; also, Salter, Asthma, its Pathology and Treatment, Am. ed., p. 944.
5 Riegel, in Ziemssen's Handbuch d. Pathologie u. Therapie, vol. iv. 2, pp. 268, 285.

Laryngoscopic examination reveals more or less congestion of the air-passages. "In ordinary respiration the glottis is widely open during inspiration, and at each expiration the arytenoid cartilages approach each other so as to narrow the glottis; but in the labored respiration of asthma the glottis is fixed in the condition of expiration; that is, the glottis is narrowed, and the air enters and is expired through the same narrow space."6

6 Steavenson, Spasmodic Asthma, p. 23.

The embarrassment of respiration and the pressure of the air in the distended alveolæ by impeding the capillary circulation of the lungs prevent the left auricle from receiving its full supply of blood; hence the pulse is small and weak during the paroxysm, but regains its natural volume as soon as its immediate effects are over. The action of the heart, like every other phenomenon of asthma, is subject to constant variation. At one moment it beats tumultuously, while at the next its action may be so feeble as to cause temporary syncope (Sée). The venous blood, unable to overcome the obstacles to its passage, is forced back into the vessels, causing distension of the cervical veins and the jugular pulse sometimes observed in severe attacks. The bluish hue of the face in bad cases is due to cyanosis resulting from insufficient aëration of the blood. The paroxysm is unattended with fever, the temperature, if altered at all, being rather below than above the normal. Coldness of the face and hands is quite a common symptom in protracted cases.

In addition to the nervous sensations described among the premonitory symptoms, patients have been known to suffer from disturbances of a more [p. 189] serious nature during the paroxysm. In some instances there is complete loss of consciousness, and Riegel7 states that such cases have been known to have tetanic convulsions of the trunk and extremities.

7 Loc. cit. p. 285.

The course of an attack of asthma is in most cases quite typical, the paroxysms recurring nightly for an indefinite period, and usually increasing in severity until, as in epilepsy and other nervous diseases, it finally exhausts itself. On awaking from the sleep which usually succeeds the final paroxysm the patient, unless the attack has been very mild and of short duration, feels weak and exhausted, but there is no tendency to the recurrence of the dyspnoea; on the contrary, he may expose himself with perfect impunity to the causes which at other times would be certain to produce an attack. The chest feels stiff and sore, the cough and expectoration diminish, and in a few days disappear, and if the disease has produced no organic lesion the patient returns to his usual state of health.

DURATION.—The duration of asthma, except in young persons and in those rare cases in which the cause can be discovered and removed, is very indefinite, the disease lasting for years, if not for life. As the patient grows older the attacks become less severe, but are more frequent. Sometimes a case which has recurred for years and defied the most energetic treatment will all at once recover of itself.

SEQUELÆ.—Although bronchial asthma is essentially a neurosis, and therefore purely functional in its character, it is rare for it to continue for any great length of time without causing some organic affection of the lungs or heart.

The most common sequel of asthma is emphysema. The bronchial tubes being more or less completely closed, either by contraction of their muscular fibres or by plugs of thick, viscid mucus, the air pent up in the parts beyond the obstruction is subjected to the negative pressure produced by the exaggerated inspiratory act, becomes rarefied, and, in obedience to the diminished resistance induced by the partial vacuum in the thorax, causes distension of the air-cells. This condition continues until, the tubes having again become pervious, the natural elasticity of the lung-tissue, aided by the expiratory muscles, forces out the air and permits them to return to their natural size. This is the transitory emphysema to which we have already alluded. Germain Sée8 regards it as analogous to the paralytic emphysema which occurs the moment the pneumogastric is divided. With repeated attacks the air-cells lose their elasticity and remain permanently dilated. Owing to the constant distension, the walls of the alveolæ become more and more attenuated, until, finally giving way, two or more of them coalesce, forming one large cell. The symptoms of this condition are the same as those of ordinary vesicular emphysema.

8 Op. cit., p. 637.

Owing to partial occlusion of the afferent bronchi and the altered conditions of pressure mentioned, the blood accumulates in the capillaries during the paroxysm, the lung-cells do not receive their adequate supply of air, and oxygenation is imperfect. In the early stages of the disease this congestion is only temporary, and disappears with the removal of the obstruction, but in those cases in which the attacks are severe and frequent the vessels lose their contractility and remain permanently congested.

The state of chronic congestion just mentioned is occasionally attended with serous exudation into the interalveolar tissue, which by pressing upon the adjacent air-cells causes their obliteration. This oedema, with the remains of the compressed air-cells and the viscid mucus stagnating in the finer tubes, forms the little islets of carnified tissue known as lobular pneumonia.

The most frequent change observed in the bronchial tubes in old cases of asthma is hypertrophy of their muscular fibres, causing thickening of their [p. 190] walls and diminished calibre. In other cases they are dilated, but this condition is due more to the concomitant bronchial catarrh than to the asthma.

Obstructed in its course through the lungs, the venous blood accumulates in the pulmonary artery, and, pressing back upon the right ventricle, excites it to increased action, which in the course of time leads to hypertrophy of its muscular fibres and dilatation of its cavity.

In the early stages of asthma, the face is usually pale during the intervals between the paroxysms, but when the latter become more frequent the impeded circulation causes stasis in the peripheral vessels. The imperfectly-oxygenated blood gives the face a dusky hue, and in severe cases it may become bluish or even violet-colored. The eyes are prominent, owing to the enlargement of the orbital veins (Sée), and the conjunctivæ congested and watery.9

9 For a description of symptoms of the above-mentioned secondary affections the reader is referred to the articles on EMPHYSEMA and HEART DISEASE.

ETIOLOGY.—Predisposing Causes.—Every one is not liable to asthma, and the fact that out of a large number exposed to its exciting causes only a few are attacked justifies the assumption that there is an inherent tendency to the disease. That this tendency is hereditary in its nature is conceded by every prominent writer on asthma except Lebert, who believes this to be only occasionally the case. Thus, of 35 cases collected by Salter, heredity could be traced in 14, of whom 7 inherited the disease from the father, and the remainder from grandparents and other relations. Ramadge gives an instance in which the disease appeared in four generations: an asthmatic father had four children, three of whom inherited the disease; one of the daughters married, and of her two children one became asthmatic; the other escaped, but the disease reappeared in one of her children.10

10 Germain Sée, op. cit., p. 668.

The hereditary tendency may skip one generation, as is the case with Steavenson,11 who inherited asthma from his grandfather, his father's generation having been entirely free from the disease. In other cases it may alternate with some other neurosis or with gout or rheumatism; for instance, the children of an asthmatic father may be epileptic or gouty and the grandchildren asthmatic, or the asthmatic tendency may develop in one child of an asthmatic family and the gouty diathesis in another. It is by no means necessary for the hereditary transmission of the disease that the father should be asthmatic when the child is conceived, as there are many cases recorded in which asthma developed in children whose fathers had completely recovered before they contracted marriage and never had any subsequent return of the disease.

11 W. E. Steavenson, Spasmodic Asthma, London, 1882, p. 8.

All authorities agree that asthma is much more frequent among males than females. Of Théry's cases, 60 were females and 80 males. The more recent statistics of Salter show that the males exceed the females in the proportion of two to one. This undue frequency of a purely nervous disease among males appears at first to be at variance with the generally-received opinion that such affections pertain rather to the female sex; but on investigating the ages at which the attacks first come on it will be found that between the fifteenth and thirtieth years—that is, during the period when sexual function is most active—the proportion is reversed, females being attacked much oftener than males.

Asthma occurs more frequently in childhood than at any subsequent period—a fact which may be explained by the great susceptibility of young children to catarrhal affections of the air-passages and to the frequent occurrence at that age of measles and whooping cough (Salter). Of 225 cases collected by Salter, 71 occurred before the tenth year, and of these, 10 began during the first year, the youngest of them being only fourteen days old at the time of [p. 191]the attack. From ten to twenty it occurs less frequently than at any other period of life, but from that age to the fortieth year there is a steady increase in the number of cases. During the next decade, from forty to fifty, the disease diminishes in frequency, and from that period on the number of cases continues to grow smaller and smaller with advancing years, comparatively few commencing after the fiftieth year.

The following tabular statement, compiled by Salter, shows the comparative frequency of asthma during the various periods of life:

From 1 to 10 years, 71 cases.
" 10 to 20 " 30 "
" 20 to 30 " 39 "
" 30 to 40 " 44 "
" 40 to 50 " 24 "
" 50 to 60 " 12 "
" 60 to 70 " 4 "
" 70 to 80 " 1 "

These figures demonstrate the fallacy of the popular idea that old people are especially liable to asthma. Its prevalence during the later periods of life is due to the fact that while, on the one hand, the affection rarely causes death, on the other it is scarcely ever curable except during childhood, and thus the cases contracted at different ages accumulate and form a large aggregate as life advances.

Those cases occurring in childhood and late in life are likely to be associated with more or less bronchial catarrh, while those which come on when the body has attained its fullest development are almost invariably purely nervous in character.

The period of life at which asthma commences is an important element in the prognosis of the disease, the cases occurring in early childhood being likely to end in recovery, while those coming on later in life are exceedingly protracted in their course and liable to lead to organic diseases of the heart or lungs.

Asthma does not appear to be influenced by the seasons, some authors claiming that it is most frequent in summer, while others maintain that the greatest number of cases occur in winter.

Exciting Causes.—Bronchial asthma being a neurosis of the pneumogastric nerve, its exciting causes may be divided into those which act upon the nerve directly, and those which are reflected from more remote parts or organs.

In the first class the irritant may act upon the nerve at its origin in the medulla oblongata or upon some part of its continuity. Various poisons, organic or inorganic, when introduced into the system may so change the character and composition of the blood as to interfere with the nutrition of the respiratory centre, and thus cause more or less embarrassment of respiration; but the attacks of dyspnoea due to these causes are more continuous than those of ordinary asthma, and are wanting in many of the symptoms which we have described as characteristic of that disease. These forms of dyspnoea are usually the result either of some constitutional disease or of some poison introduced into the system, both of which act by diminishing the proportion of red corpuscles in the blood. Of this we have examples in the dyspnoea sometimes observed in syphilis and malarial fever and in lead and mercurial poisoning—the so-called a. saturninum and a. mercuriale. It is true that there have been instances in which the paroxysms of asthma have come on at regular intervals and have yielded to quinine, but it is not regarded as proved that such cases were due to malarial poisoning (Sée).

Enlarged bronchial glands pressing upon the pneumogastric nerve may cause asthma, and this explains why it is so frequent in children after attacks of measles and whooping cough (Williams and Biermer). Others have remarked that asthma is often coincident with hypertrophied tonsils (Schaeffer). In the great majority of cases the exciting cause does not act directly upon [p. 192]the pneumogastric nerve, but upon the skin or some other remote organ, whence it is transmitted to the nervous centre and reflected back through the nerves of respiration to the bronchi.

Biermer believes that the irritant in many cases, instead of being directly transmitted to the medulla oblongata, causes a fluxion to the exposed mucous membrane. He thinks that the absence of catarrhal symptoms is more apparent than real, the evidences of congestion being unappreciable during the early stages of the disease. According to Riegel,12 the action of the irritant may be explained in one of three different ways—viz. 1st, both the spasm and the fluxion may be the common result of the irritant; 2d, the catarrh may cause the spasm; or, 3d, the spasm may secondarily produce catarrh.

12 Op. cit., p. 256.

Although cold may not be so frequent a cause of asthma as was formerly supposed, low temperature undoubtedly acts as an irritant upon the terminal branches of the respiratory nerves, especially the pneumogastric, and in the manner just described may produce spasmodic contraction of the bronchi. The effect of cold is of course much more deleterious when it is associated with sudden changes and diminished barometric pressure, high winds from the east and north being particularly prejudicial. Aside from its meteorological characteristics, the locality itself exercises a potent influence in the production of asthma; and here, again, we have an example of the capricious character of the disease. A patient who for years has suffered with asthma may change his residence and find immediate relief, but of the special factors which engender the disease in one place and cure it in another we know as yet but little. It is, however, a generally acknowledged fact that removal from the country to a crowded city will often diminish the severity and frequency of the attacks, and English writers mention numbers of cases of asthma which have been permanently cured by a prolonged residence in the foggy atmosphere of London. A very slight change is often sufficient to afford relief, and sometimes removal to another part of the same city is all that is necessary. The town of Aiken in South Carolina is divided by a ravine into two sections: the elevation, soil, and exposure are alike in almost every respect, but persons have been known to suffer severely with asthma on one side and to enjoy perfect exemption from it on the other. A gentleman who resides at Bath in the same neighborhood is perfectly free from asthma at his home, but invariably has an attack as soon as the train begins to cross the Savannah River at Augusta, which is only a few miles distant. More remarkable still is the case mentioned by a French writer of a young man who was unable to sleep in the front rooms of a house without having a paroxysm, but who did not experience the slightest inconvenience when he occupied the back rooms.

Although removal to the city frequently affords relief, there are exceptions to the rule, and many cases are recorded where a change of residence to the country has effected a cure. Ozone, of which but little is as yet known, is supposed by some to be a cause of asthma, and it is not unlikely that the relief afforded by removal to a large city may be partly due to the relatively small proportion of this agent in the atmosphere of crowded localities.

Dust of various kinds, the pollen of plants, certain vapors, gases, smoke, and the emanations from many species of animals, have all been known to excite attacks of asthma. Some persons are so sensitive that the simple act of brushing their clothes is sufficient to bring on a paroxysm. Others are unable to inhale the perfume of roses, lilies, heliotropes, and many other flowers without suffering with an attack. The dust of hay will often cause paroxysms even in those who are not hay-fever subjects. Since Cullen first published the case of an apothecary's wife who had asthma whenever ipecac was powdered in her husband's shop numerous cases of a similar nature have [p. 193]been recorded. Ramadge relates the case of an employé in the East India Company who was compelled to relinquish a lucrative appointment because the smell of tea always provoked a paroxysm of asthma. Many persons are unable to come into close proximity with horses, rabbits, cats, and other animals without suffering, and Austin Flint of New York experienced great inconvenience when absent from home from sleeping upon feather pillows. In his case the asthmatic attack was not brought on by all pillows, but what it was that made one kind more active than another he was unable to determine.

In persons predisposed to bronchial asthma the eating of any indigestible substance may of itself be sufficient to cause an attack, and even an ordinarily full meal, if partaken of late in the day, may have the same effect. Dyspepsia in its various forms and the presence of irritating substances in the intestinal canal are such frequent causes of asthma that they have led to the establishment of several special varieties of the disease—e.g. a. dyspepticum, a. verminosum.

Asthma is frequently due to uterine and ovarian disorders, the so-called a. uterinum.

Voltolini of Breslau has described cases which were evidently due to the presence of naso-pharyngeal polypi, the attacks disappearing with their removal and reappearing with their renewed growth. These statements have been confirmed by subsequent cases observed by Haenisch. Attention has lately been directed to a number of cases in which the asthmatic paroxysm was found to be associated with catarrh of the naso-pharyngeal and laryngo-tracheal mucous membrane. In such cases it is thought that the irritation caused by the pressure of the swollen mucous membrane upon the adjacent nerves is conveyed through them to the pneumogastric, and thus provokes the bronchial spasm. Daly, Roe, Harrison Allen, Hack, and others have traced the paroxysms of hay asthma to an hypertrophied condition of the mucous membrane over the turbinate bones and septum of the nose, which renders it peculiarly susceptible to the action of the irritants which cause that troublesome affection, and have succeeded in curing many cases by simply removing the diseased tissue.

Mental emotion, if sufficiently powerful, may sometimes prevent the occurrence of the asthmatic paroxysm; thus, Steavenson, referring to his own case, states that although subject to frequent attacks he never had one on going up for an examination; and the writer is acquainted with a patient whose attack of hay asthma could frequently be checked by an exciting game of cards.

Asthma, like other neuroses, is much more frequent among the educated and refined than among the coarser and more ignorant classes of society, and those leading luxurious lives are more liable to the disease than those of simple and frugal habits. Of the various professions, those which involve much exertion of the voice furnish the largest contingent; hence it is common among public speakers, clergymen, and lawyers.

In former days the retrocession of cutaneous eruptions was supposed to play an important rôle in the production of asthma, but of late years this theory of causation has found but few advocates among intelligent physicians, the only author of any prominence who still adheres to it being Waldenburg, who has proposed to designate such cases as a. herpeticum.

PATHOLOGY.—We have elsewhere alluded to the various theories with which the older writers endeavored to explain the phenomena of asthma, and need not here refer to them again.

The first step toward a truly scientific theory of the pathology of asthma was the discovery by Reisseisen of the smooth muscular fibres of the bronchial tubes. These fibres are found not only in the large and medium-sized bronchi, but even in those of the smallest calibre, Kölliker having [p. 194] demonstrated them in bronchioles 0.18 millimeter in diameter. It was ascertained by Williams that by irritating the lung he could cause contraction of these fibres, and Longet subsequently proved that the same effect could be produced by galvanizing the pneumogastric nerve. Guided by these important discoveries, most modern pathologists have arrived at the conclusion that bronchial asthma is a spasmodic contraction of the middle and finer bronchi, dependent upon some derangement in the function of the pneumogastric nerve. This, the so-called spasmodic theory, is not entirely new, Willis, as we have before stated, having described as early as 1682 a variety of asthma which he believed to be the result of a "spasmodic action of the muscles and nerves of respiration," and to which he applied the term "asthma convulsivum." Although revived from time to time, it was not until some two hundred years later, and after Romberg had definitely settled the question of the essential character of the disease, that the spasmodic nature of asthma received general recognition. Bergson adopted it in his prize essay in 1840, and ten years later it found a warm supporter in the person of Hyde Salter, whose valuable contributions have added so much to our knowledge of bronchial asthma. The theory that asthma is due to spasm of the bronchial muscles met with but little opposition until 1854, when Wintrich, after a series of experiments, arrived at conclusions directly opposed to those of Williams and Longet in regard to the contractility of the muscular fibres of the bronchi, and refused to accept the spasm theory on the ground that it afforded no rational explanation of the phenomena of asthma. He believed that the various symptoms of that disease were due to tonic spasm either of the diaphragm alone or of the diaphragm and the other muscles of respiration. These experiments of Wintrich were so carefully conducted, and his standing as a specialist in respiratory diseases so high, that his theory found many supporters, and might perhaps have been generally accepted had it not been for the distinguished French physiologist, Paul Bert, who in 1870, with improved methods of scientific research, succeeded in demonstrating that Williams and Longet were after all correct in their statements as to the contractility of the bronchial muscles.

One of the most zealous advocates of the spasm theory of asthma, and at the same time its most learned expositor, is Biermer,13 whose classical lecture on that disease, which appeared a short time after the publication of Bert's experiments, is perhaps the most satisfactory work ever published on the subject. He defines bronchial asthma as a "neurosis depending upon tonic spasm of the bronchial muscles and caused by faulty innervation of the pneumogastric nerve." He claims that this theory is confirmed by clinical experience—that the suddenness with which the attack comes and disappears, and the long and forced expiration with the sibilant râles and other evidences of stenosis which accompany it, admit of no other explanation. In support of this view he calls attention to the rapidity with which the paroxysm yields to chloral, all of its symptoms disappearing within from five to ten minutes after the administration of a moderate dose of that agent. Wintrich and his supporters, besides denying the contractility of the bronchial muscles, object to the spasm theory that the distension of the thorax and descent of the diaphragm, both constant symptoms, are incompatible with spasmodic closure of the bronchial tubes, and that constriction from such cause by impeding the entrance of air into the alveolæ would be more likely to cause diminution in the size of the thorax than its enlargement, and that the diaphragm, instead of descending, would be drawn upward. Biermer acknowledges that this to a certain extent is true, and concedes that constriction of the tubes would interfere with both acts of respiration, but claims that it does not do so [p. 195] to the same extent in the two movements. The spasmodic constriction acts as a sphincter which is readily overcome during inspiration, but prevents the escape of air during expiration, the latter movement being slower and less complete than the former. Were the expiratory pressure exerted upon the contents of the alveolæ alone, it would readily overcome the spasmodic constriction of the bronchi, but it also compresses at the same time the bronchioles. "When the bronchi are spasmodically contracted, they are subjected during expiration to the general pressure of that movement plus the pressure of the spastic contraction of the bronchial muscles. The walls of the bronchioles being soft and compressible, the expiratory pressure, instead of overcoming the obstruction and opening them, would tend to close them all the more tightly." He calls attention to an analogous condition which obtains in capillary bronchitis, when, owing to swelling of the mucous membrane and to the accumulation of secretion in the tubes, the alveolæ are cut off. Here, too, the expiratory pressure is often sufficiently powerful to overcome the obstruction, but if under these circumstances it is too feeble, collapse of the lung ensues. When, on the other hand, the inspiration is strong enough to overcome this obstacle, air enters the alveolæ, and, being imprisoned there, causes inflation of the air-cells as in asthma. That collapse of the lung does not occur in the latter disease is due to the fact that the inspiratory act is always sufficiently powerful to overcome the spastic contraction of the bronchioles.

13 A. Biermer, "Ueber Bronchial Asthma," Sammlung klinischer Vorträge, No. 12, Leipzig, 1870.

The air entering the lung during inspiration is pent up by the spastic constriction of the bronchi, which, acting as a valve, admits of its passage in one direction, but impedes its escape during expiration, and thus causes inflation of the air-cells and insufficient aëration. Owing to the distension of the alveolæ the thorax is expanded and the diaphragm forced downward. A tetanic spasm of the diaphragm lasting for hours, such as that which Wintrich describes, and with which he endeavors to explain the descent of that muscle as well as the other symptoms of asthma, is not only improbable, but is contrary to clinical experience. If the diaphragm were thus spasmodically contracted, it would remain fixed in one position, but Biermer has demonstrated that there is more or less rhythmic movement of that muscle even during the paroxysm; but if no movement of the diaphragm were observed, it would still be no proof of tonic spasm of that muscle, as its immobility might be due to other causes. According to Biermer, the inflation of the lungs and their insufficient ventilation afford a satisfactory explanation of the most important symptoms of asthma, as Breuer14 has shown, in his paper on the automatic regulation of respiration through the pneumogastric nerve, that various embarrassments of respiration must be corrected by some suitable modification of the act itself; hence when, as in asthma, the lung is unable to empty itself, the expiratory act must be strengthened and prolonged to overcome the obstruction occasioned by the spasmodic constriction of the bronchial tubes; whereas incomplete filling of the lung would necessitate increased inspiratory effort. According to Biermer, "expiratory dyspnoea is as characteristic of obstruction of the finer tubes," be it from spasm, as in asthma, or from stoppage with viscid mucus or from swelling of their lining membrane, as in bronchitis, as the same condition during inspiration is of narrowing of the larger air-passages—an important point in differential diagnosis to which we shall again have occasion to refer. He is unable to explain the relationship between bronchial spasm and catarrhal hyperæmia of the air-passages, but believes that it may be accounted for as follows: "Either the bronchial fluxion causes the spasm—that is, that there exists between them a causal connection—or the hyperæmia and the spasm are the [p. 196] joint effect of the exciting (centripetal) nerves; in other words, both are due to reflex action."15

14 "Die Selbsterneurung der Athmen durch den N. vagus," Sitzungsbericht der K. K. Akademie der Wissenschaften zu Wien, Bd. lviii. Abtheilung ii., Nov., 1868.
15 In presenting Biermer's theory the writer has drawn freely upon that author's well-known lecture on "Bronchial Asthma," as published in Volkmann's Sammlung klinischer Vorträge, loc. cit.

Another explanation of the phenomena of asthma is that proposed by Lebert,16 who, although he concedes that bronchial spasm is an all-important factor, denies that it of itself is sufficient to account for the sudden and enormous inflation of the lungs observed in that disease. He doubts the possibility of a valvular closure of the bronchi, as claimed by Biermer, but believes that the bronchial spasm, which he regards as primary, causes secondary spasmodic contractions of the diaphragm and of the inspiratory muscles of the neck and chest. The spasm of the diaphragm he believes to be tonic in its character, but not continuous, thus meeting Biermer's objection to the Wintrich theory, that tonic spasm of that muscle lasting longer than a few minutes would inevitably cause fatal asphyxia.

16 Klinik der Brustkrankheiten, 1ster Band, 2te Hälfte, p. 438.

Theodor Weber,17 rejecting the above theories on the ground that neither bronchial spasm nor tonic contraction of the diaphragm is capable of explaining why catarrhal secretion should come on at the close of an attack in which at the commencement there was no catarrh, attributes the phenomena of asthma to sudden swelling of the bronchial mucous membrane, the result of dilatation of its blood-vessels produced through the agency of the vaso-motor nerves; thus reviving the fluxionary theory of Traube. In support of this theory he cites the result of Von Loven's18 experiments, which prove that irritation of the sensory nerves is followed by reflex engorgement of the territory to which they are distributed. Weber considers that this engorgement of the bronchial mucous membrane is somewhat similar to the acute swelling and stoppage of the nostrils to which many persons are subject—a closure which often does not last longer than a few moments, and which is attended with increased redness and swelling of the Schneiderian membrane. The mucous membrane of the nostril and that of the bronchi being both parts of the respiratory tract, and somewhat similar in structure, he concludes that the process in the nostrils is analogous to that which occurs in the bronchi during the asthmatic paroxysm. As additional proof of the correctness of his hypothesis he cites the fact that such occlusion of the nostrils is often the precursor of the asthmatic attack, and in some cases continues throughout the paroxysm. See investigations of Daly, Roe, Allen, and Hack, further on.

17 "Ueber Asthma Nervosum," Tageblatt der 45 Versammlung deutscher Naturforscher u. Aertze in Leipzig, etc., 1872, p. 159.
18 Naturforscher u. Aertze in Leipzig, etc., 1872, p. 159.

