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TRANSLATOR’S PREFACE

The present volume is a translation of the second edition of Pro-
fessor Planck’s WAERMESTRAHLUNG (1913). The profoundly original
ideas introduced by Planck in the endeavor to reconcile the electro-
magnetic theory of radiation with experimental facts have proven to be
of the greatest importance in many parts of physics. Probably no sin-
gle book since the appearance of Clerk Maxwell’s ELECTRICITY AND
MAGNETISM has had a deeper influence on the development of phys-
ical theories. The great majority of English-speaking physicists are,
of course, able to read the work in the language in which it was writ-
ten, but I believe that many will welcome the opportunity offered by a
translation to study the ideas set forth by Planck without the difficul-
ties that frequently arise in attempting to follow a new and somewhat
difficult line of reasoning in a foreign language.

Recent developments of physical theories have placed the quantum
of action in the foreground of interest. Questions regarding the bear-
ing of the quantum theory on the law of equipartition of energy, its
application to the theory of specific heats and to photoelectric effects,
attempts to form some concrete idea of the physical significance of the
quantum, that is, to devise a “model” for it, have created within the
last few years a large and ever increasing literature. Professor Planck
has, however, in this book confined himself exclusively to radiation phe-
nomena and it has seemed to me probable that a brief résumé of this
literature might prove useful to the reader who wishes to pursue the
subject further. I have, therefore, with Professor Planck’s permission,
given in an appendix a list of the most important papers on the sub-
jects treated of in this book and others closely related to them. I have
also added a short note on one or two derivations of formulse where the
treatment in the book seemed too brief or to present some difficulties.



TRANSLATOR’S PREFACE A

In preparing the translation I have been under obligation for advice
and helpful suggestions to several friends and colleagues and especially
to Professor A. W. Duff who has read the manuscript and the galley
proof.

MORTON MASIUS.
WORCESTER, MASS.,
February, 1914.



PREFACE TO SECOND EDITION

Recent advances in physical research have, on the whole, been fa-
vorable to the special theory outlined in this book, in particular to
the hypothesis of an elementary quantity of action. My radiation for-
mula especially has so far stood all tests satisfactorily, including even
the refined systematic measurements which have been carried out in
the Physikalisch-technische Reichsanstalt at Charlottenburg during the
last year. Probably the most direct support for the fundamental idea
of the hypothesis of quanta is supplied by the values of the elemen-
tary quanta of matter and electricity derived from it. When, twelve
years ago, I made my first calculation of the value of the elementary
electric charge and found it to be 4.69 - 10719 electrostatic units, the
value of this quantity deduced by J. J. Thomson from his ingenious
experiments on the condensation of water vapor on gas ions, namely
6.5- 1071 was quite generally regarded as the most reliable value. This
value exceeds the one given by me by 38 per cent. Meanwhile the
experimental methods, improved in an admirable way by the labors of
E. Rutherford, E. Regener, J. Perrin, R. A. Millikan, The Svedberg and
others, have without exception decided in favor of the value deduced
from the theory of radiation which lies between the values of Perrin
and Millikan.

To the two mutually independent confirmations mentioned, there
has been added, as a further strong support of the hypothesis of
quanta, the heat theorem which has been in the meantime announced
by W. Nernst, and which seems to point unmistakably to the fact that,
not only the processes of radiation, but also the molecular processes
take place in accordance with certain elementary quanta of a definite
finite magnitude. For the hypothesis of quanta as well as the heat
theorem of Nernst may be reduced to the simple proposition that the
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thermodynamic probability (Sec. 120) of a physical state is a definite
integral number, or, what amounts to the same thing, that the entropy
of a state has a quite definite, positive value, which, as a minimum,
becomes zero, while in contrast therewith the entropy may, according
to the classical thermodynamics, decrease without limit to minus in-
finity. For the present, I would consider this proposition as the very
quintessence of the hypothesis of quanta.

In spite of the satisfactory agreement of the results mentioned with
one another as well as with experiment, the ideas from which they orig-
inated have met with wide interest but, so far as I am able to judge,
with little general acceptance, the reason probably being that the hy-
pothesis of quanta has not as yet been satisfactorily completed. While
many physicists, through conservatism, reject the ideas developed by
me, or, at any rate, maintain an expectant attitude, a few authors have
attacked them for the opposite reason, namely, as being inadequate,
and have felt compelled to supplement them by assumptions of a still
more radical nature, for example, by the assumption that any radiant
energy whatever, even though it travel freely in a vacuum, consists of
indivisible quanta or cells. Since nothing probably is a greater drawback
to the successful development of a new hypothesis than overstepping
its boundaries, I have always stood for making as close a connection
between the hypothesis of quanta and the classical dynamics as possi-
ble, and for not stepping outside of the boundaries of the latter until
the experimental facts leave no other course open. I have attempted to
keep to this standpoint in the revision of this treatise necessary for a
new edition.

The main fault of the original treatment was that it began with
the classical electrodynamical laws of emission and absorption, whereas
later on it became evident that, in order to meet the demand of exper-
imental measurements, the assumption of finite energy elements must
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be introduced, an assumption which is in direct contradiction to the
fundamental ideas of classical electrodynamics. It is true that this in-
consistency is greatly reduced by the fact that, in reality, only mean
values of energy are taken from classical electrodynamics, while, for the
statistical calculation, the real values are used; nevertheless the treat-
ment must, on the whole, have left the reader with the unsatisfactory
feeling that it was not clearly to be seen, which of the assumptions
made in the beginning could, and which could not, be finally retained.

In contrast thereto I have now attempted to treat the subject from
the very outset in such a way that none of the laws stated need, later
on, be restricted or modified. This presents the advantage that the the-
ory, so far as it is treated here, shows no contradiction in itself, though
certainly I do not mean that it does not seem to call for improvements
in many respects, as regards both its internal structure and its exter-
nal form. To treat of the numerous applications, many of them very
important, which the hypothesis of quanta has already found in other
parts of physics, I have not regarded as part of my task, still less to
discuss all differing opinions.

Thus, while the new edition of this book may not claim to bring the
theory of heat radiation to a conclusion that is satisfactory in all re-
spects, this deficiency will not be of decisive importance in judging the
theory. For any one who would make his attitude concerning the hy-
pothesis of quanta depend on whether the significance of the quantum
of action for the elementary physical processes is made clear in every
respect or may be demonstrated by some simple dynamical model, mis-
understands, I believe, the character and the meaning of the hypothesis
of quanta. It is impossible to express a really new principle in terms of
a model following old laws. And, as regards the final formulation of the
hypothesis, we should not forget that, from the classical point of view,
the physics of the atom really has always remained a very obscure, inac-
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cessible region, into which the introduction of the elementary quantum
of action promises to throw some light.

Hence it follows from the nature of the case that it will require
painstaking experimental and theoretical work for many years to come
to make gradual advances in the new field. Any one who, at present,
devotes his efforts to the hypothesis of quanta, must, for the time being,
be content with the knowledge that the fruits of the labor spent will
probably be gathered by a future generation.

THE AUTHOR.
BERLIN,
November, 1912.



PREFACE TO FIRST EDITION

In this book the main contents of the lectures which I gave at the
University of Berlin during the winter semester 1906-07 are presented.
My original intention was merely to put together in a connected ac-
count the results of my own investigations, begun ten years ago, on the
theory of heat radiation; it soon became evident, however, that it was
desirable to include also the foundation of this theory in the treatment,
starting with Kirchhoff’s Law on emitting and absorbing power; and so
I attempted to write a treatise which should also be capable of serving
as an introduction to the study of the entire theory of radiant heat on
a consistent thermodynamic basis. Accordingly the treatment starts
from the simple known experimental laws of optics and advances, by
gradual extension and by the addition of the results of electrodynamics
and thermodynamics, to the problems of the spectral distribution of en-
ergy and of irreversibility. In doing this I have deviated frequently from
the customary methods of treatment, wherever the matter presented or
considerations regarding the form of presentation seemed to call for it,
especially in deriving Kirchhoff’s laws, in calculating Maxwell’s radia-
tion pressure, in deriving Wien’s displacement law, and in generalizing
it for radiations of any spectral distribution of energy whatever.

I have at the proper place introduced the results of my own inves-
tigations into the treatment. A list of these has been added at the end
of the book to facilitate comparison and examination as regards special
details.

I wish, however, to emphasize here what has been stated more fully
in the last paragraph of this book, namely, that the theory thus devel-
oped does not by any means claim to be perfect or complete, although I
believe that it points out a possible way of accounting for the processes
of radiant energy from the same point of view as for the processes of
molecular motion.
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PART 1
FUNDAMENTAL FACTS AND DEFINITIONS



RADIATION OF HEAT

CHAPTER I
GENERAL INTRODUCTION

1. Heat may be propagated in a stationary medium in two entirely
different ways, namely, by conduction and by radiation. Conduction
of heat depends on the temperature of the medium in which it takes
place, or more strictly speaking, on the non-uniform distribution of the
temperature in space, as measured by the temperature gradient. In a
region where the temperature of the medium is the same at all points
there is no trace of heat conduction.

Radiation of heat, however, is in itself entirely independent of the
temperature of the medium through which it passes. It is possible,
for example, to concentrate the solar rays at a focus by passing them
through a converging lens of ice, the latter remaining at a constant
temperature of 0°, and so to ignite an inflammable body. Generally
speaking, radiation is a far more complicated phenomenon than con-
duction of heat. The reason for this is that the state of the radiation
at a given instant and at a given point of the medium cannot be repre-
sented, as can the flow of heat by conduction, by a single vector (that
is, a single directed quantity). All heat rays which at a given instant
pass through the same point of the medium are perfectly independent
of one another, and in order to specify completely the state of the ra-
diation the intensity of radiation must be known in all the directions,
infinite in number, which pass through the point in question; for this
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purpose two opposite directions must be considered as distinct, because
the radiation in one of them is quite independent of the radiation in
the other.

2. Putting aside for the present any special theory of heat radiation,
we shall state for our further use a law supported by a large number
of experimental facts. This law is that, so far as their physical proper-
ties are concerned, heat rays are identical with light rays of the same
wave length. The term “heat radiation,” then, will be applied to all
physical phenomena of the same nature as light rays. Every light ray
is simultaneously a heat ray. We shall also, for the sake of brevity,
occasionally speak of the “color” of a heat ray in order to denote its
wave length or period. As a further consequence of this law we shall
apply to the radiation of heat all the well-known laws of experimental
optics, especially those of reflection and refraction, as well as those re-
lating to the propagation of light. Only the phenomena of diffraction,
so far at least as they take place in space of considerable dimensions,
we shall exclude on account of their rather complicated nature. We
are therefore obliged to introduce right at the start a certain restric-
tion with respect to the size of the parts of space to be considered.
Throughout the following discussion it will be assumed that the lin-
ear dimensions of all parts of space considered, as well as the radii of
curvature of all surfaces under consideration, are large compared with
the wave lengths of the rays considered. With this assumption we may;,
without appreciable error, entirely neglect the influence of diffraction
caused by the bounding surfaces, and everywhere apply the ordinary
laws of reflection and refraction of light. To sum up: We distinguish
once for all between two kinds of lengths of entirely different orders
of magnitude—dimensions of bodies and wave lengths. Moreover, even
the differentials of the former, i.e., elements of length, area and volume,
will be regarded as large compared with the corresponding powers of
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wave lengths. The greater, therefore, the wave length of the rays we
wish to consider, the larger must be the parts of space considered. But,
inasmuch as there is no other restriction on our choice of size of the
parts of space to be considered, this assumption will not give rise to
any particular difficulty.

3. Even more essential for the whole theory of heat radiation than
the distinction between large and small lengths, is the distinction be-
tween long and short intervals of time. For the definition of intensity
of a heat ray, as being the energy transmitted by the ray per unit time,
implies the assumption that the unit of time chosen is large compared
with the period of vibration corresponding to the color of the ray. If this
were not so, obviously the value of the intensity of the radiation would,
in general, depend upon the particular phase of vibration at which the
measurement of the energy of the ray was begun, and the intensity of a
ray of constant period and amplitude would not be independent of the
initial phase, unless by chance the unit of time were an integral multiple
of the period. To avoid this difficulty, we are obliged to postulate quite
generally that the unit of time, or rather that element of time used in
defining the intensity, even if it appear in the form of a differential,
must be large compared with the period of all colors contained in the
ray in question.

The last statement leads to an important conclusion as to radiation
of variable intensity. If, using an acoustic analogy, we speak of “beats”
in the case of intensities undergoing periodic changes, the “unit” of time
required for a definition of the instantaneous intensity of radiation must
necessarily be small compared with the period of the beats. Now, since
from the previous statement our unit must be large compared with a
period of vibration, it follows that the period of the beats must be large
compared with that of a vibration. Without this restriction it would be
impossible to distinguish properly between “beats” and simple “vibra-
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tions.” Similarly, in the general case of an arbitrarily variable intensity
of radiation, the vibrations must take place very rapidly as compared
with the relatively slower changes in intensity. These statements imply,
of course, a certain far-reaching restriction as to the generality of the
radiation phenomena to be considered.

It might be added that a very similar and equally essential restric-
tion is made in the kinetic theory of gases by dividing the motions of
a chemically simple gas into two classes: visible, coarse, or molar, and
invisible, fine, or molecular. For, since the velocity of a single molecule
is a perfectly unambiguous quantity, this distinction cannot be drawn
unless the assumption be made that the velocity-components of the
molecules contained in sufficiently small volumes have certain mean
values, independent of the size of the volumes. This in general need
not by any means be the case. If such a mean value, including the
value zero, does not exist, the distinction between motion of the gas as
a whole and random undirected heat motion cannot be made.

Turning now to the investigation of the laws in accordance with
which the phenomena of radiation take place in a medium supposed to
be at rest, the problem may be approached in two ways: We must either
select a certain point in space and investigate the different rays passing
through this one point as time goes on, or we must select one distinct
ray and inquire into its history, that is, into the way in which it was
created, propagated, and finally destroyed. For the following discussion,
it will be advisable to start with the second method of treatment and
to consider first the three processes just mentioned.

4. Emission.—The creation of a heat ray is generally denoted by
the word emission. According to the principle of the conservation of
energy, emission always takes place at the expense of other forms of
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energy (heat,! chemical or electric energy, etc.) and hence it follows
that only material particles, not geometrical volumes or surfaces, can
emit heat rays. It is true that for the sake of brevity we frequently
speak of the surface of a body as radiating heat to the surroundings,
but this form of expression does not imply that the surface actually
emits heat rays. Strictly speaking, the surface of a body never emits
rays, but rather it allows part of the rays coming from the interior to
pass through. The other part is reflected inward and according as the
fraction transmitted is larger or smaller the surface seems to emit more
or less intense radiations.

We shall now consider the interior of an emitting substance assumed
to be physically homogeneous, and in it we shall select any volume-
element dr of not too small size. Then the energy which is emitted by
radiation in unit time by all particles in this volume-element will be
proportional to d7. Should we attempt a closer analysis of the process
of emission and resolve it into its elements, we should undoubtedly meet
very complicated conditions, for then it would be necessary to consider
elements of space of such small size that it would no longer be admis-
sible to think of the substance as homogeneous, and we would have to
allow for the atomic constitution. Hence the finite quantity obtained
by dividing the radiation emitted by a volume-element dr by this ele-
ment d7 is to be considered only as a certain mean value. Nevertheless,
we shall as a rule be able to treat the phenomenon of emission as if all
points of the volume-element d7 took part in the emission in a uniform
manner, thereby greatly simplifying our calculation. Every point of dr
will then be the vertex of a pencil of rays diverging in all directions.
Such a pencil coming from one single point of course does not represent

'Here as in the following the German “Korperwérme” will be rendered simply
as “heat.” (Tr.)
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a finite amount of energy, because a finite amount is emitted only by a
finite though possibly small volume, not by a single point.

We shall next assume our substance to be isotropic. Hence the
radiation of the volume-element dr is emitted uniformly in all directions
of space. Draw a cone in an arbitrary direction, having any point of the
radiating element as vertex, and describe around the vertex as center
a sphere of unit radius. This sphere intersects the cone in what is
known as the solid angle of the cone, and from the isotropy of the
medium it follows that the radiation in any such conical element will
be proportional to its solid angle. This holds for cones of any size. If
we take the solid angle as infinitely small and of size d{2 we may speak
of the radiation emitted in a certain direction, but always in the sense
that for the emission of a finite amount of energy an infinite number of
directions are necessary and these form a finite solid angle.