The idea that asthma is due to swelling and engorgement of the bronchial mucous membrane appears to have been confirmed by the tracheoscopic observations of Stoerk.19 On examining the air-passages with the laryngoscope, he could see the mucous membrane of the trachea as far as visible (that is, to the bifurcation) grow red with the onset of the paroxysm, and resume its normal appearance after the termination of the attack. He opposes the spasm theory, denies the correctness of Biermer's conclusions, and adopts Weber's explanation of the asthmatic phenomena. He agrees with Wintrich that spasm of the diaphragm occurs, but claims that it results from the tension to which it is subjected by the inflated alveolæ: the diaphragm being forced downward by the distended lung, its fibres are stretched, and the result is a tonic spasm of that muscle. His objections, although well stated, are not sufficiently conclusive to cause us to accept his opinion in preference to that of Biermer and other supporters of the spasm theory.

19 Mittheilungen über Asthma bronchiale, etc., Stuttgart, 1875.

[p. 197] Max Schaeffer maintains that asthma is due to bronchial fluxion, as advocated by Weber, but claims that the hyperæmia is followed by spasm of the bronchial muscles, the former being primary and the latter secondary. He also, with many other recent writers, believes that asthmatic attacks are often associated with pathological conditions in and about the upper air-passages, such as naso-pharyngeal and laryngo-tracheal catarrh, polypi, hypertrophied tonsils, and enlarged cervical glands; all of which act as irritants, which, being transmitted through the neighboring nerves to the vagus, induce the bronchial spasm.

Among the older and discarded theories is that of Bree, who in a work published at the commencement of the present century expressed the opinion that the dyspnoea of asthma was simply an effort on the part of nature to rid the bronchial tubes of an irritating substance supposed to have accumulated in them previous to the attack. He believed that this materia peccans was thrown out with the expectoration which occurs toward the close of the attack. He regarded the violent efforts made by the respiratory organs to expel this offending substance from the bronchial tubes as similar to the tenesmus of dysentery or the painful contractions of the bladder when irritated by a rough calculus. Bree was unable to define more clearly the nature of this offending substance, but of late years another writer, Leyden,20 has discovered in the sputa of asthmatics certain peculiar crystals to the irritating effects of which he attributes the various symptoms. These crystals had been observed previously by Charcot in the blood of leukæmic patients, and subsequently by Neumann in the medulla of the bones of patients who had died of that disease. Leyden describes the expectoration in asthma as tough, grayish-white, and very frothy. Imbedded in a transparent hyaline mass are a number of small bodies, some thread-like, others in the form of little plugs or flakes. Under the microscope these little bodies are found to consist of a mass of brownish cellular detritus containing large numbers of crystals. These are colorless, octahedral in form, with sharp points, and vary greatly in size, some of them visible at once, while others are seen only with the highest powers of the microscope. Their composition has not been determined, but is supposed to be a substance resembling mucin. Leyden's idea is that the sharp points of these octahedral crystals irritate the terminal ends of the pneumogastric nerve in the mucous membrane of the bronchi, and that this irritation, being transmitted to the nervous centre, is reflected back, and thus causes spasm of the bronchial muscles. It seems, however, that these crystals are not peculiar to bronchial asthma, having been also found in chronic catarrh and other affections of the bronchi.21

20 "Zur Kentniss des Bronchial Asthmas," Virchow's Archiv, Band liv., 1871.
21 Not being able to obtain the original paper, the writer is indebted for the greater part of what he has written in regard to the Leyden theory to the treatises on asthma by Knauthe in Eulenburg's Encyclopædie der gesammten Heilkunde, and by Riegel in the work already quoted.

Of the different theories of bronchial asthma which have just been presented, that of Biermer, although unsatisfactory in many respects, offers the best explanation of the pathology and symptoms of that disease.

PATHOLOGICAL ANATOMY.—Bronchial asthma being a purely functional neurosis, the organs involved present no anatomical changes specially characteristic of that affection. It is true that in cases of long standing, in which, owing to oft-repeated attacks, the air-cells have become distended and their walls attenuated, we find the lungs in the condition which will hereafter be described as emphysema, but these, as well as the evidences of chronic catarrh observed in these cases, are due to the secondary affections, and not to the primary disease.

As previously stated, a certain amount of hyperæmia of the mucous [p. 198] membrane of the larynx, trachea, and bronchi may be observed during life with the aid of the laryngoscope; but whether this condition leads to permanent tissue-changes observable after death is exceedingly doubtful.

In the pneumogastric nerve pathologists have as yet been unable to discover, either at its origin or along its course to the lungs, any alteration in structure capable of explaining the phenomena of bronchial asthma.

DIAGNOSIS.—The suddenness of the attacks; the occurrence of the paroxysm usually in the latter half of the night; the slow, labored expiration, with the whistling, wheezing sounds which accompany it; the expectoration of catarrhal sputa toward the close of the attack; the normal respiration and absence of all signs of disease during the interval between the paroxysms,—are the features by which a case of simple uncomplicated asthma may be readily recognized. When these symptoms are present in their integrity in an otherwise healthy subject, there is no difficulty in arriving at the diagnosis; but, unfortunately, the picture is not always complete. The asthma may be complicated with organic disease of the heart or lungs, while primary disease of these organs, as well as certain affections of the nervous system, may produce symptoms closely resembling those of bronchial asthma, and from which it is very essential to distinguish them.

The following are some of the affections which may be mistaken for bronchial asthma:

1. Bronchial catarrh may be accompanied with more or less difficult respiration, but even in its worst forms it never causes the severe attacks of dyspnoea observed in bronchial asthma, and, as Riegel justly remarks, the severity of the symptoms in the latter disease are out of all proportion to the insignificance of the physical changes.

The dyspnoea of bronchitis comes on more gradually, the attacks being dependent upon a variety of accidental circumstances; whereas the asthmatic paroxysm usually occurs quite suddenly in the night without any apparent cause. The cough in bronchitis is severer and the expectoration more abundant than in asthma; the latter is also different in quality, becoming purulent as the disease advances, whereas in asthma it seldom loses its mucous character. These points of difference and the presence of the other symptoms of bronchitis are sufficient to differentiate that disease.

2. Emphysema is frequently associated with asthma, either as a cause, as is believed by many, or as an effect of that disease. It is often exceedingly difficult to determine whether the emphysema when present is the cause of the dyspnoea (symptomatic asthma), or whether the inflation of the air-cells and other symptoms are not the result of the bronchial spasm: a careful inquiry into the history of the case will often decide the question. The points of difference between the two diseases are very similar to those to which we have just called attention as the distinguishing features between the dyspnoea of bronchitis and the true asthmatic paroxysm. The suddenness with which the attack comes and goes, the severity of the symptoms compared with the insignificance of the local lesions, the absence of dyspnoea in the intervals between the attacks (in uncomplicated cases), are all the reverse of what is observed in emphysema. In that disease the attacks develop more gradually; there is always more or less shortness of breath, and the evidences of changes in the structure of the lung are quite marked.

3. Dyspnoea resulting from cardiac disease is often very severe, but may be distinguished from bronchial asthma by the presence of the various murmurs and other physical signs by means of which that class of diseases is recognized. The asthmatic paroxysm, as a rule, comes on when the patient is most quiet, usually during sleep. The attack of cardiac dyspnoea, on the contrary, is always brought on or aggravated by physical exertion, mental excitement, or some other apparent cause. In asthma the respiration during [p. 199]the intervals between the paroxysms is quite natural; in cardiac dyspnoea there is always more or less embarrassment. Pain in the region of the heart, in many cases quite severe and extending down the left arm, may direct attention to that organ as the source of the dyspnoea.

4. Spasm of the glottis, croup, oedema of the glottis, tracheal stenosis, are all attended with more or less violent attacks of dyspnoea. We are indebted to Biermer for having directed attention to an important symptom by means of which all these affections may be distinguished from bronchial asthma. In the latter, and in all other diseases causing narrowing or obstruction of the finer bronchi, the dyspnoea is during the expiration, but if the impediment be in the larger air-passages the dyspnoea will be during the inspiration. "Dyspnoea during expiration is just as characteristic of narrowing of the finer bronchi as the same condition during inspiration is of croup and other forms of laryngeal stenosis." In croup the neck is extended and the head thrown back. Notwithstanding the violent inspiratory efforts of the patient, the lungs are but partially filled; the air in them becomes rarefied, causing a yielding of the less-resisting parts of the thorax—e.g. the supraclavicular space, the lower portion of the sternum, and adjacent costal cartilages—and a sinking in of the abdomen. During expiration, which is accomplished quickly and with comparative ease, the thorax resumes its natural form. In bronchial asthma, on the contrary, the head is thrown forward, and the shoulders fixed in such a position as to enable the muscles of expiration to work to the best advantage. The thorax, instead of sinking in, is expanded and abnormally round, giving on percussion the peculiar pasteboard-box sound (Schachtelton) which Biermer has described as characteristic of inflation of the alveolæ. In croup the sibilant râles are heard during inspiration, while in asthma they are more pronounced during expiration.

5. Spasm of the diaphragm is another affection from which it may be necessary to distinguish bronchial asthma. This rare disease, which is almost always associated with hysteria, is characterized by a short inspiratory movement, during which all the muscles of inspiration are brought into action, and we have the same sinking in of the more yielding portions of the thorax which has just been mentioned as one of the distinguishing features of laryngeal stenosis. After this the thorax remains fixed for a few seconds, the muscles of inspiration remaining in a state of contraction. There then ensues a quick and powerful expiratory effort, accompanied by a sound not unlike that of hiccough; then another inspiration, with a repetition of the above symptom; and so on until the attack is over. It will be seen from this description that this affection resembles singultus more than asthma, and that there is but little likelihood of its being mistaken for the latter disease.

6. Paralysis of the posterior crico-arytenoid muscles, like croup, spasm of the glottis, and all other affections which produce narrowing of the larger air-passages, is distinguished by the dyspnoea being inspiratory, and not expiratory. The function of the posterior crico-arytenoid muscles being to enlarge the glottis, the result of their being paralyzed would be to lessen the opening through which the air passes to reach the lung; and in viewing the cords in such a case with the laryngoscope it will be found that the opening is reduced to a narrow chink. Another distinguishing feature is that the dyspnoea is continuous, and, unlike bronchial asthma, does not come on in paroxysms.

7. An affection which, like asthma, comes on in the night during sleep is the condition known as nightmare, and, like the former disease, is characterized by labored breathing. To distinguish it, it is only necessary to awaken the patient, when the immediate cessation of all symptoms will at once remove all doubt as to the nature of the affection.

8. Through carelessness or ignorance intercostal neuralgia has been [p. 200] sometimes mistaken for asthma. Pain along the course of the nerve and the presence of the points douloureux, which Valleix has described as characteristic of neuralgic affections, are sufficient to establish the diagnosis.

9. Embolism of one of the middle or larger branches of the pulmonary artery is also characterized by great embarrassment of respiration, but is not likely to be mistaken for asthma by any one at all familiar with the two affections. The cachectic appearance of the patient, the intense anxiety depicted on his countenance, the evidence of cardiac disease or of some affection of the vessels, the weakened cardiac impulse, the thready and at times irregular pulse, together with evidences of more or less pulmonary oedema, are sufficient to distinguish this form of dyspnoea from that of asthma.

PROGNOSIS.—As there is no well-authenticated case of death from uncomplicated asthma, the prognosis quoad vitam may be regarded as absolutely favorable. That death never occurs during the severe paroxysms of asthma may be due to the action of the deficiently aërated blood upon the respiratory centres, and bronchial spasm, causing relaxation when the symptoms have become most threatening. The asthmatic, if his case be incurable, may live for a number of years, and even attain to extreme old age, but his life will be one of intense suffering, which becomes more intolerable as he advances in years. Sooner or later, bronchitis, emphysema, or heart disease is developed, which in its turn may lead to renal disease and dropsy.

Such is the almost invariable result in middle-aged and elderly persons; in the young, however, the chances of recovery are much more favorable. Salter22 states "that in youth the tendency is invariably toward recovery, whereas in one attacked with it after forty-five the tendency is generally toward a progressive severity of the disease and the production and aggravation of those complications by which asthma kills." The favorable result in childhood he attributes to the recuperative power of youth: growth and change, being more rapid than later in life, enable the system to repair during the intervals whatever damage may have been sustained during the paroxysms.

22 On Asthma, Am. ed., p. 168.

There is another class of cases in which, owing to our being able to recognize and remove the cause, the prognosis is quite favorable: thus, if it has been discovered that the disease is due to some local influence, change will often effect a cure, and the patient will remain well as long as he remains in the locality which agrees with him, but generally relapses if he ventures to return to the place where he first contracted the disease. The same may be said of that form of asthma in which the disease is due to some trade or pursuit necessitating the inhalation of irritating dust or gases: the indications are obvious. Cases in which the paroxysms have been traced to the presence of nasal polypi or to a tumor pressing upon the course of the pneumogastric nerve have been promptly cured by the removal of these growths. In all these cases it is presupposed that there is no organic disease, for the presence of any one of the serious complications we have mentioned would dissipate all hope of cure.

In arriving at a prognosis it is all-important to inquire into the severity and frequency of the attacks, as violent paroxysms at short intervals soon lead to incurable complications. It is also essential to ascertain the condition of the patient during the intervals between the paroxysms: if at that time he feels well and does not suffer with shortness of breath, we may infer that as yet no organic change has occurred; if, however, he complains of more or less dyspnoea during the intervals, we may safely conclude that some organic disease has set in and that the case is incurable. Salter attaches great importance to the persistence of expectoration during the intermissions, regarding it as indicative of bronchitis, and therefore as an unfavorable indication: to use his own words, "Spitting is one of the worst signs in asthma."

[p. 201] Briefly, those cases may be regarded as favorable in which the patient is young and has no inherited tendency to the disease, is free from the many complications of asthma, and in whom the attacks are light and occur at long intervals. On the other hand, all cases may be regarded as unfavorable in which the patient has reached or passed the middle period of life, has inherited a tendency to asthma, if the attacks are severe with short intervals, or if he has some one or more of the secondary affections of the disease.

TREATMENT.—The treatment of bronchial asthma consists of measures to mitigate and relieve the paroxysms and prevent their recurrence.

A. Of the Paroxysm.—A patient suffering with an attack of asthma will generally instinctively assume the position in which he can use the muscles of respiration to the greatest advantage, but if found in the recumbent posture he should be advised to sit up in bed and grasp the knees with his hands, so as to gain a position which admits of the more ready entrance of air into the lungs. In severe cases it is better to have him rise from the bed and support the head with the hands, the elbows resting on a table in front of him. An ingenious suspension-apparatus, intended to promote the comfort of persons suffering with severe dyspnoea, was extensively advertised several years ago, and may possibly still be furnished by the instrument-makers. It consists of a cross-piece suspended from the ceiling, to which straps are attached for supporting the shoulders without in any way pressing upon the chest; it is also provided with a band for the support of the head. In severe and protracted cases, when, notwithstanding the patient's exhaustion, he is unable to rest upon pillows, such an arrangement might afford great relief. If not undressed, the clothing should be so arranged as to interfere as little as possible with the respiratory movements. An abundant supply of fresh air is essential, and to secure this one or more windows should be thrown open.

Asthma being the most capricious of diseases, remedies often acting differently in each individual case, it is well before commencing treatment to follow Salter's advice and inquire of the patient what remedy has usually afforded the most prompt relief in previous attacks, and thus avoid the risk of prolonging suffering by using remedies which, although apparently indicated, may in his case, owing to peculiar idiosyncrasies, prove to be useless or even injurious.

We have seen that the disease is often due to some special cause, such as the inhalation of an atmosphere laden with the perfumes of certain flowers, with ipecac, dust, etc., the removal of which, if practicable, should of course precede all attempts at treatment. The condition of the stomach and bowels should be inquired into, and if found overloaded they should at once be relieved, the one by an emetic and the other by enema.

In the absence of any hint afforded by the previous experience of the patient the choice of the remedial agent will depend upon the severity of the attack. In the majority of cases, when severe, no remedy will afford such prompt relief as the subcutaneous injection of morphia. To be effective, the dose should be a full one, a fourth to a third of a grain, either alone or, if there is likelihood of this occasioning nausea, combined with one one-hundredth to one-eightieth of a grain of sulphate of atropia. The writer is aware that the use of opium and other hypnotics in bronchial asthma is discouraged by one of the most distinguished authorities on that disease, Salter, who claims that they are not only worthless, but often injurious. He believes that sleep tends to promote the paroxysm, reflex action being much more active then than during the waking hours, and that any agent which induces such a condition is necessarily contraindicated—that, in his opinion, in addition to exalting reflex action, it acts prejudicially, as "by lowering sensibility it prevents that acute and prompt perception of respiratory arrears which is the normal stimulus to those extraordinary breathing efforts which are necessary to restore the balance." These objections, although supported by [p. 202]scientific evidence, are insufficient to cause the abandonment of an agent which in the hands of others has proved so prompt and efficacious in relieving the terrible sufferings of asthma, and Salter himself admits that since writing the above he has had cases in which it has been of signal service. A serious objection to its use is that the dose has to be increased as the patient becomes accustomed to its use. In confirmation of its marked beneficent effects, I give the following extract from Steavenson's treatise on asthma. Describing his own experience, he says:23 "Sedatives and antispasmodics I should consider most serviceable drugs, but above all in value I should place the hypodermic injection of morphia. This has never failed to relieve an attack in myself, and I have never seen it fail in other patients. The objection to it is that if often used the dose must be increased; but it is better to increase the dose of morphia than suffer the agonies of asthma and allow those organic changes in the constitution to take place which I have described when speaking of the pathology of the disease. I have now used morphia for five years, but my attacks are so quickly relieved and so reduced in frequency that I have never yet had to increase the dose I commenced with—namely, one-sixth of a grain."

23 Op. cit., p. 29.

Having administered the morphia, other measures for the relief of the patient should be resorted to. The feet and hands should be immersed in hot water to which a small quantity of mustard has been added. Dry cups between the shoulder-blades or sinapisms over the chest or epigastrium often afford marked relief.

If, on account of the existence of an idiosyncrasy on the part of the patient or from other causes, opium cannot be employed, we have in chloral hydrate a substitute which is almost as efficacious and perhaps even more prompt. Next to morphia, it is the most valuable remedy, and many esteem it superior to that drug, over which it possesses the advantage of not being followed by the disagreeable effects which so often succeed the administration of opiates. It should be given in doses of thirty or forty grains, and repeated if the paroxysm does not yield.

The inhalation of chloroform has long been esteemed as a potent agent in overcoming the bronchial spasm. One would naturally suppose that the use of such a powerful sedative as chloroform would be a dangerous proceeding in a disease which, like asthma, is attended with so much embarrassment of respiration and circulation; but experience does not justify this fear, and Salter, who has used it with good effect in 12 out of 13 cases, assures us that he has administered it "in the very agony of the worst attacks; that, so far from fearing it under such circumstances, it has been able to relieve the intensest asthma that nothing else would reach; that he has given it, and that he has never seen any bad effects from it." He goes on to state that as chloroform relaxes the bronchial spasm, and thus removes the cause of the "asphyxial stoppage, the intensity of the apnoea, so far from being a reason against the administration of chloroform, is the great reason for its immediate employment." He considers neither muscular weakness of the heart nor valvular disease as any contraindication to its administration, provided the circulation is not materially affected. According to Stokes, the paroxysm is not entirely suppressed by chloroform, but returns as soon as the patient passes from under its influence; hence it must be repeated as occasion may require. It should always, if possible, be given at the commencement of the paroxysm, and should never be allowed to produce complete insensibility, nor should so seductive a remedy be left in the hands of the patient. The danger of the self-administration of chloroform is only too well attested by the frequent accounts in the journals of persons found dead in their beds from the effects of that agent, death in such cases being usually due to the patient's [p. 203]unconsciously leaving the handkerchief over the mouth and continuing to inhale the chloroform after having become insensible. When given sufficiently early, a few whiffs may be all that is necessary to overcome the paroxysm; and this repeated as soon as it threatens to return, will often enable us to control the symptoms without resorting to larger quantities.

An old and still very popular treatment—said to have been introduced by an American, Nicholas Frisi,24 in 1843—consists of the inhalation of the fumes of burning saltpetre or in smoking cigarettes made of paper which has been soaked in a saturated solution of that substance. Inhaled into the bronchi, it is supposed to act as an anæsthetic, and produces relaxation of the constricted bronchial muscles. In point of efficiency these inhalations rank quite high, and are probably more generally used than any other remedy. Aside from the relief which they undoubtedly afford, this method derives much of its popularity from being within easy reach of the patient himself. The preparation of the papers is exceedingly simple: A sheet of bibulous paper is dipped into a saturated solution of the nitrate of potassa prepared with cold water; after drying it is divided into strips of the size required. These papers are burnt before the patient, the windows and doors of the apartment having been previously closed to prevent the escape of the fumes. Nitrate of potassa has been prepared in a variety of other ways for the use of asthmatic patients, one of the most convenient of which is the Kidder pastilles so extensively used in this country. Another method is to roll the paper prepared as above into cigarettes, the smoke of which is inhaled by the patient. The nitre is best used early in the attack, but is also beneficial when the paroxysm is at its height. The efficacy of this treatment is attributed by Germain Sée to the formation of protoxide of nitrogen and carbonic acid gas, which act as an anæsthetic, and perhaps also to the particles of carbon in the smoke floating in the air, a smoky atmosphere being beneficial to many asthmatics.

24 Germain Sée, op. cit., p. 709.

The smoking of the Datura metel having been found efficacious in asthma in India, Anderson of Madras in 1802 sent some of the leaves to Gen. Gent, an English officer, by whom they were introduced into England. Simms of Edinburgh, believing that the Datura stramonium might prove equally good, tested it with such good results that it soon came into general use, not only in asthma, but in other forms of dyspnoea. This is the ordinary Jimson or Jamestown weed which is so widely distributed over the Southern, Middle, and Northern States, and, like nitrate of potassa, is much used, not only by the profession, but largely as a household remedy for asthma. The dried leaves are either smoked in a pipe or in the form of a cigarette. The effects, however, are quite uncertain, sometimes acting like a charm, while at others it affords no relief; its physiological action is that of a sedative. Of late years another species of Datura has been introduced—the Datura tatula. Its properties and uses are similar to those of stramonium, but it is supposed to be less narcotic.

Belladonna and its alkaloid, atropia, are often used in the treatment of asthma, but their action is uncertain and often unsatisfactory. The three last-mentioned remedies are also used in combination, as in the well-known Espic cigarettes, the formula for which, according to Trousseau, is as follows, viz.:

Rx. Fol. belladonnæ, gr. vj;
  Fol. hyoscyami, gr. iij;
  Fol. stramonii, gr. iij;
  Fol. phillandrii aquatic. gr. j;
  Ext. opii, gr. ¼;
  Aq. lauroceras, q. s.

[p. 204] The leaves, after being cut up, should be thoroughly mixed, after which they are moistened with the cherry-laurel water, in which the opium has been previously dissolved. The wrapper of the cigarette is also soaked in the same solution and dried. One or two of these cigarettes should be smoked during the attack. Abbott has been very successful with belladonna applied as a spray (drachm j of the extract to one ounce of water) when the spasm threatens.

Tobacco is a powerful depressant, and in those who are unaccustomed to its use is an invaluable remedy in asthma. In the uninitiated it excites nausea, vertigo, cold sweats, and other symptoms of relaxation which Salter not inaptly compares to those of sea-sickness. "The moment this condition can be induced the asthma ceases, as if stopped by a charm." It may, however, be asked whether the remedy is not worse than the disease. Those who retain a vivid recollection of the horrible consequences of their first smoke will hesitate before prescribing tobacco for one unaccustomed to its use. There are many who, not wishing to lose the beneficial effect of tobacco in asthma, never smoke unless a paroxysm threatens.

Lobelia, like the above also a depressant in its action, was formerly much employed in asthma. It is still used, but its effects are disagreeable and by no means certain.

The intimate nervous connection which exists between the lungs and stomach would naturally lead us to anticipate good results from emetics. In asthma, as in laryngismus stridulus, an emetic often affords prompt relief and arrests the paroxysm. The nausea which precedes the act of vomiting, acting as a depressant, causes relaxation of the spasm, while the emesis by unloading the stomach removes an important source of irritation. Like tobacco and lobelia, remedies of this class are only beneficial when pushed far enough to produce the symptoms of depression and collapse to which we have alluded; these once established the relief is usually complete. Tartar emetic and ipecacuanha are the representatives of this class most used in asthma. Tartar emetic, owing to the excessive and long-continued depression which it occasions, is now rarely employed, having been almost entirely superseded by ipecacuanha, which is equally efficacious and more prompt. Its effects also disappear more rapidly than those of antimony. Like other remedies intended to cut short the paroxysm, ipecacuanha should be given as early as possible. It should be taken in full doses of at least twenty grains.

Bromide of potassium, as is well known, acts upon the vaso-motor nerves, causing contraction of the arterioles of the brain and spinal cord, and thus inducing a state of partial anæmia which results in a lessening of the irritability of these organs, quieting muscular spasm and inducing sleep. These effects would naturally lead to its employment in spasmodic asthma. Although occasionally used with success in shortening the paroxysm, it is better adapted, as suggested by Riegel, for use during the intervals, when, if given continuously, it sometimes diminishes the severity of the paroxysms and causes them to recur less frequently.

Nitrite of amyl, a most valuable addition to our materia medica, has been extensively used in the treatment of asthma, but the reports of the results attained are too contradictory to admit of our forming any just estimate of its merits. The general opinion is that it relieves the dyspnoea and makes the patient for the time being more comfortable; and this accords with my own experience. The usual method of administration is to drop one or more minims upon a handkerchief and to inhale the vapor. It is also used internally, and, in the single case that has come under my observation, with benefit. The following case, reported by Pick and cited by Riegel,25 is instructive as showing the favorable effects of nitrite of amyl: "The case was that of a medical student who from his youth onward had suffered with [p. 205]asthmatic troubles, which increased as he grew older and had proved rebellious to all remedies. Nothing except expectorants and narcotics afforded him the slightest amelioration of his symptoms. On inhaling nitrite of amyl he experienced immediate relief, which lasted for some time after the inhalation. He was enabled to breathe deep and with comparative ease. The relief afforded was but transitory, but, on the other hand, was so sure that the patient resorted to it whenever the attack came on." The same writer reports two other cases in which he succeeded by means of nitrite of amyl in relieving the paroxysms and in increasing the interval between them.

25 Op. cit., p. 295.

More agreeable to the taste and at the same time more effectual than the potassium iodide is hydriodic acid. It is best administered in the form of a syrup, preferably that prepared by Gardener of New York.

Salter, who appears to have had more experience with alcohol than any other writer, narrates the case of an elderly Scotch lady who, having exhausted all the known medicines and other agents used in asthma, was finally relieved by full doses of whiskey. This was invariably successful, but the dose, of course, had to be increased as the disease grew older. He also mentions another case in which nothing except chloroform afforded any relief. This he describes as the severest he has ever witnessed. "I have never seen or heard of spasms so violent or that seemed so nearly to put life in peril. His most intense spasms he calls 'screaming spasms,' from the strangling cries that the want of breath compels him to make. At the time of which I am speaking he lived on the same street with myself, and, although his house was half the length of the street from mine, his nurse has often assured me that if the doors had been open I could have heard his screams at my house at night. All remedies except the chloroform had failed, when one day his nurse advised him to try brandy. It afforded him almost instantaneous relief. He took enormous quantities of it, the first day a quart, and in the course of two months as much as twelve gallons. The spasm invariably stopped as soon as he took it, and for the last five months that he was under observation he had only what he called a 'thickness, a tight, constricted breathing,' several times during the night." Salter is particular in stating that the brandy should be given strong and hot.

Another stimulant highly recommended by Salter is coffee. In stating his objections to the use of opium it will be remembered that one of his reasons for not availing himself of that remedy was that it caused sleep, and that the exaltation of reflex action in that state favored the asthmatic paroxysm. Coffee, being a strong excitant of the nervous and vascular system, has the contrary effect and keeps the patient awake. It should be prepared as a strong infusion without the addition of either sugar or milk and given some time before the expected paroxysm. Administered in this manner, he claims that coffee will relieve two-thirds of all cases of asthma. The relief afforded is, however, very unequal, being in some cases complete, while in others it is only slight and transitory.

Quebracho in the form of an extract has been much used of late years in the treatment of asthma and other affections attended with dyspnoea. It has been found quite useful in mild cases.

The induced electrical current has been recommended by Schaeffer as a means of cutting short the paroxysm. His method is to place one pole on either side of the neck immediately below the angle of the jaw and in front of the sterno-cleido-mastoid, so as to cover the course of the pneumogastric and sympathetic nerves. The current should be sufficiently strong to enable the patient to feel the passage from one side of the throat to the other. It is applied for fifteen minutes twice a day for six days, twelve sittings being usually sufficient to afford relief. When the current is first applied it not [p. 206] infrequently causes dilatation of the pupils, but this is succeeded by contraction when the treatment begins to manifest its beneficent effects.

B. During the Intervals between the Paroxysms.—The diet and daily regimen of the asthmatic should be most carefully regulated, the best and most skilfully directed treatment being of little avail if these important matters are neglected.

The asthmatic patient should be encouraged to pass much of his time in the open air, but the amount of walking he should do will of course depend upon his strength and freedom from secondary affections of the heart and lungs. In a case of simple uncomplicated asthma the more the patient walks the better he will feel; but this is not to be construed to mean that he is to walk until exhausted; on the contrary, his walks should at first be quite short, proportioned to his strength and wind, and then gradually extended, but under no circumstances should he be allowed to overfatigue himself. With a view to keeping the skin in the best possible condition the body should every morning be sponged with water, the temperature of which must be suited to the condition of the patient. If he be feeble and anæmic, the water should be tepid, but whenever admissible cold is to be preferred. After the bath it is essential that the skin be thoroughly rubbed with a coarse towel until it becomes slightly reddened. The cold bath properly used not only invigorates the system generally, but by enabling the body to stand the vicissitudes of temperature diminishes the risk of the patient's taking cold.

The intimate relations existing between the lungs and stomach, and the fact that asthmatics usually suffer at the same time with dyspepsia, make the question of diet an all-important one. Their meals should consist of good, nutritious food, rigidly excluding all heavy, indigestible substances, such as cheese, nuts, dried fruits, etc. The meals should be taken at regular hours, and, as asthma almost always comes on at night, it is important that the principal repast should be in the morning or early part of the afternoon, and that any food taken between that and the hour for retiring should be of the lightest possible description. The more empty the patient's stomach, the better will be the chances of his passing a good night. Alcoholic drinks, coffee, and other stimulants should only be allowed when prescribed as medicines, as they have a tendency to aggravate the hyperæmia of the air-passages, which is one of the prominent features of the disease. Constipation should of course be carefully guarded against.

Aside from the apparently well-established fact that asthmatics do well, and often remain so, in the damp, foggy air of crowded cities, we have no means of determining beforehand what locality will suit a case of asthma. Change of climate in such cases is a mere matter of experiment, but when such change is determined upon the patient should at first try a place which is in every respect the reverse of the one he has previously lived in. If his former residence was in a city, he should remove to the country; if the old place was dry, the new one should be damp; if he has lived in a flat, low country, let him try the mountains; and vice versâ. As already stated, removal from the pure air of the country to the foul, smoky air of a city densely populated often affords complete relief, but so soon as the patient returns to his old home the asthma reappears and is as bad as ever.

As regards its capriciousness as to locality, I quote the following interesting case from Salter's work on asthma: "G. C——, a confirmed asthmatic, a native of a city in Scotland in which he resided, having been a sufferer for many years, came to London in 1838 for the sake of receiving the best medical advice. He took apartments in the centre of the city of London, somewhere near St. Paul's. His intention was to wait for an attack, and as soon as one came on to present himself to his physician, that he might witness it and have a clear idea of the state he was in. He waited six weeks, much to [p. 207]his mortification, not only without experiencing one, but without any difficulty of breathing whatever. His health altogether improved; he slept well and gained flesh. Being tired of waiting, he went back to Scotland without having seen his physician at all, and, to his great disappointment, he had not been in his native city many days when he was attacked in the usual way, and continued to suffer just as before his visit to London. Subsequently, finding it necessary on matters of professional business frequently to visit London, he experienced the same result on all occasions as at his first visit—perfect immunity from his disease. To use his own expression, 'he felt in London like a renewed man.' On his first arrival in town he was in a miserable state: he could not move without feeling his shortness of breath distressingly; he got no rest at night, and was seldom able to lie down in his bed. But in London he could do anything—eat, drink, sleep. The consequence was he gained flesh and strength, and went back to Scotland looking quite a different man. This was the invariable result."

Having once found a place which agrees with him, the asthmatic should remain there, as change of climate when no good is effected often does harm.

Arsenic has long been a favorite remedy in asthma, and is undoubtedly of great value in a number of cases. It was used in the form of a vapor by Dioscorides, and, notwithstanding its poisonous properties, has always occupied a prominent place in the therapeutics of diseases of the air-passages. In Styria and other parts of Lower Austria arsenic is habitually eaten by many of the peasants to enable them to breathe more readily while climbing over their elevated mountains and to endure the fatigue incidental to their long pedestrian journeys. The same habit is said to prevail in China, where, however, it is not taken internally, but is smoked mixed with tobacco. Its physiological effects are thought to be due to the increased oxidation of the blood which it promotes, as is proven by the great increase of urea observed after its administration. The blood thus oxygenized stimulates the vital centre, and thus the nerves and muscles of respiration are incited to increased activity, as a result of which the respirations become freer and more easy. Those who believe in the herpetic diathesis derive an additional indication for its administration from the good effects which it manifests in cutaneous diseases. It is best administered in the form of liquor potassii arsenitis (Fowler's solution), giving at first only three drops in a wine-glassful of water after each meal, and increasing the dose one drop each day until the patient takes thirty drops in twenty-four hours. Should any toxic symptoms supervene—pain in the stomach or diarrhoea, puffiness of the lids or redness of the conjunctiva—the arsenic should be at once suspended, and not resumed until they shall have subsided. Thus given, it is quite safe. Trousseau recommends its use in the form of cigarettes, which are prepared as follows: "Twenty grains of the arsenite of potassium are dissolved in half an ounce of water, and a sheet of bibulous paper soaked in this solution until it is all taken up. The paper is then dried and divided into twenty equal pieces, which therefore contain one grain arsenite of potassium each. Each paper is then rolled in the form of a cigarette. In smoking them the patient should endeavor to inhale the smoke into the bronchi. He should take only four or five whiffs once a day."

Iodide of potassium often affords most satisfactory results in the treatment of asthma, but in many cases it fails entirely. It is a drug which must be given for a long period at a time, occasionally for weeks, before it manifests its effects, and want of perseverance may account for its failure in many cases. It forms one of the chief ingredients in Aubrée's antiasthmatic elixir, the formula for which is somewhat uncertain. According to Trousseau, it is as follows: [p. 208]

Rx. Rad. polygalæ, gr. xl;
  Coque c. aqua fervida, ounce iv ad ounce ij;
  Filtrat, adde Potass. iodid. drachm iv;
  Syrup, opii, ounce iv;
  Spts. vin. gallic. ounce ij;
  Tr. coccionellæ, q. s. ad coloraud.

Of this Trousseau states three tablespoonfuls are taken "in the morning fasting, at noon, and in the evening, until the asthma disappears." Each dose contains no less than forty-five grains of the iodide of potassium and four-fifths grain of extract of opium. Aubrée himself always insisted that each dose should be followed by a "tablespoonful of chocolate pastille, which neutralizes the irritating action of the iodide of potassium."26

26 Trousseau, op. cit., p. 656.

A remedy resembling in its effects the one just mentioned is nitro-glycerine. It is administered in the form of a one per cent. alcoholic solution, in doses of half a drop, increased to three should the smaller dose prove inefficient. Its effects manifest themselves in from three or four minutes to a quarter of an hour, and disappear within an hour after its administration. The dose should be increased with great caution, as a single drop of the above solution has been known to produce alarming symptoms. The euphorbia pilulifera, much lauded by Australian physicians for its wonderful effects in bronchial asthma, promises to rank as an invaluable remedy in the treatment of that disease. It is best administered in the form of a decoction prepared by steeping one ounce of the fresh, or half that quantity of the dried plant, in two quarts of water, and simmering it down to one quart. The dose of this decoction is three or four wineglassfuls during the day, the last dose preferably in the evening, after supper.27

27 Boston Medical and Surgical Journal, 1885, p. 66.

Leyden, whose theory has been mentioned elsewhere, has proposed a new treatment based upon the solubility of the Charcot crystals in chloride of sodium and carbonate of sodium. A solution of one part of these salts in one hundred parts of water should be inhaled twice daily in the form of a spray.

Oxygen has often been used in asthma, but is now seldom administered except in cases associated with great anæmia.

Sée gives the following statistics of the results of the treatment with compressed air in asthma and its secondary affections. Bertin used it in 15 cases of emphysema, all of which he cured, and in 92 cases of nervous and catarrhal asthma with emphysema, of which 67 were completely and 22 partially cured, while it was only unsuccessful in 3 cases. Of Sandahl's 77 cases of asthma with emphysema and bronchitis, 57 were much relieved, and of 14 uncomplicated cases, all were completely relieved. Compressed air may be applied either by placing the patient in a pneumatic cabinet or by means of the portable apparatus of Waldenburg. It must be remembered, however, that in the cabinet the compressed air acts upon the whole body, while in the portable apparatus only the air-passages and alveolæ are subjected to pressure; hence if the latter is used the amount of pressure must be considerably diminished. Notwithstanding the success claimed for this method of treatment, it should be used with caution, and if the case is complicated with emphysema it should either be regarded as contraindicated, or, if employed, the pneumatic cabinet should be used and not the portable apparatus. In the former, or "air-bath," the exterior pressure of the compressed air acts as an auxiliary to "the elasticity of the thorax and to the abdominal gases in" expiration, and at the same time, by compressing the vessels outside the thorax, aids the venous circulation. The same force exercised on the inner surface of the [p. 209] tubes tends to lessen the hyperæmia of the bronchial mucous membrane (Moeller).28 When the portable apparatus is used, expiration in rarefied air causes retraction of the thorax, and thus in a measure overcomes any tendency to emphysema. A better plan than to use either singly is to combine the two—to expire into rarefied and inspire compressed air—which may be readily accomplished with several of the improved portable apparatuses.

28 Thérapeutique locale des Maladies de l'Appareil respiratoire, Paris, 1882, p. 283.

The inhalation of sulphuretted hydrogen as practised at Eaux Bonnes, Cauterets, Aix-la-Chapelle, and other sulphur baths, is said to have cured some cases, while in many others great benefit is claimed to have been derived from its use; but allowance must be made for exaggeration in many of the reports published.

In giving the treatment of asthma no allusion has been made to Grindelia robusta and other recently-introduced remedies, partly because the writer has had no experience with them, and again where he has tried them they have given negative results.

[p. 210]



SYNONYMS.—Hay fever; Hay cold; Summer catarrh; Catarrhus æstivus (Bostock); Freuhsommer katarrh (Phoebus); Autumnal catarrh (Wyman); Rose cold; June cold; Pollen fever; Pollen catarrh (Blackley). Fr. Catarrh de foin; Catarrh d'été; Ger. Roggen Asthma.

DEFINITION.—A form of catarrh caused by some irritant floating in the atmosphere; appearing in the spring, early summer, or autumn; attacking persons predisposed every year at the same time, the patient being at other periods free from the disease; characterized by symptoms resembling those of influenza, the chief of which are sneezing, redness, swelling, and increased secretion of the conjunctivæ and of the mucous membrane of the whole respiratory tract from its commencement in the nostrils down to the finest bronchi; frequently culminating in more or less severe attacks of asthma.

HISTORY.—Bostock, an English physician, is entitled to the credit of having been the first to recognize and describe this peculiar affection, for although, prior to his time, Heberden1 had alluded to symptoms which are now supposed to be referable to hay asthma, and Cullen had noted the fact that some persons have asthma oftener in summer than in winter, neither of these writers recognized the true nature of the disease.

1 Commentary on the History and Cure of Diseases, 4th ed., London, 1816, chap. "Destillatio," p. 113.

Bostock's first description of hay asthma appeared in the form of a paper, "Case of a Periodical Affection of the Eyes and Chest," which he read before the Medico-Chirurgical Society in London in 1819.2 This was a description of his own case. Nine years later he gave the details of 18 additional cases and mentioned 10 others.3 In the second paper, having noticed that the disease as known to him, the American rose or June cold, prevailed only in the late spring and early summer, he styled it catarrhus æstivus. Rejecting the popular theory, that hay asthma is due to the emanations from hay, flowers, etc., he maintained that heat was the real cause of the disease.

2 Medico-Chirurgical Transactions, London, 1819, pp. 161–165.
3 Ibid., London, 1828, pp. 437–446.

It appears singular, in view of its frequency at the present time, that notwithstanding the attention which had been directed to it only 18 cases should have been collected during the nine years which intervened between the publication of the first and second articles by Bostock, and tends to prove that in those days the disease could not have been as common as at present. That this was indeed the case is rendered all the more probable by the indisputable fact that, owing to the more general education of the people and to the requirements of a so-called advanced civilization, other nervous diseases are certainly much more frequent than they were formerly. The great prevalence of hay asthma among the educated is a further proof of the correctness [p. 211]of this conclusion. It must, however, be remembered that diagnosis did not then occupy the position it now does, and it is not unlikely that it was often overlooked or confounded with other diseases.

During the five years which succeeded the publication of Bostock's second paper no less than five treatises on hay asthma appeared in England, some of them by the most prominent medical men of that period. They are remarkable as showing the great diversity of opinion entertained at that early date as to the etiology of the disease. Thus, Macculloch4 (1828) attributed it to the air of hot-houses and green-houses, while Gordon5 (1829) attributed it to the flowers of grasses, particularly those of the Anthroxanthum odoratum, and suggested that grass asthma would be a more appropriate name than hay asthma.

4 An Essay on the Remittent and Intermittent Diseases, London, 1828, vol. i. pp. 394–397.
5 London Medical Gazette, 1829, vol. iv. pp. 266–269.

Even as late as 1859 the disease appears to have been scarcely known in Germany, for Phoebus, who has since published a most excellent work on the subject, on being consulted by a colleague suffering from hay asthma frankly confessed that he was unacquainted even with the name of the disease. This incident, and the belief that he had before him a comparatively unworked field, stimulated him to investigate the disease. By addressing circulars to the various medical societies and hospitals, not only in his native country, but also in other parts of Europe, as well as by personal interviews with patients and by publishing requests for information in the various medical journals, he collected a large number of cases and gained much valuable information concerning the disease. The results of his assiduous and painstaking labors were published in 1862 in the form of a valuable work,6 which, although over twenty years old, is still regarded the best authority on the spring variety of hay fever.

6 P. Phoebus, Der Typische Freuhsommer Katarrh, Geissen, 1862.

Previous to the year 1859, when Phoebus's circulars directed attention to it, hay asthma seems to have been almost unknown in France, as, with the exception of a single case by Cazenave of Bordeaux (1837), who described it as a new disease, we find previous to that date no mention of it in French literature.

The first case of hay asthma published in America, a typical one of the autumnal form of the disease, is recorded by Drake in his work, The Principal Diseases of the Interior Valley of North America, p. 803, published in 1854.

It will be seen by this brief summary of the history of hay asthma that the disease was first recognized in England in 1819, where in 1828 it became generally known, and that at the time of the publication of Phoebus's work (1862), with the exception of one or two isolated cases in France and the United States, England was the only country in which it was generally known and understood. Since the publication of Phoebus's valuable work numerous additions have been made to the literature of the disease, but with the limited space at my disposal I can only refer to a few of the most important that have appeared in the last two decades.

In no country has the subject of hay asthma attracted more attention than in the United States, and in no other has its study been rewarded by the discovery of so many new and interesting facts. To Morrill Wyman of Cambridge, Mass., we are indebted for the first elaborate American work on hay asthma, or rather the autumnal variety of that affection, which Wyman believes to be a distinct disease in no way connected with rose cold, June cold, and other forms which appear in the late spring and early summer.7 He had previously described the disease in his lectures as early as 1854, and [p. 212]also in a paper read before the Massachusetts Medical Society in 1866. Being himself a sufferer from it, he naturally devoted much time and attention to its study, and his work may be justly considered the most valuable contribution to the literature of the disease which has appeared since that of Phoebus. Another American work on hay asthma is that of the late Beard of New York.8 He elaborates the nervous theory of the disease, and establishes three varieties—the first appearing in the spring, the second in midsummer, and the third in autumn. In 1877, Elias Marsh of Paterson, N.J.,9 read an exceedingly valuable paper before the New Jersey State Medical Society, in which he describes a series of experiments which led him to believe that hay asthma is caused by the pollen of plants. In Europe the best treatise on the subject that has been published of late years is undoubtedly that of Blackley of Manchester, who by a series of ingenious and carefully-conducted experiments claims to have found in the pollen of certain plants the true cause of the disease. To all of these works we shall again have occasion to refer in the course of this article.

7 Autumnal Catarrh, Cambridge.
8 George M. Beard, M.D., Hay Fever and Summer Catarrh, New York, 1876.
9 "Hay Fever or Pollen-Poisoning," an essay read before the New Jersey State Medical Society by Elias Marsh, M.D., Paterson, N.J., 1877.

ETIOLOGY.—In scarcely any other disease is there such a diversity of opinion in regard to the cause as in hay asthma. We have seen how Bostock and his contemporaries differed on this point, he attributing it to heat, while of the others one claimed that it was caused by the air of hot-houses and green-houses, and another insisted that it was neither of these, but the flowers of certain grasses. Since that period other theories of causation have been advanced, but the same diversity of opinion as to its origin which marked its early history continues even at the present day.

In treating of the etiology of hay fever the various causes may be divided into two classes—viz.:

Predisposing Causes.—The fact that hay asthma is frequently transmitted from one generation to another, so well established by Wyman, is now very generally admitted, and will become more apparent in the future, as in estimating this feature it must be remembered that we have to deal with an affection which seventy years ago was entirely unknown and which has only recently become generally recognized. That the fact of the hereditary transmission of the predisposition is becoming every year more generally accepted is made apparent by the replies to two sets of circulars addressed to hay-fever patients in different years. Thus, Wyman, whose circular was issued at least eight years ago, received 18 affirmative replies out of 80, a little less than 25 per cent.; while to the writer's circular, issued in 1882, there are 25 affirmative replies out of 66. Numerous instances have been recorded where the disease attacked not only two, but even three, generations of the same family.

Hay asthma appears to be much more prevalent among males than females, the proportion being 3 males to 2 females. There is no apparent reason for this discrepancy other than that males are as a rule more exposed to the vicissitudes of weather, and that the restless energy with which many of them carry on their avocations predisposes to the disease.

The causes which produce hay fever act alike upon many thousands, an infinitesimal percentage of whom are attacked. There must therefore be some individual peculiarity which predisposes certain persons to the affection, but, aside from the facts that those attacked are usually of a nervous temperament, and that the respiratory mucous membrane of many of them is extremely sensitive, and that the vascular erectile tissue over the turbinated bones and lower portion of the septum is often hypertrophied,10 there are no [p. 213]known peculiarities by which it can be recognized. What races are subject is a question which thus far has received but little attention. To the writer's knowledge, the only well-established fact relative to race susceptibility is that negroes are exempt from the disease, and that in India (Blackley) it does not occur among the natives.

10 Roe, The Pathology and Radical Cure of Hay Fever, 1883, p. 9.

Statistics show that it is much more common in youth and middle age, and that comparatively few are attacked after forty, as will be seen by referring to the following table:

Age when First Attacked. Wyman's Cases. My Own Cases. Total.
Under 10
10 to 20
20 to 30
30 to 40
40 to 50
After 50

Wyman is of the opinion that females are attacked later in life than males.

Without knowing the numerical proportion which the various professions and occupations bear to each other, it is impossible, even with the aid of statistics, to determine which of them is most subject to hay asthma; but the annexed table shows conclusively that those who do brain-work are much more frequently attacked than those who earn their living by manual labor:

  Wyman. My Own. Total.
Jurists and lawyers
Physicians and medical teachers
Military officers
Authors, editors, etc.
Mechanical engineers
Bank officers
Farmers and gardeners

It will be seen by the above that of 100 cases, only 12 were engaged in outdoor pursuits, and that the remaining 88 followed occupations necessitating confinement within doors and entailing more or less intellectual effort; which proves conclusively that the earlier writers on hay asthma were correct in regarding it as a disease of the more cultured classes of society. The writer agrees with Wyman that the large increase in the number of hay-fever sufferers may in a great measure be attributed to the circumstance that many [p. 214]who were formerly pursuing agricultural and mechanical pursuits are now engaged in occupations which require more or less intellectual effort.

11 One of these was an amateur and highly educated.

To determine the value of temperament I have followed Beard's example, and in my circular of inquiry propounded two questions: 1st, the temperament of the patient's family; 2d, his own temperament. To the first query I obtained replies which showed that the nervous temperament predominated in 28 out of 37 cases; or, in other words, the family temperament was more or less nervous in two-thirds of the cases. As regards the patients themselves the temperament was as follows:

  My Own. Beard. Total.

It thus appears that the nervous element predominates in no less than 157 out of 233 cases.

Other diseases do not appear to predispose to hay asthma, nor, on the other hand, is that affection a cause of any other disease. The question whether naso-pharyngeal catarrh is more common among hay-fever subjects has, after careful investigation, been decided in the negative.

Exciting Causes.—It is generally conceded that the suggestion of a large number of remedies in the treatment of a disease is good evidence that no effective curative agent has as yet been discovered. This observation regarding therapeutics equally applies to etiology, a long array of causes usually developing the fact that great uncertainty exists as to the real causative agent. Hay fever affords a most striking proof of the truth of this remark. The simple enumeration of the various agents which have been accused of causing the attacks would cover several pages. An example of the multiplicity of its supposed causes is afforded by the replies to the question in Beard's circular, "What is the cause of your attacks?" no less than thirty-three agents being accused of causing the disease. Of these I propose to confine myself to a few of the most prominent.

Early in the history of hay asthma heat was considered its chief cause, Bostock, its first describer, having held that view, as have also many of his successors. It is now generally conceded that heat of itself is not a cause, although by promoting vegetable growth and causing dust it may still be regarded as an indirect factor in its etiology. That heat of itself is not a cause is proved by the occurrence of the disease not during the intensely hot weather of midsummer, but in the late spring and early fall. It, however, undoubtedly produces a temporary aggravation of many of the symptoms. This appears to be especially the case in the autumnal variety, as those who have the disease in the spring seldom complain of any ill effects from heat.

"Strong light, sunshine, especially when it falls upon the face, will produce a violent paroxysm of sneezing, and the other symptoms then follow in quick succession; and moving from shade to sunshine, even when not otherwise annoying, will do the same." This is the opinion of Wyman, and coincides with that of Phoebus, Abbott Smith, and others, and is amply confirmed by [p. 215]the experience of the writer. This applies also, though in a less degree, to artificial light, especially gas-light.

Dryness of the atmosphere, by promoting dust, may be regarded as an indirect cause. Hay-fever patients agree almost unanimously that their symptoms are aggravated on clear, bright, dry days, and that they feel most comfortable in damp and cloudy weather.