5. The distribution of energy in the radiation is in general quite
arbitrary; that is, the different colors of a certain radiation may have
quite different intensities. The color of a ray in experimental physics is
usually denoted by its wave length, because this quantity is measured
directly. For the theoretical treatment, however, it is usually preferable
to use the frequency v instead, since the characteristic of color is not
so much the wave length, which changes from one medium to another,
as the frequency, which remains unchanged in a light or heat ray pass-
ing through stationary media. We shall, therefore, hereafter denote a
certain color by the corresponding value of v, and a certain interval of
color by the limits of the interval v and v/, where v/ > v. The radiation
lying in a certain interval of color divided by the magnitude v/ — v of
the interval, we shall call the mean radiation in the interval v to v/. We
shall then assume that if, keeping v constant, we take the interval v/ —v
sufficiently small and denote it by dv the value of the mean radiation
approaches a definite limiting value, independent of the size of dv, and



FUNDAMENTAL FACTS AND DEFINITIONS 8

this we shall briefly call the “radiation of frequency v.” To produce
a finite intensity of radiation, the frequency interval, though perhaps
small, must also be finite.

We have finally to allow for the polarization of the emitted radiation.
Since the medium was assumed to be isotropic the emitted rays are
unpolarized. Hence every ray has just twice the intensity of one of its
plane polarized components, which could, e.g., be obtained by passing
the ray through a Nicol’s prism.

6. Summing up everything said so far, we may equate the total
energy in a range of frequency from v to v 4 dv emitted in the time dt
in the direction of the conical element df2 by a volume-element dr to

dt -dr-dQ - dv - 2e,. (1)

The finite quantity €, is called the coefficient of emission of the medium
for the frequency v. It is a positive function of v and refers to a plane
polarized ray of definite color and direction. The total emission of the
volume-element dr may be obtained from this by integrating over all
directions and all frequencies. Since €, is independent of the direction,
and since the integral over all conical elements df is 47, we get:

dt - dr - 871'/ €, dv. (2)
0

7. The coefficient of emission ¢ depends, not only on the frequency v,
but also on the condition of the emitting substance contained in the
volume-element d7, and, generally speaking, in a very complicated way,
according to the physical and chemical processes which take place in the
elements of time and volume in question. But the empirical law that
the emission of any volume-element depends entirely on what takes
place inside of this element holds true in all cases (Prevost’s principle).
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A body A at 100° C. emits toward a body B at 0° C. exactly the same
amount of radiation as toward an equally large and similarly situated
body B’ at 1000° C. The fact that the body A is cooled by B and heated
by B’ is due entirely to the fact that B is a weaker, B’ a stronger emitter
than A.

We shall now introduce the further simplifying assumption that the
physical and chemical condition of the emitting substance depends on
but a single variable, namely, on its absolute temperature T'. A neces-
sary consequence of this is that the coefficient of emission e depends,
apart from the frequency v and the nature of the medium, only on the
temperature 1. The last statement excludes from our consideration a
number of radiation phenomena, such as fluorescence, phosphorescence,
electrical and chemical luminosity, to which E. Wiedemann has given
the common name “phenomena of luminescence.” We shall deal with
pure “temperature radiation” exclusively.

A special case of temperature radiation is the case of the chemi-
cal nature of the emitting substance being invariable. In this case the
emission takes place entirely at the expense of the heat of the body.
Nevertheless, it is possible, according to what has been said, to have
temperature radiation while chemical changes are taking place, pro-
vided the chemical condition is completely determined by the temper-
ature.

8. Propagation.—The propagation of the radiation in a medium
assumed to be homogeneous, isotropic, and at rest takes place in
straight lines and with the same velocity in all directions, diffraction
phenomena being entirely excluded. Yet, in general, each ray suffers
during its propagation a certain weakening, because a certain fraction
of its energy is continuously deviated from its original direction and
scattered in all directions. This phenomenon of “scattering,” which
means neither a creation nor a destruction of radiant energy but sim-
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ply a change in distribution, takes place, generally speaking, in all
media differing from an absolute vacuum, even in substances which
are perfectly pure chemically.! The cause of this is that no substance
is homogeneous in the absolute sense of the word. The smallest el-
ements of space always exhibit some discontinuities on account of
their atomic structure. Small impurities, as, for instance, particles of
dust, increase the influence of scattering without, however, appreciably
affecting its general character. Hence, so-called “turbid” media, i.e.,
such as contain foreign particles, may be quite properly regarded as
optically homogeneous,? provided only that the linear dimensions of
the foreign particles as well as the distances of neighboring particles
are sufficiently small compared with the wave lengths of the rays con-
sidered. As regards optical phenomena, then, there is no fundamental
distinction between chemically pure substances and the turbid media
just described. No space is optically void in the absolute sense except
a vacuum. Hence a chemically pure substance may be spoken of as a
vacuum made turbid by the presence of molecules.

A typical example of scattering is offered by the behavior of sun-
light in the atmosphere. When, with a clear sky, the sun stands in
the zenith, only about two-thirds of the direct radiation of the sun
reaches the surface of the earth. The remainder is intercepted by the
atmosphere, being partly absorbed and changed into heat of the air,
partly, however, scattered and changed into diffuse skylight. This phe-
nomenon is produced probably not so much by the particles suspended
in the atmosphere as by the air molecules themselves.

Whether the scattering depends on reflection, on diffraction, or on

1See, e.g., Lobry de Bruyn and L. K. Wolff, Rec. des Trav. Chim. des Pays-
Bas 23, p. 155, 1904.

2To restrict the word homogeneous to its absolute sense would mean that it
could not be applied to any material substance.
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a resonance effect on the molecules or particles is a point that we may
leave entirely aside. We only take account of the fact that every ray on
its path through any medium loses a certain fraction of its intensity.
For a very small distance, s, this fraction is proportional to s, say

Bys (3)

where the positive quantity (3, is independent of the intensity of radi-
ation and is called the “coefficient of scattering” of the medium. Inas-
much as the medium is assumed to be isotropic, 3, is also independent
of the direction of propagation and polarization of the ray. It depends,
however, as indicated by the subscript v, not only on the physical and
chemical constitution of the body but also to a very marked degree on
the frequency. For certain values of v, 5, may be so large that the
straight-line propagation of the rays is virtually destroyed. For other
values of v, however, 8, may become so small that the scattering can
be entirely neglected. For generality we shall assume a mean value
of 5,. In the cases of most importance (3, increases quite appreciably
as v increases, i.e., the scattering is noticeably larger for rays of shorter
wave length;! hence the blue color of diffuse skylight.

The scattered radiation energy is propagated from the place where
the scattering occurs in a way similar to that in which the emitted
energy is propagated from the place of emission, since it travels in
all directions in space. It does not, however, have the same intensity
in all directions, and moreover is polarized in some special directions,
depending to a large extent on the direction of the original ray. We
need not, however, enter into any further discussion of these questions.

9. While the phenomenon of scattering means a continuous modifi-
cation in the interior of the medium, a discontinuous change in both the

! Lord Rayleigh, Phil. Mag., 47, p. 379, 1899.
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direction and the intensity of a ray occurs when it reaches the boundary
of a medium and meets the surface of a second medium. The latter, like
the former, will be assumed to be homogeneous and isotropic. In this
case, the ray is in general partly reflected and partly transmitted. The
reflection and refraction may be “regular,” there being a single reflected
ray according to the simple law of reflection and a single transmitted
ray, according to Snell’s law of refraction, or, they may be “diffuse,”
which means that from the point of incidence on the surface the radi-
ation spreads out into the two media with intensities that are different
in different directions. We accordingly describe the surface of the sec-
ond medium as “smooth” or “rough” respectively. Diffuse reflection
occurring at a rough surface should be carefully distinguished from re-
flection at a smooth surface of a turbid medium. In both cases part of
the incident ray goes back to the first medium as diffuse radiation. But
in the first case the scattering occurs on the surface, in the second in
more or less thick layers entirely inside of the second medium.

10. When a smooth surface completely reflects all incident rays,
as is approximately the case with many metallic surfaces, it is termed
“reflecting.” When a rough surface reflects all incident rays completely
and uniformly in all directions, it is called “white.” The other extreme,
namely, complete transmission of all incident rays through the surface
never occurs with smooth surfaces, at least if the two contiguous media
are at all optically different. A rough surface having the property of
completely transmitting the incident radiation is described as “black.”

In addition to “black surfaces” the term “black body” is also used.
According to G. Kirchhoff! it denotes a body which has the property

L@. Kirchhoff, Pogg. Ann., 109, p. 275, 1860. Gesammelte Abhandlungen, J. A.
Barth, Leipzig, 1882, p. 573. In defining a black body Kirchhoff also assumes that
the absorption of incident rays takes place in a layer “infinitely thin.” We do not
include this in our definition.
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of allowing all incident rays to enter without surface reflection and
not allowing them to leave again. Hence it is seen that a black body
must satisfy three independent conditions. First, the body must have
a black surface in order to allow the incident rays to enter without
reflection. Since, in general, the properties of a surface depend on
both of the bodies which are in contact, this condition shows that the
property of blackness as applied to a body depends not only on the
nature of the body but also on that of the contiguous medium. A
body which is black relatively to air need not be so relatively to glass,
and wvice versa. Second, the black body must have a certain minimum
thickness depending on its absorbing power, in order to insure that the
rays after passing into the body shall not be able to leave it again at a
different point of the surface. The more absorbing a body is, the smaller
the value of this minimum thickness, while in the case of bodies with
vanishingly small absorbing power only a layer of infinite thickness may
be regarded as black. Third, the black body must have a vanishingly
small coefficient of scattering (Sec. 8). Otherwise the rays received by it
would be partly scattered in the interior and might leave again through
the surface.!

11. All the distinctions and definitions mentioned in the two pre-
ceding paragraphs refer to rays of one definite color only. It might very
well happen that, e.g., a surface which is rough for a certain kind of rays
must be regarded as smooth for a different kind of rays. It is readily
seen that, in general, a surface shows decreasing degrees of roughness
for increasing wave lengths. Now, since smooth non-reflecting surfaces
do not exist (Sec. 10), it follows that all approximately black surfaces

'For this point see especially A. Schuster, Astrophysical Journal, 21, p. 1, 1905,
who has pointed out that an infinite layer of gas with a black surface need by no
means be a black body.
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which may be realized in practice (lamp black, platinum black) show
appreciable reflection for rays of sufficiently long wave lengths.

12. Absorption.—Heat rays are destroyed by “absorption.” Ac-
cording to the principle of the conservation of energy the energy of heat
radiation is thereby changed into other forms of energy (heat, chem-
ical energy). Thus only material particles can absorb heat rays, not
elements of surfaces, although sometimes for the sake of brevity the
expression absorbing surfaces is used.

Whenever absorption takes place, the heat ray passing through the
medium under consideration is weakened by a certain fraction of its
intensity for every element of path traversed. For a sufficiently small
distance s this fraction is proportional to s, and may be written

Q,s. (4)

Here «,, is known as the “coefficient of absorption” of the medium for
a ray of frequency v. We assume this coefficient to be independent of
the intensity; it will, however, depend in general in non-homogeneous
and anisotropic media on the position of s and on the direction of
propagation and polarization of the ray (example: tourmaline). We
shall, however, consider only homogeneous isotropic substances, and
shall therefore suppose that «,, has the same value at all points and in all
directions in the medium, and depends on nothing but the frequency v,
the temperature T', and the nature of the medium.

Whenever «,, does not differ from zero except for a limited range
of the spectrum, the medium shows “selective” absorption. For those
colors for which a,, = 0 and also the coefficient of scattering 3, = 0 the
medium is described as perfectly “transparent” or “diathermanous.”
But the properties of selective absorption and of diathermancy may
for a given medium vary widely with the temperature. In general we
shall assume a mean value for «,. This implies that the absorption
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in a distance equal to a single wave length is very small, because the
distance s, while small, contains many wave lengths (Sec. 2).

13. The foregoing considerations regarding the emission, the propa-
gation, and the absorption of heat rays suffice for a mathematical treat-
ment of the radiation phenomena. The calculation requires a knowledge
of the value of the constants and the initial and boundary conditions,
and yields a full account of the changes the radiation undergoes in a
given time in one or more contiguous media of the kind stated, in-
cluding the temperature changes caused by it. The actual calculation
is usually very complicated. We shall, however, before entering upon
the treatment of special cases discuss the general radiation phenomena
from a different point of view, namely by fixing our attention not on a
definite ray, but on a definite position in space.

14. Let do be an arbitrarily chosen, infinitely small element of area
in the interior of a medium through which radiation passes. At a given
instant rays are passing through this element in many different direc-
tions. The energy radiated through it in an element of time dt in a
definite direction is proportional to the area do, the length of time dt,
and to the cosine of the angle # made by the normal of do with the
direction of the radiation. If we make do sufficiently small, then, al-
though this is only an approximation to the actual state of affairs, we
can think of all points in do as being affected by the radiation in the
same way. Then the energy radiated through do in a definite direction
must be proportional to the solid angle in which do intercepts that
radiation and this solid angle is measured by docosf. It is readily
seen that, when the direction of the element is varied relatively to the
direction of the radiation, the energy radiated through it vanishes when

g T
=3
Now in general a pencil of rays is propagated from every point of
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the element do in all directions, but with different intensities in differ-
ent directions, and any two pencils emanating from two points of the
element are identical save for differences of higher order. A single one
of these pencils coming from a single point does not represent a finite
quantity of energy, because a finite amount of energy is radiated only
through a finite area. This holds also for the passage of rays through
a so-called focus. For example, when sunlight passes through a con-
verging lens and is concentrated in the focal plane of the lens, the solar
rays do not converge to a single point, but each pencil of parallel rays
forms a separate focus and all these foci together constitute a surface
representing a small but finite image of the sun. A finite amount of
energy does not pass through less than a finite portion of this surface.

15. Let us now consider quite generally the pencil, which is prop-
agated from a point of the element do as vertex in all directions of
space and on both sides of do. A certain direction may be specified by
the angle 0 (between 0 and 7), as already used, and by an azimuth ¢
(between 0 and 27). The intensity in this direction is the energy prop-
agated in an infinitely thin cone limited by # and 6 + df and ¢ and
¢ + d¢. The solid angle of this cone is

dQ = sin - df - do. (5)

Thus the energy radiated in time dt through the element of area do in
the direction of the cone df2 is:

dtdo cosfdQ) K = K sinf cos0df dodo dt. (6)

The finite quantity K we shall term the “specific intensity” or the
“brightness,” df) the “solid angle” of the pencil emanating from a point
of the element do in the direction (0,¢). K is a positive function of
position, time, and the angles # and ¢. In general the specific intensi-
ties of radiation in different directions are entirely independent of one
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another. For example, on substituting = — 6 for § and © + ¢ for ¢
in the function K, we obtain the specific intensity of radiation in the
diametrically opposite direction, a quantity which in general is quite
different from the preceding one.

For the total radiation through the element of area do toward one
side, say the one on which # is an acute angle, we get, by integrating

™
with respect to ¢ from 0 to 27 and with respect to € from 0 to 5

27 5
/ dgb/ df K sin 6 cos 6 do dt.
0 0

Should the radiation be uniform in all directions and hence K be a
constant, the total radiation on one side will be

K do dt. (7)

16. In speaking of the radiation in a definite direction (6, ¢) one
should always keep in mind that the energy radiated in a cone is not
finite unless the angle of the cone is finite. No finite radiation of light
or heat takes place in one definite direction only, or expressing it differ-
ently, in nature there is no such thing as absolutely parallel light or an
absolutely plane wave front. From a pencil of rays called “parallel” a
finite amount of energy of radiation can only be obtained if the rays or
wave normals of the pencil diverge so as to form a finite though perhaps
exceedingly narrow cone.

17. The specific intensity K of the whole energy radiated in a cer-
tain direction may be further divided into the intensities of the sepa-
rate rays belonging to the different regions of the spectrum which travel
independently of one another. Hence we consider the intensity of ra-
diation within a certain range of frequencies, say from v to /. If the
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interval v/ — v be taken sufficiently small and be denoted by dv, the
intensity of radiation within the interval is proportional to dv. Such
radiation is called homogeneous or monochromatic.