There is no evidence to show that electricity is in any way connected with the etiology of hay fever.

Ozone is certainly not a cause, as hay-fever patients feel best on the sea-coast and ocean, where ozone is most abundant.

Long before hay fever was recognized by the medical profession hay was supposed by the general public to be the cause of the disease. In England especially, but also in the north of France and in Switzerland, this opinion prevailed very generally. Some suppose that the dust which it contains is the real cause, while others attribute it to its peculiar odor. In those susceptible to its influence it appears to make but little difference how they come in contact with it, whether in an open field where it is mowed, by driving behind a wagon loaded with it, or by entering a stable or loft where it is stowed away. It is not, however, the cause of the autumnal variety, as it is harvested in the temperate regions of North America, where this form of disease is most common, in June or early in July, which is six or eight weeks earlier than the period at which the attacks commence. That hay is a cause of the earlier variety of the disease is evident from the experience of numerous intelligent invalids, who trace it to that agent from the fact that the outbreak coincides with the blooming or harvesting of hay, and that removal from the locality in which they are exposed to its emanations is followed by relief. It must be remembered, however, that hay does not consist of dried grass alone, but that it contains other plants and flowers, as well as a large amount of dust.

The flowers of grass, especially those of the Anthroxanthum odoratum, may be regarded, like hay, as one of the causes of hay fever—a fact that was early recognized by Gordon and others. Blackley12 cites the case of an Indian medical officer of high rank, whose statement is as follows: "I have suffered from hay fever for about thirty-five years; I have had it both in India and in England. The period at which the attacks come on is not fixed, the date of the attacks depending more on the grass ripening late or early than on any other circumstance. They always begin toward the end of the hay season, when the grass is fully in flower, and cease slowly and gradually—not directly—on gathering in the grass."

12 Hay Fever, its Causes, Treatment, etc., p. 47, London, 1880.

Rye, oats, and wheat in bloom may also be ranked among the exciting causes of hay fever.

Indian corn in bloom often causes symptoms of hay fever, but that it does so only in certain cases is evident from the fact that the disease does not exist in some places where large quantities of corn are raised (Wyman).

Geraniums, roses, heliotropes, and other sweet-scented flowers often bring on attacks. The bean in bloom and elderflowers are also regarded as causes.

Ragweed, also known as Roman wormwood, Ambrosia artemisiæfolia, a weed which extends almost over the whole of the United States, is a powerful cause of the autumnal variety, but, like all the other agents which have been accused of causing hay fever, is by no means general in its action, many patients being able to inhale the dust shaken from the flowers with perfect impunity even during the critical period. On those susceptible to its influence it will act not only during the hay-fever season, but also at other periods of the year. Wishing to study the plant, I procured during the fall several [p. 216]specimens of it and placed them between the leaves of a large quarto volume. During the winter my wife, who is a sufferer with hay fever, accidentally opened the book, and, seeing the plant, not knowing its nature, picked it up and smelt it. She immediately began to sneeze, the eyes and nose itched intensely, there was profuse lachrymation; in short, all the symptoms of a mild attack of hay fever supervened, the effects of which lasted until the following morning. The case is interesting from the fact that in this instance the experiment was made unconsciously, and the effects could not therefore be attributed to the imagination, the patient being entirely ignorant of the nature of the plant. The prevalence of autumnal hay fever appears to coincide with the blooming of the ragweed, and conforms to the geographical distribution of that plant, which grows wherever the disease prevails, while in exempted localities it is seldom found or never seen. In Bethlehem, N.H., a diligent search was made for it for two days by a botanical friend without his finding a single specimen, although in the neighboring town of Littleton, which is within sight of Bethlehem and is not exempt, the plant is quite abundant. Marsh states that he saw none of it in New Brunswick nor at Moosehead Lake.

Dust of various kinds is more frequently designated by invalids themselves as the cause of their disease than any other agent. Thus, in reply to his question as to the cause of hay fever, Beard received 104 replies assigning dust as the cause, while 540 attributed it to thirty other agents. All kinds of dust, both in and out of doors, are accused, but that of railway-cars is supposed to be the most potent.

There is but one case on record in which animal parasites were the cause of an attack—that of Bastian, who while engaged in the spring investigating the anatomy of the Ascaris megalocephala, one of the parasites of the horse, noted that its emanations not only in the fresh state, but after having been kept in spirits for two years, invariably caused itching about the eyelids, irritation of the conjunctivæ, with continuous sneezing and other symptoms resembling hay fever. These symptoms ceased after two months, and did not return until the following spring. He finally became so sensitive that the wearing of the coat in which he had worked during the examinations was sufficient to bring on the symptoms.13

13 Salisbury in Infusorial Catarrh and Asthma attributes hay asthma to an animalcular organism, the asthmatos, but his assertions have not as yet been confirmed by other investigators.

Helmholtz, himself a sufferer from hay fever, discovered that the secretion of his nasal mucous membrane contained during the attack a number of vibriones, and, never being able to find them there at other times of the year, concluded that they were the cause of the disease. Binz of Bonn having discovered that quinine was inimical to the vibriones, Helmholtz supposed that that agent would be the proper one to employ in the treatment. He used it with success, injecting a saturated solution into the nostrils, the injection each time affording marked relief.

THE POLLEN THEORY.—Believing from his own experience and that of others that hay fever was due to the pollen of certain plants, Blackley of Manchester instituted a series of ingenious and instructive experiments to prove the correctness of his conclusions. In his first set of experiments a very small quantity of the pollen of various plants was applied to the lining membrane of the nostril. That of the Lolium italicum produced at first a slight feeling of anæsthesia at the point to which the pollen had been applied, followed "by a feeling of heat which gradually diffused itself over the whole cavity of the nostril and was accompanied by a slight itching of the part. After some three or four minutes a discharge of serum came on and continued at intervals for a couple of hours." The mucous membrane became so swollen [p. 217] as to partially occlude the nostrils and impede the entrance of air. When rye was used the symptoms were much more violent, and were attended by violent and long-continued fits of sneezing. With wheat and oats the effect was equally decided. The same experiment was tried with other orders of plants with varied success, some of them being very active, while others were found to be quite inert. One grain of the pollen of Alopecarus pratensis was applied to the fauces, causing itching and diffused redness. That of the Lolium italicum rubbed into the abraded skin of the forearm, as in vaccination, produced itching and swelling.

Marsh,14 who has repeated Blackley's experiments in America, gives some very interesting facts in regard to the pollen of the Ambrosia artemisiæfolia. On the 5th of August, 1874, he placed a few sprigs of the ambrosia in full bud, but without open flowers, in a glass of water in his office. The next day the flowers were open, and on handling the plant for the purpose of preparing some microscopic specimens from it, the pollen was freely scattered around. This caused in him severe coryza of twenty-four hours' duration, with occlusion of the nostrils and serous discharge. On August 13th he repeated the experiment, this time intentionally applying some of the pollen to the nostrils. This produced such severe symptoms that he had to have recourse to a hypodermic injection of morphia for their relief. These, however, continued into his regular attack, which should have been due a few days later.

14 Op. cit., p. 14.

Having proved that the pollen of certain plants was capable of producing hay asthma, Blackley next turned his attention to the determination of the amount of that substance floating in the atmosphere of different places and at various periods of the year. The plan which he found best adapted to his purpose was to expose slips of glass to the open air for a given length of time, so as to allow any solid matter the air might contain to deposit upon the glass. On each of these slips a space of one centimeter square was made sticky by covering it with a mixture of water, proof spirit, and glycerin. These were exposed to the atmosphere for twenty-four hours, and then placed under the microscope and the number of pollen-grains adhering to the moistened square counted. These slides were exposed at the height of four feet nine inches above the ground, "the average breathing-level," and were placed in a grass meadow four miles south-west of Manchester. The experiment was begun early in April, 1866, and continued until the 1st of August. Only a small quantity of pollen was found during the first month. On May 30th it appeared in much larger quantities, and continued to appear on most of the days until August 1st. Barometric pressure did not influence the deposit of pollen, but whenever the air was drier the quantity was increased. A fall of rain, especially if attended with lowering of temperature, had the effect of materially lessening the number of grains. The largest quantity of pollen was obtained on June 28th, the day after the highest temperature of the season, showing that a large deposit of pollen coincides with, or follows, a marked rise in temperature. Fully 95 per cent. of the pollen collected belonged to the Graminaceæ, but this would not apply to other localities and countries, in which that of other plants would naturally predominate. These experiments were quite successful in demonstrating that the rise and progress of the disease corresponded with the amount of pollen present in the atmosphere. A third set of experiments was made by attaching the glass slides to kites, to determine the amount of pollen present in the air at different altitudes. These experiments revealed the fact that grass pollen was much more abundant at elevations of 500 to 1500 feet than near the surface of the ground. Marsh also investigated this portion of the subject, only, instead of attaching the slides to kites, they were placed in the attic windows: he arrived [p. 218] at conclusions in regard to the pollen of ambrosia similar to those which Blackley had reached with reference to the Graminaceæ.

The experiments of Blackley justify the belief that the cause of the early form of hay fever, which prevails in England, is to be found in the pollen of a number of plants, especially grasses and grains, which bloom in the late spring and early summer, while those of Marsh prove conclusively that the Ambrosia artemisiæfolia, or Roman wormwood, is certainly one, and probably the chief, cause of the American or autumnal variety of the disease.

GEOGRAPHICAL DISTRIBUTION.—Both varieties of hay fever prevail in the United States, but the late variety is much more frequent, and may be regarded as peculiar to this country. The distribution of the early form of the disease is much more extensive. It is quite frequent in Great Britain, and, according to our present knowledge, it extends over France, Belgium, Holland, Switzerland, Italy, Russia, and in the plains of India (but only among foreign residents). Further investigations will probably show that it also extends over the other temperate regions of Europe. As before stated, the autumnal form is confined to the United States, where it prevails much more extensively than was formerly supposed. Commencing in Florida, where it is quite rare, it extends northward up to Eastport, Maine. Its northern border is defined by Wyman15 as follows: "From the St. Croix, south of Houlton in Maine, or about the line of 600 feet elevation above the sea-level, the line of exclusion turns eastward, following approximately the border of the elevation just mentioned, excluding the interior lakes of Maine, which are about 1000 feet above the sea, and, descending toward the south, strikes the White Mountain region at its northern portion. Thence, turning toward the St. Lawrence River and running along the height of land which divides the waters falling into the Atlantic from those falling into the St. Lawrence, parallel to the St. Lawrence, it strikes that river north of Lake Champlain." Thence along the southern border of the Great Lakes to the south of the island of Mackinaw, between Lakes Huron and Michigan. "It then crosses the lake and runs north of Lake Winnebago to St. Paul, Minn., leaving the Lake Superior copper-regions beyond its influence." From this point the line is undetermined, but there is evidence to show that the disease occurs in Colorado. The statement of previous authors, that the disease does not prevail in California, is confirmed by a statement recently made to the writer by Hatch, secretary of the Board of Health of that State, who adds that several parties have removed there to avoid the disease. Southward, the line runs along the Mississippi River to New Orleans, where the disease prevails. The southern and eastern borders are the Gulf of Mexico and the Atlantic Ocean.

15 Op. cit., p. 63.

SYMPTOMS AND COURSE.—No better description of an attack of the autumnal form of hay fever has ever been written than that of Wyman, who, being himself a sufferer from the disease, has had exceptional opportunities for studying it in all its details. I therefore extract the following from his work:16

"All the cases agree in the time of annual return, about the 20th of August, varying but a few days from this date in different years. By some individuals it is believed to be remarkably punctual, being first noticed on precisely the same day of the month, and, it is even asserted, at the same hour of the day. It is first perceived as a slight itching in the palate and in all parts about the roof of the mouth, soon followed by similar sensations, apparently in the Eustachian tube, extending from the throat into the ears, and inducing the sufferer to attempt relief by swallowing and by rubbing his tongue against the back part of the hard palate, and by pressing and rubbing the external orifice of the ear to give motion to the parts within. There is often a sense of tension about the forehead, especially over the eyes in the region of the [p. 219]frontal sinuses. In a day or two the nostrils are affected; there is irritation of the lining membrane, sneezing, and a stuffing and obstruction of the nostrils. This obstruction is peculiar; it occurs in paroxysms of short duration, one or both nostrils becoming suddenly obstructed, and in two or three minutes as suddenly relieved; at other times the obstruction is more prolonged. But, however complete, it is in many individuals almost immediately relieved by active exercise, rapid walking, leaping, or any movement indeed which gives warmth to the extremities.
"At first these attacks occur only in the morning or on first rising; as the disease advances they occur later in the day, but still in short paroxysms. At this stage the discharge from the nostrils is limpid and almost free from mucus; it is often very copious, especially during or immediately following attacks of sneezing. Holding down the head is often accompanied by a rapid dropping of the same fluid without sneezing. With this trouble in the nostrils come watering of the eyes and itching along the edge of the lids and in the conjunctivæ generally, but most at the inner corners. This irritation occurs also in paroxysms of a few minutes' duration. It is so intense that it is difficult for the sufferer to refrain from rubbing the eyeballs violently, which soon relieves them, notwithstanding that such treatment increases the turgidity of the vessels until the whole conjunctival surface is of a nearly uniform red. The eyelids are swollen, their edges red and inflamed; the small glands are also inflamed, and in some cases pustules or styes form and break, leaving an excoriated surface which heals slowly. The whole face is often red and swollen, especially in the morning. The senses of taste and smell are much impaired, in some cases almost abolished; and at times there is partial deafness, with a sense of obstruction of the internal ear. The lining membrane of the external tube is sometimes much irritated, even to the extent of producing a thin discharge, without evidence of the irritation extending to the tissue beneath. Swallowing is interfered with, especially when the nostrils are so obstructed as to prevent the perfect motion of the parts necessary to this act. The lining membrane of the mouth, tonsils, and pharynx partakes of the general irritation, and becomes red; and sometimes there is soreness of the throat. The lips become dry, cracked, and swollen. The skin is easily irritated and excoriated, and the excoriations are not so readily healed as in health. Many also suffer from itching of the skin, especially of the scalp, back, and chest, at times accompanied by a slight papular eruption. During some portion of this period there is chilliness, or rather sensitiveness to cold; more or less pain or sense of oppression in the head; the appetite diminishes; there is lassitude and weakness, the skin hot and dry, with other signs of a febrile movement.
"Toward the end of the second week to these symptoms are added irritation of the membrane lining the air-tubes; a frequent and dry cough, commencing with a sense of tickling in the upper part of the windpipe, but little relieved by the cough or only after long coughing; and the expectoration of a small quantity of transparent, glairy mucus. The severity of these bronchial symptoms depends much upon the condition of the atmosphere: if dry and dusty, the cough is much worse; dampness and a rainstorm give relief.
"During the third week the affection of the lungs gradually increases; the cough, still with very little expectoration, is more troublesome, especially in the night, sometimes compelling the patient to spend an hour or two sitting up, and not infrequently is spasmodic in its character, producing convulsive retching or even vomiting.
"The disease may now be assumed to be at its height. It is in this stage also that in some cases asthmatic symptoms appear, and, although they are sometimes severe, are not long continued. At the end of the third week the catarrhal symptoms diminish, the tickling of the fauces ceases, the eyes and [p. 220]nose improve; but the cough is apt to continue longer, and the heart's action is easily accelerated by exercise, and the pulse is sometimes intermitting. The skin is dry and warmer than natural.
"During the fourth week in September these symptoms gradually diminish, and by the end of September or the first frost are nearly gone, leaving weakness and a more or less altered state of the mucous membrane of the air-tubes, the effect of the prolonged irritation, from which the patient, if otherwise in good health generally soon recovers."
16 Op. cit., p. 9.

The spring form of the disease, known as June cold in the United States and as hay fever in England, differs from the late variety in the time of its occurrence, the attack coming on, as its name implies, in the late spring, usually between the 15th of May and the 15th of June, sometimes much earlier; one of my patients reporting that she commences to sneeze as early as the middle of April. The attacks in this variety usually cease during the first or second week in July, although a few continue on into August—a fact which induced Beard to establish a third or middle form of the disease. The symptoms are essentially the same in both varieties, but are much less severe in the early form, which is also of shorter duration. They differ as to cause, the spring variety being usually due to newly-mown hay. It occasionally happens that one person has both forms of the disease, or that a person who has hitherto had the early form fails to have it in the spring and is attacked in autumn.

INDIVIDUAL SYMPTOMS.—There is occasionally a stage of incubation, lasting about a week, during which there is slight feverishness and undue susceptibility to nervous impressions. The patient often experiences a feeling of lassitude and weakness; the digestion is disturbed, as indicated by a coated tongue, want of appetite, and constipation; he is disposed to be wakeful, and when he does sleep his rest is often disturbed by unpleasant dreams.

The first effect of exposure to the irritant is itching of the nose, slight in the beginning, but increasing in severity as the disease advances, until it at last becomes unbearable. The mucous membrane is red and swollen, the swelling being often so great that it interferes with the passage of air; a watery discharge sets in, which, although slight in the early stages, soon becomes copious, and in severe cases is so abundant that it actually streams from the nostrils. Sometimes, when both nostrils are stopped, if the patient changes his position and lies on the side the uppermost nostril will become free. These symptoms are attended with sneezing—not the sneezing of an ordinary coryza, but powerful sternutatory efforts repeated in quick succession and utterly uncontrollable. In one case which has come under my observation the sneezing invariably brought on menstruation in advance of the regular period, and on some occasions caused abortion.

These symptoms just mentioned often appear and disappear with great rapidity, especially in the early stages of the disease, and are usually worse in the morning on awakening.

Itching of the eyes begins at the inner canthus and generally extends over the greater portion of the conjunctiva, slight at first, but becoming more troublesome as the disease progresses. There is also redness of the conjunctiva, sometimes of the lids alone, at others extending over the whole mucous membrane, and giving to the eyes a bright-red appearance. The lids in severe cases are not infrequently oedematous, lachrymation is greatly increased, and the tears, trickling down the face, are liable to cause excoriation of the skin. Pustules and styes often form on the lids. There is more or less photophobia, according to the severity of the attack.

Owing to the occlusion of the nostrils the patient is often compelled to breathe through the mouth, thus causing an uncomfortable drying of the mucous membrane. There is a peculiar itching of the hard palate, which [p. 221] the patient attempts to relieve by rubbing the roof of the mouth with the point of the tongue. This itching sensation extends over the pharynx, posterior nares, and upward through the Eustachian tubes to the ears, causing a disagreeable irritation, which the patient tries to alleviate by thrusting the tip of the finger into the external meatus. The mucous membrane of the pharynx is red and swollen. The dryness observed early in the attack gives place later to increased secretion, which is sometimes quite abundant. On the anterior surface of the velum of one of my female patients I observed a hard papule about the size of a lentil, which she assured me was always coincident with the attack, and never appeared at any other time.

In addition to headache, which is quite common, patients frequently complain of a heaviness and fulness, also of a peculiar sensation as though the head were constricted by a band. This latter symptom I have found present in about one-half of the cases investigated.

Itching of the skin is quite common, especially of the face, between the shoulder-blades, and over the sternum, and is frequently accompanied by a slight vesicular eruption and occasionally by urticaria.

The whole respiratory tract is in a state of catarrh, but there is very rarely any cough during the first week. This usually commences in the second week, and at that time is short and dry, and becomes every day more frequent until the third week, when it changes its type and becomes paroxysmal. During the first three weeks there is little or no expectoration, and what there is consists of small transparent glutinous masses. About the fourth week the irritation reaches the finer bronchi, and in many cases there is more or less asthma, which, like ordinary bronchial asthma, usually comes on at night. The asthma is sometimes quite severe and long-continued. Wyman states that very few escape cough. This does not accord with the writer's experience, as in 65 of his cases 15 had no cough.

Hay-fever patients suffer greatly from mental depression, complain of lassitude, and their capacity for intellectual labor is diminished. They are often troubled with insomnia, and when such patients do sleep it is in a fitful way, and their rest is often broken by unpleasant dreams.

NOMENCLATURE AND CLASSIFICATION.—The various terms used to designate this disease are all misnomers, and up to the present time none has been devised which conveys any idea of the true character of the disease. Hay fever is incorrect, because hay is only a cause in a limited number of cases, and fever is by no means a prominent symptom. Hay asthma should be discarded, for asthma is far from being a constant accompaniment of the affection. Autumnal catarrh or early spring catarrh only serves to designate the time at which the two forms usually appear, but conveys no idea of the disease in its entirety; while the term pollen catarrh or pollen fever is objectionable on the ground that, although the disease is most frequently produced by that agent, there are causes other than pollen which may excite it.

Hay fever is variously classified by different authors, some, like Thorowgood and Beard, regarding it as a neurosis, while others (Bostock, Phoebus, and Wyman) appear to regard catarrh as its distinguishing feature. Zuelzer has recently classed it among the acute infectious diseases, but assigns no reason for placing it in that group.

DIAGNOSIS.—To any one at all familiar with the symptoms of the disease the diagnosis of hay fever is quite easy. Its distinctive features are: It appears at the same time every year (the early form about the 1st of June and the later about the 20th of August); the severity of the local symptoms which usher in the disease—sneezing, stoppage of the nostrils, the inflamed condition of the eyes, and above all the itching of the nose, eyes, skin, and mucous membrane of the root of the mouth. A detailed differential diagnosis [p. 222]is not as important now as it was formerly, when, as in the days of one of its early describers, Phoebus, "Man sah sie nicht, wo sie war, und sie sah, wo sie nicht war."

PROGNOSIS.—The number of elderly persons with hay fever, many of whom have passed the allotted threescore years and ten, and the fact that no one has ever been known to die from the disease, affords conclusive evidence that it does not shorten life. On the other hand, when once affected, except in those cases relieved by operative procedure, the patient remains subject to it during the remainder of his life. A few isolated cases are said to have recovered, but such a result is extremely rare. It is thought by some that a prolonged residence in the South may mitigate the disease, and eventually cure it, but this assertion lacks confirmation. It does not, like bronchial asthma, lead to secondary affections, the interval between the attacks giving the organs time to recuperate, nor does it predispose to other diseases.

TREATMENT.—Aside from its surgical treatment, to which I shall refer farther on, the only effectual remedy for hay fever consists in removal to a region which is exempt from the disease. By going to such a locality before the attack occurs, and remaining there throughout the critical period, complete immunity from the disease may be secured. The time of departure and return must be determined by the previous experience of the invalid in regard to the date upon which his former attacks have commenced. As the disease seldom comes on exactly on the same day every year, but often varies three or four days, he should be in his place of refuge at least a week before the usual time for the attack, and should remain until he can return with perfect safety. This is usually about the middle of July in the early variety, and after the first frost severe enough to kill vegetation in the autumnal form.

In the milder form which occurs in the spring the seashore affords considerable relief, except when the wind is from the land. It is therefore uncertain, and is only indicated when the circumstances of the patient prevent his visiting one of the exempt localities. On the eastern coast of the United States there are several places of this character, such as the Isles of Shoals, a group of rocky islands with little or no vegetation off the coast of New Hampshire, the climate of which is very like that of the ocean; and Fire Island, near New York. Similar to the above, but much more exposed to land influences, are Mount Desert and Nantucket.

The ocean itself affords complete exemption, and a sea-voyage is the surest means of avoiding the disease. It is true that persons have been known to be affected with hay fever even in mid-ocean, but in such cases it is more than probable that the cause of the attack could have been traced to the cargo. A case of this character came under the writer's observation during a voyage from New York to Charleston during the month of September, and was evidently caused by hay, a number of bales of which were stowed on the forward deck of the vessel. It makes comparatively little difference what particular voyage is undertaken, provided the vessel's course does not bring her too near land; but for most hay-fever patients a trip to Europe is to be preferred, especially for those suffering with the autumnal form, as by going to that country, where this variety does not exist, they avoid the necessity of remaining nearly two months on the water. A voyage to California is almost as good, and for the same reasons.

Whether this applies to the so-called June or rose cold, which is quite common in Great Britain and prevails to some extent on the Continent, has not as yet been definitely determined, but it is more than probable. Whether patients who have contracted the disease in Europe would escape in America is exceedingly doubtful. Two of the cases reported to the writer, who were first attacked (with the early form) in Europe—the one in Switzerland and the other at Florence—continued to have the disease after their return to [p. 223]this country; while, on the other hand, an English lady who was subject to the disease at home escaped entirely during her residence of three years in the Southern States. Of the exempt regions in the United States, the one most frequently resorted to, and which at the same time affords the surest relief, is that of the White Mountains of New Hampshire—not the whole of it, but a certain portion, which is bounded on the west by a line drawn from Littleton to Lancaster (but not including the former place, which is only partially exempt), on the north by Canada, on the south by Franconia, Crawford House, and Jackson, while to the east it extends as far as Bethel in Maine. Of the various places contained within this territory, Bethlehem and Jefferson, Whitefield, White Mountain House, Fabian's, Twin Mountain House, Crawford House, Glen, Gorham, and Mount Washington, may be regarded as entirely exempt; Franconia Notch almost equally so; while Dalton, Lancaster, and Bethel must be ranked as uncertain. Another exempt region extends to the north and east of the one just described, and comprises the lake region of Maine. Petoskey in Northern Michigan, at the head of Little Traverse Bay, is said to afford almost entire relief, and is resorted to by a large number of patients from the Western and South-western States. There are also several places in Vermont which offer more or less immunity, such as Mounts Mansfield and Stow, both of which, however, are inferior to those first mentioned. Canada, with the exception of a few cases reported at Toronto, St. Catherine's, and at a few places near its southern border, appears to be exempt. The same may be said of the Adirondack Mountains and Pottersville on Schroon Lake and Marquette. The Catskill Mountains and several places high up on the Alleghanies, such as Cresson, Pa., Oakland and Deer Park in Maryland, afford relief in many cases. Colorado is said to be exempt, but several patients who have gone there failed to obtain relief. California is free from the disease, and many hay-fever patients have escaped their attacks by removal to that State. I know of no place in the Southern States which affords relief except Florida, where the disease is rare; several cases have been entirely relieved during their residence there. In others, however, the experiment was unsuccessful.17

17 Two patients in their replies to the writer's circular claimed to have been entirely exempt—the one (early form) at Beaufort, and the other (autumnal) at Mount Airy, Habersham county, Ga. Wyman mentions four cases that were relieved at or near Beaufort.

The relief obtained by resorting to an exempt locality after the attack has begun is very prompt, all symptoms of the disease disappearing within a few days after the arrival of the patient. While residing at Bethlehem, N.H., I was called one evening to see a German who had just arrived on the train from Fall River. His condition was most pitiable: his eyes were fiery red, the nose and face were terribly swollen, while the water streamed from both eyes and nose. The asthma was at its height, and his struggles for breath were fearful in the extreme. A quarter of a grain of morphia was injected into the arm, and after providing other means for his comfort I left him for the night. The next morning, while preparing to pay him an early visit, the patient himself appeared at my office, bright and cheerful, and so much changed that I at first failed to recognize him. A single night had served to dissipate all traces of his hay fever.

Unfortunately, a journey to the mountains, and a residence there of six or eight weeks, are not within the reach of every one afflicted with the disease; and for these unfortunates something must be done to relieve, or at least mitigate, their sufferings. If unable to visit any of the exempt localities, a sufferer may secure a certain degree of comfort by exposing himself as little as possible to the exciting causes of hay fever. As it is well known that heat and dust aggravate the symptoms, the windows of the apartment occupied [p. 224]by the patient should be so arranged as to exclude the sunlight and every precaution taken to avoid the presence of dust. He should eat good, nutritious food, avoiding the use of all stimulants, except perhaps a little light wine at dinner. Anything which induces dyspepsia must be carefully guarded against, and care taken to keep the bowels regular.

Blackley18 advises as a surer method of excluding the irritant (pollen) the hanging of a curtain of thin calico before the door and fitting into the lower portion of one of the windows a screen made of two layers of thin black muslin enclosed in a square frame. When in use both curtain and screen should be moistened with a solution of carbolic acid, ten grains of the acid to one pint of water. For those who are compelled to go out he has devised a very ingenious respirator. Having taken an exact cast of the nasal passages from the margins of the alæ and septum to the inferior turbinated bones, he constructed with the aid of these, by means of the galvano-plastic process, cases of silver fitting exactly all the folds and depressions of the cavity. Several layers of platinum wire, 0.001" to 0.007", were arranged in the cases. The sieve thus formed was moistened before using with a 1/10 per cent. solution of carbolic acid. To prevent the pollen from coming in contact with the eyes, they were protected with spectacles provided with accurately-fitting gauze guards. The result of wearing this apparatus was an almost perfect freedom from unpleasant symptoms.

18 Op. cit., p. 267.

In the absence of any specific, the medicinal treatment of hay fever is necessarily confined to palliative measures. Debility being one of the prominent symptoms, tonics are indicated, and in this way quinine, at times regarded almost as a specific, may be of use. It should be given in doses of one or two grains three times a day before and during the attack. Thus administered, it is undoubtedly of great utility in many cases. Arsenic, whether in the form of Fowler's solution or the iodide of arsenic, as suggested by Blackley, may also be used with advantage. Galvanism, which was used successfully by Hutchinson of Rhode Island, is strongly recommended by the late Beard. He advises that the negative pole be placed at the epigastrium "and the positive applied a moment over the forehead and on top of the moistened head, then over the front and back of the neck, and down the upper and middle of the spine." The current used should be mild and the sittings short. The writer has had no personal experience with this method of treatment, nor has it been generally adopted.

The injection into the nostrils of a saturated solution of quinine by Helmholtz, although apparently useful in his case, has not met with like success in the hands of others.

The troublesome itching and burning of the eyes and face are most readily relieved by bathing the parts at first in tepid and then in cold water, repeated several times a day, and with mild astringent collyria, such as a strong infusion of tea or of one or two grains of sulphate of zinc to an ounce of rosewater. If the lids be much inflamed and the skin excoriated, the following ointment may be applied:

Rx. Bismuth. subnit. drachm ss;
  Ungt. simpl. ounce j.
M. Ft. ungt.  

The pharyngeal symptoms are best controlled by chlorate of potassium as a gargle, or, better still, in the form of the compressed tablets now prepared by many of our druggists. The treatment of the asthmatic symptoms differs in no way from that which we have recommended for the paroxysms of BRONCHIAL ASTHMA, the details of which were fully described in the preceding article.

In 1880, Harrison Allen of Philadelphia published an article19 directing [p. 225] the attention of the profession to the fact that many cases of chronic nasal catarrh which had resisted the ordinary methods of treatment could be readily cured by restoring the permeability of the nasal passages.

19 Am. Journal of Med. Sciences, January, 1880, Philadelphia.

In April, 1882, William H. Daly of Pittsburgh, Pa., in a paper20 read before the American Laryngological Association, gave the histories of three cases of hay fever which he had succeeded in curing by means of operative procedure. In each of these cases the tissue over the inferior and middle turbinated bones was hypertrophied, and in one case it was so extremely sensitive that the slightest touch with the probe was sufficient to excite a violent paroxysm of sneezing. In these the diseased tissue was removed with the galvano-cautery or by the application of glacial acetic acid.

20 "On the Relation of Hay Asthma and Chronic Naso-pharyngeal Catarrh," Archives of Laryngology, vol. iii. No. 2.

The following year (1883) a much more elaborate article21 on the same subject was published by John O. Roe of Rochester, N.Y. After describing the highly vascular and somewhat erectile tissue covering the inferior turbinated bones and lower portion of the septum, the turbinated corpora cavernosa of Bigelow, he calls attention to its great susceptibility to the action of irritants, whether applied locally or to some remote portion of the body, citing as an example of the latter the swelling, and sometimes almost complete closure, of the nostrils supervening after exposure of the body to the action of a current of cold air. In this situation the tissue is liable to become hypertrophied, and in that state its susceptibility is greatly increased. If, when in this condition, it is exposed to the action of pollen, dust, or any other irritant, the substance produces a local irritation which is reflected through the sympathetic nerves to other parts of the respiratory tract; and it is to this reflected irritation that Roe attributes most of the phenomena of hay fever. He regards it as analogous to certain forms of laryngeal catarrh which, according to the recent testimony of many distinguished laryngologists, are clearly traceable to disease of the nasal cavity. Applying this theory to the treatment of hay fever, he removed the hypertrophied tissue in five cases, and in every instance succeeded in preventing a recurrence of all symptoms of the disease. His operation consists in the removal of the diseased tissue by means of Jarvis's wire écraseur and the galvano-cautery, caustics having proved less effective. The wire snare is best adapted for the removal of the tissue over the posterior portion of the turbinated bone, where, owing to its being pedunculated, it is readily caught in the wire loop. Over the anterior portion of the turbinated bone, as well as over the septum, the growth is more sessile, and is best destroyed by means of the galvano-cautery. To avoid inflammatory reaction and to guard against other unpleasant symptoms it is advisable to remove only a small portion of the growth at a time. After each operation the part should be sprayed with warmed vaseline to allay the irritation occasioned by the burning, and this should be continued until the surface is sufficiently healed over to admit of a repetition of the operation. The cauterization should be repeated until every trace of the diseased tissue is removed.

21 The Pathology and Radical Cure of Hay Fever, New York, 1883.

Prior to the publication of Roe's article Harrison Allen had operated successfully on two cases, the histories of which he has not as yet published, but has kindly communicated by letter to the writer, together with a description of his method of operating. This latter differs but little from that of Roe, except as regards the time at which the operation should be performed, Roe maintaining that the operation should never be performed when the patient is suffering from an attack of hay fever, while Allen considers this immaterial, and does not hesitate to operate even when the symptoms are at their height. If symptoms of hay fever recur after the operation, the nares should be [p. 226] carefully examined, and if, as is usual in such cases, any remnants of hypertrophied tissue be discovered, these should be at once removed. The operation is not regarded as a very painful one, and a patient of Allen's upon whom he had operated during an attack assures me that he left the doctor's office feeling much better than when he entered it. This is mentioned because hay-fever patients are excessively nervous, and timidity on their part has hitherto prevented many of them from availing themselves of this form of treatment.

It will be seen that, thus far, the operation has been performed in but ten cases, but the results have been so uniformly successful as to justify the belief that it is capable of relieving many cases of this hitherto intractable disease. Whether this hypertrophied condition is present in every case, as claimed by many, or in even the majority of cases of hay fever, has not as yet been determined; and until further observation shall have decided this question it will be impossible to form an opinion in regard to the general application of this method of treatment.

[p. 227]



DEFINITION.—Enlargement of the calibre of a bronchial tube or tubes, whether confined to a limited portion of one tube, or reaching throughout a great part of its extent, or involving several or many tubes.

SYNONYM.—Bronchiectasis, from [Greek: bronchos], a bronchial tube, and [Greek: echtasis], an expansion.

HISTORY.—The change in the physical condition and size of a bronchial tube, designated as bronchial dilatation, never occurs as a primary affection, but is always the result of some preceding disease, especially of chronic bronchitis or fibroid phthisis. The full consideration of its pathological origin belongs, therefore, to the natural history of those causative affections.

Later writers have in general followed Laennec's description of the different varieties of bronchial dilatation; which, indeed, can hardly be improved upon, for such was the accuracy of that great clinician and pathologist as an observer that nothing was likely to escape him as regards physical conditions, though he may sometimes have been in error as to the theoretical explanation of what he saw. Previously to Laennec's observations dilatation of the bronchial tubes was, as he remarked himself, almost entirely overlooked both by pathologists and practitioners. The reason of this is evident from the considerations that a smaller tube when dilated would, except to the most careful examination, closely resemble a larger tube of normal size, and that a large dilatation might be mistaken by the ear at the bedside and by the eye at the necropsy for a pulmonary vomica.

Two principal forms of bronchial dilatation are met with. In the first, or diffused bronchial dilatation, known also as the cylindrical form, the tube is uniformly enlarged in calibre, so that, whereas in the normal state it would have admitted only a fine probe, in its enlarged condition it may be of the size of a goosequill. In this state it may be readily mistaken, when seen by itself, for a larger tube; but the alteration is conspicuous when the tube is seen to be larger than the branch from which it is given off. In the second or circumscribed form, which is also termed sacculated dilatation, a pouch-like or fusiform distension occurs in the continuity of a tube. In a third form, which is far less common, several successive enlargements are met with in the course of one tube, which thus presents a beaded appearance. It happens at times that all of these different varieties of dilatation may be encountered in the bronchial tubes of the same lung. The second, or sacculated, form is the most common, especially in young persons.

ETIOLOGY.—In both of the more common forms of bronchial dilatation the previous existence of bronchitis is to be regarded as the chief causative agency, though other conditions may serve to increase the dilatation when it has once been established. Laennec's observations led him to connect the [p. 228]occurrence of bronchitis with the production of dilatation of the bronchial tubes, though his explanation of the mechanism of this production was erroneous, inasmuch as he considered the accumulation of secretion in the affected tubes, and the forcible inspiratory efforts made in coughing to dislodge this accumulation, to be the direct causes of the enlargement. The part played by bronchitis in producing dilatation is, however, less immediate and mechanical than Laennec held it to be. It may, in a general way, be considered the direct cause of the cylindrical and the indirect cause of the saccular form of dilatation.

The long continuance of chronic bronchitis gives rise to weakness and atony of the bronchial walls, so that they yield to the pressure brought to bear upon them in the violent or protracted and repeated respiratory efforts that are made in coughing. In such cases the tubes which are themselves affected by the inflammatory process may yield throughout a greater or less extent of their continuity, and thus the cylindrical form of dilatation may be established. The same mechanism may be supposed to give rise to the beaded variety of the disease if the inflammatory action should be greater at several points along the course of a tube, with intervals of tissue in a healthier or less atonic state.

In the saccular form, on the other hand, the dilatation does not occur in the portion of the tube which is chiefly affected with the inflammatory process, but is the consequence of a local capillary bronchitis involving the ultimate ramifications of the affected tube and occasioning collapse of a portion of the lung. This collapse operates in two ways in causing a pouch-like dilatation of an adjacent bronchus—partly through the atmospheric pressure within the affected tube, tending to fill the space created by the collapsed portion, and partly by the traction of this collapsed lung-tissue outside of the tube.

In addition to the part played by bronchitis and atelectasis of the lung in occasioning bronchial dilatation, another important factor in its production is to be found in the condition described by Corrigan in 1838 as cirrhosis of the lung, and since recognized as interstitial pneumonia or fibroid phthisis. In this affection there is formed around the blood-vessels and terminal bronchi, as well as around the air-vesicles, a hyperplasia of the connective tissue, which, as is the case with connective-tissue formations in other situations, ultimately contracts, obliterating the air-cells, smaller bronchi, and blood-vessels, and thus converts the lung-tissue into a tough, fibrous mass. By the contraction thus produced the bronchial tubes of a larger size, which have been previously weakened by bronchitis and have lost their elasticity, are subjected to traction on all sides, and thus become dilated. Dilatations of all forms may thus be produced, cylindrical, sacculated, or beaded, according to the amount of lung involved in the contracting process and to the degree and situation of the bronchitis which favors the dilating action.

The determining causes, then, of bronchial dilatation are—1st, chronic bronchitis; 2d, atelectasis; and, 3d, fibroid phthisis or cirrhosis of the lung.

SYMPTOMATOLOGY.—The general symptoms of bronchial dilatation, as well as the course and duration of the affection, are such as belong to the pulmonary diseases favoring its production, especially chronic bronchitis and fibroid phthisis. The cough and dyspnoea of these diseases are aggravated by bronchial dilatation; but these symptoms, together with the impairment of nutrition, are due rather to the underlying affections than to the mere fact of dilatation. Increased and fetid expectoration, which often occurs in bronchial dilatation from retained and altered secretion, is by no means characteristic of this condition, since it may occur where no sign of dilatation exists.

There is generally some degree of dulness on percussion over a dilated [p. 229] bronchial tube, due to the condensation of the lung-tissue surrounding it, and varying in extent and degree with the amount of that condensation, and also with the amount of secretion retained within the tube. Sometimes, however, increased resonance of a tympanitic character is observed, especially if the dilatation be of the saccular form and near the surface of the lung. Such differences in the percussion sound are analogous to what occurs over a pulmonary vomica, which will generally give a dull sound, though, if the cavity be superficial and thin-walled, it may yield a tympanitic resonance. On auscultation bronchial respiration may be heard along the course of tubes affected with cylindrical dilatation when they are free from secretion; and this is more intense in proportion as the tube is more dilated and the lung-tissue around it more condensed. Bronchophony and increased vocal resonance also occur, and if mucus be present in the dilated tubes coarse moist râles will be heard. In a saccular dilatation there may be true amphoric breathing, with the gurgling sounds heard in a vomica. In some cases there is an alteration in the appearance of the chest-wall, which is retracted by the shrinking of the condensed lung beneath.

Now, of the auscultatory signs that have been mentioned, the bronchophony and increased vocal resonance, together with the percussion dulness, belong also to pneumonia, which, however, at least in its acute form, can be distinguished from bronchial dilatation by the previous history, the febrile movement, and the general phenomena of the case, and by the fact that the tubal breathing of pneumonia, besides being less persistent, is most frequently met with in the lower part of the lung, and that of bronchial dilatation in the upper part.

But the diagnosis between a dilated bronchus and pulmonary phthisis is in some cases a very difficult problem, the signs of the cylindrical form closely simulating those of the stage of deposit in phthisis, because involving the same physical condition, and those of the saccular variety corresponding often with the auscultatory signs of a cavity. In the former case there may be the same localized dulness on percussion, the same bronchial or broncho-vesicular breathing, and the same sinking or contraction of the chest-wall apparent on inspection. In the latter case there may be equally in saccular dilatation and in a vomica amphoric breathing, gurgling, and pectoriloquy. In the establishment of the diagnosis between these two conditions Austin Flint, Sr.,1 justly attaches importance to the circumstance that there is in general a greater degree of percussion dulness over a cavity than over a dilated bronchus, so that a relatively greater prominence of the auscultatory signs as compared with the degree of dulness makes the diagnosis of dilatation more probable. But the most important evidence on the point is to be gotten from the history of the case. If in a case where the auscultatory signs would leave the examiner in doubt there were found loss of flesh, fever, night-sweats, quickened pulse, and the other general phenomena belonging to phthisis, the existence of this affection would be rendered probable in the highest degree, and the auscultatory signs should be taken as corroborating an opinion founded on the general symptoms.

1 Dis. of Resp. Organs, p. 353.

Positive evidence, again, may be furnished by a microscopic examination of the sputa; the discovery of particles of lung-tissue or the so-called bacillus tuberculosis pointing clearly to phthisis. Conversely, the absence of the general symptoms of phthisis would, in a case presenting the above auscultatory signs, render it probable that they are due to bronchial dilatation. Long-continued cough and abundant expectoration are the chief symptoms common in both forms of disease. There are, however, some cases in which even with the most careful examination and weighing of evidence the physician will be left in doubt, inasmuch as in some cases of otherwise [p. 230]well-marked phthisis the usual constitutional symptoms are absent or imperfectly declared. In such exceptional cases the estimate of probabilities is to be based on the fact that while bronchial dilatation is comparatively rare, pulmonary phthisis is extremely common.

PATHOLOGY AND MORBID ANATOMY.—Enlargement of the bronchi may be met with throughout almost the entire extent of a lung; when limited to a part of the organ the change most frequently occurs, according to Laennec, Rokitansky, and other observers, in the superior lobe and toward the anterior border. The tubes of the third or fourth order in respect to size are most frequently affected, the primary bronchi being never involved except in association with tracheal dilatation.

In the different forms of dilatation the bronchial walls are found in various states. In the cylindrical variety they are for the most part thickened and hypertrophied, both as to the mucous and the fibrous coats; the mucous membrane being in a catarrhal state, covered often with muco-purulent discharge, and easily broken down and detached, while underneath the white fibrous coat is sensibly thickened.

In the sacculated form, on the other hand, the bronchial wall generally presents a thin and atrophied appearance, the mucous membrane undergoing but little change, except that the stretching to which it has been subjected gives it a smooth and shining look. This difference in the degree of thickening of the bronchial walls in the two forms of dilatation is in part due to the fact that in the saccular variety the enlargement in calibre is far greater than it is in the cylindrical form for a corresponding extent of a tube, so that its wall is much more stretched and attenuated, and thus the tendency to hypertrophy which has play in the cylindrical form is more than overcome in the saccular. But the chief reason of the difference in the state of the walls in the two forms of dilatation is found in the different modes in which they are respectively brought about, as already described.

DIAGNOSIS.—It has been shown that the determination of the existence of bronchial dilatation is at times one of the most difficult problems in diagnosis, from the fact that the auscultatory signs belonging to it may be equally met with in other affections, especially in pulmonary phthisis. The diagnosis is to be established, when this is possible, only by a careful consideration of the physical signs in connection with the general symptoms, so that the sources of doubt arising from the one set of phenomena may be as far as possible corrected by the other. These signs and symptoms, and the various affections to be discriminated by them, have been sufficiently set forth under the head of Symptomatology. While in this way a clear conclusion may be reached in many cases, yet there are others in which, notwithstanding the utmost care, there may still be a doubt as to whether the symptoms and signs indicate a dilated tube or a pulmonary cavity.

PROGNOSIS.—The prognosis of bronchial dilatation is directly connected with that of the affections which chiefly give rise to it—viz. chronic bronchitis and fibroid phthisis. When chronic bronchitis has lasted long enough to cause dilatation, it is seldom if ever cured, and, though improvement may take place from time to time in its symptoms, yet the dilated bronchi can hardly undergo diminution in their size. And in fibroid phthisis, while the progress of the disease is often very slow, yet it is on a downward grade, and the connective-tissue contraction giving rise to the dilatation increases with the advance of the malady.

TREATMENT.—The treatment of cases of bronchial dilatation resolves itself in great degree into that of the underlying and causal diseases on which it depends. As regards methods specially directed to the areas of dilatation, they consist of alterative, astringent, stimulant, and antiseptic remedies, either administered by the stomach or used by the process of inhalation. Cough [p. 231]may be allayed with the syrup of lettuce containing in each dose from 1/8th to ¼th of a grain of sulphate of codeia or 10 or 12 drops of the spirit of chloroform. If expectoration is very profuse, sulphate of atropia, in the dose of 1/100th to 1/80th of a grain, or the extract or tincture of belladonna, may be used. Turpentine and eucalyptol have a controlling influence over this symptom, and are specially beneficial if the bronchial secretion is fetid. They may be given by the mouth in the dose of minim v–xx in emulsion, and applied also by inhalation of their vapor or by spray. Inhalations of solutions of carbolic acid, minim j–x to an ounce of water, are more effective than anything else in checking fetor of the expectoration and the breath. This agent may also be administered by the mouth in the dose of fluidrachm j–iv of a 1 per cent. solution.

[p. 232]



DEFINITION.—The term emphysema is derived from [Greek: emphysaô], to inflate, and signifies an increased amount of air in a part or the whole of one or both lungs. Accordingly as the situation of this excess of air is (a) in the air-vesicles or (b) in the connective tissue between the lobules, emphysema is divided into Vesicular emphysema and Interlobular or extra-vesicular emphysema.

HISTORY.—These two affections are different pathologically and anatomically, vesicular emphysema being a much more common and important affection than the interlobular form. The distinction between the two forms was first drawn by Laennec. Previously to his time the essential difference between them was unknown; and, as the accurate diagnosis of the disease can be made only by auscultation, its existence was no doubt very often entirely overlooked. It has been remarked by Rokitansky1 that "had Laennec done nothing else for medical science, his discovery of this diseased condition, and of the causes giving rise to it, would have sufficed to render his name immortal."

1 Path. Anat., vol. iv. p. 53, Am. ed.


Vesicular emphysema may be defined as an absolute or relative increase in the amount of air contained in the vesicles of a part or the whole of one or both lungs. As a substantive disease it occurs in two principal forms—hypertrophic and atrophic; but besides these it is met with as a secondary affection due to other diseases and limited to certain areas of the lungs, sometimes acute and sometimes chronic in its production and duration. It will therefore be best to consider the disease under the following different forms:

    1st. Acute lobular emphysema;
    2d. Chronic lobular emphysema;
    3d. Hypertrophic lobar emphysema;
    4th. Atrophic lobar emphysema.

1. Acute Lobular Emphysema.

This form of the disease is the result of the rapid distension beyond their natural size of air-vesicles which had previously been healthy. It is most frequently met with in children and as the consequence of bronchitis or [p. 233] whooping cough. The paroxysms of cough occurring in these affections, especially in the latter, are attended by deep inspirations, by which the vesicles are directly distended, and by violent expiratory efforts, with closure of the glottis, so that the air is forced into those portions of the lungs where there is least resistance, particularly at the apex and along the margins. In a large proportion of cases of acute lobular emphysema, when the distending cause is removed by the cessation of the cough, the vesicles return to their normal size through their natural elasticity, which has not been destroyed. But in some cases, when the cough has been of unusual violence or of very long duration, the change may be permanent through loss of this elasticity, and thus a form of chronic lobular emphysema is produced.

SYMPTOMS AND SIGNS.—Unless emphysema of this form is extensive and extreme in degree, it is not attended with symptoms additional to those of the affections giving rise to it. When very great it may occasion increased percussion resonance.

TREATMENT.—The treatment is only what is required by the causal affections.

2. Chronic Lobular Emphysema.

In many cases emphysema is confined to a limited number of lobules, especially at the apices, the anterior borders, or about the base of the lung; and being gradual in development and permanent in duration, it is then termed chronic lobular emphysema. This is the form frequently met with in the different varieties of pulmonary phthisis, in which its development seems supplementary to the incapacitation of other portions of the lung. The lobules nearest to the surface of the lung or immediately beneath the pleura are found to be most distended, so that they often project beyond the adjacent surface.

Chronic lobular emphysema is chiefly of interest in connection with the other pulmonary diseases which give rise to it. The mechanism of its production is like that of acute lobular emphysema, but the diseases occasioning it being chronic the emphysema to which they give rise is equally permanent. At the apex of the lung, its most common situation, it is very often associated with tubercle in a calcareous state. The changes accompanying this deposit of tubercle favor the loss of elasticity in the vesicles of the apex, and the violent expiratory efforts, with closure of the glottis, occurring in the attacks of cough to which phthisical patients are subject, force the air into this part especially, and also into other regions of less resistance, and thus occasion permanent distension of the vesicles.

SYMPTOMS AND SIGNS.—The signs of this form of emphysema are so often masked by those proper to phthisis that the detection of the former is difficult or impossible. This, however, is of no practical importance in respect to treatment. At times the distension of the vesicles at the apex is so great as to produce bulging in the supra-clavicular region and to overcome the dulness due to deposit by the resonance it occasions.

TREATMENT.—No special treatment beyond that of the causative affections is required.

3. Hypertrophic Lobar Emphysema.

This is a substantive affection, and is much the most important form of the disease, both in its origin and development and in the consequences to which it leads. Though sometimes limited to one lung, or even to a single lobe of [p. 234] one lung, yet it more commonly involves the greater part of both lungs, which are increased in size, as shown by the alteration of the contour of the chest during life and by the appearance of the organs after death. This enlargement of a lobe or of a whole lung is of course the aggregate of the increase in size of the individual vesicles, the changes in which form the pathological units of the disease.

ETIOLOGY.—In no disease is the study of etiology as throwing light on treatment, both medicinal and hygienic, of more value than in emphysema, the important question being as to whether it takes its origin from some immediate mechanical cause acting upon the healthy cell-walls, and thus distending them, or whether they suffer such distension only when they have been previously weakened by some degenerative process in their tissue. The importance of determining this point correctly with reference to treatment is obvious.