A last characteristic property of a ray of definite direction, intensity,
and color is its state of polarization. If we break up a ray, which is in any
state of polarization whatsoever and which travels in a definite direction
and has a definite frequency v, into two plane polarized components,
the sum of the intensities of the components will be just equal to the
intensity of the ray as a whole, independently of the direction of the
two planes, provided the two planes of polarization, which otherwise
may be taken at random, are at right angles to each other. If their
position be denoted by the azimuth v of one of the planes of vibration
(plane of the electric vector), then the two components of the intensity
may be written in the form

K, cos® 1 + K/ sin? ¢

8
and K, sin® ¢ + K/, cos® 1. ®)

Herein K is independent of ¢). These expressions we shall call the “com-
ponents of the specific intensity of radiation of frequency v.” The sum
is independent of ¢ and is always equal to the intensity of the whole ray
K, +K!. At the same time K, and K/, represent respectively the largest
and smallest values which either of the components may have, namely,
when ¢ = 0 and ¢ = T Hence we call these values the “principal

values of the intensities,” or the “principal intensities,” and the corre-

sponding planes of vibration we call the “principal planes of vibration”
of the ray. Of course both, in general, vary with the time. Thus we
may write generally

K=/0°°dv<+<y++<;> (9)
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where the positive quantities K, and K/, the two principal values of the
specific intensity of the radiation (brightness) of frequency v, depend
not only on v but also on their position, the time, and on the angles
0 and ¢. By substitution in (6) the energy radiated in the time dt
through the element of area do in the direction of the conical element df2
assumes the value

dtdacos@dQ/ dv (K, + K) (10)
0

and for monochromatic plane polarized radiation of brightness K, :
dt do cos 0 dQAK, dv = dt do sin 0 cos 0 df dp K,, dv. (11)

For unpolarized rays K, = K/,, and hence

K = 2/ dvK,, (12)
0

and the energy of a monochromatic ray of frequency v will be:
2dtdocos0dQK, dv = 2dtdosinf cosfdf dp K, dv. (13)

When, moreover, the radiation is uniformly distributed in all directions,
the total radiation through do toward one side may be found from
(7) and (12); it is

21 do dt/ K, dv. (14)
0

18. Since in nature K, can never be infinitely large, K will not have a
finite value unless K, differs from zero over a finite range of frequencies.
Hence there exists in nature no absolutely homogeneous or monochro-
matic radiation of light or heat. A finite amount of radiation contains
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always a finite although possibly very narrow range of the spectrum.
This implies a fundamental difference from the corresponding phenom-
ena of acoustics, where a finite intensity of sound may correspond to
a single definite frequency. This difference is, among other things, the
cause of the fact that the second law of thermodynamics has an impor-
tant bearing on light and heat rays, but not on sound waves. This will
be further discussed later on.

19. From equation (9) it is seen that the quantity K,, the intensity
of radiation of frequency v, and the quantity K, the intensity of ra-
diation of the whole spectrum, are of different dimensions. Further it
is to be noticed that, on subdividing the spectrum according to wave
lengths A, instead of frequencies v, the intensity of radiation F) of the
wave lengths A\ corresponding to the frequency v is not obtained simply
by replacing v in the expression for K, by the corresponding value of A
deduced from

V= (15)

where ¢ is the velocity of propagation. For if d\ and dv refer to the same
interval of the spectrum, we have, not £\ = K,, but E)\ d\ = K, dv. By
differentiating (15) and paying attention to the signs of corresponding
values of d\ and dv the equation

qdX
v ="

is obtained. Hence we get by substitution:

qK,
E\ = VR

(16)

This relation shows among other things that in a certain spectrum the
maxima of E) and K, lie at different points of the spectrum.
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20. When the principal intensities K,, and K/, of all monochromatic
rays are given at all points of the medium and for all directions, the state
of radiation is known in all respects and all questions regarding it may
be answered. We shall show this by one or two applications to special
cases. Let us first find the amount of energy which is radiated through
any element of area do toward any other element do’. The distance r
between the two elements may be thought of as large compared with
the linear dimensions of the elements do and do’ but still so small that
no appreciable amount of radiation is absorbed or scattered along it.
This condition is, of course, superfluous for diathermanous media.

From any definite point of do rays pass to all points of do’. These
rays form a cone whose vertex lies in do and whose solid angle is

/ !/
g6 — do Cjﬂsg(n ,T)
where n’ denotes the normal of do’ and the angle (n’,r) is to be taken
as an acute angle. This value of df2 is, neglecting small quantities of
higher order, independent of the particular position of the vertex of the
cone on do.

If we further denote the normal to do by n the angle 6 of (14) will be
the angle (n,r) and hence from expression (6) the energy of radiation
required is found to be:

do do' cos(n, r) cos(n’, )

K - dt. (17)

72

For monochromatic plane polarized radiation of frequency v the energy
will be, according to equation (11),

do do’ cos(n, r) cos(n’, r)
’ 2

K, dv - dt. (18)

r
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The relative size of the two elements do and do’ may have any value
whatever. They may be assumed to be of the same or of a different
order of magnitude, provided the condition remains satisfied that r is
large compared with the linear dimensions of each of them. If we choose
do small compared with do’, the rays diverge from do to do’, whereas
they converge from do to do’ if we choose do large compared with do’.

21. Since every point of do is the vertex of a cone spreading out
toward do’, the whole pencil of rays here considered, which is defined by
do and do’, consists of a double infinity of point pencils or of a fourfold
infinity of rays which must all be considered equally for the energy
radiation. Similarly the pencil of rays may be thought of as consisting
of the cones which, emanating from all points of do, converge in one
point of do’ respectively as a vertex. If we now imagine the whole
pencil of rays to be cut by a plane at any arbitrary distance from the
elements do and do’ and lying either between them or outside, then
the cross-sections of any two point pencils on this plane will not be
identical, not even approximately. In general they will partly overlap
and partly lie outside of each other, the amount of overlapping being
different for different intersecting planes. Hence it follows that there is
no definite cross-section of the pencil of rays so far as the uniformity
of radiation is concerned. If, however, the intersecting plane coincides
with either do or do’, then the pencil has a definite cross-section. Thus
these two planes show an exceptional property. We shall call them the
two “focal planes” of the pencil.

In the special case already mentioned above, namely, when one of
the two focal planes is infinitely small compared with the other, the
whole pencil of rays shows the character of a point pencil inasmuch as its
form is approximately that of a cone having its vertex in that focal plane
which is small compared with the other. In that case the “cross-section”
of the whole pencil at a definite point has a definite meaning. Such a
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pencil of rays, which is similar to a cone, we shall call an elementary
pencil, and the small focal plane we shall call the first focal plane of the
elementary pencil. The radiation may be either converging toward the
first focal plane or diverging from the first focal plane. All the pencils of
rays passing through a medium may be considered as consisting of such
elementary pencils, and hence we may base our future considerations
on elementary pencils only, which is a great convenience, owing to their
simple nature.

As quantities necessary to define an elementary pencil with a given
first focal plane do, we may choose not the second focal plane do’ but
the magnitude of that solid angle d€) under which do’ is seen from do.
On the other hand, in the case of an arbitrary pencil, that is, when
the two focal planes are of the same order of magnitude, the second
focal plane in general cannot be replaced by the solid angle d$2 without
the pencil changing markedly in character. For if, instead of do’ being
given, the magnitude and direction of df), to be taken as constant for
all points of do, is given, then the rays emanating from do do not any
longer form the original pencil, but rather an elementary pencil whose
first focal plane is do and whose second focal plane lies at an infinite
distance.

22. Since the energy radiation is propagated in the medium with
a finite velocity ¢, there must be in a finite space a finite amount of
energy. We shall therefore speak of the “space density of radiation,”
meaning thereby the ratio of the total quantity of energy of radiation
contained in a volume-element to the magnitude of the latter. Let us
now calculate the space density of radiation u at any arbitrary point of
the medium. When we consider an infinitely small element of volume v
at the point in question, having any shape whatsoever, we must allow
for all rays passing through the volume-element v. For this purpose we
shall construct about any point O of v as center a sphere of radius r,
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%
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Fig. 1.

r being large compared with the linear dimensions of v but still so small
that no appreciable absorption or scattering of the radiation takes place
in the distance r (Fig. 1). Every ray which reaches v must then come
from some point on the surface of the sphere. If, then, we at first
consider only all the rays that come from the points of an infinitely
small element of area do on the surface of the sphere, and reach v, and
then sum up for all elements of the spherical surface, we shall have
accounted for all rays and not taken any one more than once.

Let us then calculate first the amount of energy which is contributed
to the energy contained in v by the radiation sent from such an ele-
ment do to v. We choose do so that its linear dimensions are small
compared with those of v and consider the cone of rays which, starting
at a point of do, meets the volume v. This cone consists of an infi-
nite number of conical elements with the common vertex at P, a point
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of do, each cutting out of the volume v a certain element of length,

say s. The solid angle of such a conical element is 12 where f denotes

the area of cross-section normal to the axis of the cone at a distance r
from the vertex. The time required for the radiation to pass through
the distance s is:

s
T=-.
q
From expression (6) we may find the energy radiated through a certain
element of area. In the present case df! = = and ¢ = 0; hence the
r
energy is:
rdo LK =25 Ko (19)
r2 r2q

This energy enters the conical element in v and spreads out into the
volume fs. Summing up over all conical elements that start from do
and enter v we have

KdOZf Kda.

This represents the entire energy of radiation contained in the volume v,
so far as it is caused by radiation through the element do. In order to
obtain the total energy of radiation contained in v we must integrate
over all elements do contained in the surface of the sphere. Denoting

d
by df2 the solid angle —Z of a cone which has its center in O and

intersects in do the surface of the sphere, we get for the whole energy:

2/Kd(z.
q
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The volume density of radiation required is found from this by dividing
by v. It is

1
"= 5/Kd9. (20)

Since in this expression r has disappeared, we can think of K as the
intensity of radiation at the point O itself. In integrating, it is to be
noted that K in general depends on the direction (6, ¢). For radiation
that is uniform in all directions K is a constant and on integration we
get:

AT K
.

23. A meaning similar to that of the volume density of the total
radiation u is attached to the volume density of radiation of a definite
frequency u,. Summing up for all parts of the spectrum we get:

u

(21)

u:/ u, dv. (22)
0

Further by combining equations (9) and (20) we have:

1
b = / (K, + K. de2, (23)
q

and finally for unpolarized radiation uniformly distributed in all direc-
tions:

87K
u, = Z. 24
. (24)




CHAPTER II

RADIATION AT THERMODYNAMIC EQUILIBRIUM.
KIRCHHOFF’S LAW. BLACK RADIATION

24. We shall now apply the laws enunciated in the last chapter to
the special case of thermodynamic equilibrium, and hence we begin our
consideration by stating a certain consequence of the second principle
of thermodynamics: A system of bodies of arbitrary nature, shape, and
position which is at rest and is surrounded by a rigid cover impermeable
to heat will, no matter what its initial state may be, pass in the course
of time into a permanent state, in which the temperature of all bodies of
the system is the same. This is the state of thermodynamic equilibrium,
in which the entropy of the system has the maximum value compatible
with the total energy of the system as fixed by the initial conditions.
This state being reached, no further increase in entropy is possible.

In certain cases it may happen that, under the given conditions, the
entropy can assume not only one but several maxima, of which one is the
absolute one, the others having only a relative significance.® In these
cases every state corresponding to a maximum value of the entropy
represents a state of thermodynamic equilibrium of the system. But
only one of them, the one corresponding to the absolute maximum of
entropy, represents the absolutely stable equilibrium. All the others
are in a certain sense unstable, inasmuch as a suitable, however small,
disturbance may produce in the system a permanent change in the
equilibrium in the direction of the absolutely stable equilibrium. An
example of this is offered by supersaturated steam enclosed in a rigid

1See, e.g., M. Planck, Vorlesungen iiber Thermodynamik, Leipzig, Veit and
Comp., 1911 (or English Translation, Longmans Green & Co.), Secs. 165 and 189,
et seq.

27
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vessel or by any explosive substance. We shall also meet such unstable
equilibria in the case of radiation phenomena (Sec. 52).

25. We shall now, as in the previous chapter, assume that we are
dealing with homogeneous isotropic media whose condition depends
only on the temperature, and we shall inquire what laws the radiation
phenomena in them must obey in order to be consistent with the de-
duction from the second principle mentioned in the preceding section.
The means of answering this inquiry is supplied by the investigation of
the state of thermodynamic equilibrium of one or more of such media,
this investigation to be conducted by applying the conceptions and laws
established in the last chapter.

We shall begin with the simplest case, that of a single medium
extending very far in all directions of space, and, like all systems we
shall here consider, being surrounded by a rigid cover impermeable
to heat. For the present we shall assume that the medium has finite
coefficients of absorption, emission, and scattering.

Let us consider, first, points of the medium that are far away from
the surface. At such points the influence of the surface is, of course,
vanishingly small and from the homogeneity and the isotropy of the
medium it will follow that in a state of thermodynamic equilibrium the
radiation of heat has everywhere and in all directions the same prop-
erties. Then K,, the specific intensity of radiation of a plane polarized
ray of frequency v (Sec. 17), must be independent of the azimuth of
the plane of polarization as well as of position and direction of the ray.
Hence to each pencil of rays starting at an element of area do and
diverging within a conical element df) corresponds an exactly equal
pencil of opposite direction converging within the same conical element
toward the element of area.

Now the condition of thermodynamic equilibrium requires that the
temperature shall be everywhere the same and shall not vary in time.
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Therefore in any given arbitrary time just as much radiant heat must
be absorbed as is emitted in each volume-element of the medium. For
the heat of the body depends only on the heat radiation, since, on
account of the uniformity in temperature, no conduction of heat takes
place. This condition is not influenced by the phenomenon of scattering,
because scattering refers only to a change in direction of the energy
radiated, not to a creation or destruction of it. We shall, therefore,
calculate the energy emitted and absorbed in the time dt by a volume-
element v.
According to equation (2) the energy emitted has the value

dtv~87r/ €, dv
0

where €,, the coefficient of emission of the medium, depends only on
the frequency v and on the temperature in addition to the chemical
nature of the medium.

26. For the calculation of the energy absorbed we shall employ the
same reasoning as was illustrated by Fig. 1 (Sec. 22) and shall retain
the notation there used. The radiant energy absorbed by the volume-
element v in the time dt is found by considering the intensities of all the
rays passing through the element v and taking that fraction of each of
these rays which is absorbed in v. Now, according to (19), the conical
element that starts from do and cuts out of the volume v a part equal
to fs has the intensity (energy radiated per unit time)

i K

r2

or, according to (12), by considering the different parts of the spectrum

separately:
2do iz / K, dv.
= Jo
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Hence the intensity of a monochromatic ray is:
2do 12 K, dv.
r

The amount of energy of this ray absorbed in the distance s in the
time dt is, according to (4),

dt a,s2do éKV dv.
r

Hence the absorbed part of the energy of this small cone of rays, as
found by integrating over all frequencies, is:

dt2do —fj / a, K, dv.
T
0

When this expression is summed up over all the different cross-
sections f of the conical elements starting at do and passing through v,
it is evident that Y  fs = v, and when we sum up over all elements do
of the spherical surface of radius r we have

do

r2

= 4.

Thus for the total radiant energy absorbed in the time dt by the volume-
element v the following expression is found:

dtv87r/ a, K, dv. (25)
0

By equating the emitted and absorbed energy we obtain:

/eydu:/ o, K, dv.
0 0
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A similar relation may be obtained for the separate parts of the
spectrum. For the energy emitted and the energy absorbed in the state
of thermodynamic equilibrium are equal, not only for the entire radia-
tion of the whole spectrum, but also for each monochromatic radiation.
This is readily seen from the following. The magnitudes of €,, a,,
and K, are independent of position. Hence, if for any single color the
absorbed were not equal to the emitted energy, there would be every-
where in the whole medium a continuous increase or decrease of the
energy radiation of that particular color at the expense of the other
colors. This would be contradictory to the condition that K, for each
separate frequency does not change with the time. We have therefore
for each frequency the relation:

e, = o, K, or (26)
€

K, = <~ 2
& @)

i.e.: in the interior of a medium in a state of thermodynamic equilib-
rium the specific intensity of radiation of a certain frequency is equal
to the coefficient of emission divided by the coefficient of absorption of
the medium for this frequency.

27. Since €, and «, depend only on the nature of the medium, the
temperature, and the frequency v, the intensity of radiation of a definite
color in the state of thermodynamic equilibrium is completely defined
by the nature of the medium and the temperature. An exceptional case
is when «, = 0, that is, when the medium does not at all absorb the
color in question. Since K, cannot become infinitely large, a first con-
sequence of this is that in that case €, = 0 also, that is, a medium does
not emit any color which it does not absorb. A second consequence is
that if €, and «,, both vanish, equation (26) is satisfied by every value
of K,. In a medium which is diathermanous for a certain color thermo-
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dynamic equilibrium can exist for any intensity of radiation whatever
of that color.

This supplies an immediate illustration of the cases spoken of be-
fore (Sec. 24), where, for a given value of the total energy of a system
enclosed by a rigid cover impermeable to heat, several states of equilib-
rium can exist, corresponding to several relative maxima of the entropy.
That is to say, since the intensity of radiation of the particular color
in the state of thermodynamic equilibrium is quite independent of the
temperature of a medium which is diathermanous for this color, the
given total energy may be arbitrarily distributed between radiation of
that color and the heat of the body, without making thermodynamic
equilibrium impossible. Among all these distributions there is one par-
ticular one, corresponding to the absolute maximum of entropy, which
represents absolutely stable equilibrium. This one, unlike all the oth-
ers, which are in a certain sense unstable, has the property of not being
appreciably affected by a small disturbance. Indeed we shall see later
(Sec. 48) that among the infinite number of values, which the quotient

€y . . . .
— can have, if numerator and denominator both vanish, there exists
Qy

one particular one which depends in a definite way on the nature of the

medium, the frequency v, and the temperature. This distinct value of
the fraction is accordingly called the stable intensity of radiation K,,
in the medium, which at the temperature in question is diathermanous
for rays of the frequency v.

Everything that has just been said of a medium which is diather-
manous for a certain kind of rays holds true for an absolute vacuum,
which is a medium diathermanous for rays of all kinds, the only differ-
ence being that one cannot speak of the heat and the temperature of
an absolute vacuum in any definite sense.

For the present we again shall put the special case of diathermancy
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aside and assume that all the media considered have a finite coefficient
of absorption.

28. Let us now consider briefly the phenomenon of scattering at
thermodynamic equilibrium. Every ray meeting the volume-element v
suffers there, apart from absorption, a certain weakening of its inten-
sity because a certain fraction of its energy is diverted in different di-
rections. The value of the total energy of scattered radiation received
and diverted, in the time dt by the volume-element v in all directions,
may be calculated from expression (3) in exactly the same way as the
value of the absorbed energy was calculated in Sec. 26. Hence we get
an expression similar to (25), namely,

dtv8rm / B.K, dv. (28)
0

The question as to what becomes of this energy is readily answered. On
account of the isotropy of the medium, the energy scattered in v and
given by (28) is radiated uniformly in all directions just as in the case of
the energy entering v. Hence that part of the scattered energy received
in v which is radiated out in a cone of solid angle df2 is obtained by

s
multiplying the last expression by e This gives
T

2dtv dQ/ 6,K, dv,
0

and, for monochromatic plane polarized radiation,
dtvdQ B,K, dv. (29)

Here it must be carefully kept in mind that this uniformity of ra-
diation in all directions holds only for all rays striking the element v



FUNDAMENTAL FACTS AND DEFINITIONS 34

taken together; a single ray, even in an isotropic medium, is scattered
in different directions with different intensities and different directions
of polarization. (See end of Sec. 8.)

It is thus found that, when thermodynamic equilibrium of radiation
exists inside of the medium, the process of scattering produces, on
the whole, no effect. The radiation falling on a volume-element from
all sides and scattered from it in all directions behaves exactly as if
it had passed directly through the volume-element without the least
modification. Every ray loses by scattering just as much energy as it
regains by the scattering of other rays.

29. We shall now consider from a different point of view
do the radiation phenomena in the interior of a very extended
homogeneous isotropic medium which is in thermodynamic
equilibrium. That is to say, we shall confine our attention,
not to a definite volume-element, but to a definite pencil,
and in fact to an elementary pencil (Sec. 21). Let this
pencil be specified by the infinitely small focal plane do
at the point O (Fig. 2), perpendicular to the axis of the
pencil, and by the solid angle df2, and let the radiation
take place toward the focal plane in the direction of the
arrow. We shall consider exclusively rays which belong to
this pencil.

The energy of monochromatic plane polarized radiation
of the pencil considered passing in unit time through do
is represented, according to (11), since in this case dt = 1,
6 =0, by

do dQYK, dv. (30)

The same value holds for any other cross-section of the pencil. For
first, K, dv has everywhere the same magnitude (Sec. 25), and second,



RADIATION AT THERMODYNAMIC EQUILIBRIUM 35

the product of any right section of the pencil and the solid angle at
which the focal plane do is seen from this section has the constant
value do df), since the magnitude of the cross-section increases with
the distance from the vertex O of the pencil in the proportion in which
the solid angle decreases. Hence the radiation inside of the pencil takes
place just as if the medium were perfectly diathermanous.

On the other hand, the radiation is continuously modified along its
path by the effect of emission, absorption, and scattering. We shall
consider the magnitude of these effects separately.

30. Let a certain volume-element of the pencil be bounded by two
cross-sections at distances equal to ry (of arbitrary length) and ¢+ drg
respectively from the vertex O. The volume will be represented by
dro - r2 dQ. Tt emits in unit time toward the focal plane do at O a cer-
tain quantity E of energy of monochromatic plane polarized radiation.
E may be obtained from (1) by putting

dt =1, dT:dTOngQ, dQ) = —

and omitting the numerical factor 2. We thus get
E =dry-dQdoe,dv. (31)

Of the energy E, however, only a fraction Ej reaches O, since in
every infinitesimal element of distance s which it traverses before reach-
ing O the fraction («, + (,)s is lost by absorption and scattering. Let
E, represent that part of E which reaches a cross-section at a distance r
(< 19) from O. Then for a small distance s = dr we have

Er+dr — k.= Er(au + Bu) d?”,

or,

dE,
dr

- Er(au + /Bu)7
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and, by integration,
E, = EelavtB)(r=ro)

since, for r = rg, £, = FE is given by equation (31). From this, by
putting » = 0, the energy emitted by the volume-element at ry which
reaches O is found to be

Ey = Ee (vt — (o dQ do e, e (@50 gy, (32)

All volume-elements of the pencils combined produce by their emission
an amount of energy reaching do equal to

dQdo dve, / dirg e~ (v HBeIro = dQdo —*— v 6
0 v

31. If the scattering did not affect the radiation, the total energy
reaching do would necessarily consist of the quantities of energy emitted
by the different volume-elements of the pencil, allowance being made,
however, for the losses due to absorption on the way. For 8, = 0
expressions (33) and (30) are identical, as may be seen by comparison
with (27). Generally, however, (30) is larger than (33) because the
energy reaching do contains also some rays which were not at all emitted
from elements inside of the pencil, but somewhere else, and have entered
later on by scattering. In fact, the volume-elements of the pencil do
not merely scatter outward the radiation which is being transmitted
inside the pencil, but they also collect into the pencil rays coming from
without. The radiation E’ thus collected by the volume-element at rg
is found, by putting in (29),

(33)

dt =1, V:dTOerg, dQ) = —
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to be
E' = drqdQ do 5,K, dv.

This energy is to be added to the energy E emitted by the volume-
element, which we have calculated in (31). Thus for the total energy
contributed to the pencil in the volume-element at ry we find:

E+ E' =drqdQdo (e, + B,K,) dv.
The part of this reaching O is, similar to (32):
dro dQYdo (e, + B,K,) dv e ov+),

Making due allowance for emission and collection of scattered rays en-
tering on the way, as well as for losses by absorption and scattering, all
volume-elements of the pencil combined give for the energy ultimately
reaching do

e + BK,

dQYdo (e, + B.K,) d / dro e Tolevtby) — 4O dog LV
o (e, + B,K,) dv i o€ o P

dv,
and this expression is really exactly equal to that given by (30), as may
be seen by comparison with (26).

32. The laws just derived for the state of radiation of a homoge-
neous isotropic medium when it is in thermodynamic equilibrium hold,
so far as we have seen, only for parts of the medium which lie very far
away from the surface, because for such parts only may the radiation
be considered, by symmetry, as independent of position and direction.
A simple consideration, however, shows that the value of K,, which
was already calculated and given by (27), and which depends only on
the temperature and the nature of the medium, gives the correct value
of the intensity of radiation of the frequency considered for all direc-
tions up to points directly below the surface of the medium. For in
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the state of thermodynamic equilibrium every ray must have just the
same intensity as the one travelling in an exactly opposite direction,
since otherwise the radiation would cause a unidirectional transport of
energy. Consider then any ray coming from the surface of the medium
and directed inward; it must have the same intensity as the opposite
ray, coming from the interior. A further immediate consequence of this
is that the total state of radiation of the medium is the same on the
surface as in the interior.

33. While the radiation that starts from a surface element and is
directed toward the interior of the medium is in every respect equal to
that emanating from an equally large parallel element of area in the
interior, it nevertheless has a different history. That is to say, since
the surface of the medium was assumed to be impermeable to heat, it
is produced only by reflection at the surface of radiation coming from
the interior. So far as special details are concerned, this can happen in
very different ways, depending on whether the surface is assumed to be
smooth, i.e., in this case reflecting, or rough, e.g., white (Sec. 10). In
the first case there corresponds to each pencil which strikes the surface
another perfectly definite pencil, symmetrically situated and having
the same intensity, while in the second case every incident pencil is
broken up into an infinite number of reflected pencils, each having a
different direction, intensity, and polarization. While this is the case,
nevertheless the rays that strike a surface-element from all different
directions with the same intensity K, also produce, all taken together, a
uniform radiation of the same intensity K, directed toward the interior
of the medium.

34. Hereafter there will not be the slightest difficulty in dispensing
with the assumption made in Sec. 25 that the medium in question
extends very far in all directions. For after thermodynamic equilibrium
has been everywhere established in our medium, the equilibrium is,
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according to the results of the last paragraph, in no way disturbed,
if we assume any number of rigid surfaces impermeable to heat and
rough or smooth to be inserted in the medium. By means of these the
whole system is divided into an arbitrary number of perfectly closed
separate systems, each of which may be chosen as small as the general
restrictions stated in Sec. 2 permit. It follows from this that the value
of the specific intensity of radiation K, given in (27) remains valid for
the thermodynamic equilibrium of a substance enclosed in a space as
small as we please and of any shape whatever.

35. From the consideration of a system consisting of a single ho-
mogeneous isotropic substance we now pass on to the treatment of a
system consisting of two different homogeneous isotropic substances
contiguous to each other, the system being, as before, enclosed by a
rigid cover impermeable to heat. We consider the state of radiation
when thermodynamic equilibrium exists, at first, as before, with the
assumption that the media are of considerable extent. Since the equi-
librium is nowise disturbed, if we think of the surface separating the
two media as being replaced for an instant by an area entirely imper-
meable to heat radiation, the laws of the last paragraphs must hold
for each of the two substances separately. Let the specific intensity of
radiation of frequency v polarized in an arbitrary plane be K, in the
first substance (the upper one in Fig. 3), and K/, in the second, and, in
general, let all quantities referring to the second substance be indicated
by the addition of an accent. Both of the quantities K, and K!, depend,
according to equation (27), only on the temperature, the frequency v,
and the nature of the two substances, and these values of the intensities
of radiation hold up to very small distances from the bounding surface
of the substances, and hence are entirely independent of the properties
of this surface.

36. We shall now suppose, to begin with, that the bounding surface
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of the media is smooth (Sec. 9). Then every ray coming from the
first medium and falling on the bounding surface is divided into two
rays, the reflected and the transmitted ray. The directions of these
two rays vary with the angle of incidence and the color of the incident
ray; the intensity also varies with its polarization. Let us denote by p
(coefficient of reflection) the fraction of the energy reflected, then the
fraction transmitted is (1 — p), p depending on the angle of incidence,
the frequency, and the polarization of the incident ray. Similar remarks
apply to p’ the coefficient of reflection of a ray coming from the second
medium and falling on the bounding surface.

Now according to (11) we have for the monochromatic plane po-
larized radiation of frequency v, emitted in time dt toward the first
medium (in the direction of the feathered arrow upper left hand in
Fig. 3), from an element do of the bounding surface and contained in
the conical element df2,

dt do cos 0 dQ2K, dv, (34)

where

dQ = sin 0 df d¢. (35)

This energy is supplied by the two rays which come from the first and
the second medium and are respectively reflected from or transmitted
by the element do in the corresponding direction (the unfeathered ar-
rows). (Of the element do only the one point O is indicated.) The first
ray, according to the law of reflection, continues in the symmetrically
situated conical element df), the second in the conical element

dQ' = sin@' db’ d¢’ (36)
where, according to the law of refraction,

& = and sinf ¢

= =. 37
sinf ¢ (37)
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First Medium
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Second Medium
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Fic. 3.

If we now assume the radiation (34) to be polarized either in the
plane of incidence or at right angles thereto, the same will be true for
the two radiations of which it consists, and the radiation coming from
the first medium and reflected from do contributes the part

pdtdo cos0dQK, dv (38)

while the radiation coming from the second medium and transmitted
through do contributes the part

(1—p)dtdo cos@' dY K, dv. (39)

The quantities dt, do, v and dv are written without the accent, because
they have the same values in both media.
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By adding (38) and (39) and equating their sum to the expres-
sion (34) we find

p cosOdQK, + (1 — p')cos @' dQ K!, = cos 0 dQK,.

Now from (37) we have

cosfldfl  cos 0 do’
q q
and further by (35) and (36)

dS cos 0 ¢

dQ) cost = 5
q

Therefore we find .

pK, + (1 - p’)z—QKL =K

or

KI/ q2 _ 1— pl

K, ¢ 1—p

37. In the last equation the quantity on the left side is independent

of the angle of incidence # and of the particular kind of polarization;

hence the same must be true for the right side. Hence, whenever the

value of this quantity is known for a single angle of incidence and any

definite kind of polarization, this value will remain valid for all angles

of incidence and all kinds of polarization. Now in the special case when

the rays are polarized at right angles to the plane of incidence and strike

the bounding surface at the angle of polarization, p = 0, and p’ = 0.

The expression on the right side of the last equation then becomes 1;
hence it must always be 1 and we have the general relations:

p=/ (40)
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and
°K, = ¢*K.,. (41)

38. The first of these two relations, which states that the coefficient
of reflection of the bounding surface is the same on both sides, is a
special case of a general law of reciprocity first stated by Helmholtz.!
According to this law the loss of intensity which a ray of definite color
and polarization suffers on its way through any media by reflection,
refraction, absorption, and scattering is exactly equal to the loss suf-
fered by a ray of the same intensity, color, and polarization pursuing an
exactly opposite path. An immediate consequence of this law is that
the radiation striking the bounding surface of any two media is always
transmitted as well as reflected equally on both sides, for every color,
direction, and polarization.

39. The second formula (41) establishes a relation between the in-
tensities of radiation in the two media, for it states that, when ther-
modynamic equilibrium exists, the specific intensities of radiation of a
certain frequency in the two media are in the inverse ratio of the squares
of the velocities of propagation or in the direct ratio of the squares of
the indices of refraction.?

By substituting for K, its value from (27) we obtain the following
theorem: The quantity

7K, = ¢ (42)

v

LH. v. Helmholtz, Handbuch d. physiologischen Optik 1. Lieferung, Leipzig,
Leop. Voss, 1856, p. 169. See also Helmholtz, Vorlesungen iiber die Theorie der
Wiérme herausgegeben von F. Richarz, Leipzig, J. A. Barth, 1903, p. 161. The
restrictions of the law of reciprocity made there do not bear on our problems, since
we are concerned with temperature radiation only (Sec. 7).

2@. Kirchhoff, Gesammelte Abhandlungen, Leipzig, J. A. Barth, 1882, p. 594.
R. Clausius, Pogg. Ann. 121, p. 1, 1864.
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does not depend on the nature of the substance, and is, therefore, a
universal function of the temperature T' and the frequency v alone.

The great importance of this law lies evidently in the fact that it
states a property of radiation which is the same for all bodies in nature,
and which need be known only for a single arbitrarily chosen body, in
order to be stated quite generally for all bodies. We shall later on take
advantage of the opportunity offered by this statement in order actually
to calculate this universal function (Sec. 165).

40. We now consider the other case, that in which the bounding
surface of the two media is rough. This case is much more general than
the one previously treated, inasmuch as the energy of a pencil directed
from an element of the bounding surface into the first medium is no
longer supplied by two definite pencils, but by an arbitrary number,
which come from both media and strike the surface. Here the actual
conditions may be very complicated according to the peculiarities of
the bounding surface, which moreover may vary in any way from one
element to another. However, according to Sec. 35, the values of the
specific intensities of radiation K, and K/, remain always the same in
all directions in both media, just as in the case of a smooth bounding
surface. That this condition, necessary for thermodynamic equilibrium,
is satisfied is readily seen from Helmholtz’s law of reciprocity, according
to which, in the case of stationary radiation, for each ray striking the
bounding surface and diffusely reflected from it on both sides, there
is a corresponding ray at the same point, of the same intensity and
opposite direction, produced by the inverse process at the same point
on the bounding surface, namely by the gathering of diffusely incident
rays into a definite direction, just as is the case in the interior of each
of the two media.