In partial and lobular emphysema the change may have been wrought by causes mechanical in their nature and directed specially to the affected parts, such as have been already referred to; but in the general diffused or lobar form of the disease, in which by degrees the greater part or the whole of a lung is involved, we are almost compelled to assume the existence of some degenerative process or tendency coextensive with the malady and determining its existence. That any one form of degeneration is present in all cases has never been proved; indeed, it may be said to have been disproved. Rainey's view, that the change in the air-cells is essentially dependent on fatty degeneration of their walls, was based mainly on observations made upon a single case, and, although favored by the eminent authority of C. J. B. Williams, it has not been substantiated. The same thing must be said of Sir William Jenner's teaching, that fibroid degeneration is the essential lesion. Though both fibroid and fatty changes are found in not a few cases, yet in others a careful examination has failed to detect either the one or the other of them, so that neither can be regarded as the essential condition explaining all cases. Nevertheless, it is probable in the highest degree that a degenerative change of some kind, due to imperfect or perverted nutrition of the cell-walls, always exists in general lobar emphysema, though its nature may sometimes elude observation.

In cases of well-marked emphysema there may be no discoverable morphological changes in the walls of the alveoli, though, as remarked by Hertz,2 "a tissue-relaxation may be present in the lung without our being able to recognize any corresponding microscopic abnormality."

2 Ziemssen's Cyclop., vol. v. p. 373.

It may be said, then, that while in partial or local emphysema the alteration in the air-vesicles may be effected by extraordinary efforts brought to bear upon healthy cell-walls, in general or lobar emphysema, on the other hand, it may be produced by ordinary efforts acting upon weakened and diseased cell-walls. The morbid change is probably not in all cases alike, being sometimes fatty, sometimes fibroid, degeneration, and in other cases of a kind not ascertained.

In addition to other considerations, the markedly hereditary nature of emphysema in not a few instances would of itself render the existence of some constitutional predisposing cause highly probable. On this point A. T. H. Waters3 quotes the observations of Greenhow and Jackson. Out of 42 cases collected by Greenhow, 23 showed an hereditary tendency, and in 28 reported by Jackson, 18 were of emphysematous parentage. In stating his belief that substantive or general emphysema is the result of some degenerative process, Waters bases it on the following considerations: 1st. The high degree of development which the disease often reaches, without any [p. 235]previous history of violent or long-standing cough, in connection with either bronchitis, whooping cough, or any similar affection. 2d. The frequency with which the disease attacks the whole of both lungs, and the uniform character of the morbid changes often observed throughout all parts of the lungs. 3d. The hereditary nature of the disease, as shown by observations. 4th. The manner in which the disease is influenced by certain remedial measures which are known to act beneficially on other diseases attended with degeneration of tissue.

3 Diseases of the Chest, pp. 122, 123.

As to the nature of the immediate exciting cause of emphysema, whether in the general or local form, different views have been maintained. The most important of these are the inspiratory and expiratory theories.

The former of these theories, that in accordance with which the disease is referred to inspiratory action, was maintained by Laennec, and under the influence of his authority was at one time generally accepted. In accordance with this view, the existence of bronchitis is an important factor in the production of emphysema, as undoubtedly it often is in the lobular form. The dilatation of the air-vesicles was attributed to their over-distension by inspiratory efforts allowing the free entrance of air, the escape of which was impeded by bronchial mucus. Inspiration was thus regarded as a more powerful act than expiration, which was considered too feeble to drive the air beyond the accumulated mucus. In this way the air was supposed to accumulate in gradually increasing amount within the cells, which thus became distended.

But in opposition to this view it has been shown by Hutchinson's researches that Laennec was wrong in supposing inspiratory power to be greater than that of expiration; and it is further opposed by the researches of Mendelssohn and Traube, and those of Gairdner, which have shown conclusively that the presence of a pledget of mucus in a bronchial tube, so far from causing distension of the air-vesicles to which it leads, must ultimately ensure their collapse. The collapse thus occasioned, which is most common in the lower parts of the lungs, may lead, partly perhaps through inspiratory pressure, to vicarious emphysema in the upper portions, which receive a relatively larger quantity of air, in accordance with Williams' theory of negative inspiratory pressure.

It is true, then, as maintained by Laennec, that bronchitis may occasion emphysema, but the emphysema does not occur in the vesicles to which the affected tubes directly lead, nor from the force of inspiration applied to these vesicles, as Laennec taught, but in other portions of the lungs.

The expiratory theory affords a more satisfactory explanation of emphysema than does the inspiratory theory, and one more completely in accordance with the physiology of respiration and the anatomy of the thorax.

In ordinary expiration, in which the lungs are uniformly and equably compressed by the chest-walls, there is nothing tending to force air into one part of these organs more than into another, and thus produce emphysematous dilatation. But in forced expiration, such as occurs in the act of coughing, it may be plainly seen, if the chest be uncovered, that the air is driven upward to the top of the lungs, so as to produce a perceptible bulging in the supra-clavicular region. This bulging is notably increased in the coughing-spells of emphysematous subjects; and this fact is urged by Sir William Jenner both as throwing light upon the expiratory act as a principal factor in the disease, and as accounting for the special frequency of emphysema in the upper parts of the lungs. The explanation of this phenomenon is found in the circumstance that in the strong expiratory efforts of coughing the abdominal muscles force the diaphragm upward, and thus compress the lungs from below; at the same time the strong lateral anterior and posterior thoracic walls resist pressure, while the superior part of the thorax, covered over [p. 236]with fascia, but not completely protected by a bony structure, offers least resistance. To this unprotected part of the lungs and to the free margins and borders, which contain normally the smallest amount of air, will the strong currents produced by violent expiratory efforts be driven, so as to cause distension of their vesicles. Thus, the frequent coughing-spells of bronchial catarrh, so commonly associated with emphysema, give rise to the expiratory efforts which are the immediate cause of the emphysema.

While, therefore, it is probable that in some cases and to a certain degree inspiration may have a share in occasioning emphysema, yet expiration is to be regarded as a more important and more frequent factor in its production. This, at least, is probably the case in partial and lobular emphysema, and in some instances of the lobar form where the disease gradually spreads throughout a lobe. But in rapidly-diffused and extensive lobar emphysema such an explanation cannot always be admitted, because sometimes the disease advances steadily, so as to involve the greater part of one or both lungs without the occurrence of any paroxysms of cough which could distend the air-cells by their violent expiratory efforts. In such cases the only distending force would seem to be that of ordinary inspiration, which, while it might have no effect upon healthy lung-tissue, may easily be supposed to exercise sufficient dilating power upon air-cells, the walls of which are in a state of degeneration, and, thus being unnaturally weak, yield to pressure.

SYMPTOMS AND SIGNS.—One of the earliest symptoms of emphysema is shortness of breath; and, though at first it may not be very marked, yet as the disease advances it becomes more and more urgent, especially on going up stairs or walking up hill. Distension of the stomach by a full meal is likely to induce it, and even a slight degree of bronchial catarrh may render it extremely distressing. This symptom is due chiefly to two causes: First, the obliteration of numerous capillaries in the pulmonary system, occasioned by the thinning and destruction of the cell-wells in which they ramify, interferes with oxygenation, so that an increased number of inspiratory acts is required to supply the deficiency, and thus respiration is hurried; and, secondly, the impairment of the natural elasticity of the air-vesicles prevents the expulsion of their contents; the residual air remains, therefore, unchanged, and cannot supply oxygen to the blood; and thus increased expiratory efforts are made in order to expel the stagnant air and obtain a fresh supply. Notwithstanding this increase of both inspiratory and expiratory action, the movements of the chest are but slight. As far as bronchial catarrh is a cause of dyspnoea in emphysematous patients, improvement may take place in the warm dry weather of summer, when this symptom is often much mitigated.

Cough is a very constant symptom, varying in degree with the extent of bronchial catarrh. The act of coughing is feeble and expectoration is effected with difficulty—so much so that sometimes the retained secretion threatens suffocation.

Asthma occurs in paroxysms, and as a distinct phenomenon from the dyspnoea which is more or less constant. The asthmatic seizures often come on in the night after the patient has been asleep; they are characterized by orthopnoea and constriction in the chest, and generally subside with free expectoration.

The physical signs of emphysema are highly characteristic and of great importance. On inspection a peculiar conformation of the chest is observed when the emphysema has lasted for some time, the departure from the normal form gradually increasing in the progress of the disease until, in advanced cases, a degree of deformity is produced which is strikingly characteristic. In the earlier stages, or if the emphysema is local and partial, the alteration in the chest-wall consists only of a prominence corresponding with the dilated [p. 237] portion of the lung. But when the disease is general and occupies a considerable portion of both lungs, a rounded, convex, or barrel-like form of the thorax is produced, most noticeable in the upper part, and due to increased prominence of the ribs. The thoracic portion of the spine becomes more curved, and thus throws the shoulders forward, producing a stooping attitude. The intercostal spaces at the upper part of the chest are frequently effaced by the pressure of the enlarged lung, while at the lower part the depression of these spaces may be increased, especially during inspiration, by the action of the diaphragm. The enlargement of the thorax as a whole is chiefly due to the changes in its upper part, the lower part appearing sometimes by contrast to have lessened in volume. This, however, is in most cases apparent rather than real; but in some instances the dimensions in the lower part of the chest are actually lessened.

The respiratory movements in well-marked emphysema are characteristic and peculiar. The dilatation of the chest which is sought to be accomplished by muscular action is small and disproportioned to the amount of effort put forth, notwithstanding that the need for air keeps the sterno-mastoid and scaleni muscles in constant action. The reason of this is that, the lungs being distended nearly to their utmost capacity, there is but little room for further expansion. As there is only slight enlargement on inspiration, so with expiration the walls of the thorax contract but little at their upper part.

The result, therefore, of their muscular efforts is that the ribs are lifted and the sternum carried forward, so that the whole chest rises and falls in respiration as if its walls formed a solid case. But the character of respiration is by no means the same in all cases of emphysema. More than forty years ago Stokes4 called attention to the different modes of breathing in different cases accordingly as there is or is not displacement of the diaphragm; and his observations have more recently been reaffirmed by Waters5 and others. In the one class of cases the diaphragm retains its normal position and the upper part of the chest is very prominent, probably because the disease is chiefly in the upper portion of the lungs. Here there is but little descending movement of the diaphragm in inspiration and the abdomen remains flat. In the other class the diaphragm has been displaced and pushed downward by the enlarged lungs, which have probably been involved in the disease throughout their whole extent. In these cases the abdomen is protruded more or less with every inspiration. The difference between the two types of breathing is important, as in the latter class of cases there is more advanced and extensive disease than in the former, the symptoms being more urgent, and especially the dyspnoea greater. Inspection of the chest shows that the movement of inspiration is more quickly accomplished than that of expiration, which is prolonged, labored, and often wheezing in character.

4 Diseases of Chest, 2d ed., p. 173.
5 Diseases of Chest, p. 140.

Percussion and auscultation furnish signs of the utmost importance for determining the existence of emphysema which are in direct accordance with the physical conditions giving rise to them.

Increased resonance on percussion is observable over all portions of the lungs when the disease is general, but it is most marked at the upper part and along the anterior borders. When the disease is partial, the increased resonance is limited to the portions of the chest-wall over the affected areas. This sign is of course due to the greater amount of air in the distended vesicles. In very marked cases the resonance sometimes loses the vesicular and approaches the tympanitic character. There is very little, if any, further increase of the resonance on full inspiration. This is unlike what occurs in health, and is due to the fact that the capacity of the distended lungs is not relatively increased in emphysema, as it is in health, by the act of inspiration.

[p. 238] Over the cardiac region the normal dulness on percussion is lessened or entirely superseded by resonance from the overlapping of the heart by the distended lung. In partial emphysema the heart may escape this encroachment and its area of dulness may not be lessened; and even in some rare cases where the disease is general and far advanced the same thing may be observed, from the lung being bound by pleuritic adhesions, so that it cannot expand in the direction over the heart. But, as a very general rule, it will be found in hypertrophic emphysema that the normal præcordial dulness is lessened or absent. When this is observed the heart is in some cases forced downward, its beat being felt most distinctly in the epigastrium; and in other cases it is carried directly backward, so that its impulse can hardly be detected at all.

Over the posterior wall of the chest percussion gives a clear note at a lower level than in health, because the dilated lung extends farther down toward the bottom of the thorax.

The signs afforded by auscultation are highly characteristic of emphysema, and, like those of percussion, in direct relation with the physical condition of the lungs. The respiratory sounds are notably feebler, because the amount of air entering and leaving the lungs at each act of respiration is less than in health. The distended lungs can admit only a small amount of air at each inspiration, and from their diminished elasticity they can expel but a small amount at each expiration. This feebleness is directly proportioned to the degree of the disease, or, in other words, to the amount of distension; for the greater the distension, the less movement of the lungs and the less play of air. If the disease be unequally advanced on the two sides of the chest, the respiratory murmur will correspondingly vary, being feebler on the side where the disease is most advanced.

Besides this change in intensity, there is also an alteration in the rhythm of the respiratory acts corresponding to what has been referred to above as observable on inspecting the chest. The ratio of inspiration and expiration is always changed in well-marked emphysema—so much so as to be in many instances reversed, the expiratory occupying more than double the time of the inspiratory act. Inspiration is short and quick, because the air enters freely and the limit of the possible expansion of the lungs is speedily reached. Expiration is prolonged, because there is a loss of their normal elasticity, and an effort is made by voluntary action of the expiratory muscles to expel the stagnant residual air. This alteration in rhythm is eminently characteristic of emphysema when the disease is far advanced and occupies a considerable portion of the lungs. Feebleness of respiratory murmur is an earlier sign than alteration in rhythm, and may be observed before any marked prolongation of the expiratory act occurs and before there is any very positive increase of resonance on percussion. Hence it is of great importance if not otherwise explicable, as it sometimes is by unusual thickness of the chest-walls, because it indicates, taken by itself, an early stage of emphysema in which treatment may be most likely to be beneficial. It is sometimes found in very advanced stages of emphysema that the respiratory sounds are almost totally inaudible; but in general, while both murmurs are feeble, expiration is more appreciable than inspiration. If, however, the disease is associated with bronchitis, either constantly or intermittingly, the proper auscultatory signs of the accompanying affection may be observed, though modified by the emphysema. Thus, moist and dry râles according to the stage of the bronchitis, sibilant or sonorous, subcrepitant or mucous râles according to the size of the bronchial tube involved, may be heard, the abnormal sounds being notably prolonged during expiration.

It can hardly be doubted that the sign referred to by Laennec as "perfectly pathognomonic of emphysema," and described by him as "the dry [p. 239] crepitant râle with large bubbles" (râle crépitant sec à grosses bulles), is in most cases, if not always, dependent upon coexistent bronchitis. Certainly, many cases of emphysema are met with in which, in the absence of bronchitis, no such sound is heard. The signs or combination of signs which are indeed "perfectly pathognomonic of emphysema" are increased resonance upon percussion, associated with marked feebleness of respiration and prolonged expiration. This association of signs is always indicative of emphysema, because it can be explained only by the physical conditions involved in this disease.

Auscultation of the cardiac region gives results corresponding with those afforded by percussion and palpation. When the lung is distended sufficiently to overlap the heart, the sounds belonging to the latter organ will be more or less indistinct and distant, and sometimes scarcely audible. If the heart be pushed to the right or downward instead of being driven backward, the sounds may still be distinct, but they are out of place and have their greatest intensity under the sternum or at the epigastrium. The proper signs of hypertrophy or dilatation of the heart, which may be revealed on post-mortem examination, and the mechanism of which will be referred to farther on, are to a great degree masked during life; for the overlapping lung prevents the detection of increased cardiac dulness by percussion or increased impulse by auscultation.

Palpation of the chest serves to confirm the evidence supplied by inspection. The effacement of the intercostal spaces, the lessened mobility of the ribs, and the situation of the apex-beat of the heart are signs of importance of which the sense of touch takes cognizance.

COMPLICATIONS AND SEQUELÆ.—Bronchitis is one of the most frequent of the affections complicating emphysema. In the partial form of the malady it often sustains, as has been already seen, a direct causal relation to the emphysema. When the disease is diffused and general, bronchitis is sooner or later almost always encountered, and is then of a congestive rather than an inflammatory type, being often unaccompanied by fever, and in part due to interference with the circulation through the smaller bronchial arteries. For, as some branches of these vessels are distributed in the interlobular areolar tissue, and others ramify upon the walls of the smallest bronchial tubes, a constant pressure may be made upon them by the dilated air-vesicles, and this obstruction of the circulation through them may occasion passive congestion. The bronchitis accompanying advanced emphysema is generally attended with free secretion, amounting in some cases to a bronchorrhoea so profuse as seriously to imperil life by suffocation, the danger being increased by the difficulty in expectorating that exists. The discharge from the bronchi is often in such cases of a muco-purulent character. So urgent is the danger sometimes arising from this complication that unless it be relieved death may quickly ensue. The face and other portions of the surface become livid or leaden, the whole body more or less cool, the pulse weak and hurried, and copious râles are audible even without applying the ear to the chest. Life is threatened both by the accumulation in the respiratory passages obstructing the entrance of air, and by the tendency to the formation of heart-clots from the embarrassment to the pulmonary circulation and the consequent malaëration of the blood.

Another very common complication of emphysema is asthma, which, indeed, is sure to occur in greater or less degree of violence and at longer or shorter intervals in all cases where the disease has become extensive. The attacks often come on in the night, arousing the patient from sleep. The tendency to a nocturnal occurrence of asthma may be due to the recumbent position favoring passive congestion of the lungs, and to the diminished activity of the respiratory process during sleep when it is not aided by [p. 240] voluntary effort. From both these causes an irritation may be set up determining reflex spasm of the bronchi. Moreover, the paroxysmal occurrence of asthmatic attacks is an illustration of the general law in accordance with which morbid neurotic conditions frequently occur intermittingly, though the eccentric cause of them is constantly existing, as witnessed in the subjects of epilepsy or angina pectoris. The frequent recurrence of these attacks of spasmodic asthma is in all probability the cause of the hypertrophic state of the muscular tissue in the bronchial tubes which is often met with as a part of the morbid anatomy of emphysema.

The structural alterations of the heart that occur in emphysema are the results, more or less directly, of the mechanical conditions involved in the disease. Earliest in the sequence of changes affecting this organ are non-compensative hypertrophy and dilatation of its right chambers; and by some writers it has been maintained that the alterations due to emphysema are found only on this side of the organ. This, however, has been completely disproved by extended observations, and it has been shown that left hypertrophy and dilatation, while not such direct consequences of emphysema as the corresponding changes on the right side, are yet frequently encountered, and are plainly due to the disease in the lungs.

The hypertrophy and dilatation of the right chambers of the heart are easily understood when it is considered that the constant pressure of the enlarged air-vesicles of the emphysematous lungs interferes more and more with the circulation through the pulmonary capillaries, and that there is thus a constant impediment to the onward course of the blood from the pulmonary artery, and a continuous backward pressure within the right ventricle and auricle. The effort to overcome this pressure leads to hypertrophy, and ultimately, as this effort is less and less effective, to dilatation of the right chambers.

It would appear as though the readiness with which the alterations on the right side of the heart may be explained has led, if not to their being more frequently observed, yet at any rate to their being more emphasized, than are the corresponding changes on the left side. Some writers have referred only to those on the right side, giving the correct explanation of them, but making no mention of the similar condition on the other side. Thus, Rokitansky6 refers to the obstruction to the circulation occasioned by the expansion of the air-cells in pulmonary emphysema as one of the causes of dilatation of the right ventricle and auricle, but says nothing of similar changes on the left side. Other pathologists, however, as Lebert and Gairdner, have shown that at least in long-standing emphysema the left side is also not infrequently involved in disease.

6 Path. Anat., vol. iv. p. 130.

What explanation, then, is to be given of those changes in the left chambers which, if less frequent than hypertrophy and dilatation on the right side, are yet certainly not uncommon? Evidently, they cannot be referred to obstruction in the pulmonary circulation; for this, while producing backward pressure into the right compartments, must, on the contrary, lessen the amount of blood received by the left chambers, which therefore have no excessive labor thrown upon them from this cause, and so cannot become hypertrophied in such a manner.

The explanation is probably to be found partly, as suggested by Waters,7 in the altered position of the heart occasioned by the emphysema, and partly in the remora of the venous circulation.

7 Diseases of the Chest, p. 152.

There are thus two factors to be considered, the first of which applies to the right heart as well as to the left. As to this first, the more extensive the emphysema the greater is the degree of displacement that the heart [p. 241] undergoes; and as the normal position of the ventricles with reference to the arteries emanating from them offers the easiest course to the blood-currents, any departure from this position causes an embarrassment, and consequently increased labor, in the left chambers as well as the right; hence one explanation of the hypertrophy on both sides. As to the second factor, the obstruction to the general capillary circulation necessitates an increased effort of the left ventricle to overcome it; and so, as far as it is concerned, another cause of hypertrophy is in operation.

It is frequently observed in advanced emphysema that there is a marked disproportion between the forcible heart-beat and the feeble radial pulse, the former being due to the hypertrophy, and the latter to the small amount of blood received and propelled by the heart.

Besides these changes in the size of the heart and the thickness of its walls, constituting hypertrophy or dilatation as the case may be, a displacement of the entire organ is a not uncommon consequence of emphysema. The direction of this displacement may vary, so that it may be either directly backward, the heart being overlapped by the distended lung, or it may be downward or to the right of the sternum. A much greater degree of displacement of the heart may result from the pressure of pleural effusion than from emphysema of the lung; but when due to pleurisy it is generally of shorter duration and admits of perfect restoration, whereas when caused by emphysema it is usually permanent. The writer has at present under his care a case of extreme displacement of the heart to the right, the apex-beat being felt and seen to the right of the sternum; but in this patient, while extensive supplementary emphysema of the left lung, due to the almost complete incapacitation of the right lung, has probably had a share in causing the displacement, yet a more important cause of it has been contraction of the right side of the chest, the result of absorption of an old pleural effusion which has left the lung bound back and adherent. This case closely resembles one reported by Stokes as presenting "the singular phenomenon of the displacement of the heart to the right side, consequent on the removal of an effusion of the right side."8

8 Diseases of the Chest, p. 467.

Dropsy is to be regarded as one of the most notable complications and consequences of emphysema; for when the disease is of long standing the loss of balance between the arterial and venous circulation occasioned by the obstruction to the passage of blood through the lungs gives rise ultimately to effusion of the serum, which is first seen in the lower extremities, and may subsequently become general.

In consequence of the disturbances in the circulation and respiration which have been considered, it is not surprising that the nutritive function should be impaired, as is found often to be the case in the subjects of old emphysema, who present a cachectic and anæmic appearance, partly due to malaëration of the blood, and partly to imperfect performance of the assimilative functions occasioned by passive congestion of the alimentary tract. Still another cause may be found, as suggested by Hertz,9 in the insufficient supply of the elements received from the lymph through the imperfect emptying of the thoracic duct into the distended left subclavian vein.

9 Ziemssen's Cyclop., vol. v. p. 382.

There has been much discussion as to the connection between emphysema and pulmonary phthisis, some pathologists having held that the two affections are incompatible with each other, and that emphysema may thus exercise a prophylactic influence against phthisis. Careful and extensive observations furnish no valid grounds for such a belief. So far as supplementary emphysema is concerned, it is a common thing to find emphysematous patches at the bases and along the margins of lungs the apices of which are tuberculous. In such cases the increased inspiratory labor thrown upon some portions of the [p. 242]lungs in consequence of impaired function of other parts accounts for the emphysema. But, besides this common condition, cases are met with in which the emphysematous portions are themselves beset with tubercle. Such a case is reported by Waters,10 in which an emphysematous lung was found studded with tuberculous matter, which on microscopic examination was seen in the air-sacs and ultimate bronchial tubes.

10 Diseases of the Chest, p. 156.

While emphysema ensures no absolute immunity from tuberculous diseases of the lungs, yet the physical condition involved in it does lessen the liability to tuberculous deposit, which is favored by active hyperæmia, and active hyperæmia is not apt to occur in an emphysematous part of a lung. It likewise lessens the liability to such pulmonary affections as hæmoptysis, oedema, and perhaps pneumonia. The diminished pulmonary circulation occasioned by the shrinking and obliteration of the capillaries explains the infrequency of hæmoptysis. The same cause, together with the smaller amount of interlobular areolar tissue that the emphysematous lung contains, lessens the liability to oedema, because there are both less blood from which the serum can be effused and less of the tissue in which it can be collected and held. And the infrequency of pneumonia in an emphysematous lung is owing to the absence of conditions favoring hyperæmic changes.

DURATION AND TERMINATIONS.—No definite limit can be assigned to the duration of emphysema, as the progress of the disease varies very much in different persons according to the underlying cause, and according also to the care taken in avoiding those influences which promote its development, such as physical exertion or exposure to cold and damp. Many persons with extensive emphysema, if they can secure favorable climatic conditions, and thus escape attacks of bronchial catarrh, will live on for years in comparative comfort, whereas in others the disease may advance with rapidity to a fatal issue if their situation in life necessitates hard work or exposure to causes that induce frequent attacks of bronchitis. The immediate cause of a fatal termination is generally either apnoea resulting from extensive bronchitis, or asthenia from impaired action of the heart, or both of these conditions together.

PATHOLOGY AND MORBID ANATOMY.—From examinations made at various stages of the disease in those who have died of emphysema it is seen that the earliest change is a dilatation of the air-sacs, which become gradually more distended, their walls growing thinner, until they may yield at some points and perforations occur. As the disease advances the perforations become larger and more numerous, until the walls are so far destroyed that several sacs or even lobules are blended together, forming only one cavity. The alveoli may be dilated to the size of a mustard-seed, or even a pea, without undergoing rupture, and may thus become visible by the unaided eye; but when the emphysematous spaces are as large as a hazelnut or small walnut they consist of numerous air-sacs, or even of several lobules, fused together by the atrophy and breaking down of the interalveolar and interlobular tissues. When the cavities thus produced by the fusion of several sacs or lobules are in the subpleural portion of the lung, they will sometimes project beyond the adjacent surface, so as to form appendages of the size of a small walnut which appear to be connected with the lung by a pedicle. It is remarked by Waters that perforation of the cell-walls is much more common in lobar than in lobular emphysema, even though the dilatation of the sacs may be as great or greater in the latter than in the former affection; which is due, no doubt, to the fact that the extensive and diffused changes in the lobar form are dependent upon a degenerative process, in consequence of which the walls are specially prone to give way.

All the changes just referred to, from the earliest and slightest degree of distension to extreme attenuation and perforation of the walls, with final [p. 243] coalescence of several sacs and the formation of appendages, may be met with at the same time in different parts of the same lung. The most advanced changes are found most commonly at the apices and free margins of the lungs, while in the deeper parts an earlier stage only may have been reached.

The blood-vessels in the cell-walls are diminished in calibre by the atrophy of these walls and by the constantly-increasing air-pressure, so as to admit only the watery part of the blood; and thus is explained the pigmentary change in the surrounding tissues where the blood-corpuscles collect. Ultimately, many of the vessels are obliterated, and the backward pressure thus induced extends to the pulmonary artery, and thus gives rise to hypertrophy and dilatation of the right side of the heart, as already explained. It is this pressure on the vessels in the alveolar walls that causes also passive hyperæmia of the bronchial mucous membrane, and thus produces a tendency to bronchitis, which so often occurs as a consequence of emphysema, while, again, primary bronchitis is frequently a factor in the production of the disease. The principal change in the bronchial tubes, in addition to the hyperæmia and softening of their mucous membrane due to coexisting bronchitis, is a hypertrophic thickening of their muscular coat, the result probably of repeated spasmodic action in the asthmatic attacks.

DIAGNOSIS.—The chief points by which the diagnosis of emphysema is determined have already been referred to under the head of Symptoms and Signs. The most important of these are the auscultatory signs; for, although the general symptoms and history of the case may point with probability to the nature of the malady, yet if these alone be regarded other affections may easily be confounded with it.

The auscultatory signs proper to emphysema are increased resonance upon percussion, feeble respiratory murmur, and prolonged expiration. Any one of these physical signs may be met with in other affections than emphysema, but when they occur conjointly they point only to this disease. In addition to them the alteration in the form of the chest-wall, so that it becomes rotund or barrel-shaped, and the asthmatic character of the breathing, are important indications. The diseases most likely to be mistaken for emphysema are phthisis, bronchitis, pneumothorax, and pleural effusion.

In the early stage of phthisis feebleness of respiratory murmur with prolonged expiration might suggest the existence of emphysema; but, apart from the fact that these signs at any time when a doubt might be felt are generally confined to the top of the lung in phthisis, the diminished percussion resonance, the bronchial or broncho-vesicular breathing, the bronchophony or bronchial whisper, and increased vocal resonance and fremitus—all of them proper signs of phthisis and all wanting in emphysema—would by their presence or absence clearly establish the differential diagnosis between the two affections. In more advanced phthisis, when softening has taken place and a cavity exists, difficulty in discriminating between the two diseases could hardly arise.

Emphysema is so frequently associated with chronic bronchitis and with intercurrent attacks of acute bronchitis that it is often important to determine whether these latter affections exist independently or are complications of the emphysema. The question is in general settled by the history of the case and by the conformation of the chest, showing whether previous dilatation of the air-cells has taken place or not; as also by the presence or absence of the special signs of emphysema when those of the bronchial affection are encountered.

Capillary bronchitis, from the urgent dyspnoea attending it and the vesiculo-tympanitic resonance which it sometimes presents, especially in the upper and anterior parts of the chest, may possibly be mistaken for emphysema, from [p. 244] which, however, it may be distinguished by the quickened pulse and high temperature that belong to this form of bronchitis, as also by the rapid diffusion of the subcrepitant râle over both sides of the chest in capillary bronchitis; whereas this sign is absent or less marked in emphysema. Moreover, capillary bronchitis is most common in childhood, when diffused emphysema is less frequently met with.

Pneumothorax is characterized by distension of the chest and increased percussion resonance—signs which belong also to emphysema; but the possibility of error is avoided by the consideration that whereas in emphysema the respiratory sound is feebler than natural, in pneumothorax it is strongly exaggerated and amphoric in character; and there are also the additional signs of metallic tinkling and the plashing noise or "Hippocratic succussion sound" made by moving the body backward and forward. Moreover, even as regards the sign in which the affections would appear to resemble each other, a difference may be observed on careful examination; for the percussion note of pneumothorax is purely tympanitic, while in emphysema the increased resonance has still a vesicular character to some degree. Pneumothorax, again, is always a unilateral affection, and emphysema is almost as constant in its occurrence on both sides of the chest.

It might appear that there would be little liability to confuse emphysema with pleural effusion, in view of the very general presence of dulness on percussion in the latter affection and of resonance in the former. But in some cases of fluid effusion in the chest a degree of tympanitic resonance is met with, more especially in children. J. Lewis Smith remarks that "as a rule in the pleuritis of children, at a certain stage of the effusion, percussion produces a sound which is either decidedly tympanitic or which partakes of the tympanitic character."11 In both affections, moreover, there may be enlargement of the chest. The doubt, if it arise, may be settled by the consideration that in emphysema the altered resonance and the enlargement are on both sides; whereas in pleurisy these signs are in general on one side only; and, further, the enlargement is more marked at the top of the chest in emphysema and at its base in pleural effusion.

11 Diseases of Children, 5th ed., p. 607.

In concluding the account of the diagnosis it may be said that when the history of a case, the frequent or constant occurrence of dyspnoea, and the more or less rounded conformation of the chest make the existence of emphysema probable, this probability may be converted into a certainty by the discovery of resonance on percussion, feeble respiratory murmur, and prolonged expiration.

PROGNOSIS.—The circumstances, apart from treatment, which especially affect the prognosis of emphysema are the form in which the disease occurs and the ability of the patient to secure immunity from influences which may increase the malady itself or the attendant bronchitis, such as hard work, great exertion of the respiratory organs, and exposure to cold and damp.

Acute supplementary emphysema, even when it affects considerable portions of both lungs, may entirely disappear and the vesicles be restored to their integrity on the removal of the underlying cause. Thus, the vicarious dilatation of air-cells following acute bronchitis or whooping cough in children may leave no sign of its previous existence after recovery from these diseases. In general, the shorter the duration of the causal diseases, the more likely is the emphysema to disappear; for if it be maintained for a considerable time, the elasticity of the cells may be so damaged that they may never return to their natural size.

In hypertrophic lobar emphysema the prognosis in most cases is unfavorable as regards perfect recovery; while yet the disease may not materially shorten life, and with proper care may be compatible with a fair degree of [p. 245] comfortable existence. And, indeed, even in this form of the disease, provided it do not affect a great extent of lung and have not been of very long duration, there is in some cases ground for hope of ultimate recovery, with restoration of the air-cells to their normal condition. Modern methods of treatment have rendered the prognosis in such cases somewhat less unfavorable than it was once held to be.

TREATMENT.—The treatment of emphysema comprises several distinct objects: 1st, the arrest of the degenerative changes which may be going on in the walls of the air-vesicles, and which favor their dilatation; 2d, the restoration, as far as is possible, of the integrity of the lungs, so that they may resume their natural size; 3d, the relief of bronchitis, asthma, and dropsy, which are associated as secondary affections with the primary disease.

To meet the first of these indications, the arrest of degenerative change, iron is among medicinal agents the one most to be relied upon; for, though neither it nor any other means has power to restore loss of tissue or to reproduce integrity of structure when several alveoli are fused into one cavity by the breaking down of their partition-walls, yet by enriching the blood it may improve the nutrition of these cell-walls so that the tendency to dilatation and rupture may be checked. Iron steadily administered in small doses is the best means for effecting this end, and if the patient object to one form of the metal after using it for some time, it may be changed for another. The best preparation of the drug is probably the tincture of the chloride, and one of the best forms for administering this medicine is the mixture of acetate of iron and ammonium (Basham's mixture) introduced into the U. S. Pharmacopoeia of 1880. This is especially valuable, when any dropsical effusion exists, on account of its gentle diuretic action. In addition to iron, other agents promotive of nutrition, such as cod-liver oil and the hypophosphites, may be used with the same view. Stomachic tonics, such as the simple bitters and pepsin, may be useful by aiding digestion and nutrition; and at the same time, by preventing the formation of flatus, they may relieve the dyspnoea caused by upward pressure on the diaphragm. That real benefit may be derived from such measures is beyond doubt; and it is to be feared that some practitioners, in their conviction that no cure can be wrought in those parts of the lung which have actually undergone wasting and rupture, have to too great an extent neglected the use of means which may at least prevent the advance of similar changes in other parts, and thus tend to stay the progress of the disease.

Deep and hurried respiration will increase the air-pressure within the yielding vesicles; for this reason active exercise is objectionable, especially walking up hill, and the use of wind instruments is to be strictly prohibited. Indeed, as regards this last cause of respiratory pressure the patient's inability to practise is in general warning enough, but in the early stages of the affection a caution against it may be necessary.

The suggestion of the use of strychnia against emphysema is not founded on a correct knowledge of the mode of action of this drug; for, although it may stimulate muscular contractility, it has no influence upon the elasticity of the air-cells and no power to restore them to their natural size. Whatever benefit may result from it is due solely to its action on digestion and the improvement in nutrition to which it may thus contribute.

The second indication of treatment, the restoration of the dilated air-cells to their natural size, is possible, if at all, only at an early period of the disease or in portions of the lung which have not gone beyond a moderate degree of cell-dilatation. An enlarged space formed by the fusion of several cells cannot be lessened in size by any means, medical or mechanical, and the loss of respiratory power from the destruction of the cell-walls in which oxygenation is effected does not admit of permanent relief. Where, however, such [p. 246]destruction has not yet taken place and distension is not extreme, there is reason to believe that a return of the cells to their natural size may in some cases be accomplished. The inhalation of condensed air has been recommended with this view; and no doubt good may result from it, due chiefly to the retardation of the breathing and of the heart's action which it occasions, while dyspnoea is relieved by the larger supply of oxygen taken in at each inspiration. This improvement in respiration causes more complete tissue-metamorphosis, and thus aids nutrition and all the functions.

Still greater benefit is to be derived from the exhalation into rarefied air—a measure which acts upon mechanical principles, and has been found to give relief not only to the symptoms of emphysema, but to the organic disease itself; for the retention and stasis of the residual air, which is far larger in amount in emphysema than it is in health, serve at once to keep up the dilatation of the cells and to increase the dyspnoea; and therefore any means which will effect the withdrawal of this air will favor the return of the cells to their normal size, and at the same time relieve the dyspnoea. This benefit is accomplished by the method of expiration into rarefied air, which acts by suction—or pneumatic aspiration, as it may be termed—drawing out the air from the distended vesicles, and relieving them of the continual presence and pressure of this air. Better results would appear to be gotten from the conjoint use of the two methods—the inspiration of compressed air and expiration into rarefied air—than from either one alone.

By the persistent use of these means in cases which have not advanced so far as to defy all treatment not only may the symptoms of dyspnoea, cough, asthma, and impaired nutrition be improved, but the size of the chest may be diminished, as shown by measurement; and this can result only from the return of the distended air-cells, in some degree at least, to their normal capacity.

The apparatus best fitted to effect this double purpose is that of Waldenburg, as modified by Tobold.12 The method of using it is simple, and can readily be understood by examining the instrument. It must be said that the most valuable action of this apparatus consists in the withdrawal of the air from the cells which it effects, for this tends to produce an organic change for the better—viz. the diminution of the enlarged cells by a sort of suction; while its other action, the supply of condensed air, gives relief to symptoms mainly. In emphysema the expiratory act is relatively more impaired than the inspiratory, and the apparatus is best adapted to the relief of this greater deficiency. Henry Saltzer, formerly of Germany and now of Baltimore, has recently obtained very favorable results from its use in emphysema, not only as regards the dyspnoea and other symptoms, but also in the way of lessening the size of the chest as determined by measurements.13

12 This instrument is made by Messrs. J. Reynders & Co. of New York.
13 A reference to Saltzer's observations and measurements may be found in Weil's Handbook of Topographical Percussion, pp. 107, 108, Leipzig, 1880.

The third indication of treatment has reference to the complications of emphysema. Of these the most common, and one of the most important, is bronchitis, which is to be treated in the same way as when it occurs as an independent affection. Expectorants to promote and remove secretion and agents to allay cough are very important means, because the retention of secretion and the effort of cough to expel it cause a strain upon the air-cells, and thus increase the emphysema. The local use, by inhalation or spray, of opiates, belladonna, hyoscyamus, and other agents of this class, is often most serviceable by giving relief to the cough without disturbing digestion. As bronchitis is in many emphysematous patients a very chronic affection, and is attended with submucous thickening in the bronchial tubes and consequent diminution of their calibre, the iodide of potassium is an agent of special [p. 247] value for its relief. Whether the influence of this remedy is due to a sorbefacient power or to some other unexplained mode of action, there is no doubt of its great value in chronic bronchitis, so that for this complication of emphysema it claims a very high rank among medicines. The rapidity with which relief is afforded to the cough and dyspnoea of bronchitis, and to the asthmatic paroxysms attending it, by full doses of 10 or 15 grains of iodide of potassium at intervals of four hours, makes it probable that its action is partly neurotic in character. It is remarked by Austin Flint, Sr., that when the iodide has effected a marked improvement in the chronic bronchitis he has known the characteristic deformity caused by the emphysema to be notably diminished.14

14 Clinical Medicine, p. 131.

A dangerous symptom which sometimes arises in the course of the chronic bronchitis accompanying emphysema is profuse bronchial catarrh, which may destroy life by producing apnoea, the surface becoming cold and the pulse feeble and vanishing as the patient seems to be drowning in his own secretion. In this condition the writer has in several instances found prompt and unmistakable benefit from the hypodermic injection of hydrobromate of quinia, and he would strongly advise the use of this agent. The solution he has employed is of the strength of 4 grains of the salt to 20 minims, and of this 15 to 20 minims has been the dose given. Under the action of this remedy the pulmonary capillaries would appear to be so toned that further effusion is checked, and the gasping and cyanotic condition has been speedily succeeded by comfortable breathing. For the same symptom Waters advises the use of moderately large doses of turpentine (drachm doses in aromatic water every two hours) on a plan suggested by Sir D. Corrigan of Dublin.15

15 Diseases of the Chest, p. 172.

As bronchitis has so much power to produce emphysema when the conditions favorable to its occurrence exist, and to increase it when already established, everything tending to prevent it is of great importance. With this view the avoidance of cold and wet, and, when practicable, recourse to a mild climate in winter, are advisable.

The attacks of asthma to which emphysematous patients are subject are to be treated in the same way as the purely spasmodic form occurring independently of discoverable organic disease. If the difficult breathing has come on suddenly and the patient is not laboring under advanced dilatation of the heart, prompt relief may be given by a hypodermic injection of morphia; but if the heart is much dilated, this might endanger too great depression. Chloral is generally unsafe for the same reason. The bromides in full doses may be serviceable in the less severe attacks, and the tincture of lobelia in doses of 10–20 drops every fifteen minutes until slight nausea is felt is often of great benefit, as is also the smoking of stramonium-leaves.

The dropsy met with in advanced stages of emphysema may be so prominent a symptom as to require special treatment. Its cause is found in dilatation and weakness of the right chambers of the heart, which result from obstruction to the circulation through the lungs when compensative hypertrophy is no longer efficient, for then these give rise to passive congestion of the liver and kidneys and remora of the general venous system, with dropsical leakage, seen first and chiefly in the lower extremities. Treatment is therefore to be directed chiefly to increasing the tone of the heart; and for this purpose digitalis is most useful, as it is in other forms of cardiac dropsy. The chief indication of its beneficial action is seen in the better action of the kidneys consequent upon the increased impulsive force given to the heart. When acting favorably, marked relief both of the dropsy and the dyspnoea may be obtained from the use of this agent in the dose of 2 to 4 drachms of the infusion or 10 or 15 drops of the tincture every three or four hours. If [p. 248] the stomach should not bear the digitalis, as is sometimes the case, or if it fail to act or lose its power, the fluid extract of convallaria, recently introduced as synergistic with foxglove, may be employed as a substitute for it.

Under similar circumstances, if the patient's strength will admit of it, great benefit will sometimes result from a mercurial purge, by which passive congestion of the portal system may be relieved and the upward pressure of an engorged liver in some degree lessened.

4. Atrophic Lobar Emphysema.

This disease differs from the hypertrophic form of emphysema in the circumstance that the bulk of the affected lungs has undergone diminution from waste or atrophy of their tissue. Absolutely, the lungs may contain no more air than they should in health—they may even contain less—but, relatively, there is an increased amount of air in them in consequence of the diminished amount of the lung-tissue. Such relative increase of air in a given area of the lung may be very considerable from the atrophy and destruction of the cell-walls, the alveoli coalescing so as to form cavities, while the individual air-cells are not dilated. The entire lung, however, is shrunken, the chest-wall correspondingly depressed and contracted, and the thoracic muscles atrophied. The function of the affected lungs is impaired in consequence of their loss of size and the diminution of the respiratory movements. This is of course especially noticeable when exertion is made, while under other circumstances there may be little or no embarrassment of breathing unless the disease is far advanced and has involved a large amount of both lungs. But, in general, this form of disease causes less distress and is a less formidable affection than hypertrophic emphysema. In some cases a mingling of the two forms is found, as when a person the subject of general atrophic emphysema has a local vesicular dilatation developed at the top and margins of the lungs.

The shrunken state of the lungs in atrophic emphysema prevents the heart from being overlapped, so that the area of cardiac dulness is not lessened, as it is in the hypertrophic form; and as the general waste of the system is attended with a diminution of the amount of blood, dilatation of the right ventricle, and consequent dropsy, are not apt to occur, as they are in hypertrophic emphysema.

ETIOLOGY.—Atrophic emphysema is always due to constitutional causes. It is found chiefly in old persons or in those in whom impaired nutrition has produced the degenerative changes of old age. Hence it is described by some writers as senile emphysema or senile atrophy of the lungs.

SYMPTOMS.—Of the general symptoms of atrophic emphysema, apart from those which belong also to the hypertrophic form, the most marked are—first, the lessened size of the thorax; and, second, the character of the dyspnoea, which is not urgent, and is not apt to occur except on making exertion. The blood is lessened in amount from the general impairment of nutrition, and is therefore adapted, so to speak, in quantity to the diminished aërating space. Percussion in general gives exaggerated resonance, from the relative increase of air in the lung and the thinness of the thoracic wall, which thus vibrates more perfectly. In some cases, however, from loss of elasticity in the cartilages of the ribs, the resonance is even diminished. On auscultation there are found somewhat prolonged expiration and, in general, feeble inspiratory murmur—signs which belong also, but in greater degree, to true hypertrophic emphysema, from which, however, the atrophic form is to be distinguished by the contraction of the chest that is seen throughout its entire contour.

In some cases of hypertrophic emphysema there may be, it is true, an appearance of partial contraction of the chest-wall, since where the [p. 249] emphysema has produced a marked bulging of the upper portion of the thorax the part below may seem by contrast to be contracted. But in the atrophic form of the disease no distension is seen at any part of the chest-wall, the whole surface being more or less sunken and contracted. Even in hypertrophic emphysema with distension of the thorax, when the disease has lasted a long time there may be some degree of wasting of the lung-tissue; but this condition does not constitute true atrophic emphysema, which is such from the beginning without any preceding stage of hypertrophy.

DIAGNOSIS.—The diagnosis of atrophic emphysema is to be made by the physical signs studied in connection with the conformation of the chest.

PROGNOSIS.—The prognosis of this affection is hopeless as regards a cure, since the organic change is due to the degeneration of age; yet the disease may continue for years without materially or at all affecting the duration of life.

TREATMENT.—The atrophied lungs can never be restored to their integrity; treatment is therefore limited to the use of tonics and nutriment in order to hold in check the process of waste; and to the relief of bronchial catarrh, which is apt to be attended with profuse purulent secretion. The agents best suited to these two purposes have already been considered.


Interlobular or extra-vesicular emphysema is, as has been previously stated, an affection differing anatomically and pathologically from the form of disease already described. In the vesicular form air is present where it normally belongs, but in undue amount; in the interlobular form it is present where it ought not to be—that is, in the meshes of the connective tissue between the lobules, beneath the pleura, and around the bronchial tubes and pulmonary vessels. These situations may be reached by the air through a rupture of the vesicles, and thus in some cases vesicular may be associated with interlobular emphysema, the rupture having occurred from violent cough; or the emphysematous infiltration may be gaseous, as the result of gangrene occurring during life or of decomposition after death.

DIAGNOSIS.—The presence of air in the connective tissue of the lungs cannot be determined by any signs or symptoms; if, however, it should be discovered in the subcutaneous tissue of the neck, face, or chest, giving rise to puffiness and crackling of the integument, its presence in the areolar tissue of the lungs may be suspected, especially if there be coexisting vesicular emphysema, the air having passed into the mediastinum and thence into the tissue beneath the skin.

The existence of interlobular emphysema is not, in general, of serious significance, as the air commonly disappears from the subcutaneous tissue in a few days; whence it may be inferred that it likewise disappears from the connective tissue of the lung, the opening which had admitted it there having become closed. If present in large amount in the lung-substance, it may, however, increase the difficult breathing of an emphysematous subject by compressing a number of the air-vesicles. Or, again, if the interstitial emphysema be subpleural, the bulla may burst, and the air, escaping into the cavity of the chest, may occasion pneumothorax, or even hydro-pneumothorax, from the resulting inflammation. Such an occurrence is, however, very uncommon.

Even when the diagnosis of interlobular emphysema is established, no treatment is needed or practicable.

[p. 250]



DEFINITION.—The term atelectasis is derived from [Greek: atelês], incomplete, and [Greek: echtasis], expansion, and designates a condition in which the lung has failed to expand or has returned in part or throughout its whole extent to the state of non-expansion which is normal in foetal life. In the former case the state is one of congenital atelectasis, and is of course met with only in the new-born; in the latter it is acquired atelectasis, or collapse of the lung, a portion or portions of the organ which have once been expanded having the air excluded from their alveoli, so that these collapse and return to the pre-natal state. To this condition of acquired atelectasis the term apneumatosis, from [Greek: a] negative, and [Greek: pneumatôsis], filling with air, was applied by Fuchs in 1849, and it has since been adopted by Graily Hewitt.

HISTORY.—For a long time this affection was regarded as a peculiar form of pneumonia, for the reason that at post-mortem examinations patches of collapsed lung-tissue were found which appeared to have undergone solidification. Inasmuch as the condition was most frequently met with in young children, and the supposed solidification was often limited to certain lobules of the lung with intervening healthier spaces, it was described as the lobular pneumonia of children.

The secondary nature of the affection, and the fact that it is very generally preceded by bronchitis, and sometimes by catarrhal pneumonia, were pointed out by Barthez and Rilliet in 1838. Some other important distinctions between this affection and general or lobar pneumonia had been referred to by various writers, but it was not until 1844 that its true nature was satisfactorily elucidated by Bailly and Legendre, who showed, by blowing air into the lungs after death, that the lobules supposed to be hepatized were not really solidified by exudation, but had simply collapsed for want of air.

ETIOLOGY.—The congenital atelectasis of new-born children may be due to original feebleness, to protraction of labor interfering with the blood-supply through the cord, or to obstruction of the air-passages by mucus or other substances. In any case, it is the result of non-expansion of the chest, so that the lungs are not unfolded. This constitutes atelectasis in the strict sense.

Acquired atelectasis, apneumatosis or collapse of the lung, is an affection most frequent in early infancy, though not limited to that period of life, since bronchitis with defective innervation and great impairment of strength, the essential factors in the production of the disease, may occur at any period of life.

It is probably in almost every case secondary to bronchitis, and due to the occlusion of the smaller bronchi by the presence of mucus allowing the egress, but impeding the ingress, of air, so that the lobules to which they lead are gradually evacuated of air, and thus finally collapse.

Obstruction of a bronchial tube by a foreign body or by the pressure of a [p. 251] morbid growth within the lung may produce collapse of the lobules to which such tube leads, a smaller or larger part of the lung being involved in proportion to the size of the obstructed bronchus. Such cases are, however, very rare, and they more closely resemble the condition brought about by the pressure of a pleural effusion giving rise to the state of carnification, which is, in effect, an atelectasis involving the greater part or the whole of a lung, and not limited to certain lobules nor taking place lobule by lobule.

The principal cause of lobular collapse is no doubt bronchial catarrh, the action of which is aided by impairment of the general strength and of muscular respiratory power; for the natural elasticity of the lung-tissue would favor the exit and oppose the entrance of air unless it were counterbalanced by muscular action in inspiration. If, then, this inspiratory action is lessened, the requisite amount of air will not enter the alveoli, and that which they already contain will be in part driven out, and perhaps in part absorbed into the blood, by the pressure to which it is subjected. Deficient innervation and lower vital power are thus important elements in determining collapse, which is most common in very young infants or in those who, though somewhat older, have had their nutrition impaired by malhygienic influences or by other diseases.