41. We shall now further generalize the laws obtained. First, just
as in Sec. 34, the assumption made above, namely, that the two media
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extend to a great distance, may be abandoned since we may introduce
an arbitrary number of bounding surfaces without disturbing the ther-
modynamic equilibrium. Thereby we are placed in a position enabling
us to pass at once to the case of any number of substances of any size
and shape. For when a system consisting of an arbitrary number of
contiguous substances is in the state of thermodynamic equilibrium,
the equilibrium is in no way disturbed, if we assume one or more of
the surfaces of contact to be wholly or partly impermeable to heat.
Thereby we can always reduce the case of any number of substances
to that of two substances in an enclosure impermeable to heat, and,
therefore, the law may be stated quite generally, that, when any arbi-
trary system is in the state of thermodynamic equilibrium, the specific
intensity of radiation K, is determined in each separate substance by
the universal function (42).

42. We shall now consider a system in a state of thermodynamic
equilibrium, contained within an enclosure impermeable to heat and
consisting of n emitting and absorbing adjacent bodies of any size
and shape whatever. As in Sec. 36, we again confine our attention
to a monochromatic plane polarized pencil which proceeds from an el-
ement do of the bounding surface of the two media in the direction
toward the first medium (Fig. 3, feathered arrow) within the conical
element d€2. Then, as in (34), the energy supplied by the pencil in unit
time is

do cos0dQYK, dv = 1. (43)
This energy of radiation I consists of a part coming from the first
medium by regular or diffuse reflection at the bounding surface and of
a second part coming through the bounding surface from the second
medium. We shall, however, not stop at this mode of division, but shall
further subdivide I according to that one of the n media from which
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the separate parts of the radiation I have been emitted. This point
of view is distinctly different from the preceding, since, e.q., the rays
transmitted from the second medium through the bounding surface
into the pencil considered have not necessarily been emitted in the
second medium, but may, according to circumstances, have traversed
a long and very complicated path through different media and may
have undergone therein the effect of refraction, reflection, scattering,
and partial absorption any number of times. Similarly the rays of the
pencil, which coming from the first medium are reflected at do, were
not necessarily all emitted in the first medium. It may even happen
that a ray emitted from a certain medium, after passing on its way
through other media, returns to the original one and is there either
absorbed or emerges from this medium a second time.

We shall now, considering all these possibilities, denote that part
of I which has been emitted by volume-elements of the first medium
by I; no matter what paths the different constituents have pursued,
that which has been emitted by volume-elements of the second medium
by I, etc. Then since every part of I must have been emitted by an
element of some body, the following equation must hold,

I=L+L+I13+...1,. (44)

43. The most adequate method of acquiring more detailed informa-
tion as to the origin and the paths of the different rays of which the
radiations Iy, Iy, I3, ... I, consist, is to pursue the opposite course and
to inquire into the future fate of that pencil, which travels exactly in
the opposite direction to the pencil I and which therefore comes from
the first medium in the cone df2 and falls on the surface element do of
the second medium. For since every optical path may also be traversed
in the opposite direction, we may obtain by this consideration all paths
along which rays can pass into the pencil I, however complicated they



RADIATION AT THERMODYNAMIC EQUILIBRIUM 47

may otherwise be. Let J represent the intensity of this inverse pencil,
which is directed toward the bounding surface and is in the same state
of polarization. Then, according to Sec. 40,

J=1 (45)

At the bounding surface do the rays of the pencil J are partly
reflected and partly transmitted regularly or diffusely, and thereafter,
travelling in both media, are partly absorbed, partly scattered, partly
again reflected or transmitted to different media, etc., according to
the configuration of the system. But finally the whole pencil J after
splitting into many separate rays will be completely absorbed in the
n media. Let us denote that part of J which is finally absorbed in
the first medium by J;, that which is finally absorbed in the second
medium by Js, etc., then we shall have

J:J1—|—J2—|—J3++Jn

Now the volume-elements of the n media, in which the absorption
of the rays of the pencil J takes place, are precisely the same as those
in which takes place the emission of the rays constituting the pencil I,
the first one considered above. For, according to Helmholtz’s law of
reciprocity, no appreciable radiation of the pencil J can enter a volume-
element which contributes no appreciable radiation to the pencil I and
vice Versa.

Let us further keep in mind that the absorption of each volume-
element is, according to (42), proportional to its emission and that,
according to Helmholtz’s law of reciprocity, the decrease which the en-
ergy of a ray suffers on any path is always equal to the decrease suffered
by the energy of a ray pursuing the opposite path. It will then be clear
that the volume-elements considered absorb the rays of the pencil J in
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just the same ratio as they contribute by their emission to the energy
of the opposite pencil I. Since, moreover, the sum I of the energies
given off by emission by all volume-elements is equal to the sum J of
the energies absorbed by all elements, the quantity of energy absorbed
by each separate volume-element from the pencil J must be equal to
the quantity of energy emitted by the same element into the pencil 1.
In other words: the part of a pencil I which has been emitted from a
certain volume of any medium is equal to the part of the pencil J (= I)
oppositely directed, which is absorbed in the same volume.

Hence not only are the sums I and J equal, but their constituents
are also separately equal or

=0, Jo=1I, ... J,=1I,. (46)

44. Following G. Kirchhoff' we call the quantity I, i.e., the in-
tensity of the pencil emitted from the second medium into the first,
the emissive power E of the second medium, while we call the ratio of
Js to J, i.e., that fraction of a pencil incident on the second medium
which is absorbed in this medium, the absorbing power A of the second
medium. Therefore

E=1,(<1), A= (<) (47)

The quantities £ and A depend (a) on the nature of the two me-
dia, (b) on the temperature, the frequency v, and the direction and
the polarization of the radiation considered, (c) on the nature of the
bounding surface and on the magnitude of the surface element do and
that of the solid angle df2, (d) on the geometrical extent and the shape
of the total surface of the two media, (e) on the nature and form of all

L@. Kirchhoff, Gesammelte Abhandlungen, 1882, p. 574.
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other bodies of the system. For a ray may pass from the first into the
second medium, be partly transmitted by the latter, and then, after
reflection somewhere else, may return to the second medium and may
be there entirely absorbed.
With these assumptions, according to equations (46), (45), and (43),
Kirchhoff’s law holds,
E

4 =1 =do cos0dQK, dv, (48)

i.€., the ratio of the emissive power to the absorbing power of any body
is independent of the nature of the body. For this ratio is equal to
the intensity of the pencil passing through the first medium, which,
according to equation (27), does not depend on the second medium at
all. The value of this ratio does, however, depend on the nature of the
first medium, inasmuch as, according to (42), it is not the quantity K,
but the quantity ¢?K,, which is a universal function of the temperature
and frequency. The proof of this law given by G. Kirchhoff 1. c. was
later greatly simplified by E. Pringsheim.*

45. When in particular the second medium is a black body (Sec. 10)
it absorbs all the incident radiation. Hence in that case Jo = J, A =1,
and ' =1, i.e., the emissive power of a black body is independent of its
nature. Its emissive power is larger than that of any other body at the
same temperature and, in fact, is just equal to the intensity of radiation
in the contiguous medium.

46. We shall now add, without further proof, another general law
of reciprocity, which is closely connected with that stated at the end
of Sec. 43 and which may be stated thus: When any emitting and
absorbing bodies are in the state of thermodynamic equilibrium, the part

LE. Pringsheim, Verhandlungen der Deutschen Physikalischen Gesellschaft, 3,
p. 81, 1901.
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of the energy of definite color emitted by a body A, which is absorbed
by another body B, is equal to the part of the energy of the same color
emitted by B which is absorbed by A. Since a quantity of energy emitted
causes a decrease of the heat of the body, and a quantity of energy
absorbed an increase of the heat of the body, it is evident that, when
thermodynamic equilibrium exists, any two bodies or elements of bodies
selected at random exchange by radiation equal amounts of heat with
each other. Here, of course, care must be taken to distinguish between
the radiation emitted and the total radiation which reaches one body
from the other.

47. The law holding for the quantity (42) can be expressed in a
different form, by introducing, by means of (24), the volume density u,,
of monochromatic radiation instead of the intensity of radiation K,.
We then obtain the law that, for radiation in a state of thermodynamic
equilibrium, the quantity

u,q* (49)

is a function of the temperature T" and the frequency v, and is the same
for all substances.! This law becomes clearer if we consider that the
quantity

u, dv — (50)

also is a universal function of T', v, and v 4 dv, and that the product
u, dv is, according to (22), the volume density of the radiation whose

frequency lies between v and v+dv, while the quotient 4 represents the

wave length of a ray of frequency v in the medium in question. The law
then takes the following simple form: When any bodies whatever are in

n this law it is assumed that the quantity ¢ in (24) is the same as in (37). This
does not hold for strongly dispersing or absorbing substances. For the generalization
applying to such cases see M. Laue, Annalen d. Physik 32, p. 1085, 1910.
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thermodynamic equilibrium, the energy of monochromatic radiation of
a definite frequency, contained in a cubical element of side equal to the
wave length, is the same for all bodies.

48. We shall finally take up the case of diathermanous (Sec. 12)
media, which has so far not been considered. In Sec. 27 we saw that, in
a medium which is diathermanous for a given color and is surrounded
by an enclosure impermeable to heat, there can be thermodynamic
equilibrium for any intensity of radiation of this color. There must,
however, among all possible intensities of radiation be a definite one,
corresponding to the absolute maximum of the total entropy of the
system, which designates the absolutely stable equilibrium of radia-
tion. In fact, in equation (27) the intensity of radiation K, for oy, =0

and €, = 0 assumes the value —, and hence cannot be calculated from

this equation. But we see also that this indeterminateness is removed
by equation (41), which states that in the case of thermodynamic equi-
librium the product ¢?K, has the same value for all substances. From
this we find immediately a definite value of K, which is thereby dis-
tinguished from all other values. Furthermore the physical significance
of this value is immediately seen by considering the way in which that
equation was obtained. It is that intensity of radiation which exists in a
diathermanous medium, if it is in thermodynamic equilibrium when in
contact with an arbitrary absorbing and emitting medium. The volume
and the form of the second medium do not matter in the least, in partic-
ular the volume may be taken as small as we please. Hence we can for-
mulate the following law: Although generally speaking thermodynamic
equiltbrium can exist in a diathermanous medium for any intensity of
radiation whatever, nevertheless there exists in every diathermanous
medium for a definite frequency at a definite temperature an intensity
of radiation defined by the universal function (42). This may be called
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the stable intensity, inasmuch as it will always be established, when the
medium s exchanging stationary radiation with an arbitrary emitting
and absorbing substance.

49. According to the law stated in Sec. 45, the intensity of a pencil,
when a state of stable heat radiation exists in a diathermanous medium,
is equal to the emissive power E of a black body in contact with the
medium. On this fact is based the possibility of measuring the emissive
power of a black body, although absolutely black bodies do not exist
in nature.! A diathermanous cavity is enclosed by strongly emitting
walls? and the walls kept at a certain constant temperature 7. Then
the radiation in the cavity, when thermodynamic equilibrium is estab-
lished for every frequency v, assumes the intensity corresponding to
the velocity of propagation ¢ in the diathermanous medium, according
to the universal function (42). Then any element of area of the walls
radiates into the cavity just as if the wall were a black body of tem-
perature T. The amount lacking in the intensity of the rays actually
emitted by the walls as compared with the emission of a black body is
supplied by rays which fall on the wall and are reflected there. Similarly
every element of area of a wall receives the same radiation.

In fact, the radiation I starting from an element of area of a wall
consists of the radiation E emitted by the element of area and of the
radiation reflected from the element of area from the incident radia-
tion I, i.e., the radiation which is not absorbed (1 — A)I. We have,
therefore, in agreement with Kirchhoff’s law (48),

I=E+(1-AL

LW. Wien and O. Lummer, Wied. Annalen, 56, p. 451, 1895.

2The strength of the emission influences only the time required to establish
stationary radiation, but not its character. It is essential, however, that the walls
transmit no radiation to the exterior.
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If we now make a hole in one of the walls of a size do, so small that
the intensity of the radiation directed toward the hole is not changed
thereby, then radiation passes through the hole to the exterior where
we shall suppose there is the same diathermanous medium as within.
This radiation has exactly the same properties as if do were the surface
of a black body, and this radiation may be measured for every color
together with the temperature 7.

50. Thus far all the laws derived in the preceding sections for
diathermanous media hold for a definite frequency, and it is to be kept
in mind that a substance may be diathermanous for one color and
adiathermanous for another. Hence the radiation of a medium com-
pletely enclosed by absolutely reflecting walls is, when thermodynamic
equilibrium has been established for all colors for which the medium
has a finite coefficient of absorption, always the stable radiation cor-
responding to the temperature of the medium such as is represented
by the emission of a black body. Hence this is briefly called “black”
radiation.! On the other hand, the intensity of colors for which the
medium is diathermanous is not necessarily the stable black radiation,
unless the medium is in a state of stationary exchange of radiation with
an absorbing substance.

There is but one medium that is diathermanous for all kinds of
rays, namely, the absolute vacuum, which to be sure cannot be pro-
duced in nature except approximately. However, most gases, e.g., the
air of the atmosphere, have, at least if they are not too dense, to a suf-
ficient approximation the optical properties of a vacuum with respect
to waves of not too short length. So far as this is the case the velocity

L M. Thiesen, Verhandlungen d. Deutschen Physikal. Gesellschaft, 2, p. 65, 1900.
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of propagation ¢ may be taken as the same for all frequencies, namely,

c=3x100 2, (51)
sec

51. Hence in a vacuum bounded by totally reflecting walls any state
of radiation may persist. But as soon as an arbitrarily small quantity of
matter is introduced into the vacuum, a stationary state of radiation is
gradually established. In this the radiation of every color which is ap-
preciably absorbed by the substance has the intensity K, corresponding
to the temperature of the substance and determined by the universal
function (42) for ¢ = ¢, the intensity of radiation of the other colors
remaining indeterminate. If the substance introduced is not diather-
manous for any color, e.g., a piece of carbon however small, there exists
at the stationary state of radiation in the whole vacuum for all colors
the intensity K, of black radiation corresponding to the temperature of
the substance. The magnitude of K, regarded as a function of v gives
the spectral distribution of black radiation in a vacuum, or the so-called
normal energy spectrum, which depends on nothing but the tempera-
ture. In the normal spectrum, since it is the spectrum of emission of a
black body, the intensity of radiation of every color is the largest which
a body can emit at that temperature at all.

52. It is therefore possible to change a perfectly arbitrary radia-
tion, which exists at the start in the evacuated cavity with perfectly
reflecting walls under consideration, into black radiation by the intro-
duction of a minute particle of carbon. The characteristic feature of
this process is that the heat of the carbon particle may be just as small
as we please, compared with the energy of radiation contained in the
cavity of arbitrary magnitude. Hence, according to the principle of the
conservation of energy, the total energy of radiation remains essentially
constant during the change that takes place, because the changes in
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the heat of the carbon particle may be entirely neglected, even if its
changes in temperature should be finite. Herein the carbon particle
exerts only a releasing (auslosend) action. Thereafter the intensities of
the pencils of different frequencies originally present and having differ-
ent frequencies, directions, and different states of polarization change
at the expense of one another, corresponding to the passage of the sys-
tem from a less to a more stable state of radiation or from a state of
smaller to a state of larger entropy. From a thermodynamic point of
view this process is perfectly analogous, since the time necessary for
the process is not essential, to the change produced by a minute spark
in a quantity of oxy-hydrogen gas or by a small drop of liquid in a
quantity of supersaturated vapor. In all these cases the magnitude of
the disturbance is exceedingly small and cannot be compared with the
magnitude of the energies undergoing the resultant changes, so that in
applying the two principles of thermodynamics the cause of the distur-
bance of equilibrium, viz. the carbon particle, the spark, or the drop,
need not be considered. It is always a case of a system passing from
a more or less unstable into a more stable state, wherein, according
to the first principle of thermodynamics, the energy of the system re-
mains constant, and, according to the second principle, the entropy of
the system increases.



PART 11

DEDUCTIONS FROM ELECTRODYNAMICS
AND THERMODYNAMICS



CHAPTER I
MAXWELL’S RADIATION PRESSURE

53. While in the preceding part the phenomena of radiation have
been presented with the assumption of only well known elementary
laws of optics summarized in Sec. 2, which are common to all optical
theories, we shall hereafter make use of the electromagnetic theory of
light and shall begin by deducing a consequence characteristic of that
theory. We shall, namely, calculate the magnitude of the mechanical
force, which is exerted by a light or heat ray passing through a vacuum
on striking a reflecting (Sec. 10) surface assumed to be at rest.

For this purpose we begin by stating Maxwell’s general equations
for an electromagnetic process in a vacuum. Let the vector E denote
the electric field-strength (intensity of the electric field) in electric units
and the vector H the magnetic field-strength in magnetic units. Then
the equations are, in the abbreviated notation of the vector calculus,

E=ccurlH H=—ccurlE

. . (52)

div.E=0 div.H = 0.
Should the reader be unfamiliar with the symbols of this notation,
he may readily deduce their meaning by working backward from the
subsequent equations (53).

54. In order to pass to the case of a plane wave in any direction
we assume that all the quantities that fix the state depend only on
the time ¢ and on one of the coordinates x’, 1/, 2/, of an orthogonal
right-handed system of coordinates, say on x’. Then the equations (52)

57
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reduce to 9E o
o o
@ _ _CaHZ/ OH,/ _ C@Ez/
ot ox' ot ox' (53)
OE OH,,/ OH./ OE,
or ~ “ox o~ o
OB, OHy
ox' ox'

Hence the most general expression for a plane wave passing through a
vacuum in the direction of the positive x’-axis is

E. =0 Hy =0

x x

where f and g represent two arbitrary functions of the same argument.

55. Suppose now that this wave strikes a reflecting surface, e.g., the
surface of an absolute conductor (metal) of infinitely large conductiv-
ity. In such a conductor even an infinitely small electric field-strength
produces a finite conduction current; hence the electric field-strength E
in it must be always and everywhere infinitely small. For simplicity we
also suppose the conductor to be non-magnetizable, i.e., we assume the
magnetic induction B in it to be equal to the magnetic field-strength H,
just as is the case in a vacuum.

If we place the z-axis of a right-handed coordinate system (xyz)
along the normal of the surface directed toward the interior of the con-
ductor, the z-axis is the normal of incidence. We place the (z'y') plane
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Vacunm
x< 0

>

/

Conductor
x>0

!

z
Normal of Incidence

Fia. 4.

59

in the plane of incidence and take this as the plane of the figure (Fig. 4).
Moreover, we can also, without any restriction of generality, place the
y-axis in the plane of the figure, so that the z-axis coincides with the

2'-axis (directed from the figure toward the observer). Let the common
origin O of the two coordinate systems lie in the surface.

If finally

0 represents the angle of incidence, the coordinates with and without

accent are related to each other by the following equations:

x = 2" cos —y sinf

y =2’ sinf + v cosf

/
Z=Z

7= wcosh+ysind

y' = —xsinf + ycos

/
Z = Z.



DEDUCTIONS FROM ELECTRODYNAMICS 60

By the same transformation we may pass from the components of
the electric or magnetic field-strength in the first coordinate system to
their components in the second system. Performing this transforma-
tion the following values are obtained from (54) for the components
of the electric and magnetic field-strengths of the incident wave in the
coordinate system without accent,

E,=—sinf- f H,= sinf.g
E,= cosf-f H, = —cosf-g (55)

Herein the argument of the functions f and g is

A xcos@—I—ysiné"
c

. (56)

56. In the surface of separation of the two media x = 0. According
to the general electromagnetic boundary conditions the components of
the field-strengths in the surface of separation, i.e., the four quantities
E,, E., Hy, H, must be equal to each other on the two sides of the
surface of separation for this value of x. In the conductor the electric
field-strength E is infinitely small in accordance with the assumption
made above. Hence E, and E, must vanish also in the vacuum for
x = 0. This condition cannot be satisfied unless we assume in the
vacuum, besides the incident, also a reflected wave superposed on the
former in such a way that the components of the electric field of the
two waves in the y and z direction just cancel at every instant and at
every point in the surface of separation. By this assumption and the
condition that the reflected wave is a plane wave returning into the
interior of the vacuum, the other four components of the reflected wave
are also completely determined. They are all functions of the single



MAXWELL’S RADIATION PRESSURE 61

argument
—xcosf + ysind

. (57)

The actual calculation yields as components of the total electromagnetic
field produced in the vacuum by the superposition of the two waves,
the following expressions valid for points of the surface of separation
x =0,
= —sinf - f —sinf- f =—2sinf- f
cosf - f—cosh-f=0
9—9=0
sinfl-g—sinf-g=20

8

<

8

II{I‘lITII'I'I
I

y = —cost-g—cost-g=—2cosl-g
H.=f+f=2f.
In these equations the argument of the functions f and g is, according

to (56) and (57),
ysin 6

c
From these values the electric and magnetic field-strength within the
conductor in the immediate neighborhood of the separating surface
x = 0 is obtained:

E.=0 H,=0
E,=0 H, = —2cosf g (59)
E.=0 H,=2f

is to be substituted in the functions

si
where again the argument ¢ — 4

c
f and g. For the components of E all vanish in an absolute conductor
and the components H,, H,, H. are all continuous at the separating
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surface, the two latter since they are tangential components of the field-
strength, the former since it is the normal component of the magnetic
induction B (Sec. 55), which likewise remains continuous on passing
through any surface of separation.

On the other hand, the normal component of the electric field-
strength E, is seen to be discontinuous; the discontinuity shows the
existence of an electric charge on the surface, the surface density of
which is given in magnitude and sign as follows:

1. 1.
EQsme-f—%smH-f. (60)

In the interior of the conductor at a finite distance from the bounding
surface, i.e., for x > 0, all six field components are infinitely small.
Hence, on increasing x, the values of H, and H,, which are finite for
x = 0, approach the value 0 at an infinitely rapid rate.

57. A certain mechanical force is exerted on the substance of the
conductor by the electromagnetic field considered. We shall calculate
the component of this force normal to the surface. It is partly of elec-
tric, partly of magnetic, origin. Let us first consider the former, F..
Since the electric charge existing on the surface of the conductor is in
an electric field, a mechanical force equal to the product of the charge
and the field-strength is exerted on it. Since, however, the field-strength
is discontinuous, having the value —2sin 6 f on the side of the vacuum
and 0 on the side of the conductor, from a well-known law of electro-
statics the magnitude of the mechanical force F. acting on an element
of surface do of the conductor is obtained by multiplying the electric
charge of the element of area calculated in (60) by the arithmetic mean
of the electric field-strength on the two sides. Hence

sin 9 sm 20

fda (—sinff) =

Fe f dO'



MAXWELL’S RADIATION PRESSURE 63

This force acts in the direction toward the vacuum and therefore exerts
a tension.

58. We shall now calculate the mechanical force of magnetic ori-
gin F,,. In the interior of the conducting substance there are certain
conduction currents, whose intensity and direction are determined by
the vector | of the current density

c
| = — curl H. 61

pym (61)

A mechanical force acts on every element of space dr of the conductor

through which a conduction current flows, and is given by the vector

product
d
I x H. (62)
c
Hence the component of this force normal to the surface of the conduc-

tor x = 0 is equal to

dT(I H, — I.H,).

On substituting the values of |, and |, from (61) we obtain

dr H OH, OH, OH, OH,
Ar | P\ 0z Oz Y\ ox oy )|
In this expression the differential coefficients with respect to y and z

are negligibly small in comparison to those with respect to x, according
to the remark at the end of Sec. 56; hence the expression reduces to

dT H, 0i OH,
Y ox “ox )

Let us now consider a cylinder cut out of the conductor perpendicular
to the surface with the cross-section do, and extending from z = 0 to
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x = 00. The entire mechanical force of magnetic origin acting on this
cylinder in the direction of the z-axis, since d7 = do x, is given by

do OH, OH
Ly (R P TR
4 Jo ( 8x Oz )
On integration, since H vanishes for x = oo, we obtain
do
Fo. = H2 H
87 ( + ) =0
or by equation (59)
d
Fn = %(COSQQ g+ ).

By adding F. and F,,, the total mechanical force acting on the cylin-
der in question in the direction of the z-axis is found to be

d
F= %cos2 0(f*+ g°). (63)

This force exerts on the surface of the conductor a pressure, which acts
in a direction normal to the surface toward the interior and is called
“Mazwell’s radiation pressure.” The existence and the magnitude of
the radiation pressure as predicted by the theory was first found by
delicate measurements with the radiometer by P. Lebedew.!

59. We shall now establish a relation between the radiation pressure
and the energy of radiation [ dt falling on the surface element do of the
conductor in a time element dt. The latter from Poynting’s law of

energy flow is

C
Idt = —(E,H. — E.H,) dodr,

LP. Lebedew, Annalen d. Phys. 6, p. 433, 1901. See also E. F. Nichols and G. F.
Hull, Annalen d. Phys. 12, p. 225, 1903.
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hence from (55)
c
Idt = — 2447 .
dt 47Tcos«?(f +¢°)do dt

By comparison with (63) we obtain

2cosf
c

F=

I (64)

From this we finally calculate the total pressure p, i.e., that mechan-
ical force, which an arbitrary radiation proceeding from the vacuum and
totally reflected upon incidence on the conductor exerts in a normal di-
rection on a unit surface of the conductor. The energy radiated in the
conical element

dQ = sin 0 df do

in the time dt on the element of area do is, according to (6),
Idt = K cos0dS)do dt,

where K represents the specific intensity of the radiation in the direc-
tion df2 toward the reflector. On substituting this in (64) and integrat-
ing over df) we obtain for the total pressure of all pencils which fall on
the surface and are reflected by it

2
p=- /KC082 0dQ2, (65)

the integration with respect to ¢ extending from 0 to 27 and with
Vs
respect to 6 from 0 to —.

In case K is independent of direction as in the case of black radia-
tion, we obtain for the radiation pressure

2K [T 2 AT K
p= —/ dqb/ 6 cos O sinf = —
c Jo 0 3

C
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or, if we introduce instead of K the volume density of radiation

from (21)
u

p=g3 (66)

This value of the radiation pressure holds only when the reflection
of the radiation occurs at the surface of an absolute non-magnetizable
conductor. Therefore we shall in the thermodynamic deductions of
the next chapter make use of it only in such cases. Nevertheless it
will be shown later on (Sec. 66) that equation (66) gives the pressure
of uniform radiation against any totally reflecting surface, no matter
whether it reflects uniformly or diffusely.

60. In view of the extraordinarily simple and close relation between
the radiation pressure and the energy of radiation, the question might
be raised whether this relation is really a special consequence of the
electromagnetic theory, or whether it might not, perhaps, be founded
on more general energetic or thermodynamic considerations. To decide
this question we shall calculate the radiation pressure that would fol-
low by Newtonian mechanics from Newton’s (emission) theory of light,
a theory which, in itself, is quite consistent with the energy princi-
ple. According to it the energy radiated onto a surface by a light ray
passing through a vacuum is equal to the kinetic energy of the light
particles striking the surface, all moving with the constant velocity c.
The decrease in intensity of the energy radiation with the distance is
then explained simply by the decrease of the volume density of the light
particles.

Let us denote by n the number of the light particles contained in
a unit volume and by m the mass of a particle. Then for a beam of
parallel light the number of particles impinging in unit time on the
element do of a reflecting surface at the angle of incidence 6 is

nccos 6 do. (67)
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Their kinetic energy is given according to Newtonian mechanics by

2 3
I =nccosfdo % = nm cos 0% do. (68)

Now, in order to determine the normal pressure of these particles on
the surface, we may note that the normal component of the velocity
ccosf of every particle is changed on reflection into a component of
opposite direction. Hence the normal component of the momentum
of every particle (impulse-coordinate) is changed through reflection by
—2mccosf. Then the change in momentum for all particles considered
will be, according to (67),

—2nm cos® 0 ¢ do. (69)

Should the reflecting body be free to move in the direction of the
normal of the reflecting surface and should there be no force acting on
it except the impact of the light particles, it would be set into motion
by the impacts. According to the law of action and reaction the ensuing
motion would be such that the momentum acquired in a certain interval
of time would be equal and opposite to the change in momentum of all
the light particles reflected from it in the same time interval. But if
we allow a separate constant force to act from outside on the reflector,
there is to be added to the change in momenta of the light particles
the impulse of the external force, i.e., the product of the force and the
time interval in question.

Therefore the reflector will remain continuously at rest, whenever
the constant external force exerted on it is so chosen that its impulse for
any time is just equal to the change in momentum of all the particles
reflected from the reflector in the same time. Thus it follows that the
force F itself which the particles exert by their impact on the surface
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element do is equal and opposite to the change of their momentum in
unit time as expressed in (69)

F = 2nmcos? 0 ¢ do
and by making use of (68),

4 cost
c

F= I.

On comparing this relation with equation (64) in which all symbols
have the same physical significance, it is seen that Newton’s radiation
pressure is twice as large as Mazwell’s for the same energy radiation.
A necessary consequence of this is that the magnitude of Mazwell’s
radiation pressure cannot be deduced from general energetic consider-
ations, but is a special feature of the electromagnetic theory and hence
all deductions from Mazwell’s radiation pressure are to be regarded as
consequences of the electromagnetic theory of light and all confirma-
tions of them are confirmations of this special theory.



CHAPTER II
STEFAN-BOLTZMANN LAW OF RADIATION

61. For the following we imagine a perfectly evacuated hollow cylin-
der with an absolutely tight-fitting piston free to move in a vertical
direction with no friction. A part of the walls of the cylinder, say the
rigid bottom, should consist of a black body, whose temperature T" may
be regulated arbitrarily from the outside. The rest of the walls includ-
ing the inner surface of the piston may be assumed as totally reflecting.
Then, if the piston remains stationary and the temperature, T, con-
stant, the radiation in the vacuum will, after a certain time, assume
the character of black radiation (Sec. 50) uniform in all directions. The
specific intensity, K, and the volume density, v, depend only on the
temperature, T, and are independent of the volume, V', of the vacuum
and hence of the position of the piston.

If now the piston is moved downward, the radiation is compressed
into a smaller space; if it is moved upward the radiation expands into
a larger space. At the same time the temperature of the black body
forming the bottom may be arbitrarily changed by adding or removing
heat from the outside. This always causes certain disturbances of the
stationary state. If, however, the arbitrary changes in V and T are
made sufficiently slowly, the departure from the conditions of a sta-
tionary state may always be kept just as small as we please. Hence the
state of radiation in the vacuum may, without appreciable error, be re-
garded as a state of thermodynamic equilibrium, just as is done in the
thermodynamics of ordinary matter in the case of so-called infinitely
slow processes, where, at any instant, the divergence from the state of
equilibrium may be neglected, compared with the changes which the
total system considered undergoes as a result of the entire process.

69
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If, e.g., we keep the temperature T" of the black body forming the
bottom constant, as can be done by a suitable connection between
it and a heat reservoir of large capacity, then, on raising the piston,
the black body will emit more than it absorbs, until the newly made
space is filled with the same density of radiation as was the original
one. Vice versa, on lowering the piston the black body will absorb the
superfluous radiation until the original radiation corresponding to the
temperature T is again established. Similarly, on raising the temper-
ature T' of the black body, as can be done by heat conduction from
a heat reservoir which is slightly warmer, the density of radiation in
the vacuum will be correspondingly increased by a larger emission, etc.
To accelerate the establishment of radiation equilibrium the reflecting
mantle of the hollow cylinder may be assumed white (Sec. 10), since
by diffuse reflection the predominant directions of radiation that may,
perhaps, be produced by the direction of the motion of the piston, are
more quickly neutralized. The reflecting surface of the piston, how-
ever, should be chosen for the present as a perfect metallic reflector, to
make sure that the radiation pressure (66) on the piston is Mazwell’s.
Then, in order to produce mechanical equilibrium, the piston must be
loaded by a weight equal to the product of the radiation pressure p and
the cross-section of the piston. An exceedingly small difference of the
loading weight will then produce a correspondingly slow motion of the
piston in one or the other direction.

Since the effects produced from the outside on the system in ques-
tion, the cavity through which the radiation travels, during the pro-
cesses we are considering, are partly of a mechanical nature (displace-
ment of the loaded piston), partly of a thermal nature (heat conduction
away from and toward the reservoir), they show a certain similarity to
the processes usually considered in thermodynamics, with the differ-
ence that the system here considered is not a material system, e.g., a
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gas, but a purely energetic one. If, however, the principles of thermody-
namics hold quite generally in nature, as indeed we shall assume, then
they must also hold for the system under consideration. That is to say,
in the case of any change occurring in nature the energy of all systems
taking part in the change must remain constant (first principle), and,
moreover, the entropy of all systems taking part in the change must
increase, or in the limiting case of reversible processes must remain
constant (second principle).