The mechanism of the production of lobular collapse by the presence of mucus in the bronchial tubes has been well explained by the classical observations and experiments of Gairdner and of Hutchinson. They showed that the physical result of collapse is in part due to the force of expiration being greater than that of inspiration, and in part to the anatomical formation of the bronchial tree. As to the former of these causes, it was shown by the experiments of Hutchinson, already alluded to in the article on EMPHYSEMA, that the force of expiration capable of being applied for the overcoming of obstruction in the bronchial tubes is greater than that of inspiration—in opposition to the teaching of Laennec, who regarded the inspiratory as the greater force. Repeated efforts to clear the bronchial tubes of accumulated secretion by the forced expiration of coughing must therefore remove air from the alveoli in greater amount than it can be returned to them by inspiration, and so they must ultimately be evacuated of their contents and consequently collapse.

The second mechanical cause to which Gairdner refers is found in the shape of the bronchial tubes, which taper in size as they advance toward the air-cells. The mucus contained within a tube may in consequence of this shape act as a ball-valve, being displaced forward in the direction of the greater diameter by the expiratory efforts, thus allowing the exit of air, the entrance of which will be impeded because inspiratory action will at once close the valve. This valve-action of a plug of mucus is well illustrated and proved by the experiments of Mendelssohn and Traube. In one of these a shot was introduced into the left bronchus of a dog, and in two days the left lung was found collapsed and the right one in a state of supplementary emphysema. The collapsed lung was afterward distended by inflation. In a like manner pledgets of mucus may establish an air-pump action that will empty the cells to which the obstructed tubes lead and cause them to collapse. It is, moreover, not improbable that a portion of the contained air is absorbed by the blood-vessels, as is maintained by Fuchs.

As a predisposing cause age has a remarkable influence in producing atelectasis, the condition being much more frequent under five or six years of age than after that time. This is explained by two considerations: The first is the greater prevalence of catarrhal affections of the air-passages in young children than in other subjects; the second is the fact that the chest-walls in a child are more pliable and less firm and resistant than those of an adult, so that when the diaphragm descends in inspiration a portion of the chest-wall [p. 252] may sink in, and the lung immediately beneath such portion will not expand to meet the costal wall as it does in older persons. According to Graily Hewitt, the part at which the chest-wall is most depressed is "at the junction of the cartilages with the ribs, and the ribs which more especially exhibit this want of power to resist the atmospheric pressure are those just above and below the nipple, the fourth to the seventh inclusive."1

1 Reynolds's Syst. Med., vol. iii. p. 872.

The principal cause of collapse involving an entire lobe or the whole lung is the presence of liquid in the thorax in the form either of inflammatory serous effusion, empyema, or hydrothorax. The admission of air into the cavity of the chest by perforation of the lung or by a penetrating wound of the thorax may also lead to the same result by allowing atmospheric pressure on the lung. In such cases the lung may again expand on the absorption or withdrawal of the liquid or air, but it sometimes remains permanently compressed and carnified.

SYMPTOMS.—It is probable that atelectasis in very limited degree may exist without being discovered or suspected, the amount of lung involved being insufficient to interfere by its loss of function with respiration or to give rise to appreciable symptoms.

In congenital atelectasis the symptoms are obvious from the moment of birth, and all point to obstructed or imperfect respiration; but they vary in degree. Should expansion of the chest not take place at all, the heart, which at first may be felt feebly beating, will soon stop, and death will occur. In other cases, in which the atelectasis is not absolute, but yet expansion is not accomplished sufficiently for respiration to be kept up, the infant is more or less cyanotic, especially about the lips and face and at the extremities. The movements of the thorax are slight in degree, and the cry is weak and suppressed, and at last inaudible. In such cases death usually occurs in a few hours, but sometimes life is protracted for several days. The symptoms then are like those of acquired atelectasis or collapse of the lung.

In this condition—which, as already stated, is generally the result of bronchitis occurring in debilitated children—the symptoms show malaëration of the blood. Sometimes they are gradually developed, and sometimes they occur quite suddenly, according to the rapidity with which the collapse spreads through the lung and the number of lobules involved in it.

The signs of bronchitis are present before the occurrence of collapse, and are more or less mingled with those pointing to the collapsed state. The hurried respiration so often met with in bronchitis is increased by the collapse of any considerable numbers of lobules in the lung. The evidences of imperfect oxygenation of the blood, which in children are often apparent in bronchitis, are greatly augmented on the occurrence of collapse, the breathing becoming more rapid and oppressed, the working of the alæ nasi increased, and the dusky hue of the surface spreading and becoming deeper. The character of the respiration is modified in a very remarkable way, as pointed out by George A. Rees of London, in consequence of the pliable and yielding condition of the chest-walls in early childhood. When the upper part of the chest is elevated in inspiration and the diaphragm descends, the space thus produced cannot be filled by the lungs in consequence of their partially collapsed state; and for this reason the intercostal spaces and the lower end of the sternum are sunken by the atmospheric pressure at each inspiratory act. This character of breathing may also be observed in older subjects of collapse as regards the depression of the intercostal spaces, though in less degree than in children, in consequence of the greater rigidity of the thorax after childhood.

As collapse of the lung in very limited degree may be unattended with general symptoms, so likewise it may have no positive auscultatory signs. A [p. 253] moderately extensive tract of the lungs must be affected in order to produce these to an appreciable extent. This amount cannot be stated exactly, but, according to Gerhardt, it is from an eighth to a sixth of one lung.2

2 Ziemssen's Cyclop., vol. v. p. 332.

Dulness on percussion, varying in degree and extent with the number of affected lobules and their nearness to each other, is a very constant sign of collapse; but it must be kept in mind that if the collapsed lobules are disseminated or central the dulness may be hardly observable. Sometimes there is difficulty in detecting dulness, because from the bilateral character of the bronchitis the collapse of lobules may take place in about equal degree on both sides, so that one side cannot be contrasted with the other. Ordinarily, however, there is a difference in the degree of dulness between the two sides, because the affection is more extensive in one than in the other; and in general the loss of resonance over the collapsed lobules is determinable without comparison of the two sides. Not uncommonly, patches of dulness are found with intervals of comparatively clear resonance.

On auscultation the respiratory sounds are feeble or entirely absent in an area in which a number of adjacent lobules are involved together in collapse.

When a considerable part of a lobe is affected, bronchial breathing may sometimes be heard, but this is in general less marked than the degree of dulness and the amount of condensation would lead the examiner to expect, because the breathing is too feeble to give rise to the vibrations necessary for the production of this sign.

An important indication of lobular collapse is the rapidity with which the signs just described are developed; a part or parts of the lung which had been clear on percussion and normal in respiratory character becoming in a day, or sometimes in a few hours, dull and nearly silent to the ear. This very suddenness with which the physical signs are developed in a case of bronchitis or catarrhal pneumonia in a child points very plainly to the occurrence of collapse of the lung.

PATHOLOGY.—The pathological appearances in collapse of the lung vary according to the extent of tissue involved in the change, and also according to the cause which has induced it. In the disseminated lobular form which is due to bronchitis the collapsed portions are chiefly seen on the surface and at the margins of the lung, and they extend more deeply into the organ as it becomes more involved in the atelectatic condition. On the surface or on a section the collapsed patches are depressed somewhat below the surrounding parts and are of a darker hue, so that they are readily seen as dark-red or purplish spots surrounded by the lighter healthy tissue. The contrast is sometimes enhanced by the fact that the non-collapsed parts are even paler than natural from the vicarious emphysema that has been established in them.

The consistence of the affected part varies in different cases. If the change has occurred without previous congestion, the texture may be somewhat flaccid; but if there has been hyperæmia, the part will be leathery, non-crepitant, and resisting pressure. If no crepitation can be detected the part will sink in water from the complete expulsion of air from the affected lobules. A cut surface is smooth and does not present the granular appearance of a hepatized lung, nor can exudation-matter be pressed or scraped from it.

The collapsed lobules may be made to swell up and resume their normal appearance and rosy color by forcing air with a blowpipe into the bronchus leading to them. This is so generally true, at least, that it has been regarded as a certain test by which to discriminate between atelectasis and pneumonic consolidation when there may be a doubt at a post-mortem examination as to which condition exists. In general, the attempt to inflate will succeed when the air is directed into a collapsed lobule; but the test is of less value than it was once held to be because it has been shown, on the one hand, that lobules [p. 254] which have been collapsed for some time will not always expand under the inflating force, and, on the other, that in recent catarrhal pneumonia the alveoli may for a time still be inflated with air.

Meigs and Pepper, while stating that in general the results of the attempt to produce inflation are altogether different in the two conditions, yet hold, in accordance with Gairdner's teaching, that "partially pneumonic lung may be inflated when the affection is recent and combined, as it frequently is, with bronchitic collapse; while in the latter lesion—i.e. collapse of lobules—in its purest forms complete inflation is often very difficult or impossible after the collapsed state has been of some duration."3

3 Diseases of Children, p. 143, 4th ed.

Nevertheless, the test is of value when applied along with others; for, as stated by J. Lewis Smith, "the inflated pneumonic lung is more solid and resisting when pressed between the thumb and fingers than is the collapsed lung."4

4 Diseases of Children, p. 570, 5th ed.

The chief differences between the two conditions are—1st, the color, which in collapsed lobules is purplish or livid, and in pneumonia reddish-brown; 2d, the microscopic appearance, showing the alveoli filled with cell-proliferation in pneumonia and free from change in collapse; and 3d, the state of the adjacent pleura, which is inflamed and often covered with lymph in pneumonia, while it is entirely healthy in non-complicated collapse.

The bronchial tubes present the appearances met with in bronchitis, being more or less congested, showing a softened state of their lining membrane, and containing liquid mucous secretion and sometimes firmer pledgets which have caused the obstruction.

As regards changes in the heart, extensive atelectasis may prevent closure both of the foramen ovale and of the ductus arteriosus. From the obstruction to the flow of venous blood offered by the collapsed portions of the lungs the right ventricle may become so distended that a portion of its blood may still be forced through the ductus arteriosus, and another portion backward into the auricle and through the foramen ovale, so that both of these channels may be kept pervious.

DIAGNOSIS.—Congenital atelectasis, if complete, cannot be mistaken for any other condition occurring at birth, and is sufficiently denoted by the signs already described.

Imperfect expansion of the lungs continuing for some days after birth might suggest patency of the foramen ovale from the purplish hue of the surface common to both conditions. The expansion of the chest and the resonance that it yields on percussion in the cardiac affection will be sufficient to discriminate them except in those cases in which they exist together.

Acquired atelectasis or collapse of the lung may require to be distinguished from bronchitis, from pleural effusion, and from catarrhal pneumonia.

Even uncomplicated bronchitis is in children sometimes accompanied with so much dyspnoea as to cause apprehension that collapse of lobules has taken place, but the absence of percussion dulness, either diffused or in patches, will exclude the supposition.

From pleural effusion collapse of the lung may be distinguished by the fact that the dulness due to pleurisy is generally on one side only, that it is more intense and diffused than that of collapse, and that its line of demarcation may often be made to shift with the position of the patient.

Catarrhal pneumonia is in general distinguishable from collapse by the history, course, and symptoms of the disease, especially the sudden rise of temperature that belongs to pneumonia; as also by the auscultatory signs. The percussion dulness of pneumonia is more extensive than that of collapse, and is accompanied with bronchial breathing; whereas in collapse the respiratory sounds are feeble and mingled with moist râles.

[p. 255] PROGNOSIS.—In congenital atelectasis, if there be no expansion of the lungs within the first few minutes after birth, the prognosis is generally bad. In some apparently hopeless cases, however, the persistent employment of means tending to arouse the respiratory function, and especially of those acting through a reflex influence, is crowned with success. The prognosis varies according to the amount of unexpanded lung; for even when some respiratory efforts have been made, if the air enter only a limited extent of the lungs, the infant will drag on a feeble existence for perhaps a few days, and then perish from apnoea and exhaustion. When the lungs are once fully inflated the danger from congenital atelectasis is past.

In acquired collapse of the lung the prognosis is dependent both upon the number of lobules involved and upon the amount of strength possessed by the patient. A larger amount of disease may be recovered from if the nutrition and nervous system be not much depressed, while a smaller amount may prove fatal in less favorable conditions of the general system. Much also depends upon the extent and duration of the coexisting bronchitis, and the degree to which it has affected the constitutional powers.

TREATMENT.—In the treatment of congenital atelectasis the main endeavor must be directed to arousing the respiratory function; and this is best accomplished by means acting reflexively through the centres of respiration. Sprinkling the chest and back with cold water, the application of cold water to the spine by a sponge or by affusion, or the alternate use of cold and hot water in the same way, will often induce a deep inspiration by which the lungs will be unfolded and respiration perfectly established. If this be not fully accomplished, it is of the utmost importance that the child should be carefully watched as long as the atelectasis continues in any degree, and that the same means should be again resorted to when the failure of respiration is threatened. The temperature of the surface should be maintained by artificial heat and woollen wrappings, as a depression below the normal standard easily takes place, and serves to lower all the vital processes and increase the difficulty of keeping up respiration.

In acquired atelectasis treatment must to a great degree be directed to the superinducing bronchial catarrh. Counter-irritation of the chest may be practised with Stokes's liniment, which consists of equal parts of oil of turpentine, acetic acid, and camphor liniment, or with mustard poultices prepared with special reference to the sensitiveness of a child's skin by mixing the mustard with a double portion of flour or Indian-corn meal. With the same view, dry cups may sometimes be advantageously used.

Expectorants are serviceable by relieving the bronchitis, the best being the syrup or wine of ipecacuanha in the dose of 5 to 10 drops, or the muriate of ammonia in the dose of 1 to 3 grains in simple syrup or syrup of liquorice, every two or three hours.5 These agents may modify the inflammatory state of the bronchial mucous membrane, and thus prevent the extension of the collapse. If bronchial secretion be profuse, the question of the use of emetics becomes very important. When employed judiciously with reference to the real needs of the case, they may be eminently beneficial, acting partly by removing the accumulation in the bronchi which may have occasioned the [p. 256] collapse and may favor its further extension, and partly perhaps by the deep inspiration which precedes emesis serving to expand the collapsed lobules. It must be remembered, however, that there is always a tendency to failure of the vital powers in acquired atelectasis, and that this may be dangerously increased by emetics of a depressing character. The best for the purpose are alum, sulphate of zinc, and ipecacuanha. The repetition of the emetic must be determined by its effect on the breathing and on the patient's strength.

5 One of the following formula may be used:
Rx. Syr. ipecac. drachm i–ij;
  Syr. prun. virginian. drachm vj;
  Ammon. muriat. drachm ss;
  Aquæ, ounce j.    M.
Dose, teaspoonful for a child of three to six months.
Rx. Ammon. muriat. drachm ss–drachm j;
  Syr. glycyrrhiz.
Aquæ,        aa
ounce j.    M.
Dose, as above.

Tonics and supporting measures are always called for in the treatment of atelectasis, in view of the fact that the condition is essentially dependent on failure of constitutional strength. Milk, wine-whey, and animal broths are appropriate articles of food; alcoholic stimulants are generally required; and in emergencies, if sudden increase of prostration occur, the carbonate of ammonia in the dose of 1 or 2 grains may be given.

During the whole course of the malady such tonics as quinia or the compound tincture of cinchona or one of the soluble salts of iron may be administered.

Brown Induration of the Lungs.

DEFINITION.—Increased density of certain portions of the lungs, which are of a reddish color, with brown or yellowish-brown spots scattered throughout the indurated tissue.

SYNONYMS.—Pigment induration; Congestive carnification.

HISTORY.—This affection is a form of passive congestion of the lungs, in regard to which it is somewhat uncertain whether the morbid process is simply one of congestion or whether along with this an inflammatory element is likewise present. It is beyond question, however, that the changed condition of the lung is primarily and chiefly congestive, and that it originates from causes which produce congestion.

ETIOLOGY AND MORBID ANATOMY.—The etiology and morbid anatomy of this affection are so closely related that they are best considered together. The most important fact both in the etiology and pathology of brown induration of the lungs is that it is gradually brought about as the consequence of obstruction to the pulmonary circulation from disease of the mitral valve, either constrictive or regurgitant in character. Interference with the return of the blood to the left side of the heart is in this way produced, with consequent stasis in greater or less degree within the pulmonary capillaries.

The most marked changes observed in lungs which have undergone this form of congestion are that they do not collapse when the chest is opened, and that they are more compact and less elastic and crepitant than healthy lungs. On section they present a reddish color interspersed with spots of yellowish- or reddish-brown, which sometimes are of a very dark hue.

Microscopic examination shows an increased size of the capillaries of the lung, which seem to encroach upon the air-cells and thus lessen their capacity. Whether the walls of the alveoli have themselves undergone thickening is a question about which different opinions have been entertained. Rokitansky states that "when stasis has continued for a longer period the walls of the air-cells and the interstitial tissue become swollen, so that the former may become perfectly impermeable to air;"6 and although, in the passage quoted, he is writing of pulmonary congestion in general, and not of this form in particular, yet, as he is describing a stasis which has continued for some time, the observation would seem applicable to the affection under consideration.

6 Path. Anat., vol. iv. p. 59.

Wilson Fox affirms that he has found alveolar thickening in considerable tracts in this affection, with a distinct increase of fibrous tissue in the walls [p. 257]of the alveoli; but this change, he goes on to say, is not uniformly present, and in some places the alveoli are found filled with epithelial products like those of catarrhal pneumonia.

The true explanation of the condition is probably this: that, beginning as a passive congestion, such as might be expected to result from the mitral disease with which it is almost constantly associated, the affection afterward assumes an inflammatory condition of a low type with epithelial proliferation, and in some cases with thickening of the alveolar walls and the interlobular connective tissue. Passive hyperæmia is, however, always the basis of the disease. The brownish spots visible in a section are caused by the leakage of blood from the congested capillaries into the alveoli or interstitial tissue without the occurrence of any large extravasation. The blood thus exuded undergoes pigmentary change, with the production of hæmatoidin, the shades of color varying accordingly as the exudation has been recent or of longer duration.

The failure of the lungs to collapse is due to the encroachment of the dilated capillaries on the air-cells, and perhaps to the thickening of the cell-walls and the partial occupation of the cells themselves by epithelial products.

SYMPTOMS.—The general symptoms and the physical signs of this affection are of the same character as those that occur in other forms of pulmonary congestion. Dyspnoea is felt, especially on making exertion; and this may be attributable in part to the associated cardiac disease as well as to the condition of the lungs. Loss of resonance on percussion and feebleness of respiratory murmur are observable; and when the condensation is great bronchial breathing may be heard.

DIAGNOSIS.—It is evident that there is nothing in these signs distinctive of this particular form of congestion, which is, in fact, not diagnosticable with absolute certainty during life. The probability of its existence may, however, be inferred if along with the above symptoms and signs a presystolic or regurgitant mitral murmur is heard, showing constriction or incompetency of the mitral valve.

PROGNOSIS.—The prognosis of this affection is of course always unfavorable, because the condition depends upon mechanical disease of the heart of an incurable nature. Temporary improvement may, however, sometimes take place under proper treatment.

TREATMENT.—Such treatment must be used as serves to support the weakened heart and hold in check the tendency to dilatation. With this view digitalis or convallaria may be employed, with tonics and alcoholic or ammoniacal stimulants as occasion may require. Counter-irritation over the lungs may be used and expectorants may be given. If dyspnoea be urgent, the preparations of ether, such as Hoffman's anodyne, or the carbonate of ammonia, may be administered.

[p. 258]



Congestion and oedema of the lungs are often found together, but they are different morbid conditions, and each may occur independently of the other. It is best, however, to consider them in connection with each other.

DEFINITION.—By congestion of the lungs is meant an active or passive hyperæmia of the pulmonary vessels, which are surcharged with blood.

Oedema of the lungs signifies an effusion of fluid consisting mainly of the serum of the blood into the air-vesicles and, to some extent, into the pulmonary connective tissue. Congestion is at times the determining cause of oedema, but the latter condition may arise from causes not tending to produce the former.

HISTORY AND ETIOLOGY.—As pulmonary congestion and oedema are almost always secondary and dependent affections, their etiology is an essential part of their history, so that these subjects will be best considered together.

Active congestion of the lungs may result from any cause producing an increased afflux of blood to these organs, such as hypertrophy or functional over-action of the heart, or the sudden recession of the blood from the surface and perhaps from other internal organs, such as may take place under the influence of cold. Violent exercise, rapid walking up hill, or even mental excitement, may in some impressible subjects suffice to produce it.

Why vascular congestion should occur in a greater degree and more readily in the lungs than elsewhere from the effect of cold is sufficiently evident when it is considered that the pulmonary capillaries are not supported by surrounding tissue, as those of other parts are. And for the same reason the direct action upon them of cold air or of certain irritant gases, such as ammonia or chlorine, may suffice to cause an undue afflux of blood to them.

How far a neurotic influence exercised reflexively through the vaso-motor system may serve to produce active congestion has not yet been fully determined; but it is probable that the sudden pulmonary congestions which have been known to follow the drinking of a large quantity of cold water when the body is heated may be attributed to such an action.

Passive congestion may be occasioned by a retardation of the blood-flow from the lungs; as, for example, by a hindrance to its onward passage through the left chambers of the heart in consequence of obstructive valvular disease, especially a great degree of mitral or aortic stenosis. So also mitral or aortic incompetency, by allowing the blood to be crowded backward in the pulmonary veins, may interfere with its passage through the lungs, and in this way set up passive hyperæmia.

By some writers mere weakness of the heart is spoken of as a cause of [p. 259] passive congestion of the lungs; but it can hardly be regarded as such apart from influences affecting the blood itself or the tonicity of the pulmonary vessels; for it is to be considered that while weakness of the left chambers of the heart might impede the onward course of the blood received from the lungs, yet at the same time the right chambers, if weakened in a corresponding degree, would send less blood into those organs, and then the conditions of passive hyperæmia would not exist. It is well known, moreover, that cardiac weakness coming on suddenly as in syncope, or gradually as in various asthenic diseases, may be present without the occurrence of any signs of pulmonary congestion. Yet it is not impossible that there may be a disturbance of the balance between the actions of the right and left sides of the heart, and that thus passive congestion of the lungs may result from a relatively greater weakness on the left than on the right side of the heart, so that the left auricle and the pulmonary veins may be obstructed, and backward pressure produced while the right ventricle is still sending blood into the lungs.

It is probable, however, that, in addition to the propulsive power exercised on the blood by the contraction of the heart, another agency affecting its passage through the lungs is the interchange of gases in respiration; and therefore any interference with the reception of oxygen and the elimination of carbonic dioxide may tend to retard the blood-flow, and thus favor stasis or passive congestion. In this way the inhalation of impure air, especially air containing an undue amount of carbonic dioxide, may occasion passive hyperæmia.

Pulmonary oedema is never a primary affection, but is always due to some preceding disease. In the first place, it may, as already stated, take its origin directly from congestion of the lungs, the walls of the obstructed vessels allowing the transudation of serum, which will collect in the air-cells and connective tissue and also in the mucous membrane of the terminal bronchi. In an early stage it may be present in the walls only of the alveoli without being effused into their cavities.

Another cause of pulmonary oedema is obstruction of the circulation of a part of a lung, such as may take place in pneumonia or miliary tuberculosis, the vessels of other parts becoming distended by backward pressure, so that the serum of the blood will exude into the air-cells or interstitial tissue. When this occurs in pneumonia it may be a most alarming and dangerous complication.

Still another and very frequent cause of pulmonary oedema is Bright's disease in its different forms, in which the oedema occurs as a part of the general dropsy incident to these affections. In acute congestive nephritis it may come on very rapidly, constituting acute pulmonary oedema. Hertz remarks that an acute oedema may take place in the course of an acute nephritis, as has been reported by Lebert, but that such an occurrence is not frequent.1 The writer of this article has himself seen several cases of acute pulmonary oedema occurring as a part of the dropsy of scarlet fever.

1 Ziemssen's Cyclop., v. p. 279.

More frequently it is met with in chronic albuminuria, and varies in amount from time to time, as dropsical effusions elsewhere do in this condition.

Attacks of asthmatic dyspnoea are not uncommon in the course of Bright's disease, especially in cases of chronic contracted kidney. They are described as uræmic asthma, and are referred by some writers to the action of the depraved blood on the centres of respiration. This explanation may be correct in some cases, but it seems likely that they are due in part to dropsical oedema of the bronchial mucous membrane, the connective tissue, or the air-cells. A weakened condition of the heart, such as is apt to occur [p. 260]in advanced periods of Bright's disease, has probably some share in determining the oedema.

In any case of oedema, according to its situation, whether it is in the connective tissue, the bronchial mucous membrane, or the air-cells, and according also to the amount in which it is effused, it will interfere more or less with breathing. If there be interstitial infiltration with swelling of the bronchial mucous membrane, lessening the calibre of the tubes, there may be merely some embarrassment of respiration; but if the effusion invade any considerable number of the air-cells, urgent dyspnoea will be produced. Oedema is generally most abundant at the lower part of the lungs, and is not uncommonly associated with pleural effusion, the two conditions being due to the same cause; and then the interference with respiration is greater and more perilous.

SYMPTOMS.—It is possible that a slight degree of pulmonary congestion may exist when the circulation is hurried without the occurrence of any other symptoms except moderate acceleration of the breathing. Under such circumstances, however, the existence of congestion cannot be proved. When it is brought about in greater degree, either by over-action of the heart or sudden recession of blood from other parts, the earliest and most prominent symptoms are a sense of oppression in the chest and quickened, laborious respiration, which may rapidly increase until the dyspnoea becomes most urgent and distressing. The heart's action grows more hurried, the pulsations in the carotid and temporal arteries are strongly felt, and the face is deeply flushed. Cough is always present, at first dry in character and afterward accompanied with expectoration of frothy mucus, which may be tinged with blood or may be even mingled with a considerable amount of bright-red blood.

The different appearances of the expectoration are probably due to the fact that in some cases the distended pulmonary capillaries allow the transudation of blood-