62. Let us first establish the equation of the first principle for an
infinitesimal change of the system in question. That the cavity en-
closing the radiation has a certain energy we have already (Sec. 22)
deduced from the fact that the energy radiation is propagated with a
finite velocity. We shall denote the energy by U. Then we have

U =Vu, (70)

where u the volume density of radiation depends only on the tempera-
ture T of the black body at the bottom.

The work done by the system, when the volume V' of the cavity
increases by dV against the external forces of pressure (weight of the
loaded piston), is pdV, where p represents Mazwell’s radiation pres-
sure (66). This amount of mechanical energy is therefore gained by the
surroundings of the system, since the weight is raised. The error made
by using the radiation pressure on a stationary surface, whereas the re-
flecting surface moves during the volume change, is evidently negligible,
since the motion may be thought of as taking place with an arbitrarily
small velocity.

If, moreover, () denotes the infinitesimal quantity of heat in me-
chanical units, which, owing to increased emission, passes from the
black body at the bottom to the cavity containing the radiation, the
bottom or the heat reservoir connected to it loses this heat (), and
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its internal energy is decreased by that amount. Hence, according to
the first principle of thermodynamics, since the sum of the energy of
radiation and the energy of the material bodies remains constant, we
have

AU +pdV —Q = 0. (71)

According to the second principle of thermodynamics the cavity
containing the radiation also has a definite entropy. For when the
heat ) passes from the heat reservoir into the cavity, the entropy of
the reservoir decreases, the change being

_Q
T
Therefore, since no changes occur in the other bodies—inasmuch
as the rigid absolutely reflecting piston with the weight on it does not

change its internal condition with the motion—there must somewhere

in nature occur a compensation of entropy having at least the value %,

by which the above diminution is compensated, and this can be nowhere
except in the entropy of the cavity containing the radiation. Let the
entropy of the latter be denoted by S.

Now, since the processes described consist entirely of states of equi-
librium, they are perfectly reversible and hence there is no increase in
entropy. Then we have

dS — - = 2
S T 0, (72)
or from (71)

dU + pdV

ds = (73)

T

In this equation the quantities U, p, V', S represent certain proper-
ties of the heat radiation, which are completely defined by the instanta-
neous state of the radiation. Therefore the quantity 7' is also a certain
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property of the state of the radiation, i.e., the black radiation in the
cavity has a certain temperature 7" and this temperature is that of a
body which is in heat equilibrium with the radiation.

63. We shall now deduce from the last equation a consequence which
is based on the fact that the state of the system considered, and there-
fore also its entropy, is determined by the values of two independent
variables. As the first variable we shall take V', as the second either
T, u, or p may be chosen. Of these three quantities any two are de-
termined by the third together with V. We shall take the volume V'
and the temperature 7" as independent variables. Then by substituting
from (66) and (70) in (73) we have

V du

4u
dS—Td—TdT—irg—TdV. (74)

From this we obtain

05\ _Vdu o (05) _iu

or),, T dT ov ), 3T
On partial differentiation of these equations, the first with respect to V',
the second with respect to T', we find

928 1 du 4 du  du

OTdV T dT 3T dT 372

or

du  4u
dar ~ T
and on integration
u=al* (75)

and from (21) for the specific intensity of black radiation

C ac
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Moreover for the pressure of black radiation

p= 27 (77)
3
and for the total radiant energy
U=aT* V. (78)

This law, which states that the volume density and the specific in-
tensity of black radiation are proportional to the fourth power of the
absolute temperature, was first established by .J. Stefan! on a basis of
rather rough measurements. It was later deduced by L. Boltzmann?
on a thermodynamic basis from Mazwell’s radiation pressure and has
been more recently confirmed by O. Lummer and E. Pringsheim® by
exact measurements between 100° and 1300° C., the temperature be-
ing defined by the gas thermometer. In ranges of temperature and
for requirements of precision for which the readings of the different
gas thermometers no longer agree sufficiently or cannot be obtained at
all, the Stefan-Boltzmann law of radiation can be used for an absolute
definition of temperature independent of all substances.

64. The numerical value of the constant a is obtained from measure-
ments made by F. Kurlbaum.* According to them, if we denote by S,
the total energy radiated in one second into air by a square centimeter
of a black body at a temperature of t° C., the following equation holds

watt erg

- =731 x10° ———.
cm CcIn-< sec

LJ. Stefan, Wien. Berichte, 79, p. 391, 1879.

2L. Boltzmann, Wied. Annalen, 22, p. 291, 1884.

30. Lummer und E. Pringsheim, Wied. Annalen, 63, p. 395, 1897. Annalen d.
Physik 3, p. 159, 1900.

4F. Kurlbaum, Wied. Annalen, 65, p. 759, 1898.

S100 — 5o = 0.0731

(79)
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Now, since the radiation in air is approximately identical with the ra-
diation into a vacuum, we may according to (7) and (76) put

Sy =1K = %0(273 +t)?
and from this ac
Si00 — So = Z(3734 —273%),
therefore
4 x 7.31 x 10° erg
= =7.061 x 107 —=>
¢T3 %1010 % (373* — 2734) 8 cm3 degree*

Recently Kurlbaum has increased the value measured by him by
2.5 per cent.,! on account of the bolometer used being not perfectly
black, whence it follows that a = 7.24 - 10712,

Meanwhile the radiation constant has been made the object of as
accurate measurements as possible in various places. Thus it was mea-
sured by Féry, Bauer and Moulin, Valentiner, Féry and Drecq, Shake-
spear, Gerlach, with in some cases very divergent results, so that a
mean value may hardly be formed.

For later computations we shall use the most recent determination
made in the physical laboratory of the University of Berlin?

tt
X =546-10712
4 cm? degree

LF. Kurlbaum, Verhandlungen d. Deutsch. physikal. Gesellschaft, 14, p. 580,
1912.

2 According to private information kindly furnished by my colleague H. Rubens
(July, 1912). (These results have since been published. See W. H. Westphal, Ver-
handlungen d. Deutsch. physikal. Gesellschaft, 14, p. 987, 1912, Tr.)
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From this a is found to be

4-5.46-10712.107
- _ —728.107%5 28
3-10 cm? degree

a

which agrees rather closely with Kurlbaum’s corrected value.
65. The magnitude of the entropy S of black radiation found by
integration of the differential equation (73) is

S = %aT3V. (80)

In this equation the additive constant is determined by a choice

that readily suggests itself, so that at the zero of the absolute scale of

temperature, that is to say, when u vanishes, S shall become zero. From

this the entropy of unit volume or the volume density of the entropy of
black radiation is obtained,

é =s= %aT3. (81)

66. We shall now remove a restricting assumption made in order to
enable us to apply the value of Mazwell’s radiation pressure, calculated
in the preceding chapter. Up to now we have assumed the cylinder to be
fixed and only the piston to be free to move. We shall now think of the
whole of the vessel, consisting of the cylinder, the black bottom, and
the piston, the latter attached to the walls in a definite height above the
bottom, as being free to move in space. Then, according to the principle
of action and reaction, the vessel as a whole must remain constantly at
rest, since no external force acts on it. This is the conclusion to which
we must necessarily come, even without, in this case, admitting a prior:
the validity of the principle of action and reaction. For if the vessel
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should begin to move, the kinetic energy of this motion could originate
only at the expense of the heat of the body forming the bottom or the
energy of radiation, as there exists in the system enclosed in a rigid cover
no other available energy; and together with the decrease of energy the
entropy of the body or the radiation would also decrease, an event which
would contradict the second principle, since no other changes of entropy
occur in nature. Hence the vessel as a whole is in a state of mechanical
equilibrium. An immediate consequence of this is that the pressure
of the radiation on the black bottom is just as large as the oppositely
directed pressure of the radiation on the reflecting piston. Hence the
pressure of black radiation is the same on a black as on a reflecting body
of the same temperature and the same may be readily proven for any
completely reflecting surface whatsoever, which we may assume to be at
the bottom of the cylinder without in the least disturbing the stationary
state of radiation. Hence we may also in all the foregoing considerations
replace the reflecting metal by any completely reflecting or black body
whatsoever, at the same temperature as the body forming the bottom,
and it may be stated as a quite general law that the radiation pressure
depends only on the properties of the radiation passing to and fro, not
on the properties of the enclosing substance.

67. If, on raising the piston, the temperature of the black body
forming the bottom is kept constant by a corresponding addition of
heat from the heat reservoir, the process takes place isothermally. Then,
along with the temperature T of the black body, the energy density u,
the radiation pressure p, and the density of the entropy s also remain
constant; hence the total energy of radiation increases from U = uV to
U’ = uV’, the entropy from S = sV to S’ = sV’ and the heat supplied
from the heat reservoir is obtained by integrating (72) at constant T,

Q=T(S"-8)=Ts(V'=V)
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or, according to (81) and (75),

Q= %aT‘*(V’ —-V)= é(U’ —U).

Thus it is seen that the heat furnished from the outside exceeds the
increase in energy of radiation (U’ — U) by (U’ — U). This excess in
the added heat is necessary to do the external work accompanying the
increase in the volume of radiation.

68. Let us also consider a reversible adiabatic process. For this it
is necessary not merely that the piston and the mantle but also that
the bottom of the cylinder be assumed as completely reflecting, e.g., as
white. Then the heat furnished on compression or expansion of the
volume of radiation is @) = 0 and the energy of radiation changes only
by the value pdV of the external work. To insure, however, that in a
finite adiabatic process the radiation shall be perfectly stable at every
instant, i.e., shall have the character of black radiation, we may assume
that inside the evacuated cavity there is a carbon particle of minute size.
This particle, which may be assumed to possess an absorbing power
differing from zero for all kinds of rays, serves merely to produce stable
equilibrium of the radiation in the cavity (Sec. 51 et seq.) and thereby
to insure the reversibility of the process, while its heat contents may
be taken as so small compared with the energy of radiation, U, that
the addition of heat required for an appreciable temperature change of
the particle is perfectly negligible. Then at every instant in the process
there exists absolutely stable equilibrium of radiation and the radiation
has the temperature of the particle in the cavity. The volume, energy,
and entropy of the particle may be entirely neglected.

On a reversible adiabatic change, according to (72), the entropy S
of the system remains constant. Hence from (80) we have as a condition
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for such a process
T3V = const.,
or, according to (77),
pv§ = const.,
i.e., on an adiabatic compression the temperature and the pressure of

the radiation increase in a manner that may be definitely stated. The
energy of the radiation, U, in such a case varies according to the law

U

= ZS = const.,
i.€., it increases in proportion to the absolute temperature, although
the volume becomes smaller.

69. Let us finally, as a further example, consider a simple case of an
irreversible process. Let the cavity of volume V', which is everywhere
enclosed by absolutely reflecting walls, be uniformly filled with black
radiation. Now let us make a small hole through any part of the walls,
e.g., by opening a stopcock, so that the radiation may escape into
another completely evacuated space, which may also be surrounded
by rigid, absolutely reflecting walls. The radiation will at first be of
a very irregular character; after some time, however, it will assume a
stationary condition and will fill both communicating spaces uniformly,
its total volume being, say, V’. The presence of a carbon particle will
cause all conditions of black radiation to be satisfied in the new state.
Then, since there is neither external work nor addition of heat from the
outside, the energy of the new state is, according to the first principle,
equal to that of the original one, or U’ = U and hence from (78)

™V =TV

T LV
T VWV
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which defines completely the new state of equilibrium. Since V' > V
the temperature of the radiation has been lowered by the process.

According to the second principle of thermodynamics the entropy
of the system must have increased, since no external changes have oc-
curred; in fact we have from (80)

l 131/ !
5 = G = C/z > 1. (82)
S 3V Vv

70. If the process of irreversible adiabatic expansion of the radiation
from the volume V' to the volume V' takes place as just described with
the single difference that there is no carbon particle present in the
vacuum, after the stationary state of radiation is established, as will
be the case after a certain time on account of the diffuse reflection
from the walls of the cavity, the radiation in the new volume V' will
not any longer have the character of black radiation, and hence no
definite temperature. Nevertheless the radiation, like every system in
a definite physical state, has a definite entropy, which, according to
the second principle, is larger than the original S, but not as large as
the S’ given in (82). The calculation cannot be performed without the
use of laws to be taken up later (see Sec. 103). If a carbon particle is
afterward introduced into the vacuum, absolutely stable equilibrium is
established by a second irreversible process, and, the total energy as
well as the total volume remaining constant, the radiation assumes the
normal energy distribution of black radiation and the entropy increases

to the maximum value S’ given by (82).



CHAPTER III
WIEN’S DISPLACEMENT LAW

71. Though the manner in which the volume density w and the
specific intensity K of black radiation depend on the temperature is
determined by the Stefan-Boltzmann law, this law is of comparatively
little use in finding the volume density u, corresponding to a definite
frequency v, and the specific intensity of radiation K, of monochro-
matic radiation, which are related to each other by equation (24) and
to v and K by equations (22) and (12). There remains as one of the
principal problems of the theory of heat radiation the problem of de-
termining the quantities u, and K, for black radiation in a vacuum
and hence, according to (42), in any medium whatever, as functions of
v and T, or, in other words, to find the distribution of energy in the
normal spectrum for any arbitrary temperature. An essential step in
the solution of this problem is contained in the so-called “displacement
law” stated by W. Wien,! the importance of which lies in the fact that
it reduces the functions u, and K, of the two arguments v and T to a
function of a single argument.

The starting point of Wien’s displacement law is the following the-
orem. If the black radiation contained in a perfectly evacuated cavity
with absolutely reflecting walls is compressed or expanded adiabatically
and infinitely slowly, as described above in Sec. 68, the radiation always
retains the character of black radiation, even without the presence of a

LW. Wien, Sitzungsberichte d. Akad. d. Wissensch. Berlin, Febr. 9, 1893, p. 55.
Wiedemann’s Annal., 52, p. 132, 1894. See also among others M. Thiesen, Ver-
handl. d. Deutsch. phys. Gesellsch., 2, p. 65, 1900. H. A. Lorentz, Akad. d. Wis-
sensch. Amsterdam, May 18, 1901, p. 607. M. Abraham, Annal. d. Physik 14,
p- 236, 1904.

81



DEDUCTIONS FROM ELECTRODYNAMICS 82

carbon particle. Hence the process takes place in an absolute vacuum
just as was calculated in Sec. 68 and the introduction, as a precaution,
of a carbon particle is shown to be superfluous. But this is true only
in this special case, not at all in the case described in Sec. 70.

The truth of the proposition stated may be shown as follows: Let
the completely evacuated hollow cylinder, which is at the start filled
with black radiation, be compressed adiabatically and infinitely slowly
to a finite fraction of the original volume. If, now, the compression
being completed, the radiation were no longer black, there would be
no stable thermodynamic equilibrium of the radiation (Sec. 51). It
would then be possible to produce a finite change at constant volume
and constant total energy of radiation, namely, the change to the ab-
solutely stable state of radiation, which would cause a finite increase
of entropy. This change could be brought about by the introduction of
a carbon particle, containing a negligible amount of heat as compared
with the energy of radiation. This change, of course, refers only to the
spectral density of radiation u,, whereas the total density of energy u
remains constant. After this has been accomplished, we could, leaving
the carbon particle in the space, allow the hollow cylinder to return adi-
abatically and infinitely slowly to its original volume and then remove
the carbon particle. The system will then have passed through a cycle
without any external changes remaining. For heat has been neither
added nor removed, and the mechanical work done on compression has
been regained on expansion, because the latter, like the radiation pres-
sure, depends only on the total density u of the energy of radiation, not
on its spectral distribution. Therefore, according to the first principle
of thermodynamics, the total energy of radiation is at the end just the
same as at the beginning, and hence also the temperature of the black
radiation is again the same. The carbon particle and its changes do
not enter into the calculation, for its energy and entropy are vanish-
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ingly small compared with the corresponding quantities of the system.
The process has therefore been reversed in all details; it may be re-
peated any number of times without any permanent change occurring
in nature. This contradicts the assumption, made above, that a finite
increase in entropy occurs; for such a finite increase, once having taken
place, cannot in any way be completely reversed. Therefore no finite
increase in entropy can have been produced by the introduction of the
carbon particle in the space of radiation, but the radiation was, before
the introduction and always, in the state of stable equilibrium.

72. In order to bring out more clearly the essential part of this
important proof, let us point out an analogous and more or less obvious
consideration. Let a cavity containing originally a vapor in a state of
saturation be compressed adiabatically and infinitely slowly.

“Then on an arbitrary adiabatic compression the vapor remains al-
ways just in the state of saturation. For let us suppose that it becomes
supersaturated on compression. After the compression to an apprecia-
ble fraction of the original volume has taken place, condensation of a
finite amount of vapor and thereby a change into a more stable state,
and hence a finite increase of entropy of the system, would be produced
at constant volume and constant total energy by the introduction of a
minute drop of liquid, which has no appreciable mass or heat capacity.
After this has been done, the volume could again be increased adia-
batically and infinitely slowly until again all liquid is evaporated and
thereby the process completely reversed, which contradicts the assumed
increase of entropy.”

Such a method of proof would be erroneous, because, by the process
described, the change that originally took place is not at all completely
reversed. For since the mechanical work expended on the compression
of the supersaturated steam is not equal to the amount gained on ex-
panding the saturated steam, there corresponds to a definite volume of
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the system when it is being compressed an amount of energy different
from the one during expansion and therefore the volume at which all
liquid is just vaporized cannot be equal to the original volume. The
supposed analogy therefore breaks down and the statement made above
in quotation marks is incorrect.

73. We shall now again suppose the reversible adiabatic process de-
scribed in Sec. 68 to be carried out with the black radiation contained
in the evacuated cavity with white walls and white bottom, by allow-
ing the piston, which consists of absolutely reflecting metal, to move
downward infinitely slowly, with the single difference that now there
shall be no carbon particle in the cylinder. The process will, as we now
know, take place exactly as there described, and, since no absorption
or emission of radiation takes place, we can now give an account of the
changes of color and intensity which the separate pencils of the system
undergo. Such changes will of course occur only on reflection from the
moving metallic reflector, not on reflection from the stationary walls
and the stationary bottom of the cylinder.

If the reflecting piston moves down with the constant, infinitely
small, velocity v, the monochromatic pencils striking it during the mo-
tion will suffer on reflection a change of color, intensity, and direction.
Let us consider these different influences in order.?

74. To begin with, we consider the change of color which a
monochromatic ray suffers by reflection from the reflector, which is
moving with an infinitely small velocity. For this purpose we consider
first the case of a ray which falls normally from below on the reflector

IThe complete solution of the problem of reflection of a pencil from a moving
absolutely reflecting surface including the case of an arbitrarily large velocity of the
surface may be found in the paper by M. Abraham quoted in Sec. 71. See also
the text-book by the same author. Electromagnetische Theorie der Strahlung, 1908
(Leipzig, B. G. Teubner).
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A, Reflector t
4 A Reflector t + 't
‘ l‘,
‘B"-—_____—_‘——gﬁﬁoﬁ;y-
Fic. 5

and hence is reflected normally downward. Let the plane A (Fig. 5)
represent the position of the reflector at the time ¢, the plane A’ the
position at the time t 4+ 0t, where the distance AA’ equals v dt, v de-
noting the velocity of the reflector. Let us now suppose a stationary
plane B to be placed parallel to A at a suitable distance and let us
denote by A the wave length of the ray incident on the reflector and
by X the wave length of the ray reflected from it. Then at a time ¢

there are in the interval AB in the vacuum containing the radiation

AB AB
—— waves of the incident and —- waves of the reflected ray, as can

be seen, e.g., by thinking of the electric field-strength as being drawn
at the different points of each of the two rays at the time ¢ in the form
of a sine curve. Reckoning both incident and reflected ray there are at

the time ¢ . |
AB| — 4+ —
(A * A’)

waves in the interval between A and B. Since this is a large number,
it is immaterial whether the number is an integer or not.
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Similarly at the time ¢ + ¢, when the reflector is at A’, there are

, 1 1
A'B ( 3 + )\/>
waves in the interval between A" and B all told.

The latter number will be smaller than the former, since in the
shorter distance A’ B there is room for fewer waves of both kinds than in
the longer distance AB. The remaining waves must have been expelled
in the time dt from the space between the stationary plane B and the
moving reflector, and this must have taken place through the plane B
downward; for in no other way could a wave disappear from the space
considered.

Now v §t waves pass in the time ¢ through the stationary plane B
in an upward direction and v/ §t waves in a downward direction; hence
we have for the difference

@UwO&:(AB—AB)CL+i)

AN
or, since
AB — A'B = v dt,
and
A= v=2
v v
, Cc+v
V= v
c—v

or, since v is infinitely small compared with c,

, ( 21})
V=v|l4+—|.
c
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75. When the radiation does not fall on the reflector normally but at
an acute angle of incidence 6, it is possible to pursue a very similar line
of reasoning, with the difference that then A, the point of intersection
of a definite ray BA with the reflector at the time ¢, has not the same
position on the reflector as the point of intersection, A’, of the same ray
with the reflector at the time t+0t (Fig. 6). The number of waves which

BA
lie in the interval BA at the time t is DN Similarly, at the time t the

number of waves in the interval AC representing the distance of the
point A from a wave plane C'C’, belonging to the reflected ray and
AC

stationary in the vacuum, is —-.
Hence there are, all told, at the time ¢ in the interval BAC'

BA AC

PRADY

waves of the ray under consideration. We may further note that the

angle of reflection 6’ is not exactly equal to the angle of incidence, but

is a little smaller as can be shown by a simple geometric consideration

based on Huyghens’ principle. The difference of # and #’, however, will

be shown to be non-essential for our calculation. Moreover there are at
the time ¢ + dt, when the reflector passes through A’,

BA"  A'C

DY

waves in the distance BA'C’. The latter number is smaller than the
former and the difference must equal the total number of waves which
are expelled in the time 0t from the space which is bounded by the
stationary planes BB’ and C'C".

Now v dt waves enter into the space through the plane BB’ in the
time 0t and v/ 6t waves leave the space through the plane CC’. Hence
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Reflector ¢

%E}\
4 ! Reflectort + dt

B 9 C
\ ! J
Stationary Cyal
/C !
Stationary
7/
FiG. 6.
we have
(v — )6t = BA+AC B BA’+A’C’
R N WY ) N
but
BA - BA = A = 20
cos 0
AC — A'C" = AA cos(0 + 0")
A=S ov=S5
v’ v
Hence
, ccosf+wv

YT Ccosh — v cos(d + 6’)1/'

This relation holds for any velocity v of the moving reflector. Now,
since in our case v is infinitely small compared with ¢, we have the
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simpler expression
v

ccos b

The difference between the two angles # and 6’ is in any case of the

VvV =v(l+ [1 4 cos(8 +6")]).

v
order of magnitude —; hence we may without appreciable error replace
c

0" by 6, thereby obtaining the following expression for the frequency of
the reflected ray for oblique incidence

2
V’:I/(l—i— UCOSQ) : (83)

C

76. From the foregoing it is seen that the frequency of all rays
which strike the moving reflector are increased on reflection, when the
reflector moves toward the radiation, and decreased, when the reflector
moves in the direction of the incident rays (v < 0). However, the total
radiation of a definite frequency v striking the moving reflector is by no
means reflected as monochromatic radiation but the change in color on
reflection depends also essentially on the angle of incidence #. Hence
we may not speak of a certain spectral “displacement” of color except
in the case of a single pencil of rays of definite direction, whereas in the
case of the entire monochromatic radiation we must refer to a spectral
“dispersion.” The change in color is the largest for normal incidence
and vanishes entirely for grazing incidence.

77. Secondly, let us calculate the change in energy, which the mov-
ing reflector produces in the incident radiation, and let us consider from
the outset the general case of oblique incidence. Let a monochromatic,
infinitely thin, unpolarized pencil of rays, which falls on a surface ele-
ment of the reflector at the angle of incidence 6, transmit the energy I 6t
to the reflector in the time dt. Then, ignoring vanishingly small quan-
tities, the mechanical pressure of the pencil of rays normally to the
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reflector is, according to equation (64),

B 2cosf

F

1,

C

and to the same degree of approximation the work done from the outside
on the incident radiation in the time 0t is

ot — 2v cos O

14t (84)

c

According to the principle of the conservation of energy this amount
of work must reappear in the energy of the reflected radiation. Hence
the reflected pencil has a larger intensity than the incident one. It
produces, namely, in the time §t the energy’

2v cos

I§t+Fv5t:I<1+ )5t=[’5t. (85)

c
Hence we may summarize as follows: By the reflection of a monochro-
matic unpolarized pencil, incident at an angle 6 on a reflector moving
toward the radiation with the infinitely small velocity v, the radiant
energy I 0t, whose frequencies extend from v to v+ dv, is in the time 6t
changed into the radiant energy I’ ¢t with the interval of frequency
(V, V' +dv'), where I’ is given by (85), v/ by (83), and accordingly dv/,
the spectral breadth of the reflected pencil, by

20V COS 9)

C

dv' = dv (1 + (36)

Tt is clear that the change in intensity of the reflected radiation caused by
the motion of the reflector can also be derived from purely electrodynamical con-
siderations, since electrodynamics are consistent with the energy principle. This
method is somewhat lengthy, but it affords a deeper insight into the details of the
phenomenon of reflection.
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A comparison of these values shows that

I v v
T @ (87)

The absolute value of the radiant energy which has disappeared in this
change is, from equation (13),

16t = 2K, do cos 0 dQ dv bt (88)

and hence the absolute value of the radiant energy which has been
formed is, according to (85),

20 cos
'8t = 2K, do cos 6 Q) dv <1 + 2= ) 5t (89)

C

Strictly speaking these last two expressions would require an in-
finitely small correction, since the quantity I from equation (88) repre-
sents the energy radiation on a stationary element of area do, while, in
reality, the incident radiation is slightly increased by the motion of do
toward the incident pencil. The corresponding additional terms may,
however, be omitted here without appreciable error, since the correc-
tion caused by them would consist merely of the addition to the energy
change here calculated of a comparatively infinitesimal energy change of
the same kind with an external work that is infinitesimal of the second
order.

78. As regards finally the changes in direction, which are imparted
to the incident ray by reflection from the moving reflector, we need not
calculate them at all at this stage. For if the motion of the reflector
takes place sufficiently slowly, all irregularities in the direction of the
radiation are at once equalized by further reflection from the walls of
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the vessel. We may, indeed, think of the whole process as being accom-
plished in a very large number of short intervals, in such a way that the
piston, after it has moved a very small distance with very small veloc-
ity, is kept at rest for a while, namely, until all irregularities produced
in the directions of the radiation have disappeared as the result of the
reflection from the white walls of the hollow cylinder. If this procedure
be carried on sufficiently long, the compression of the radiation may be
continued to an arbitrarily small fraction of the original volume, and
while this is being done, the radiation may be always regarded as uni-
form in all directions. This continuous process of equalization refers, of
course, only to difference in the direction of the radiation; for changes
in the color or intensity of the radiation of however small size, hav-
ing once occurred, can evidently never be equalized by reflection from
totally reflecting stationary walls but continue to exist forever.

79. With the aid of the theorems established we are now in a po-
sition to calculate the change of the density of radiation for every fre-
quency for the case of infinitely slow adiabatic compression of the per-
fectly evacuated hollow cylinder, which is filled with uniform radiation.
For this purpose we consider the radiation at the time ¢ in a definite
infinitely small interval of frequencies, from v to v + dr, and inquire
into the change which the total energy of radiation contained in this
definite constant interval suffers in the time dt.

At the time t this radiant energy is, according to Sec. 23, Vudv; at
the time ¢ + 6t it is (Vu+6(Vu)) dv, hence the change to be calculated
is

5(Vu) dv. (90)

In this the density of monochromatic radiation u is to be regarded as a
function of the mutually independent variables v and ¢, the differentials
of which are distinguished by the symbols d and 4.
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The change of the energy of monochromatic radiation is produced
only by the reflection from the moving reflector, that is to say, firstly by
certain rays, which at the time ¢ belong to the interval (v, dv), leaving
this interval on account of the change in color suffered by reflection,
and secondly by certain rays, which at the time ¢t do not belong to
the interval (v, dr), coming into this interval on account of the change
in color suffered on reflection. Let us calculate these influences in or-
der. The calculation is greatly simplified by taking the width of this
interval dv so small that

dv is small compared with gy, (91)
c

a condition which can always be satisfied, since dv and v are mutually
independent.

80. The rays which at the time ¢ belong to the interval (v,dv)
and leave this interval in the time dt on account of reflection from the
moving reflector, are simply those rays which strike the moving reflector
in the time 0t. For the change in color which such a ray undergoes is,
from (83) and (91), large compared with dv, the width of the whole
interval. Hence we need only calculate the energy, which in the time 6t
is transmitted to the reflector by the rays in the interval (v, dv).

For an elementary pencil, which falls on the element do of the re-
flecting surface at the angle of incidence 6, this energy is, according to
(88) and (5),

16t = 2K, do cos 0 dS2dv 6t = 2K, do sin 0 cos 0 df d¢ dv dt.

Hence we obtain for the total monochromatic radiation, which falls on
the whole surface F' of the reflector, by integration with respect to ¢

7
from 0 to 2w, with respect to € from 0 to > and with respect to do



DEDUCTIONS FROM ELECTRODYNAMICS 94

from 0 to F',
21 FK, dv ét. (92)

Thus this radiant energy leaves, in the time ¢, the interval of frequen-
cies (v, dv) considered.

81. In calculating the radiant energy which enters the interval
(v,dv) in the time 6t on account of reflection from the moving reflec-
tor, the rays falling on the reflector at different angles of incidence must
be considered separately. Since in the case of a positive v, the frequency
is increased by the reflection, the rays which must be considered have,
at the time ¢, the frequency 14 < v. If we now consider at the time ¢
a monochromatic pencil of frequency (v4,dv,), falling on the reflector
at an angle of incidence #, a necessary and sufficient condition for its
entrance, by reflection, into the interval (v, dv) is

2 0 2 0
1/:1/1(1+ veos ) and duzdm(l—i— veos )

C Cc

These relations are obtained by substituting vy and v respectively in
the equations (83) and (86) in place of the frequencies before and after
reflection v and v/

The energy which this pencil carries into the interval (v, dv) in the
time 0t is obtained from (89), likewise by substituting vy for v. It is

20 cos 6
92K, do cos 0 d dv, (1+ ”Ccos )5t:2KV1 do cos 0 dQ) d t.
Now we have 9K
K., :KV+(V1—1/)$+...

where we shall assume 8—K to be finite.

ov
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Hence, neglecting small quantities of higher order,

2vv cos ) OK
K, =K, — ——.
! c ov
Thus the energy required becomes
2 0 0K
2do (KV - % 5) sin 6 cos 0 df d du ot

and, integrating this expression as above, with respect to do, ¢, and 6,
the total radiant energy which enters into the interval (v, dv) in the

time &t becomes A oK
Vo

82. The difference of the two expressions (93) and (92) is equal to
the whole change (90), hence

8t _vv 0K
——F——0t=9
3 ¢ Ov (Vu),
or, according to (24),
1
—gFm;% ot = 6(Vu),
or, finally, since F'vdt is equal to the decrease of the volume V,
1
51/%51/:5(\/@ =udV +Viu, (94)

whence it follows that

v Ou ov
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This equation gives the change of the energy density of any definite
frequency v, which occurs on an infinitely slow adiabatic compression of
the radiation. It holds, moreover, not only for black radiation, but also
for radiation originally of a perfectly arbitrary distribution of energy, as
is shown by the method of derivation.

Since the changes taking place in the state of the radiation in the
time dt are proportional to the infinitely small velocity v and are re-
versed on changing the sign of the latter, this equation holds for any
sign of 0V'; hence the process is reversible.

83. Before passing on to the general integration of equation (95) let
us examine it in the manner which most easily suggests itself. According
to the energy principle, the change in the radiant energy

U:Vu:V/ udv,
0

occurring on adiabatic compression, must be equal to the external work
done against the radiation pressure

6 o0
ooV = s =V [T (96)
3 3/,

Now from (94) the change in the total energy is found to be

> oV [ Ou
U = dv o = — —d
U /0 vo(Vu) 3 /o Vo dv,

or, by partial integration,

5U:6—V([Vu]go—/ udv),
3 0

and this expression is, in fact, identical with (96), since the product vu
vanishes for v = 0 as well as for v = co. The latter might at first seem
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doubtful; but it is easily seen that, if vu for v = oo had a value different
from zero, the integral of u with respect to v taken from 0 to oo could
not have a finite value, which, however, certainly is the case.

84. We have already emphasized (Sec. 79) that u must be regarded
as a function of two independent variables, of which we have taken as
the first the frequency v and as the second the time ¢. Since, now, in
equation (95) the time ¢ does not explicitly appear, it is more appropri-
ate to introduce the volume V', which depends only on ¢, as the second
variable instead of ¢ itself. Then equation (95) may be written as a
partial differential equation as follows:

Qu _vou (97)
o